ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC vs.
Revision 1.120 by root, Fri Nov 16 01:54:25 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT)
65# define EV_USE_PORT 1
66# endif
67
55#endif 68#endif
56 69
57#include <math.h> 70#include <math.h>
58#include <stdlib.h> 71#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 72#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 73#include <stddef.h>
63 74
64#include <stdio.h> 75#include <stdio.h>
65 76
66#include <assert.h> 77#include <assert.h>
67#include <errno.h> 78#include <errno.h>
68#include <sys/types.h> 79#include <sys/types.h>
80#include <time.h>
81
82#include <signal.h>
83
69#ifndef WIN32 84#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h>
70# include <sys/wait.h> 87# include <sys/wait.h>
88#else
89# define WIN32_LEAN_AND_MEAN
90# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1
71#endif 93# endif
72#include <sys/time.h> 94#endif
73#include <time.h>
74 95
75/**/ 96/**/
76 97
77#ifndef EV_USE_MONOTONIC 98#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 99# define EV_USE_MONOTONIC 1
79#endif 100#endif
80 101
102#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1
104#endif
105
81#ifndef EV_USE_SELECT 106#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 107# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
83#endif 109#endif
84 110
85#ifndef EV_USE_POLL 111#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 112# ifdef _WIN32
113# define EV_USE_POLL 0
114# else
115# define EV_USE_POLL 1
116# endif
87#endif 117#endif
88 118
89#ifndef EV_USE_EPOLL 119#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 120# define EV_USE_EPOLL 0
91#endif 121#endif
92 122
93#ifndef EV_USE_KQUEUE 123#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 124# define EV_USE_KQUEUE 0
95#endif 125#endif
96 126
97#ifndef EV_USE_REALTIME 127#ifndef EV_USE_PORT
98# define EV_USE_REALTIME 1 128# define EV_USE_PORT 0
99#endif 129#endif
100 130
101/**/ 131/**/
132
133/* darwin simply cannot be helped */
134#ifdef __APPLE__
135# undef EV_USE_POLL
136# undef EV_USE_KQUEUE
137#endif
102 138
103#ifndef CLOCK_MONOTONIC 139#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC 140# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0 141# define EV_USE_MONOTONIC 0
106#endif 142#endif
108#ifndef CLOCK_REALTIME 144#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 145# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 146# define EV_USE_REALTIME 0
111#endif 147#endif
112 148
149#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h>
151#endif
152
113/**/ 153/**/
114 154
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 156#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 158/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
119 159
160#ifdef EV_H
161# include EV_H
162#else
120#include "ev.h" 163# include "ev.h"
164#endif
121 165
122#if __GNUC__ >= 3 166#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 167# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 168# define inline inline
125#else 169#else
131#define expect_true(expr) expect ((expr) != 0, 1) 175#define expect_true(expr) expect ((expr) != 0, 1)
132 176
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 178#define ABSPRI(w) ((w)->priority - EV_MINPRI)
135 179
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */
182
136typedef struct ev_watcher *W; 183typedef struct ev_watcher *W;
137typedef struct ev_watcher_list *WL; 184typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 185typedef struct ev_watcher_time *WT;
139 186
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 188
189#ifdef _WIN32
190# include "ev_win32.c"
191#endif
192
142/*****************************************************************************/ 193/*****************************************************************************/
143 194
195static void (*syserr_cb)(const char *msg);
196
197void ev_set_syserr_cb (void (*cb)(const char *msg))
198{
199 syserr_cb = cb;
200}
201
202static void
203syserr (const char *msg)
204{
205 if (!msg)
206 msg = "(libev) system error";
207
208 if (syserr_cb)
209 syserr_cb (msg);
210 else
211 {
212 perror (msg);
213 abort ();
214 }
215}
216
217static void *(*alloc)(void *ptr, long size);
218
219void ev_set_allocator (void *(*cb)(void *ptr, long size))
220{
221 alloc = cb;
222}
223
224static void *
225ev_realloc (void *ptr, long size)
226{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
228
229 if (!ptr && size)
230 {
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
232 abort ();
233 }
234
235 return ptr;
236}
237
238#define ev_malloc(size) ev_realloc (0, (size))
239#define ev_free(ptr) ev_realloc ((ptr), 0)
240
241/*****************************************************************************/
242
144typedef struct 243typedef struct
145{ 244{
146 struct ev_watcher_list *head; 245 WL head;
147 unsigned char events; 246 unsigned char events;
148 unsigned char reify; 247 unsigned char reify;
248#if EV_SELECT_IS_WINSOCKET
249 SOCKET handle;
250#endif
149} ANFD; 251} ANFD;
150 252
151typedef struct 253typedef struct
152{ 254{
153 W w; 255 W w;
154 int events; 256 int events;
155} ANPENDING; 257} ANPENDING;
156 258
157#if EV_MULTIPLICITY 259#if EV_MULTIPLICITY
158 260
159struct ev_loop 261 struct ev_loop
160{ 262 {
263 ev_tstamp ev_rt_now;
264 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 265 #define VAR(name,decl) decl;
162# include "ev_vars.h" 266 #include "ev_vars.h"
163};
164# undef VAR 267 #undef VAR
268 };
165# include "ev_wrap.h" 269 #include "ev_wrap.h"
270
271 static struct ev_loop default_loop_struct;
272 struct ev_loop *ev_default_loop_ptr;
166 273
167#else 274#else
168 275
276 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 277 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 278 #include "ev_vars.h"
171# undef VAR 279 #undef VAR
280
281 static int ev_default_loop_ptr;
172 282
173#endif 283#endif
174 284
175/*****************************************************************************/ 285/*****************************************************************************/
176 286
177inline ev_tstamp 287ev_tstamp
178ev_time (void) 288ev_time (void)
179{ 289{
180#if EV_USE_REALTIME 290#if EV_USE_REALTIME
181 struct timespec ts; 291 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 292 clock_gettime (CLOCK_REALTIME, &ts);
201#endif 311#endif
202 312
203 return ev_time (); 313 return ev_time ();
204} 314}
205 315
316#if EV_MULTIPLICITY
206ev_tstamp 317ev_tstamp
207ev_now (EV_P) 318ev_now (EV_P)
208{ 319{
209 return rt_now; 320 return ev_rt_now;
210} 321}
322#endif
211 323
212#define array_roundsize(base,n) ((n) | 4 & ~3) 324#define array_roundsize(type,n) (((n) | 4) & ~3)
213 325
214#define array_needsize(base,cur,cnt,init) \ 326#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 327 if (expect_false ((cnt) > cur)) \
216 { \ 328 { \
217 int newcnt = cur; \ 329 int newcnt = cur; \
218 do \ 330 do \
219 { \ 331 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 332 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 333 } \
222 while ((cnt) > newcnt); \ 334 while ((cnt) > newcnt); \
223 \ 335 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 337 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 338 cur = newcnt; \
227 } 339 }
340
341#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 }
348
349#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 351
229/*****************************************************************************/ 352/*****************************************************************************/
230 353
231static void 354static void
232anfds_init (ANFD *base, int count) 355anfds_init (ANFD *base, int count)
239 362
240 ++base; 363 ++base;
241 } 364 }
242} 365}
243 366
244static void 367void
245event (EV_P_ W w, int events) 368ev_feed_event (EV_P_ void *w, int revents)
246{ 369{
370 W w_ = (W)w;
371
247 if (w->pending) 372 if (w_->pending)
248 { 373 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 375 return;
251 } 376 }
252 377
253 w->pending = ++pendingcnt [ABSPRI (w)]; 378 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 382}
258 383
259static void 384static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 385queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 386{
262 int i; 387 int i;
263 388
264 for (i = 0; i < eventcnt; ++i) 389 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 390 ev_feed_event (EV_A_ events [i], type);
266} 391}
267 392
268static void 393inline void
269fd_event (EV_P_ int fd, int events) 394fd_event (EV_P_ int fd, int revents)
270{ 395{
271 ANFD *anfd = anfds + fd; 396 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 397 struct ev_io *w;
273 398
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 400 {
276 int ev = w->events & events; 401 int ev = w->events & revents;
277 402
278 if (ev) 403 if (ev)
279 event (EV_A_ (W)w, ev); 404 ev_feed_event (EV_A_ (W)w, ev);
280 } 405 }
406}
407
408void
409ev_feed_fd_event (EV_P_ int fd, int revents)
410{
411 fd_event (EV_A_ fd, revents);
281} 412}
282 413
283/*****************************************************************************/ 414/*****************************************************************************/
284 415
285static void 416static void
296 int events = 0; 427 int events = 0;
297 428
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 430 events |= w->events;
300 431
432#if EV_SELECT_IS_WINSOCKET
433 if (events)
434 {
435 unsigned long argp;
436 anfd->handle = _get_osfhandle (fd);
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
438 }
439#endif
440
301 anfd->reify = 0; 441 anfd->reify = 0;
302 442
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 443 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 444 anfd->events = events;
307 }
308 } 445 }
309 446
310 fdchangecnt = 0; 447 fdchangecnt = 0;
311} 448}
312 449
313static void 450static void
314fd_change (EV_P_ int fd) 451fd_change (EV_P_ int fd)
315{ 452{
316 if (anfds [fd].reify || fdchangecnt < 0) 453 if (anfds [fd].reify)
317 return; 454 return;
318 455
319 anfds [fd].reify = 1; 456 anfds [fd].reify = 1;
320 457
321 ++fdchangecnt; 458 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
323 fdchanges [fdchangecnt - 1] = fd; 460 fdchanges [fdchangecnt - 1] = fd;
324} 461}
325 462
326static void 463static void
327fd_kill (EV_P_ int fd) 464fd_kill (EV_P_ int fd)
329 struct ev_io *w; 466 struct ev_io *w;
330 467
331 while ((w = (struct ev_io *)anfds [fd].head)) 468 while ((w = (struct ev_io *)anfds [fd].head))
332 { 469 {
333 ev_io_stop (EV_A_ w); 470 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 472 }
473}
474
475static int
476fd_valid (int fd)
477{
478#ifdef _WIN32
479 return _get_osfhandle (fd) != -1;
480#else
481 return fcntl (fd, F_GETFD) != -1;
482#endif
336} 483}
337 484
338/* called on EBADF to verify fds */ 485/* called on EBADF to verify fds */
339static void 486static void
340fd_ebadf (EV_P) 487fd_ebadf (EV_P)
341{ 488{
342 int fd; 489 int fd;
343 490
344 for (fd = 0; fd < anfdmax; ++fd) 491 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 492 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 493 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 494 fd_kill (EV_A_ fd);
348} 495}
349 496
350/* called on ENOMEM in select/poll to kill some fds and retry */ 497/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 498static void
352fd_enomem (EV_P) 499fd_enomem (EV_P)
353{ 500{
354 int fd = anfdmax; 501 int fd;
355 502
356 while (fd--) 503 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 504 if (anfds [fd].events)
358 { 505 {
359 close (fd);
360 fd_kill (EV_A_ fd); 506 fd_kill (EV_A_ fd);
361 return; 507 return;
362 } 508 }
363} 509}
364 510
365/* susually called after fork if method needs to re-arm all fds from scratch */ 511/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 512static void
367fd_rearm_all (EV_P) 513fd_rearm_all (EV_P)
368{ 514{
369 int fd; 515 int fd;
370 516
385 WT w = heap [k]; 531 WT w = heap [k];
386 532
387 while (k && heap [k >> 1]->at > w->at) 533 while (k && heap [k >> 1]->at > w->at)
388 { 534 {
389 heap [k] = heap [k >> 1]; 535 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 536 ((W)heap [k])->active = k + 1;
391 k >>= 1; 537 k >>= 1;
392 } 538 }
393 539
394 heap [k] = w; 540 heap [k] = w;
395 heap [k]->active = k + 1; 541 ((W)heap [k])->active = k + 1;
396 542
397} 543}
398 544
399static void 545static void
400downheap (WT *heap, int N, int k) 546downheap (WT *heap, int N, int k)
410 556
411 if (w->at <= heap [j]->at) 557 if (w->at <= heap [j]->at)
412 break; 558 break;
413 559
414 heap [k] = heap [j]; 560 heap [k] = heap [j];
415 heap [k]->active = k + 1; 561 ((W)heap [k])->active = k + 1;
416 k = j; 562 k = j;
417 } 563 }
418 564
419 heap [k] = w; 565 heap [k] = w;
420 heap [k]->active = k + 1; 566 ((W)heap [k])->active = k + 1;
567}
568
569inline void
570adjustheap (WT *heap, int N, int k)
571{
572 upheap (heap, k);
573 downheap (heap, N, k);
421} 574}
422 575
423/*****************************************************************************/ 576/*****************************************************************************/
424 577
425typedef struct 578typedef struct
426{ 579{
427 struct ev_watcher_list *head; 580 WL head;
428 sig_atomic_t volatile gotsig; 581 sig_atomic_t volatile gotsig;
429} ANSIG; 582} ANSIG;
430 583
431static ANSIG *signals; 584static ANSIG *signals;
432static int signalmax; 585static int signalmax;
448} 601}
449 602
450static void 603static void
451sighandler (int signum) 604sighandler (int signum)
452{ 605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609
453 signals [signum - 1].gotsig = 1; 610 signals [signum - 1].gotsig = 1;
454 611
455 if (!gotsig) 612 if (!gotsig)
456 { 613 {
457 int old_errno = errno; 614 int old_errno = errno;
459 write (sigpipe [1], &signum, 1); 616 write (sigpipe [1], &signum, 1);
460 errno = old_errno; 617 errno = old_errno;
461 } 618 }
462} 619}
463 620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
464static void 641static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 642sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 643{
467 struct ev_watcher_list *w;
468 int signum; 644 int signum;
469 645
470 read (sigpipe [0], &revents, 1); 646 read (sigpipe [0], &revents, 1);
471 gotsig = 0; 647 gotsig = 0;
472 648
473 for (signum = signalmax; signum--; ) 649 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 650 if (signals [signum].gotsig)
475 { 651 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0; 652}
477 653
478 for (w = signals [signum].head; w; w = w->next) 654inline void
479 event (EV_A_ (W)w, EV_SIGNAL); 655fd_intern (int fd)
480 } 656{
657#ifdef _WIN32
658 int arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660#else
661 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif
481} 664}
482 665
483static void 666static void
484siginit (EV_P) 667siginit (EV_P)
485{ 668{
486#ifndef WIN32 669 fd_intern (sigpipe [0]);
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 670 fd_intern (sigpipe [1]);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494 671
495 ev_io_set (&sigev, sigpipe [0], EV_READ); 672 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev); 673 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 674 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 675}
499 676
500/*****************************************************************************/ 677/*****************************************************************************/
501 678
502#ifndef WIN32
503
504static struct ev_child *childs [PID_HASHSIZE]; 679static struct ev_child *childs [PID_HASHSIZE];
680
681#ifndef _WIN32
682
505static struct ev_signal childev; 683static struct ev_signal childev;
506 684
507#ifndef WCONTINUED 685#ifndef WCONTINUED
508# define WCONTINUED 0 686# define WCONTINUED 0
509#endif 687#endif
514 struct ev_child *w; 692 struct ev_child *w;
515 693
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 695 if (w->pid == pid || !w->pid)
518 { 696 {
519 w->priority = sw->priority; /* need to do it *now* */ 697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 698 w->rpid = pid;
521 w->rstatus = status; 699 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 701 }
524} 702}
525 703
526static void 704static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 705childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 707 int pid, status;
530 708
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 710 {
533 /* make sure we are called again until all childs have been reaped */ 711 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 713
536 child_reap (EV_A_ sw, pid, pid, status); 714 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 716 }
539} 717}
540 718
541#endif 719#endif
542 720
543/*****************************************************************************/ 721/*****************************************************************************/
544 722
723#if EV_USE_PORT
724# include "ev_port.c"
725#endif
545#if EV_USE_KQUEUE 726#if EV_USE_KQUEUE
546# include "ev_kqueue.c" 727# include "ev_kqueue.c"
547#endif 728#endif
548#if EV_USE_EPOLL 729#if EV_USE_EPOLL
549# include "ev_epoll.c" 730# include "ev_epoll.c"
569 750
570/* return true if we are running with elevated privileges and should ignore env variables */ 751/* return true if we are running with elevated privileges and should ignore env variables */
571static int 752static int
572enable_secure (void) 753enable_secure (void)
573{ 754{
574#ifdef WIN32 755#ifdef _WIN32
575 return 0; 756 return 0;
576#else 757#else
577 return getuid () != geteuid () 758 return getuid () != geteuid ()
578 || getgid () != getegid (); 759 || getgid () != getegid ();
579#endif 760#endif
580} 761}
581 762
582int 763unsigned int
583ev_method (EV_P) 764ev_method (EV_P)
584{ 765{
585 return method; 766 return method;
586} 767}
587 768
588static void 769static void
589loop_init (EV_P_ int methods) 770loop_init (EV_P_ unsigned int flags)
590{ 771{
591 if (!method) 772 if (!method)
592 { 773 {
593#if EV_USE_MONOTONIC 774#if EV_USE_MONOTONIC
594 { 775 {
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 777 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 778 have_monotonic = 1;
598 } 779 }
599#endif 780#endif
600 781
601 rt_now = ev_time (); 782 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 783 mn_now = get_clock ();
603 now_floor = mn_now; 784 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 785 rtmn_diff = ev_rt_now - mn_now;
605 786
606 if (methods == EVMETHOD_AUTO) 787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 788 flags = atoi (getenv ("LIBEV_FLAGS"));
609 else 789
610 methods = EVMETHOD_ANY; 790 if (!(flags & 0x0000ffff))
791 flags |= 0x0000ffff;
611 792
612 method = 0; 793 method = 0;
794#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
796#endif
613#if EV_USE_KQUEUE 797#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
615#endif 799#endif
616#if EV_USE_EPOLL 800#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
618#endif 802#endif
619#if EV_USE_POLL 803#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
621#endif 805#endif
622#if EV_USE_SELECT 806#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
624#endif 808#endif
809
810 ev_init (&sigev, sigcb);
811 ev_set_priority (&sigev, EV_MAXPRI);
625 } 812 }
626} 813}
627 814
628void 815void
629loop_destroy (EV_P) 816loop_destroy (EV_P)
630{ 817{
818 int i;
819
820#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
822#endif
631#if EV_USE_KQUEUE 823#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 825#endif
634#if EV_USE_EPOLL 826#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 831#endif
640#if EV_USE_SELECT 832#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 833 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 834#endif
643 835
836 for (i = NUMPRI; i--; )
837 array_free (pending, [i]);
838
839 /* have to use the microsoft-never-gets-it-right macro */
840 array_free (fdchange, EMPTY0);
841 array_free (timer, EMPTY0);
842#if EV_PERIODICS
843 array_free (periodic, EMPTY0);
844#endif
845 array_free (idle, EMPTY0);
846 array_free (prepare, EMPTY0);
847 array_free (check, EMPTY0);
848
644 method = 0; 849 method = 0;
645 /*TODO*/
646} 850}
647 851
648void 852static void
649loop_fork (EV_P) 853loop_fork (EV_P)
650{ 854{
651 /*TODO*/ 855#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A);
857#endif
858#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
860#endif
652#if EV_USE_EPOLL 861#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 863#endif
655#if EV_USE_KQUEUE 864
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 865 if (ev_is_active (&sigev))
657#endif 866 {
867 /* default loop */
868
869 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev);
871 close (sigpipe [0]);
872 close (sigpipe [1]);
873
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A);
878 }
879
880 postfork = 0;
658} 881}
659 882
660#if EV_MULTIPLICITY 883#if EV_MULTIPLICITY
661struct ev_loop * 884struct ev_loop *
662ev_loop_new (int methods) 885ev_loop_new (unsigned int flags)
663{ 886{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 887 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
665 888
889 memset (loop, 0, sizeof (struct ev_loop));
890
666 loop_init (EV_A_ methods); 891 loop_init (EV_A_ flags);
667 892
668 if (ev_method (EV_A)) 893 if (ev_method (EV_A))
669 return loop; 894 return loop;
670 895
671 return 0; 896 return 0;
673 898
674void 899void
675ev_loop_destroy (EV_P) 900ev_loop_destroy (EV_P)
676{ 901{
677 loop_destroy (EV_A); 902 loop_destroy (EV_A);
678 free (loop); 903 ev_free (loop);
679} 904}
680 905
681void 906void
682ev_loop_fork (EV_P) 907ev_loop_fork (EV_P)
683{ 908{
684 loop_fork (EV_A); 909 postfork = 1;
685} 910}
686 911
687#endif 912#endif
688 913
689#if EV_MULTIPLICITY 914#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 915struct ev_loop *
916ev_default_loop_ (unsigned int flags)
694#else 917#else
695static int default_loop;
696
697int 918int
919ev_default_loop (unsigned int flags)
698#endif 920#endif
699ev_default_loop (int methods)
700{ 921{
701 if (sigpipe [0] == sigpipe [1]) 922 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe)) 923 if (pipe (sigpipe))
703 return 0; 924 return 0;
704 925
705 if (!default_loop) 926 if (!ev_default_loop_ptr)
706 { 927 {
707#if EV_MULTIPLICITY 928#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct; 929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
709#else 930#else
710 default_loop = 1; 931 ev_default_loop_ptr = 1;
711#endif 932#endif
712 933
713 loop_init (EV_A_ methods); 934 loop_init (EV_A_ flags);
714 935
715 if (ev_method (EV_A)) 936 if (ev_method (EV_A))
716 { 937 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 938 siginit (EV_A);
720 939
721#ifndef WIN32 940#ifndef _WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 941 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 942 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 943 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 944 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 945#endif
727 } 946 }
728 else 947 else
729 default_loop = 0; 948 ev_default_loop_ptr = 0;
730 } 949 }
731 950
732 return default_loop; 951 return ev_default_loop_ptr;
733} 952}
734 953
735void 954void
736ev_default_destroy (void) 955ev_default_destroy (void)
737{ 956{
738#if EV_MULTIPLICITY 957#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 958 struct ev_loop *loop = ev_default_loop_ptr;
740#endif 959#endif
741 960
961#ifndef _WIN32
742 ev_ref (EV_A); /* child watcher */ 962 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 963 ev_signal_stop (EV_A_ &childev);
964#endif
744 965
745 ev_ref (EV_A); /* signal watcher */ 966 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 967 ev_io_stop (EV_A_ &sigev);
747 968
748 close (sigpipe [0]); sigpipe [0] = 0; 969 close (sigpipe [0]); sigpipe [0] = 0;
753 974
754void 975void
755ev_default_fork (void) 976ev_default_fork (void)
756{ 977{
757#if EV_MULTIPLICITY 978#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 979 struct ev_loop *loop = ev_default_loop_ptr;
759#endif 980#endif
760 981
761 loop_fork (EV_A); 982 if (method)
762 983 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 984}
771 985
772/*****************************************************************************/ 986/*****************************************************************************/
987
988static int
989any_pending (EV_P)
990{
991 int pri;
992
993 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri])
995 return 1;
996
997 return 0;
998}
773 999
774static void 1000static void
775call_pending (EV_P) 1001call_pending (EV_P)
776{ 1002{
777 int pri; 1003 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 1009
784 if (p->w) 1010 if (p->w)
785 { 1011 {
786 p->w->pending = 0; 1012 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 1013 EV_CB_INVOKE (p->w, p->events);
788 } 1014 }
789 } 1015 }
790} 1016}
791 1017
792static void 1018static void
793timers_reify (EV_P) 1019timers_reify (EV_P)
794{ 1020{
795 while (timercnt && timers [0]->at <= mn_now) 1021 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 1022 {
797 struct ev_timer *w = timers [0]; 1023 struct ev_timer *w = timers [0];
1024
1025 assert (("inactive timer on timer heap detected", ev_is_active (w)));
798 1026
799 /* first reschedule or stop timer */ 1027 /* first reschedule or stop timer */
800 if (w->repeat) 1028 if (w->repeat)
801 { 1029 {
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031
803 w->at = mn_now + w->repeat; 1032 ((WT)w)->at += w->repeat;
1033 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now;
1035
804 downheap ((WT *)timers, timercnt, 0); 1036 downheap ((WT *)timers, timercnt, 0);
805 } 1037 }
806 else 1038 else
807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
808 1040
809 event (EV_A_ (W)w, EV_TIMEOUT); 1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
810 } 1042 }
811} 1043}
812 1044
1045#if EV_PERIODICS
813static void 1046static void
814periodics_reify (EV_P) 1047periodics_reify (EV_P)
815{ 1048{
816 while (periodiccnt && periodics [0]->at <= rt_now) 1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
817 { 1050 {
818 struct ev_periodic *w = periodics [0]; 1051 struct ev_periodic *w = periodics [0];
819 1052
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1054
820 /* first reschedule or stop timer */ 1055 /* first reschedule or stop timer */
821 if (w->interval) 1056 if (w->reschedule_cb)
822 { 1057 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1060 downheap ((WT *)periodics, periodiccnt, 0);
1061 }
1062 else if (w->interval)
1063 {
823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
825 downheap ((WT *)periodics, periodiccnt, 0); 1066 downheap ((WT *)periodics, periodiccnt, 0);
826 } 1067 }
827 else 1068 else
828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
829 1070
830 event (EV_A_ (W)w, EV_PERIODIC); 1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
831 } 1072 }
832} 1073}
833 1074
834static void 1075static void
835periodics_reschedule (EV_P) 1076periodics_reschedule (EV_P)
839 /* adjust periodics after time jump */ 1080 /* adjust periodics after time jump */
840 for (i = 0; i < periodiccnt; ++i) 1081 for (i = 0; i < periodiccnt; ++i)
841 { 1082 {
842 struct ev_periodic *w = periodics [i]; 1083 struct ev_periodic *w = periodics [i];
843 1084
1085 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
844 if (w->interval) 1087 else if (w->interval)
845 {
846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
847
848 if (fabs (diff) >= 1e-4)
849 {
850 ev_periodic_stop (EV_A_ w);
851 ev_periodic_start (EV_A_ w);
852
853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
854 }
855 }
856 } 1089 }
1090
1091 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i);
857} 1094}
1095#endif
858 1096
859inline int 1097inline int
860time_update_monotonic (EV_P) 1098time_update_monotonic (EV_P)
861{ 1099{
862 mn_now = get_clock (); 1100 mn_now = get_clock ();
863 1101
864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
865 { 1103 {
866 rt_now = rtmn_diff + mn_now; 1104 ev_rt_now = rtmn_diff + mn_now;
867 return 0; 1105 return 0;
868 } 1106 }
869 else 1107 else
870 { 1108 {
871 now_floor = mn_now; 1109 now_floor = mn_now;
872 rt_now = ev_time (); 1110 ev_rt_now = ev_time ();
873 return 1; 1111 return 1;
874 } 1112 }
875} 1113}
876 1114
877static void 1115static void
886 { 1124 {
887 ev_tstamp odiff = rtmn_diff; 1125 ev_tstamp odiff = rtmn_diff;
888 1126
889 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
890 { 1128 {
891 rtmn_diff = rt_now - mn_now; 1129 rtmn_diff = ev_rt_now - mn_now;
892 1130
893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
894 return; /* all is well */ 1132 return; /* all is well */
895 1133
896 rt_now = ev_time (); 1134 ev_rt_now = ev_time ();
897 mn_now = get_clock (); 1135 mn_now = get_clock ();
898 now_floor = mn_now; 1136 now_floor = mn_now;
899 } 1137 }
900 1138
1139# if EV_PERIODICS
901 periodics_reschedule (EV_A); 1140 periodics_reschedule (EV_A);
1141# endif
902 /* no timer adjustment, as the monotonic clock doesn't jump */ 1142 /* no timer adjustment, as the monotonic clock doesn't jump */
903 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
904 } 1144 }
905 } 1145 }
906 else 1146 else
907#endif 1147#endif
908 { 1148 {
909 rt_now = ev_time (); 1149 ev_rt_now = ev_time ();
910 1150
911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
912 { 1152 {
1153#if EV_PERIODICS
913 periodics_reschedule (EV_A); 1154 periodics_reschedule (EV_A);
1155#endif
914 1156
915 /* adjust timers. this is easy, as the offset is the same for all */ 1157 /* adjust timers. this is easy, as the offset is the same for all */
916 for (i = 0; i < timercnt; ++i) 1158 for (i = 0; i < timercnt; ++i)
917 timers [i]->at += rt_now - mn_now; 1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
918 } 1160 }
919 1161
920 mn_now = rt_now; 1162 mn_now = ev_rt_now;
921 } 1163 }
922} 1164}
923 1165
924void 1166void
925ev_ref (EV_P) 1167ev_ref (EV_P)
939ev_loop (EV_P_ int flags) 1181ev_loop (EV_P_ int flags)
940{ 1182{
941 double block; 1183 double block;
942 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
943 1185
944 do 1186 while (activecnt)
945 { 1187 {
946 /* queue check watchers (and execute them) */ 1188 /* queue check watchers (and execute them) */
947 if (expect_false (preparecnt)) 1189 if (expect_false (preparecnt))
948 { 1190 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A); 1192 call_pending (EV_A);
951 } 1193 }
952 1194
1195 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork))
1197 loop_fork (EV_A);
1198
953 /* update fd-related kernel structures */ 1199 /* update fd-related kernel structures */
954 fd_reify (EV_A); 1200 fd_reify (EV_A);
955 1201
956 /* calculate blocking time */ 1202 /* calculate blocking time */
957 1203
958 /* we only need this for !monotonic clockor timers, but as we basically 1204 /* we only need this for !monotonic clock or timers, but as we basically
959 always have timers, we just calculate it always */ 1205 always have timers, we just calculate it always */
960#if EV_USE_MONOTONIC 1206#if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic)) 1207 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A); 1208 time_update_monotonic (EV_A);
963 else 1209 else
964#endif 1210#endif
965 { 1211 {
966 rt_now = ev_time (); 1212 ev_rt_now = ev_time ();
967 mn_now = rt_now; 1213 mn_now = ev_rt_now;
968 } 1214 }
969 1215
970 if (flags & EVLOOP_NONBLOCK || idlecnt) 1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
971 block = 0.; 1217 block = 0.;
972 else 1218 else
973 { 1219 {
974 block = MAX_BLOCKTIME; 1220 block = MAX_BLOCKTIME;
975 1221
976 if (timercnt) 1222 if (timercnt)
977 { 1223 {
978 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
979 if (block > to) block = to; 1225 if (block > to) block = to;
980 } 1226 }
981 1227
1228#if EV_PERIODICS
982 if (periodiccnt) 1229 if (periodiccnt)
983 { 1230 {
984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
985 if (block > to) block = to; 1232 if (block > to) block = to;
986 } 1233 }
1234#endif
987 1235
988 if (block < 0.) block = 0.; 1236 if (block < 0.) block = 0.;
989 } 1237 }
990 1238
991 method_poll (EV_A_ block); 1239 method_poll (EV_A_ block);
992 1240
993 /* update rt_now, do magic */ 1241 /* update ev_rt_now, do magic */
994 time_update (EV_A); 1242 time_update (EV_A);
995 1243
996 /* queue pending timers and reschedule them */ 1244 /* queue pending timers and reschedule them */
997 timers_reify (EV_A); /* relative timers called last */ 1245 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS
998 periodics_reify (EV_A); /* absolute timers called first */ 1247 periodics_reify (EV_A); /* absolute timers called first */
1248#endif
999 1249
1000 /* queue idle watchers unless io or timers are pending */ 1250 /* queue idle watchers unless io or timers are pending */
1001 if (!pendingcnt) 1251 if (idlecnt && !any_pending (EV_A))
1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1003 1253
1004 /* queue check watchers, to be executed first */ 1254 /* queue check watchers, to be executed first */
1005 if (checkcnt) 1255 if (checkcnt)
1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1007 1257
1008 call_pending (EV_A); 1258 call_pending (EV_A);
1259
1260 if (loop_done)
1261 break;
1009 } 1262 }
1010 while (activecnt && !loop_done);
1011 1263
1012 if (loop_done != 2) 1264 if (loop_done != 2)
1013 loop_done = 0; 1265 loop_done = 0;
1014} 1266}
1015 1267
1081 return; 1333 return;
1082 1334
1083 assert (("ev_io_start called with negative fd", fd >= 0)); 1335 assert (("ev_io_start called with negative fd", fd >= 0));
1084 1336
1085 ev_start (EV_A_ (W)w, 1); 1337 ev_start (EV_A_ (W)w, 1);
1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1087 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1339 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1088 1340
1089 fd_change (EV_A_ fd); 1341 fd_change (EV_A_ fd);
1090} 1342}
1091 1343
1094{ 1346{
1095 ev_clear_pending (EV_A_ (W)w); 1347 ev_clear_pending (EV_A_ (W)w);
1096 if (!ev_is_active (w)) 1348 if (!ev_is_active (w))
1097 return; 1349 return;
1098 1350
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352
1099 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1100 ev_stop (EV_A_ (W)w); 1354 ev_stop (EV_A_ (W)w);
1101 1355
1102 fd_change (EV_A_ w->fd); 1356 fd_change (EV_A_ w->fd);
1103} 1357}
1106ev_timer_start (EV_P_ struct ev_timer *w) 1360ev_timer_start (EV_P_ struct ev_timer *w)
1107{ 1361{
1108 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1109 return; 1363 return;
1110 1364
1111 w->at += mn_now; 1365 ((WT)w)->at += mn_now;
1112 1366
1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1114 1368
1115 ev_start (EV_A_ (W)w, ++timercnt); 1369 ev_start (EV_A_ (W)w, ++timercnt);
1116 array_needsize (timers, timermax, timercnt, ); 1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1117 timers [timercnt - 1] = w; 1371 timers [timercnt - 1] = w;
1118 upheap ((WT *)timers, timercnt - 1); 1372 upheap ((WT *)timers, timercnt - 1);
1373
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1119} 1375}
1120 1376
1121void 1377void
1122ev_timer_stop (EV_P_ struct ev_timer *w) 1378ev_timer_stop (EV_P_ struct ev_timer *w)
1123{ 1379{
1124 ev_clear_pending (EV_A_ (W)w); 1380 ev_clear_pending (EV_A_ (W)w);
1125 if (!ev_is_active (w)) 1381 if (!ev_is_active (w))
1126 return; 1382 return;
1127 1383
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1385
1128 if (w->active < timercnt--) 1386 if (((W)w)->active < timercnt--)
1129 { 1387 {
1130 timers [w->active - 1] = timers [timercnt]; 1388 timers [((W)w)->active - 1] = timers [timercnt];
1131 downheap ((WT *)timers, timercnt, w->active - 1); 1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1132 } 1390 }
1133 1391
1134 w->at = w->repeat; 1392 ((WT)w)->at -= mn_now;
1135 1393
1136 ev_stop (EV_A_ (W)w); 1394 ev_stop (EV_A_ (W)w);
1137} 1395}
1138 1396
1139void 1397void
1141{ 1399{
1142 if (ev_is_active (w)) 1400 if (ev_is_active (w))
1143 { 1401 {
1144 if (w->repeat) 1402 if (w->repeat)
1145 { 1403 {
1146 w->at = mn_now + w->repeat; 1404 ((WT)w)->at = mn_now + w->repeat;
1147 downheap ((WT *)timers, timercnt, w->active - 1); 1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1148 } 1406 }
1149 else 1407 else
1150 ev_timer_stop (EV_A_ w); 1408 ev_timer_stop (EV_A_ w);
1151 } 1409 }
1152 else if (w->repeat) 1410 else if (w->repeat)
1411 {
1412 w->at = w->repeat;
1153 ev_timer_start (EV_A_ w); 1413 ev_timer_start (EV_A_ w);
1414 }
1154} 1415}
1155 1416
1417#if EV_PERIODICS
1156void 1418void
1157ev_periodic_start (EV_P_ struct ev_periodic *w) 1419ev_periodic_start (EV_P_ struct ev_periodic *w)
1158{ 1420{
1159 if (ev_is_active (w)) 1421 if (ev_is_active (w))
1160 return; 1422 return;
1161 1423
1424 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval)
1427 {
1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1163
1164 /* this formula differs from the one in periodic_reify because we do not always round up */ 1429 /* this formula differs from the one in periodic_reify because we do not always round up */
1165 if (w->interval)
1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1431 }
1167 1432
1168 ev_start (EV_A_ (W)w, ++periodiccnt); 1433 ev_start (EV_A_ (W)w, ++periodiccnt);
1169 array_needsize (periodics, periodicmax, periodiccnt, ); 1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1170 periodics [periodiccnt - 1] = w; 1435 periodics [periodiccnt - 1] = w;
1171 upheap ((WT *)periodics, periodiccnt - 1); 1436 upheap ((WT *)periodics, periodiccnt - 1);
1437
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1172} 1439}
1173 1440
1174void 1441void
1175ev_periodic_stop (EV_P_ struct ev_periodic *w) 1442ev_periodic_stop (EV_P_ struct ev_periodic *w)
1176{ 1443{
1177 ev_clear_pending (EV_A_ (W)w); 1444 ev_clear_pending (EV_A_ (W)w);
1178 if (!ev_is_active (w)) 1445 if (!ev_is_active (w))
1179 return; 1446 return;
1180 1447
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1449
1181 if (w->active < periodiccnt--) 1450 if (((W)w)->active < periodiccnt--)
1182 { 1451 {
1183 periodics [w->active - 1] = periodics [periodiccnt]; 1452 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1184 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1185 } 1454 }
1186 1455
1187 ev_stop (EV_A_ (W)w); 1456 ev_stop (EV_A_ (W)w);
1188} 1457}
1189 1458
1190void 1459void
1460ev_periodic_again (EV_P_ struct ev_periodic *w)
1461{
1462 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w);
1465}
1466#endif
1467
1468void
1191ev_idle_start (EV_P_ struct ev_idle *w) 1469ev_idle_start (EV_P_ struct ev_idle *w)
1192{ 1470{
1193 if (ev_is_active (w)) 1471 if (ev_is_active (w))
1194 return; 1472 return;
1195 1473
1196 ev_start (EV_A_ (W)w, ++idlecnt); 1474 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, ); 1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1198 idles [idlecnt - 1] = w; 1476 idles [idlecnt - 1] = w;
1199} 1477}
1200 1478
1201void 1479void
1202ev_idle_stop (EV_P_ struct ev_idle *w) 1480ev_idle_stop (EV_P_ struct ev_idle *w)
1203{ 1481{
1204 ev_clear_pending (EV_A_ (W)w); 1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1205 if (ev_is_active (w)) 1493 if (ev_is_active (w))
1206 return; 1494 return;
1207 1495
1208 idles [w->active - 1] = idles [--idlecnt]; 1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1209 ev_stop (EV_A_ (W)w); 1509 ev_stop (EV_A_ (W)w);
1210} 1510}
1211 1511
1212void 1512void
1213ev_prepare_start (EV_P_ struct ev_prepare *w) 1513ev_check_start (EV_P_ struct ev_check *w)
1214{ 1514{
1215 if (ev_is_active (w)) 1515 if (ev_is_active (w))
1216 return; 1516 return;
1217 1517
1218 ev_start (EV_A_ (W)w, ++preparecnt); 1518 ev_start (EV_A_ (W)w, ++checkcnt);
1219 array_needsize (prepares, preparemax, preparecnt, ); 1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1220 prepares [preparecnt - 1] = w; 1520 checks [checkcnt - 1] = w;
1221} 1521}
1222 1522
1223void 1523void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w) 1524ev_check_stop (EV_P_ struct ev_check *w)
1225{ 1525{
1226 ev_clear_pending (EV_A_ (W)w); 1526 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w)) 1527 if (!ev_is_active (w))
1228 return; 1528 return;
1229 1529
1230 prepares [w->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w);
1232}
1233
1234void
1235ev_check_start (EV_P_ struct ev_check *w)
1236{
1237 if (ev_is_active (w))
1238 return;
1239
1240 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, );
1242 checks [checkcnt - 1] = w;
1243}
1244
1245void
1246ev_check_stop (EV_P_ struct ev_check *w)
1247{
1248 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w))
1250 return;
1251
1252 checks [w->active - 1] = checks [--checkcnt]; 1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w); 1531 ev_stop (EV_A_ (W)w);
1254} 1532}
1255 1533
1256#ifndef SA_RESTART 1534#ifndef SA_RESTART
1257# define SA_RESTART 0 1535# define SA_RESTART 0
1259 1537
1260void 1538void
1261ev_signal_start (EV_P_ struct ev_signal *w) 1539ev_signal_start (EV_P_ struct ev_signal *w)
1262{ 1540{
1263#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1264 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1265#endif 1543#endif
1266 if (ev_is_active (w)) 1544 if (ev_is_active (w))
1267 return; 1545 return;
1268 1546
1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1270 1548
1271 ev_start (EV_A_ (W)w, 1); 1549 ev_start (EV_A_ (W)w, 1);
1272 array_needsize (signals, signalmax, w->signum, signals_init); 1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1274 1552
1275 if (!w->next) 1553 if (!((WL)w)->next)
1276 { 1554 {
1555#if _WIN32
1556 signal (w->signum, sighandler);
1557#else
1277 struct sigaction sa; 1558 struct sigaction sa;
1278 sa.sa_handler = sighandler; 1559 sa.sa_handler = sighandler;
1279 sigfillset (&sa.sa_mask); 1560 sigfillset (&sa.sa_mask);
1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1281 sigaction (w->signum, &sa, 0); 1562 sigaction (w->signum, &sa, 0);
1563#endif
1282 } 1564 }
1283} 1565}
1284 1566
1285void 1567void
1286ev_signal_stop (EV_P_ struct ev_signal *w) 1568ev_signal_stop (EV_P_ struct ev_signal *w)
1298 1580
1299void 1581void
1300ev_child_start (EV_P_ struct ev_child *w) 1582ev_child_start (EV_P_ struct ev_child *w)
1301{ 1583{
1302#if EV_MULTIPLICITY 1584#if EV_MULTIPLICITY
1303 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1304#endif 1586#endif
1305 if (ev_is_active (w)) 1587 if (ev_is_active (w))
1306 return; 1588 return;
1307 1589
1308 ev_start (EV_A_ (W)w, 1); 1590 ev_start (EV_A_ (W)w, 1);
1311 1593
1312void 1594void
1313ev_child_stop (EV_P_ struct ev_child *w) 1595ev_child_stop (EV_P_ struct ev_child *w)
1314{ 1596{
1315 ev_clear_pending (EV_A_ (W)w); 1597 ev_clear_pending (EV_A_ (W)w);
1316 if (ev_is_active (w)) 1598 if (!ev_is_active (w))
1317 return; 1599 return;
1318 1600
1319 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1320 ev_stop (EV_A_ (W)w); 1602 ev_stop (EV_A_ (W)w);
1321} 1603}
1336 void (*cb)(int revents, void *arg) = once->cb; 1618 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg; 1619 void *arg = once->arg;
1338 1620
1339 ev_io_stop (EV_A_ &once->io); 1621 ev_io_stop (EV_A_ &once->io);
1340 ev_timer_stop (EV_A_ &once->to); 1622 ev_timer_stop (EV_A_ &once->to);
1341 free (once); 1623 ev_free (once);
1342 1624
1343 cb (revents, arg); 1625 cb (revents, arg);
1344} 1626}
1345 1627
1346static void 1628static void
1356} 1638}
1357 1639
1358void 1640void
1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360{ 1642{
1361 struct ev_once *once = malloc (sizeof (struct ev_once)); 1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1362 1644
1363 if (!once) 1645 if (!once)
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else 1647 else
1366 { 1648 {
1367 once->cb = cb; 1649 once->cb = cb;
1368 once->arg = arg; 1650 once->arg = arg;
1369 1651
1370 ev_watcher_init (&once->io, once_cb_io); 1652 ev_init (&once->io, once_cb_io);
1371 if (fd >= 0) 1653 if (fd >= 0)
1372 { 1654 {
1373 ev_io_set (&once->io, fd, events); 1655 ev_io_set (&once->io, fd, events);
1374 ev_io_start (EV_A_ &once->io); 1656 ev_io_start (EV_A_ &once->io);
1375 } 1657 }
1376 1658
1377 ev_watcher_init (&once->to, once_cb_to); 1659 ev_init (&once->to, once_cb_to);
1378 if (timeout >= 0.) 1660 if (timeout >= 0.)
1379 { 1661 {
1380 ev_timer_set (&once->to, timeout, 0.); 1662 ev_timer_set (&once->to, timeout, 0.);
1381 ev_timer_start (EV_A_ &once->to); 1663 ev_timer_start (EV_A_ &once->to);
1382 } 1664 }
1383 } 1665 }
1384} 1666}
1385 1667
1668#ifdef __cplusplus
1669}
1670#endif
1671

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines