ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.121 by root, Fri Nov 16 10:37:28 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
89# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 160# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
93# endif 163# endif
94#endif 164#endif
95 165
96/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
97 167
98#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
100#endif 170#endif
101 171
102#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
104#endif 178#endif
105 179
106#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
108#endif 182#endif
114# define EV_USE_POLL 1 188# define EV_USE_POLL 1
115# endif 189# endif
116#endif 190#endif
117 191
118#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
119# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
120#endif 198#endif
121 199
122#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
124#endif 202#endif
125 203
126#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 205# define EV_USE_PORT 0
128#endif 206#endif
129 207
130/**/ 208#ifndef EV_USE_INOTIFY
131 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 211# else
134# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 249
138#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
141#endif 253#endif
143#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
146#endif 258#endif
147 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
148#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 276# include <winsock.h>
150#endif 277#endif
151 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
152/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
303
304/*
305 * This is used to avoid floating point rounding problems.
306 * It is added to ev_rt_now when scheduling periodics
307 * to ensure progress, time-wise, even when rounding
308 * errors are against us.
309 * This value is good at least till the year 4000.
310 * Better solutions welcome.
311 */
312#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 313
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 317
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 318#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline inline 320# define noinline __attribute__ ((noinline))
168#else 321#else
169# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
170# define inline static 323# define noinline
324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
325# define inline
326# endif
171#endif 327#endif
172 328
173#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 330#define expect_true(expr) expect ((expr) != 0, 1)
331#define inline_size static inline
332
333#if EV_MINIMAL
334# define inline_speed static noinline
335#else
336# define inline_speed static inline
337#endif
175 338
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 341
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 342#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 343#define EMPTY2(a,b) /* used to suppress some warnings */
181 344
182typedef struct ev_watcher *W; 345typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
185 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
352#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif
187 357
188#ifdef _WIN32 358#ifdef _WIN32
189# include "ev_win32.c" 359# include "ev_win32.c"
190#endif 360#endif
191 361
192/*****************************************************************************/ 362/*****************************************************************************/
193 363
194static void (*syserr_cb)(const char *msg); 364static void (*syserr_cb)(const char *msg);
195 365
366void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 367ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 368{
198 syserr_cb = cb; 369 syserr_cb = cb;
199} 370}
200 371
201static void 372static void noinline
202syserr (const char *msg) 373syserr (const char *msg)
203{ 374{
204 if (!msg) 375 if (!msg)
205 msg = "(libev) system error"; 376 msg = "(libev) system error";
206 377
211 perror (msg); 382 perror (msg);
212 abort (); 383 abort ();
213 } 384 }
214} 385}
215 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
216static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 403
404void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 406{
220 alloc = cb; 407 alloc = cb;
221} 408}
222 409
223static void * 410inline_speed void *
224ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
225{ 412{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
227 414
228 if (!ptr && size) 415 if (!ptr && size)
229 { 416 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 418 abort ();
252typedef struct 439typedef struct
253{ 440{
254 W w; 441 W w;
255 int events; 442 int events;
256} ANPENDING; 443} ANPENDING;
444
445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
447typedef struct
448{
449 WL head;
450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
469#endif
257 470
258#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
259 472
260 struct ev_loop 473 struct ev_loop
261 { 474 {
295 gettimeofday (&tv, 0); 508 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 509 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif 510#endif
298} 511}
299 512
300inline ev_tstamp 513ev_tstamp inline_size
301get_clock (void) 514get_clock (void)
302{ 515{
303#if EV_USE_MONOTONIC 516#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 517 if (expect_true (have_monotonic))
305 { 518 {
318{ 531{
319 return ev_rt_now; 532 return ev_rt_now;
320} 533}
321#endif 534#endif
322 535
323#define array_roundsize(type,n) (((n) | 4) & ~3) 536void
537ev_sleep (ev_tstamp delay)
538{
539 if (delay > 0.)
540 {
541#if EV_USE_NANOSLEEP
542 struct timespec ts;
543
544 ts.tv_sec = (time_t)delay;
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0);
548#elif defined(_WIN32)
549 Sleep ((unsigned long)(delay * 1e3));
550#else
551 struct timeval tv;
552
553 tv.tv_sec = (time_t)delay;
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
555
556 select (0, 0, 0, 0, &tv);
557#endif
558 }
559}
560
561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
565int inline_size
566array_nextsize (int elem, int cur, int cnt)
567{
568 int ncur = cur + 1;
569
570 do
571 ncur <<= 1;
572 while (cnt > ncur);
573
574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
576 {
577 ncur *= elem;
578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
579 ncur = ncur - sizeof (void *) * 4;
580 ncur /= elem;
581 }
582
583 return ncur;
584}
585
586static noinline void *
587array_realloc (int elem, void *base, int *cur, int cnt)
588{
589 *cur = array_nextsize (elem, *cur, cnt);
590 return ev_realloc (base, elem * *cur);
591}
324 592
325#define array_needsize(type,base,cur,cnt,init) \ 593#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 594 if (expect_false ((cnt) > (cur))) \
327 { \ 595 { \
328 int newcnt = cur; \ 596 int ocur_ = (cur); \
329 do \ 597 (base) = (type *)array_realloc \
330 { \ 598 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 599 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 600 }
339 601
602#if 0
340#define array_slim(type,stem) \ 603#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 604 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 605 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 606 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 607 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 608 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 609 }
610#endif
347 611
348#define array_free(stem, idx) \ 612#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 613 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
350 614
351/*****************************************************************************/ 615/*****************************************************************************/
352 616
353static void 617void noinline
618ev_feed_event (EV_P_ void *w, int revents)
619{
620 W w_ = (W)w;
621 int pri = ABSPRI (w_);
622
623 if (expect_false (w_->pending))
624 pendings [pri][w_->pending - 1].events |= revents;
625 else
626 {
627 w_->pending = ++pendingcnt [pri];
628 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
629 pendings [pri][w_->pending - 1].w = w_;
630 pendings [pri][w_->pending - 1].events = revents;
631 }
632}
633
634void inline_speed
635queue_events (EV_P_ W *events, int eventcnt, int type)
636{
637 int i;
638
639 for (i = 0; i < eventcnt; ++i)
640 ev_feed_event (EV_A_ events [i], type);
641}
642
643/*****************************************************************************/
644
645void inline_size
354anfds_init (ANFD *base, int count) 646anfds_init (ANFD *base, int count)
355{ 647{
356 while (count--) 648 while (count--)
357 { 649 {
358 base->head = 0; 650 base->head = 0;
361 653
362 ++base; 654 ++base;
363 } 655 }
364} 656}
365 657
366void 658void inline_speed
367ev_feed_event (EV_P_ void *w, int revents)
368{
369 W w_ = (W)w;
370
371 if (w_->pending)
372 {
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
374 return;
375 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381}
382
383static void
384queue_events (EV_P_ W *events, int eventcnt, int type)
385{
386 int i;
387
388 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type);
390}
391
392inline void
393fd_event (EV_P_ int fd, int revents) 659fd_event (EV_P_ int fd, int revents)
394{ 660{
395 ANFD *anfd = anfds + fd; 661 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 662 ev_io *w;
397 663
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 664 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 665 {
400 int ev = w->events & revents; 666 int ev = w->events & revents;
401 667
402 if (ev) 668 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 669 ev_feed_event (EV_A_ (W)w, ev);
405} 671}
406 672
407void 673void
408ev_feed_fd_event (EV_P_ int fd, int revents) 674ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 675{
676 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 677 fd_event (EV_A_ fd, revents);
411} 678}
412 679
413/*****************************************************************************/ 680void inline_size
414
415static void
416fd_reify (EV_P) 681fd_reify (EV_P)
417{ 682{
418 int i; 683 int i;
419 684
420 for (i = 0; i < fdchangecnt; ++i) 685 for (i = 0; i < fdchangecnt; ++i)
421 { 686 {
422 int fd = fdchanges [i]; 687 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 688 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 689 ev_io *w;
425 690
426 int events = 0; 691 unsigned char events = 0;
427 692
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 693 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 694 events |= (unsigned char)w->events;
430 695
431#if EV_SELECT_IS_WINSOCKET 696#if EV_SELECT_IS_WINSOCKET
432 if (events) 697 if (events)
433 { 698 {
434 unsigned long argp; 699 unsigned long argp;
700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
435 anfd->handle = _get_osfhandle (fd); 703 anfd->handle = _get_osfhandle (fd);
704 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
437 } 706 }
438#endif 707#endif
439 708
709 {
710 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify;
712
440 anfd->reify = 0; 713 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 714 anfd->events = events;
715
716 if (o_events != events || o_reify & EV_IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events);
718 }
444 } 719 }
445 720
446 fdchangecnt = 0; 721 fdchangecnt = 0;
447} 722}
448 723
449static void 724void inline_size
450fd_change (EV_P_ int fd) 725fd_change (EV_P_ int fd, int flags)
451{ 726{
452 if (anfds [fd].reify) 727 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 728 anfds [fd].reify |= flags;
456 729
730 if (expect_true (!reify))
731 {
457 ++fdchangecnt; 732 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 734 fdchanges [fdchangecnt - 1] = fd;
735 }
460} 736}
461 737
462static void 738void inline_speed
463fd_kill (EV_P_ int fd) 739fd_kill (EV_P_ int fd)
464{ 740{
465 struct ev_io *w; 741 ev_io *w;
466 742
467 while ((w = (struct ev_io *)anfds [fd].head)) 743 while ((w = (ev_io *)anfds [fd].head))
468 { 744 {
469 ev_io_stop (EV_A_ w); 745 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 746 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 747 }
472} 748}
473 749
474static int 750int inline_size
475fd_valid (int fd) 751fd_valid (int fd)
476{ 752{
477#ifdef _WIN32 753#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 754 return _get_osfhandle (fd) != -1;
479#else 755#else
480 return fcntl (fd, F_GETFD) != -1; 756 return fcntl (fd, F_GETFD) != -1;
481#endif 757#endif
482} 758}
483 759
484/* called on EBADF to verify fds */ 760/* called on EBADF to verify fds */
485static void 761static void noinline
486fd_ebadf (EV_P) 762fd_ebadf (EV_P)
487{ 763{
488 int fd; 764 int fd;
489 765
490 for (fd = 0; fd < anfdmax; ++fd) 766 for (fd = 0; fd < anfdmax; ++fd)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 768 if (!fd_valid (fd) == -1 && errno == EBADF)
493 fd_kill (EV_A_ fd); 769 fd_kill (EV_A_ fd);
494} 770}
495 771
496/* called on ENOMEM in select/poll to kill some fds and retry */ 772/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 773static void noinline
498fd_enomem (EV_P) 774fd_enomem (EV_P)
499{ 775{
500 int fd; 776 int fd;
501 777
502 for (fd = anfdmax; fd--; ) 778 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 781 fd_kill (EV_A_ fd);
506 return; 782 return;
507 } 783 }
508} 784}
509 785
510/* usually called after fork if method needs to re-arm all fds from scratch */ 786/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 787static void noinline
512fd_rearm_all (EV_P) 788fd_rearm_all (EV_P)
513{ 789{
514 int fd; 790 int fd;
515 791
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 792 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 793 if (anfds [fd].events)
519 { 794 {
520 anfds [fd].events = 0; 795 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 796 fd_change (EV_A_ fd, EV_IOFDSET | 1);
522 } 797 }
523} 798}
524 799
525/*****************************************************************************/ 800/*****************************************************************************/
526 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
822void inline_speed
823downheap (ANHE *heap, int N, int k)
824{
825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
827
828 for (;;)
829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
914 heap [k] = heap [p];
915 ev_active (ANHE_w (heap [k])) = k;
916 k = p;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921}
922
923void inline_size
924adjustheap (ANHE *heap, int N, int k)
925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
927 upheap (heap, k);
928 else
929 downheap (heap, N, k);
930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
527static void 944static void
528upheap (WT *heap, int k) 945checkheap (ANHE *heap, int N)
529{ 946{
530 WT w = heap [k]; 947 int i;
531 948
532 while (k && heap [k >> 1]->at > w->at) 949 for (i = HEAP0; i < N + HEAP0; ++i)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 } 950 {
538 951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
539 heap [k] = w; 952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
540 ((W)heap [k])->active = k + 1; 953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 { 954 }
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566} 955}
567 956#endif
568inline void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574 957
575/*****************************************************************************/ 958/*****************************************************************************/
576 959
577typedef struct 960typedef struct
578{ 961{
579 WL head; 962 WL head;
580 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
581} ANSIG; 964} ANSIG;
582 965
583static ANSIG *signals; 966static ANSIG *signals;
584static int signalmax; 967static int signalmax;
585 968
586static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 970
590static void 971void inline_size
591signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
592{ 973{
593 while (count--) 974 while (count--)
594 { 975 {
595 base->head = 0; 976 base->head = 0;
597 978
598 ++base; 979 ++base;
599 } 980 }
600} 981}
601 982
602static void 983/*****************************************************************************/
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608 984
609 signals [signum - 1].gotsig = 1; 985void inline_speed
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653inline void
654fd_intern (int fd) 986fd_intern (int fd)
655{ 987{
656#ifdef _WIN32 988#ifdef _WIN32
657 int arg = 1; 989 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 992 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 994#endif
663} 995}
664 996
997static void noinline
998evpipe_init (EV_P)
999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
1015 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
1019
1020 ev_io_start (EV_A_ &pipeev);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
665static void 1048static void
666siginit (EV_P) 1049pipecb (EV_P_ ev_io *iow, int revents)
667{ 1050{
668 fd_intern (sigpipe [0]); 1051#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
670 1063
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1064 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 1065 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
674} 1088}
675 1089
676/*****************************************************************************/ 1090/*****************************************************************************/
677 1091
678static struct ev_child *childs [PID_HASHSIZE]; 1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
1129static WL childs [EV_PID_HASHSIZE];
679 1130
680#ifndef _WIN32 1131#ifndef _WIN32
681 1132
682static struct ev_signal childev; 1133static ev_signal childev;
1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
1139void inline_speed
1140child_reap (EV_P_ int chain, int pid, int status)
1141{
1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
1149 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 w->rpid = pid;
1152 w->rstatus = status;
1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1154 }
1155 }
1156}
683 1157
684#ifndef WCONTINUED 1158#ifndef WCONTINUED
685# define WCONTINUED 0 1159# define WCONTINUED 0
686#endif 1160#endif
687 1161
688static void 1162static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1163childcb (EV_P_ ev_signal *sw, int revents)
705{ 1164{
706 int pid, status; 1165 int pid, status;
707 1166
1167 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1168 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1169 if (!WCONTINUED
1170 || errno != EINVAL
1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1172 return;
1173
710 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1177
713 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1181}
717 1182
718#endif 1183#endif
719 1184
720/*****************************************************************************/ 1185/*****************************************************************************/
746{ 1211{
747 return EV_VERSION_MINOR; 1212 return EV_VERSION_MINOR;
748} 1213}
749 1214
750/* return true if we are running with elevated privileges and should ignore env variables */ 1215/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1216int inline_size
752enable_secure (void) 1217enable_secure (void)
753{ 1218{
754#ifdef _WIN32 1219#ifdef _WIN32
755 return 0; 1220 return 0;
756#else 1221#else
758 || getgid () != getegid (); 1223 || getgid () != getegid ();
759#endif 1224#endif
760} 1225}
761 1226
762unsigned int 1227unsigned int
763ev_method (EV_P) 1228ev_supported_backends (void)
764{ 1229{
765 return method; 1230 unsigned int flags = 0;
766}
767 1231
768static void 1232 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1233 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1234 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1235 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1236 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1237
1238 return flags;
1239}
1240
1241unsigned int
1242ev_recommended_backends (void)
1243{
1244 unsigned int flags = ev_supported_backends ();
1245
1246#ifndef __NetBSD__
1247 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE;
1250#endif
1251#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation
1253 flags &= ~EVBACKEND_POLL;
1254#endif
1255
1256 return flags;
1257}
1258
1259unsigned int
1260ev_embeddable_backends (void)
1261{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1263
1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
1269}
1270
1271unsigned int
1272ev_backend (EV_P)
1273{
1274 return backend;
1275}
1276
1277unsigned int
1278ev_loop_count (EV_P)
1279{
1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
1293}
1294
1295static void noinline
769loop_init (EV_P_ unsigned int flags) 1296loop_init (EV_P_ unsigned int flags)
770{ 1297{
771 if (!method) 1298 if (!backend)
772 { 1299 {
773#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
774 { 1301 {
775 struct timespec ts; 1302 struct timespec ts;
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 1304 have_monotonic = 1;
778 } 1305 }
779#endif 1306#endif
780 1307
781 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
782 mn_now = get_clock (); 1309 mn_now = get_clock ();
783 now_floor = mn_now; 1310 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
785 1312
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1321
1322 /* pid check not overridable via env */
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif
1327
1328 if (!(flags & EVFLAG_NOENV)
1329 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
788 1332
789 if (!(flags & 0x0000ffff)) 1333 if (!(flags & 0x0000ffffU))
790 flags |= 0x0000ffff; 1334 flags |= ev_recommended_backends ();
791 1335
792 method = 0;
793#if EV_USE_PORT 1336#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 1338#endif
796#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 1341#endif
799#if EV_USE_EPOLL 1342#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 1344#endif
802#if EV_USE_POLL 1345#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 1347#endif
805#if EV_USE_SELECT 1348#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 1350#endif
808 1351
809 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
811 } 1354 }
812} 1355}
813 1356
814void 1357static void noinline
815loop_destroy (EV_P) 1358loop_destroy (EV_P)
816{ 1359{
817 int i; 1360 int i;
818 1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1378
1379#if EV_USE_INOTIFY
1380 if (fs_fd >= 0)
1381 close (fs_fd);
1382#endif
1383
1384 if (backend_fd >= 0)
1385 close (backend_fd);
1386
819#if EV_USE_PORT 1387#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 1389#endif
822#if EV_USE_KQUEUE 1390#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1391 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 1392#endif
825#if EV_USE_EPOLL 1393#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1394 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 1395#endif
828#if EV_USE_POLL 1396#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1397 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 1398#endif
831#if EV_USE_SELECT 1399#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 1401#endif
834 1402
835 for (i = NUMPRI; i--; ) 1403 for (i = NUMPRI; i--; )
1404 {
836 array_free (pending, [i]); 1405 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE
1407 array_free (idle, [i]);
1408#endif
1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
837 1412
838 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0); 1414 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 1415 array_free (timer, EMPTY);
841#if EV_PERIODICS 1416#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 1417 array_free (periodic, EMPTY);
843#endif 1418#endif
1419#if EV_FORK_ENABLE
844 array_free (idle, EMPTY0); 1420 array_free (fork, EMPTY);
1421#endif
845 array_free (prepare, EMPTY0); 1422 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
847 1427
848 method = 0; 1428 backend = 0;
849} 1429}
850 1430
851static void 1431#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P);
1433#endif
1434
1435void inline_size
852loop_fork (EV_P) 1436loop_fork (EV_P)
853{ 1437{
854#if EV_USE_PORT 1438#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 1440#endif
857#if EV_USE_KQUEUE 1441#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1442 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 1443#endif
860#if EV_USE_EPOLL 1444#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1445 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
862#endif 1446#endif
1447#if EV_USE_INOTIFY
1448 infy_fork (EV_A);
1449#endif
863 1450
864 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
865 { 1452 {
866 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
867 1459
868 ev_ref (EV_A); 1460 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
870 close (sigpipe [0]); 1470 close (evpipe [0]);
871 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
872 1473
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
877 } 1477 }
878 1478
879 postfork = 0; 1479 postfork = 0;
880} 1480}
881 1481
887 1487
888 memset (loop, 0, sizeof (struct ev_loop)); 1488 memset (loop, 0, sizeof (struct ev_loop));
889 1489
890 loop_init (EV_A_ flags); 1490 loop_init (EV_A_ flags);
891 1491
892 if (ev_method (EV_A)) 1492 if (ev_backend (EV_A))
893 return loop; 1493 return loop;
894 1494
895 return 0; 1495 return 0;
896} 1496}
897 1497
903} 1503}
904 1504
905void 1505void
906ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
907{ 1507{
908 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
909} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
910 1543
911#endif 1544#endif
912 1545
913#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
914struct ev_loop * 1547struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1548ev_default_loop_init (unsigned int flags)
916#else 1549#else
917int 1550int
918ev_default_loop (unsigned int flags) 1551ev_default_loop (unsigned int flags)
919#endif 1552#endif
920{ 1553{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1554 if (!ev_default_loop_ptr)
926 { 1555 {
927#if EV_MULTIPLICITY 1556#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1558#else
930 ev_default_loop_ptr = 1; 1559 ev_default_loop_ptr = 1;
931#endif 1560#endif
932 1561
933 loop_init (EV_A_ flags); 1562 loop_init (EV_A_ flags);
934 1563
935 if (ev_method (EV_A)) 1564 if (ev_backend (EV_A))
936 { 1565 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1566#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1568 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1569 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
960#ifndef _WIN32 1587#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1588 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1589 ev_signal_stop (EV_A_ &childev);
963#endif 1590#endif
964 1591
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1592 loop_destroy (EV_A);
972} 1593}
973 1594
974void 1595void
975ev_default_fork (void) 1596ev_default_fork (void)
976{ 1597{
977#if EV_MULTIPLICITY 1598#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1599 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1600#endif
980 1601
981 if (method) 1602 if (backend)
982 postfork = 1; 1603 postfork = 1; /* must be in line with ev_loop_fork */
983} 1604}
984 1605
985/*****************************************************************************/ 1606/*****************************************************************************/
986 1607
987static int 1608void
1609ev_invoke (EV_P_ void *w, int revents)
1610{
1611 EV_CB_INVOKE ((W)w, revents);
1612}
1613
1614void inline_speed
988any_pending (EV_P) 1615call_pending (EV_P)
989{ 1616{
990 int pri; 1617 int pri;
991 1618
992 for (pri = NUMPRI; pri--; ) 1619 EV_FREQUENT_CHECK;
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997}
998
999static void
1000call_pending (EV_P)
1001{
1002 int pri;
1003 1620
1004 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1006 { 1623 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1625
1009 if (p->w) 1626 if (expect_true (p->w))
1010 { 1627 {
1628 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1629
1011 p->w->pending = 0; 1630 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1013 } 1632 }
1014 } 1633 }
1015}
1016 1634
1017static void 1635 EV_FREQUENT_CHECK;
1636}
1637
1638#if EV_IDLE_ENABLE
1639void inline_size
1640idle_reify (EV_P)
1641{
1642 if (expect_false (idleall))
1643 {
1644 int pri;
1645
1646 for (pri = NUMPRI; pri--; )
1647 {
1648 if (pendingcnt [pri])
1649 break;
1650
1651 if (idlecnt [pri])
1652 {
1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1654 break;
1655 }
1656 }
1657 }
1658}
1659#endif
1660
1661void inline_size
1018timers_reify (EV_P) 1662timers_reify (EV_P)
1019{ 1663{
1664 EV_FREQUENT_CHECK;
1665
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 1667 {
1022 struct ev_timer *w = timers [0]; 1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1023 1669
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1025 1671
1026 /* first reschedule or stop timer */ 1672 /* first reschedule or stop timer */
1027 if (w->repeat) 1673 if (w->repeat)
1028 { 1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1680
1031 ((WT)w)->at += w->repeat; 1681 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 1682 downheap (timers, timercnt, HEAP0);
1036 } 1683 }
1037 else 1684 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1686
1687 EV_FREQUENT_CHECK;
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 } 1689 }
1042} 1690}
1043 1691
1044#if EV_PERIODICS 1692#if EV_PERIODIC_ENABLE
1045static void 1693void inline_size
1046periodics_reify (EV_P) 1694periodics_reify (EV_P)
1047{ 1695{
1696 EV_FREQUENT_CHECK;
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 1698 {
1050 struct ev_periodic *w = periodics [0]; 1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1051 1700
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1702
1054 /* first reschedule or stop timer */ 1703 /* first reschedule or stop timer */
1055 if (w->reschedule_cb) 1704 if (w->reschedule_cb)
1056 { 1705 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1059 downheap ((WT *)periodics, periodiccnt, 0); 1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1060 } 1713 }
1061 else if (w->interval) 1714 else if (w->interval)
1062 { 1715 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1065 downheap ((WT *)periodics, periodiccnt, 0); 1731 downheap (periodics, periodiccnt, HEAP0);
1066 } 1732 }
1067 else 1733 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1735
1736 EV_FREQUENT_CHECK;
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 } 1738 }
1072} 1739}
1073 1740
1074static void 1741static void noinline
1075periodics_reschedule (EV_P) 1742periodics_reschedule (EV_P)
1076{ 1743{
1077 int i; 1744 int i;
1078 1745
1079 /* adjust periodics after time jump */ 1746 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1081 { 1748 {
1082 struct ev_periodic *w = periodics [i]; 1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1083 1750
1084 if (w->reschedule_cb) 1751 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 1753 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1760}
1761#endif
1762
1763void inline_speed
1764time_update (EV_P_ ev_tstamp max_block)
1765{
1766 int i;
1767
1768#if EV_USE_MONOTONIC
1769 if (expect_true (have_monotonic))
1088 } 1770 {
1771 ev_tstamp odiff = rtmn_diff;
1089 1772
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock (); 1773 mn_now = get_clock ();
1100 1774
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1776 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1777 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 1778 {
1103 ev_rt_now = rtmn_diff + mn_now; 1779 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 1780 return;
1105 } 1781 }
1106 else 1782
1107 {
1108 now_floor = mn_now; 1783 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1784 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1785
1114static void 1786 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1787 * on the choice of "4": one iteration isn't enough,
1116{ 1788 * in case we get preempted during the calls to
1117 int i; 1789 * ev_time and get_clock. a second call is almost guaranteed
1118 1790 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1791 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1792 * in the unlikely event of having been preempted here.
1121 { 1793 */
1122 if (time_update_monotonic (EV_A)) 1794 for (i = 4; --i; )
1123 { 1795 {
1124 ev_tstamp odiff = rtmn_diff; 1796 rtmn_diff = ev_rt_now - mn_now;
1125 1797
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1799 return; /* all is well */
1800
1801 ev_rt_now = ev_time ();
1802 mn_now = get_clock ();
1803 now_floor = mn_now;
1804 }
1805
1806# if EV_PERIODIC_ENABLE
1807 periodics_reschedule (EV_A);
1808# endif
1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811 }
1812 else
1813#endif
1814 {
1815 ev_rt_now = ev_time ();
1816
1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1818 {
1819#if EV_PERIODIC_ENABLE
1820 periodics_reschedule (EV_A);
1821#endif
1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1823 for (i = 0; i < timercnt; ++i)
1127 { 1824 {
1128 rtmn_diff = ev_rt_now - mn_now; 1825 ANHE *he = timers + i + HEAP0;
1129 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1827 ANHE_at_cache (*he);
1131 return; /* all is well */
1132
1133 ev_rt_now = ev_time ();
1134 mn_now = get_clock ();
1135 now_floor = mn_now;
1136 } 1828 }
1137
1138# if EV_PERIODICS
1139 periodics_reschedule (EV_A);
1140# endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 1829 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 1830
1161 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1162 } 1832 }
1163} 1833}
1164 1834
1177static int loop_done; 1847static int loop_done;
1178 1848
1179void 1849void
1180ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1181{ 1851{
1182 double block; 1852 loop_done = EVUNLOOP_CANCEL;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 1853
1185 while (activecnt) 1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1855
1856 do
1186 { 1857 {
1858#ifndef _WIN32
1859 if (expect_false (curpid)) /* penalise the forking check even more */
1860 if (expect_false (getpid () != curpid))
1861 {
1862 curpid = getpid ();
1863 postfork = 1;
1864 }
1865#endif
1866
1867#if EV_FORK_ENABLE
1868 /* we might have forked, so queue fork handlers */
1869 if (expect_false (postfork))
1870 if (forkcnt)
1871 {
1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1873 call_pending (EV_A);
1874 }
1875#endif
1876
1187 /* queue check watchers (and execute them) */ 1877 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 1878 if (expect_false (preparecnt))
1189 { 1879 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 1881 call_pending (EV_A);
1192 } 1882 }
1193 1883
1884 if (expect_false (!activecnt))
1885 break;
1886
1194 /* we might have forked, so reify kernel state if necessary */ 1887 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 1888 if (expect_false (postfork))
1196 loop_fork (EV_A); 1889 loop_fork (EV_A);
1197 1890
1198 /* update fd-related kernel structures */ 1891 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 1892 fd_reify (EV_A);
1200 1893
1201 /* calculate blocking time */ 1894 /* calculate blocking time */
1895 {
1896 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.;
1202 1898
1203 /* we only need this for !monotonic clock or timers, but as we basically 1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 1900 {
1211 ev_rt_now = ev_time (); 1901 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 1902 time_update (EV_A_ 1e100);
1213 }
1214 1903
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1220 1905
1221 if (timercnt) 1906 if (timercnt)
1222 { 1907 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 1909 if (waittime > to) waittime = to;
1225 } 1910 }
1226 1911
1227#if EV_PERIODICS 1912#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 1913 if (periodiccnt)
1229 { 1914 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 1916 if (waittime > to) waittime = to;
1232 } 1917 }
1233#endif 1918#endif
1234 1919
1235 if (block < 0.) block = 0.; 1920 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime;
1922
1923 sleeptime = waittime - backend_fudge;
1924
1925 if (expect_true (sleeptime > io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 {
1930 ev_sleep (sleeptime);
1931 waittime -= sleeptime;
1932 }
1236 } 1933 }
1237 1934
1238 method_poll (EV_A_ block); 1935 ++loop_count;
1936 backend_poll (EV_A_ waittime);
1239 1937
1240 /* update ev_rt_now, do magic */ 1938 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 1939 time_update (EV_A_ waittime + sleeptime);
1940 }
1242 1941
1243 /* queue pending timers and reschedule them */ 1942 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 1943 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 1944#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 1945 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 1946#endif
1248 1947
1948#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 1949 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 1950 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1951#endif
1252 1952
1253 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1254 if (checkcnt) 1954 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 1956
1257 call_pending (EV_A); 1957 call_pending (EV_A);
1258
1259 if (loop_done)
1260 break;
1261 } 1958 }
1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1262 1964
1263 if (loop_done != 2) 1965 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 1966 loop_done = EVUNLOOP_CANCEL;
1265} 1967}
1266 1968
1267void 1969void
1268ev_unloop (EV_P_ int how) 1970ev_unloop (EV_P_ int how)
1269{ 1971{
1270 loop_done = how; 1972 loop_done = how;
1271} 1973}
1272 1974
1273/*****************************************************************************/ 1975/*****************************************************************************/
1274 1976
1275inline void 1977void inline_size
1276wlist_add (WL *head, WL elem) 1978wlist_add (WL *head, WL elem)
1277{ 1979{
1278 elem->next = *head; 1980 elem->next = *head;
1279 *head = elem; 1981 *head = elem;
1280} 1982}
1281 1983
1282inline void 1984void inline_size
1283wlist_del (WL *head, WL elem) 1985wlist_del (WL *head, WL elem)
1284{ 1986{
1285 while (*head) 1987 while (*head)
1286 { 1988 {
1287 if (*head == elem) 1989 if (*head == elem)
1292 1994
1293 head = &(*head)->next; 1995 head = &(*head)->next;
1294 } 1996 }
1295} 1997}
1296 1998
1297inline void 1999void inline_speed
1298ev_clear_pending (EV_P_ W w) 2000clear_pending (EV_P_ W w)
1299{ 2001{
1300 if (w->pending) 2002 if (w->pending)
1301 { 2003 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2004 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0; 2005 w->pending = 0;
1304 } 2006 }
1305} 2007}
1306 2008
1307inline void 2009int
2010ev_clear_pending (EV_P_ void *w)
2011{
2012 W w_ = (W)w;
2013 int pending = w_->pending;
2014
2015 if (expect_true (pending))
2016 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2018 w_->pending = 0;
2019 p->w = 0;
2020 return p->events;
2021 }
2022 else
2023 return 0;
2024}
2025
2026void inline_size
2027pri_adjust (EV_P_ W w)
2028{
2029 int pri = w->priority;
2030 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2031 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2032 w->priority = pri;
2033}
2034
2035void inline_speed
1308ev_start (EV_P_ W w, int active) 2036ev_start (EV_P_ W w, int active)
1309{ 2037{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2038 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2039 w->active = active;
1314 ev_ref (EV_A); 2040 ev_ref (EV_A);
1315} 2041}
1316 2042
1317inline void 2043void inline_size
1318ev_stop (EV_P_ W w) 2044ev_stop (EV_P_ W w)
1319{ 2045{
1320 ev_unref (EV_A); 2046 ev_unref (EV_A);
1321 w->active = 0; 2047 w->active = 0;
1322} 2048}
1323 2049
1324/*****************************************************************************/ 2050/*****************************************************************************/
1325 2051
1326void 2052void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2053ev_io_start (EV_P_ ev_io *w)
1328{ 2054{
1329 int fd = w->fd; 2055 int fd = w->fd;
1330 2056
1331 if (ev_is_active (w)) 2057 if (expect_false (ev_is_active (w)))
1332 return; 2058 return;
1333 2059
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
2061
2062 EV_FREQUENT_CHECK;
1335 2063
1336 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1339 2067
1340 fd_change (EV_A_ fd); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1341} 2069 w->events &= ~EV_IOFDSET;
1342 2070
1343void 2071 EV_FREQUENT_CHECK;
2072}
2073
2074void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1345{ 2076{
1346 ev_clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 2078 if (expect_false (!ev_is_active (w)))
1348 return; 2079 return;
1349 2080
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2082
2083 EV_FREQUENT_CHECK;
2084
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1354 2087
1355 fd_change (EV_A_ w->fd); 2088 fd_change (EV_A_ w->fd, 1);
1356}
1357 2089
1358void 2090 EV_FREQUENT_CHECK;
2091}
2092
2093void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1360{ 2095{
1361 if (ev_is_active (w)) 2096 if (expect_false (ev_is_active (w)))
1362 return; 2097 return;
1363 2098
1364 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1365 2100
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1372 2111
2112 EV_FREQUENT_CHECK;
2113
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2115}
1375 2116
1376void 2117void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2119{
1379 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1380 if (!ev_is_active (w)) 2121 if (expect_false (!ev_is_active (w)))
1381 return; 2122 return;
1382 2123
2124 EV_FREQUENT_CHECK;
2125
2126 {
2127 int active = ev_active (w);
2128
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2130
1385 if (((W)w)->active < timercnt--) 2131 --timercnt;
2132
2133 if (expect_true (active < timercnt + HEAP0))
1386 { 2134 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2136 adjustheap (timers, timercnt, active);
1389 } 2137 }
2138 }
1390 2139
1391 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1392 2143
1393 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1394} 2145}
1395 2146
1396void 2147void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1398{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1399 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1400 { 2153 {
1401 if (w->repeat) 2154 if (w->repeat)
1402 { 2155 {
1403 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1405 } 2159 }
1406 else 2160 else
1407 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1408 } 2162 }
1409 else if (w->repeat) 2163 else if (w->repeat)
1410 { 2164 {
1411 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1413 } 2167 }
1414}
1415 2168
2169 EV_FREQUENT_CHECK;
2170}
2171
1416#if EV_PERIODICS 2172#if EV_PERIODIC_ENABLE
1417void 2173void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2175{
1420 if (ev_is_active (w)) 2176 if (expect_false (ev_is_active (w)))
1421 return; 2177 return;
1422 2178
1423 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2181 else if (w->interval)
1426 { 2182 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2186 }
2187 else
2188 ev_at (w) = w->offset;
1431 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1436 2198
2199 EV_FREQUENT_CHECK;
2200
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2202}
1439 2203
1440void 2204void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2206{
1443 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w)) 2208 if (expect_false (!ev_is_active (w)))
1445 return; 2209 return;
1446 2210
2211 EV_FREQUENT_CHECK;
2212
2213 {
2214 int active = ev_active (w);
2215
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2217
1449 if (((W)w)->active < periodiccnt--) 2218 --periodiccnt;
2219
2220 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2221 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2223 adjustheap (periodics, periodiccnt, active);
1453 } 2224 }
2225 }
2226
2227 EV_FREQUENT_CHECK;
1454 2228
1455 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1456} 2230}
1457 2231
1458void 2232void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2234{
1461 /* TODO: use adjustheap and recalculation */ 2235 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2236 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2237 ev_periodic_start (EV_A_ w);
1464} 2238}
1465#endif 2239#endif
1466 2240
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (ev_is_active (w))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (!ev_is_active (w))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 2241#ifndef SA_RESTART
1534# define SA_RESTART 0 2242# define SA_RESTART 0
1535#endif 2243#endif
1536 2244
1537void 2245void noinline
1538ev_signal_start (EV_P_ struct ev_signal *w) 2246ev_signal_start (EV_P_ ev_signal *w)
1539{ 2247{
1540#if EV_MULTIPLICITY 2248#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 2250#endif
1543 if (ev_is_active (w)) 2251 if (expect_false (ev_is_active (w)))
1544 return; 2252 return;
1545 2253
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1547 2255
2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2259
2260 {
2261#ifndef _WIN32
2262 sigset_t full, prev;
2263 sigfillset (&full);
2264 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif
2266
2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2268
2269#ifndef _WIN32
2270 sigprocmask (SIG_SETMASK, &prev, 0);
2271#endif
2272 }
2273
1548 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2276
1552 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1553 { 2278 {
1554#if _WIN32 2279#if _WIN32
1555 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1556#else 2281#else
1557 struct sigaction sa; 2282 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1562#endif 2287#endif
1563 } 2288 }
1564}
1565 2289
1566void 2290 EV_FREQUENT_CHECK;
2291}
2292
2293void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2295{
1569 ev_clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1570 if (!ev_is_active (w)) 2297 if (expect_false (!ev_is_active (w)))
1571 return; 2298 return;
1572 2299
2300 EV_FREQUENT_CHECK;
2301
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1575 2304
1576 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
1578}
1579 2307
2308 EV_FREQUENT_CHECK;
2309}
2310
1580void 2311void
1581ev_child_start (EV_P_ struct ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1582{ 2313{
1583#if EV_MULTIPLICITY 2314#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2316#endif
1586 if (ev_is_active (w)) 2317 if (expect_false (ev_is_active (w)))
1587 return; 2318 return;
1588 2319
2320 EV_FREQUENT_CHECK;
2321
1589 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591}
1592 2324
2325 EV_FREQUENT_CHECK;
2326}
2327
1593void 2328void
1594ev_child_stop (EV_P_ struct ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1595{ 2330{
1596 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1597 if (!ev_is_active (w)) 2332 if (expect_false (!ev_is_active (w)))
1598 return; 2333 return;
1599 2334
2335 EV_FREQUENT_CHECK;
2336
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
1602} 2341}
2342
2343#if EV_STAT_ENABLE
2344
2345# ifdef _WIN32
2346# undef lstat
2347# define lstat(a,b) _stati64 (a,b)
2348# endif
2349
2350#define DEF_STAT_INTERVAL 5.0074891
2351#define MIN_STAT_INTERVAL 0.1074891
2352
2353static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2354
2355#if EV_USE_INOTIFY
2356# define EV_INOTIFY_BUFSIZE 8192
2357
2358static void noinline
2359infy_add (EV_P_ ev_stat *w)
2360{
2361 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2362
2363 if (w->wd < 0)
2364 {
2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2366
2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2371 {
2372 char path [4096];
2373 strcpy (path, w->path);
2374
2375 do
2376 {
2377 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2378 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2379
2380 char *pend = strrchr (path, '/');
2381
2382 if (!pend)
2383 break; /* whoops, no '/', complain to your admin */
2384
2385 *pend = 0;
2386 w->wd = inotify_add_watch (fs_fd, path, mask);
2387 }
2388 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2389 }
2390 }
2391 else
2392 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2393
2394 if (w->wd >= 0)
2395 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2396}
2397
2398static void noinline
2399infy_del (EV_P_ ev_stat *w)
2400{
2401 int slot;
2402 int wd = w->wd;
2403
2404 if (wd < 0)
2405 return;
2406
2407 w->wd = -2;
2408 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2409 wlist_del (&fs_hash [slot].head, (WL)w);
2410
2411 /* remove this watcher, if others are watching it, they will rearm */
2412 inotify_rm_watch (fs_fd, wd);
2413}
2414
2415static void noinline
2416infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2417{
2418 if (slot < 0)
2419 /* overflow, need to check for all hahs slots */
2420 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2421 infy_wd (EV_A_ slot, wd, ev);
2422 else
2423 {
2424 WL w_;
2425
2426 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2427 {
2428 ev_stat *w = (ev_stat *)w_;
2429 w_ = w_->next; /* lets us remove this watcher and all before it */
2430
2431 if (w->wd == wd || wd == -1)
2432 {
2433 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2434 {
2435 w->wd = -1;
2436 infy_add (EV_A_ w); /* re-add, no matter what */
2437 }
2438
2439 stat_timer_cb (EV_A_ &w->timer, 0);
2440 }
2441 }
2442 }
2443}
2444
2445static void
2446infy_cb (EV_P_ ev_io *w, int revents)
2447{
2448 char buf [EV_INOTIFY_BUFSIZE];
2449 struct inotify_event *ev = (struct inotify_event *)buf;
2450 int ofs;
2451 int len = read (fs_fd, buf, sizeof (buf));
2452
2453 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2454 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2455}
2456
2457void inline_size
2458infy_init (EV_P)
2459{
2460 if (fs_fd != -2)
2461 return;
2462
2463 fs_fd = inotify_init ();
2464
2465 if (fs_fd >= 0)
2466 {
2467 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2468 ev_set_priority (&fs_w, EV_MAXPRI);
2469 ev_io_start (EV_A_ &fs_w);
2470 }
2471}
2472
2473void inline_size
2474infy_fork (EV_P)
2475{
2476 int slot;
2477
2478 if (fs_fd < 0)
2479 return;
2480
2481 close (fs_fd);
2482 fs_fd = inotify_init ();
2483
2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2485 {
2486 WL w_ = fs_hash [slot].head;
2487 fs_hash [slot].head = 0;
2488
2489 while (w_)
2490 {
2491 ev_stat *w = (ev_stat *)w_;
2492 w_ = w_->next; /* lets us add this watcher */
2493
2494 w->wd = -1;
2495
2496 if (fs_fd >= 0)
2497 infy_add (EV_A_ w); /* re-add, no matter what */
2498 else
2499 ev_timer_start (EV_A_ &w->timer);
2500 }
2501
2502 }
2503}
2504
2505#endif
2506
2507void
2508ev_stat_stat (EV_P_ ev_stat *w)
2509{
2510 if (lstat (w->path, &w->attr) < 0)
2511 w->attr.st_nlink = 0;
2512 else if (!w->attr.st_nlink)
2513 w->attr.st_nlink = 1;
2514}
2515
2516static void noinline
2517stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2518{
2519 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2520
2521 /* we copy this here each the time so that */
2522 /* prev has the old value when the callback gets invoked */
2523 w->prev = w->attr;
2524 ev_stat_stat (EV_A_ w);
2525
2526 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2527 if (
2528 w->prev.st_dev != w->attr.st_dev
2529 || w->prev.st_ino != w->attr.st_ino
2530 || w->prev.st_mode != w->attr.st_mode
2531 || w->prev.st_nlink != w->attr.st_nlink
2532 || w->prev.st_uid != w->attr.st_uid
2533 || w->prev.st_gid != w->attr.st_gid
2534 || w->prev.st_rdev != w->attr.st_rdev
2535 || w->prev.st_size != w->attr.st_size
2536 || w->prev.st_atime != w->attr.st_atime
2537 || w->prev.st_mtime != w->attr.st_mtime
2538 || w->prev.st_ctime != w->attr.st_ctime
2539 ) {
2540 #if EV_USE_INOTIFY
2541 infy_del (EV_A_ w);
2542 infy_add (EV_A_ w);
2543 ev_stat_stat (EV_A_ w); /* avoid race... */
2544 #endif
2545
2546 ev_feed_event (EV_A_ w, EV_STAT);
2547 }
2548}
2549
2550void
2551ev_stat_start (EV_P_ ev_stat *w)
2552{
2553 if (expect_false (ev_is_active (w)))
2554 return;
2555
2556 /* since we use memcmp, we need to clear any padding data etc. */
2557 memset (&w->prev, 0, sizeof (ev_statdata));
2558 memset (&w->attr, 0, sizeof (ev_statdata));
2559
2560 ev_stat_stat (EV_A_ w);
2561
2562 if (w->interval < MIN_STAT_INTERVAL)
2563 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2564
2565 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2566 ev_set_priority (&w->timer, ev_priority (w));
2567
2568#if EV_USE_INOTIFY
2569 infy_init (EV_A);
2570
2571 if (fs_fd >= 0)
2572 infy_add (EV_A_ w);
2573 else
2574#endif
2575 ev_timer_start (EV_A_ &w->timer);
2576
2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2580}
2581
2582void
2583ev_stat_stop (EV_P_ ev_stat *w)
2584{
2585 clear_pending (EV_A_ (W)w);
2586 if (expect_false (!ev_is_active (w)))
2587 return;
2588
2589 EV_FREQUENT_CHECK;
2590
2591#if EV_USE_INOTIFY
2592 infy_del (EV_A_ w);
2593#endif
2594 ev_timer_stop (EV_A_ &w->timer);
2595
2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2599}
2600#endif
2601
2602#if EV_IDLE_ENABLE
2603void
2604ev_idle_start (EV_P_ ev_idle *w)
2605{
2606 if (expect_false (ev_is_active (w)))
2607 return;
2608
2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2612
2613 {
2614 int active = ++idlecnt [ABSPRI (w)];
2615
2616 ++idleall;
2617 ev_start (EV_A_ (W)w, active);
2618
2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2620 idles [ABSPRI (w)][active - 1] = w;
2621 }
2622
2623 EV_FREQUENT_CHECK;
2624}
2625
2626void
2627ev_idle_stop (EV_P_ ev_idle *w)
2628{
2629 clear_pending (EV_A_ (W)w);
2630 if (expect_false (!ev_is_active (w)))
2631 return;
2632
2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2640
2641 ev_stop (EV_A_ (W)w);
2642 --idleall;
2643 }
2644
2645 EV_FREQUENT_CHECK;
2646}
2647#endif
2648
2649void
2650ev_prepare_start (EV_P_ ev_prepare *w)
2651{
2652 if (expect_false (ev_is_active (w)))
2653 return;
2654
2655 EV_FREQUENT_CHECK;
2656
2657 ev_start (EV_A_ (W)w, ++preparecnt);
2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2662}
2663
2664void
2665ev_prepare_stop (EV_P_ ev_prepare *w)
2666{
2667 clear_pending (EV_A_ (W)w);
2668 if (expect_false (!ev_is_active (w)))
2669 return;
2670
2671 EV_FREQUENT_CHECK;
2672
2673 {
2674 int active = ev_active (w);
2675
2676 prepares [active - 1] = prepares [--preparecnt];
2677 ev_active (prepares [active - 1]) = active;
2678 }
2679
2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2683}
2684
2685void
2686ev_check_start (EV_P_ ev_check *w)
2687{
2688 if (expect_false (ev_is_active (w)))
2689 return;
2690
2691 EV_FREQUENT_CHECK;
2692
2693 ev_start (EV_A_ (W)w, ++checkcnt);
2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2698}
2699
2700void
2701ev_check_stop (EV_P_ ev_check *w)
2702{
2703 clear_pending (EV_A_ (W)w);
2704 if (expect_false (!ev_is_active (w)))
2705 return;
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ev_active (w);
2711
2712 checks [active - 1] = checks [--checkcnt];
2713 ev_active (checks [active - 1]) = active;
2714 }
2715
2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2719}
2720
2721#if EV_EMBED_ENABLE
2722void noinline
2723ev_embed_sweep (EV_P_ ev_embed *w)
2724{
2725 ev_loop (w->other, EVLOOP_NONBLOCK);
2726}
2727
2728static void
2729embed_io_cb (EV_P_ ev_io *io, int revents)
2730{
2731 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2732
2733 if (ev_cb (w))
2734 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2735 else
2736 ev_loop (w->other, EVLOOP_NONBLOCK);
2737}
2738
2739static void
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743
2744 {
2745 struct ev_loop *loop = w->other;
2746
2747 while (fdchangecnt)
2748 {
2749 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 }
2752 }
2753}
2754
2755#if 0
2756static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{
2759 ev_idle_stop (EV_A_ idle);
2760}
2761#endif
2762
2763void
2764ev_embed_start (EV_P_ ev_embed *w)
2765{
2766 if (expect_false (ev_is_active (w)))
2767 return;
2768
2769 {
2770 struct ev_loop *loop = w->other;
2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2773 }
2774
2775 EV_FREQUENT_CHECK;
2776
2777 ev_set_priority (&w->io, ev_priority (w));
2778 ev_io_start (EV_A_ &w->io);
2779
2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare);
2783
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785
2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2789}
2790
2791void
2792ev_embed_stop (EV_P_ ev_embed *w)
2793{
2794 clear_pending (EV_A_ (W)w);
2795 if (expect_false (!ev_is_active (w)))
2796 return;
2797
2798 EV_FREQUENT_CHECK;
2799
2800 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare);
2802
2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2806}
2807#endif
2808
2809#if EV_FORK_ENABLE
2810void
2811ev_fork_start (EV_P_ ev_fork *w)
2812{
2813 if (expect_false (ev_is_active (w)))
2814 return;
2815
2816 EV_FREQUENT_CHECK;
2817
2818 ev_start (EV_A_ (W)w, ++forkcnt);
2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2823}
2824
2825void
2826ev_fork_stop (EV_P_ ev_fork *w)
2827{
2828 clear_pending (EV_A_ (W)w);
2829 if (expect_false (!ev_is_active (w)))
2830 return;
2831
2832 EV_FREQUENT_CHECK;
2833
2834 {
2835 int active = ev_active (w);
2836
2837 forks [active - 1] = forks [--forkcnt];
2838 ev_active (forks [active - 1]) = active;
2839 }
2840
2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
2891}
2892#endif
1603 2893
1604/*****************************************************************************/ 2894/*****************************************************************************/
1605 2895
1606struct ev_once 2896struct ev_once
1607{ 2897{
1608 struct ev_io io; 2898 ev_io io;
1609 struct ev_timer to; 2899 ev_timer to;
1610 void (*cb)(int revents, void *arg); 2900 void (*cb)(int revents, void *arg);
1611 void *arg; 2901 void *arg;
1612}; 2902};
1613 2903
1614static void 2904static void
1623 2913
1624 cb (revents, arg); 2914 cb (revents, arg);
1625} 2915}
1626 2916
1627static void 2917static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 2918once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 2919{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2920 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1631} 2921}
1632 2922
1633static void 2923static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 2924once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 2925{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2926 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1637} 2927}
1638 2928
1639void 2929void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2930ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 2931{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2932 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 2933
1644 if (!once) 2934 if (expect_false (!once))
2935 {
1645 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2936 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1646 else 2937 return;
1647 { 2938 }
2939
1648 once->cb = cb; 2940 once->cb = cb;
1649 once->arg = arg; 2941 once->arg = arg;
1650 2942
1651 ev_init (&once->io, once_cb_io); 2943 ev_init (&once->io, once_cb_io);
1652 if (fd >= 0) 2944 if (fd >= 0)
1653 { 2945 {
1654 ev_io_set (&once->io, fd, events); 2946 ev_io_set (&once->io, fd, events);
1655 ev_io_start (EV_A_ &once->io); 2947 ev_io_start (EV_A_ &once->io);
1656 } 2948 }
1657 2949
1658 ev_init (&once->to, once_cb_to); 2950 ev_init (&once->to, once_cb_to);
1659 if (timeout >= 0.) 2951 if (timeout >= 0.)
1660 { 2952 {
1661 ev_timer_set (&once->to, timeout, 0.); 2953 ev_timer_set (&once->to, timeout, 0.);
1662 ev_timer_start (EV_A_ &once->to); 2954 ev_timer_start (EV_A_ &once->to);
1663 }
1664 } 2955 }
1665} 2956}
2957
2958#if EV_MULTIPLICITY
2959 #include "ev_wrap.h"
2960#endif
1666 2961
1667#ifdef __cplusplus 2962#ifdef __cplusplus
1668} 2963}
1669#endif 2964#endif
1670 2965

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines