ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.121 by root, Fri Nov 16 10:37:28 2007 UTC vs.
Revision 1.403 by root, Wed Jan 18 12:13:14 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
65# define EV_USE_PORT 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
66# endif 127# endif
67 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
68#endif 136# endif
69 137
70#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
71#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
72#include <fcntl.h> 169#include <fcntl.h>
73#include <stddef.h> 170#include <stddef.h>
74 171
75#include <stdio.h> 172#include <stdio.h>
76 173
77#include <assert.h> 174#include <assert.h>
78#include <errno.h> 175#include <errno.h>
79#include <sys/types.h> 176#include <sys/types.h>
80#include <time.h> 177#include <time.h>
178#include <limits.h>
81 179
82#include <signal.h> 180#include <signal.h>
83 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
84#ifndef _WIN32 188#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 189# include <sys/time.h>
87# include <sys/wait.h> 190# include <sys/wait.h>
191# include <unistd.h>
88#else 192#else
193# include <io.h>
89# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 195# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
93# endif 198# endif
199# undef EV_AVOID_STDIO
200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
209
210/* this block tries to deduce configuration from header-defined symbols and defaults */
211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
94#endif 249# endif
95 250#endif
96/**/
97 251
98#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
99# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
100#endif 258#endif
101 259
102#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
262#endif
263
264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
268# define EV_USE_NANOSLEEP 0
269# endif
104#endif 270#endif
105 271
106#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
108#endif 274#endif
109 275
110#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
111# ifdef _WIN32 277# ifdef _WIN32
112# define EV_USE_POLL 0 278# define EV_USE_POLL 0
113# else 279# else
114# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
115# endif 281# endif
116#endif 282#endif
117 283
118#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
287# else
119# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
289# endif
120#endif 290#endif
121 291
122#ifndef EV_USE_KQUEUE 292#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 293# define EV_USE_KQUEUE 0
124#endif 294#endif
125 295
126#ifndef EV_USE_PORT 296#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 297# define EV_USE_PORT 0
128#endif 298#endif
129 299
130/**/ 300#ifndef EV_USE_INOTIFY
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302# define EV_USE_INOTIFY EV_FEATURE_OS
303# else
304# define EV_USE_INOTIFY 0
305# endif
306#endif
131 307
132/* darwin simply cannot be helped */ 308#ifndef EV_PID_HASHSIZE
133#ifdef __APPLE__ 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
310#endif
311
312#ifndef EV_INOTIFY_HASHSIZE
313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314#endif
315
316#ifndef EV_USE_EVENTFD
317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318# define EV_USE_EVENTFD EV_FEATURE_OS
319# else
320# define EV_USE_EVENTFD 0
321# endif
322#endif
323
324#ifndef EV_USE_SIGNALFD
325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326# define EV_USE_SIGNALFD EV_FEATURE_OS
327# else
328# define EV_USE_SIGNALFD 0
329# endif
330#endif
331
332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 368# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 369# define EV_USE_POLL 0
136#endif 370#endif
137 371
138#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
143#ifndef CLOCK_REALTIME 377#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 378# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 379# define EV_USE_REALTIME 0
146#endif 380#endif
147 381
382#if !EV_STAT_ENABLE
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385#endif
386
387#if !EV_USE_NANOSLEEP
388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
390# include <sys/select.h>
391# endif
392#endif
393
394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
402#endif
403
148#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 405# include <winsock.h>
150#endif 406#endif
151 407
408#if EV_USE_EVENTFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef EFD_NONBLOCK
412# define EFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef EFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
444#endif
445
152/**/ 446/**/
447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
454/*
455 * This is used to work around floating point rounding problems.
456 * This value is good at least till the year 4000.
457 */
458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
153 460
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
158 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
159#ifdef EV_H 498#ifndef ECB_H
160# include EV_H 499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
508 #if __GNUC__
509 typedef signed long long int64_t;
510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
161#else 515#else
162# include "ev.h" 516 #include <inttypes.h>
517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
163#endif 531 #endif
532#endif
164 533
165#if __GNUC__ >= 3 534/*****************************************************************************/
166# define expect(expr,value) __builtin_expect ((expr),(value)) 535
167# define inline inline 536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_xC >= 0x5110
545 #if __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #elif defined(__sparc)
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #StoreLoad | #LoadLoad | #StoreStore" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadLoad" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #StoreStore")
565 #endif
566 #endif
567#endif
568
569#ifndef ECB_MEMORY_FENCE
570 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
571 #define ECB_MEMORY_FENCE __sync_synchronize ()
572 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
573 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
574 #elif _MSC_VER >= 1400 /* VC++ 2005 */
575 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
576 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
577 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
578 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
579 #elif defined(_WIN32)
580 #include <WinNT.h>
581 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
582 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
583 #include <mbarrier.h>
584 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
585 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
586 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if !ECB_AVOID_PTHREADS
592 /*
593 * if you get undefined symbol references to pthread_mutex_lock,
594 * or failure to find pthread.h, then you should implement
595 * the ECB_MEMORY_FENCE operations for your cpu/compiler
596 * OR provide pthread.h and link against the posix thread library
597 * of your system.
598 */
599 #include <pthread.h>
600 #define ECB_NEEDS_PTHREADS 1
601 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
602
603 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
604 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
605 #endif
606#endif
607
608#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
609 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
610#endif
611
612#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
613 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
614#endif
615
616/*****************************************************************************/
617
618#define ECB_C99 (__STDC_VERSION__ >= 199901L)
619
620#if __cplusplus
621 #define ecb_inline static inline
622#elif ECB_GCC_VERSION(2,5)
623 #define ecb_inline static __inline__
624#elif ECB_C99
625 #define ecb_inline static inline
168#else 626#else
627 #define ecb_inline static
628#endif
629
630#if ECB_GCC_VERSION(3,3)
631 #define ecb_restrict __restrict__
632#elif ECB_C99
633 #define ecb_restrict restrict
634#else
635 #define ecb_restrict
636#endif
637
638typedef int ecb_bool;
639
640#define ECB_CONCAT_(a, b) a ## b
641#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
642#define ECB_STRINGIFY_(a) # a
643#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
644
645#define ecb_function_ ecb_inline
646
647#if ECB_GCC_VERSION(3,1)
648 #define ecb_attribute(attrlist) __attribute__(attrlist)
649 #define ecb_is_constant(expr) __builtin_constant_p (expr)
650 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
651 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
652#else
653 #define ecb_attribute(attrlist)
654 #define ecb_is_constant(expr) 0
169# define expect(expr,value) (expr) 655 #define ecb_expect(expr,value) (expr)
170# define inline static 656 #define ecb_prefetch(addr,rw,locality)
171#endif 657#endif
172 658
659/* no emulation for ecb_decltype */
660#if ECB_GCC_VERSION(4,5)
661 #define ecb_decltype(x) __decltype(x)
662#elif ECB_GCC_VERSION(3,0)
663 #define ecb_decltype(x) __typeof(x)
664#endif
665
666#define ecb_noinline ecb_attribute ((__noinline__))
667#define ecb_noreturn ecb_attribute ((__noreturn__))
668#define ecb_unused ecb_attribute ((__unused__))
669#define ecb_const ecb_attribute ((__const__))
670#define ecb_pure ecb_attribute ((__pure__))
671
672#if ECB_GCC_VERSION(4,3)
673 #define ecb_artificial ecb_attribute ((__artificial__))
674 #define ecb_hot ecb_attribute ((__hot__))
675 #define ecb_cold ecb_attribute ((__cold__))
676#else
677 #define ecb_artificial
678 #define ecb_hot
679 #define ecb_cold
680#endif
681
682/* put around conditional expressions if you are very sure that the */
683/* expression is mostly true or mostly false. note that these return */
684/* booleans, not the expression. */
173#define expect_false(expr) expect ((expr) != 0, 0) 685#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 686#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
687/* for compatibility to the rest of the world */
688#define ecb_likely(expr) ecb_expect_true (expr)
689#define ecb_unlikely(expr) ecb_expect_false (expr)
175 690
691/* count trailing zero bits and count # of one bits */
692#if ECB_GCC_VERSION(3,4)
693 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
694 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
695 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
696 #define ecb_ctz32(x) __builtin_ctz (x)
697 #define ecb_ctz64(x) __builtin_ctzll (x)
698 #define ecb_popcount32(x) __builtin_popcount (x)
699 /* no popcountll */
700#else
701 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
702 ecb_function_ int
703 ecb_ctz32 (uint32_t x)
704 {
705 int r = 0;
706
707 x &= ~x + 1; /* this isolates the lowest bit */
708
709#if ECB_branchless_on_i386
710 r += !!(x & 0xaaaaaaaa) << 0;
711 r += !!(x & 0xcccccccc) << 1;
712 r += !!(x & 0xf0f0f0f0) << 2;
713 r += !!(x & 0xff00ff00) << 3;
714 r += !!(x & 0xffff0000) << 4;
715#else
716 if (x & 0xaaaaaaaa) r += 1;
717 if (x & 0xcccccccc) r += 2;
718 if (x & 0xf0f0f0f0) r += 4;
719 if (x & 0xff00ff00) r += 8;
720 if (x & 0xffff0000) r += 16;
721#endif
722
723 return r;
724 }
725
726 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
727 ecb_function_ int
728 ecb_ctz64 (uint64_t x)
729 {
730 int shift = x & 0xffffffffU ? 0 : 32;
731 return ecb_ctz32 (x >> shift) + shift;
732 }
733
734 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
735 ecb_function_ int
736 ecb_popcount32 (uint32_t x)
737 {
738 x -= (x >> 1) & 0x55555555;
739 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
740 x = ((x >> 4) + x) & 0x0f0f0f0f;
741 x *= 0x01010101;
742
743 return x >> 24;
744 }
745
746 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
747 ecb_function_ int ecb_ld32 (uint32_t x)
748 {
749 int r = 0;
750
751 if (x >> 16) { x >>= 16; r += 16; }
752 if (x >> 8) { x >>= 8; r += 8; }
753 if (x >> 4) { x >>= 4; r += 4; }
754 if (x >> 2) { x >>= 2; r += 2; }
755 if (x >> 1) { r += 1; }
756
757 return r;
758 }
759
760 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
761 ecb_function_ int ecb_ld64 (uint64_t x)
762 {
763 int r = 0;
764
765 if (x >> 32) { x >>= 32; r += 32; }
766
767 return r + ecb_ld32 (x);
768 }
769#endif
770
771ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
772ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
773{
774 return ( (x * 0x0802U & 0x22110U)
775 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
776}
777
778ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
779ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
780{
781 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
782 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
783 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
784 x = ( x >> 8 ) | ( x << 8);
785
786 return x;
787}
788
789ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
790ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
791{
792 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
793 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
794 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
795 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
796 x = ( x >> 16 ) | ( x << 16);
797
798 return x;
799}
800
801/* popcount64 is only available on 64 bit cpus as gcc builtin */
802/* so for this version we are lazy */
803ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
804ecb_function_ int
805ecb_popcount64 (uint64_t x)
806{
807 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
808}
809
810ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
811ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
812ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
813ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
814ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
815ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
816ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
817ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
818
819ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
820ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
821ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
822ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
823ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
824ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
825ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
826ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
830 #define ecb_bswap32(x) __builtin_bswap32 (x)
831 #define ecb_bswap64(x) __builtin_bswap64 (x)
832#else
833 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
834 ecb_function_ uint16_t
835 ecb_bswap16 (uint16_t x)
836 {
837 return ecb_rotl16 (x, 8);
838 }
839
840 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
841 ecb_function_ uint32_t
842 ecb_bswap32 (uint32_t x)
843 {
844 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
845 }
846
847 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
848 ecb_function_ uint64_t
849 ecb_bswap64 (uint64_t x)
850 {
851 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
852 }
853#endif
854
855#if ECB_GCC_VERSION(4,5)
856 #define ecb_unreachable() __builtin_unreachable ()
857#else
858 /* this seems to work fine, but gcc always emits a warning for it :/ */
859 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
860 ecb_function_ void ecb_unreachable (void) { }
861#endif
862
863/* try to tell the compiler that some condition is definitely true */
864#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
865
866ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
867ecb_function_ unsigned char
868ecb_byteorder_helper (void)
869{
870 const uint32_t u = 0x11223344;
871 return *(unsigned char *)&u;
872}
873
874ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
875ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
876ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
877ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
878
879#if ECB_GCC_VERSION(3,0) || ECB_C99
880 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
881#else
882 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
883#endif
884
885#if __cplusplus
886 template<typename T>
887 static inline T ecb_div_rd (T val, T div)
888 {
889 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
890 }
891 template<typename T>
892 static inline T ecb_div_ru (T val, T div)
893 {
894 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
895 }
896#else
897 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
898 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
899#endif
900
901#if ecb_cplusplus_does_not_suck
902 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
903 template<typename T, int N>
904 static inline int ecb_array_length (const T (&arr)[N])
905 {
906 return N;
907 }
908#else
909 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
910#endif
911
912#endif
913
914/* ECB.H END */
915
916#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
917/* if your architecture doesn't need memory fences, e.g. because it is
918 * single-cpu/core, or if you use libev in a project that doesn't use libev
919 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
920 * libev, in which cases the memory fences become nops.
921 * alternatively, you can remove this #error and link against libpthread,
922 * which will then provide the memory fences.
923 */
924# error "memory fences not defined for your architecture, please report"
925#endif
926
927#ifndef ECB_MEMORY_FENCE
928# define ECB_MEMORY_FENCE do { } while (0)
929# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
930# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
931#endif
932
933#define expect_false(cond) ecb_expect_false (cond)
934#define expect_true(cond) ecb_expect_true (cond)
935#define noinline ecb_noinline
936
937#define inline_size ecb_inline
938
939#if EV_FEATURE_CODE
940# define inline_speed ecb_inline
941#else
942# define inline_speed static noinline
943#endif
944
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 945#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
946
947#if EV_MINPRI == EV_MAXPRI
948# define ABSPRI(w) (((W)w), 0)
949#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 950# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
951#endif
178 952
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 953#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 954#define EMPTY2(a,b) /* used to suppress some warnings */
181 955
182typedef struct ev_watcher *W; 956typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 957typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 958typedef ev_watcher_time *WT;
185 959
960#define ev_active(w) ((W)(w))->active
961#define ev_at(w) ((WT)(w))->at
962
963#if EV_USE_REALTIME
964/* sig_atomic_t is used to avoid per-thread variables or locking but still */
965/* giving it a reasonably high chance of working on typical architectures */
966static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
967#endif
968
969#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 970static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
971#endif
972
973#ifndef EV_FD_TO_WIN32_HANDLE
974# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
975#endif
976#ifndef EV_WIN32_HANDLE_TO_FD
977# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
978#endif
979#ifndef EV_WIN32_CLOSE_FD
980# define EV_WIN32_CLOSE_FD(fd) close (fd)
981#endif
187 982
188#ifdef _WIN32 983#ifdef _WIN32
189# include "ev_win32.c" 984# include "ev_win32.c"
190#endif 985#endif
191 986
192/*****************************************************************************/ 987/*****************************************************************************/
193 988
989/* define a suitable floor function (only used by periodics atm) */
990
991#if EV_USE_FLOOR
992# include <math.h>
993# define ev_floor(v) floor (v)
994#else
995
996#include <float.h>
997
998/* a floor() replacement function, should be independent of ev_tstamp type */
999static ev_tstamp noinline
1000ev_floor (ev_tstamp v)
1001{
1002 /* the choice of shift factor is not terribly important */
1003#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1004 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1005#else
1006 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1007#endif
1008
1009 /* argument too large for an unsigned long? */
1010 if (expect_false (v >= shift))
1011 {
1012 ev_tstamp f;
1013
1014 if (v == v - 1.)
1015 return v; /* very large number */
1016
1017 f = shift * ev_floor (v * (1. / shift));
1018 return f + ev_floor (v - f);
1019 }
1020
1021 /* special treatment for negative args? */
1022 if (expect_false (v < 0.))
1023 {
1024 ev_tstamp f = -ev_floor (-v);
1025
1026 return f - (f == v ? 0 : 1);
1027 }
1028
1029 /* fits into an unsigned long */
1030 return (unsigned long)v;
1031}
1032
1033#endif
1034
1035/*****************************************************************************/
1036
1037#ifdef __linux
1038# include <sys/utsname.h>
1039#endif
1040
1041static unsigned int noinline ecb_cold
1042ev_linux_version (void)
1043{
1044#ifdef __linux
1045 unsigned int v = 0;
1046 struct utsname buf;
1047 int i;
1048 char *p = buf.release;
1049
1050 if (uname (&buf))
1051 return 0;
1052
1053 for (i = 3+1; --i; )
1054 {
1055 unsigned int c = 0;
1056
1057 for (;;)
1058 {
1059 if (*p >= '0' && *p <= '9')
1060 c = c * 10 + *p++ - '0';
1061 else
1062 {
1063 p += *p == '.';
1064 break;
1065 }
1066 }
1067
1068 v = (v << 8) | c;
1069 }
1070
1071 return v;
1072#else
1073 return 0;
1074#endif
1075}
1076
1077/*****************************************************************************/
1078
1079#if EV_AVOID_STDIO
1080static void noinline ecb_cold
1081ev_printerr (const char *msg)
1082{
1083 write (STDERR_FILENO, msg, strlen (msg));
1084}
1085#endif
1086
194static void (*syserr_cb)(const char *msg); 1087static void (*syserr_cb)(const char *msg);
195 1088
1089void ecb_cold
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 1090ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 1091{
198 syserr_cb = cb; 1092 syserr_cb = cb;
199} 1093}
200 1094
201static void 1095static void noinline ecb_cold
202syserr (const char *msg) 1096ev_syserr (const char *msg)
203{ 1097{
204 if (!msg) 1098 if (!msg)
205 msg = "(libev) system error"; 1099 msg = "(libev) system error";
206 1100
207 if (syserr_cb) 1101 if (syserr_cb)
208 syserr_cb (msg); 1102 syserr_cb (msg);
209 else 1103 else
210 { 1104 {
1105#if EV_AVOID_STDIO
1106 ev_printerr (msg);
1107 ev_printerr (": ");
1108 ev_printerr (strerror (errno));
1109 ev_printerr ("\n");
1110#else
211 perror (msg); 1111 perror (msg);
1112#endif
212 abort (); 1113 abort ();
213 } 1114 }
214} 1115}
215 1116
1117static void *
1118ev_realloc_emul (void *ptr, long size)
1119{
1120#if __GLIBC__
1121 return realloc (ptr, size);
1122#else
1123 /* some systems, notably openbsd and darwin, fail to properly
1124 * implement realloc (x, 0) (as required by both ansi c-89 and
1125 * the single unix specification, so work around them here.
1126 */
1127
1128 if (size)
1129 return realloc (ptr, size);
1130
1131 free (ptr);
1132 return 0;
1133#endif
1134}
1135
216static void *(*alloc)(void *ptr, long size); 1136static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 1137
1138void ecb_cold
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1139ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 1140{
220 alloc = cb; 1141 alloc = cb;
221} 1142}
222 1143
223static void * 1144inline_speed void *
224ev_realloc (void *ptr, long size) 1145ev_realloc (void *ptr, long size)
225{ 1146{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1147 ptr = alloc (ptr, size);
227 1148
228 if (!ptr && size) 1149 if (!ptr && size)
229 { 1150 {
1151#if EV_AVOID_STDIO
1152 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1153#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1154 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1155#endif
231 abort (); 1156 abort ();
232 } 1157 }
233 1158
234 return ptr; 1159 return ptr;
235} 1160}
237#define ev_malloc(size) ev_realloc (0, (size)) 1162#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 1163#define ev_free(ptr) ev_realloc ((ptr), 0)
239 1164
240/*****************************************************************************/ 1165/*****************************************************************************/
241 1166
1167/* set in reify when reification needed */
1168#define EV_ANFD_REIFY 1
1169
1170/* file descriptor info structure */
242typedef struct 1171typedef struct
243{ 1172{
244 WL head; 1173 WL head;
245 unsigned char events; 1174 unsigned char events; /* the events watched for */
1175 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1176 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
246 unsigned char reify; 1177 unsigned char unused;
1178#if EV_USE_EPOLL
1179 unsigned int egen; /* generation counter to counter epoll bugs */
1180#endif
247#if EV_SELECT_IS_WINSOCKET 1181#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
248 SOCKET handle; 1182 SOCKET handle;
249#endif 1183#endif
1184#if EV_USE_IOCP
1185 OVERLAPPED or, ow;
1186#endif
250} ANFD; 1187} ANFD;
251 1188
1189/* stores the pending event set for a given watcher */
252typedef struct 1190typedef struct
253{ 1191{
254 W w; 1192 W w;
255 int events; 1193 int events; /* the pending event set for the given watcher */
256} ANPENDING; 1194} ANPENDING;
1195
1196#if EV_USE_INOTIFY
1197/* hash table entry per inotify-id */
1198typedef struct
1199{
1200 WL head;
1201} ANFS;
1202#endif
1203
1204/* Heap Entry */
1205#if EV_HEAP_CACHE_AT
1206 /* a heap element */
1207 typedef struct {
1208 ev_tstamp at;
1209 WT w;
1210 } ANHE;
1211
1212 #define ANHE_w(he) (he).w /* access watcher, read-write */
1213 #define ANHE_at(he) (he).at /* access cached at, read-only */
1214 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1215#else
1216 /* a heap element */
1217 typedef WT ANHE;
1218
1219 #define ANHE_w(he) (he)
1220 #define ANHE_at(he) (he)->at
1221 #define ANHE_at_cache(he)
1222#endif
257 1223
258#if EV_MULTIPLICITY 1224#if EV_MULTIPLICITY
259 1225
260 struct ev_loop 1226 struct ev_loop
261 { 1227 {
266 #undef VAR 1232 #undef VAR
267 }; 1233 };
268 #include "ev_wrap.h" 1234 #include "ev_wrap.h"
269 1235
270 static struct ev_loop default_loop_struct; 1236 static struct ev_loop default_loop_struct;
271 struct ev_loop *ev_default_loop_ptr; 1237 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
272 1238
273#else 1239#else
274 1240
275 ev_tstamp ev_rt_now; 1241 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
276 #define VAR(name,decl) static decl; 1242 #define VAR(name,decl) static decl;
277 #include "ev_vars.h" 1243 #include "ev_vars.h"
278 #undef VAR 1244 #undef VAR
279 1245
280 static int ev_default_loop_ptr; 1246 static int ev_default_loop_ptr;
281 1247
282#endif 1248#endif
283 1249
1250#if EV_FEATURE_API
1251# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1252# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1253# define EV_INVOKE_PENDING invoke_cb (EV_A)
1254#else
1255# define EV_RELEASE_CB (void)0
1256# define EV_ACQUIRE_CB (void)0
1257# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1258#endif
1259
1260#define EVBREAK_RECURSE 0x80
1261
284/*****************************************************************************/ 1262/*****************************************************************************/
285 1263
1264#ifndef EV_HAVE_EV_TIME
286ev_tstamp 1265ev_tstamp
287ev_time (void) 1266ev_time (void)
288{ 1267{
289#if EV_USE_REALTIME 1268#if EV_USE_REALTIME
1269 if (expect_true (have_realtime))
1270 {
290 struct timespec ts; 1271 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 1272 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 1273 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 1274 }
1275#endif
1276
294 struct timeval tv; 1277 struct timeval tv;
295 gettimeofday (&tv, 0); 1278 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 1279 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 1280}
1281#endif
299 1282
300inline ev_tstamp 1283inline_size ev_tstamp
301get_clock (void) 1284get_clock (void)
302{ 1285{
303#if EV_USE_MONOTONIC 1286#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 1287 if (expect_true (have_monotonic))
305 { 1288 {
318{ 1301{
319 return ev_rt_now; 1302 return ev_rt_now;
320} 1303}
321#endif 1304#endif
322 1305
323#define array_roundsize(type,n) (((n) | 4) & ~3) 1306void
1307ev_sleep (ev_tstamp delay)
1308{
1309 if (delay > 0.)
1310 {
1311#if EV_USE_NANOSLEEP
1312 struct timespec ts;
1313
1314 EV_TS_SET (ts, delay);
1315 nanosleep (&ts, 0);
1316#elif defined(_WIN32)
1317 Sleep ((unsigned long)(delay * 1e3));
1318#else
1319 struct timeval tv;
1320
1321 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1322 /* something not guaranteed by newer posix versions, but guaranteed */
1323 /* by older ones */
1324 EV_TV_SET (tv, delay);
1325 select (0, 0, 0, 0, &tv);
1326#endif
1327 }
1328}
1329
1330/*****************************************************************************/
1331
1332#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1333
1334/* find a suitable new size for the given array, */
1335/* hopefully by rounding to a nice-to-malloc size */
1336inline_size int
1337array_nextsize (int elem, int cur, int cnt)
1338{
1339 int ncur = cur + 1;
1340
1341 do
1342 ncur <<= 1;
1343 while (cnt > ncur);
1344
1345 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1346 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1347 {
1348 ncur *= elem;
1349 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1350 ncur = ncur - sizeof (void *) * 4;
1351 ncur /= elem;
1352 }
1353
1354 return ncur;
1355}
1356
1357static void * noinline ecb_cold
1358array_realloc (int elem, void *base, int *cur, int cnt)
1359{
1360 *cur = array_nextsize (elem, *cur, cnt);
1361 return ev_realloc (base, elem * *cur);
1362}
1363
1364#define array_init_zero(base,count) \
1365 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 1366
325#define array_needsize(type,base,cur,cnt,init) \ 1367#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 1368 if (expect_false ((cnt) > (cur))) \
327 { \ 1369 { \
328 int newcnt = cur; \ 1370 int ecb_unused ocur_ = (cur); \
329 do \ 1371 (base) = (type *)array_realloc \
330 { \ 1372 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 1373 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 1374 }
339 1375
1376#if 0
340#define array_slim(type,stem) \ 1377#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1378 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 1379 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1380 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1381 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1382 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 1383 }
1384#endif
347 1385
348#define array_free(stem, idx) \ 1386#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1387 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 1388
351/*****************************************************************************/ 1389/*****************************************************************************/
352 1390
353static void 1391/* dummy callback for pending events */
354anfds_init (ANFD *base, int count) 1392static void noinline
1393pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 1394{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 1395}
365 1396
366void 1397void noinline
367ev_feed_event (EV_P_ void *w, int revents) 1398ev_feed_event (EV_P_ void *w, int revents)
368{ 1399{
369 W w_ = (W)w; 1400 W w_ = (W)w;
1401 int pri = ABSPRI (w_);
370 1402
371 if (w_->pending) 1403 if (expect_false (w_->pending))
1404 pendings [pri][w_->pending - 1].events |= revents;
1405 else
372 { 1406 {
1407 w_->pending = ++pendingcnt [pri];
1408 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1409 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1410 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 1411 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 1412}
382 1413
383static void 1414inline_speed void
1415feed_reverse (EV_P_ W w)
1416{
1417 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1418 rfeeds [rfeedcnt++] = w;
1419}
1420
1421inline_size void
1422feed_reverse_done (EV_P_ int revents)
1423{
1424 do
1425 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1426 while (rfeedcnt);
1427}
1428
1429inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 1430queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 1431{
386 int i; 1432 int i;
387 1433
388 for (i = 0; i < eventcnt; ++i) 1434 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 1435 ev_feed_event (EV_A_ events [i], type);
390} 1436}
391 1437
1438/*****************************************************************************/
1439
392inline void 1440inline_speed void
393fd_event (EV_P_ int fd, int revents) 1441fd_event_nocheck (EV_P_ int fd, int revents)
394{ 1442{
395 ANFD *anfd = anfds + fd; 1443 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 1444 ev_io *w;
397 1445
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1446 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 1447 {
400 int ev = w->events & revents; 1448 int ev = w->events & revents;
401 1449
402 if (ev) 1450 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 1451 ev_feed_event (EV_A_ (W)w, ev);
404 } 1452 }
405} 1453}
406 1454
1455/* do not submit kernel events for fds that have reify set */
1456/* because that means they changed while we were polling for new events */
1457inline_speed void
1458fd_event (EV_P_ int fd, int revents)
1459{
1460 ANFD *anfd = anfds + fd;
1461
1462 if (expect_true (!anfd->reify))
1463 fd_event_nocheck (EV_A_ fd, revents);
1464}
1465
407void 1466void
408ev_feed_fd_event (EV_P_ int fd, int revents) 1467ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 1468{
1469 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 1470 fd_event_nocheck (EV_A_ fd, revents);
411} 1471}
412 1472
413/*****************************************************************************/ 1473/* make sure the external fd watch events are in-sync */
414 1474/* with the kernel/libev internal state */
415static void 1475inline_size void
416fd_reify (EV_P) 1476fd_reify (EV_P)
417{ 1477{
418 int i; 1478 int i;
419 1479
1480#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
420 for (i = 0; i < fdchangecnt; ++i) 1481 for (i = 0; i < fdchangecnt; ++i)
421 { 1482 {
422 int fd = fdchanges [i]; 1483 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 1484 ANFD *anfd = anfds + fd;
424 struct ev_io *w;
425 1485
426 int events = 0; 1486 if (anfd->reify & EV__IOFDSET && anfd->head)
427
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
429 events |= w->events;
430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 { 1487 {
1488 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1489
1490 if (handle != anfd->handle)
1491 {
434 unsigned long argp; 1492 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 1493
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1494 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1495
1496 /* handle changed, but fd didn't - we need to do it in two steps */
1497 backend_modify (EV_A_ fd, anfd->events, 0);
1498 anfd->events = 0;
1499 anfd->handle = handle;
1500 }
437 } 1501 }
1502 }
438#endif 1503#endif
439 1504
1505 for (i = 0; i < fdchangecnt; ++i)
1506 {
1507 int fd = fdchanges [i];
1508 ANFD *anfd = anfds + fd;
1509 ev_io *w;
1510
1511 unsigned char o_events = anfd->events;
1512 unsigned char o_reify = anfd->reify;
1513
440 anfd->reify = 0; 1514 anfd->reify = 0;
441 1515
442 method_modify (EV_A_ fd, anfd->events, events); 1516 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1517 {
443 anfd->events = events; 1518 anfd->events = 0;
1519
1520 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1521 anfd->events |= (unsigned char)w->events;
1522
1523 if (o_events != anfd->events)
1524 o_reify = EV__IOFDSET; /* actually |= */
1525 }
1526
1527 if (o_reify & EV__IOFDSET)
1528 backend_modify (EV_A_ fd, o_events, anfd->events);
444 } 1529 }
445 1530
446 fdchangecnt = 0; 1531 fdchangecnt = 0;
447} 1532}
448 1533
449static void 1534/* something about the given fd changed */
1535inline_size void
450fd_change (EV_P_ int fd) 1536fd_change (EV_P_ int fd, int flags)
451{ 1537{
452 if (anfds [fd].reify) 1538 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 1539 anfds [fd].reify |= flags;
456 1540
1541 if (expect_true (!reify))
1542 {
457 ++fdchangecnt; 1543 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1544 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 1545 fdchanges [fdchangecnt - 1] = fd;
1546 }
460} 1547}
461 1548
462static void 1549/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1550inline_speed void ecb_cold
463fd_kill (EV_P_ int fd) 1551fd_kill (EV_P_ int fd)
464{ 1552{
465 struct ev_io *w; 1553 ev_io *w;
466 1554
467 while ((w = (struct ev_io *)anfds [fd].head)) 1555 while ((w = (ev_io *)anfds [fd].head))
468 { 1556 {
469 ev_io_stop (EV_A_ w); 1557 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1558 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 1559 }
472} 1560}
473 1561
474static int 1562/* check whether the given fd is actually valid, for error recovery */
1563inline_size int ecb_cold
475fd_valid (int fd) 1564fd_valid (int fd)
476{ 1565{
477#ifdef _WIN32 1566#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 1567 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 1568#else
480 return fcntl (fd, F_GETFD) != -1; 1569 return fcntl (fd, F_GETFD) != -1;
481#endif 1570#endif
482} 1571}
483 1572
484/* called on EBADF to verify fds */ 1573/* called on EBADF to verify fds */
485static void 1574static void noinline ecb_cold
486fd_ebadf (EV_P) 1575fd_ebadf (EV_P)
487{ 1576{
488 int fd; 1577 int fd;
489 1578
490 for (fd = 0; fd < anfdmax; ++fd) 1579 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 1580 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 1581 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 1582 fd_kill (EV_A_ fd);
494} 1583}
495 1584
496/* called on ENOMEM in select/poll to kill some fds and retry */ 1585/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 1586static void noinline ecb_cold
498fd_enomem (EV_P) 1587fd_enomem (EV_P)
499{ 1588{
500 int fd; 1589 int fd;
501 1590
502 for (fd = anfdmax; fd--; ) 1591 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 1592 if (anfds [fd].events)
504 { 1593 {
505 fd_kill (EV_A_ fd); 1594 fd_kill (EV_A_ fd);
506 return; 1595 break;
507 } 1596 }
508} 1597}
509 1598
510/* usually called after fork if method needs to re-arm all fds from scratch */ 1599/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 1600static void noinline
512fd_rearm_all (EV_P) 1601fd_rearm_all (EV_P)
513{ 1602{
514 int fd; 1603 int fd;
515 1604
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 1605 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1606 if (anfds [fd].events)
519 { 1607 {
520 anfds [fd].events = 0; 1608 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 1609 anfds [fd].emask = 0;
1610 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 1611 }
523} 1612}
524 1613
525/*****************************************************************************/ 1614/* used to prepare libev internal fd's */
526 1615/* this is not fork-safe */
527static void
528upheap (WT *heap, int k)
529{
530 WT w = heap [k];
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 }
538
539 heap [k] = w;
540 ((W)heap [k])->active = k + 1;
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566}
567
568inline void 1616inline_speed void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574
575/*****************************************************************************/
576
577typedef struct
578{
579 WL head;
580 sig_atomic_t volatile gotsig;
581} ANSIG;
582
583static ANSIG *signals;
584static int signalmax;
585
586static int sigpipe [2];
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589
590static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653inline void
654fd_intern (int fd) 1617fd_intern (int fd)
655{ 1618{
656#ifdef _WIN32 1619#ifdef _WIN32
657 int arg = 1; 1620 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1621 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
659#else 1622#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1623 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1624 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1625#endif
663} 1626}
664 1627
1628/*****************************************************************************/
1629
1630/*
1631 * the heap functions want a real array index. array index 0 is guaranteed to not
1632 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1633 * the branching factor of the d-tree.
1634 */
1635
1636/*
1637 * at the moment we allow libev the luxury of two heaps,
1638 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1639 * which is more cache-efficient.
1640 * the difference is about 5% with 50000+ watchers.
1641 */
1642#if EV_USE_4HEAP
1643
1644#define DHEAP 4
1645#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1646#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1647#define UPHEAP_DONE(p,k) ((p) == (k))
1648
1649/* away from the root */
1650inline_speed void
1651downheap (ANHE *heap, int N, int k)
1652{
1653 ANHE he = heap [k];
1654 ANHE *E = heap + N + HEAP0;
1655
1656 for (;;)
1657 {
1658 ev_tstamp minat;
1659 ANHE *minpos;
1660 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1661
1662 /* find minimum child */
1663 if (expect_true (pos + DHEAP - 1 < E))
1664 {
1665 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1666 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1667 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1668 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1669 }
1670 else if (pos < E)
1671 {
1672 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1673 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1674 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1675 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1676 }
1677 else
1678 break;
1679
1680 if (ANHE_at (he) <= minat)
1681 break;
1682
1683 heap [k] = *minpos;
1684 ev_active (ANHE_w (*minpos)) = k;
1685
1686 k = minpos - heap;
1687 }
1688
1689 heap [k] = he;
1690 ev_active (ANHE_w (he)) = k;
1691}
1692
1693#else /* 4HEAP */
1694
1695#define HEAP0 1
1696#define HPARENT(k) ((k) >> 1)
1697#define UPHEAP_DONE(p,k) (!(p))
1698
1699/* away from the root */
1700inline_speed void
1701downheap (ANHE *heap, int N, int k)
1702{
1703 ANHE he = heap [k];
1704
1705 for (;;)
1706 {
1707 int c = k << 1;
1708
1709 if (c >= N + HEAP0)
1710 break;
1711
1712 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1713 ? 1 : 0;
1714
1715 if (ANHE_at (he) <= ANHE_at (heap [c]))
1716 break;
1717
1718 heap [k] = heap [c];
1719 ev_active (ANHE_w (heap [k])) = k;
1720
1721 k = c;
1722 }
1723
1724 heap [k] = he;
1725 ev_active (ANHE_w (he)) = k;
1726}
1727#endif
1728
1729/* towards the root */
1730inline_speed void
1731upheap (ANHE *heap, int k)
1732{
1733 ANHE he = heap [k];
1734
1735 for (;;)
1736 {
1737 int p = HPARENT (k);
1738
1739 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1740 break;
1741
1742 heap [k] = heap [p];
1743 ev_active (ANHE_w (heap [k])) = k;
1744 k = p;
1745 }
1746
1747 heap [k] = he;
1748 ev_active (ANHE_w (he)) = k;
1749}
1750
1751/* move an element suitably so it is in a correct place */
1752inline_size void
1753adjustheap (ANHE *heap, int N, int k)
1754{
1755 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1756 upheap (heap, k);
1757 else
1758 downheap (heap, N, k);
1759}
1760
1761/* rebuild the heap: this function is used only once and executed rarely */
1762inline_size void
1763reheap (ANHE *heap, int N)
1764{
1765 int i;
1766
1767 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1768 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1769 for (i = 0; i < N; ++i)
1770 upheap (heap, i + HEAP0);
1771}
1772
1773/*****************************************************************************/
1774
1775/* associate signal watchers to a signal signal */
1776typedef struct
1777{
1778 EV_ATOMIC_T pending;
1779#if EV_MULTIPLICITY
1780 EV_P;
1781#endif
1782 WL head;
1783} ANSIG;
1784
1785static ANSIG signals [EV_NSIG - 1];
1786
1787/*****************************************************************************/
1788
1789#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1790
1791static void noinline ecb_cold
1792evpipe_init (EV_P)
1793{
1794 if (!ev_is_active (&pipe_w))
1795 {
1796# if EV_USE_EVENTFD
1797 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1798 if (evfd < 0 && errno == EINVAL)
1799 evfd = eventfd (0, 0);
1800
1801 if (evfd >= 0)
1802 {
1803 evpipe [0] = -1;
1804 fd_intern (evfd); /* doing it twice doesn't hurt */
1805 ev_io_set (&pipe_w, evfd, EV_READ);
1806 }
1807 else
1808# endif
1809 {
1810 while (pipe (evpipe))
1811 ev_syserr ("(libev) error creating signal/async pipe");
1812
1813 fd_intern (evpipe [0]);
1814 fd_intern (evpipe [1]);
1815 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1816 }
1817
1818 ev_io_start (EV_A_ &pipe_w);
1819 ev_unref (EV_A); /* watcher should not keep loop alive */
1820 }
1821}
1822
1823inline_speed void
1824evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1825{
1826 if (expect_true (*flag))
1827 return;
1828
1829 *flag = 1;
1830
1831 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1832
1833 pipe_write_skipped = 1;
1834
1835 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1836
1837 if (pipe_write_wanted)
1838 {
1839 int old_errno;
1840
1841 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1842
1843 old_errno = errno; /* save errno because write will clobber it */
1844
1845#if EV_USE_EVENTFD
1846 if (evfd >= 0)
1847 {
1848 uint64_t counter = 1;
1849 write (evfd, &counter, sizeof (uint64_t));
1850 }
1851 else
1852#endif
1853 {
1854 /* win32 people keep sending patches that change this write() to send() */
1855 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1856 /* so when you think this write should be a send instead, please find out */
1857 /* where your send() is from - it's definitely not the microsoft send, and */
1858 /* tell me. thank you. */
1859 write (evpipe [1], &(evpipe [1]), 1);
1860 }
1861
1862 errno = old_errno;
1863 }
1864}
1865
1866/* called whenever the libev signal pipe */
1867/* got some events (signal, async) */
665static void 1868static void
666siginit (EV_P) 1869pipecb (EV_P_ ev_io *iow, int revents)
667{ 1870{
668 fd_intern (sigpipe [0]); 1871 int i;
669 fd_intern (sigpipe [1]);
670 1872
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1873 if (revents & EV_READ)
672 ev_io_start (EV_A_ &sigev); 1874 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1875#if EV_USE_EVENTFD
1876 if (evfd >= 0)
1877 {
1878 uint64_t counter;
1879 read (evfd, &counter, sizeof (uint64_t));
1880 }
1881 else
1882#endif
1883 {
1884 char dummy;
1885 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1886 read (evpipe [0], &dummy, 1);
1887 }
1888 }
1889
1890 pipe_write_skipped = 0;
1891
1892#if EV_SIGNAL_ENABLE
1893 if (sig_pending)
1894 {
1895 sig_pending = 0;
1896
1897 for (i = EV_NSIG - 1; i--; )
1898 if (expect_false (signals [i].pending))
1899 ev_feed_signal_event (EV_A_ i + 1);
1900 }
1901#endif
1902
1903#if EV_ASYNC_ENABLE
1904 if (async_pending)
1905 {
1906 async_pending = 0;
1907
1908 for (i = asynccnt; i--; )
1909 if (asyncs [i]->sent)
1910 {
1911 asyncs [i]->sent = 0;
1912 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1913 }
1914 }
1915#endif
674} 1916}
675 1917
676/*****************************************************************************/ 1918/*****************************************************************************/
677 1919
678static struct ev_child *childs [PID_HASHSIZE]; 1920void
1921ev_feed_signal (int signum)
1922{
1923#if EV_MULTIPLICITY
1924 EV_P = signals [signum - 1].loop;
679 1925
1926 if (!EV_A)
1927 return;
1928#endif
1929
1930 if (!ev_active (&pipe_w))
1931 return;
1932
1933 signals [signum - 1].pending = 1;
1934 evpipe_write (EV_A_ &sig_pending);
1935}
1936
1937static void
1938ev_sighandler (int signum)
1939{
680#ifndef _WIN32 1940#ifdef _WIN32
1941 signal (signum, ev_sighandler);
1942#endif
681 1943
1944 ev_feed_signal (signum);
1945}
1946
1947void noinline
1948ev_feed_signal_event (EV_P_ int signum)
1949{
1950 WL w;
1951
1952 if (expect_false (signum <= 0 || signum > EV_NSIG))
1953 return;
1954
1955 --signum;
1956
1957#if EV_MULTIPLICITY
1958 /* it is permissible to try to feed a signal to the wrong loop */
1959 /* or, likely more useful, feeding a signal nobody is waiting for */
1960
1961 if (expect_false (signals [signum].loop != EV_A))
1962 return;
1963#endif
1964
1965 signals [signum].pending = 0;
1966
1967 for (w = signals [signum].head; w; w = w->next)
1968 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1969}
1970
1971#if EV_USE_SIGNALFD
1972static void
1973sigfdcb (EV_P_ ev_io *iow, int revents)
1974{
1975 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1976
1977 for (;;)
1978 {
1979 ssize_t res = read (sigfd, si, sizeof (si));
1980
1981 /* not ISO-C, as res might be -1, but works with SuS */
1982 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1983 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1984
1985 if (res < (ssize_t)sizeof (si))
1986 break;
1987 }
1988}
1989#endif
1990
1991#endif
1992
1993/*****************************************************************************/
1994
1995#if EV_CHILD_ENABLE
1996static WL childs [EV_PID_HASHSIZE];
1997
682static struct ev_signal childev; 1998static ev_signal childev;
1999
2000#ifndef WIFCONTINUED
2001# define WIFCONTINUED(status) 0
2002#endif
2003
2004/* handle a single child status event */
2005inline_speed void
2006child_reap (EV_P_ int chain, int pid, int status)
2007{
2008 ev_child *w;
2009 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2010
2011 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2012 {
2013 if ((w->pid == pid || !w->pid)
2014 && (!traced || (w->flags & 1)))
2015 {
2016 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2017 w->rpid = pid;
2018 w->rstatus = status;
2019 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2020 }
2021 }
2022}
683 2023
684#ifndef WCONTINUED 2024#ifndef WCONTINUED
685# define WCONTINUED 0 2025# define WCONTINUED 0
686#endif 2026#endif
687 2027
2028/* called on sigchld etc., calls waitpid */
688static void 2029static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 2030childcb (EV_P_ ev_signal *sw, int revents)
705{ 2031{
706 int pid, status; 2032 int pid, status;
707 2033
2034 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2035 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 2036 if (!WCONTINUED
2037 || errno != EINVAL
2038 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2039 return;
2040
710 /* make sure we are called again until all childs have been reaped */ 2041 /* make sure we are called again until all children have been reaped */
2042 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2043 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 2044
713 child_reap (EV_A_ sw, pid, pid, status); 2045 child_reap (EV_A_ pid, pid, status);
2046 if ((EV_PID_HASHSIZE) > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2047 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 2048}
717 2049
718#endif 2050#endif
719 2051
720/*****************************************************************************/ 2052/*****************************************************************************/
721 2053
2054#if EV_USE_IOCP
2055# include "ev_iocp.c"
2056#endif
722#if EV_USE_PORT 2057#if EV_USE_PORT
723# include "ev_port.c" 2058# include "ev_port.c"
724#endif 2059#endif
725#if EV_USE_KQUEUE 2060#if EV_USE_KQUEUE
726# include "ev_kqueue.c" 2061# include "ev_kqueue.c"
733#endif 2068#endif
734#if EV_USE_SELECT 2069#if EV_USE_SELECT
735# include "ev_select.c" 2070# include "ev_select.c"
736#endif 2071#endif
737 2072
738int 2073int ecb_cold
739ev_version_major (void) 2074ev_version_major (void)
740{ 2075{
741 return EV_VERSION_MAJOR; 2076 return EV_VERSION_MAJOR;
742} 2077}
743 2078
744int 2079int ecb_cold
745ev_version_minor (void) 2080ev_version_minor (void)
746{ 2081{
747 return EV_VERSION_MINOR; 2082 return EV_VERSION_MINOR;
748} 2083}
749 2084
750/* return true if we are running with elevated privileges and should ignore env variables */ 2085/* return true if we are running with elevated privileges and should ignore env variables */
751static int 2086int inline_size ecb_cold
752enable_secure (void) 2087enable_secure (void)
753{ 2088{
754#ifdef _WIN32 2089#ifdef _WIN32
755 return 0; 2090 return 0;
756#else 2091#else
757 return getuid () != geteuid () 2092 return getuid () != geteuid ()
758 || getgid () != getegid (); 2093 || getgid () != getegid ();
759#endif 2094#endif
760} 2095}
761 2096
2097unsigned int ecb_cold
2098ev_supported_backends (void)
2099{
2100 unsigned int flags = 0;
2101
2102 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2103 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2104 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2105 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2106 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2107
2108 return flags;
2109}
2110
2111unsigned int ecb_cold
2112ev_recommended_backends (void)
2113{
2114 unsigned int flags = ev_supported_backends ();
2115
2116#ifndef __NetBSD__
2117 /* kqueue is borked on everything but netbsd apparently */
2118 /* it usually doesn't work correctly on anything but sockets and pipes */
2119 flags &= ~EVBACKEND_KQUEUE;
2120#endif
2121#ifdef __APPLE__
2122 /* only select works correctly on that "unix-certified" platform */
2123 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2124 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2125#endif
2126#ifdef __FreeBSD__
2127 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2128#endif
2129
2130 return flags;
2131}
2132
2133unsigned int ecb_cold
2134ev_embeddable_backends (void)
2135{
2136 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2137
2138 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2139 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2140 flags &= ~EVBACKEND_EPOLL;
2141
2142 return flags;
2143}
2144
762unsigned int 2145unsigned int
2146ev_backend (EV_P)
2147{
2148 return backend;
2149}
2150
2151#if EV_FEATURE_API
2152unsigned int
2153ev_iteration (EV_P)
2154{
2155 return loop_count;
2156}
2157
2158unsigned int
763ev_method (EV_P) 2159ev_depth (EV_P)
764{ 2160{
765 return method; 2161 return loop_depth;
766} 2162}
767 2163
768static void 2164void
2165ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2166{
2167 io_blocktime = interval;
2168}
2169
2170void
2171ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2172{
2173 timeout_blocktime = interval;
2174}
2175
2176void
2177ev_set_userdata (EV_P_ void *data)
2178{
2179 userdata = data;
2180}
2181
2182void *
2183ev_userdata (EV_P)
2184{
2185 return userdata;
2186}
2187
2188void
2189ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2190{
2191 invoke_cb = invoke_pending_cb;
2192}
2193
2194void
2195ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2196{
2197 release_cb = release;
2198 acquire_cb = acquire;
2199}
2200#endif
2201
2202/* initialise a loop structure, must be zero-initialised */
2203static void noinline ecb_cold
769loop_init (EV_P_ unsigned int flags) 2204loop_init (EV_P_ unsigned int flags)
770{ 2205{
771 if (!method) 2206 if (!backend)
772 { 2207 {
2208 origflags = flags;
2209
2210#if EV_USE_REALTIME
2211 if (!have_realtime)
2212 {
2213 struct timespec ts;
2214
2215 if (!clock_gettime (CLOCK_REALTIME, &ts))
2216 have_realtime = 1;
2217 }
2218#endif
2219
773#if EV_USE_MONOTONIC 2220#if EV_USE_MONOTONIC
2221 if (!have_monotonic)
2222 {
2223 struct timespec ts;
2224
2225 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2226 have_monotonic = 1;
2227 }
2228#endif
2229
2230 /* pid check not overridable via env */
2231#ifndef _WIN32
2232 if (flags & EVFLAG_FORKCHECK)
2233 curpid = getpid ();
2234#endif
2235
2236 if (!(flags & EVFLAG_NOENV)
2237 && !enable_secure ()
2238 && getenv ("LIBEV_FLAGS"))
2239 flags = atoi (getenv ("LIBEV_FLAGS"));
2240
2241 ev_rt_now = ev_time ();
2242 mn_now = get_clock ();
2243 now_floor = mn_now;
2244 rtmn_diff = ev_rt_now - mn_now;
2245#if EV_FEATURE_API
2246 invoke_cb = ev_invoke_pending;
2247#endif
2248
2249 io_blocktime = 0.;
2250 timeout_blocktime = 0.;
2251 backend = 0;
2252 backend_fd = -1;
2253 sig_pending = 0;
2254#if EV_ASYNC_ENABLE
2255 async_pending = 0;
2256#endif
2257 pipe_write_skipped = 0;
2258 pipe_write_wanted = 0;
2259#if EV_USE_INOTIFY
2260 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2261#endif
2262#if EV_USE_SIGNALFD
2263 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2264#endif
2265
2266 if (!(flags & EVBACKEND_MASK))
2267 flags |= ev_recommended_backends ();
2268
2269#if EV_USE_IOCP
2270 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2271#endif
2272#if EV_USE_PORT
2273 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2274#endif
2275#if EV_USE_KQUEUE
2276 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2277#endif
2278#if EV_USE_EPOLL
2279 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2280#endif
2281#if EV_USE_POLL
2282 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2283#endif
2284#if EV_USE_SELECT
2285 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2286#endif
2287
2288 ev_prepare_init (&pending_w, pendingcb);
2289
2290#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2291 ev_init (&pipe_w, pipecb);
2292 ev_set_priority (&pipe_w, EV_MAXPRI);
2293#endif
2294 }
2295}
2296
2297/* free up a loop structure */
2298void ecb_cold
2299ev_loop_destroy (EV_P)
2300{
2301 int i;
2302
2303#if EV_MULTIPLICITY
2304 /* mimic free (0) */
2305 if (!EV_A)
2306 return;
2307#endif
2308
2309#if EV_CLEANUP_ENABLE
2310 /* queue cleanup watchers (and execute them) */
2311 if (expect_false (cleanupcnt))
2312 {
2313 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2314 EV_INVOKE_PENDING;
2315 }
2316#endif
2317
2318#if EV_CHILD_ENABLE
2319 if (ev_is_active (&childev))
2320 {
2321 ev_ref (EV_A); /* child watcher */
2322 ev_signal_stop (EV_A_ &childev);
2323 }
2324#endif
2325
2326 if (ev_is_active (&pipe_w))
2327 {
2328 /*ev_ref (EV_A);*/
2329 /*ev_io_stop (EV_A_ &pipe_w);*/
2330
2331#if EV_USE_EVENTFD
2332 if (evfd >= 0)
2333 close (evfd);
2334#endif
2335
2336 if (evpipe [0] >= 0)
2337 {
2338 EV_WIN32_CLOSE_FD (evpipe [0]);
2339 EV_WIN32_CLOSE_FD (evpipe [1]);
2340 }
2341 }
2342
2343#if EV_USE_SIGNALFD
2344 if (ev_is_active (&sigfd_w))
2345 close (sigfd);
2346#endif
2347
2348#if EV_USE_INOTIFY
2349 if (fs_fd >= 0)
2350 close (fs_fd);
2351#endif
2352
2353 if (backend_fd >= 0)
2354 close (backend_fd);
2355
2356#if EV_USE_IOCP
2357 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2358#endif
2359#if EV_USE_PORT
2360 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2361#endif
2362#if EV_USE_KQUEUE
2363 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2364#endif
2365#if EV_USE_EPOLL
2366 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2367#endif
2368#if EV_USE_POLL
2369 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2370#endif
2371#if EV_USE_SELECT
2372 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2373#endif
2374
2375 for (i = NUMPRI; i--; )
2376 {
2377 array_free (pending, [i]);
2378#if EV_IDLE_ENABLE
2379 array_free (idle, [i]);
2380#endif
2381 }
2382
2383 ev_free (anfds); anfds = 0; anfdmax = 0;
2384
2385 /* have to use the microsoft-never-gets-it-right macro */
2386 array_free (rfeed, EMPTY);
2387 array_free (fdchange, EMPTY);
2388 array_free (timer, EMPTY);
2389#if EV_PERIODIC_ENABLE
2390 array_free (periodic, EMPTY);
2391#endif
2392#if EV_FORK_ENABLE
2393 array_free (fork, EMPTY);
2394#endif
2395#if EV_CLEANUP_ENABLE
2396 array_free (cleanup, EMPTY);
2397#endif
2398 array_free (prepare, EMPTY);
2399 array_free (check, EMPTY);
2400#if EV_ASYNC_ENABLE
2401 array_free (async, EMPTY);
2402#endif
2403
2404 backend = 0;
2405
2406#if EV_MULTIPLICITY
2407 if (ev_is_default_loop (EV_A))
2408#endif
2409 ev_default_loop_ptr = 0;
2410#if EV_MULTIPLICITY
2411 else
2412 ev_free (EV_A);
2413#endif
2414}
2415
2416#if EV_USE_INOTIFY
2417inline_size void infy_fork (EV_P);
2418#endif
2419
2420inline_size void
2421loop_fork (EV_P)
2422{
2423#if EV_USE_PORT
2424 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2425#endif
2426#if EV_USE_KQUEUE
2427 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2428#endif
2429#if EV_USE_EPOLL
2430 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2431#endif
2432#if EV_USE_INOTIFY
2433 infy_fork (EV_A);
2434#endif
2435
2436 if (ev_is_active (&pipe_w))
2437 {
2438 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2439
2440 ev_ref (EV_A);
2441 ev_io_stop (EV_A_ &pipe_w);
2442
2443#if EV_USE_EVENTFD
2444 if (evfd >= 0)
2445 close (evfd);
2446#endif
2447
2448 if (evpipe [0] >= 0)
2449 {
2450 EV_WIN32_CLOSE_FD (evpipe [0]);
2451 EV_WIN32_CLOSE_FD (evpipe [1]);
2452 }
2453
2454#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2455 evpipe_init (EV_A);
2456 /* now iterate over everything, in case we missed something */
2457 pipecb (EV_A_ &pipe_w, EV_READ);
2458#endif
2459 }
2460
2461 postfork = 0;
2462}
2463
2464#if EV_MULTIPLICITY
2465
2466struct ev_loop * ecb_cold
2467ev_loop_new (unsigned int flags)
2468{
2469 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2470
2471 memset (EV_A, 0, sizeof (struct ev_loop));
2472 loop_init (EV_A_ flags);
2473
2474 if (ev_backend (EV_A))
2475 return EV_A;
2476
2477 ev_free (EV_A);
2478 return 0;
2479}
2480
2481#endif /* multiplicity */
2482
2483#if EV_VERIFY
2484static void noinline ecb_cold
2485verify_watcher (EV_P_ W w)
2486{
2487 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2488
2489 if (w->pending)
2490 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2491}
2492
2493static void noinline ecb_cold
2494verify_heap (EV_P_ ANHE *heap, int N)
2495{
2496 int i;
2497
2498 for (i = HEAP0; i < N + HEAP0; ++i)
2499 {
2500 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2501 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2502 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2503
2504 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2505 }
2506}
2507
2508static void noinline ecb_cold
2509array_verify (EV_P_ W *ws, int cnt)
2510{
2511 while (cnt--)
2512 {
2513 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2514 verify_watcher (EV_A_ ws [cnt]);
2515 }
2516}
2517#endif
2518
2519#if EV_FEATURE_API
2520void ecb_cold
2521ev_verify (EV_P)
2522{
2523#if EV_VERIFY
2524 int i;
2525 WL w;
2526
2527 assert (activecnt >= -1);
2528
2529 assert (fdchangemax >= fdchangecnt);
2530 for (i = 0; i < fdchangecnt; ++i)
2531 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2532
2533 assert (anfdmax >= 0);
2534 for (i = 0; i < anfdmax; ++i)
2535 for (w = anfds [i].head; w; w = w->next)
774 { 2536 {
775 struct timespec ts; 2537 verify_watcher (EV_A_ (W)w);
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2538 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
777 have_monotonic = 1; 2539 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
778 } 2540 }
779#endif
780 2541
781 ev_rt_now = ev_time (); 2542 assert (timermax >= timercnt);
782 mn_now = get_clock (); 2543 verify_heap (EV_A_ timers, timercnt);
783 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now;
785 2544
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2545#if EV_PERIODIC_ENABLE
787 flags = atoi (getenv ("LIBEV_FLAGS")); 2546 assert (periodicmax >= periodiccnt);
788 2547 verify_heap (EV_A_ periodics, periodiccnt);
789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
791
792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
796#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
798#endif
799#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
801#endif
802#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
804#endif
805#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
807#endif
808
809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
811 }
812}
813
814void
815loop_destroy (EV_P)
816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
822#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
824#endif
825#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
827#endif
828#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
830#endif
831#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
833#endif 2548#endif
834 2549
835 for (i = NUMPRI; i--; ) 2550 for (i = NUMPRI; i--; )
836 array_free (pending, [i]); 2551 {
2552 assert (pendingmax [i] >= pendingcnt [i]);
2553#if EV_IDLE_ENABLE
2554 assert (idleall >= 0);
2555 assert (idlemax [i] >= idlecnt [i]);
2556 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2557#endif
2558 }
837 2559
838 /* have to use the microsoft-never-gets-it-right macro */ 2560#if EV_FORK_ENABLE
839 array_free (fdchange, EMPTY0); 2561 assert (forkmax >= forkcnt);
840 array_free (timer, EMPTY0); 2562 array_verify (EV_A_ (W *)forks, forkcnt);
841#if EV_PERIODICS 2563#endif
842 array_free (periodic, EMPTY0); 2564
2565#if EV_CLEANUP_ENABLE
2566 assert (cleanupmax >= cleanupcnt);
2567 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2568#endif
2569
2570#if EV_ASYNC_ENABLE
2571 assert (asyncmax >= asynccnt);
2572 array_verify (EV_A_ (W *)asyncs, asynccnt);
2573#endif
2574
2575#if EV_PREPARE_ENABLE
2576 assert (preparemax >= preparecnt);
2577 array_verify (EV_A_ (W *)prepares, preparecnt);
2578#endif
2579
2580#if EV_CHECK_ENABLE
2581 assert (checkmax >= checkcnt);
2582 array_verify (EV_A_ (W *)checks, checkcnt);
2583#endif
2584
2585# if 0
2586#if EV_CHILD_ENABLE
2587 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2588 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2589#endif
843#endif 2590# endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif 2591#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 2592}
2593#endif
881 2594
882#if EV_MULTIPLICITY 2595#if EV_MULTIPLICITY
883struct ev_loop * 2596struct ev_loop * ecb_cold
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags)
916#else 2597#else
917int 2598int
2599#endif
918ev_default_loop (unsigned int flags) 2600ev_default_loop (unsigned int flags)
919#endif
920{ 2601{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 2602 if (!ev_default_loop_ptr)
926 { 2603 {
927#if EV_MULTIPLICITY 2604#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2605 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 2606#else
930 ev_default_loop_ptr = 1; 2607 ev_default_loop_ptr = 1;
931#endif 2608#endif
932 2609
933 loop_init (EV_A_ flags); 2610 loop_init (EV_A_ flags);
934 2611
935 if (ev_method (EV_A)) 2612 if (ev_backend (EV_A))
936 { 2613 {
937 siginit (EV_A); 2614#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 2615 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 2616 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 2617 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2618 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 2619#endif
949 2624
950 return ev_default_loop_ptr; 2625 return ev_default_loop_ptr;
951} 2626}
952 2627
953void 2628void
954ev_default_destroy (void) 2629ev_loop_fork (EV_P)
955{ 2630{
956#if EV_MULTIPLICITY 2631 postfork = 1; /* must be in line with ev_default_fork */
957 struct ev_loop *loop = ev_default_loop_ptr;
958#endif
959
960#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev);
963#endif
964
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A);
972} 2632}
2633
2634/*****************************************************************************/
973 2635
974void 2636void
975ev_default_fork (void) 2637ev_invoke (EV_P_ void *w, int revents)
976{ 2638{
977#if EV_MULTIPLICITY 2639 EV_CB_INVOKE ((W)w, revents);
978 struct ev_loop *loop = ev_default_loop_ptr;
979#endif
980
981 if (method)
982 postfork = 1;
983} 2640}
984 2641
985/*****************************************************************************/ 2642unsigned int
986 2643ev_pending_count (EV_P)
987static int
988any_pending (EV_P)
989{ 2644{
990 int pri; 2645 int pri;
2646 unsigned int count = 0;
991 2647
992 for (pri = NUMPRI; pri--; ) 2648 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri]) 2649 count += pendingcnt [pri];
994 return 1;
995 2650
996 return 0; 2651 return count;
997} 2652}
998 2653
999static void 2654void noinline
1000call_pending (EV_P) 2655ev_invoke_pending (EV_P)
1001{ 2656{
1002 int pri; 2657 int pri;
1003 2658
1004 for (pri = NUMPRI; pri--; ) 2659 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 2660 while (pendingcnt [pri])
1006 { 2661 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2662 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 2663
1009 if (p->w)
1010 {
1011 p->w->pending = 0; 2664 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 2665 EV_CB_INVOKE (p->w, p->events);
1013 } 2666 EV_FREQUENT_CHECK;
1014 } 2667 }
1015} 2668}
1016 2669
1017static void 2670#if EV_IDLE_ENABLE
2671/* make idle watchers pending. this handles the "call-idle */
2672/* only when higher priorities are idle" logic */
2673inline_size void
2674idle_reify (EV_P)
2675{
2676 if (expect_false (idleall))
2677 {
2678 int pri;
2679
2680 for (pri = NUMPRI; pri--; )
2681 {
2682 if (pendingcnt [pri])
2683 break;
2684
2685 if (idlecnt [pri])
2686 {
2687 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2688 break;
2689 }
2690 }
2691 }
2692}
2693#endif
2694
2695/* make timers pending */
2696inline_size void
1018timers_reify (EV_P) 2697timers_reify (EV_P)
1019{ 2698{
2699 EV_FREQUENT_CHECK;
2700
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 2701 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 2702 {
1022 struct ev_timer *w = timers [0]; 2703 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 2704 {
2705 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2706
2707 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2708
2709 /* first reschedule or stop timer */
2710 if (w->repeat)
2711 {
2712 ev_at (w) += w->repeat;
2713 if (ev_at (w) < mn_now)
2714 ev_at (w) = mn_now;
2715
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2716 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 2717
1031 ((WT)w)->at += w->repeat; 2718 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 2719 downheap (timers, timercnt, HEAP0);
2720 }
2721 else
2722 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2723
2724 EV_FREQUENT_CHECK;
2725 feed_reverse (EV_A_ (W)w);
1036 } 2726 }
1037 else 2727 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 2728
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2729 feed_reverse_done (EV_A_ EV_TIMER);
2730 }
2731}
2732
2733#if EV_PERIODIC_ENABLE
2734
2735static void noinline
2736periodic_recalc (EV_P_ ev_periodic *w)
2737{
2738 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2739 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2740
2741 /* the above almost always errs on the low side */
2742 while (at <= ev_rt_now)
1041 } 2743 {
1042} 2744 ev_tstamp nat = at + w->interval;
1043 2745
1044#if EV_PERIODICS 2746 /* when resolution fails us, we use ev_rt_now */
1045static void 2747 if (expect_false (nat == at))
2748 {
2749 at = ev_rt_now;
2750 break;
2751 }
2752
2753 at = nat;
2754 }
2755
2756 ev_at (w) = at;
2757}
2758
2759/* make periodics pending */
2760inline_size void
1046periodics_reify (EV_P) 2761periodics_reify (EV_P)
1047{ 2762{
2763 EV_FREQUENT_CHECK;
2764
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 2766 {
1050 struct ev_periodic *w = periodics [0]; 2767 int feed_count = 0;
1051 2768
2769 do
2770 {
2771 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2772
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2773 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 2774
1054 /* first reschedule or stop timer */ 2775 /* first reschedule or stop timer */
2776 if (w->reschedule_cb)
2777 {
2778 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2779
2780 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2781
2782 ANHE_at_cache (periodics [HEAP0]);
2783 downheap (periodics, periodiccnt, HEAP0);
2784 }
2785 else if (w->interval)
2786 {
2787 periodic_recalc (EV_A_ w);
2788 ANHE_at_cache (periodics [HEAP0]);
2789 downheap (periodics, periodiccnt, HEAP0);
2790 }
2791 else
2792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2793
2794 EV_FREQUENT_CHECK;
2795 feed_reverse (EV_A_ (W)w);
2796 }
2797 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2798
2799 feed_reverse_done (EV_A_ EV_PERIODIC);
2800 }
2801}
2802
2803/* simply recalculate all periodics */
2804/* TODO: maybe ensure that at least one event happens when jumping forward? */
2805static void noinline ecb_cold
2806periodics_reschedule (EV_P)
2807{
2808 int i;
2809
2810 /* adjust periodics after time jump */
2811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2812 {
2813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2814
1055 if (w->reschedule_cb) 2815 if (w->reschedule_cb)
2816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2817 else if (w->interval)
2818 periodic_recalc (EV_A_ w);
2819
2820 ANHE_at_cache (periodics [i]);
2821 }
2822
2823 reheap (periodics, periodiccnt);
2824}
2825#endif
2826
2827/* adjust all timers by a given offset */
2828static void noinline ecb_cold
2829timers_reschedule (EV_P_ ev_tstamp adjust)
2830{
2831 int i;
2832
2833 for (i = 0; i < timercnt; ++i)
2834 {
2835 ANHE *he = timers + i + HEAP0;
2836 ANHE_w (*he)->at += adjust;
2837 ANHE_at_cache (*he);
2838 }
2839}
2840
2841/* fetch new monotonic and realtime times from the kernel */
2842/* also detect if there was a timejump, and act accordingly */
2843inline_speed void
2844time_update (EV_P_ ev_tstamp max_block)
2845{
2846#if EV_USE_MONOTONIC
2847 if (expect_true (have_monotonic))
2848 {
2849 int i;
2850 ev_tstamp odiff = rtmn_diff;
2851
2852 mn_now = get_clock ();
2853
2854 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2855 /* interpolate in the meantime */
2856 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1056 { 2857 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2858 ev_rt_now = rtmn_diff + mn_now;
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2859 return;
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 2860 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 2861
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now; 2862 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 2863 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 2864
1114static void 2865 /* loop a few times, before making important decisions.
1115time_update (EV_P) 2866 * on the choice of "4": one iteration isn't enough,
1116{ 2867 * in case we get preempted during the calls to
1117 int i; 2868 * ev_time and get_clock. a second call is almost guaranteed
1118 2869 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 2870 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 2871 * in the unlikely event of having been preempted here.
1121 { 2872 */
1122 if (time_update_monotonic (EV_A)) 2873 for (i = 4; --i; )
1123 { 2874 {
1124 ev_tstamp odiff = rtmn_diff; 2875 ev_tstamp diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 2876 rtmn_diff = ev_rt_now - mn_now;
1129 2877
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2878 diff = odiff - rtmn_diff;
2879
2880 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 2881 return; /* all is well */
1132 2882
1133 ev_rt_now = ev_time (); 2883 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 2884 mn_now = get_clock ();
1135 now_floor = mn_now; 2885 now_floor = mn_now;
1136 } 2886 }
1137 2887
2888 /* no timer adjustment, as the monotonic clock doesn't jump */
2889 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 2890# if EV_PERIODIC_ENABLE
2891 periodics_reschedule (EV_A);
2892# endif
2893 }
2894 else
2895#endif
2896 {
2897 ev_rt_now = ev_time ();
2898
2899 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2900 {
2901 /* adjust timers. this is easy, as the offset is the same for all of them */
2902 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2903#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 2904 periodics_reschedule (EV_A);
1140# endif 2905#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 2906 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 2907
1161 mn_now = ev_rt_now; 2908 mn_now = ev_rt_now;
1162 } 2909 }
1163} 2910}
1164 2911
1165void 2912void
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 2913ev_run (EV_P_ int flags)
1181{ 2914{
1182 double block; 2915#if EV_FEATURE_API
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2916 ++loop_depth;
2917#endif
1184 2918
1185 while (activecnt) 2919 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2920
2921 loop_done = EVBREAK_CANCEL;
2922
2923 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2924
2925 do
1186 { 2926 {
2927#if EV_VERIFY >= 2
2928 ev_verify (EV_A);
2929#endif
2930
2931#ifndef _WIN32
2932 if (expect_false (curpid)) /* penalise the forking check even more */
2933 if (expect_false (getpid () != curpid))
2934 {
2935 curpid = getpid ();
2936 postfork = 1;
2937 }
2938#endif
2939
2940#if EV_FORK_ENABLE
2941 /* we might have forked, so queue fork handlers */
2942 if (expect_false (postfork))
2943 if (forkcnt)
2944 {
2945 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2946 EV_INVOKE_PENDING;
2947 }
2948#endif
2949
2950#if EV_PREPARE_ENABLE
1187 /* queue check watchers (and execute them) */ 2951 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 2952 if (expect_false (preparecnt))
1189 { 2953 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2954 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 2955 EV_INVOKE_PENDING;
1192 } 2956 }
2957#endif
2958
2959 if (expect_false (loop_done))
2960 break;
1193 2961
1194 /* we might have forked, so reify kernel state if necessary */ 2962 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 2963 if (expect_false (postfork))
1196 loop_fork (EV_A); 2964 loop_fork (EV_A);
1197 2965
1198 /* update fd-related kernel structures */ 2966 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 2967 fd_reify (EV_A);
1200 2968
1201 /* calculate blocking time */ 2969 /* calculate blocking time */
2970 {
2971 ev_tstamp waittime = 0.;
2972 ev_tstamp sleeptime = 0.;
1202 2973
1203 /* we only need this for !monotonic clock or timers, but as we basically 2974 /* remember old timestamp for io_blocktime calculation */
1204 always have timers, we just calculate it always */ 2975 ev_tstamp prev_mn_now = mn_now;
1205#if EV_USE_MONOTONIC 2976
1206 if (expect_true (have_monotonic)) 2977 /* update time to cancel out callback processing overhead */
1207 time_update_monotonic (EV_A); 2978 time_update (EV_A_ 1e100);
1208 else 2979
1209#endif 2980 /* from now on, we want a pipe-wake-up */
2981 pipe_write_wanted = 1;
2982
2983 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2984
2985 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1210 { 2986 {
1211 ev_rt_now = ev_time ();
1212 mn_now = ev_rt_now;
1213 }
1214
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 2987 waittime = MAX_BLOCKTIME;
1220 2988
1221 if (timercnt) 2989 if (timercnt)
1222 { 2990 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1224 if (block > to) block = to; 2992 if (waittime > to) waittime = to;
1225 } 2993 }
1226 2994
1227#if EV_PERIODICS 2995#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 2996 if (periodiccnt)
1229 { 2997 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1231 if (block > to) block = to; 2999 if (waittime > to) waittime = to;
1232 } 3000 }
1233#endif 3001#endif
1234 3002
1235 if (block < 0.) block = 0.; 3003 /* don't let timeouts decrease the waittime below timeout_blocktime */
3004 if (expect_false (waittime < timeout_blocktime))
3005 waittime = timeout_blocktime;
3006
3007 /* at this point, we NEED to wait, so we have to ensure */
3008 /* to pass a minimum nonzero value to the backend */
3009 if (expect_false (waittime < backend_mintime))
3010 waittime = backend_mintime;
3011
3012 /* extra check because io_blocktime is commonly 0 */
3013 if (expect_false (io_blocktime))
3014 {
3015 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3016
3017 if (sleeptime > waittime - backend_mintime)
3018 sleeptime = waittime - backend_mintime;
3019
3020 if (expect_true (sleeptime > 0.))
3021 {
3022 ev_sleep (sleeptime);
3023 waittime -= sleeptime;
3024 }
3025 }
1236 } 3026 }
1237 3027
1238 method_poll (EV_A_ block); 3028#if EV_FEATURE_API
3029 ++loop_count;
3030#endif
3031 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3032 backend_poll (EV_A_ waittime);
3033 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1239 3034
3035 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3036
3037 if (pipe_write_skipped)
3038 {
3039 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3040 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3041 }
3042
3043
1240 /* update ev_rt_now, do magic */ 3044 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 3045 time_update (EV_A_ waittime + sleeptime);
3046 }
1242 3047
1243 /* queue pending timers and reschedule them */ 3048 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 3049 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 3050#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 3051 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 3052#endif
1248 3053
3054#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 3055 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 3056 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3057#endif
1252 3058
3059#if EV_CHECK_ENABLE
1253 /* queue check watchers, to be executed first */ 3060 /* queue check watchers, to be executed first */
1254 if (checkcnt) 3061 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3062 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3063#endif
1256 3064
1257 call_pending (EV_A); 3065 EV_INVOKE_PENDING;
1258
1259 if (loop_done)
1260 break;
1261 } 3066 }
3067 while (expect_true (
3068 activecnt
3069 && !loop_done
3070 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3071 ));
1262 3072
1263 if (loop_done != 2) 3073 if (loop_done == EVBREAK_ONE)
1264 loop_done = 0; 3074 loop_done = EVBREAK_CANCEL;
3075
3076#if EV_FEATURE_API
3077 --loop_depth;
3078#endif
1265} 3079}
1266 3080
1267void 3081void
1268ev_unloop (EV_P_ int how) 3082ev_break (EV_P_ int how)
1269{ 3083{
1270 loop_done = how; 3084 loop_done = how;
1271} 3085}
1272 3086
3087void
3088ev_ref (EV_P)
3089{
3090 ++activecnt;
3091}
3092
3093void
3094ev_unref (EV_P)
3095{
3096 --activecnt;
3097}
3098
3099void
3100ev_now_update (EV_P)
3101{
3102 time_update (EV_A_ 1e100);
3103}
3104
3105void
3106ev_suspend (EV_P)
3107{
3108 ev_now_update (EV_A);
3109}
3110
3111void
3112ev_resume (EV_P)
3113{
3114 ev_tstamp mn_prev = mn_now;
3115
3116 ev_now_update (EV_A);
3117 timers_reschedule (EV_A_ mn_now - mn_prev);
3118#if EV_PERIODIC_ENABLE
3119 /* TODO: really do this? */
3120 periodics_reschedule (EV_A);
3121#endif
3122}
3123
1273/*****************************************************************************/ 3124/*****************************************************************************/
3125/* singly-linked list management, used when the expected list length is short */
1274 3126
1275inline void 3127inline_size void
1276wlist_add (WL *head, WL elem) 3128wlist_add (WL *head, WL elem)
1277{ 3129{
1278 elem->next = *head; 3130 elem->next = *head;
1279 *head = elem; 3131 *head = elem;
1280} 3132}
1281 3133
1282inline void 3134inline_size void
1283wlist_del (WL *head, WL elem) 3135wlist_del (WL *head, WL elem)
1284{ 3136{
1285 while (*head) 3137 while (*head)
1286 { 3138 {
1287 if (*head == elem) 3139 if (expect_true (*head == elem))
1288 { 3140 {
1289 *head = elem->next; 3141 *head = elem->next;
1290 return; 3142 break;
1291 } 3143 }
1292 3144
1293 head = &(*head)->next; 3145 head = &(*head)->next;
1294 } 3146 }
1295} 3147}
1296 3148
3149/* internal, faster, version of ev_clear_pending */
1297inline void 3150inline_speed void
1298ev_clear_pending (EV_P_ W w) 3151clear_pending (EV_P_ W w)
1299{ 3152{
1300 if (w->pending) 3153 if (w->pending)
1301 { 3154 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3155 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 3156 w->pending = 0;
1304 } 3157 }
1305} 3158}
1306 3159
3160int
3161ev_clear_pending (EV_P_ void *w)
3162{
3163 W w_ = (W)w;
3164 int pending = w_->pending;
3165
3166 if (expect_true (pending))
3167 {
3168 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3169 p->w = (W)&pending_w;
3170 w_->pending = 0;
3171 return p->events;
3172 }
3173 else
3174 return 0;
3175}
3176
1307inline void 3177inline_size void
3178pri_adjust (EV_P_ W w)
3179{
3180 int pri = ev_priority (w);
3181 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3182 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3183 ev_set_priority (w, pri);
3184}
3185
3186inline_speed void
1308ev_start (EV_P_ W w, int active) 3187ev_start (EV_P_ W w, int active)
1309{ 3188{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3189 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 3190 w->active = active;
1314 ev_ref (EV_A); 3191 ev_ref (EV_A);
1315} 3192}
1316 3193
1317inline void 3194inline_size void
1318ev_stop (EV_P_ W w) 3195ev_stop (EV_P_ W w)
1319{ 3196{
1320 ev_unref (EV_A); 3197 ev_unref (EV_A);
1321 w->active = 0; 3198 w->active = 0;
1322} 3199}
1323 3200
1324/*****************************************************************************/ 3201/*****************************************************************************/
1325 3202
1326void 3203void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 3204ev_io_start (EV_P_ ev_io *w)
1328{ 3205{
1329 int fd = w->fd; 3206 int fd = w->fd;
1330 3207
1331 if (ev_is_active (w)) 3208 if (expect_false (ev_is_active (w)))
1332 return; 3209 return;
1333 3210
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 3211 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3212 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3213
3214 EV_FREQUENT_CHECK;
1335 3215
1336 ev_start (EV_A_ (W)w, 1); 3216 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3217 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3218 wlist_add (&anfds[fd].head, (WL)w);
1339 3219
1340 fd_change (EV_A_ fd); 3220 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1341} 3221 w->events &= ~EV__IOFDSET;
1342 3222
1343void 3223 EV_FREQUENT_CHECK;
3224}
3225
3226void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 3227ev_io_stop (EV_P_ ev_io *w)
1345{ 3228{
1346 ev_clear_pending (EV_A_ (W)w); 3229 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 3230 if (expect_false (!ev_is_active (w)))
1348 return; 3231 return;
1349 3232
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3233 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 3234
3235 EV_FREQUENT_CHECK;
3236
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3237 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 3238 ev_stop (EV_A_ (W)w);
1354 3239
1355 fd_change (EV_A_ w->fd); 3240 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1356}
1357 3241
1358void 3242 EV_FREQUENT_CHECK;
3243}
3244
3245void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 3246ev_timer_start (EV_P_ ev_timer *w)
1360{ 3247{
1361 if (ev_is_active (w)) 3248 if (expect_false (ev_is_active (w)))
1362 return; 3249 return;
1363 3250
1364 ((WT)w)->at += mn_now; 3251 ev_at (w) += mn_now;
1365 3252
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3253 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 3254
3255 EV_FREQUENT_CHECK;
3256
3257 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 3258 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3259 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 3260 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 3261 ANHE_at_cache (timers [ev_active (w)]);
3262 upheap (timers, ev_active (w));
1372 3263
3264 EV_FREQUENT_CHECK;
3265
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3266 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 3267}
1375 3268
1376void 3269void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 3270ev_timer_stop (EV_P_ ev_timer *w)
1378{ 3271{
1379 ev_clear_pending (EV_A_ (W)w); 3272 clear_pending (EV_A_ (W)w);
1380 if (!ev_is_active (w)) 3273 if (expect_false (!ev_is_active (w)))
1381 return; 3274 return;
1382 3275
3276 EV_FREQUENT_CHECK;
3277
3278 {
3279 int active = ev_active (w);
3280
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3281 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 3282
1385 if (((W)w)->active < timercnt--) 3283 --timercnt;
3284
3285 if (expect_true (active < timercnt + HEAP0))
1386 { 3286 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 3287 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3288 adjustheap (timers, timercnt, active);
1389 } 3289 }
3290 }
1390 3291
1391 ((WT)w)->at -= mn_now; 3292 ev_at (w) -= mn_now;
1392 3293
1393 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
1394}
1395 3295
1396void 3296 EV_FREQUENT_CHECK;
3297}
3298
3299void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 3300ev_timer_again (EV_P_ ev_timer *w)
1398{ 3301{
3302 EV_FREQUENT_CHECK;
3303
1399 if (ev_is_active (w)) 3304 if (ev_is_active (w))
1400 { 3305 {
1401 if (w->repeat) 3306 if (w->repeat)
1402 { 3307 {
1403 ((WT)w)->at = mn_now + w->repeat; 3308 ev_at (w) = mn_now + w->repeat;
3309 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3310 adjustheap (timers, timercnt, ev_active (w));
1405 } 3311 }
1406 else 3312 else
1407 ev_timer_stop (EV_A_ w); 3313 ev_timer_stop (EV_A_ w);
1408 } 3314 }
1409 else if (w->repeat) 3315 else if (w->repeat)
1410 { 3316 {
1411 w->at = w->repeat; 3317 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 3318 ev_timer_start (EV_A_ w);
1413 } 3319 }
1414}
1415 3320
3321 EV_FREQUENT_CHECK;
3322}
3323
3324ev_tstamp
3325ev_timer_remaining (EV_P_ ev_timer *w)
3326{
3327 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3328}
3329
1416#if EV_PERIODICS 3330#if EV_PERIODIC_ENABLE
1417void 3331void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 3332ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 3333{
1420 if (ev_is_active (w)) 3334 if (expect_false (ev_is_active (w)))
1421 return; 3335 return;
1422 3336
1423 if (w->reschedule_cb) 3337 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3338 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 3339 else if (w->interval)
1426 { 3340 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3341 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 3342 periodic_recalc (EV_A_ w);
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 } 3343 }
3344 else
3345 ev_at (w) = w->offset;
1431 3346
3347 EV_FREQUENT_CHECK;
3348
3349 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 3350 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3351 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 3352 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 3353 ANHE_at_cache (periodics [ev_active (w)]);
3354 upheap (periodics, ev_active (w));
1436 3355
3356 EV_FREQUENT_CHECK;
3357
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3358 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 3359}
1439 3360
1440void 3361void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 3362ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 3363{
1443 ev_clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w)) 3365 if (expect_false (!ev_is_active (w)))
1445 return; 3366 return;
1446 3367
3368 EV_FREQUENT_CHECK;
3369
3370 {
3371 int active = ev_active (w);
3372
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3373 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 3374
1449 if (((W)w)->active < periodiccnt--) 3375 --periodiccnt;
3376
3377 if (expect_true (active < periodiccnt + HEAP0))
1450 { 3378 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3379 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3380 adjustheap (periodics, periodiccnt, active);
1453 } 3381 }
3382 }
1454 3383
1455 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
1456}
1457 3385
1458void 3386 EV_FREQUENT_CHECK;
3387}
3388
3389void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 3390ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 3391{
1461 /* TODO: use adjustheap and recalculation */ 3392 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 3393 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 3394 ev_periodic_start (EV_A_ w);
1464} 3395}
1465#endif 3396#endif
1466 3397
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (ev_is_active (w))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (!ev_is_active (w))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 3398#ifndef SA_RESTART
1534# define SA_RESTART 0 3399# define SA_RESTART 0
1535#endif 3400#endif
1536 3401
3402#if EV_SIGNAL_ENABLE
3403
3404void noinline
3405ev_signal_start (EV_P_ ev_signal *w)
3406{
3407 if (expect_false (ev_is_active (w)))
3408 return;
3409
3410 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3411
3412#if EV_MULTIPLICITY
3413 assert (("libev: a signal must not be attached to two different loops",
3414 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3415
3416 signals [w->signum - 1].loop = EV_A;
3417#endif
3418
3419 EV_FREQUENT_CHECK;
3420
3421#if EV_USE_SIGNALFD
3422 if (sigfd == -2)
3423 {
3424 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3425 if (sigfd < 0 && errno == EINVAL)
3426 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3427
3428 if (sigfd >= 0)
3429 {
3430 fd_intern (sigfd); /* doing it twice will not hurt */
3431
3432 sigemptyset (&sigfd_set);
3433
3434 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3435 ev_set_priority (&sigfd_w, EV_MAXPRI);
3436 ev_io_start (EV_A_ &sigfd_w);
3437 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3438 }
3439 }
3440
3441 if (sigfd >= 0)
3442 {
3443 /* TODO: check .head */
3444 sigaddset (&sigfd_set, w->signum);
3445 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3446
3447 signalfd (sigfd, &sigfd_set, 0);
3448 }
3449#endif
3450
3451 ev_start (EV_A_ (W)w, 1);
3452 wlist_add (&signals [w->signum - 1].head, (WL)w);
3453
3454 if (!((WL)w)->next)
3455# if EV_USE_SIGNALFD
3456 if (sigfd < 0) /*TODO*/
3457# endif
3458 {
3459# ifdef _WIN32
3460 evpipe_init (EV_A);
3461
3462 signal (w->signum, ev_sighandler);
3463# else
3464 struct sigaction sa;
3465
3466 evpipe_init (EV_A);
3467
3468 sa.sa_handler = ev_sighandler;
3469 sigfillset (&sa.sa_mask);
3470 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3471 sigaction (w->signum, &sa, 0);
3472
3473 if (origflags & EVFLAG_NOSIGMASK)
3474 {
3475 sigemptyset (&sa.sa_mask);
3476 sigaddset (&sa.sa_mask, w->signum);
3477 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3478 }
3479#endif
3480 }
3481
3482 EV_FREQUENT_CHECK;
3483}
3484
3485void noinline
3486ev_signal_stop (EV_P_ ev_signal *w)
3487{
3488 clear_pending (EV_A_ (W)w);
3489 if (expect_false (!ev_is_active (w)))
3490 return;
3491
3492 EV_FREQUENT_CHECK;
3493
3494 wlist_del (&signals [w->signum - 1].head, (WL)w);
3495 ev_stop (EV_A_ (W)w);
3496
3497 if (!signals [w->signum - 1].head)
3498 {
3499#if EV_MULTIPLICITY
3500 signals [w->signum - 1].loop = 0; /* unattach from signal */
3501#endif
3502#if EV_USE_SIGNALFD
3503 if (sigfd >= 0)
3504 {
3505 sigset_t ss;
3506
3507 sigemptyset (&ss);
3508 sigaddset (&ss, w->signum);
3509 sigdelset (&sigfd_set, w->signum);
3510
3511 signalfd (sigfd, &sigfd_set, 0);
3512 sigprocmask (SIG_UNBLOCK, &ss, 0);
3513 }
3514 else
3515#endif
3516 signal (w->signum, SIG_DFL);
3517 }
3518
3519 EV_FREQUENT_CHECK;
3520}
3521
3522#endif
3523
3524#if EV_CHILD_ENABLE
3525
1537void 3526void
1538ev_signal_start (EV_P_ struct ev_signal *w) 3527ev_child_start (EV_P_ ev_child *w)
1539{ 3528{
1540#if EV_MULTIPLICITY 3529#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3530 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 3531#endif
1543 if (ev_is_active (w)) 3532 if (expect_false (ev_is_active (w)))
1544 return; 3533 return;
1545 3534
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3535 EV_FREQUENT_CHECK;
1547 3536
1548 ev_start (EV_A_ (W)w, 1); 3537 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3538 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 3539
1552 if (!((WL)w)->next) 3540 EV_FREQUENT_CHECK;
3541}
3542
3543void
3544ev_child_stop (EV_P_ ev_child *w)
3545{
3546 clear_pending (EV_A_ (W)w);
3547 if (expect_false (!ev_is_active (w)))
3548 return;
3549
3550 EV_FREQUENT_CHECK;
3551
3552 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3553 ev_stop (EV_A_ (W)w);
3554
3555 EV_FREQUENT_CHECK;
3556}
3557
3558#endif
3559
3560#if EV_STAT_ENABLE
3561
3562# ifdef _WIN32
3563# undef lstat
3564# define lstat(a,b) _stati64 (a,b)
3565# endif
3566
3567#define DEF_STAT_INTERVAL 5.0074891
3568#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3569#define MIN_STAT_INTERVAL 0.1074891
3570
3571static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3572
3573#if EV_USE_INOTIFY
3574
3575/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3576# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3577
3578static void noinline
3579infy_add (EV_P_ ev_stat *w)
3580{
3581 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3582
3583 if (w->wd >= 0)
3584 {
3585 struct statfs sfs;
3586
3587 /* now local changes will be tracked by inotify, but remote changes won't */
3588 /* unless the filesystem is known to be local, we therefore still poll */
3589 /* also do poll on <2.6.25, but with normal frequency */
3590
3591 if (!fs_2625)
3592 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3593 else if (!statfs (w->path, &sfs)
3594 && (sfs.f_type == 0x1373 /* devfs */
3595 || sfs.f_type == 0xEF53 /* ext2/3 */
3596 || sfs.f_type == 0x3153464a /* jfs */
3597 || sfs.f_type == 0x52654973 /* reiser3 */
3598 || sfs.f_type == 0x01021994 /* tempfs */
3599 || sfs.f_type == 0x58465342 /* xfs */))
3600 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3601 else
3602 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1553 { 3603 }
3604 else
3605 {
3606 /* can't use inotify, continue to stat */
3607 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3608
3609 /* if path is not there, monitor some parent directory for speedup hints */
3610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3611 /* but an efficiency issue only */
3612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3613 {
3614 char path [4096];
3615 strcpy (path, w->path);
3616
3617 do
3618 {
3619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3621
3622 char *pend = strrchr (path, '/');
3623
3624 if (!pend || pend == path)
3625 break;
3626
3627 *pend = 0;
3628 w->wd = inotify_add_watch (fs_fd, path, mask);
3629 }
3630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3631 }
3632 }
3633
3634 if (w->wd >= 0)
3635 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3636
3637 /* now re-arm timer, if required */
3638 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3639 ev_timer_again (EV_A_ &w->timer);
3640 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3641}
3642
3643static void noinline
3644infy_del (EV_P_ ev_stat *w)
3645{
3646 int slot;
3647 int wd = w->wd;
3648
3649 if (wd < 0)
3650 return;
3651
3652 w->wd = -2;
3653 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3654 wlist_del (&fs_hash [slot].head, (WL)w);
3655
3656 /* remove this watcher, if others are watching it, they will rearm */
3657 inotify_rm_watch (fs_fd, wd);
3658}
3659
3660static void noinline
3661infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3662{
3663 if (slot < 0)
3664 /* overflow, need to check for all hash slots */
3665 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3666 infy_wd (EV_A_ slot, wd, ev);
3667 else
3668 {
3669 WL w_;
3670
3671 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3672 {
3673 ev_stat *w = (ev_stat *)w_;
3674 w_ = w_->next; /* lets us remove this watcher and all before it */
3675
3676 if (w->wd == wd || wd == -1)
3677 {
3678 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3679 {
3680 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3681 w->wd = -1;
3682 infy_add (EV_A_ w); /* re-add, no matter what */
3683 }
3684
3685 stat_timer_cb (EV_A_ &w->timer, 0);
3686 }
3687 }
3688 }
3689}
3690
3691static void
3692infy_cb (EV_P_ ev_io *w, int revents)
3693{
3694 char buf [EV_INOTIFY_BUFSIZE];
3695 int ofs;
3696 int len = read (fs_fd, buf, sizeof (buf));
3697
3698 for (ofs = 0; ofs < len; )
3699 {
3700 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3701 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3702 ofs += sizeof (struct inotify_event) + ev->len;
3703 }
3704}
3705
3706inline_size void ecb_cold
3707ev_check_2625 (EV_P)
3708{
3709 /* kernels < 2.6.25 are borked
3710 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3711 */
3712 if (ev_linux_version () < 0x020619)
3713 return;
3714
3715 fs_2625 = 1;
3716}
3717
3718inline_size int
3719infy_newfd (void)
3720{
3721#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3722 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3723 if (fd >= 0)
3724 return fd;
3725#endif
3726 return inotify_init ();
3727}
3728
3729inline_size void
3730infy_init (EV_P)
3731{
3732 if (fs_fd != -2)
3733 return;
3734
3735 fs_fd = -1;
3736
3737 ev_check_2625 (EV_A);
3738
3739 fs_fd = infy_newfd ();
3740
3741 if (fs_fd >= 0)
3742 {
3743 fd_intern (fs_fd);
3744 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3745 ev_set_priority (&fs_w, EV_MAXPRI);
3746 ev_io_start (EV_A_ &fs_w);
3747 ev_unref (EV_A);
3748 }
3749}
3750
3751inline_size void
3752infy_fork (EV_P)
3753{
3754 int slot;
3755
3756 if (fs_fd < 0)
3757 return;
3758
3759 ev_ref (EV_A);
3760 ev_io_stop (EV_A_ &fs_w);
3761 close (fs_fd);
3762 fs_fd = infy_newfd ();
3763
3764 if (fs_fd >= 0)
3765 {
3766 fd_intern (fs_fd);
3767 ev_io_set (&fs_w, fs_fd, EV_READ);
3768 ev_io_start (EV_A_ &fs_w);
3769 ev_unref (EV_A);
3770 }
3771
3772 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3773 {
3774 WL w_ = fs_hash [slot].head;
3775 fs_hash [slot].head = 0;
3776
3777 while (w_)
3778 {
3779 ev_stat *w = (ev_stat *)w_;
3780 w_ = w_->next; /* lets us add this watcher */
3781
3782 w->wd = -1;
3783
3784 if (fs_fd >= 0)
3785 infy_add (EV_A_ w); /* re-add, no matter what */
3786 else
3787 {
3788 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3789 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3790 ev_timer_again (EV_A_ &w->timer);
3791 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3792 }
3793 }
3794 }
3795}
3796
3797#endif
3798
1554#if _WIN32 3799#ifdef _WIN32
1555 signal (w->signum, sighandler); 3800# define EV_LSTAT(p,b) _stati64 (p, b)
1556#else 3801#else
1557 struct sigaction sa; 3802# define EV_LSTAT(p,b) lstat (p, b)
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif 3803#endif
1563 }
1564}
1565 3804
1566void 3805void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 3806ev_stat_stat (EV_P_ ev_stat *w)
1568{ 3807{
1569 ev_clear_pending (EV_A_ (W)w); 3808 if (lstat (w->path, &w->attr) < 0)
1570 if (!ev_is_active (w)) 3809 w->attr.st_nlink = 0;
3810 else if (!w->attr.st_nlink)
3811 w->attr.st_nlink = 1;
3812}
3813
3814static void noinline
3815stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3816{
3817 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3818
3819 ev_statdata prev = w->attr;
3820 ev_stat_stat (EV_A_ w);
3821
3822 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3823 if (
3824 prev.st_dev != w->attr.st_dev
3825 || prev.st_ino != w->attr.st_ino
3826 || prev.st_mode != w->attr.st_mode
3827 || prev.st_nlink != w->attr.st_nlink
3828 || prev.st_uid != w->attr.st_uid
3829 || prev.st_gid != w->attr.st_gid
3830 || prev.st_rdev != w->attr.st_rdev
3831 || prev.st_size != w->attr.st_size
3832 || prev.st_atime != w->attr.st_atime
3833 || prev.st_mtime != w->attr.st_mtime
3834 || prev.st_ctime != w->attr.st_ctime
3835 ) {
3836 /* we only update w->prev on actual differences */
3837 /* in case we test more often than invoke the callback, */
3838 /* to ensure that prev is always different to attr */
3839 w->prev = prev;
3840
3841 #if EV_USE_INOTIFY
3842 if (fs_fd >= 0)
3843 {
3844 infy_del (EV_A_ w);
3845 infy_add (EV_A_ w);
3846 ev_stat_stat (EV_A_ w); /* avoid race... */
3847 }
3848 #endif
3849
3850 ev_feed_event (EV_A_ w, EV_STAT);
3851 }
3852}
3853
3854void
3855ev_stat_start (EV_P_ ev_stat *w)
3856{
3857 if (expect_false (ev_is_active (w)))
1571 return; 3858 return;
1572 3859
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3860 ev_stat_stat (EV_A_ w);
3861
3862 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3863 w->interval = MIN_STAT_INTERVAL;
3864
3865 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3866 ev_set_priority (&w->timer, ev_priority (w));
3867
3868#if EV_USE_INOTIFY
3869 infy_init (EV_A);
3870
3871 if (fs_fd >= 0)
3872 infy_add (EV_A_ w);
3873 else
3874#endif
3875 {
3876 ev_timer_again (EV_A_ &w->timer);
3877 ev_unref (EV_A);
3878 }
3879
3880 ev_start (EV_A_ (W)w, 1);
3881
3882 EV_FREQUENT_CHECK;
3883}
3884
3885void
3886ev_stat_stop (EV_P_ ev_stat *w)
3887{
3888 clear_pending (EV_A_ (W)w);
3889 if (expect_false (!ev_is_active (w)))
3890 return;
3891
3892 EV_FREQUENT_CHECK;
3893
3894#if EV_USE_INOTIFY
3895 infy_del (EV_A_ w);
3896#endif
3897
3898 if (ev_is_active (&w->timer))
3899 {
3900 ev_ref (EV_A);
3901 ev_timer_stop (EV_A_ &w->timer);
3902 }
3903
1574 ev_stop (EV_A_ (W)w); 3904 ev_stop (EV_A_ (W)w);
1575 3905
1576 if (!signals [w->signum - 1].head) 3906 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 3907}
3908#endif
1579 3909
3910#if EV_IDLE_ENABLE
1580void 3911void
1581ev_child_start (EV_P_ struct ev_child *w) 3912ev_idle_start (EV_P_ ev_idle *w)
1582{ 3913{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif
1586 if (ev_is_active (w)) 3914 if (expect_false (ev_is_active (w)))
1587 return; 3915 return;
1588 3916
3917 pri_adjust (EV_A_ (W)w);
3918
3919 EV_FREQUENT_CHECK;
3920
3921 {
3922 int active = ++idlecnt [ABSPRI (w)];
3923
3924 ++idleall;
3925 ev_start (EV_A_ (W)w, active);
3926
3927 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3928 idles [ABSPRI (w)][active - 1] = w;
3929 }
3930
3931 EV_FREQUENT_CHECK;
3932}
3933
3934void
3935ev_idle_stop (EV_P_ ev_idle *w)
3936{
3937 clear_pending (EV_A_ (W)w);
3938 if (expect_false (!ev_is_active (w)))
3939 return;
3940
3941 EV_FREQUENT_CHECK;
3942
3943 {
3944 int active = ev_active (w);
3945
3946 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3947 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3948
3949 ev_stop (EV_A_ (W)w);
3950 --idleall;
3951 }
3952
3953 EV_FREQUENT_CHECK;
3954}
3955#endif
3956
3957#if EV_PREPARE_ENABLE
3958void
3959ev_prepare_start (EV_P_ ev_prepare *w)
3960{
3961 if (expect_false (ev_is_active (w)))
3962 return;
3963
3964 EV_FREQUENT_CHECK;
3965
3966 ev_start (EV_A_ (W)w, ++preparecnt);
3967 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3968 prepares [preparecnt - 1] = w;
3969
3970 EV_FREQUENT_CHECK;
3971}
3972
3973void
3974ev_prepare_stop (EV_P_ ev_prepare *w)
3975{
3976 clear_pending (EV_A_ (W)w);
3977 if (expect_false (!ev_is_active (w)))
3978 return;
3979
3980 EV_FREQUENT_CHECK;
3981
3982 {
3983 int active = ev_active (w);
3984
3985 prepares [active - 1] = prepares [--preparecnt];
3986 ev_active (prepares [active - 1]) = active;
3987 }
3988
3989 ev_stop (EV_A_ (W)w);
3990
3991 EV_FREQUENT_CHECK;
3992}
3993#endif
3994
3995#if EV_CHECK_ENABLE
3996void
3997ev_check_start (EV_P_ ev_check *w)
3998{
3999 if (expect_false (ev_is_active (w)))
4000 return;
4001
4002 EV_FREQUENT_CHECK;
4003
4004 ev_start (EV_A_ (W)w, ++checkcnt);
4005 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4006 checks [checkcnt - 1] = w;
4007
4008 EV_FREQUENT_CHECK;
4009}
4010
4011void
4012ev_check_stop (EV_P_ ev_check *w)
4013{
4014 clear_pending (EV_A_ (W)w);
4015 if (expect_false (!ev_is_active (w)))
4016 return;
4017
4018 EV_FREQUENT_CHECK;
4019
4020 {
4021 int active = ev_active (w);
4022
4023 checks [active - 1] = checks [--checkcnt];
4024 ev_active (checks [active - 1]) = active;
4025 }
4026
4027 ev_stop (EV_A_ (W)w);
4028
4029 EV_FREQUENT_CHECK;
4030}
4031#endif
4032
4033#if EV_EMBED_ENABLE
4034void noinline
4035ev_embed_sweep (EV_P_ ev_embed *w)
4036{
4037 ev_run (w->other, EVRUN_NOWAIT);
4038}
4039
4040static void
4041embed_io_cb (EV_P_ ev_io *io, int revents)
4042{
4043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4044
4045 if (ev_cb (w))
4046 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4047 else
4048 ev_run (w->other, EVRUN_NOWAIT);
4049}
4050
4051static void
4052embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4053{
4054 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4055
4056 {
4057 EV_P = w->other;
4058
4059 while (fdchangecnt)
4060 {
4061 fd_reify (EV_A);
4062 ev_run (EV_A_ EVRUN_NOWAIT);
4063 }
4064 }
4065}
4066
4067static void
4068embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4069{
4070 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4071
4072 ev_embed_stop (EV_A_ w);
4073
4074 {
4075 EV_P = w->other;
4076
4077 ev_loop_fork (EV_A);
4078 ev_run (EV_A_ EVRUN_NOWAIT);
4079 }
4080
4081 ev_embed_start (EV_A_ w);
4082}
4083
4084#if 0
4085static void
4086embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4087{
4088 ev_idle_stop (EV_A_ idle);
4089}
4090#endif
4091
4092void
4093ev_embed_start (EV_P_ ev_embed *w)
4094{
4095 if (expect_false (ev_is_active (w)))
4096 return;
4097
4098 {
4099 EV_P = w->other;
4100 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4101 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4102 }
4103
4104 EV_FREQUENT_CHECK;
4105
4106 ev_set_priority (&w->io, ev_priority (w));
4107 ev_io_start (EV_A_ &w->io);
4108
4109 ev_prepare_init (&w->prepare, embed_prepare_cb);
4110 ev_set_priority (&w->prepare, EV_MINPRI);
4111 ev_prepare_start (EV_A_ &w->prepare);
4112
4113 ev_fork_init (&w->fork, embed_fork_cb);
4114 ev_fork_start (EV_A_ &w->fork);
4115
4116 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4117
1589 ev_start (EV_A_ (W)w, 1); 4118 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4119
4120 EV_FREQUENT_CHECK;
1591} 4121}
1592 4122
1593void 4123void
1594ev_child_stop (EV_P_ struct ev_child *w) 4124ev_embed_stop (EV_P_ ev_embed *w)
1595{ 4125{
1596 ev_clear_pending (EV_A_ (W)w); 4126 clear_pending (EV_A_ (W)w);
1597 if (!ev_is_active (w)) 4127 if (expect_false (!ev_is_active (w)))
1598 return; 4128 return;
1599 4129
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4130 EV_FREQUENT_CHECK;
4131
4132 ev_io_stop (EV_A_ &w->io);
4133 ev_prepare_stop (EV_A_ &w->prepare);
4134 ev_fork_stop (EV_A_ &w->fork);
4135
1601 ev_stop (EV_A_ (W)w); 4136 ev_stop (EV_A_ (W)w);
4137
4138 EV_FREQUENT_CHECK;
1602} 4139}
4140#endif
4141
4142#if EV_FORK_ENABLE
4143void
4144ev_fork_start (EV_P_ ev_fork *w)
4145{
4146 if (expect_false (ev_is_active (w)))
4147 return;
4148
4149 EV_FREQUENT_CHECK;
4150
4151 ev_start (EV_A_ (W)w, ++forkcnt);
4152 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4153 forks [forkcnt - 1] = w;
4154
4155 EV_FREQUENT_CHECK;
4156}
4157
4158void
4159ev_fork_stop (EV_P_ ev_fork *w)
4160{
4161 clear_pending (EV_A_ (W)w);
4162 if (expect_false (!ev_is_active (w)))
4163 return;
4164
4165 EV_FREQUENT_CHECK;
4166
4167 {
4168 int active = ev_active (w);
4169
4170 forks [active - 1] = forks [--forkcnt];
4171 ev_active (forks [active - 1]) = active;
4172 }
4173
4174 ev_stop (EV_A_ (W)w);
4175
4176 EV_FREQUENT_CHECK;
4177}
4178#endif
4179
4180#if EV_CLEANUP_ENABLE
4181void
4182ev_cleanup_start (EV_P_ ev_cleanup *w)
4183{
4184 if (expect_false (ev_is_active (w)))
4185 return;
4186
4187 EV_FREQUENT_CHECK;
4188
4189 ev_start (EV_A_ (W)w, ++cleanupcnt);
4190 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4191 cleanups [cleanupcnt - 1] = w;
4192
4193 /* cleanup watchers should never keep a refcount on the loop */
4194 ev_unref (EV_A);
4195 EV_FREQUENT_CHECK;
4196}
4197
4198void
4199ev_cleanup_stop (EV_P_ ev_cleanup *w)
4200{
4201 clear_pending (EV_A_ (W)w);
4202 if (expect_false (!ev_is_active (w)))
4203 return;
4204
4205 EV_FREQUENT_CHECK;
4206 ev_ref (EV_A);
4207
4208 {
4209 int active = ev_active (w);
4210
4211 cleanups [active - 1] = cleanups [--cleanupcnt];
4212 ev_active (cleanups [active - 1]) = active;
4213 }
4214
4215 ev_stop (EV_A_ (W)w);
4216
4217 EV_FREQUENT_CHECK;
4218}
4219#endif
4220
4221#if EV_ASYNC_ENABLE
4222void
4223ev_async_start (EV_P_ ev_async *w)
4224{
4225 if (expect_false (ev_is_active (w)))
4226 return;
4227
4228 w->sent = 0;
4229
4230 evpipe_init (EV_A);
4231
4232 EV_FREQUENT_CHECK;
4233
4234 ev_start (EV_A_ (W)w, ++asynccnt);
4235 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4236 asyncs [asynccnt - 1] = w;
4237
4238 EV_FREQUENT_CHECK;
4239}
4240
4241void
4242ev_async_stop (EV_P_ ev_async *w)
4243{
4244 clear_pending (EV_A_ (W)w);
4245 if (expect_false (!ev_is_active (w)))
4246 return;
4247
4248 EV_FREQUENT_CHECK;
4249
4250 {
4251 int active = ev_active (w);
4252
4253 asyncs [active - 1] = asyncs [--asynccnt];
4254 ev_active (asyncs [active - 1]) = active;
4255 }
4256
4257 ev_stop (EV_A_ (W)w);
4258
4259 EV_FREQUENT_CHECK;
4260}
4261
4262void
4263ev_async_send (EV_P_ ev_async *w)
4264{
4265 w->sent = 1;
4266 evpipe_write (EV_A_ &async_pending);
4267}
4268#endif
1603 4269
1604/*****************************************************************************/ 4270/*****************************************************************************/
1605 4271
1606struct ev_once 4272struct ev_once
1607{ 4273{
1608 struct ev_io io; 4274 ev_io io;
1609 struct ev_timer to; 4275 ev_timer to;
1610 void (*cb)(int revents, void *arg); 4276 void (*cb)(int revents, void *arg);
1611 void *arg; 4277 void *arg;
1612}; 4278};
1613 4279
1614static void 4280static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 4281once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 4282{
1617 void (*cb)(int revents, void *arg) = once->cb; 4283 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 4284 void *arg = once->arg;
1619 4285
1620 ev_io_stop (EV_A_ &once->io); 4286 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 4287 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 4288 ev_free (once);
1623 4289
1624 cb (revents, arg); 4290 cb (revents, arg);
1625} 4291}
1626 4292
1627static void 4293static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 4294once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 4295{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4296 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4297
4298 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 4299}
1632 4300
1633static void 4301static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 4302once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 4303{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4304 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4305
4306 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 4307}
1638 4308
1639void 4309void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4310ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 4311{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4312 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 4313
1644 if (!once) 4314 if (expect_false (!once))
4315 {
1645 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4316 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1646 else 4317 return;
1647 { 4318 }
4319
1648 once->cb = cb; 4320 once->cb = cb;
1649 once->arg = arg; 4321 once->arg = arg;
1650 4322
1651 ev_init (&once->io, once_cb_io); 4323 ev_init (&once->io, once_cb_io);
1652 if (fd >= 0) 4324 if (fd >= 0)
4325 {
4326 ev_io_set (&once->io, fd, events);
4327 ev_io_start (EV_A_ &once->io);
4328 }
4329
4330 ev_init (&once->to, once_cb_to);
4331 if (timeout >= 0.)
4332 {
4333 ev_timer_set (&once->to, timeout, 0.);
4334 ev_timer_start (EV_A_ &once->to);
4335 }
4336}
4337
4338/*****************************************************************************/
4339
4340#if EV_WALK_ENABLE
4341void ecb_cold
4342ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4343{
4344 int i, j;
4345 ev_watcher_list *wl, *wn;
4346
4347 if (types & (EV_IO | EV_EMBED))
4348 for (i = 0; i < anfdmax; ++i)
4349 for (wl = anfds [i].head; wl; )
1653 { 4350 {
1654 ev_io_set (&once->io, fd, events); 4351 wn = wl->next;
1655 ev_io_start (EV_A_ &once->io); 4352
4353#if EV_EMBED_ENABLE
4354 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4355 {
4356 if (types & EV_EMBED)
4357 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4358 }
4359 else
4360#endif
4361#if EV_USE_INOTIFY
4362 if (ev_cb ((ev_io *)wl) == infy_cb)
4363 ;
4364 else
4365#endif
4366 if ((ev_io *)wl != &pipe_w)
4367 if (types & EV_IO)
4368 cb (EV_A_ EV_IO, wl);
4369
4370 wl = wn;
1656 } 4371 }
1657 4372
1658 ev_init (&once->to, once_cb_to); 4373 if (types & (EV_TIMER | EV_STAT))
1659 if (timeout >= 0.) 4374 for (i = timercnt + HEAP0; i-- > HEAP0; )
4375#if EV_STAT_ENABLE
4376 /*TODO: timer is not always active*/
4377 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1660 { 4378 {
1661 ev_timer_set (&once->to, timeout, 0.); 4379 if (types & EV_STAT)
1662 ev_timer_start (EV_A_ &once->to); 4380 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1663 } 4381 }
1664 } 4382 else
1665} 4383#endif
4384 if (types & EV_TIMER)
4385 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1666 4386
1667#ifdef __cplusplus 4387#if EV_PERIODIC_ENABLE
1668} 4388 if (types & EV_PERIODIC)
4389 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4390 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4391#endif
4392
4393#if EV_IDLE_ENABLE
4394 if (types & EV_IDLE)
4395 for (j = NUMPRI; j--; )
4396 for (i = idlecnt [j]; i--; )
4397 cb (EV_A_ EV_IDLE, idles [j][i]);
4398#endif
4399
4400#if EV_FORK_ENABLE
4401 if (types & EV_FORK)
4402 for (i = forkcnt; i--; )
4403 if (ev_cb (forks [i]) != embed_fork_cb)
4404 cb (EV_A_ EV_FORK, forks [i]);
4405#endif
4406
4407#if EV_ASYNC_ENABLE
4408 if (types & EV_ASYNC)
4409 for (i = asynccnt; i--; )
4410 cb (EV_A_ EV_ASYNC, asyncs [i]);
4411#endif
4412
4413#if EV_PREPARE_ENABLE
4414 if (types & EV_PREPARE)
4415 for (i = preparecnt; i--; )
4416# if EV_EMBED_ENABLE
4417 if (ev_cb (prepares [i]) != embed_prepare_cb)
1669#endif 4418# endif
4419 cb (EV_A_ EV_PREPARE, prepares [i]);
4420#endif
1670 4421
4422#if EV_CHECK_ENABLE
4423 if (types & EV_CHECK)
4424 for (i = checkcnt; i--; )
4425 cb (EV_A_ EV_CHECK, checks [i]);
4426#endif
4427
4428#if EV_SIGNAL_ENABLE
4429 if (types & EV_SIGNAL)
4430 for (i = 0; i < EV_NSIG - 1; ++i)
4431 for (wl = signals [i].head; wl; )
4432 {
4433 wn = wl->next;
4434 cb (EV_A_ EV_SIGNAL, wl);
4435 wl = wn;
4436 }
4437#endif
4438
4439#if EV_CHILD_ENABLE
4440 if (types & EV_CHILD)
4441 for (i = (EV_PID_HASHSIZE); i--; )
4442 for (wl = childs [i]; wl; )
4443 {
4444 wn = wl->next;
4445 cb (EV_A_ EV_CHILD, wl);
4446 wl = wn;
4447 }
4448#endif
4449/* EV_STAT 0x00001000 /* stat data changed */
4450/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4451}
4452#endif
4453
4454#if EV_MULTIPLICITY
4455 #include "ev_wrap.h"
4456#endif
4457

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines