ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.120 by root, Fri Nov 16 01:54:25 2007 UTC vs.
Revision 1.350 by root, Sat Oct 16 00:59:56 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
45# endif 79# endif
46# endif 80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 83# ifndef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
86# else
87# undef EV_USE_NANOSLEEP
88# define EV_USE_NANOSLEEP 0
50# endif 89# endif
51 90
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
94# endif
95# else
96# undef EV_USE_SELECT
53# define EV_USE_POLL 1 97# define EV_USE_SELECT 0
54# endif 98# endif
55 99
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
104# else
105# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 106# define EV_USE_POLL 0
58# endif 107# endif
59 108
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 110# ifndef EV_USE_EPOLL
111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
62# endif 116# endif
63 117
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
65# define EV_USE_PORT 1 119# ifndef EV_USE_KQUEUE
120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
66# endif 125# endif
126
127# if HAVE_PORT_H && HAVE_PORT_CREATE
128# ifndef EV_USE_PORT
129# define EV_USE_PORT EV_FEATURE_BACKENDS
130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
134# endif
67 135
136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137# ifndef EV_USE_INOTIFY
138# define EV_USE_INOTIFY EV_FEATURE_OS
139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
143# endif
144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
68#endif 163#endif
69 164
70#include <math.h> 165#include <math.h>
71#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
72#include <fcntl.h> 168#include <fcntl.h>
73#include <stddef.h> 169#include <stddef.h>
74 170
75#include <stdio.h> 171#include <stdio.h>
76 172
77#include <assert.h> 173#include <assert.h>
78#include <errno.h> 174#include <errno.h>
79#include <sys/types.h> 175#include <sys/types.h>
80#include <time.h> 176#include <time.h>
177#include <limits.h>
81 178
82#include <signal.h> 179#include <signal.h>
83 180
181#ifdef EV_H
182# include EV_H
183#else
184# include "ev.h"
185#endif
186
84#ifndef _WIN32 187#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 188# include <sys/time.h>
87# include <sys/wait.h> 189# include <sys/wait.h>
190# include <unistd.h>
88#else 191#else
192# include <io.h>
89# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 194# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
93# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
94#endif 244# endif
95 245#endif
96/**/
97 246
98#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
99# define EV_USE_MONOTONIC 1 251# define EV_USE_MONOTONIC 0
252# endif
100#endif 253#endif
101 254
102#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257#endif
258
259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
263# define EV_USE_NANOSLEEP 0
264# endif
104#endif 265#endif
105 266
106#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
108# define EV_SELECT_USE_FD_SET 1
109#endif 269#endif
110 270
111#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
112# ifdef _WIN32 272# ifdef _WIN32
113# define EV_USE_POLL 0 273# define EV_USE_POLL 0
114# else 274# else
115# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
116# endif 276# endif
117#endif 277#endif
118 278
119#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
120# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
121#endif 285#endif
122 286
123#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
125#endif 289#endif
126 290
127#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 292# define EV_USE_PORT 0
129#endif 293#endif
130 294
131/**/ 295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
299# define EV_USE_INOTIFY 0
300# endif
301#endif
132 302
133/* darwin simply cannot be helped */ 303#ifndef EV_PID_HASHSIZE
134#ifdef __APPLE__ 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
314# else
315# define EV_USE_EVENTFD 0
316# endif
317#endif
318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
135# undef EV_USE_POLL 363# undef EV_USE_POLL
136# undef EV_USE_KQUEUE 364# define EV_USE_POLL 0
137#endif 365#endif
138 366
139#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
144#ifndef CLOCK_REALTIME 372#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 373# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 374# define EV_USE_REALTIME 0
147#endif 375#endif
148 376
377#if !EV_STAT_ENABLE
378# undef EV_USE_INOTIFY
379# define EV_USE_INOTIFY 0
380#endif
381
382#if !EV_USE_NANOSLEEP
383# ifndef _WIN32
384# include <sys/select.h>
385# endif
386#endif
387
388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
397#endif
398
149#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 400# include <winsock.h>
151#endif 401#endif
152 402
403#if EV_USE_EVENTFD
404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
153/**/ 453/**/
454
455#if EV_VERIFY >= 3
456# define EV_FREQUENT_CHECK ev_verify (EV_A)
457#else
458# define EV_FREQUENT_CHECK do { } while (0)
459#endif
460
461/*
462 * This is used to avoid floating point rounding problems.
463 * It is added to ev_rt_now when scheduling periodics
464 * to ensure progress, time-wise, even when rounding
465 * errors are against us.
466 * This value is good at least till the year 4000.
467 * Better solutions welcome.
468 */
469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
154 470
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
159 473
160#ifdef EV_H 474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
161# include EV_H 475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
162#else
163# include "ev.h"
164#endif
165 476
166#if __GNUC__ >= 3 477#if __GNUC__ >= 4
167# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 479# define noinline __attribute__ ((noinline))
169#else 480#else
170# define expect(expr,value) (expr) 481# define expect(expr,value) (expr)
171# define inline static 482# define noinline
483# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
484# define inline
485# endif
172#endif 486#endif
173 487
174#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
490#define inline_size static inline
176 491
492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
495# define inline_speed static noinline
496#endif
497
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
502#else
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
179 505
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
182 508
183typedef struct ev_watcher *W; 509typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 510typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
186 512
513#define ev_active(w) ((W)(w))->active
514#define ev_at(w) ((WT)(w))->at
515
516#if EV_USE_REALTIME
517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520#endif
521
522#if EV_USE_MONOTONIC
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524#endif
525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
534#endif
188 535
189#ifdef _WIN32 536#ifdef _WIN32
190# include "ev_win32.c" 537# include "ev_win32.c"
191#endif 538#endif
192 539
193/*****************************************************************************/ 540/*****************************************************************************/
194 541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
195static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
196 551
552void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 554{
199 syserr_cb = cb; 555 syserr_cb = cb;
200} 556}
201 557
202static void 558static void noinline
203syserr (const char *msg) 559ev_syserr (const char *msg)
204{ 560{
205 if (!msg) 561 if (!msg)
206 msg = "(libev) system error"; 562 msg = "(libev) system error";
207 563
208 if (syserr_cb) 564 if (syserr_cb)
209 syserr_cb (msg); 565 syserr_cb (msg);
210 else 566 else
211 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
212 perror (msg); 576 perror (msg);
577#endif
213 abort (); 578 abort ();
214 } 579 }
215} 580}
216 581
582static void *
583ev_realloc_emul (void *ptr, long size)
584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
588 /* some systems, notably openbsd and darwin, fail to properly
589 * implement realloc (x, 0) (as required by both ansi c-89 and
590 * the single unix specification, so work around them here.
591 */
592
593 if (size)
594 return realloc (ptr, size);
595
596 free (ptr);
597 return 0;
598#endif
599}
600
217static void *(*alloc)(void *ptr, long size); 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
218 602
603void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 604ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 605{
221 alloc = cb; 606 alloc = cb;
222} 607}
223 608
224static void * 609inline_speed void *
225ev_realloc (void *ptr, long size) 610ev_realloc (void *ptr, long size)
226{ 611{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 612 ptr = alloc (ptr, size);
228 613
229 if (!ptr && size) 614 if (!ptr && size)
230 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
232 abort (); 621 abort ();
233 } 622 }
234 623
235 return ptr; 624 return ptr;
236} 625}
238#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
239#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
240 629
241/*****************************************************************************/ 630/*****************************************************************************/
242 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
243typedef struct 636typedef struct
244{ 637{
245 WL head; 638 WL head;
246 unsigned char events; 639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
247 unsigned char reify; 642 unsigned char unused;
643#if EV_USE_EPOLL
644 unsigned int egen; /* generation counter to counter epoll bugs */
645#endif
248#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
249 SOCKET handle; 647 SOCKET handle;
250#endif 648#endif
251} ANFD; 649} ANFD;
252 650
651/* stores the pending event set for a given watcher */
253typedef struct 652typedef struct
254{ 653{
255 W w; 654 W w;
256 int events; 655 int events; /* the pending event set for the given watcher */
257} ANPENDING; 656} ANPENDING;
657
658#if EV_USE_INOTIFY
659/* hash table entry per inotify-id */
660typedef struct
661{
662 WL head;
663} ANFS;
664#endif
665
666/* Heap Entry */
667#if EV_HEAP_CACHE_AT
668 /* a heap element */
669 typedef struct {
670 ev_tstamp at;
671 WT w;
672 } ANHE;
673
674 #define ANHE_w(he) (he).w /* access watcher, read-write */
675 #define ANHE_at(he) (he).at /* access cached at, read-only */
676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
677#else
678 /* a heap element */
679 typedef WT ANHE;
680
681 #define ANHE_w(he) (he)
682 #define ANHE_at(he) (he)->at
683 #define ANHE_at_cache(he)
684#endif
258 685
259#if EV_MULTIPLICITY 686#if EV_MULTIPLICITY
260 687
261 struct ev_loop 688 struct ev_loop
262 { 689 {
280 707
281 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
282 709
283#endif 710#endif
284 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVUNLOOP_RECURSE 0x80
723
285/*****************************************************************************/ 724/*****************************************************************************/
286 725
726#ifndef EV_HAVE_EV_TIME
287ev_tstamp 727ev_tstamp
288ev_time (void) 728ev_time (void)
289{ 729{
290#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
291 struct timespec ts; 733 struct timespec ts;
292 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
293 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
294#else 736 }
737#endif
738
295 struct timeval tv; 739 struct timeval tv;
296 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif
299} 742}
743#endif
300 744
301inline ev_tstamp 745inline_size ev_tstamp
302get_clock (void) 746get_clock (void)
303{ 747{
304#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
306 { 750 {
319{ 763{
320 return ev_rt_now; 764 return ev_rt_now;
321} 765}
322#endif 766#endif
323 767
324#define array_roundsize(type,n) (((n) | 4) & ~3) 768void
769ev_sleep (ev_tstamp delay)
770{
771 if (delay > 0.)
772 {
773#if EV_USE_NANOSLEEP
774 struct timespec ts;
775
776 EV_TS_SET (ts, delay);
777 nanosleep (&ts, 0);
778#elif defined(_WIN32)
779 Sleep ((unsigned long)(delay * 1e3));
780#else
781 struct timeval tv;
782
783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
784 /* something not guaranteed by newer posix versions, but guaranteed */
785 /* by older ones */
786 EV_TV_SET (tv, delay);
787 select (0, 0, 0, 0, &tv);
788#endif
789 }
790}
791
792/*****************************************************************************/
793
794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
795
796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
799array_nextsize (int elem, int cur, int cnt)
800{
801 int ncur = cur + 1;
802
803 do
804 ncur <<= 1;
805 while (cnt > ncur);
806
807 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
808 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
809 {
810 ncur *= elem;
811 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
812 ncur = ncur - sizeof (void *) * 4;
813 ncur /= elem;
814 }
815
816 return ncur;
817}
818
819static noinline void *
820array_realloc (int elem, void *base, int *cur, int cnt)
821{
822 *cur = array_nextsize (elem, *cur, cnt);
823 return ev_realloc (base, elem * *cur);
824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
325 828
326#define array_needsize(type,base,cur,cnt,init) \ 829#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 830 if (expect_false ((cnt) > (cur))) \
328 { \ 831 { \
329 int newcnt = cur; \ 832 int ocur_ = (cur); \
330 do \ 833 (base) = (type *)array_realloc \
331 { \ 834 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 835 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 836 }
340 837
838#if 0
341#define array_slim(type,stem) \ 839#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 840 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 841 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 842 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 843 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 845 }
846#endif
348 847
349#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
351 850
352/*****************************************************************************/ 851/*****************************************************************************/
353 852
354static void 853/* dummy callback for pending events */
355anfds_init (ANFD *base, int count) 854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
356{ 856{
357 while (count--)
358 {
359 base->head = 0;
360 base->events = EV_NONE;
361 base->reify = 0;
362
363 ++base;
364 }
365} 857}
366 858
367void 859void noinline
368ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
369{ 861{
370 W w_ = (W)w; 862 W w_ = (W)w;
863 int pri = ABSPRI (w_);
371 864
372 if (w_->pending) 865 if (expect_false (w_->pending))
866 pendings [pri][w_->pending - 1].events |= revents;
867 else
373 { 868 {
869 w_->pending = ++pendingcnt [pri];
870 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
871 pendings [pri][w_->pending - 1].w = w_;
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 872 pendings [pri][w_->pending - 1].events = revents;
375 return;
376 } 873 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382} 874}
383 875
384static void 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
385queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
386{ 893{
387 int i; 894 int i;
388 895
389 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
391} 898}
392 899
900/*****************************************************************************/
901
393inline void 902inline_speed void
394fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
395{ 904{
396 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 906 ev_io *w;
398 907
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 909 {
401 int ev = w->events & revents; 910 int ev = w->events & revents;
402 911
403 if (ev) 912 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
405 } 914 }
406} 915}
407 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
408void 928void
409ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 930{
931 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
412} 933}
413 934
414/*****************************************************************************/ 935/* make sure the external fd watch events are in-sync */
415 936/* with the kernel/libev internal state */
416static void 937inline_size void
417fd_reify (EV_P) 938fd_reify (EV_P)
418{ 939{
419 int i; 940 int i;
420 941
421 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
422 { 943 {
423 int fd = fdchanges [i]; 944 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 945 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 946 ev_io *w;
426 947
427 int events = 0; 948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
428 950
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 951 anfd->reify = 0;
430 events |= w->events;
431 952
432#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
433 if (events) 954 if (o_reify & EV__IOFDSET)
434 { 955 {
435 unsigned long argp; 956 unsigned long arg;
436 anfd->handle = _get_osfhandle (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
438 } 959 }
439#endif 960#endif
440 961
441 anfd->reify = 0; 962 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
442 963 {
443 method_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 964 anfd->events = 0;
965
966 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
967 anfd->events |= (unsigned char)w->events;
968
969 if (o_events !=anfd-> events)
970 o_reify = EV__IOFDSET; /* actually |= */
971 }
972
973 if (o_reify & EV__IOFDSET)
974 backend_modify (EV_A_ fd, o_events, anfd->events);
445 } 975 }
446 976
447 fdchangecnt = 0; 977 fdchangecnt = 0;
448} 978}
449 979
450static void 980/* something about the given fd changed */
981inline_size void
451fd_change (EV_P_ int fd) 982fd_change (EV_P_ int fd, int flags)
452{ 983{
453 if (anfds [fd].reify) 984 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 985 anfds [fd].reify |= flags;
457 986
987 if (expect_true (!reify))
988 {
458 ++fdchangecnt; 989 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 990 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 991 fdchanges [fdchangecnt - 1] = fd;
992 }
461} 993}
462 994
463static void 995/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
996inline_speed void
464fd_kill (EV_P_ int fd) 997fd_kill (EV_P_ int fd)
465{ 998{
466 struct ev_io *w; 999 ev_io *w;
467 1000
468 while ((w = (struct ev_io *)anfds [fd].head)) 1001 while ((w = (ev_io *)anfds [fd].head))
469 { 1002 {
470 ev_io_stop (EV_A_ w); 1003 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1004 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 1005 }
473} 1006}
474 1007
475static int 1008/* check whether the given fd is actually valid, for error recovery */
1009inline_size int
476fd_valid (int fd) 1010fd_valid (int fd)
477{ 1011{
478#ifdef _WIN32 1012#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 1013 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
480#else 1014#else
481 return fcntl (fd, F_GETFD) != -1; 1015 return fcntl (fd, F_GETFD) != -1;
482#endif 1016#endif
483} 1017}
484 1018
485/* called on EBADF to verify fds */ 1019/* called on EBADF to verify fds */
486static void 1020static void noinline
487fd_ebadf (EV_P) 1021fd_ebadf (EV_P)
488{ 1022{
489 int fd; 1023 int fd;
490 1024
491 for (fd = 0; fd < anfdmax; ++fd) 1025 for (fd = 0; fd < anfdmax; ++fd)
492 if (anfds [fd].events) 1026 if (anfds [fd].events)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 1027 if (!fd_valid (fd) && errno == EBADF)
494 fd_kill (EV_A_ fd); 1028 fd_kill (EV_A_ fd);
495} 1029}
496 1030
497/* called on ENOMEM in select/poll to kill some fds and retry */ 1031/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 1032static void noinline
499fd_enomem (EV_P) 1033fd_enomem (EV_P)
500{ 1034{
501 int fd; 1035 int fd;
502 1036
503 for (fd = anfdmax; fd--; ) 1037 for (fd = anfdmax; fd--; )
504 if (anfds [fd].events) 1038 if (anfds [fd].events)
505 { 1039 {
506 fd_kill (EV_A_ fd); 1040 fd_kill (EV_A_ fd);
507 return; 1041 break;
508 } 1042 }
509} 1043}
510 1044
511/* usually called after fork if method needs to re-arm all fds from scratch */ 1045/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 1046static void noinline
513fd_rearm_all (EV_P) 1047fd_rearm_all (EV_P)
514{ 1048{
515 int fd; 1049 int fd;
516 1050
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 1051 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 1052 if (anfds [fd].events)
520 { 1053 {
521 anfds [fd].events = 0; 1054 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 1055 anfds [fd].emask = 0;
1056 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
523 } 1057 }
524} 1058}
525 1059
526/*****************************************************************************/ 1060/* used to prepare libev internal fd's */
527 1061/* this is not fork-safe */
528static void
529upheap (WT *heap, int k)
530{
531 WT w = heap [k];
532
533 while (k && heap [k >> 1]->at > w->at)
534 {
535 heap [k] = heap [k >> 1];
536 ((W)heap [k])->active = k + 1;
537 k >>= 1;
538 }
539
540 heap [k] = w;
541 ((W)heap [k])->active = k + 1;
542
543}
544
545static void
546downheap (WT *heap, int N, int k)
547{
548 WT w = heap [k];
549
550 while (k < (N >> 1))
551 {
552 int j = k << 1;
553
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
555 ++j;
556
557 if (w->at <= heap [j]->at)
558 break;
559
560 heap [k] = heap [j];
561 ((W)heap [k])->active = k + 1;
562 k = j;
563 }
564
565 heap [k] = w;
566 ((W)heap [k])->active = k + 1;
567}
568
569inline void 1062inline_speed void
570adjustheap (WT *heap, int N, int k)
571{
572 upheap (heap, k);
573 downheap (heap, N, k);
574}
575
576/*****************************************************************************/
577
578typedef struct
579{
580 WL head;
581 sig_atomic_t volatile gotsig;
582} ANSIG;
583
584static ANSIG *signals;
585static int signalmax;
586
587static int sigpipe [2];
588static sig_atomic_t volatile gotsig;
589static struct ev_io sigev;
590
591static void
592signals_init (ANSIG *base, int count)
593{
594 while (count--)
595 {
596 base->head = 0;
597 base->gotsig = 0;
598
599 ++base;
600 }
601}
602
603static void
604sighandler (int signum)
605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609
610 signals [signum - 1].gotsig = 1;
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619}
620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
641static void
642sigcb (EV_P_ struct ev_io *iow, int revents)
643{
644 int signum;
645
646 read (sigpipe [0], &revents, 1);
647 gotsig = 0;
648
649 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1);
652}
653
654inline void
655fd_intern (int fd) 1063fd_intern (int fd)
656{ 1064{
657#ifdef _WIN32 1065#ifdef _WIN32
658 int arg = 1; 1066 unsigned long arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1067 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
660#else 1068#else
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 1069 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 1070 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 1071#endif
664} 1072}
665 1073
1074/*****************************************************************************/
1075
1076/*
1077 * the heap functions want a real array index. array index 0 is guaranteed to not
1078 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1079 * the branching factor of the d-tree.
1080 */
1081
1082/*
1083 * at the moment we allow libev the luxury of two heaps,
1084 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1085 * which is more cache-efficient.
1086 * the difference is about 5% with 50000+ watchers.
1087 */
1088#if EV_USE_4HEAP
1089
1090#define DHEAP 4
1091#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1092#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1093#define UPHEAP_DONE(p,k) ((p) == (k))
1094
1095/* away from the root */
1096inline_speed void
1097downheap (ANHE *heap, int N, int k)
1098{
1099 ANHE he = heap [k];
1100 ANHE *E = heap + N + HEAP0;
1101
1102 for (;;)
1103 {
1104 ev_tstamp minat;
1105 ANHE *minpos;
1106 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1107
1108 /* find minimum child */
1109 if (expect_true (pos + DHEAP - 1 < E))
1110 {
1111 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1114 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1115 }
1116 else if (pos < E)
1117 {
1118 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1119 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1120 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1121 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1122 }
1123 else
1124 break;
1125
1126 if (ANHE_at (he) <= minat)
1127 break;
1128
1129 heap [k] = *minpos;
1130 ev_active (ANHE_w (*minpos)) = k;
1131
1132 k = minpos - heap;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139#else /* 4HEAP */
1140
1141#define HEAP0 1
1142#define HPARENT(k) ((k) >> 1)
1143#define UPHEAP_DONE(p,k) (!(p))
1144
1145/* away from the root */
1146inline_speed void
1147downheap (ANHE *heap, int N, int k)
1148{
1149 ANHE he = heap [k];
1150
1151 for (;;)
1152 {
1153 int c = k << 1;
1154
1155 if (c >= N + HEAP0)
1156 break;
1157
1158 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1159 ? 1 : 0;
1160
1161 if (ANHE_at (he) <= ANHE_at (heap [c]))
1162 break;
1163
1164 heap [k] = heap [c];
1165 ev_active (ANHE_w (heap [k])) = k;
1166
1167 k = c;
1168 }
1169
1170 heap [k] = he;
1171 ev_active (ANHE_w (he)) = k;
1172}
1173#endif
1174
1175/* towards the root */
1176inline_speed void
1177upheap (ANHE *heap, int k)
1178{
1179 ANHE he = heap [k];
1180
1181 for (;;)
1182 {
1183 int p = HPARENT (k);
1184
1185 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1186 break;
1187
1188 heap [k] = heap [p];
1189 ev_active (ANHE_w (heap [k])) = k;
1190 k = p;
1191 }
1192
1193 heap [k] = he;
1194 ev_active (ANHE_w (he)) = k;
1195}
1196
1197/* move an element suitably so it is in a correct place */
1198inline_size void
1199adjustheap (ANHE *heap, int N, int k)
1200{
1201 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1202 upheap (heap, k);
1203 else
1204 downheap (heap, N, k);
1205}
1206
1207/* rebuild the heap: this function is used only once and executed rarely */
1208inline_size void
1209reheap (ANHE *heap, int N)
1210{
1211 int i;
1212
1213 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1214 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1215 for (i = 0; i < N; ++i)
1216 upheap (heap, i + HEAP0);
1217}
1218
1219/*****************************************************************************/
1220
1221/* associate signal watchers to a signal signal */
1222typedef struct
1223{
1224 EV_ATOMIC_T pending;
1225#if EV_MULTIPLICITY
1226 EV_P;
1227#endif
1228 WL head;
1229} ANSIG;
1230
1231static ANSIG signals [EV_NSIG - 1];
1232
1233/*****************************************************************************/
1234
1235#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1236
1237static void noinline
1238evpipe_init (EV_P)
1239{
1240 if (!ev_is_active (&pipe_w))
1241 {
1242# if EV_USE_EVENTFD
1243 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1244 if (evfd < 0 && errno == EINVAL)
1245 evfd = eventfd (0, 0);
1246
1247 if (evfd >= 0)
1248 {
1249 evpipe [0] = -1;
1250 fd_intern (evfd); /* doing it twice doesn't hurt */
1251 ev_io_set (&pipe_w, evfd, EV_READ);
1252 }
1253 else
1254# endif
1255 {
1256 while (pipe (evpipe))
1257 ev_syserr ("(libev) error creating signal/async pipe");
1258
1259 fd_intern (evpipe [0]);
1260 fd_intern (evpipe [1]);
1261 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1262 }
1263
1264 ev_io_start (EV_A_ &pipe_w);
1265 ev_unref (EV_A); /* watcher should not keep loop alive */
1266 }
1267}
1268
1269inline_size void
1270evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1271{
1272 if (!*flag)
1273 {
1274 int old_errno = errno; /* save errno because write might clobber it */
1275 char dummy;
1276
1277 *flag = 1;
1278
1279#if EV_USE_EVENTFD
1280 if (evfd >= 0)
1281 {
1282 uint64_t counter = 1;
1283 write (evfd, &counter, sizeof (uint64_t));
1284 }
1285 else
1286#endif
1287 /* win32 people keep sending patches that change this write() to send() */
1288 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1289 /* so when you think this write should be a send instead, please find out */
1290 /* where your send() is from - it's definitely not the microsoft send, and */
1291 /* tell me. thank you. */
1292 write (evpipe [1], &dummy, 1);
1293
1294 errno = old_errno;
1295 }
1296}
1297
1298/* called whenever the libev signal pipe */
1299/* got some events (signal, async) */
666static void 1300static void
667siginit (EV_P) 1301pipecb (EV_P_ ev_io *iow, int revents)
668{ 1302{
669 fd_intern (sigpipe [0]); 1303 int i;
670 fd_intern (sigpipe [1]);
671 1304
672 ev_io_set (&sigev, sigpipe [0], EV_READ); 1305#if EV_USE_EVENTFD
673 ev_io_start (EV_A_ &sigev); 1306 if (evfd >= 0)
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1307 {
1308 uint64_t counter;
1309 read (evfd, &counter, sizeof (uint64_t));
1310 }
1311 else
1312#endif
1313 {
1314 char dummy;
1315 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1316 read (evpipe [0], &dummy, 1);
1317 }
1318
1319 if (sig_pending)
1320 {
1321 sig_pending = 0;
1322
1323 for (i = EV_NSIG - 1; i--; )
1324 if (expect_false (signals [i].pending))
1325 ev_feed_signal_event (EV_A_ i + 1);
1326 }
1327
1328#if EV_ASYNC_ENABLE
1329 if (async_pending)
1330 {
1331 async_pending = 0;
1332
1333 for (i = asynccnt; i--; )
1334 if (asyncs [i]->sent)
1335 {
1336 asyncs [i]->sent = 0;
1337 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1338 }
1339 }
1340#endif
675} 1341}
676 1342
677/*****************************************************************************/ 1343/*****************************************************************************/
678 1344
679static struct ev_child *childs [PID_HASHSIZE]; 1345static void
1346ev_sighandler (int signum)
1347{
1348#if EV_MULTIPLICITY
1349 EV_P = signals [signum - 1].loop;
1350#endif
680 1351
681#ifndef _WIN32 1352#ifdef _WIN32
1353 signal (signum, ev_sighandler);
1354#endif
682 1355
1356 signals [signum - 1].pending = 1;
1357 evpipe_write (EV_A_ &sig_pending);
1358}
1359
1360void noinline
1361ev_feed_signal_event (EV_P_ int signum)
1362{
1363 WL w;
1364
1365 if (expect_false (signum <= 0 || signum > EV_NSIG))
1366 return;
1367
1368 --signum;
1369
1370#if EV_MULTIPLICITY
1371 /* it is permissible to try to feed a signal to the wrong loop */
1372 /* or, likely more useful, feeding a signal nobody is waiting for */
1373
1374 if (expect_false (signals [signum].loop != EV_A))
1375 return;
1376#endif
1377
1378 signals [signum].pending = 0;
1379
1380 for (w = signals [signum].head; w; w = w->next)
1381 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1382}
1383
1384#if EV_USE_SIGNALFD
1385static void
1386sigfdcb (EV_P_ ev_io *iow, int revents)
1387{
1388 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1389
1390 for (;;)
1391 {
1392 ssize_t res = read (sigfd, si, sizeof (si));
1393
1394 /* not ISO-C, as res might be -1, but works with SuS */
1395 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1396 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1397
1398 if (res < (ssize_t)sizeof (si))
1399 break;
1400 }
1401}
1402#endif
1403
1404#endif
1405
1406/*****************************************************************************/
1407
1408#if EV_CHILD_ENABLE
1409static WL childs [EV_PID_HASHSIZE];
1410
683static struct ev_signal childev; 1411static ev_signal childev;
1412
1413#ifndef WIFCONTINUED
1414# define WIFCONTINUED(status) 0
1415#endif
1416
1417/* handle a single child status event */
1418inline_speed void
1419child_reap (EV_P_ int chain, int pid, int status)
1420{
1421 ev_child *w;
1422 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1423
1424 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1425 {
1426 if ((w->pid == pid || !w->pid)
1427 && (!traced || (w->flags & 1)))
1428 {
1429 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1430 w->rpid = pid;
1431 w->rstatus = status;
1432 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1433 }
1434 }
1435}
684 1436
685#ifndef WCONTINUED 1437#ifndef WCONTINUED
686# define WCONTINUED 0 1438# define WCONTINUED 0
687#endif 1439#endif
688 1440
1441/* called on sigchld etc., calls waitpid */
689static void 1442static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 1443childcb (EV_P_ ev_signal *sw, int revents)
706{ 1444{
707 int pid, status; 1445 int pid, status;
708 1446
1447 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1448 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 1449 if (!WCONTINUED
1450 || errno != EINVAL
1451 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1452 return;
1453
711 /* make sure we are called again until all childs have been reaped */ 1454 /* make sure we are called again until all children have been reaped */
1455 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1456 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 1457
714 child_reap (EV_A_ sw, pid, pid, status); 1458 child_reap (EV_A_ pid, pid, status);
1459 if ((EV_PID_HASHSIZE) > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1460 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 1461}
718 1462
719#endif 1463#endif
720 1464
721/*****************************************************************************/ 1465/*****************************************************************************/
747{ 1491{
748 return EV_VERSION_MINOR; 1492 return EV_VERSION_MINOR;
749} 1493}
750 1494
751/* return true if we are running with elevated privileges and should ignore env variables */ 1495/* return true if we are running with elevated privileges and should ignore env variables */
752static int 1496int inline_size
753enable_secure (void) 1497enable_secure (void)
754{ 1498{
755#ifdef _WIN32 1499#ifdef _WIN32
756 return 0; 1500 return 0;
757#else 1501#else
759 || getgid () != getegid (); 1503 || getgid () != getegid ();
760#endif 1504#endif
761} 1505}
762 1506
763unsigned int 1507unsigned int
1508ev_supported_backends (void)
1509{
1510 unsigned int flags = 0;
1511
1512 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1513 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1514 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1515 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1516 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1517
1518 return flags;
1519}
1520
1521unsigned int
1522ev_recommended_backends (void)
1523{
1524 unsigned int flags = ev_supported_backends ();
1525
1526#ifndef __NetBSD__
1527 /* kqueue is borked on everything but netbsd apparently */
1528 /* it usually doesn't work correctly on anything but sockets and pipes */
1529 flags &= ~EVBACKEND_KQUEUE;
1530#endif
1531#ifdef __APPLE__
1532 /* only select works correctly on that "unix-certified" platform */
1533 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1534 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1535#endif
1536#ifdef __FreeBSD__
1537 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1538#endif
1539
1540 return flags;
1541}
1542
1543unsigned int
1544ev_embeddable_backends (void)
1545{
1546 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1547
1548 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1549 /* please fix it and tell me how to detect the fix */
1550 flags &= ~EVBACKEND_EPOLL;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_backend (EV_P)
1557{
1558 return backend;
1559}
1560
1561#if EV_FEATURE_API
1562unsigned int
1563ev_iteration (EV_P)
1564{
1565 return loop_count;
1566}
1567
1568unsigned int
764ev_method (EV_P) 1569ev_depth (EV_P)
765{ 1570{
766 return method; 1571 return loop_depth;
767} 1572}
768 1573
769static void 1574void
1575ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1576{
1577 io_blocktime = interval;
1578}
1579
1580void
1581ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1582{
1583 timeout_blocktime = interval;
1584}
1585
1586void
1587ev_set_userdata (EV_P_ void *data)
1588{
1589 userdata = data;
1590}
1591
1592void *
1593ev_userdata (EV_P)
1594{
1595 return userdata;
1596}
1597
1598void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1599{
1600 invoke_cb = invoke_pending_cb;
1601}
1602
1603void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1604{
1605 release_cb = release;
1606 acquire_cb = acquire;
1607}
1608#endif
1609
1610/* initialise a loop structure, must be zero-initialised */
1611static void noinline
770loop_init (EV_P_ unsigned int flags) 1612loop_init (EV_P_ unsigned int flags)
771{ 1613{
772 if (!method) 1614 if (!backend)
773 { 1615 {
1616#if EV_USE_REALTIME
1617 if (!have_realtime)
1618 {
1619 struct timespec ts;
1620
1621 if (!clock_gettime (CLOCK_REALTIME, &ts))
1622 have_realtime = 1;
1623 }
1624#endif
1625
774#if EV_USE_MONOTONIC 1626#if EV_USE_MONOTONIC
1627 if (!have_monotonic)
1628 {
1629 struct timespec ts;
1630
1631 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1632 have_monotonic = 1;
1633 }
1634#endif
1635
1636 /* pid check not overridable via env */
1637#ifndef _WIN32
1638 if (flags & EVFLAG_FORKCHECK)
1639 curpid = getpid ();
1640#endif
1641
1642 if (!(flags & EVFLAG_NOENV)
1643 && !enable_secure ()
1644 && getenv ("LIBEV_FLAGS"))
1645 flags = atoi (getenv ("LIBEV_FLAGS"));
1646
1647 ev_rt_now = ev_time ();
1648 mn_now = get_clock ();
1649 now_floor = mn_now;
1650 rtmn_diff = ev_rt_now - mn_now;
1651#if EV_FEATURE_API
1652 invoke_cb = ev_invoke_pending;
1653#endif
1654
1655 io_blocktime = 0.;
1656 timeout_blocktime = 0.;
1657 backend = 0;
1658 backend_fd = -1;
1659 sig_pending = 0;
1660#if EV_ASYNC_ENABLE
1661 async_pending = 0;
1662#endif
1663#if EV_USE_INOTIFY
1664 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1665#endif
1666#if EV_USE_SIGNALFD
1667 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1668#endif
1669
1670 if (!(flags & 0x0000ffffU))
1671 flags |= ev_recommended_backends ();
1672
1673#if EV_USE_PORT
1674 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1675#endif
1676#if EV_USE_KQUEUE
1677 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1678#endif
1679#if EV_USE_EPOLL
1680 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1681#endif
1682#if EV_USE_POLL
1683 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1684#endif
1685#if EV_USE_SELECT
1686 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1687#endif
1688
1689 ev_prepare_init (&pending_w, pendingcb);
1690
1691#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1692 ev_init (&pipe_w, pipecb);
1693 ev_set_priority (&pipe_w, EV_MAXPRI);
1694#endif
1695 }
1696}
1697
1698/* free up a loop structure */
1699static void noinline
1700loop_destroy (EV_P)
1701{
1702 int i;
1703
1704 if (ev_is_active (&pipe_w))
1705 {
1706 /*ev_ref (EV_A);*/
1707 /*ev_io_stop (EV_A_ &pipe_w);*/
1708
1709#if EV_USE_EVENTFD
1710 if (evfd >= 0)
1711 close (evfd);
1712#endif
1713
1714 if (evpipe [0] >= 0)
1715 {
1716 EV_WIN32_CLOSE_FD (evpipe [0]);
1717 EV_WIN32_CLOSE_FD (evpipe [1]);
1718 }
1719 }
1720
1721#if EV_USE_SIGNALFD
1722 if (ev_is_active (&sigfd_w))
1723 close (sigfd);
1724#endif
1725
1726#if EV_USE_INOTIFY
1727 if (fs_fd >= 0)
1728 close (fs_fd);
1729#endif
1730
1731 if (backend_fd >= 0)
1732 close (backend_fd);
1733
1734#if EV_USE_PORT
1735 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1736#endif
1737#if EV_USE_KQUEUE
1738 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1739#endif
1740#if EV_USE_EPOLL
1741 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1742#endif
1743#if EV_USE_POLL
1744 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1745#endif
1746#if EV_USE_SELECT
1747 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1748#endif
1749
1750 for (i = NUMPRI; i--; )
1751 {
1752 array_free (pending, [i]);
1753#if EV_IDLE_ENABLE
1754 array_free (idle, [i]);
1755#endif
1756 }
1757
1758 ev_free (anfds); anfds = 0; anfdmax = 0;
1759
1760 /* have to use the microsoft-never-gets-it-right macro */
1761 array_free (rfeed, EMPTY);
1762 array_free (fdchange, EMPTY);
1763 array_free (timer, EMPTY);
1764#if EV_PERIODIC_ENABLE
1765 array_free (periodic, EMPTY);
1766#endif
1767#if EV_FORK_ENABLE
1768 array_free (fork, EMPTY);
1769#endif
1770 array_free (prepare, EMPTY);
1771 array_free (check, EMPTY);
1772#if EV_ASYNC_ENABLE
1773 array_free (async, EMPTY);
1774#endif
1775
1776 backend = 0;
1777}
1778
1779#if EV_USE_INOTIFY
1780inline_size void infy_fork (EV_P);
1781#endif
1782
1783inline_size void
1784loop_fork (EV_P)
1785{
1786#if EV_USE_PORT
1787 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1788#endif
1789#if EV_USE_KQUEUE
1790 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1791#endif
1792#if EV_USE_EPOLL
1793 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1794#endif
1795#if EV_USE_INOTIFY
1796 infy_fork (EV_A);
1797#endif
1798
1799 if (ev_is_active (&pipe_w))
1800 {
1801 /* this "locks" the handlers against writing to the pipe */
1802 /* while we modify the fd vars */
1803 sig_pending = 1;
1804#if EV_ASYNC_ENABLE
1805 async_pending = 1;
1806#endif
1807
1808 ev_ref (EV_A);
1809 ev_io_stop (EV_A_ &pipe_w);
1810
1811#if EV_USE_EVENTFD
1812 if (evfd >= 0)
1813 close (evfd);
1814#endif
1815
1816 if (evpipe [0] >= 0)
1817 {
1818 EV_WIN32_CLOSE_FD (evpipe [0]);
1819 EV_WIN32_CLOSE_FD (evpipe [1]);
1820 }
1821
1822#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1823 evpipe_init (EV_A);
1824 /* now iterate over everything, in case we missed something */
1825 pipecb (EV_A_ &pipe_w, EV_READ);
1826#endif
1827 }
1828
1829 postfork = 0;
1830}
1831
1832#if EV_MULTIPLICITY
1833
1834struct ev_loop *
1835ev_loop_new (unsigned int flags)
1836{
1837 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1838
1839 memset (EV_A, 0, sizeof (struct ev_loop));
1840 loop_init (EV_A_ flags);
1841
1842 if (ev_backend (EV_A))
1843 return EV_A;
1844
1845 return 0;
1846}
1847
1848void
1849ev_loop_destroy (EV_P)
1850{
1851 loop_destroy (EV_A);
1852 ev_free (loop);
1853}
1854
1855void
1856ev_loop_fork (EV_P)
1857{
1858 postfork = 1; /* must be in line with ev_default_fork */
1859}
1860#endif /* multiplicity */
1861
1862#if EV_VERIFY
1863static void noinline
1864verify_watcher (EV_P_ W w)
1865{
1866 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1867
1868 if (w->pending)
1869 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1870}
1871
1872static void noinline
1873verify_heap (EV_P_ ANHE *heap, int N)
1874{
1875 int i;
1876
1877 for (i = HEAP0; i < N + HEAP0; ++i)
1878 {
1879 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1880 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1881 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1882
1883 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1884 }
1885}
1886
1887static void noinline
1888array_verify (EV_P_ W *ws, int cnt)
1889{
1890 while (cnt--)
1891 {
1892 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1893 verify_watcher (EV_A_ ws [cnt]);
1894 }
1895}
1896#endif
1897
1898#if EV_FEATURE_API
1899void
1900ev_verify (EV_P)
1901{
1902#if EV_VERIFY
1903 int i;
1904 WL w;
1905
1906 assert (activecnt >= -1);
1907
1908 assert (fdchangemax >= fdchangecnt);
1909 for (i = 0; i < fdchangecnt; ++i)
1910 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1911
1912 assert (anfdmax >= 0);
1913 for (i = 0; i < anfdmax; ++i)
1914 for (w = anfds [i].head; w; w = w->next)
775 { 1915 {
776 struct timespec ts; 1916 verify_watcher (EV_A_ (W)w);
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1917 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
778 have_monotonic = 1; 1918 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
779 } 1919 }
780#endif
781 1920
782 ev_rt_now = ev_time (); 1921 assert (timermax >= timercnt);
783 mn_now = get_clock (); 1922 verify_heap (EV_A_ timers, timercnt);
784 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now;
786 1923
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1924#if EV_PERIODIC_ENABLE
788 flags = atoi (getenv ("LIBEV_FLAGS")); 1925 assert (periodicmax >= periodiccnt);
789 1926 verify_heap (EV_A_ periodics, periodiccnt);
790 if (!(flags & 0x0000ffff))
791 flags |= 0x0000ffff;
792
793 method = 0;
794#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
796#endif
797#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
799#endif
800#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
802#endif
803#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
805#endif
806#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
808#endif
809
810 ev_init (&sigev, sigcb);
811 ev_set_priority (&sigev, EV_MAXPRI);
812 }
813}
814
815void
816loop_destroy (EV_P)
817{
818 int i;
819
820#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
822#endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
825#endif
826#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
828#endif
829#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
831#endif
832#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
834#endif 1927#endif
835 1928
836 for (i = NUMPRI; i--; ) 1929 for (i = NUMPRI; i--; )
837 array_free (pending, [i]); 1930 {
1931 assert (pendingmax [i] >= pendingcnt [i]);
1932#if EV_IDLE_ENABLE
1933 assert (idleall >= 0);
1934 assert (idlemax [i] >= idlecnt [i]);
1935 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1936#endif
1937 }
838 1938
839 /* have to use the microsoft-never-gets-it-right macro */ 1939#if EV_FORK_ENABLE
840 array_free (fdchange, EMPTY0); 1940 assert (forkmax >= forkcnt);
841 array_free (timer, EMPTY0); 1941 array_verify (EV_A_ (W *)forks, forkcnt);
842#if EV_PERIODICS 1942#endif
843 array_free (periodic, EMPTY0); 1943
1944#if EV_ASYNC_ENABLE
1945 assert (asyncmax >= asynccnt);
1946 array_verify (EV_A_ (W *)asyncs, asynccnt);
1947#endif
1948
1949#if EV_PREPARE_ENABLE
1950 assert (preparemax >= preparecnt);
1951 array_verify (EV_A_ (W *)prepares, preparecnt);
1952#endif
1953
1954#if EV_CHECK_ENABLE
1955 assert (checkmax >= checkcnt);
1956 array_verify (EV_A_ (W *)checks, checkcnt);
1957#endif
1958
1959# if 0
1960#if EV_CHILD_ENABLE
1961 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1962 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1963#endif
844#endif 1964# endif
845 array_free (idle, EMPTY0);
846 array_free (prepare, EMPTY0);
847 array_free (check, EMPTY0);
848
849 method = 0;
850}
851
852static void
853loop_fork (EV_P)
854{
855#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A);
857#endif 1965#endif
858#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
860#endif
861#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
863#endif
864
865 if (ev_is_active (&sigev))
866 {
867 /* default loop */
868
869 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev);
871 close (sigpipe [0]);
872 close (sigpipe [1]);
873
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A);
878 }
879
880 postfork = 0;
881} 1966}
1967#endif
882 1968
883#if EV_MULTIPLICITY 1969#if EV_MULTIPLICITY
884struct ev_loop * 1970struct ev_loop *
885ev_loop_new (unsigned int flags)
886{
887 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
888
889 memset (loop, 0, sizeof (struct ev_loop));
890
891 loop_init (EV_A_ flags);
892
893 if (ev_method (EV_A))
894 return loop;
895
896 return 0;
897}
898
899void
900ev_loop_destroy (EV_P)
901{
902 loop_destroy (EV_A);
903 ev_free (loop);
904}
905
906void
907ev_loop_fork (EV_P)
908{
909 postfork = 1;
910}
911
912#endif
913
914#if EV_MULTIPLICITY
915struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1971ev_default_loop_init (unsigned int flags)
917#else 1972#else
918int 1973int
919ev_default_loop (unsigned int flags) 1974ev_default_loop (unsigned int flags)
920#endif 1975#endif
921{ 1976{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr) 1977 if (!ev_default_loop_ptr)
927 { 1978 {
928#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1980 EV_P = ev_default_loop_ptr = &default_loop_struct;
930#else 1981#else
931 ev_default_loop_ptr = 1; 1982 ev_default_loop_ptr = 1;
932#endif 1983#endif
933 1984
934 loop_init (EV_A_ flags); 1985 loop_init (EV_A_ flags);
935 1986
936 if (ev_method (EV_A)) 1987 if (ev_backend (EV_A))
937 { 1988 {
938 siginit (EV_A); 1989#if EV_CHILD_ENABLE
939
940#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1990 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 1991 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 1992 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1993 ev_unref (EV_A); /* child watcher should not keep loop alive */
945#endif 1994#endif
953 2002
954void 2003void
955ev_default_destroy (void) 2004ev_default_destroy (void)
956{ 2005{
957#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
958 struct ev_loop *loop = ev_default_loop_ptr; 2007 EV_P = ev_default_loop_ptr;
959#endif 2008#endif
960 2009
961#ifndef _WIN32 2010 ev_default_loop_ptr = 0;
2011
2012#if EV_CHILD_ENABLE
962 ev_ref (EV_A); /* child watcher */ 2013 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev); 2014 ev_signal_stop (EV_A_ &childev);
964#endif 2015#endif
965 2016
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A); 2017 loop_destroy (EV_A);
973} 2018}
974 2019
975void 2020void
976ev_default_fork (void) 2021ev_default_fork (void)
977{ 2022{
978#if EV_MULTIPLICITY 2023#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 2024 EV_P = ev_default_loop_ptr;
980#endif 2025#endif
981 2026
982 if (method) 2027 postfork = 1; /* must be in line with ev_loop_fork */
983 postfork = 1;
984} 2028}
985 2029
986/*****************************************************************************/ 2030/*****************************************************************************/
987 2031
988static int 2032void
989any_pending (EV_P) 2033ev_invoke (EV_P_ void *w, int revents)
2034{
2035 EV_CB_INVOKE ((W)w, revents);
2036}
2037
2038unsigned int
2039ev_pending_count (EV_P)
990{ 2040{
991 int pri; 2041 int pri;
2042 unsigned int count = 0;
992 2043
993 for (pri = NUMPRI; pri--; ) 2044 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri]) 2045 count += pendingcnt [pri];
995 return 1;
996 2046
997 return 0; 2047 return count;
998} 2048}
999 2049
1000static void 2050void noinline
1001call_pending (EV_P) 2051ev_invoke_pending (EV_P)
1002{ 2052{
1003 int pri; 2053 int pri;
1004 2054
1005 for (pri = NUMPRI; pri--; ) 2055 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 2056 while (pendingcnt [pri])
1007 { 2057 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2058 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 2059
1010 if (p->w) 2060 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1011 { 2061 /* ^ this is no longer true, as pending_w could be here */
2062
1012 p->w->pending = 0; 2063 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 2064 EV_CB_INVOKE (p->w, p->events);
1014 } 2065 EV_FREQUENT_CHECK;
1015 } 2066 }
1016} 2067}
1017 2068
1018static void 2069#if EV_IDLE_ENABLE
2070/* make idle watchers pending. this handles the "call-idle */
2071/* only when higher priorities are idle" logic */
2072inline_size void
2073idle_reify (EV_P)
2074{
2075 if (expect_false (idleall))
2076 {
2077 int pri;
2078
2079 for (pri = NUMPRI; pri--; )
2080 {
2081 if (pendingcnt [pri])
2082 break;
2083
2084 if (idlecnt [pri])
2085 {
2086 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2087 break;
2088 }
2089 }
2090 }
2091}
2092#endif
2093
2094/* make timers pending */
2095inline_size void
1019timers_reify (EV_P) 2096timers_reify (EV_P)
1020{ 2097{
2098 EV_FREQUENT_CHECK;
2099
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 2100 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1022 { 2101 {
1023 struct ev_timer *w = timers [0]; 2102 do
1024
1025 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1026
1027 /* first reschedule or stop timer */
1028 if (w->repeat)
1029 { 2103 {
2104 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2105
2106 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2107
2108 /* first reschedule or stop timer */
2109 if (w->repeat)
2110 {
2111 ev_at (w) += w->repeat;
2112 if (ev_at (w) < mn_now)
2113 ev_at (w) = mn_now;
2114
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2115 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 2116
1032 ((WT)w)->at += w->repeat; 2117 ANHE_at_cache (timers [HEAP0]);
1033 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now;
1035
1036 downheap ((WT *)timers, timercnt, 0); 2118 downheap (timers, timercnt, HEAP0);
2119 }
2120 else
2121 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2122
2123 EV_FREQUENT_CHECK;
2124 feed_reverse (EV_A_ (W)w);
1037 } 2125 }
1038 else 2126 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 2127
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2128 feed_reverse_done (EV_A_ EV_TIMER);
1042 } 2129 }
1043} 2130}
1044 2131
1045#if EV_PERIODICS 2132#if EV_PERIODIC_ENABLE
1046static void 2133/* make periodics pending */
2134inline_size void
1047periodics_reify (EV_P) 2135periodics_reify (EV_P)
1048{ 2136{
2137 EV_FREQUENT_CHECK;
2138
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2139 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1050 { 2140 {
1051 struct ev_periodic *w = periodics [0]; 2141 int feed_count = 0;
1052 2142
2143 do
2144 {
2145 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2146
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2147 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 2148
1055 /* first reschedule or stop timer */ 2149 /* first reschedule or stop timer */
2150 if (w->reschedule_cb)
2151 {
2152 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2153
2154 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2155
2156 ANHE_at_cache (periodics [HEAP0]);
2157 downheap (periodics, periodiccnt, HEAP0);
2158 }
2159 else if (w->interval)
2160 {
2161 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2162 /* if next trigger time is not sufficiently in the future, put it there */
2163 /* this might happen because of floating point inexactness */
2164 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2165 {
2166 ev_at (w) += w->interval;
2167
2168 /* if interval is unreasonably low we might still have a time in the past */
2169 /* so correct this. this will make the periodic very inexact, but the user */
2170 /* has effectively asked to get triggered more often than possible */
2171 if (ev_at (w) < ev_rt_now)
2172 ev_at (w) = ev_rt_now;
2173 }
2174
2175 ANHE_at_cache (periodics [HEAP0]);
2176 downheap (periodics, periodiccnt, HEAP0);
2177 }
2178 else
2179 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2180
2181 EV_FREQUENT_CHECK;
2182 feed_reverse (EV_A_ (W)w);
2183 }
2184 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2185
2186 feed_reverse_done (EV_A_ EV_PERIODIC);
2187 }
2188}
2189
2190/* simply recalculate all periodics */
2191/* TODO: maybe ensure that at least one event happens when jumping forward? */
2192static void noinline
2193periodics_reschedule (EV_P)
2194{
2195 int i;
2196
2197 /* adjust periodics after time jump */
2198 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2199 {
2200 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2201
1056 if (w->reschedule_cb) 2202 if (w->reschedule_cb)
2203 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2204 else if (w->interval)
2205 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2206
2207 ANHE_at_cache (periodics [i]);
2208 }
2209
2210 reheap (periodics, periodiccnt);
2211}
2212#endif
2213
2214/* adjust all timers by a given offset */
2215static void noinline
2216timers_reschedule (EV_P_ ev_tstamp adjust)
2217{
2218 int i;
2219
2220 for (i = 0; i < timercnt; ++i)
2221 {
2222 ANHE *he = timers + i + HEAP0;
2223 ANHE_w (*he)->at += adjust;
2224 ANHE_at_cache (*he);
2225 }
2226}
2227
2228/* fetch new monotonic and realtime times from the kernel */
2229/* also detect if there was a timejump, and act accordingly */
2230inline_speed void
2231time_update (EV_P_ ev_tstamp max_block)
2232{
2233#if EV_USE_MONOTONIC
2234 if (expect_true (have_monotonic))
2235 {
2236 int i;
2237 ev_tstamp odiff = rtmn_diff;
2238
2239 mn_now = get_clock ();
2240
2241 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2242 /* interpolate in the meantime */
2243 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1057 { 2244 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2245 ev_rt_now = rtmn_diff + mn_now;
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2246 return;
1060 downheap ((WT *)periodics, periodiccnt, 0);
1061 } 2247 }
1062 else if (w->interval)
1063 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0);
1067 }
1068 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 2248
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 }
1073}
1074
1075static void
1076periodics_reschedule (EV_P)
1077{
1078 int i;
1079
1080 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i)
1082 {
1083 struct ev_periodic *w = periodics [i];
1084
1085 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1089 }
1090
1091 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i);
1094}
1095#endif
1096
1097inline int
1098time_update_monotonic (EV_P)
1099{
1100 mn_now = get_clock ();
1101
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 {
1104 ev_rt_now = rtmn_diff + mn_now;
1105 return 0;
1106 }
1107 else
1108 {
1109 now_floor = mn_now; 2249 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 2250 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 2251
1115static void 2252 /* loop a few times, before making important decisions.
1116time_update (EV_P) 2253 * on the choice of "4": one iteration isn't enough,
1117{ 2254 * in case we get preempted during the calls to
1118 int i; 2255 * ev_time and get_clock. a second call is almost guaranteed
1119 2256 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 2257 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 2258 * in the unlikely event of having been preempted here.
1122 { 2259 */
1123 if (time_update_monotonic (EV_A)) 2260 for (i = 4; --i; )
1124 { 2261 {
1125 ev_tstamp odiff = rtmn_diff;
1126
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1128 {
1129 rtmn_diff = ev_rt_now - mn_now; 2262 rtmn_diff = ev_rt_now - mn_now;
1130 2263
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2264 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1132 return; /* all is well */ 2265 return; /* all is well */
1133 2266
1134 ev_rt_now = ev_time (); 2267 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 2268 mn_now = get_clock ();
1136 now_floor = mn_now; 2269 now_floor = mn_now;
1137 } 2270 }
1138 2271
2272 /* no timer adjustment, as the monotonic clock doesn't jump */
2273 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1139# if EV_PERIODICS 2274# if EV_PERIODIC_ENABLE
2275 periodics_reschedule (EV_A);
2276# endif
2277 }
2278 else
2279#endif
2280 {
2281 ev_rt_now = ev_time ();
2282
2283 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2284 {
2285 /* adjust timers. this is easy, as the offset is the same for all of them */
2286 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2287#if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 2288 periodics_reschedule (EV_A);
1141# endif 2289#endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 } 2290 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */
1158 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 }
1161 2291
1162 mn_now = ev_rt_now; 2292 mn_now = ev_rt_now;
1163 } 2293 }
1164} 2294}
1165 2295
1166void 2296void
1167ev_ref (EV_P)
1168{
1169 ++activecnt;
1170}
1171
1172void
1173ev_unref (EV_P)
1174{
1175 --activecnt;
1176}
1177
1178static int loop_done;
1179
1180void
1181ev_loop (EV_P_ int flags) 2297ev_loop (EV_P_ int flags)
1182{ 2298{
1183 double block; 2299#if EV_FEATURE_API
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2300 ++loop_depth;
2301#endif
1185 2302
1186 while (activecnt) 2303 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2304
2305 loop_done = EVUNLOOP_CANCEL;
2306
2307 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2308
2309 do
1187 { 2310 {
2311#if EV_VERIFY >= 2
2312 ev_verify (EV_A);
2313#endif
2314
2315#ifndef _WIN32
2316 if (expect_false (curpid)) /* penalise the forking check even more */
2317 if (expect_false (getpid () != curpid))
2318 {
2319 curpid = getpid ();
2320 postfork = 1;
2321 }
2322#endif
2323
2324#if EV_FORK_ENABLE
2325 /* we might have forked, so queue fork handlers */
2326 if (expect_false (postfork))
2327 if (forkcnt)
2328 {
2329 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2330 EV_INVOKE_PENDING;
2331 }
2332#endif
2333
2334#if EV_PREPARE_ENABLE
1188 /* queue check watchers (and execute them) */ 2335 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 2336 if (expect_false (preparecnt))
1190 { 2337 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2338 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
1193 } 2340 }
2341#endif
2342
2343 if (expect_false (loop_done))
2344 break;
1194 2345
1195 /* we might have forked, so reify kernel state if necessary */ 2346 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 2347 if (expect_false (postfork))
1197 loop_fork (EV_A); 2348 loop_fork (EV_A);
1198 2349
1199 /* update fd-related kernel structures */ 2350 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 2351 fd_reify (EV_A);
1201 2352
1202 /* calculate blocking time */ 2353 /* calculate blocking time */
2354 {
2355 ev_tstamp waittime = 0.;
2356 ev_tstamp sleeptime = 0.;
1203 2357
1204 /* we only need this for !monotonic clock or timers, but as we basically 2358 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1205 always have timers, we just calculate it always */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else
1210#endif
1211 { 2359 {
1212 ev_rt_now = ev_time (); 2360 /* remember old timestamp for io_blocktime calculation */
1213 mn_now = ev_rt_now; 2361 ev_tstamp prev_mn_now = mn_now;
1214 }
1215 2362
1216 if (flags & EVLOOP_NONBLOCK || idlecnt) 2363 /* update time to cancel out callback processing overhead */
1217 block = 0.; 2364 time_update (EV_A_ 1e100);
1218 else 2365
1219 {
1220 block = MAX_BLOCKTIME; 2366 waittime = MAX_BLOCKTIME;
1221 2367
1222 if (timercnt) 2368 if (timercnt)
1223 { 2369 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2370 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1225 if (block > to) block = to; 2371 if (waittime > to) waittime = to;
1226 } 2372 }
1227 2373
1228#if EV_PERIODICS 2374#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 2375 if (periodiccnt)
1230 { 2376 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 2378 if (waittime > to) waittime = to;
1233 } 2379 }
1234#endif 2380#endif
1235 2381
1236 if (block < 0.) block = 0.; 2382 /* don't let timeouts decrease the waittime below timeout_blocktime */
2383 if (expect_false (waittime < timeout_blocktime))
2384 waittime = timeout_blocktime;
2385
2386 /* extra check because io_blocktime is commonly 0 */
2387 if (expect_false (io_blocktime))
2388 {
2389 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2390
2391 if (sleeptime > waittime - backend_fudge)
2392 sleeptime = waittime - backend_fudge;
2393
2394 if (expect_true (sleeptime > 0.))
2395 {
2396 ev_sleep (sleeptime);
2397 waittime -= sleeptime;
2398 }
2399 }
1237 } 2400 }
1238 2401
1239 method_poll (EV_A_ block); 2402#if EV_FEATURE_API
2403 ++loop_count;
2404#endif
2405 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2406 backend_poll (EV_A_ waittime);
2407 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1240 2408
1241 /* update ev_rt_now, do magic */ 2409 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 2410 time_update (EV_A_ waittime + sleeptime);
2411 }
1243 2412
1244 /* queue pending timers and reschedule them */ 2413 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 2414 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 2415#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 2416 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 2417#endif
1249 2418
2419#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 2420 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 2421 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2422#endif
1253 2423
2424#if EV_CHECK_ENABLE
1254 /* queue check watchers, to be executed first */ 2425 /* queue check watchers, to be executed first */
1255 if (checkcnt) 2426 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2427 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2428#endif
1257 2429
1258 call_pending (EV_A); 2430 EV_INVOKE_PENDING;
1259
1260 if (loop_done)
1261 break;
1262 } 2431 }
2432 while (expect_true (
2433 activecnt
2434 && !loop_done
2435 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2436 ));
1263 2437
1264 if (loop_done != 2) 2438 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 2439 loop_done = EVUNLOOP_CANCEL;
2440
2441#if EV_FEATURE_API
2442 --loop_depth;
2443#endif
1266} 2444}
1267 2445
1268void 2446void
1269ev_unloop (EV_P_ int how) 2447ev_unloop (EV_P_ int how)
1270{ 2448{
1271 loop_done = how; 2449 loop_done = how;
1272} 2450}
1273 2451
2452void
2453ev_ref (EV_P)
2454{
2455 ++activecnt;
2456}
2457
2458void
2459ev_unref (EV_P)
2460{
2461 --activecnt;
2462}
2463
2464void
2465ev_now_update (EV_P)
2466{
2467 time_update (EV_A_ 1e100);
2468}
2469
2470void
2471ev_suspend (EV_P)
2472{
2473 ev_now_update (EV_A);
2474}
2475
2476void
2477ev_resume (EV_P)
2478{
2479 ev_tstamp mn_prev = mn_now;
2480
2481 ev_now_update (EV_A);
2482 timers_reschedule (EV_A_ mn_now - mn_prev);
2483#if EV_PERIODIC_ENABLE
2484 /* TODO: really do this? */
2485 periodics_reschedule (EV_A);
2486#endif
2487}
2488
1274/*****************************************************************************/ 2489/*****************************************************************************/
2490/* singly-linked list management, used when the expected list length is short */
1275 2491
1276inline void 2492inline_size void
1277wlist_add (WL *head, WL elem) 2493wlist_add (WL *head, WL elem)
1278{ 2494{
1279 elem->next = *head; 2495 elem->next = *head;
1280 *head = elem; 2496 *head = elem;
1281} 2497}
1282 2498
1283inline void 2499inline_size void
1284wlist_del (WL *head, WL elem) 2500wlist_del (WL *head, WL elem)
1285{ 2501{
1286 while (*head) 2502 while (*head)
1287 { 2503 {
1288 if (*head == elem) 2504 if (expect_true (*head == elem))
1289 { 2505 {
1290 *head = elem->next; 2506 *head = elem->next;
1291 return; 2507 break;
1292 } 2508 }
1293 2509
1294 head = &(*head)->next; 2510 head = &(*head)->next;
1295 } 2511 }
1296} 2512}
1297 2513
2514/* internal, faster, version of ev_clear_pending */
1298inline void 2515inline_speed void
1299ev_clear_pending (EV_P_ W w) 2516clear_pending (EV_P_ W w)
1300{ 2517{
1301 if (w->pending) 2518 if (w->pending)
1302 { 2519 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2520 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1304 w->pending = 0; 2521 w->pending = 0;
1305 } 2522 }
1306} 2523}
1307 2524
2525int
2526ev_clear_pending (EV_P_ void *w)
2527{
2528 W w_ = (W)w;
2529 int pending = w_->pending;
2530
2531 if (expect_true (pending))
2532 {
2533 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2534 p->w = (W)&pending_w;
2535 w_->pending = 0;
2536 return p->events;
2537 }
2538 else
2539 return 0;
2540}
2541
1308inline void 2542inline_size void
2543pri_adjust (EV_P_ W w)
2544{
2545 int pri = ev_priority (w);
2546 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2547 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2548 ev_set_priority (w, pri);
2549}
2550
2551inline_speed void
1309ev_start (EV_P_ W w, int active) 2552ev_start (EV_P_ W w, int active)
1310{ 2553{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2554 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 2555 w->active = active;
1315 ev_ref (EV_A); 2556 ev_ref (EV_A);
1316} 2557}
1317 2558
1318inline void 2559inline_size void
1319ev_stop (EV_P_ W w) 2560ev_stop (EV_P_ W w)
1320{ 2561{
1321 ev_unref (EV_A); 2562 ev_unref (EV_A);
1322 w->active = 0; 2563 w->active = 0;
1323} 2564}
1324 2565
1325/*****************************************************************************/ 2566/*****************************************************************************/
1326 2567
1327void 2568void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 2569ev_io_start (EV_P_ ev_io *w)
1329{ 2570{
1330 int fd = w->fd; 2571 int fd = w->fd;
1331 2572
1332 if (ev_is_active (w)) 2573 if (expect_false (ev_is_active (w)))
1333 return; 2574 return;
1334 2575
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 2576 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2577 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2578
2579 EV_FREQUENT_CHECK;
1336 2580
1337 ev_start (EV_A_ (W)w, 1); 2581 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2582 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2583 wlist_add (&anfds[fd].head, (WL)w);
1340 2584
1341 fd_change (EV_A_ fd); 2585 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1342} 2586 w->events &= ~EV__IOFDSET;
1343 2587
1344void 2588 EV_FREQUENT_CHECK;
2589}
2590
2591void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 2592ev_io_stop (EV_P_ ev_io *w)
1346{ 2593{
1347 ev_clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 2595 if (expect_false (!ev_is_active (w)))
1349 return; 2596 return;
1350 2597
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2598 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 2599
2600 EV_FREQUENT_CHECK;
2601
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2602 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 2603 ev_stop (EV_A_ (W)w);
1355 2604
1356 fd_change (EV_A_ w->fd); 2605 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1357}
1358 2606
1359void 2607 EV_FREQUENT_CHECK;
2608}
2609
2610void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 2611ev_timer_start (EV_P_ ev_timer *w)
1361{ 2612{
1362 if (ev_is_active (w)) 2613 if (expect_false (ev_is_active (w)))
1363 return; 2614 return;
1364 2615
1365 ((WT)w)->at += mn_now; 2616 ev_at (w) += mn_now;
1366 2617
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2618 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 2619
2620 EV_FREQUENT_CHECK;
2621
2622 ++timercnt;
1369 ev_start (EV_A_ (W)w, ++timercnt); 2623 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2624 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1371 timers [timercnt - 1] = w; 2625 ANHE_w (timers [ev_active (w)]) = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 2626 ANHE_at_cache (timers [ev_active (w)]);
2627 upheap (timers, ev_active (w));
1373 2628
2629 EV_FREQUENT_CHECK;
2630
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2631 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1375} 2632}
1376 2633
1377void 2634void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 2635ev_timer_stop (EV_P_ ev_timer *w)
1379{ 2636{
1380 ev_clear_pending (EV_A_ (W)w); 2637 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 2638 if (expect_false (!ev_is_active (w)))
1382 return; 2639 return;
1383 2640
2641 EV_FREQUENT_CHECK;
2642
2643 {
2644 int active = ev_active (w);
2645
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2646 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1385 2647
1386 if (((W)w)->active < timercnt--) 2648 --timercnt;
2649
2650 if (expect_true (active < timercnt + HEAP0))
1387 { 2651 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 2652 timers [active] = timers [timercnt + HEAP0];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2653 adjustheap (timers, timercnt, active);
1390 } 2654 }
2655 }
1391 2656
1392 ((WT)w)->at -= mn_now; 2657 ev_at (w) -= mn_now;
1393 2658
1394 ev_stop (EV_A_ (W)w); 2659 ev_stop (EV_A_ (W)w);
1395}
1396 2660
1397void 2661 EV_FREQUENT_CHECK;
2662}
2663
2664void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 2665ev_timer_again (EV_P_ ev_timer *w)
1399{ 2666{
2667 EV_FREQUENT_CHECK;
2668
1400 if (ev_is_active (w)) 2669 if (ev_is_active (w))
1401 { 2670 {
1402 if (w->repeat) 2671 if (w->repeat)
1403 { 2672 {
1404 ((WT)w)->at = mn_now + w->repeat; 2673 ev_at (w) = mn_now + w->repeat;
2674 ANHE_at_cache (timers [ev_active (w)]);
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2675 adjustheap (timers, timercnt, ev_active (w));
1406 } 2676 }
1407 else 2677 else
1408 ev_timer_stop (EV_A_ w); 2678 ev_timer_stop (EV_A_ w);
1409 } 2679 }
1410 else if (w->repeat) 2680 else if (w->repeat)
1411 { 2681 {
1412 w->at = w->repeat; 2682 ev_at (w) = w->repeat;
1413 ev_timer_start (EV_A_ w); 2683 ev_timer_start (EV_A_ w);
1414 } 2684 }
1415}
1416 2685
2686 EV_FREQUENT_CHECK;
2687}
2688
2689ev_tstamp
2690ev_timer_remaining (EV_P_ ev_timer *w)
2691{
2692 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2693}
2694
1417#if EV_PERIODICS 2695#if EV_PERIODIC_ENABLE
1418void 2696void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 2697ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 2698{
1421 if (ev_is_active (w)) 2699 if (expect_false (ev_is_active (w)))
1422 return; 2700 return;
1423 2701
1424 if (w->reschedule_cb) 2702 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2703 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 2704 else if (w->interval)
1427 { 2705 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2706 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 2707 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2708 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 2709 }
2710 else
2711 ev_at (w) = w->offset;
1432 2712
2713 EV_FREQUENT_CHECK;
2714
2715 ++periodiccnt;
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 2716 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2717 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 2718 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 2719 ANHE_at_cache (periodics [ev_active (w)]);
2720 upheap (periodics, ev_active (w));
1437 2721
2722 EV_FREQUENT_CHECK;
2723
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2724 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1439} 2725}
1440 2726
1441void 2727void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 2728ev_periodic_stop (EV_P_ ev_periodic *w)
1443{ 2729{
1444 ev_clear_pending (EV_A_ (W)w); 2730 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 2731 if (expect_false (!ev_is_active (w)))
1446 return; 2732 return;
1447 2733
2734 EV_FREQUENT_CHECK;
2735
2736 {
2737 int active = ev_active (w);
2738
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2739 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1449 2740
1450 if (((W)w)->active < periodiccnt--) 2741 --periodiccnt;
2742
2743 if (expect_true (active < periodiccnt + HEAP0))
1451 { 2744 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2745 periodics [active] = periodics [periodiccnt + HEAP0];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2746 adjustheap (periodics, periodiccnt, active);
1454 } 2747 }
2748 }
1455 2749
1456 ev_stop (EV_A_ (W)w); 2750 ev_stop (EV_A_ (W)w);
1457}
1458 2751
1459void 2752 EV_FREQUENT_CHECK;
2753}
2754
2755void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 2756ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 2757{
1462 /* TODO: use adjustheap and recalculation */ 2758 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 2759 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 2760 ev_periodic_start (EV_A_ w);
1465} 2761}
1466#endif 2762#endif
1467 2763
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 2764#ifndef SA_RESTART
1535# define SA_RESTART 0 2765# define SA_RESTART 0
1536#endif 2766#endif
1537 2767
1538void 2768#if EV_SIGNAL_ENABLE
2769
2770void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 2771ev_signal_start (EV_P_ ev_signal *w)
1540{ 2772{
2773 if (expect_false (ev_is_active (w)))
2774 return;
2775
2776 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2777
1541#if EV_MULTIPLICITY 2778#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2779 assert (("libev: a signal must not be attached to two different loops",
2780 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2781
2782 signals [w->signum - 1].loop = EV_A;
2783#endif
2784
2785 EV_FREQUENT_CHECK;
2786
2787#if EV_USE_SIGNALFD
2788 if (sigfd == -2)
2789 {
2790 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2791 if (sigfd < 0 && errno == EINVAL)
2792 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2793
2794 if (sigfd >= 0)
2795 {
2796 fd_intern (sigfd); /* doing it twice will not hurt */
2797
2798 sigemptyset (&sigfd_set);
2799
2800 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2801 ev_set_priority (&sigfd_w, EV_MAXPRI);
2802 ev_io_start (EV_A_ &sigfd_w);
2803 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2804 }
2805 }
2806
2807 if (sigfd >= 0)
2808 {
2809 /* TODO: check .head */
2810 sigaddset (&sigfd_set, w->signum);
2811 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2812
2813 signalfd (sigfd, &sigfd_set, 0);
2814 }
2815#endif
2816
2817 ev_start (EV_A_ (W)w, 1);
2818 wlist_add (&signals [w->signum - 1].head, (WL)w);
2819
2820 if (!((WL)w)->next)
2821# if EV_USE_SIGNALFD
2822 if (sigfd < 0) /*TODO*/
1543#endif 2823# endif
1544 if (ev_is_active (w)) 2824 {
2825# ifdef _WIN32
2826 evpipe_init (EV_A);
2827
2828 signal (w->signum, ev_sighandler);
2829# else
2830 struct sigaction sa;
2831
2832 evpipe_init (EV_A);
2833
2834 sa.sa_handler = ev_sighandler;
2835 sigfillset (&sa.sa_mask);
2836 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2837 sigaction (w->signum, &sa, 0);
2838
2839 sigemptyset (&sa.sa_mask);
2840 sigaddset (&sa.sa_mask, w->signum);
2841 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2842#endif
2843 }
2844
2845 EV_FREQUENT_CHECK;
2846}
2847
2848void noinline
2849ev_signal_stop (EV_P_ ev_signal *w)
2850{
2851 clear_pending (EV_A_ (W)w);
2852 if (expect_false (!ev_is_active (w)))
1545 return; 2853 return;
1546 2854
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2855 EV_FREQUENT_CHECK;
2856
2857 wlist_del (&signals [w->signum - 1].head, (WL)w);
2858 ev_stop (EV_A_ (W)w);
2859
2860 if (!signals [w->signum - 1].head)
2861 {
2862#if EV_MULTIPLICITY
2863 signals [w->signum - 1].loop = 0; /* unattach from signal */
2864#endif
2865#if EV_USE_SIGNALFD
2866 if (sigfd >= 0)
2867 {
2868 sigset_t ss;
2869
2870 sigemptyset (&ss);
2871 sigaddset (&ss, w->signum);
2872 sigdelset (&sigfd_set, w->signum);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 sigprocmask (SIG_UNBLOCK, &ss, 0);
2876 }
2877 else
2878#endif
2879 signal (w->signum, SIG_DFL);
2880 }
2881
2882 EV_FREQUENT_CHECK;
2883}
2884
2885#endif
2886
2887#if EV_CHILD_ENABLE
2888
2889void
2890ev_child_start (EV_P_ ev_child *w)
2891{
2892#if EV_MULTIPLICITY
2893 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2894#endif
2895 if (expect_false (ev_is_active (w)))
2896 return;
2897
2898 EV_FREQUENT_CHECK;
1548 2899
1549 ev_start (EV_A_ (W)w, 1); 2900 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2901 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1552 2902
1553 if (!((WL)w)->next) 2903 EV_FREQUENT_CHECK;
2904}
2905
2906void
2907ev_child_stop (EV_P_ ev_child *w)
2908{
2909 clear_pending (EV_A_ (W)w);
2910 if (expect_false (!ev_is_active (w)))
2911 return;
2912
2913 EV_FREQUENT_CHECK;
2914
2915 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2916 ev_stop (EV_A_ (W)w);
2917
2918 EV_FREQUENT_CHECK;
2919}
2920
2921#endif
2922
2923#if EV_STAT_ENABLE
2924
2925# ifdef _WIN32
2926# undef lstat
2927# define lstat(a,b) _stati64 (a,b)
2928# endif
2929
2930#define DEF_STAT_INTERVAL 5.0074891
2931#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2932#define MIN_STAT_INTERVAL 0.1074891
2933
2934static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2935
2936#if EV_USE_INOTIFY
2937
2938/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2939# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2940
2941static void noinline
2942infy_add (EV_P_ ev_stat *w)
2943{
2944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2945
2946 if (w->wd >= 0)
2947 {
2948 struct statfs sfs;
2949
2950 /* now local changes will be tracked by inotify, but remote changes won't */
2951 /* unless the filesystem is known to be local, we therefore still poll */
2952 /* also do poll on <2.6.25, but with normal frequency */
2953
2954 if (!fs_2625)
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2956 else if (!statfs (w->path, &sfs)
2957 && (sfs.f_type == 0x1373 /* devfs */
2958 || sfs.f_type == 0xEF53 /* ext2/3 */
2959 || sfs.f_type == 0x3153464a /* jfs */
2960 || sfs.f_type == 0x52654973 /* reiser3 */
2961 || sfs.f_type == 0x01021994 /* tempfs */
2962 || sfs.f_type == 0x58465342 /* xfs */))
2963 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2964 else
2965 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1554 { 2966 }
2967 else
2968 {
2969 /* can't use inotify, continue to stat */
2970 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2971
2972 /* if path is not there, monitor some parent directory for speedup hints */
2973 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2974 /* but an efficiency issue only */
2975 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2976 {
2977 char path [4096];
2978 strcpy (path, w->path);
2979
2980 do
2981 {
2982 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2983 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2984
2985 char *pend = strrchr (path, '/');
2986
2987 if (!pend || pend == path)
2988 break;
2989
2990 *pend = 0;
2991 w->wd = inotify_add_watch (fs_fd, path, mask);
2992 }
2993 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2994 }
2995 }
2996
2997 if (w->wd >= 0)
2998 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2999
3000 /* now re-arm timer, if required */
3001 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3002 ev_timer_again (EV_A_ &w->timer);
3003 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3004}
3005
3006static void noinline
3007infy_del (EV_P_ ev_stat *w)
3008{
3009 int slot;
3010 int wd = w->wd;
3011
3012 if (wd < 0)
3013 return;
3014
3015 w->wd = -2;
3016 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3017 wlist_del (&fs_hash [slot].head, (WL)w);
3018
3019 /* remove this watcher, if others are watching it, they will rearm */
3020 inotify_rm_watch (fs_fd, wd);
3021}
3022
3023static void noinline
3024infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3025{
3026 if (slot < 0)
3027 /* overflow, need to check for all hash slots */
3028 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3029 infy_wd (EV_A_ slot, wd, ev);
3030 else
3031 {
3032 WL w_;
3033
3034 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3035 {
3036 ev_stat *w = (ev_stat *)w_;
3037 w_ = w_->next; /* lets us remove this watcher and all before it */
3038
3039 if (w->wd == wd || wd == -1)
3040 {
3041 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3042 {
3043 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3044 w->wd = -1;
3045 infy_add (EV_A_ w); /* re-add, no matter what */
3046 }
3047
3048 stat_timer_cb (EV_A_ &w->timer, 0);
3049 }
3050 }
3051 }
3052}
3053
3054static void
3055infy_cb (EV_P_ ev_io *w, int revents)
3056{
3057 char buf [EV_INOTIFY_BUFSIZE];
3058 int ofs;
3059 int len = read (fs_fd, buf, sizeof (buf));
3060
3061 for (ofs = 0; ofs < len; )
3062 {
3063 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3064 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3065 ofs += sizeof (struct inotify_event) + ev->len;
3066 }
3067}
3068
3069inline_size unsigned int
3070ev_linux_version (void)
3071{
3072 struct utsname buf;
3073 unsigned int v;
3074 int i;
3075 char *p = buf.release;
3076
3077 if (uname (&buf))
3078 return 0;
3079
3080 for (i = 3+1; --i; )
3081 {
3082 unsigned int c = 0;
3083
3084 for (;;)
3085 {
3086 if (*p >= '0' && *p <= '9')
3087 c = c * 10 + *p++ - '0';
3088 else
3089 {
3090 p += *p == '.';
3091 break;
3092 }
3093 }
3094
3095 v = (v << 8) | c;
3096 }
3097
3098 return v;
3099}
3100
3101inline_size void
3102ev_check_2625 (EV_P)
3103{
3104 /* kernels < 2.6.25 are borked
3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106 */
3107 if (ev_linux_version () < 0x020619)
3108 return;
3109
3110 fs_2625 = 1;
3111}
3112
3113inline_size int
3114infy_newfd (void)
3115{
3116#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120#endif
3121 return inotify_init ();
3122}
3123
3124inline_size void
3125infy_init (EV_P)
3126{
3127 if (fs_fd != -2)
3128 return;
3129
3130 fs_fd = -1;
3131
3132 ev_check_2625 (EV_A);
3133
3134 fs_fd = infy_newfd ();
3135
3136 if (fs_fd >= 0)
3137 {
3138 fd_intern (fs_fd);
3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3140 ev_set_priority (&fs_w, EV_MAXPRI);
3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
3143 }
3144}
3145
3146inline_size void
3147infy_fork (EV_P)
3148{
3149 int slot;
3150
3151 if (fs_fd < 0)
3152 return;
3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
3156 close (fs_fd);
3157 fs_fd = infy_newfd ();
3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3168 {
3169 WL w_ = fs_hash [slot].head;
3170 fs_hash [slot].head = 0;
3171
3172 while (w_)
3173 {
3174 ev_stat *w = (ev_stat *)w_;
3175 w_ = w_->next; /* lets us add this watcher */
3176
3177 w->wd = -1;
3178
3179 if (fs_fd >= 0)
3180 infy_add (EV_A_ w); /* re-add, no matter what */
3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
3188 }
3189 }
3190}
3191
3192#endif
3193
1555#if _WIN32 3194#ifdef _WIN32
1556 signal (w->signum, sighandler); 3195# define EV_LSTAT(p,b) _stati64 (p, b)
1557#else 3196#else
1558 struct sigaction sa; 3197# define EV_LSTAT(p,b) lstat (p, b)
1559 sa.sa_handler = sighandler;
1560 sigfillset (&sa.sa_mask);
1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1562 sigaction (w->signum, &sa, 0);
1563#endif 3198#endif
1564 }
1565}
1566 3199
1567void 3200void
1568ev_signal_stop (EV_P_ struct ev_signal *w) 3201ev_stat_stat (EV_P_ ev_stat *w)
1569{ 3202{
1570 ev_clear_pending (EV_A_ (W)w); 3203 if (lstat (w->path, &w->attr) < 0)
1571 if (!ev_is_active (w)) 3204 w->attr.st_nlink = 0;
3205 else if (!w->attr.st_nlink)
3206 w->attr.st_nlink = 1;
3207}
3208
3209static void noinline
3210stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3211{
3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3213
3214 ev_statdata prev = w->attr;
3215 ev_stat_stat (EV_A_ w);
3216
3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3218 if (
3219 prev.st_dev != w->attr.st_dev
3220 || prev.st_ino != w->attr.st_ino
3221 || prev.st_mode != w->attr.st_mode
3222 || prev.st_nlink != w->attr.st_nlink
3223 || prev.st_uid != w->attr.st_uid
3224 || prev.st_gid != w->attr.st_gid
3225 || prev.st_rdev != w->attr.st_rdev
3226 || prev.st_size != w->attr.st_size
3227 || prev.st_atime != w->attr.st_atime
3228 || prev.st_mtime != w->attr.st_mtime
3229 || prev.st_ctime != w->attr.st_ctime
3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
3236 #if EV_USE_INOTIFY
3237 if (fs_fd >= 0)
3238 {
3239 infy_del (EV_A_ w);
3240 infy_add (EV_A_ w);
3241 ev_stat_stat (EV_A_ w); /* avoid race... */
3242 }
3243 #endif
3244
3245 ev_feed_event (EV_A_ w, EV_STAT);
3246 }
3247}
3248
3249void
3250ev_stat_start (EV_P_ ev_stat *w)
3251{
3252 if (expect_false (ev_is_active (w)))
1572 return; 3253 return;
1573 3254
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3255 ev_stat_stat (EV_A_ w);
3256
3257 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3258 w->interval = MIN_STAT_INTERVAL;
3259
3260 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3261 ev_set_priority (&w->timer, ev_priority (w));
3262
3263#if EV_USE_INOTIFY
3264 infy_init (EV_A);
3265
3266 if (fs_fd >= 0)
3267 infy_add (EV_A_ w);
3268 else
3269#endif
3270 {
3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
3274
3275 ev_start (EV_A_ (W)w, 1);
3276
3277 EV_FREQUENT_CHECK;
3278}
3279
3280void
3281ev_stat_stop (EV_P_ ev_stat *w)
3282{
3283 clear_pending (EV_A_ (W)w);
3284 if (expect_false (!ev_is_active (w)))
3285 return;
3286
3287 EV_FREQUENT_CHECK;
3288
3289#if EV_USE_INOTIFY
3290 infy_del (EV_A_ w);
3291#endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
3298
1575 ev_stop (EV_A_ (W)w); 3299 ev_stop (EV_A_ (W)w);
1576 3300
1577 if (!signals [w->signum - 1].head) 3301 EV_FREQUENT_CHECK;
1578 signal (w->signum, SIG_DFL);
1579} 3302}
3303#endif
1580 3304
3305#if EV_IDLE_ENABLE
1581void 3306void
1582ev_child_start (EV_P_ struct ev_child *w) 3307ev_idle_start (EV_P_ ev_idle *w)
1583{ 3308{
1584#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif
1587 if (ev_is_active (w)) 3309 if (expect_false (ev_is_active (w)))
1588 return; 3310 return;
1589 3311
3312 pri_adjust (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
3315
3316 {
3317 int active = ++idlecnt [ABSPRI (w)];
3318
3319 ++idleall;
3320 ev_start (EV_A_ (W)w, active);
3321
3322 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3323 idles [ABSPRI (w)][active - 1] = w;
3324 }
3325
3326 EV_FREQUENT_CHECK;
3327}
3328
3329void
3330ev_idle_stop (EV_P_ ev_idle *w)
3331{
3332 clear_pending (EV_A_ (W)w);
3333 if (expect_false (!ev_is_active (w)))
3334 return;
3335
3336 EV_FREQUENT_CHECK;
3337
3338 {
3339 int active = ev_active (w);
3340
3341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3342 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3343
3344 ev_stop (EV_A_ (W)w);
3345 --idleall;
3346 }
3347
3348 EV_FREQUENT_CHECK;
3349}
3350#endif
3351
3352#if EV_PREPARE_ENABLE
3353void
3354ev_prepare_start (EV_P_ ev_prepare *w)
3355{
3356 if (expect_false (ev_is_active (w)))
3357 return;
3358
3359 EV_FREQUENT_CHECK;
3360
3361 ev_start (EV_A_ (W)w, ++preparecnt);
3362 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3363 prepares [preparecnt - 1] = w;
3364
3365 EV_FREQUENT_CHECK;
3366}
3367
3368void
3369ev_prepare_stop (EV_P_ ev_prepare *w)
3370{
3371 clear_pending (EV_A_ (W)w);
3372 if (expect_false (!ev_is_active (w)))
3373 return;
3374
3375 EV_FREQUENT_CHECK;
3376
3377 {
3378 int active = ev_active (w);
3379
3380 prepares [active - 1] = prepares [--preparecnt];
3381 ev_active (prepares [active - 1]) = active;
3382 }
3383
3384 ev_stop (EV_A_ (W)w);
3385
3386 EV_FREQUENT_CHECK;
3387}
3388#endif
3389
3390#if EV_CHECK_ENABLE
3391void
3392ev_check_start (EV_P_ ev_check *w)
3393{
3394 if (expect_false (ev_is_active (w)))
3395 return;
3396
3397 EV_FREQUENT_CHECK;
3398
3399 ev_start (EV_A_ (W)w, ++checkcnt);
3400 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3401 checks [checkcnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
3404}
3405
3406void
3407ev_check_stop (EV_P_ ev_check *w)
3408{
3409 clear_pending (EV_A_ (W)w);
3410 if (expect_false (!ev_is_active (w)))
3411 return;
3412
3413 EV_FREQUENT_CHECK;
3414
3415 {
3416 int active = ev_active (w);
3417
3418 checks [active - 1] = checks [--checkcnt];
3419 ev_active (checks [active - 1]) = active;
3420 }
3421
3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
3425}
3426#endif
3427
3428#if EV_EMBED_ENABLE
3429void noinline
3430ev_embed_sweep (EV_P_ ev_embed *w)
3431{
3432 ev_loop (w->other, EVLOOP_NONBLOCK);
3433}
3434
3435static void
3436embed_io_cb (EV_P_ ev_io *io, int revents)
3437{
3438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3439
3440 if (ev_cb (w))
3441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3442 else
3443 ev_loop (w->other, EVLOOP_NONBLOCK);
3444}
3445
3446static void
3447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3448{
3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3450
3451 {
3452 EV_P = w->other;
3453
3454 while (fdchangecnt)
3455 {
3456 fd_reify (EV_A);
3457 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3458 }
3459 }
3460}
3461
3462static void
3463embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466
3467 ev_embed_stop (EV_A_ w);
3468
3469 {
3470 EV_P = w->other;
3471
3472 ev_loop_fork (EV_A);
3473 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3474 }
3475
3476 ev_embed_start (EV_A_ w);
3477}
3478
3479#if 0
3480static void
3481embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3482{
3483 ev_idle_stop (EV_A_ idle);
3484}
3485#endif
3486
3487void
3488ev_embed_start (EV_P_ ev_embed *w)
3489{
3490 if (expect_false (ev_is_active (w)))
3491 return;
3492
3493 {
3494 EV_P = w->other;
3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3497 }
3498
3499 EV_FREQUENT_CHECK;
3500
3501 ev_set_priority (&w->io, ev_priority (w));
3502 ev_io_start (EV_A_ &w->io);
3503
3504 ev_prepare_init (&w->prepare, embed_prepare_cb);
3505 ev_set_priority (&w->prepare, EV_MINPRI);
3506 ev_prepare_start (EV_A_ &w->prepare);
3507
3508 ev_fork_init (&w->fork, embed_fork_cb);
3509 ev_fork_start (EV_A_ &w->fork);
3510
3511 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3512
1590 ev_start (EV_A_ (W)w, 1); 3513 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1592}
1593 3514
3515 EV_FREQUENT_CHECK;
3516}
3517
1594void 3518void
1595ev_child_stop (EV_P_ struct ev_child *w) 3519ev_embed_stop (EV_P_ ev_embed *w)
1596{ 3520{
1597 ev_clear_pending (EV_A_ (W)w); 3521 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 3522 if (expect_false (!ev_is_active (w)))
1599 return; 3523 return;
1600 3524
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3525 EV_FREQUENT_CHECK;
3526
3527 ev_io_stop (EV_A_ &w->io);
3528 ev_prepare_stop (EV_A_ &w->prepare);
3529 ev_fork_stop (EV_A_ &w->fork);
3530
1602 ev_stop (EV_A_ (W)w); 3531 ev_stop (EV_A_ (W)w);
3532
3533 EV_FREQUENT_CHECK;
1603} 3534}
3535#endif
3536
3537#if EV_FORK_ENABLE
3538void
3539ev_fork_start (EV_P_ ev_fork *w)
3540{
3541 if (expect_false (ev_is_active (w)))
3542 return;
3543
3544 EV_FREQUENT_CHECK;
3545
3546 ev_start (EV_A_ (W)w, ++forkcnt);
3547 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3548 forks [forkcnt - 1] = w;
3549
3550 EV_FREQUENT_CHECK;
3551}
3552
3553void
3554ev_fork_stop (EV_P_ ev_fork *w)
3555{
3556 clear_pending (EV_A_ (W)w);
3557 if (expect_false (!ev_is_active (w)))
3558 return;
3559
3560 EV_FREQUENT_CHECK;
3561
3562 {
3563 int active = ev_active (w);
3564
3565 forks [active - 1] = forks [--forkcnt];
3566 ev_active (forks [active - 1]) = active;
3567 }
3568
3569 ev_stop (EV_A_ (W)w);
3570
3571 EV_FREQUENT_CHECK;
3572}
3573#endif
3574
3575#if EV_ASYNC_ENABLE
3576void
3577ev_async_start (EV_P_ ev_async *w)
3578{
3579 if (expect_false (ev_is_active (w)))
3580 return;
3581
3582 evpipe_init (EV_A);
3583
3584 EV_FREQUENT_CHECK;
3585
3586 ev_start (EV_A_ (W)w, ++asynccnt);
3587 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3588 asyncs [asynccnt - 1] = w;
3589
3590 EV_FREQUENT_CHECK;
3591}
3592
3593void
3594ev_async_stop (EV_P_ ev_async *w)
3595{
3596 clear_pending (EV_A_ (W)w);
3597 if (expect_false (!ev_is_active (w)))
3598 return;
3599
3600 EV_FREQUENT_CHECK;
3601
3602 {
3603 int active = ev_active (w);
3604
3605 asyncs [active - 1] = asyncs [--asynccnt];
3606 ev_active (asyncs [active - 1]) = active;
3607 }
3608
3609 ev_stop (EV_A_ (W)w);
3610
3611 EV_FREQUENT_CHECK;
3612}
3613
3614void
3615ev_async_send (EV_P_ ev_async *w)
3616{
3617 w->sent = 1;
3618 evpipe_write (EV_A_ &async_pending);
3619}
3620#endif
1604 3621
1605/*****************************************************************************/ 3622/*****************************************************************************/
1606 3623
1607struct ev_once 3624struct ev_once
1608{ 3625{
1609 struct ev_io io; 3626 ev_io io;
1610 struct ev_timer to; 3627 ev_timer to;
1611 void (*cb)(int revents, void *arg); 3628 void (*cb)(int revents, void *arg);
1612 void *arg; 3629 void *arg;
1613}; 3630};
1614 3631
1615static void 3632static void
1616once_cb (EV_P_ struct ev_once *once, int revents) 3633once_cb (EV_P_ struct ev_once *once, int revents)
1617{ 3634{
1618 void (*cb)(int revents, void *arg) = once->cb; 3635 void (*cb)(int revents, void *arg) = once->cb;
1619 void *arg = once->arg; 3636 void *arg = once->arg;
1620 3637
1621 ev_io_stop (EV_A_ &once->io); 3638 ev_io_stop (EV_A_ &once->io);
1622 ev_timer_stop (EV_A_ &once->to); 3639 ev_timer_stop (EV_A_ &once->to);
1623 ev_free (once); 3640 ev_free (once);
1624 3641
1625 cb (revents, arg); 3642 cb (revents, arg);
1626} 3643}
1627 3644
1628static void 3645static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 3646once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 3647{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3648 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3649
3650 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1632} 3651}
1633 3652
1634static void 3653static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 3654once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 3655{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3656 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3657
3658 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1638} 3659}
1639 3660
1640void 3661void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3662ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 3663{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3664 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 3665
1645 if (!once) 3666 if (expect_false (!once))
3667 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3668 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1647 else 3669 return;
1648 { 3670 }
3671
1649 once->cb = cb; 3672 once->cb = cb;
1650 once->arg = arg; 3673 once->arg = arg;
1651 3674
1652 ev_init (&once->io, once_cb_io); 3675 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 3676 if (fd >= 0)
3677 {
3678 ev_io_set (&once->io, fd, events);
3679 ev_io_start (EV_A_ &once->io);
3680 }
3681
3682 ev_init (&once->to, once_cb_to);
3683 if (timeout >= 0.)
3684 {
3685 ev_timer_set (&once->to, timeout, 0.);
3686 ev_timer_start (EV_A_ &once->to);
3687 }
3688}
3689
3690/*****************************************************************************/
3691
3692#if EV_WALK_ENABLE
3693void
3694ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3695{
3696 int i, j;
3697 ev_watcher_list *wl, *wn;
3698
3699 if (types & (EV_IO | EV_EMBED))
3700 for (i = 0; i < anfdmax; ++i)
3701 for (wl = anfds [i].head; wl; )
1654 { 3702 {
1655 ev_io_set (&once->io, fd, events); 3703 wn = wl->next;
1656 ev_io_start (EV_A_ &once->io); 3704
3705#if EV_EMBED_ENABLE
3706 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3707 {
3708 if (types & EV_EMBED)
3709 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3710 }
3711 else
3712#endif
3713#if EV_USE_INOTIFY
3714 if (ev_cb ((ev_io *)wl) == infy_cb)
3715 ;
3716 else
3717#endif
3718 if ((ev_io *)wl != &pipe_w)
3719 if (types & EV_IO)
3720 cb (EV_A_ EV_IO, wl);
3721
3722 wl = wn;
1657 } 3723 }
1658 3724
1659 ev_init (&once->to, once_cb_to); 3725 if (types & (EV_TIMER | EV_STAT))
1660 if (timeout >= 0.) 3726 for (i = timercnt + HEAP0; i-- > HEAP0; )
3727#if EV_STAT_ENABLE
3728 /*TODO: timer is not always active*/
3729 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1661 { 3730 {
1662 ev_timer_set (&once->to, timeout, 0.); 3731 if (types & EV_STAT)
1663 ev_timer_start (EV_A_ &once->to); 3732 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1664 } 3733 }
1665 } 3734 else
3735#endif
3736 if (types & EV_TIMER)
3737 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3738
3739#if EV_PERIODIC_ENABLE
3740 if (types & EV_PERIODIC)
3741 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3742 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3743#endif
3744
3745#if EV_IDLE_ENABLE
3746 if (types & EV_IDLE)
3747 for (j = NUMPRI; i--; )
3748 for (i = idlecnt [j]; i--; )
3749 cb (EV_A_ EV_IDLE, idles [j][i]);
3750#endif
3751
3752#if EV_FORK_ENABLE
3753 if (types & EV_FORK)
3754 for (i = forkcnt; i--; )
3755 if (ev_cb (forks [i]) != embed_fork_cb)
3756 cb (EV_A_ EV_FORK, forks [i]);
3757#endif
3758
3759#if EV_ASYNC_ENABLE
3760 if (types & EV_ASYNC)
3761 for (i = asynccnt; i--; )
3762 cb (EV_A_ EV_ASYNC, asyncs [i]);
3763#endif
3764
3765#if EV_PREPARE_ENABLE
3766 if (types & EV_PREPARE)
3767 for (i = preparecnt; i--; )
3768# if EV_EMBED_ENABLE
3769 if (ev_cb (prepares [i]) != embed_prepare_cb)
3770# endif
3771 cb (EV_A_ EV_PREPARE, prepares [i]);
3772#endif
3773
3774#if EV_CHECK_ENABLE
3775 if (types & EV_CHECK)
3776 for (i = checkcnt; i--; )
3777 cb (EV_A_ EV_CHECK, checks [i]);
3778#endif
3779
3780#if EV_SIGNAL_ENABLE
3781 if (types & EV_SIGNAL)
3782 for (i = 0; i < EV_NSIG - 1; ++i)
3783 for (wl = signals [i].head; wl; )
3784 {
3785 wn = wl->next;
3786 cb (EV_A_ EV_SIGNAL, wl);
3787 wl = wn;
3788 }
3789#endif
3790
3791#if EV_CHILD_ENABLE
3792 if (types & EV_CHILD)
3793 for (i = (EV_PID_HASHSIZE); i--; )
3794 for (wl = childs [i]; wl; )
3795 {
3796 wn = wl->next;
3797 cb (EV_A_ EV_CHILD, wl);
3798 wl = wn;
3799 }
3800#endif
3801/* EV_STAT 0x00001000 /* stat data changed */
3802/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1666} 3803}
3804#endif
3805
3806#if EV_MULTIPLICITY
3807 #include "ev_wrap.h"
3808#endif
1667 3809
1668#ifdef __cplusplus 3810#ifdef __cplusplus
1669} 3811}
1670#endif 3812#endif
1671 3813

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines