ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.120 by root, Fri Nov 16 01:54:25 2007 UTC vs.
Revision 1.425 by root, Sun May 6 13:09:35 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
65# define EV_USE_PORT 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
66# endif 127# endif
67 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
68#endif 136# endif
69 137
70#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
71#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
72#include <fcntl.h> 169#include <fcntl.h>
73#include <stddef.h> 170#include <stddef.h>
74 171
75#include <stdio.h> 172#include <stdio.h>
76 173
77#include <assert.h> 174#include <assert.h>
78#include <errno.h> 175#include <errno.h>
79#include <sys/types.h> 176#include <sys/types.h>
80#include <time.h> 177#include <time.h>
178#include <limits.h>
81 179
82#include <signal.h> 180#include <signal.h>
83 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
84#ifndef _WIN32 199#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 200# include <sys/time.h>
87# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
88#else 203#else
204# include <io.h>
89# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 206# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
93# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
94#endif 260# endif
95 261#endif
96/**/
97 262
98#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
99# define EV_USE_MONOTONIC 1 267# define EV_USE_MONOTONIC 0
268# endif
100#endif 269#endif
101 270
102#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
104#endif 281#endif
105 282
106#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
108# define EV_SELECT_USE_FD_SET 1
109#endif 285#endif
110 286
111#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
112# ifdef _WIN32 288# ifdef _WIN32
113# define EV_USE_POLL 0 289# define EV_USE_POLL 0
114# else 290# else
115# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
116# endif 292# endif
117#endif 293#endif
118 294
119#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
120# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
121#endif 301#endif
122 302
123#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
125#endif 305#endif
126 306
127#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 308# define EV_USE_PORT 0
129#endif 309#endif
130 310
131/**/ 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
315# define EV_USE_INOTIFY 0
316# endif
317#endif
132 318
133/* darwin simply cannot be helped */ 319#ifndef EV_PID_HASHSIZE
134#ifdef __APPLE__ 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
330# else
331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <sys/syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
135# undef EV_USE_POLL 379# undef EV_USE_POLL
136# undef EV_USE_KQUEUE 380# define EV_USE_POLL 0
137#endif 381#endif
138 382
139#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
144#ifndef CLOCK_REALTIME 388#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 389# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 390# define EV_USE_REALTIME 0
147#endif 391#endif
148 392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
149#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 416# include <winsock.h>
151#endif 417#endif
152 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
153/**/ 457/**/
458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
465/*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
154 471
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
159 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
160#ifdef EV_H 509#ifndef ECB_H
161# include EV_H 510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
162#else 526#else
163# include "ev.h" 527 #include <inttypes.h>
528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
164#endif 542 #endif
543#endif
165 544
166#if __GNUC__ >= 3 545/*****************************************************************************/
167# define expect(expr,value) __builtin_expect ((expr),(value)) 546
168# define inline inline 547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
169#else 649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
170# define expect(expr,value) (expr) 678 #define ecb_expect(expr,value) (expr)
171# define inline static 679 #define ecb_prefetch(addr,rw,locality)
172#endif 680#endif
173 681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
174#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
176 713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
960#define inline_size ecb_inline
961
962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
965# define inline_speed static noinline
966#endif
967
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
972#else
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
179 975
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
182 978
183typedef struct ev_watcher *W; 979typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 980typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
186 982
983#define ev_active(w) ((W)(w))->active
984#define ev_at(w) ((WT)(w))->at
985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
992#if EV_USE_MONOTONIC
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
1004#endif
188 1005
189#ifdef _WIN32 1006#ifdef _WIN32
190# include "ev_win32.c" 1007# include "ev_win32.c"
191#endif 1008#endif
192 1009
193/*****************************************************************************/ 1010/*****************************************************************************/
194 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
195static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
196 1111
1112void ecb_cold
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
198{ 1114{
199 syserr_cb = cb; 1115 syserr_cb = cb;
200} 1116}
201 1117
202static void 1118static void noinline ecb_cold
203syserr (const char *msg) 1119ev_syserr (const char *msg)
204{ 1120{
205 if (!msg) 1121 if (!msg)
206 msg = "(libev) system error"; 1122 msg = "(libev) system error";
207 1123
208 if (syserr_cb) 1124 if (syserr_cb)
209 syserr_cb (msg); 1125 syserr_cb (msg);
210 else 1126 else
211 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
212 perror (msg); 1134 perror (msg);
1135#endif
213 abort (); 1136 abort ();
214 } 1137 }
215} 1138}
216 1139
1140static void *
1141ev_realloc_emul (void *ptr, long size)
1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
1146 /* some systems, notably openbsd and darwin, fail to properly
1147 * implement realloc (x, 0) (as required by both ansi c-89 and
1148 * the single unix specification, so work around them here.
1149 */
1150
1151 if (size)
1152 return realloc (ptr, size);
1153
1154 free (ptr);
1155 return 0;
1156#endif
1157}
1158
217static void *(*alloc)(void *ptr, long size); 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
218 1160
1161void ecb_cold
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
220{ 1163{
221 alloc = cb; 1164 alloc = cb;
222} 1165}
223 1166
224static void * 1167inline_speed void *
225ev_realloc (void *ptr, long size) 1168ev_realloc (void *ptr, long size)
226{ 1169{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1170 ptr = alloc (ptr, size);
228 1171
229 if (!ptr && size) 1172 if (!ptr && size)
230 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
232 abort (); 1179 abort ();
233 } 1180 }
234 1181
235 return ptr; 1182 return ptr;
236} 1183}
238#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
239#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
240 1187
241/*****************************************************************************/ 1188/*****************************************************************************/
242 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
243typedef struct 1194typedef struct
244{ 1195{
245 WL head; 1196 WL head;
246 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
247 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
248#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
249 SOCKET handle; 1205 SOCKET handle;
250#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
251} ANFD; 1210} ANFD;
252 1211
1212/* stores the pending event set for a given watcher */
253typedef struct 1213typedef struct
254{ 1214{
255 W w; 1215 W w;
256 int events; 1216 int events; /* the pending event set for the given watcher */
257} ANPENDING; 1217} ANPENDING;
1218
1219#if EV_USE_INOTIFY
1220/* hash table entry per inotify-id */
1221typedef struct
1222{
1223 WL head;
1224} ANFS;
1225#endif
1226
1227/* Heap Entry */
1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
1230 typedef struct {
1231 ev_tstamp at;
1232 WT w;
1233 } ANHE;
1234
1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1238#else
1239 /* a heap element */
1240 typedef WT ANHE;
1241
1242 #define ANHE_w(he) (he)
1243 #define ANHE_at(he) (he)->at
1244 #define ANHE_at_cache(he)
1245#endif
258 1246
259#if EV_MULTIPLICITY 1247#if EV_MULTIPLICITY
260 1248
261 struct ev_loop 1249 struct ev_loop
262 { 1250 {
267 #undef VAR 1255 #undef VAR
268 }; 1256 };
269 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
270 1258
271 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
272 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
273 1261
274#else 1262#else
275 1263
276 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
277 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
278 #include "ev_vars.h" 1266 #include "ev_vars.h"
279 #undef VAR 1267 #undef VAR
280 1268
281 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
282 1270
283#endif 1271#endif
284 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
285/*****************************************************************************/ 1285/*****************************************************************************/
286 1286
1287#ifndef EV_HAVE_EV_TIME
287ev_tstamp 1288ev_tstamp
288ev_time (void) 1289ev_time (void) EV_THROW
289{ 1290{
290#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
291 struct timespec ts; 1294 struct timespec ts;
292 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
293 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
294#else 1297 }
1298#endif
1299
295 struct timeval tv; 1300 struct timeval tv;
296 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif
299} 1303}
1304#endif
300 1305
301inline ev_tstamp 1306inline_size ev_tstamp
302get_clock (void) 1307get_clock (void)
303{ 1308{
304#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
306 { 1311 {
313 return ev_time (); 1318 return ev_time ();
314} 1319}
315 1320
316#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
317ev_tstamp 1322ev_tstamp
318ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
319{ 1324{
320 return ev_rt_now; 1325 return ev_rt_now;
321} 1326}
322#endif 1327#endif
323 1328
324#define array_roundsize(type,n) (((n) | 4) & ~3) 1329void
1330ev_sleep (ev_tstamp delay) EV_THROW
1331{
1332 if (delay > 0.)
1333 {
1334#if EV_USE_NANOSLEEP
1335 struct timespec ts;
1336
1337 EV_TS_SET (ts, delay);
1338 nanosleep (&ts, 0);
1339#elif defined _WIN32
1340 Sleep ((unsigned long)(delay * 1e3));
1341#else
1342 struct timeval tv;
1343
1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1345 /* something not guaranteed by newer posix versions, but guaranteed */
1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
1348 select (0, 0, 0, 0, &tv);
1349#endif
1350 }
1351}
1352
1353/*****************************************************************************/
1354
1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1356
1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
1360array_nextsize (int elem, int cur, int cnt)
1361{
1362 int ncur = cur + 1;
1363
1364 do
1365 ncur <<= 1;
1366 while (cnt > ncur);
1367
1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1370 {
1371 ncur *= elem;
1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1373 ncur = ncur - sizeof (void *) * 4;
1374 ncur /= elem;
1375 }
1376
1377 return ncur;
1378}
1379
1380static void * noinline ecb_cold
1381array_realloc (int elem, void *base, int *cur, int cnt)
1382{
1383 *cur = array_nextsize (elem, *cur, cnt);
1384 return ev_realloc (base, elem * *cur);
1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
325 1389
326#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 1391 if (expect_false ((cnt) > (cur))) \
328 { \ 1392 { \
329 int newcnt = cur; \ 1393 int ecb_unused ocur_ = (cur); \
330 do \ 1394 (base) = (type *)array_realloc \
331 { \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 1397 }
340 1398
1399#if 0
341#define array_slim(type,stem) \ 1400#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1401 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 1402 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1403 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1404 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 1406 }
1407#endif
348 1408
349#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
351 1411
352/*****************************************************************************/ 1412/*****************************************************************************/
353 1413
354static void 1414/* dummy callback for pending events */
355anfds_init (ANFD *base, int count) 1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
356{ 1417{
357 while (count--)
358 {
359 base->head = 0;
360 base->events = EV_NONE;
361 base->reify = 0;
362
363 ++base;
364 }
365} 1418}
366 1419
367void 1420void noinline
368ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
369{ 1422{
370 W w_ = (W)w; 1423 W w_ = (W)w;
1424 int pri = ABSPRI (w_);
371 1425
372 if (w_->pending) 1426 if (expect_false (w_->pending))
1427 pendings [pri][w_->pending - 1].events |= revents;
1428 else
373 { 1429 {
1430 w_->pending = ++pendingcnt [pri];
1431 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1432 pendings [pri][w_->pending - 1].w = w_;
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1433 pendings [pri][w_->pending - 1].events = revents;
375 return;
376 } 1434 }
377 1435
378 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1436 pendingpri = NUMPRI - 1;
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382} 1437}
383 1438
384static void 1439inline_speed void
1440feed_reverse (EV_P_ W w)
1441{
1442 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1443 rfeeds [rfeedcnt++] = w;
1444}
1445
1446inline_size void
1447feed_reverse_done (EV_P_ int revents)
1448{
1449 do
1450 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1451 while (rfeedcnt);
1452}
1453
1454inline_speed void
385queue_events (EV_P_ W *events, int eventcnt, int type) 1455queue_events (EV_P_ W *events, int eventcnt, int type)
386{ 1456{
387 int i; 1457 int i;
388 1458
389 for (i = 0; i < eventcnt; ++i) 1459 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type); 1460 ev_feed_event (EV_A_ events [i], type);
391} 1461}
392 1462
1463/*****************************************************************************/
1464
393inline void 1465inline_speed void
394fd_event (EV_P_ int fd, int revents) 1466fd_event_nocheck (EV_P_ int fd, int revents)
395{ 1467{
396 ANFD *anfd = anfds + fd; 1468 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 1469 ev_io *w;
398 1470
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 1472 {
401 int ev = w->events & revents; 1473 int ev = w->events & revents;
402 1474
403 if (ev) 1475 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 1476 ev_feed_event (EV_A_ (W)w, ev);
405 } 1477 }
406} 1478}
407 1479
1480/* do not submit kernel events for fds that have reify set */
1481/* because that means they changed while we were polling for new events */
1482inline_speed void
1483fd_event (EV_P_ int fd, int revents)
1484{
1485 ANFD *anfd = anfds + fd;
1486
1487 if (expect_true (!anfd->reify))
1488 fd_event_nocheck (EV_A_ fd, revents);
1489}
1490
408void 1491void
409ev_feed_fd_event (EV_P_ int fd, int revents) 1492ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
410{ 1493{
1494 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 1495 fd_event_nocheck (EV_A_ fd, revents);
412} 1496}
413 1497
414/*****************************************************************************/ 1498/* make sure the external fd watch events are in-sync */
415 1499/* with the kernel/libev internal state */
416static void 1500inline_size void
417fd_reify (EV_P) 1501fd_reify (EV_P)
418{ 1502{
419 int i; 1503 int i;
420 1504
1505#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
421 for (i = 0; i < fdchangecnt; ++i) 1506 for (i = 0; i < fdchangecnt; ++i)
422 { 1507 {
423 int fd = fdchanges [i]; 1508 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 1509 ANFD *anfd = anfds + fd;
425 struct ev_io *w;
426 1510
427 int events = 0; 1511 if (anfd->reify & EV__IOFDSET && anfd->head)
428
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
430 events |= w->events;
431
432#if EV_SELECT_IS_WINSOCKET
433 if (events)
434 { 1512 {
1513 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1514
1515 if (handle != anfd->handle)
1516 {
435 unsigned long argp; 1517 unsigned long arg;
436 anfd->handle = _get_osfhandle (fd); 1518
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1519 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1520
1521 /* handle changed, but fd didn't - we need to do it in two steps */
1522 backend_modify (EV_A_ fd, anfd->events, 0);
1523 anfd->events = 0;
1524 anfd->handle = handle;
1525 }
438 } 1526 }
1527 }
439#endif 1528#endif
440 1529
1530 for (i = 0; i < fdchangecnt; ++i)
1531 {
1532 int fd = fdchanges [i];
1533 ANFD *anfd = anfds + fd;
1534 ev_io *w;
1535
1536 unsigned char o_events = anfd->events;
1537 unsigned char o_reify = anfd->reify;
1538
441 anfd->reify = 0; 1539 anfd->reify = 0;
442 1540
443 method_modify (EV_A_ fd, anfd->events, events); 1541 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1542 {
444 anfd->events = events; 1543 anfd->events = 0;
1544
1545 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1546 anfd->events |= (unsigned char)w->events;
1547
1548 if (o_events != anfd->events)
1549 o_reify = EV__IOFDSET; /* actually |= */
1550 }
1551
1552 if (o_reify & EV__IOFDSET)
1553 backend_modify (EV_A_ fd, o_events, anfd->events);
445 } 1554 }
446 1555
447 fdchangecnt = 0; 1556 fdchangecnt = 0;
448} 1557}
449 1558
450static void 1559/* something about the given fd changed */
1560inline_size void
451fd_change (EV_P_ int fd) 1561fd_change (EV_P_ int fd, int flags)
452{ 1562{
453 if (anfds [fd].reify) 1563 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 1564 anfds [fd].reify |= flags;
457 1565
1566 if (expect_true (!reify))
1567 {
458 ++fdchangecnt; 1568 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1569 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 1570 fdchanges [fdchangecnt - 1] = fd;
1571 }
461} 1572}
462 1573
463static void 1574/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1575inline_speed void ecb_cold
464fd_kill (EV_P_ int fd) 1576fd_kill (EV_P_ int fd)
465{ 1577{
466 struct ev_io *w; 1578 ev_io *w;
467 1579
468 while ((w = (struct ev_io *)anfds [fd].head)) 1580 while ((w = (ev_io *)anfds [fd].head))
469 { 1581 {
470 ev_io_stop (EV_A_ w); 1582 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 1584 }
473} 1585}
474 1586
475static int 1587/* check whether the given fd is actually valid, for error recovery */
1588inline_size int ecb_cold
476fd_valid (int fd) 1589fd_valid (int fd)
477{ 1590{
478#ifdef _WIN32 1591#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 1592 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
480#else 1593#else
481 return fcntl (fd, F_GETFD) != -1; 1594 return fcntl (fd, F_GETFD) != -1;
482#endif 1595#endif
483} 1596}
484 1597
485/* called on EBADF to verify fds */ 1598/* called on EBADF to verify fds */
486static void 1599static void noinline ecb_cold
487fd_ebadf (EV_P) 1600fd_ebadf (EV_P)
488{ 1601{
489 int fd; 1602 int fd;
490 1603
491 for (fd = 0; fd < anfdmax; ++fd) 1604 for (fd = 0; fd < anfdmax; ++fd)
492 if (anfds [fd].events) 1605 if (anfds [fd].events)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 1606 if (!fd_valid (fd) && errno == EBADF)
494 fd_kill (EV_A_ fd); 1607 fd_kill (EV_A_ fd);
495} 1608}
496 1609
497/* called on ENOMEM in select/poll to kill some fds and retry */ 1610/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 1611static void noinline ecb_cold
499fd_enomem (EV_P) 1612fd_enomem (EV_P)
500{ 1613{
501 int fd; 1614 int fd;
502 1615
503 for (fd = anfdmax; fd--; ) 1616 for (fd = anfdmax; fd--; )
504 if (anfds [fd].events) 1617 if (anfds [fd].events)
505 { 1618 {
506 fd_kill (EV_A_ fd); 1619 fd_kill (EV_A_ fd);
507 return; 1620 break;
508 } 1621 }
509} 1622}
510 1623
511/* usually called after fork if method needs to re-arm all fds from scratch */ 1624/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 1625static void noinline
513fd_rearm_all (EV_P) 1626fd_rearm_all (EV_P)
514{ 1627{
515 int fd; 1628 int fd;
516 1629
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 1630 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 1631 if (anfds [fd].events)
520 { 1632 {
521 anfds [fd].events = 0; 1633 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 1634 anfds [fd].emask = 0;
1635 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
523 } 1636 }
524} 1637}
525 1638
526/*****************************************************************************/ 1639/* used to prepare libev internal fd's */
527 1640/* this is not fork-safe */
528static void
529upheap (WT *heap, int k)
530{
531 WT w = heap [k];
532
533 while (k && heap [k >> 1]->at > w->at)
534 {
535 heap [k] = heap [k >> 1];
536 ((W)heap [k])->active = k + 1;
537 k >>= 1;
538 }
539
540 heap [k] = w;
541 ((W)heap [k])->active = k + 1;
542
543}
544
545static void
546downheap (WT *heap, int N, int k)
547{
548 WT w = heap [k];
549
550 while (k < (N >> 1))
551 {
552 int j = k << 1;
553
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
555 ++j;
556
557 if (w->at <= heap [j]->at)
558 break;
559
560 heap [k] = heap [j];
561 ((W)heap [k])->active = k + 1;
562 k = j;
563 }
564
565 heap [k] = w;
566 ((W)heap [k])->active = k + 1;
567}
568
569inline void 1641inline_speed void
570adjustheap (WT *heap, int N, int k)
571{
572 upheap (heap, k);
573 downheap (heap, N, k);
574}
575
576/*****************************************************************************/
577
578typedef struct
579{
580 WL head;
581 sig_atomic_t volatile gotsig;
582} ANSIG;
583
584static ANSIG *signals;
585static int signalmax;
586
587static int sigpipe [2];
588static sig_atomic_t volatile gotsig;
589static struct ev_io sigev;
590
591static void
592signals_init (ANSIG *base, int count)
593{
594 while (count--)
595 {
596 base->head = 0;
597 base->gotsig = 0;
598
599 ++base;
600 }
601}
602
603static void
604sighandler (int signum)
605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609
610 signals [signum - 1].gotsig = 1;
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619}
620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
641static void
642sigcb (EV_P_ struct ev_io *iow, int revents)
643{
644 int signum;
645
646 read (sigpipe [0], &revents, 1);
647 gotsig = 0;
648
649 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1);
652}
653
654inline void
655fd_intern (int fd) 1642fd_intern (int fd)
656{ 1643{
657#ifdef _WIN32 1644#ifdef _WIN32
658 int arg = 1; 1645 unsigned long arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1646 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
660#else 1647#else
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 1648 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 1649 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 1650#endif
664} 1651}
665 1652
1653/*****************************************************************************/
1654
1655/*
1656 * the heap functions want a real array index. array index 0 is guaranteed to not
1657 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1658 * the branching factor of the d-tree.
1659 */
1660
1661/*
1662 * at the moment we allow libev the luxury of two heaps,
1663 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1664 * which is more cache-efficient.
1665 * the difference is about 5% with 50000+ watchers.
1666 */
1667#if EV_USE_4HEAP
1668
1669#define DHEAP 4
1670#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1671#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1672#define UPHEAP_DONE(p,k) ((p) == (k))
1673
1674/* away from the root */
1675inline_speed void
1676downheap (ANHE *heap, int N, int k)
1677{
1678 ANHE he = heap [k];
1679 ANHE *E = heap + N + HEAP0;
1680
1681 for (;;)
1682 {
1683 ev_tstamp minat;
1684 ANHE *minpos;
1685 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1686
1687 /* find minimum child */
1688 if (expect_true (pos + DHEAP - 1 < E))
1689 {
1690 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1691 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1692 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1693 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1694 }
1695 else if (pos < E)
1696 {
1697 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1698 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1699 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1700 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1701 }
1702 else
1703 break;
1704
1705 if (ANHE_at (he) <= minat)
1706 break;
1707
1708 heap [k] = *minpos;
1709 ev_active (ANHE_w (*minpos)) = k;
1710
1711 k = minpos - heap;
1712 }
1713
1714 heap [k] = he;
1715 ev_active (ANHE_w (he)) = k;
1716}
1717
1718#else /* 4HEAP */
1719
1720#define HEAP0 1
1721#define HPARENT(k) ((k) >> 1)
1722#define UPHEAP_DONE(p,k) (!(p))
1723
1724/* away from the root */
1725inline_speed void
1726downheap (ANHE *heap, int N, int k)
1727{
1728 ANHE he = heap [k];
1729
1730 for (;;)
1731 {
1732 int c = k << 1;
1733
1734 if (c >= N + HEAP0)
1735 break;
1736
1737 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1738 ? 1 : 0;
1739
1740 if (ANHE_at (he) <= ANHE_at (heap [c]))
1741 break;
1742
1743 heap [k] = heap [c];
1744 ev_active (ANHE_w (heap [k])) = k;
1745
1746 k = c;
1747 }
1748
1749 heap [k] = he;
1750 ev_active (ANHE_w (he)) = k;
1751}
1752#endif
1753
1754/* towards the root */
1755inline_speed void
1756upheap (ANHE *heap, int k)
1757{
1758 ANHE he = heap [k];
1759
1760 for (;;)
1761 {
1762 int p = HPARENT (k);
1763
1764 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1765 break;
1766
1767 heap [k] = heap [p];
1768 ev_active (ANHE_w (heap [k])) = k;
1769 k = p;
1770 }
1771
1772 heap [k] = he;
1773 ev_active (ANHE_w (he)) = k;
1774}
1775
1776/* move an element suitably so it is in a correct place */
1777inline_size void
1778adjustheap (ANHE *heap, int N, int k)
1779{
1780 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1781 upheap (heap, k);
1782 else
1783 downheap (heap, N, k);
1784}
1785
1786/* rebuild the heap: this function is used only once and executed rarely */
1787inline_size void
1788reheap (ANHE *heap, int N)
1789{
1790 int i;
1791
1792 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1793 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1794 for (i = 0; i < N; ++i)
1795 upheap (heap, i + HEAP0);
1796}
1797
1798/*****************************************************************************/
1799
1800/* associate signal watchers to a signal signal */
1801typedef struct
1802{
1803 EV_ATOMIC_T pending;
1804#if EV_MULTIPLICITY
1805 EV_P;
1806#endif
1807 WL head;
1808} ANSIG;
1809
1810static ANSIG signals [EV_NSIG - 1];
1811
1812/*****************************************************************************/
1813
1814#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1815
1816static void noinline ecb_cold
1817evpipe_init (EV_P)
1818{
1819 if (!ev_is_active (&pipe_w))
1820 {
1821# if EV_USE_EVENTFD
1822 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1823 if (evfd < 0 && errno == EINVAL)
1824 evfd = eventfd (0, 0);
1825
1826 if (evfd >= 0)
1827 {
1828 evpipe [0] = -1;
1829 fd_intern (evfd); /* doing it twice doesn't hurt */
1830 ev_io_set (&pipe_w, evfd, EV_READ);
1831 }
1832 else
1833# endif
1834 {
1835 while (pipe (evpipe))
1836 ev_syserr ("(libev) error creating signal/async pipe");
1837
1838 fd_intern (evpipe [0]);
1839 fd_intern (evpipe [1]);
1840 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1841 }
1842
1843 ev_io_start (EV_A_ &pipe_w);
1844 ev_unref (EV_A); /* watcher should not keep loop alive */
1845 }
1846}
1847
1848inline_speed void
1849evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1850{
1851 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1852
1853 if (expect_true (*flag))
1854 return;
1855
1856 *flag = 1;
1857
1858 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1859
1860 pipe_write_skipped = 1;
1861
1862 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1863
1864 if (pipe_write_wanted)
1865 {
1866 int old_errno;
1867
1868 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1869
1870 old_errno = errno; /* save errno because write will clobber it */
1871
1872#if EV_USE_EVENTFD
1873 if (evfd >= 0)
1874 {
1875 uint64_t counter = 1;
1876 write (evfd, &counter, sizeof (uint64_t));
1877 }
1878 else
1879#endif
1880 {
1881 /* win32 people keep sending patches that change this write() to send() */
1882 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1883 /* so when you think this write should be a send instead, please find out */
1884 /* where your send() is from - it's definitely not the microsoft send, and */
1885 /* tell me. thank you. */
1886 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1887 /* check the ev documentation on how to use this flag */
1888 write (evpipe [1], &(evpipe [1]), 1);
1889 }
1890
1891 errno = old_errno;
1892 }
1893}
1894
1895/* called whenever the libev signal pipe */
1896/* got some events (signal, async) */
666static void 1897static void
667siginit (EV_P) 1898pipecb (EV_P_ ev_io *iow, int revents)
668{ 1899{
669 fd_intern (sigpipe [0]); 1900 int i;
670 fd_intern (sigpipe [1]);
671 1901
672 ev_io_set (&sigev, sigpipe [0], EV_READ); 1902 if (revents & EV_READ)
673 ev_io_start (EV_A_ &sigev); 1903 {
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1904#if EV_USE_EVENTFD
1905 if (evfd >= 0)
1906 {
1907 uint64_t counter;
1908 read (evfd, &counter, sizeof (uint64_t));
1909 }
1910 else
1911#endif
1912 {
1913 char dummy;
1914 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1915 read (evpipe [0], &dummy, 1);
1916 }
1917 }
1918
1919 pipe_write_skipped = 0;
1920
1921 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1922
1923#if EV_SIGNAL_ENABLE
1924 if (sig_pending)
1925 {
1926 sig_pending = 0;
1927
1928 ECB_MEMORY_FENCE_RELEASE;
1929
1930 for (i = EV_NSIG - 1; i--; )
1931 if (expect_false (signals [i].pending))
1932 ev_feed_signal_event (EV_A_ i + 1);
1933 }
1934#endif
1935
1936#if EV_ASYNC_ENABLE
1937 if (async_pending)
1938 {
1939 async_pending = 0;
1940
1941 ECB_MEMORY_FENCE_RELEASE;
1942
1943 for (i = asynccnt; i--; )
1944 if (asyncs [i]->sent)
1945 {
1946 asyncs [i]->sent = 0;
1947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1948 }
1949 }
1950#endif
675} 1951}
676 1952
677/*****************************************************************************/ 1953/*****************************************************************************/
678 1954
679static struct ev_child *childs [PID_HASHSIZE]; 1955void
1956ev_feed_signal (int signum) EV_THROW
1957{
1958#if EV_MULTIPLICITY
1959 EV_P = signals [signum - 1].loop;
680 1960
1961 if (!EV_A)
1962 return;
1963#endif
1964
1965 if (!ev_active (&pipe_w))
1966 return;
1967
1968 signals [signum - 1].pending = 1;
1969 evpipe_write (EV_A_ &sig_pending);
1970}
1971
1972static void
1973ev_sighandler (int signum)
1974{
681#ifndef _WIN32 1975#ifdef _WIN32
1976 signal (signum, ev_sighandler);
1977#endif
682 1978
1979 ev_feed_signal (signum);
1980}
1981
1982void noinline
1983ev_feed_signal_event (EV_P_ int signum) EV_THROW
1984{
1985 WL w;
1986
1987 if (expect_false (signum <= 0 || signum > EV_NSIG))
1988 return;
1989
1990 --signum;
1991
1992#if EV_MULTIPLICITY
1993 /* it is permissible to try to feed a signal to the wrong loop */
1994 /* or, likely more useful, feeding a signal nobody is waiting for */
1995
1996 if (expect_false (signals [signum].loop != EV_A))
1997 return;
1998#endif
1999
2000 signals [signum].pending = 0;
2001
2002 for (w = signals [signum].head; w; w = w->next)
2003 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2004}
2005
2006#if EV_USE_SIGNALFD
2007static void
2008sigfdcb (EV_P_ ev_io *iow, int revents)
2009{
2010 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2011
2012 for (;;)
2013 {
2014 ssize_t res = read (sigfd, si, sizeof (si));
2015
2016 /* not ISO-C, as res might be -1, but works with SuS */
2017 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2018 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2019
2020 if (res < (ssize_t)sizeof (si))
2021 break;
2022 }
2023}
2024#endif
2025
2026#endif
2027
2028/*****************************************************************************/
2029
2030#if EV_CHILD_ENABLE
2031static WL childs [EV_PID_HASHSIZE];
2032
683static struct ev_signal childev; 2033static ev_signal childev;
2034
2035#ifndef WIFCONTINUED
2036# define WIFCONTINUED(status) 0
2037#endif
2038
2039/* handle a single child status event */
2040inline_speed void
2041child_reap (EV_P_ int chain, int pid, int status)
2042{
2043 ev_child *w;
2044 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2045
2046 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2047 {
2048 if ((w->pid == pid || !w->pid)
2049 && (!traced || (w->flags & 1)))
2050 {
2051 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2052 w->rpid = pid;
2053 w->rstatus = status;
2054 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2055 }
2056 }
2057}
684 2058
685#ifndef WCONTINUED 2059#ifndef WCONTINUED
686# define WCONTINUED 0 2060# define WCONTINUED 0
687#endif 2061#endif
688 2062
2063/* called on sigchld etc., calls waitpid */
689static void 2064static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 2065childcb (EV_P_ ev_signal *sw, int revents)
706{ 2066{
707 int pid, status; 2067 int pid, status;
708 2068
2069 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2070 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 2071 if (!WCONTINUED
2072 || errno != EINVAL
2073 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2074 return;
2075
711 /* make sure we are called again until all childs have been reaped */ 2076 /* make sure we are called again until all children have been reaped */
2077 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2078 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 2079
714 child_reap (EV_A_ sw, pid, pid, status); 2080 child_reap (EV_A_ pid, pid, status);
2081 if ((EV_PID_HASHSIZE) > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2082 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 2083}
718 2084
719#endif 2085#endif
720 2086
721/*****************************************************************************/ 2087/*****************************************************************************/
722 2088
2089#if EV_USE_IOCP
2090# include "ev_iocp.c"
2091#endif
723#if EV_USE_PORT 2092#if EV_USE_PORT
724# include "ev_port.c" 2093# include "ev_port.c"
725#endif 2094#endif
726#if EV_USE_KQUEUE 2095#if EV_USE_KQUEUE
727# include "ev_kqueue.c" 2096# include "ev_kqueue.c"
734#endif 2103#endif
735#if EV_USE_SELECT 2104#if EV_USE_SELECT
736# include "ev_select.c" 2105# include "ev_select.c"
737#endif 2106#endif
738 2107
739int 2108int ecb_cold
740ev_version_major (void) 2109ev_version_major (void) EV_THROW
741{ 2110{
742 return EV_VERSION_MAJOR; 2111 return EV_VERSION_MAJOR;
743} 2112}
744 2113
745int 2114int ecb_cold
746ev_version_minor (void) 2115ev_version_minor (void) EV_THROW
747{ 2116{
748 return EV_VERSION_MINOR; 2117 return EV_VERSION_MINOR;
749} 2118}
750 2119
751/* return true if we are running with elevated privileges and should ignore env variables */ 2120/* return true if we are running with elevated privileges and should ignore env variables */
752static int 2121int inline_size ecb_cold
753enable_secure (void) 2122enable_secure (void)
754{ 2123{
755#ifdef _WIN32 2124#ifdef _WIN32
756 return 0; 2125 return 0;
757#else 2126#else
758 return getuid () != geteuid () 2127 return getuid () != geteuid ()
759 || getgid () != getegid (); 2128 || getgid () != getegid ();
760#endif 2129#endif
761} 2130}
762 2131
2132unsigned int ecb_cold
2133ev_supported_backends (void) EV_THROW
2134{
2135 unsigned int flags = 0;
2136
2137 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2138 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2139 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2140 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2141 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2142
2143 return flags;
2144}
2145
2146unsigned int ecb_cold
2147ev_recommended_backends (void) EV_THROW
2148{
2149 unsigned int flags = ev_supported_backends ();
2150
2151#ifndef __NetBSD__
2152 /* kqueue is borked on everything but netbsd apparently */
2153 /* it usually doesn't work correctly on anything but sockets and pipes */
2154 flags &= ~EVBACKEND_KQUEUE;
2155#endif
2156#ifdef __APPLE__
2157 /* only select works correctly on that "unix-certified" platform */
2158 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2159 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2160#endif
2161#ifdef __FreeBSD__
2162 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2163#endif
2164
2165 return flags;
2166}
2167
2168unsigned int ecb_cold
2169ev_embeddable_backends (void) EV_THROW
2170{
2171 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2172
2173 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2174 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2175 flags &= ~EVBACKEND_EPOLL;
2176
2177 return flags;
2178}
2179
763unsigned int 2180unsigned int
764ev_method (EV_P) 2181ev_backend (EV_P) EV_THROW
765{ 2182{
766 return method; 2183 return backend;
767} 2184}
768 2185
769static void 2186#if EV_FEATURE_API
2187unsigned int
2188ev_iteration (EV_P) EV_THROW
2189{
2190 return loop_count;
2191}
2192
2193unsigned int
2194ev_depth (EV_P) EV_THROW
2195{
2196 return loop_depth;
2197}
2198
2199void
2200ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2201{
2202 io_blocktime = interval;
2203}
2204
2205void
2206ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2207{
2208 timeout_blocktime = interval;
2209}
2210
2211void
2212ev_set_userdata (EV_P_ void *data) EV_THROW
2213{
2214 userdata = data;
2215}
2216
2217void *
2218ev_userdata (EV_P) EV_THROW
2219{
2220 return userdata;
2221}
2222
2223void
2224ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2225{
2226 invoke_cb = invoke_pending_cb;
2227}
2228
2229void
2230ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2231{
2232 release_cb = release;
2233 acquire_cb = acquire;
2234}
2235#endif
2236
2237/* initialise a loop structure, must be zero-initialised */
2238static void noinline ecb_cold
770loop_init (EV_P_ unsigned int flags) 2239loop_init (EV_P_ unsigned int flags) EV_THROW
771{ 2240{
772 if (!method) 2241 if (!backend)
773 { 2242 {
2243 origflags = flags;
2244
2245#if EV_USE_REALTIME
2246 if (!have_realtime)
2247 {
2248 struct timespec ts;
2249
2250 if (!clock_gettime (CLOCK_REALTIME, &ts))
2251 have_realtime = 1;
2252 }
2253#endif
2254
774#if EV_USE_MONOTONIC 2255#if EV_USE_MONOTONIC
2256 if (!have_monotonic)
2257 {
2258 struct timespec ts;
2259
2260 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2261 have_monotonic = 1;
2262 }
2263#endif
2264
2265 /* pid check not overridable via env */
2266#ifndef _WIN32
2267 if (flags & EVFLAG_FORKCHECK)
2268 curpid = getpid ();
2269#endif
2270
2271 if (!(flags & EVFLAG_NOENV)
2272 && !enable_secure ()
2273 && getenv ("LIBEV_FLAGS"))
2274 flags = atoi (getenv ("LIBEV_FLAGS"));
2275
2276 ev_rt_now = ev_time ();
2277 mn_now = get_clock ();
2278 now_floor = mn_now;
2279 rtmn_diff = ev_rt_now - mn_now;
2280#if EV_FEATURE_API
2281 invoke_cb = ev_invoke_pending;
2282#endif
2283
2284 io_blocktime = 0.;
2285 timeout_blocktime = 0.;
2286 backend = 0;
2287 backend_fd = -1;
2288 sig_pending = 0;
2289#if EV_ASYNC_ENABLE
2290 async_pending = 0;
2291#endif
2292 pipe_write_skipped = 0;
2293 pipe_write_wanted = 0;
2294#if EV_USE_INOTIFY
2295 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2296#endif
2297#if EV_USE_SIGNALFD
2298 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2299#endif
2300
2301 if (!(flags & EVBACKEND_MASK))
2302 flags |= ev_recommended_backends ();
2303
2304#if EV_USE_IOCP
2305 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2306#endif
2307#if EV_USE_PORT
2308 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2309#endif
2310#if EV_USE_KQUEUE
2311 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2312#endif
2313#if EV_USE_EPOLL
2314 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2315#endif
2316#if EV_USE_POLL
2317 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2318#endif
2319#if EV_USE_SELECT
2320 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2321#endif
2322
2323 ev_prepare_init (&pending_w, pendingcb);
2324
2325#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2326 ev_init (&pipe_w, pipecb);
2327 ev_set_priority (&pipe_w, EV_MAXPRI);
2328#endif
2329 }
2330}
2331
2332/* free up a loop structure */
2333void ecb_cold
2334ev_loop_destroy (EV_P)
2335{
2336 int i;
2337
2338#if EV_MULTIPLICITY
2339 /* mimic free (0) */
2340 if (!EV_A)
2341 return;
2342#endif
2343
2344#if EV_CLEANUP_ENABLE
2345 /* queue cleanup watchers (and execute them) */
2346 if (expect_false (cleanupcnt))
2347 {
2348 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2349 EV_INVOKE_PENDING;
2350 }
2351#endif
2352
2353#if EV_CHILD_ENABLE
2354 if (ev_is_active (&childev))
2355 {
2356 ev_ref (EV_A); /* child watcher */
2357 ev_signal_stop (EV_A_ &childev);
2358 }
2359#endif
2360
2361 if (ev_is_active (&pipe_w))
2362 {
2363 /*ev_ref (EV_A);*/
2364 /*ev_io_stop (EV_A_ &pipe_w);*/
2365
2366#if EV_USE_EVENTFD
2367 if (evfd >= 0)
2368 close (evfd);
2369#endif
2370
2371 if (evpipe [0] >= 0)
2372 {
2373 EV_WIN32_CLOSE_FD (evpipe [0]);
2374 EV_WIN32_CLOSE_FD (evpipe [1]);
2375 }
2376 }
2377
2378#if EV_USE_SIGNALFD
2379 if (ev_is_active (&sigfd_w))
2380 close (sigfd);
2381#endif
2382
2383#if EV_USE_INOTIFY
2384 if (fs_fd >= 0)
2385 close (fs_fd);
2386#endif
2387
2388 if (backend_fd >= 0)
2389 close (backend_fd);
2390
2391#if EV_USE_IOCP
2392 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2393#endif
2394#if EV_USE_PORT
2395 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2396#endif
2397#if EV_USE_KQUEUE
2398 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2399#endif
2400#if EV_USE_EPOLL
2401 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2402#endif
2403#if EV_USE_POLL
2404 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2405#endif
2406#if EV_USE_SELECT
2407 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2408#endif
2409
2410 for (i = NUMPRI; i--; )
2411 {
2412 array_free (pending, [i]);
2413#if EV_IDLE_ENABLE
2414 array_free (idle, [i]);
2415#endif
2416 }
2417
2418 ev_free (anfds); anfds = 0; anfdmax = 0;
2419
2420 /* have to use the microsoft-never-gets-it-right macro */
2421 array_free (rfeed, EMPTY);
2422 array_free (fdchange, EMPTY);
2423 array_free (timer, EMPTY);
2424#if EV_PERIODIC_ENABLE
2425 array_free (periodic, EMPTY);
2426#endif
2427#if EV_FORK_ENABLE
2428 array_free (fork, EMPTY);
2429#endif
2430#if EV_CLEANUP_ENABLE
2431 array_free (cleanup, EMPTY);
2432#endif
2433 array_free (prepare, EMPTY);
2434 array_free (check, EMPTY);
2435#if EV_ASYNC_ENABLE
2436 array_free (async, EMPTY);
2437#endif
2438
2439 backend = 0;
2440
2441#if EV_MULTIPLICITY
2442 if (ev_is_default_loop (EV_A))
2443#endif
2444 ev_default_loop_ptr = 0;
2445#if EV_MULTIPLICITY
2446 else
2447 ev_free (EV_A);
2448#endif
2449}
2450
2451#if EV_USE_INOTIFY
2452inline_size void infy_fork (EV_P);
2453#endif
2454
2455inline_size void
2456loop_fork (EV_P)
2457{
2458#if EV_USE_PORT
2459 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2460#endif
2461#if EV_USE_KQUEUE
2462 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2463#endif
2464#if EV_USE_EPOLL
2465 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2466#endif
2467#if EV_USE_INOTIFY
2468 infy_fork (EV_A);
2469#endif
2470
2471 if (ev_is_active (&pipe_w))
2472 {
2473 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2474
2475 ev_ref (EV_A);
2476 ev_io_stop (EV_A_ &pipe_w);
2477
2478#if EV_USE_EVENTFD
2479 if (evfd >= 0)
2480 close (evfd);
2481#endif
2482
2483 if (evpipe [0] >= 0)
2484 {
2485 EV_WIN32_CLOSE_FD (evpipe [0]);
2486 EV_WIN32_CLOSE_FD (evpipe [1]);
2487 }
2488
2489#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2490 evpipe_init (EV_A);
2491 /* now iterate over everything, in case we missed something */
2492 pipecb (EV_A_ &pipe_w, EV_READ);
2493#endif
2494 }
2495
2496 postfork = 0;
2497}
2498
2499#if EV_MULTIPLICITY
2500
2501struct ev_loop * ecb_cold
2502ev_loop_new (unsigned int flags) EV_THROW
2503{
2504 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2505
2506 memset (EV_A, 0, sizeof (struct ev_loop));
2507 loop_init (EV_A_ flags);
2508
2509 if (ev_backend (EV_A))
2510 return EV_A;
2511
2512 ev_free (EV_A);
2513 return 0;
2514}
2515
2516#endif /* multiplicity */
2517
2518#if EV_VERIFY
2519static void noinline ecb_cold
2520verify_watcher (EV_P_ W w)
2521{
2522 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2523
2524 if (w->pending)
2525 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2526}
2527
2528static void noinline ecb_cold
2529verify_heap (EV_P_ ANHE *heap, int N)
2530{
2531 int i;
2532
2533 for (i = HEAP0; i < N + HEAP0; ++i)
2534 {
2535 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2536 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2537 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2538
2539 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2540 }
2541}
2542
2543static void noinline ecb_cold
2544array_verify (EV_P_ W *ws, int cnt)
2545{
2546 while (cnt--)
2547 {
2548 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2549 verify_watcher (EV_A_ ws [cnt]);
2550 }
2551}
2552#endif
2553
2554#if EV_FEATURE_API
2555void ecb_cold
2556ev_verify (EV_P) EV_THROW
2557{
2558#if EV_VERIFY
2559 int i;
2560 WL w;
2561
2562 assert (activecnt >= -1);
2563
2564 assert (fdchangemax >= fdchangecnt);
2565 for (i = 0; i < fdchangecnt; ++i)
2566 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2567
2568 assert (anfdmax >= 0);
2569 for (i = 0; i < anfdmax; ++i)
2570 for (w = anfds [i].head; w; w = w->next)
775 { 2571 {
776 struct timespec ts; 2572 verify_watcher (EV_A_ (W)w);
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2573 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
778 have_monotonic = 1; 2574 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
779 } 2575 }
780#endif
781 2576
782 ev_rt_now = ev_time (); 2577 assert (timermax >= timercnt);
783 mn_now = get_clock (); 2578 verify_heap (EV_A_ timers, timercnt);
784 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now;
786 2579
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2580#if EV_PERIODIC_ENABLE
788 flags = atoi (getenv ("LIBEV_FLAGS")); 2581 assert (periodicmax >= periodiccnt);
789 2582 verify_heap (EV_A_ periodics, periodiccnt);
790 if (!(flags & 0x0000ffff))
791 flags |= 0x0000ffff;
792
793 method = 0;
794#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
796#endif
797#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
799#endif
800#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
802#endif
803#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
805#endif
806#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
808#endif
809
810 ev_init (&sigev, sigcb);
811 ev_set_priority (&sigev, EV_MAXPRI);
812 }
813}
814
815void
816loop_destroy (EV_P)
817{
818 int i;
819
820#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
822#endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
825#endif
826#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
828#endif
829#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
831#endif
832#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
834#endif 2583#endif
835 2584
836 for (i = NUMPRI; i--; ) 2585 for (i = NUMPRI; i--; )
837 array_free (pending, [i]); 2586 {
2587 assert (pendingmax [i] >= pendingcnt [i]);
2588#if EV_IDLE_ENABLE
2589 assert (idleall >= 0);
2590 assert (idlemax [i] >= idlecnt [i]);
2591 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2592#endif
2593 }
838 2594
839 /* have to use the microsoft-never-gets-it-right macro */ 2595#if EV_FORK_ENABLE
840 array_free (fdchange, EMPTY0); 2596 assert (forkmax >= forkcnt);
841 array_free (timer, EMPTY0); 2597 array_verify (EV_A_ (W *)forks, forkcnt);
842#if EV_PERIODICS 2598#endif
843 array_free (periodic, EMPTY0); 2599
2600#if EV_CLEANUP_ENABLE
2601 assert (cleanupmax >= cleanupcnt);
2602 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2603#endif
2604
2605#if EV_ASYNC_ENABLE
2606 assert (asyncmax >= asynccnt);
2607 array_verify (EV_A_ (W *)asyncs, asynccnt);
2608#endif
2609
2610#if EV_PREPARE_ENABLE
2611 assert (preparemax >= preparecnt);
2612 array_verify (EV_A_ (W *)prepares, preparecnt);
2613#endif
2614
2615#if EV_CHECK_ENABLE
2616 assert (checkmax >= checkcnt);
2617 array_verify (EV_A_ (W *)checks, checkcnt);
2618#endif
2619
2620# if 0
2621#if EV_CHILD_ENABLE
2622 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2623 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2624#endif
844#endif 2625# endif
845 array_free (idle, EMPTY0);
846 array_free (prepare, EMPTY0);
847 array_free (check, EMPTY0);
848
849 method = 0;
850}
851
852static void
853loop_fork (EV_P)
854{
855#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A);
857#endif 2626#endif
858#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
860#endif
861#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
863#endif
864
865 if (ev_is_active (&sigev))
866 {
867 /* default loop */
868
869 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev);
871 close (sigpipe [0]);
872 close (sigpipe [1]);
873
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A);
878 }
879
880 postfork = 0;
881} 2627}
2628#endif
882 2629
883#if EV_MULTIPLICITY 2630#if EV_MULTIPLICITY
884struct ev_loop * 2631struct ev_loop * ecb_cold
885ev_loop_new (unsigned int flags)
886{
887 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
888
889 memset (loop, 0, sizeof (struct ev_loop));
890
891 loop_init (EV_A_ flags);
892
893 if (ev_method (EV_A))
894 return loop;
895
896 return 0;
897}
898
899void
900ev_loop_destroy (EV_P)
901{
902 loop_destroy (EV_A);
903 ev_free (loop);
904}
905
906void
907ev_loop_fork (EV_P)
908{
909 postfork = 1;
910}
911
912#endif
913
914#if EV_MULTIPLICITY
915struct ev_loop *
916ev_default_loop_ (unsigned int flags)
917#else 2632#else
918int 2633int
2634#endif
919ev_default_loop (unsigned int flags) 2635ev_default_loop (unsigned int flags) EV_THROW
920#endif
921{ 2636{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr) 2637 if (!ev_default_loop_ptr)
927 { 2638 {
928#if EV_MULTIPLICITY 2639#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2640 EV_P = ev_default_loop_ptr = &default_loop_struct;
930#else 2641#else
931 ev_default_loop_ptr = 1; 2642 ev_default_loop_ptr = 1;
932#endif 2643#endif
933 2644
934 loop_init (EV_A_ flags); 2645 loop_init (EV_A_ flags);
935 2646
936 if (ev_method (EV_A)) 2647 if (ev_backend (EV_A))
937 { 2648 {
938 siginit (EV_A); 2649#if EV_CHILD_ENABLE
939
940#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 2650 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 2651 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 2652 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2653 ev_unref (EV_A); /* child watcher should not keep loop alive */
945#endif 2654#endif
950 2659
951 return ev_default_loop_ptr; 2660 return ev_default_loop_ptr;
952} 2661}
953 2662
954void 2663void
955ev_default_destroy (void) 2664ev_loop_fork (EV_P) EV_THROW
956{ 2665{
957#if EV_MULTIPLICITY 2666 postfork = 1; /* must be in line with ev_default_fork */
958 struct ev_loop *loop = ev_default_loop_ptr;
959#endif
960
961#ifndef _WIN32
962 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev);
964#endif
965
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A);
973} 2667}
2668
2669/*****************************************************************************/
974 2670
975void 2671void
976ev_default_fork (void) 2672ev_invoke (EV_P_ void *w, int revents)
977{ 2673{
978#if EV_MULTIPLICITY 2674 EV_CB_INVOKE ((W)w, revents);
979 struct ev_loop *loop = ev_default_loop_ptr;
980#endif
981
982 if (method)
983 postfork = 1;
984} 2675}
985 2676
986/*****************************************************************************/ 2677unsigned int
987 2678ev_pending_count (EV_P) EV_THROW
988static int
989any_pending (EV_P)
990{ 2679{
991 int pri; 2680 int pri;
2681 unsigned int count = 0;
992 2682
993 for (pri = NUMPRI; pri--; ) 2683 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri]) 2684 count += pendingcnt [pri];
995 return 1;
996 2685
997 return 0; 2686 return count;
998} 2687}
999 2688
1000static void 2689void noinline
1001call_pending (EV_P) 2690ev_invoke_pending (EV_P)
1002{ 2691{
1003 int pri; 2692 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1004
1005 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 2693 while (pendingcnt [pendingpri])
1007 { 2694 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2695 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1009 2696
1010 if (p->w)
1011 {
1012 p->w->pending = 0; 2697 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 2698 EV_CB_INVOKE (p->w, p->events);
1014 } 2699 EV_FREQUENT_CHECK;
1015 } 2700 }
1016} 2701}
1017 2702
1018static void 2703#if EV_IDLE_ENABLE
2704/* make idle watchers pending. this handles the "call-idle */
2705/* only when higher priorities are idle" logic */
2706inline_size void
2707idle_reify (EV_P)
2708{
2709 if (expect_false (idleall))
2710 {
2711 int pri;
2712
2713 for (pri = NUMPRI; pri--; )
2714 {
2715 if (pendingcnt [pri])
2716 break;
2717
2718 if (idlecnt [pri])
2719 {
2720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2721 break;
2722 }
2723 }
2724 }
2725}
2726#endif
2727
2728/* make timers pending */
2729inline_size void
1019timers_reify (EV_P) 2730timers_reify (EV_P)
1020{ 2731{
2732 EV_FREQUENT_CHECK;
2733
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 2734 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1022 { 2735 {
1023 struct ev_timer *w = timers [0]; 2736 do
1024
1025 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1026
1027 /* first reschedule or stop timer */
1028 if (w->repeat)
1029 { 2737 {
2738 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2739
2740 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2741
2742 /* first reschedule or stop timer */
2743 if (w->repeat)
2744 {
2745 ev_at (w) += w->repeat;
2746 if (ev_at (w) < mn_now)
2747 ev_at (w) = mn_now;
2748
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2749 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 2750
1032 ((WT)w)->at += w->repeat; 2751 ANHE_at_cache (timers [HEAP0]);
1033 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now;
1035
1036 downheap ((WT *)timers, timercnt, 0); 2752 downheap (timers, timercnt, HEAP0);
2753 }
2754 else
2755 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2756
2757 EV_FREQUENT_CHECK;
2758 feed_reverse (EV_A_ (W)w);
1037 } 2759 }
1038 else 2760 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 2761
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2762 feed_reverse_done (EV_A_ EV_TIMER);
2763 }
2764}
2765
2766#if EV_PERIODIC_ENABLE
2767
2768static void noinline
2769periodic_recalc (EV_P_ ev_periodic *w)
2770{
2771 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2772 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2773
2774 /* the above almost always errs on the low side */
2775 while (at <= ev_rt_now)
1042 } 2776 {
1043} 2777 ev_tstamp nat = at + w->interval;
1044 2778
1045#if EV_PERIODICS 2779 /* when resolution fails us, we use ev_rt_now */
1046static void 2780 if (expect_false (nat == at))
2781 {
2782 at = ev_rt_now;
2783 break;
2784 }
2785
2786 at = nat;
2787 }
2788
2789 ev_at (w) = at;
2790}
2791
2792/* make periodics pending */
2793inline_size void
1047periodics_reify (EV_P) 2794periodics_reify (EV_P)
1048{ 2795{
2796 EV_FREQUENT_CHECK;
2797
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2798 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1050 { 2799 {
1051 struct ev_periodic *w = periodics [0]; 2800 int feed_count = 0;
1052 2801
2802 do
2803 {
2804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2805
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2806 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 2807
1055 /* first reschedule or stop timer */ 2808 /* first reschedule or stop timer */
2809 if (w->reschedule_cb)
2810 {
2811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2812
2813 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2814
2815 ANHE_at_cache (periodics [HEAP0]);
2816 downheap (periodics, periodiccnt, HEAP0);
2817 }
2818 else if (w->interval)
2819 {
2820 periodic_recalc (EV_A_ w);
2821 ANHE_at_cache (periodics [HEAP0]);
2822 downheap (periodics, periodiccnt, HEAP0);
2823 }
2824 else
2825 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2826
2827 EV_FREQUENT_CHECK;
2828 feed_reverse (EV_A_ (W)w);
2829 }
2830 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2831
2832 feed_reverse_done (EV_A_ EV_PERIODIC);
2833 }
2834}
2835
2836/* simply recalculate all periodics */
2837/* TODO: maybe ensure that at least one event happens when jumping forward? */
2838static void noinline ecb_cold
2839periodics_reschedule (EV_P)
2840{
2841 int i;
2842
2843 /* adjust periodics after time jump */
2844 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2845 {
2846 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2847
1056 if (w->reschedule_cb) 2848 if (w->reschedule_cb)
2849 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2850 else if (w->interval)
2851 periodic_recalc (EV_A_ w);
2852
2853 ANHE_at_cache (periodics [i]);
2854 }
2855
2856 reheap (periodics, periodiccnt);
2857}
2858#endif
2859
2860/* adjust all timers by a given offset */
2861static void noinline ecb_cold
2862timers_reschedule (EV_P_ ev_tstamp adjust)
2863{
2864 int i;
2865
2866 for (i = 0; i < timercnt; ++i)
2867 {
2868 ANHE *he = timers + i + HEAP0;
2869 ANHE_w (*he)->at += adjust;
2870 ANHE_at_cache (*he);
2871 }
2872}
2873
2874/* fetch new monotonic and realtime times from the kernel */
2875/* also detect if there was a timejump, and act accordingly */
2876inline_speed void
2877time_update (EV_P_ ev_tstamp max_block)
2878{
2879#if EV_USE_MONOTONIC
2880 if (expect_true (have_monotonic))
2881 {
2882 int i;
2883 ev_tstamp odiff = rtmn_diff;
2884
2885 mn_now = get_clock ();
2886
2887 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2888 /* interpolate in the meantime */
2889 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1057 { 2890 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2891 ev_rt_now = rtmn_diff + mn_now;
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2892 return;
1060 downheap ((WT *)periodics, periodiccnt, 0);
1061 } 2893 }
1062 else if (w->interval)
1063 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0);
1067 }
1068 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 2894
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 }
1073}
1074
1075static void
1076periodics_reschedule (EV_P)
1077{
1078 int i;
1079
1080 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i)
1082 {
1083 struct ev_periodic *w = periodics [i];
1084
1085 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1089 }
1090
1091 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i);
1094}
1095#endif
1096
1097inline int
1098time_update_monotonic (EV_P)
1099{
1100 mn_now = get_clock ();
1101
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 {
1104 ev_rt_now = rtmn_diff + mn_now;
1105 return 0;
1106 }
1107 else
1108 {
1109 now_floor = mn_now; 2895 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 2896 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 2897
1115static void 2898 /* loop a few times, before making important decisions.
1116time_update (EV_P) 2899 * on the choice of "4": one iteration isn't enough,
1117{ 2900 * in case we get preempted during the calls to
1118 int i; 2901 * ev_time and get_clock. a second call is almost guaranteed
1119 2902 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 2903 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 2904 * in the unlikely event of having been preempted here.
1122 { 2905 */
1123 if (time_update_monotonic (EV_A)) 2906 for (i = 4; --i; )
1124 { 2907 {
1125 ev_tstamp odiff = rtmn_diff; 2908 ev_tstamp diff;
1126
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1128 {
1129 rtmn_diff = ev_rt_now - mn_now; 2909 rtmn_diff = ev_rt_now - mn_now;
1130 2910
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2911 diff = odiff - rtmn_diff;
2912
2913 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1132 return; /* all is well */ 2914 return; /* all is well */
1133 2915
1134 ev_rt_now = ev_time (); 2916 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 2917 mn_now = get_clock ();
1136 now_floor = mn_now; 2918 now_floor = mn_now;
1137 } 2919 }
1138 2920
2921 /* no timer adjustment, as the monotonic clock doesn't jump */
2922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1139# if EV_PERIODICS 2923# if EV_PERIODIC_ENABLE
2924 periodics_reschedule (EV_A);
2925# endif
2926 }
2927 else
2928#endif
2929 {
2930 ev_rt_now = ev_time ();
2931
2932 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2933 {
2934 /* adjust timers. this is easy, as the offset is the same for all of them */
2935 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2936#if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 2937 periodics_reschedule (EV_A);
1141# endif 2938#endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 } 2939 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */
1158 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 }
1161 2940
1162 mn_now = ev_rt_now; 2941 mn_now = ev_rt_now;
1163 } 2942 }
1164} 2943}
1165 2944
1166void 2945int
1167ev_ref (EV_P)
1168{
1169 ++activecnt;
1170}
1171
1172void
1173ev_unref (EV_P)
1174{
1175 --activecnt;
1176}
1177
1178static int loop_done;
1179
1180void
1181ev_loop (EV_P_ int flags) 2946ev_run (EV_P_ int flags)
1182{ 2947{
1183 double block; 2948#if EV_FEATURE_API
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2949 ++loop_depth;
2950#endif
1185 2951
1186 while (activecnt) 2952 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2953
2954 loop_done = EVBREAK_CANCEL;
2955
2956 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2957
2958 do
1187 { 2959 {
2960#if EV_VERIFY >= 2
2961 ev_verify (EV_A);
2962#endif
2963
2964#ifndef _WIN32
2965 if (expect_false (curpid)) /* penalise the forking check even more */
2966 if (expect_false (getpid () != curpid))
2967 {
2968 curpid = getpid ();
2969 postfork = 1;
2970 }
2971#endif
2972
2973#if EV_FORK_ENABLE
2974 /* we might have forked, so queue fork handlers */
2975 if (expect_false (postfork))
2976 if (forkcnt)
2977 {
2978 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2979 EV_INVOKE_PENDING;
2980 }
2981#endif
2982
2983#if EV_PREPARE_ENABLE
1188 /* queue check watchers (and execute them) */ 2984 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 2985 if (expect_false (preparecnt))
1190 { 2986 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2987 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 2988 EV_INVOKE_PENDING;
1193 } 2989 }
2990#endif
2991
2992 if (expect_false (loop_done))
2993 break;
1194 2994
1195 /* we might have forked, so reify kernel state if necessary */ 2995 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 2996 if (expect_false (postfork))
1197 loop_fork (EV_A); 2997 loop_fork (EV_A);
1198 2998
1199 /* update fd-related kernel structures */ 2999 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 3000 fd_reify (EV_A);
1201 3001
1202 /* calculate blocking time */ 3002 /* calculate blocking time */
3003 {
3004 ev_tstamp waittime = 0.;
3005 ev_tstamp sleeptime = 0.;
1203 3006
1204 /* we only need this for !monotonic clock or timers, but as we basically 3007 /* remember old timestamp for io_blocktime calculation */
1205 always have timers, we just calculate it always */ 3008 ev_tstamp prev_mn_now = mn_now;
1206#if EV_USE_MONOTONIC 3009
1207 if (expect_true (have_monotonic)) 3010 /* update time to cancel out callback processing overhead */
1208 time_update_monotonic (EV_A); 3011 time_update (EV_A_ 1e100);
1209 else 3012
1210#endif 3013 /* from now on, we want a pipe-wake-up */
3014 pipe_write_wanted = 1;
3015
3016 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3017
3018 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1211 { 3019 {
1212 ev_rt_now = ev_time ();
1213 mn_now = ev_rt_now;
1214 }
1215
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 3020 waittime = MAX_BLOCKTIME;
1221 3021
1222 if (timercnt) 3022 if (timercnt)
1223 { 3023 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3024 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1225 if (block > to) block = to; 3025 if (waittime > to) waittime = to;
1226 } 3026 }
1227 3027
1228#if EV_PERIODICS 3028#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 3029 if (periodiccnt)
1230 { 3030 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3031 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1232 if (block > to) block = to; 3032 if (waittime > to) waittime = to;
1233 } 3033 }
1234#endif 3034#endif
1235 3035
1236 if (block < 0.) block = 0.; 3036 /* don't let timeouts decrease the waittime below timeout_blocktime */
3037 if (expect_false (waittime < timeout_blocktime))
3038 waittime = timeout_blocktime;
3039
3040 /* at this point, we NEED to wait, so we have to ensure */
3041 /* to pass a minimum nonzero value to the backend */
3042 if (expect_false (waittime < backend_mintime))
3043 waittime = backend_mintime;
3044
3045 /* extra check because io_blocktime is commonly 0 */
3046 if (expect_false (io_blocktime))
3047 {
3048 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3049
3050 if (sleeptime > waittime - backend_mintime)
3051 sleeptime = waittime - backend_mintime;
3052
3053 if (expect_true (sleeptime > 0.))
3054 {
3055 ev_sleep (sleeptime);
3056 waittime -= sleeptime;
3057 }
3058 }
1237 } 3059 }
1238 3060
1239 method_poll (EV_A_ block); 3061#if EV_FEATURE_API
3062 ++loop_count;
3063#endif
3064 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3065 backend_poll (EV_A_ waittime);
3066 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1240 3067
3068 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3069
3070 if (pipe_write_skipped)
3071 {
3072 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3073 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3074 }
3075
3076
1241 /* update ev_rt_now, do magic */ 3077 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 3078 time_update (EV_A_ waittime + sleeptime);
3079 }
1243 3080
1244 /* queue pending timers and reschedule them */ 3081 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 3082 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 3083#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 3084 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 3085#endif
1249 3086
3087#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 3088 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 3089 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3090#endif
1253 3091
3092#if EV_CHECK_ENABLE
1254 /* queue check watchers, to be executed first */ 3093 /* queue check watchers, to be executed first */
1255 if (checkcnt) 3094 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3095 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3096#endif
1257 3097
1258 call_pending (EV_A); 3098 EV_INVOKE_PENDING;
1259
1260 if (loop_done)
1261 break;
1262 } 3099 }
3100 while (expect_true (
3101 activecnt
3102 && !loop_done
3103 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3104 ));
1263 3105
1264 if (loop_done != 2) 3106 if (loop_done == EVBREAK_ONE)
1265 loop_done = 0; 3107 loop_done = EVBREAK_CANCEL;
3108
3109#if EV_FEATURE_API
3110 --loop_depth;
3111#endif
3112
3113 return activecnt;
1266} 3114}
1267 3115
1268void 3116void
1269ev_unloop (EV_P_ int how) 3117ev_break (EV_P_ int how) EV_THROW
1270{ 3118{
1271 loop_done = how; 3119 loop_done = how;
1272} 3120}
1273 3121
3122void
3123ev_ref (EV_P) EV_THROW
3124{
3125 ++activecnt;
3126}
3127
3128void
3129ev_unref (EV_P) EV_THROW
3130{
3131 --activecnt;
3132}
3133
3134void
3135ev_now_update (EV_P) EV_THROW
3136{
3137 time_update (EV_A_ 1e100);
3138}
3139
3140void
3141ev_suspend (EV_P) EV_THROW
3142{
3143 ev_now_update (EV_A);
3144}
3145
3146void
3147ev_resume (EV_P) EV_THROW
3148{
3149 ev_tstamp mn_prev = mn_now;
3150
3151 ev_now_update (EV_A);
3152 timers_reschedule (EV_A_ mn_now - mn_prev);
3153#if EV_PERIODIC_ENABLE
3154 /* TODO: really do this? */
3155 periodics_reschedule (EV_A);
3156#endif
3157}
3158
1274/*****************************************************************************/ 3159/*****************************************************************************/
3160/* singly-linked list management, used when the expected list length is short */
1275 3161
1276inline void 3162inline_size void
1277wlist_add (WL *head, WL elem) 3163wlist_add (WL *head, WL elem)
1278{ 3164{
1279 elem->next = *head; 3165 elem->next = *head;
1280 *head = elem; 3166 *head = elem;
1281} 3167}
1282 3168
1283inline void 3169inline_size void
1284wlist_del (WL *head, WL elem) 3170wlist_del (WL *head, WL elem)
1285{ 3171{
1286 while (*head) 3172 while (*head)
1287 { 3173 {
1288 if (*head == elem) 3174 if (expect_true (*head == elem))
1289 { 3175 {
1290 *head = elem->next; 3176 *head = elem->next;
1291 return; 3177 break;
1292 } 3178 }
1293 3179
1294 head = &(*head)->next; 3180 head = &(*head)->next;
1295 } 3181 }
1296} 3182}
1297 3183
3184/* internal, faster, version of ev_clear_pending */
1298inline void 3185inline_speed void
1299ev_clear_pending (EV_P_ W w) 3186clear_pending (EV_P_ W w)
1300{ 3187{
1301 if (w->pending) 3188 if (w->pending)
1302 { 3189 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3190 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1304 w->pending = 0; 3191 w->pending = 0;
1305 } 3192 }
1306} 3193}
1307 3194
3195int
3196ev_clear_pending (EV_P_ void *w) EV_THROW
3197{
3198 W w_ = (W)w;
3199 int pending = w_->pending;
3200
3201 if (expect_true (pending))
3202 {
3203 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3204 p->w = (W)&pending_w;
3205 w_->pending = 0;
3206 return p->events;
3207 }
3208 else
3209 return 0;
3210}
3211
1308inline void 3212inline_size void
3213pri_adjust (EV_P_ W w)
3214{
3215 int pri = ev_priority (w);
3216 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3217 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3218 ev_set_priority (w, pri);
3219}
3220
3221inline_speed void
1309ev_start (EV_P_ W w, int active) 3222ev_start (EV_P_ W w, int active)
1310{ 3223{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3224 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 3225 w->active = active;
1315 ev_ref (EV_A); 3226 ev_ref (EV_A);
1316} 3227}
1317 3228
1318inline void 3229inline_size void
1319ev_stop (EV_P_ W w) 3230ev_stop (EV_P_ W w)
1320{ 3231{
1321 ev_unref (EV_A); 3232 ev_unref (EV_A);
1322 w->active = 0; 3233 w->active = 0;
1323} 3234}
1324 3235
1325/*****************************************************************************/ 3236/*****************************************************************************/
1326 3237
1327void 3238void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 3239ev_io_start (EV_P_ ev_io *w) EV_THROW
1329{ 3240{
1330 int fd = w->fd; 3241 int fd = w->fd;
1331 3242
1332 if (ev_is_active (w)) 3243 if (expect_false (ev_is_active (w)))
1333 return; 3244 return;
1334 3245
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 3246 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3247 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3248
3249 EV_FREQUENT_CHECK;
1336 3250
1337 ev_start (EV_A_ (W)w, 1); 3251 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3252 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3253 wlist_add (&anfds[fd].head, (WL)w);
1340 3254
1341 fd_change (EV_A_ fd); 3255 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1342} 3256 w->events &= ~EV__IOFDSET;
1343 3257
1344void 3258 EV_FREQUENT_CHECK;
3259}
3260
3261void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 3262ev_io_stop (EV_P_ ev_io *w) EV_THROW
1346{ 3263{
1347 ev_clear_pending (EV_A_ (W)w); 3264 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 3265 if (expect_false (!ev_is_active (w)))
1349 return; 3266 return;
1350 3267
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3268 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 3269
3270 EV_FREQUENT_CHECK;
3271
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3272 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 3273 ev_stop (EV_A_ (W)w);
1355 3274
1356 fd_change (EV_A_ w->fd); 3275 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1357}
1358 3276
1359void 3277 EV_FREQUENT_CHECK;
3278}
3279
3280void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 3281ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1361{ 3282{
1362 if (ev_is_active (w)) 3283 if (expect_false (ev_is_active (w)))
1363 return; 3284 return;
1364 3285
1365 ((WT)w)->at += mn_now; 3286 ev_at (w) += mn_now;
1366 3287
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3288 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 3289
3290 EV_FREQUENT_CHECK;
3291
3292 ++timercnt;
1369 ev_start (EV_A_ (W)w, ++timercnt); 3293 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3294 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1371 timers [timercnt - 1] = w; 3295 ANHE_w (timers [ev_active (w)]) = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 3296 ANHE_at_cache (timers [ev_active (w)]);
3297 upheap (timers, ev_active (w));
1373 3298
3299 EV_FREQUENT_CHECK;
3300
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3301 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1375} 3302}
1376 3303
1377void 3304void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 3305ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1379{ 3306{
1380 ev_clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 3308 if (expect_false (!ev_is_active (w)))
1382 return; 3309 return;
1383 3310
3311 EV_FREQUENT_CHECK;
3312
3313 {
3314 int active = ev_active (w);
3315
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3316 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1385 3317
1386 if (((W)w)->active < timercnt--) 3318 --timercnt;
3319
3320 if (expect_true (active < timercnt + HEAP0))
1387 { 3321 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 3322 timers [active] = timers [timercnt + HEAP0];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3323 adjustheap (timers, timercnt, active);
1390 } 3324 }
3325 }
1391 3326
1392 ((WT)w)->at -= mn_now; 3327 ev_at (w) -= mn_now;
1393 3328
1394 ev_stop (EV_A_ (W)w); 3329 ev_stop (EV_A_ (W)w);
1395}
1396 3330
1397void 3331 EV_FREQUENT_CHECK;
3332}
3333
3334void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 3335ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1399{ 3336{
3337 EV_FREQUENT_CHECK;
3338
3339 clear_pending (EV_A_ (W)w);
3340
1400 if (ev_is_active (w)) 3341 if (ev_is_active (w))
1401 { 3342 {
1402 if (w->repeat) 3343 if (w->repeat)
1403 { 3344 {
1404 ((WT)w)->at = mn_now + w->repeat; 3345 ev_at (w) = mn_now + w->repeat;
3346 ANHE_at_cache (timers [ev_active (w)]);
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3347 adjustheap (timers, timercnt, ev_active (w));
1406 } 3348 }
1407 else 3349 else
1408 ev_timer_stop (EV_A_ w); 3350 ev_timer_stop (EV_A_ w);
1409 } 3351 }
1410 else if (w->repeat) 3352 else if (w->repeat)
1411 { 3353 {
1412 w->at = w->repeat; 3354 ev_at (w) = w->repeat;
1413 ev_timer_start (EV_A_ w); 3355 ev_timer_start (EV_A_ w);
1414 } 3356 }
1415}
1416 3357
3358 EV_FREQUENT_CHECK;
3359}
3360
3361ev_tstamp
3362ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3363{
3364 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3365}
3366
1417#if EV_PERIODICS 3367#if EV_PERIODIC_ENABLE
1418void 3368void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 3369ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1420{ 3370{
1421 if (ev_is_active (w)) 3371 if (expect_false (ev_is_active (w)))
1422 return; 3372 return;
1423 3373
1424 if (w->reschedule_cb) 3374 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3375 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 3376 else if (w->interval)
1427 { 3377 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3378 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 3379 periodic_recalc (EV_A_ w);
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1431 } 3380 }
3381 else
3382 ev_at (w) = w->offset;
1432 3383
3384 EV_FREQUENT_CHECK;
3385
3386 ++periodiccnt;
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 3387 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3388 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 3389 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 3390 ANHE_at_cache (periodics [ev_active (w)]);
3391 upheap (periodics, ev_active (w));
1437 3392
3393 EV_FREQUENT_CHECK;
3394
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3395 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1439} 3396}
1440 3397
1441void 3398void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 3399ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1443{ 3400{
1444 ev_clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 3402 if (expect_false (!ev_is_active (w)))
1446 return; 3403 return;
1447 3404
3405 EV_FREQUENT_CHECK;
3406
3407 {
3408 int active = ev_active (w);
3409
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3410 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1449 3411
1450 if (((W)w)->active < periodiccnt--) 3412 --periodiccnt;
3413
3414 if (expect_true (active < periodiccnt + HEAP0))
1451 { 3415 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3416 periodics [active] = periodics [periodiccnt + HEAP0];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3417 adjustheap (periodics, periodiccnt, active);
1454 } 3418 }
3419 }
1455 3420
1456 ev_stop (EV_A_ (W)w); 3421 ev_stop (EV_A_ (W)w);
1457}
1458 3422
1459void 3423 EV_FREQUENT_CHECK;
3424}
3425
3426void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 3427ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1461{ 3428{
1462 /* TODO: use adjustheap and recalculation */ 3429 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 3430 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 3431 ev_periodic_start (EV_A_ w);
1465} 3432}
1466#endif 3433#endif
1467 3434
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 3435#ifndef SA_RESTART
1535# define SA_RESTART 0 3436# define SA_RESTART 0
1536#endif 3437#endif
1537 3438
3439#if EV_SIGNAL_ENABLE
3440
3441void noinline
3442ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3443{
3444 if (expect_false (ev_is_active (w)))
3445 return;
3446
3447 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3448
3449#if EV_MULTIPLICITY
3450 assert (("libev: a signal must not be attached to two different loops",
3451 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3452
3453 signals [w->signum - 1].loop = EV_A;
3454#endif
3455
3456 EV_FREQUENT_CHECK;
3457
3458#if EV_USE_SIGNALFD
3459 if (sigfd == -2)
3460 {
3461 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3462 if (sigfd < 0 && errno == EINVAL)
3463 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3464
3465 if (sigfd >= 0)
3466 {
3467 fd_intern (sigfd); /* doing it twice will not hurt */
3468
3469 sigemptyset (&sigfd_set);
3470
3471 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3472 ev_set_priority (&sigfd_w, EV_MAXPRI);
3473 ev_io_start (EV_A_ &sigfd_w);
3474 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3475 }
3476 }
3477
3478 if (sigfd >= 0)
3479 {
3480 /* TODO: check .head */
3481 sigaddset (&sigfd_set, w->signum);
3482 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3483
3484 signalfd (sigfd, &sigfd_set, 0);
3485 }
3486#endif
3487
3488 ev_start (EV_A_ (W)w, 1);
3489 wlist_add (&signals [w->signum - 1].head, (WL)w);
3490
3491 if (!((WL)w)->next)
3492# if EV_USE_SIGNALFD
3493 if (sigfd < 0) /*TODO*/
3494# endif
3495 {
3496# ifdef _WIN32
3497 evpipe_init (EV_A);
3498
3499 signal (w->signum, ev_sighandler);
3500# else
3501 struct sigaction sa;
3502
3503 evpipe_init (EV_A);
3504
3505 sa.sa_handler = ev_sighandler;
3506 sigfillset (&sa.sa_mask);
3507 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3508 sigaction (w->signum, &sa, 0);
3509
3510 if (origflags & EVFLAG_NOSIGMASK)
3511 {
3512 sigemptyset (&sa.sa_mask);
3513 sigaddset (&sa.sa_mask, w->signum);
3514 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3515 }
3516#endif
3517 }
3518
3519 EV_FREQUENT_CHECK;
3520}
3521
3522void noinline
3523ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3524{
3525 clear_pending (EV_A_ (W)w);
3526 if (expect_false (!ev_is_active (w)))
3527 return;
3528
3529 EV_FREQUENT_CHECK;
3530
3531 wlist_del (&signals [w->signum - 1].head, (WL)w);
3532 ev_stop (EV_A_ (W)w);
3533
3534 if (!signals [w->signum - 1].head)
3535 {
3536#if EV_MULTIPLICITY
3537 signals [w->signum - 1].loop = 0; /* unattach from signal */
3538#endif
3539#if EV_USE_SIGNALFD
3540 if (sigfd >= 0)
3541 {
3542 sigset_t ss;
3543
3544 sigemptyset (&ss);
3545 sigaddset (&ss, w->signum);
3546 sigdelset (&sigfd_set, w->signum);
3547
3548 signalfd (sigfd, &sigfd_set, 0);
3549 sigprocmask (SIG_UNBLOCK, &ss, 0);
3550 }
3551 else
3552#endif
3553 signal (w->signum, SIG_DFL);
3554 }
3555
3556 EV_FREQUENT_CHECK;
3557}
3558
3559#endif
3560
3561#if EV_CHILD_ENABLE
3562
1538void 3563void
1539ev_signal_start (EV_P_ struct ev_signal *w) 3564ev_child_start (EV_P_ ev_child *w) EV_THROW
1540{ 3565{
1541#if EV_MULTIPLICITY 3566#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3567 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1543#endif 3568#endif
1544 if (ev_is_active (w)) 3569 if (expect_false (ev_is_active (w)))
1545 return; 3570 return;
1546 3571
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3572 EV_FREQUENT_CHECK;
1548 3573
1549 ev_start (EV_A_ (W)w, 1); 3574 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3575 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1552 3576
1553 if (!((WL)w)->next) 3577 EV_FREQUENT_CHECK;
3578}
3579
3580void
3581ev_child_stop (EV_P_ ev_child *w) EV_THROW
3582{
3583 clear_pending (EV_A_ (W)w);
3584 if (expect_false (!ev_is_active (w)))
3585 return;
3586
3587 EV_FREQUENT_CHECK;
3588
3589 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3590 ev_stop (EV_A_ (W)w);
3591
3592 EV_FREQUENT_CHECK;
3593}
3594
3595#endif
3596
3597#if EV_STAT_ENABLE
3598
3599# ifdef _WIN32
3600# undef lstat
3601# define lstat(a,b) _stati64 (a,b)
3602# endif
3603
3604#define DEF_STAT_INTERVAL 5.0074891
3605#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3606#define MIN_STAT_INTERVAL 0.1074891
3607
3608static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3609
3610#if EV_USE_INOTIFY
3611
3612/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3613# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3614
3615static void noinline
3616infy_add (EV_P_ ev_stat *w)
3617{
3618 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3619
3620 if (w->wd >= 0)
3621 {
3622 struct statfs sfs;
3623
3624 /* now local changes will be tracked by inotify, but remote changes won't */
3625 /* unless the filesystem is known to be local, we therefore still poll */
3626 /* also do poll on <2.6.25, but with normal frequency */
3627
3628 if (!fs_2625)
3629 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3630 else if (!statfs (w->path, &sfs)
3631 && (sfs.f_type == 0x1373 /* devfs */
3632 || sfs.f_type == 0xEF53 /* ext2/3 */
3633 || sfs.f_type == 0x3153464a /* jfs */
3634 || sfs.f_type == 0x52654973 /* reiser3 */
3635 || sfs.f_type == 0x01021994 /* tempfs */
3636 || sfs.f_type == 0x58465342 /* xfs */))
3637 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3638 else
3639 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1554 { 3640 }
3641 else
3642 {
3643 /* can't use inotify, continue to stat */
3644 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3645
3646 /* if path is not there, monitor some parent directory for speedup hints */
3647 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3648 /* but an efficiency issue only */
3649 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3650 {
3651 char path [4096];
3652 strcpy (path, w->path);
3653
3654 do
3655 {
3656 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3657 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3658
3659 char *pend = strrchr (path, '/');
3660
3661 if (!pend || pend == path)
3662 break;
3663
3664 *pend = 0;
3665 w->wd = inotify_add_watch (fs_fd, path, mask);
3666 }
3667 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3668 }
3669 }
3670
3671 if (w->wd >= 0)
3672 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3673
3674 /* now re-arm timer, if required */
3675 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3676 ev_timer_again (EV_A_ &w->timer);
3677 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3678}
3679
3680static void noinline
3681infy_del (EV_P_ ev_stat *w)
3682{
3683 int slot;
3684 int wd = w->wd;
3685
3686 if (wd < 0)
3687 return;
3688
3689 w->wd = -2;
3690 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3691 wlist_del (&fs_hash [slot].head, (WL)w);
3692
3693 /* remove this watcher, if others are watching it, they will rearm */
3694 inotify_rm_watch (fs_fd, wd);
3695}
3696
3697static void noinline
3698infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3699{
3700 if (slot < 0)
3701 /* overflow, need to check for all hash slots */
3702 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3703 infy_wd (EV_A_ slot, wd, ev);
3704 else
3705 {
3706 WL w_;
3707
3708 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3709 {
3710 ev_stat *w = (ev_stat *)w_;
3711 w_ = w_->next; /* lets us remove this watcher and all before it */
3712
3713 if (w->wd == wd || wd == -1)
3714 {
3715 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3716 {
3717 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3718 w->wd = -1;
3719 infy_add (EV_A_ w); /* re-add, no matter what */
3720 }
3721
3722 stat_timer_cb (EV_A_ &w->timer, 0);
3723 }
3724 }
3725 }
3726}
3727
3728static void
3729infy_cb (EV_P_ ev_io *w, int revents)
3730{
3731 char buf [EV_INOTIFY_BUFSIZE];
3732 int ofs;
3733 int len = read (fs_fd, buf, sizeof (buf));
3734
3735 for (ofs = 0; ofs < len; )
3736 {
3737 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3738 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3739 ofs += sizeof (struct inotify_event) + ev->len;
3740 }
3741}
3742
3743inline_size void ecb_cold
3744ev_check_2625 (EV_P)
3745{
3746 /* kernels < 2.6.25 are borked
3747 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3748 */
3749 if (ev_linux_version () < 0x020619)
3750 return;
3751
3752 fs_2625 = 1;
3753}
3754
3755inline_size int
3756infy_newfd (void)
3757{
3758#if defined IN_CLOEXEC && defined IN_NONBLOCK
3759 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3760 if (fd >= 0)
3761 return fd;
3762#endif
3763 return inotify_init ();
3764}
3765
3766inline_size void
3767infy_init (EV_P)
3768{
3769 if (fs_fd != -2)
3770 return;
3771
3772 fs_fd = -1;
3773
3774 ev_check_2625 (EV_A);
3775
3776 fs_fd = infy_newfd ();
3777
3778 if (fs_fd >= 0)
3779 {
3780 fd_intern (fs_fd);
3781 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3782 ev_set_priority (&fs_w, EV_MAXPRI);
3783 ev_io_start (EV_A_ &fs_w);
3784 ev_unref (EV_A);
3785 }
3786}
3787
3788inline_size void
3789infy_fork (EV_P)
3790{
3791 int slot;
3792
3793 if (fs_fd < 0)
3794 return;
3795
3796 ev_ref (EV_A);
3797 ev_io_stop (EV_A_ &fs_w);
3798 close (fs_fd);
3799 fs_fd = infy_newfd ();
3800
3801 if (fs_fd >= 0)
3802 {
3803 fd_intern (fs_fd);
3804 ev_io_set (&fs_w, fs_fd, EV_READ);
3805 ev_io_start (EV_A_ &fs_w);
3806 ev_unref (EV_A);
3807 }
3808
3809 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3810 {
3811 WL w_ = fs_hash [slot].head;
3812 fs_hash [slot].head = 0;
3813
3814 while (w_)
3815 {
3816 ev_stat *w = (ev_stat *)w_;
3817 w_ = w_->next; /* lets us add this watcher */
3818
3819 w->wd = -1;
3820
3821 if (fs_fd >= 0)
3822 infy_add (EV_A_ w); /* re-add, no matter what */
3823 else
3824 {
3825 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3826 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3827 ev_timer_again (EV_A_ &w->timer);
3828 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3829 }
3830 }
3831 }
3832}
3833
3834#endif
3835
1555#if _WIN32 3836#ifdef _WIN32
1556 signal (w->signum, sighandler); 3837# define EV_LSTAT(p,b) _stati64 (p, b)
1557#else 3838#else
1558 struct sigaction sa; 3839# define EV_LSTAT(p,b) lstat (p, b)
1559 sa.sa_handler = sighandler;
1560 sigfillset (&sa.sa_mask);
1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1562 sigaction (w->signum, &sa, 0);
1563#endif 3840#endif
1564 }
1565}
1566 3841
1567void 3842void
1568ev_signal_stop (EV_P_ struct ev_signal *w) 3843ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1569{ 3844{
1570 ev_clear_pending (EV_A_ (W)w); 3845 if (lstat (w->path, &w->attr) < 0)
1571 if (!ev_is_active (w)) 3846 w->attr.st_nlink = 0;
3847 else if (!w->attr.st_nlink)
3848 w->attr.st_nlink = 1;
3849}
3850
3851static void noinline
3852stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3853{
3854 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3855
3856 ev_statdata prev = w->attr;
3857 ev_stat_stat (EV_A_ w);
3858
3859 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3860 if (
3861 prev.st_dev != w->attr.st_dev
3862 || prev.st_ino != w->attr.st_ino
3863 || prev.st_mode != w->attr.st_mode
3864 || prev.st_nlink != w->attr.st_nlink
3865 || prev.st_uid != w->attr.st_uid
3866 || prev.st_gid != w->attr.st_gid
3867 || prev.st_rdev != w->attr.st_rdev
3868 || prev.st_size != w->attr.st_size
3869 || prev.st_atime != w->attr.st_atime
3870 || prev.st_mtime != w->attr.st_mtime
3871 || prev.st_ctime != w->attr.st_ctime
3872 ) {
3873 /* we only update w->prev on actual differences */
3874 /* in case we test more often than invoke the callback, */
3875 /* to ensure that prev is always different to attr */
3876 w->prev = prev;
3877
3878 #if EV_USE_INOTIFY
3879 if (fs_fd >= 0)
3880 {
3881 infy_del (EV_A_ w);
3882 infy_add (EV_A_ w);
3883 ev_stat_stat (EV_A_ w); /* avoid race... */
3884 }
3885 #endif
3886
3887 ev_feed_event (EV_A_ w, EV_STAT);
3888 }
3889}
3890
3891void
3892ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3893{
3894 if (expect_false (ev_is_active (w)))
1572 return; 3895 return;
1573 3896
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3897 ev_stat_stat (EV_A_ w);
3898
3899 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3900 w->interval = MIN_STAT_INTERVAL;
3901
3902 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3903 ev_set_priority (&w->timer, ev_priority (w));
3904
3905#if EV_USE_INOTIFY
3906 infy_init (EV_A);
3907
3908 if (fs_fd >= 0)
3909 infy_add (EV_A_ w);
3910 else
3911#endif
3912 {
3913 ev_timer_again (EV_A_ &w->timer);
3914 ev_unref (EV_A);
3915 }
3916
3917 ev_start (EV_A_ (W)w, 1);
3918
3919 EV_FREQUENT_CHECK;
3920}
3921
3922void
3923ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3924{
3925 clear_pending (EV_A_ (W)w);
3926 if (expect_false (!ev_is_active (w)))
3927 return;
3928
3929 EV_FREQUENT_CHECK;
3930
3931#if EV_USE_INOTIFY
3932 infy_del (EV_A_ w);
3933#endif
3934
3935 if (ev_is_active (&w->timer))
3936 {
3937 ev_ref (EV_A);
3938 ev_timer_stop (EV_A_ &w->timer);
3939 }
3940
1575 ev_stop (EV_A_ (W)w); 3941 ev_stop (EV_A_ (W)w);
1576 3942
1577 if (!signals [w->signum - 1].head) 3943 EV_FREQUENT_CHECK;
1578 signal (w->signum, SIG_DFL);
1579} 3944}
3945#endif
1580 3946
3947#if EV_IDLE_ENABLE
1581void 3948void
1582ev_child_start (EV_P_ struct ev_child *w) 3949ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1583{ 3950{
1584#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif
1587 if (ev_is_active (w)) 3951 if (expect_false (ev_is_active (w)))
1588 return; 3952 return;
1589 3953
3954 pri_adjust (EV_A_ (W)w);
3955
3956 EV_FREQUENT_CHECK;
3957
3958 {
3959 int active = ++idlecnt [ABSPRI (w)];
3960
3961 ++idleall;
3962 ev_start (EV_A_ (W)w, active);
3963
3964 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3965 idles [ABSPRI (w)][active - 1] = w;
3966 }
3967
3968 EV_FREQUENT_CHECK;
3969}
3970
3971void
3972ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3973{
3974 clear_pending (EV_A_ (W)w);
3975 if (expect_false (!ev_is_active (w)))
3976 return;
3977
3978 EV_FREQUENT_CHECK;
3979
3980 {
3981 int active = ev_active (w);
3982
3983 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3984 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3985
3986 ev_stop (EV_A_ (W)w);
3987 --idleall;
3988 }
3989
3990 EV_FREQUENT_CHECK;
3991}
3992#endif
3993
3994#if EV_PREPARE_ENABLE
3995void
3996ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
3997{
3998 if (expect_false (ev_is_active (w)))
3999 return;
4000
4001 EV_FREQUENT_CHECK;
4002
4003 ev_start (EV_A_ (W)w, ++preparecnt);
4004 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4005 prepares [preparecnt - 1] = w;
4006
4007 EV_FREQUENT_CHECK;
4008}
4009
4010void
4011ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4012{
4013 clear_pending (EV_A_ (W)w);
4014 if (expect_false (!ev_is_active (w)))
4015 return;
4016
4017 EV_FREQUENT_CHECK;
4018
4019 {
4020 int active = ev_active (w);
4021
4022 prepares [active - 1] = prepares [--preparecnt];
4023 ev_active (prepares [active - 1]) = active;
4024 }
4025
4026 ev_stop (EV_A_ (W)w);
4027
4028 EV_FREQUENT_CHECK;
4029}
4030#endif
4031
4032#if EV_CHECK_ENABLE
4033void
4034ev_check_start (EV_P_ ev_check *w) EV_THROW
4035{
4036 if (expect_false (ev_is_active (w)))
4037 return;
4038
4039 EV_FREQUENT_CHECK;
4040
4041 ev_start (EV_A_ (W)w, ++checkcnt);
4042 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4043 checks [checkcnt - 1] = w;
4044
4045 EV_FREQUENT_CHECK;
4046}
4047
4048void
4049ev_check_stop (EV_P_ ev_check *w) EV_THROW
4050{
4051 clear_pending (EV_A_ (W)w);
4052 if (expect_false (!ev_is_active (w)))
4053 return;
4054
4055 EV_FREQUENT_CHECK;
4056
4057 {
4058 int active = ev_active (w);
4059
4060 checks [active - 1] = checks [--checkcnt];
4061 ev_active (checks [active - 1]) = active;
4062 }
4063
4064 ev_stop (EV_A_ (W)w);
4065
4066 EV_FREQUENT_CHECK;
4067}
4068#endif
4069
4070#if EV_EMBED_ENABLE
4071void noinline
4072ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4073{
4074 ev_run (w->other, EVRUN_NOWAIT);
4075}
4076
4077static void
4078embed_io_cb (EV_P_ ev_io *io, int revents)
4079{
4080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4081
4082 if (ev_cb (w))
4083 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4084 else
4085 ev_run (w->other, EVRUN_NOWAIT);
4086}
4087
4088static void
4089embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4090{
4091 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4092
4093 {
4094 EV_P = w->other;
4095
4096 while (fdchangecnt)
4097 {
4098 fd_reify (EV_A);
4099 ev_run (EV_A_ EVRUN_NOWAIT);
4100 }
4101 }
4102}
4103
4104static void
4105embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4106{
4107 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4108
4109 ev_embed_stop (EV_A_ w);
4110
4111 {
4112 EV_P = w->other;
4113
4114 ev_loop_fork (EV_A);
4115 ev_run (EV_A_ EVRUN_NOWAIT);
4116 }
4117
4118 ev_embed_start (EV_A_ w);
4119}
4120
4121#if 0
4122static void
4123embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4124{
4125 ev_idle_stop (EV_A_ idle);
4126}
4127#endif
4128
4129void
4130ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4131{
4132 if (expect_false (ev_is_active (w)))
4133 return;
4134
4135 {
4136 EV_P = w->other;
4137 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4138 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4139 }
4140
4141 EV_FREQUENT_CHECK;
4142
4143 ev_set_priority (&w->io, ev_priority (w));
4144 ev_io_start (EV_A_ &w->io);
4145
4146 ev_prepare_init (&w->prepare, embed_prepare_cb);
4147 ev_set_priority (&w->prepare, EV_MINPRI);
4148 ev_prepare_start (EV_A_ &w->prepare);
4149
4150 ev_fork_init (&w->fork, embed_fork_cb);
4151 ev_fork_start (EV_A_ &w->fork);
4152
4153 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4154
1590 ev_start (EV_A_ (W)w, 1); 4155 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4156
4157 EV_FREQUENT_CHECK;
1592} 4158}
1593 4159
1594void 4160void
1595ev_child_stop (EV_P_ struct ev_child *w) 4161ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1596{ 4162{
1597 ev_clear_pending (EV_A_ (W)w); 4163 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 4164 if (expect_false (!ev_is_active (w)))
1599 return; 4165 return;
1600 4166
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4167 EV_FREQUENT_CHECK;
4168
4169 ev_io_stop (EV_A_ &w->io);
4170 ev_prepare_stop (EV_A_ &w->prepare);
4171 ev_fork_stop (EV_A_ &w->fork);
4172
1602 ev_stop (EV_A_ (W)w); 4173 ev_stop (EV_A_ (W)w);
4174
4175 EV_FREQUENT_CHECK;
1603} 4176}
4177#endif
4178
4179#if EV_FORK_ENABLE
4180void
4181ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4182{
4183 if (expect_false (ev_is_active (w)))
4184 return;
4185
4186 EV_FREQUENT_CHECK;
4187
4188 ev_start (EV_A_ (W)w, ++forkcnt);
4189 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4190 forks [forkcnt - 1] = w;
4191
4192 EV_FREQUENT_CHECK;
4193}
4194
4195void
4196ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4197{
4198 clear_pending (EV_A_ (W)w);
4199 if (expect_false (!ev_is_active (w)))
4200 return;
4201
4202 EV_FREQUENT_CHECK;
4203
4204 {
4205 int active = ev_active (w);
4206
4207 forks [active - 1] = forks [--forkcnt];
4208 ev_active (forks [active - 1]) = active;
4209 }
4210
4211 ev_stop (EV_A_ (W)w);
4212
4213 EV_FREQUENT_CHECK;
4214}
4215#endif
4216
4217#if EV_CLEANUP_ENABLE
4218void
4219ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4220{
4221 if (expect_false (ev_is_active (w)))
4222 return;
4223
4224 EV_FREQUENT_CHECK;
4225
4226 ev_start (EV_A_ (W)w, ++cleanupcnt);
4227 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4228 cleanups [cleanupcnt - 1] = w;
4229
4230 /* cleanup watchers should never keep a refcount on the loop */
4231 ev_unref (EV_A);
4232 EV_FREQUENT_CHECK;
4233}
4234
4235void
4236ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4237{
4238 clear_pending (EV_A_ (W)w);
4239 if (expect_false (!ev_is_active (w)))
4240 return;
4241
4242 EV_FREQUENT_CHECK;
4243 ev_ref (EV_A);
4244
4245 {
4246 int active = ev_active (w);
4247
4248 cleanups [active - 1] = cleanups [--cleanupcnt];
4249 ev_active (cleanups [active - 1]) = active;
4250 }
4251
4252 ev_stop (EV_A_ (W)w);
4253
4254 EV_FREQUENT_CHECK;
4255}
4256#endif
4257
4258#if EV_ASYNC_ENABLE
4259void
4260ev_async_start (EV_P_ ev_async *w) EV_THROW
4261{
4262 if (expect_false (ev_is_active (w)))
4263 return;
4264
4265 w->sent = 0;
4266
4267 evpipe_init (EV_A);
4268
4269 EV_FREQUENT_CHECK;
4270
4271 ev_start (EV_A_ (W)w, ++asynccnt);
4272 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4273 asyncs [asynccnt - 1] = w;
4274
4275 EV_FREQUENT_CHECK;
4276}
4277
4278void
4279ev_async_stop (EV_P_ ev_async *w) EV_THROW
4280{
4281 clear_pending (EV_A_ (W)w);
4282 if (expect_false (!ev_is_active (w)))
4283 return;
4284
4285 EV_FREQUENT_CHECK;
4286
4287 {
4288 int active = ev_active (w);
4289
4290 asyncs [active - 1] = asyncs [--asynccnt];
4291 ev_active (asyncs [active - 1]) = active;
4292 }
4293
4294 ev_stop (EV_A_ (W)w);
4295
4296 EV_FREQUENT_CHECK;
4297}
4298
4299void
4300ev_async_send (EV_P_ ev_async *w) EV_THROW
4301{
4302 w->sent = 1;
4303 evpipe_write (EV_A_ &async_pending);
4304}
4305#endif
1604 4306
1605/*****************************************************************************/ 4307/*****************************************************************************/
1606 4308
1607struct ev_once 4309struct ev_once
1608{ 4310{
1609 struct ev_io io; 4311 ev_io io;
1610 struct ev_timer to; 4312 ev_timer to;
1611 void (*cb)(int revents, void *arg); 4313 void (*cb)(int revents, void *arg);
1612 void *arg; 4314 void *arg;
1613}; 4315};
1614 4316
1615static void 4317static void
1616once_cb (EV_P_ struct ev_once *once, int revents) 4318once_cb (EV_P_ struct ev_once *once, int revents)
1617{ 4319{
1618 void (*cb)(int revents, void *arg) = once->cb; 4320 void (*cb)(int revents, void *arg) = once->cb;
1619 void *arg = once->arg; 4321 void *arg = once->arg;
1620 4322
1621 ev_io_stop (EV_A_ &once->io); 4323 ev_io_stop (EV_A_ &once->io);
1622 ev_timer_stop (EV_A_ &once->to); 4324 ev_timer_stop (EV_A_ &once->to);
1623 ev_free (once); 4325 ev_free (once);
1624 4326
1625 cb (revents, arg); 4327 cb (revents, arg);
1626} 4328}
1627 4329
1628static void 4330static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 4331once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 4332{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4333 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4334
4335 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1632} 4336}
1633 4337
1634static void 4338static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 4339once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 4340{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4341 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4342
4343 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1638} 4344}
1639 4345
1640void 4346void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4347ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1642{ 4348{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4349 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 4350
1645 if (!once) 4351 if (expect_false (!once))
4352 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4353 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1647 else 4354 return;
1648 { 4355 }
4356
1649 once->cb = cb; 4357 once->cb = cb;
1650 once->arg = arg; 4358 once->arg = arg;
1651 4359
1652 ev_init (&once->io, once_cb_io); 4360 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 4361 if (fd >= 0)
4362 {
4363 ev_io_set (&once->io, fd, events);
4364 ev_io_start (EV_A_ &once->io);
4365 }
4366
4367 ev_init (&once->to, once_cb_to);
4368 if (timeout >= 0.)
4369 {
4370 ev_timer_set (&once->to, timeout, 0.);
4371 ev_timer_start (EV_A_ &once->to);
4372 }
4373}
4374
4375/*****************************************************************************/
4376
4377#if EV_WALK_ENABLE
4378void ecb_cold
4379ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4380{
4381 int i, j;
4382 ev_watcher_list *wl, *wn;
4383
4384 if (types & (EV_IO | EV_EMBED))
4385 for (i = 0; i < anfdmax; ++i)
4386 for (wl = anfds [i].head; wl; )
1654 { 4387 {
1655 ev_io_set (&once->io, fd, events); 4388 wn = wl->next;
1656 ev_io_start (EV_A_ &once->io); 4389
4390#if EV_EMBED_ENABLE
4391 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4392 {
4393 if (types & EV_EMBED)
4394 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4395 }
4396 else
4397#endif
4398#if EV_USE_INOTIFY
4399 if (ev_cb ((ev_io *)wl) == infy_cb)
4400 ;
4401 else
4402#endif
4403 if ((ev_io *)wl != &pipe_w)
4404 if (types & EV_IO)
4405 cb (EV_A_ EV_IO, wl);
4406
4407 wl = wn;
1657 } 4408 }
1658 4409
1659 ev_init (&once->to, once_cb_to); 4410 if (types & (EV_TIMER | EV_STAT))
1660 if (timeout >= 0.) 4411 for (i = timercnt + HEAP0; i-- > HEAP0; )
4412#if EV_STAT_ENABLE
4413 /*TODO: timer is not always active*/
4414 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1661 { 4415 {
1662 ev_timer_set (&once->to, timeout, 0.); 4416 if (types & EV_STAT)
1663 ev_timer_start (EV_A_ &once->to); 4417 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1664 } 4418 }
1665 } 4419 else
1666} 4420#endif
4421 if (types & EV_TIMER)
4422 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1667 4423
1668#ifdef __cplusplus 4424#if EV_PERIODIC_ENABLE
1669} 4425 if (types & EV_PERIODIC)
4426 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4427 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4428#endif
4429
4430#if EV_IDLE_ENABLE
4431 if (types & EV_IDLE)
4432 for (j = NUMPRI; j--; )
4433 for (i = idlecnt [j]; i--; )
4434 cb (EV_A_ EV_IDLE, idles [j][i]);
4435#endif
4436
4437#if EV_FORK_ENABLE
4438 if (types & EV_FORK)
4439 for (i = forkcnt; i--; )
4440 if (ev_cb (forks [i]) != embed_fork_cb)
4441 cb (EV_A_ EV_FORK, forks [i]);
4442#endif
4443
4444#if EV_ASYNC_ENABLE
4445 if (types & EV_ASYNC)
4446 for (i = asynccnt; i--; )
4447 cb (EV_A_ EV_ASYNC, asyncs [i]);
4448#endif
4449
4450#if EV_PREPARE_ENABLE
4451 if (types & EV_PREPARE)
4452 for (i = preparecnt; i--; )
4453# if EV_EMBED_ENABLE
4454 if (ev_cb (prepares [i]) != embed_prepare_cb)
1670#endif 4455# endif
4456 cb (EV_A_ EV_PREPARE, prepares [i]);
4457#endif
1671 4458
4459#if EV_CHECK_ENABLE
4460 if (types & EV_CHECK)
4461 for (i = checkcnt; i--; )
4462 cb (EV_A_ EV_CHECK, checks [i]);
4463#endif
4464
4465#if EV_SIGNAL_ENABLE
4466 if (types & EV_SIGNAL)
4467 for (i = 0; i < EV_NSIG - 1; ++i)
4468 for (wl = signals [i].head; wl; )
4469 {
4470 wn = wl->next;
4471 cb (EV_A_ EV_SIGNAL, wl);
4472 wl = wn;
4473 }
4474#endif
4475
4476#if EV_CHILD_ENABLE
4477 if (types & EV_CHILD)
4478 for (i = (EV_PID_HASHSIZE); i--; )
4479 for (wl = childs [i]; wl; )
4480 {
4481 wn = wl->next;
4482 cb (EV_A_ EV_CHILD, wl);
4483 wl = wn;
4484 }
4485#endif
4486/* EV_STAT 0x00001000 /* stat data changed */
4487/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4488}
4489#endif
4490
4491#if EV_MULTIPLICITY
4492 #include "ev_wrap.h"
4493#endif
4494

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines