ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.122 by root, Sat Nov 17 02:00:48 2007 UTC vs.
Revision 1.268 by root, Mon Oct 27 13:39:18 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
159# include <io.h>
89# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 161# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
93# endif 164# endif
94#endif 165#endif
95 166
96/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
97 168
98#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
99# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
100#endif 175#endif
101 176
102#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
104#endif 187#endif
105 188
106#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
108#endif 191#endif
114# define EV_USE_POLL 1 197# define EV_USE_POLL 1
115# endif 198# endif
116#endif 199#endif
117 200
118#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
119# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
120#endif 207#endif
121 208
122#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
124#endif 211#endif
125 212
126#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 214# define EV_USE_PORT 0
128#endif 215#endif
129 216
130/**/ 217#ifndef EV_USE_INOTIFY
131 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 219# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 220# else
134# undef EV_USE_POLL 221# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 268
138#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
141#endif 272#endif
143#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
146#endif 277#endif
147 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
148#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 301# include <winsock.h>
150#endif 302#endif
151 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
152/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 333
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 337
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 338#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline inline 340# define noinline __attribute__ ((noinline))
168#else 341#else
169# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
170# define inline static 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
171#endif 347#endif
172 348
173#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
175 358
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 361
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 363#define EMPTY2(a,b) /* used to suppress some warnings */
181 364
182typedef struct ev_watcher *W; 365typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
185 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
187 377
188#ifdef _WIN32 378#ifdef _WIN32
189# include "ev_win32.c" 379# include "ev_win32.c"
190#endif 380#endif
191 381
192/*****************************************************************************/ 382/*****************************************************************************/
193 383
194static void (*syserr_cb)(const char *msg); 384static void (*syserr_cb)(const char *msg);
195 385
386void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 387ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 388{
198 syserr_cb = cb; 389 syserr_cb = cb;
199} 390}
200 391
201static void 392static void noinline
202syserr (const char *msg) 393syserr (const char *msg)
203{ 394{
204 if (!msg) 395 if (!msg)
205 msg = "(libev) system error"; 396 msg = "(libev) system error";
206 397
211 perror (msg); 402 perror (msg);
212 abort (); 403 abort ();
213 } 404 }
214} 405}
215 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
216static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 423
424void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 426{
220 alloc = cb; 427 alloc = cb;
221} 428}
222 429
223static void * 430inline_speed void *
224ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
225{ 432{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
227 434
228 if (!ptr && size) 435 if (!ptr && size)
229 { 436 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 438 abort ();
242typedef struct 449typedef struct
243{ 450{
244 WL head; 451 WL head;
245 unsigned char events; 452 unsigned char events;
246 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char egen; /* generation counter to counter epoll bugs */
247#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
248 SOCKET handle; 457 SOCKET handle;
249#endif 458#endif
250} ANFD; 459} ANFD;
251 460
252typedef struct 461typedef struct
253{ 462{
254 W w; 463 W w;
255 int events; 464 int events;
256} ANPENDING; 465} ANPENDING;
466
467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
469typedef struct
470{
471 WL head;
472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
491#endif
257 492
258#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
259 494
260 struct ev_loop 495 struct ev_loop
261 { 496 {
295 gettimeofday (&tv, 0); 530 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 531 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif 532#endif
298} 533}
299 534
300inline ev_tstamp 535ev_tstamp inline_size
301get_clock (void) 536get_clock (void)
302{ 537{
303#if EV_USE_MONOTONIC 538#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 539 if (expect_true (have_monotonic))
305 { 540 {
318{ 553{
319 return ev_rt_now; 554 return ev_rt_now;
320} 555}
321#endif 556#endif
322 557
323#define array_roundsize(type,n) (((n) | 4) & ~3) 558void
559ev_sleep (ev_tstamp delay)
560{
561 if (delay > 0.)
562 {
563#if EV_USE_NANOSLEEP
564 struct timespec ts;
565
566 ts.tv_sec = (time_t)delay;
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0);
570#elif defined(_WIN32)
571 Sleep ((unsigned long)(delay * 1e3));
572#else
573 struct timeval tv;
574
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
581 select (0, 0, 0, 0, &tv);
582#endif
583 }
584}
585
586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589
590int inline_size
591array_nextsize (int elem, int cur, int cnt)
592{
593 int ncur = cur + 1;
594
595 do
596 ncur <<= 1;
597 while (cnt > ncur);
598
599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
601 {
602 ncur *= elem;
603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
604 ncur = ncur - sizeof (void *) * 4;
605 ncur /= elem;
606 }
607
608 return ncur;
609}
610
611static noinline void *
612array_realloc (int elem, void *base, int *cur, int cnt)
613{
614 *cur = array_nextsize (elem, *cur, cnt);
615 return ev_realloc (base, elem * *cur);
616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 620
325#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 622 if (expect_false ((cnt) > (cur))) \
327 { \ 623 { \
328 int newcnt = cur; \ 624 int ocur_ = (cur); \
329 do \ 625 (base) = (type *)array_realloc \
330 { \ 626 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 627 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 628 }
339 629
630#if 0
340#define array_slim(type,stem) \ 631#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 632 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 633 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 634 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 635 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 637 }
638#endif
347 639
348#define array_free(stem, idx) \ 640#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
350 642
351/*****************************************************************************/ 643/*****************************************************************************/
352 644
353static void 645void noinline
354anfds_init (ANFD *base, int count)
355{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364}
365
366void
367ev_feed_event (EV_P_ void *w, int revents) 646ev_feed_event (EV_P_ void *w, int revents)
368{ 647{
369 W w_ = (W)w; 648 W w_ = (W)w;
649 int pri = ABSPRI (w_);
370 650
371 if (w_->pending) 651 if (expect_false (w_->pending))
652 pendings [pri][w_->pending - 1].events |= revents;
653 else
372 { 654 {
655 w_->pending = ++pendingcnt [pri];
656 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
657 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 658 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 659 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 660}
382 661
383static void 662void inline_speed
384queue_events (EV_P_ W *events, int eventcnt, int type) 663queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 664{
386 int i; 665 int i;
387 666
388 for (i = 0; i < eventcnt; ++i) 667 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
390} 669}
391 670
392inline void 671/*****************************************************************************/
672
673void inline_speed
393fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
394{ 675{
395 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 677 ev_io *w;
397 678
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 680 {
400 int ev = w->events & revents; 681 int ev = w->events & revents;
401 682
402 if (ev) 683 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 684 ev_feed_event (EV_A_ (W)w, ev);
405} 686}
406 687
407void 688void
408ev_feed_fd_event (EV_P_ int fd, int revents) 689ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 690{
691 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 692 fd_event (EV_A_ fd, revents);
411} 693}
412 694
413/*****************************************************************************/ 695void inline_size
414
415static void
416fd_reify (EV_P) 696fd_reify (EV_P)
417{ 697{
418 int i; 698 int i;
419 699
420 for (i = 0; i < fdchangecnt; ++i) 700 for (i = 0; i < fdchangecnt; ++i)
421 { 701 {
422 int fd = fdchanges [i]; 702 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 703 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 704 ev_io *w;
425 705
426 int events = 0; 706 unsigned char events = 0;
427 707
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 709 events |= (unsigned char)w->events;
430 710
431#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
432 if (events) 712 if (events)
433 { 713 {
434 unsigned long argp; 714 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
435 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
719 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
437 } 721 }
438#endif 722#endif
439 723
724 {
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
440 anfd->reify = 0; 728 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events);
733 }
444 } 734 }
445 735
446 fdchangecnt = 0; 736 fdchangecnt = 0;
447} 737}
448 738
449static void 739void inline_size
450fd_change (EV_P_ int fd) 740fd_change (EV_P_ int fd, int flags)
451{ 741{
452 if (anfds [fd].reify) 742 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 743 anfds [fd].reify |= flags;
456 744
745 if (expect_true (!reify))
746 {
457 ++fdchangecnt; 747 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 749 fdchanges [fdchangecnt - 1] = fd;
750 }
460} 751}
461 752
462static void 753void inline_speed
463fd_kill (EV_P_ int fd) 754fd_kill (EV_P_ int fd)
464{ 755{
465 struct ev_io *w; 756 ev_io *w;
466 757
467 while ((w = (struct ev_io *)anfds [fd].head)) 758 while ((w = (ev_io *)anfds [fd].head))
468 { 759 {
469 ev_io_stop (EV_A_ w); 760 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 762 }
472} 763}
473 764
474static int 765int inline_size
475fd_valid (int fd) 766fd_valid (int fd)
476{ 767{
477#ifdef _WIN32 768#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 769 return _get_osfhandle (fd) != -1;
479#else 770#else
480 return fcntl (fd, F_GETFD) != -1; 771 return fcntl (fd, F_GETFD) != -1;
481#endif 772#endif
482} 773}
483 774
484/* called on EBADF to verify fds */ 775/* called on EBADF to verify fds */
485static void 776static void noinline
486fd_ebadf (EV_P) 777fd_ebadf (EV_P)
487{ 778{
488 int fd; 779 int fd;
489 780
490 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 782 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
494} 785}
495 786
496/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 788static void noinline
498fd_enomem (EV_P) 789fd_enomem (EV_P)
499{ 790{
500 int fd; 791 int fd;
501 792
502 for (fd = anfdmax; fd--; ) 793 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 796 fd_kill (EV_A_ fd);
506 return; 797 return;
507 } 798 }
508} 799}
509 800
510/* usually called after fork if method needs to re-arm all fds from scratch */ 801/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 802static void noinline
512fd_rearm_all (EV_P) 803fd_rearm_all (EV_P)
513{ 804{
514 int fd; 805 int fd;
515 806
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 808 if (anfds [fd].events)
519 { 809 {
520 anfds [fd].events = 0; 810 anfds [fd].events = 0;
811 anfds [fd].emask = 0;
521 fd_change (EV_A_ fd); 812 fd_change (EV_A_ fd, EV_IOFDSET | 1);
522 } 813 }
523} 814}
524 815
525/*****************************************************************************/ 816/*****************************************************************************/
526 817
527static void 818/*
528upheap (WT *heap, int k) 819 * the heap functions want a real array index. array index 0 uis guaranteed to not
529{ 820 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
530 WT w = heap [k]; 821 * the branching factor of the d-tree.
822 */
531 823
532 while (k && heap [k >> 1]->at > w->at) 824/*
533 { 825 * at the moment we allow libev the luxury of two heaps,
534 heap [k] = heap [k >> 1]; 826 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
535 ((W)heap [k])->active = k + 1; 827 * which is more cache-efficient.
536 k >>= 1; 828 * the difference is about 5% with 50000+ watchers.
537 } 829 */
830#if EV_USE_4HEAP
538 831
539 heap [k] = w; 832#define DHEAP 4
540 ((W)heap [k])->active = k + 1; 833#define HEAP0 (DHEAP - 1) /* index of first element in heap */
834#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
835#define UPHEAP_DONE(p,k) ((p) == (k))
541 836
542} 837/* away from the root */
543 838void inline_speed
544static void
545downheap (WT *heap, int N, int k) 839downheap (ANHE *heap, int N, int k)
546{ 840{
547 WT w = heap [k]; 841 ANHE he = heap [k];
842 ANHE *E = heap + N + HEAP0;
548 843
549 while (k < (N >> 1)) 844 for (;;)
550 { 845 {
551 int j = k << 1; 846 ev_tstamp minat;
847 ANHE *minpos;
848 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
552 849
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 850 /* find minimum child */
851 if (expect_true (pos + DHEAP - 1 < E))
554 ++j; 852 {
555 853 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
556 if (w->at <= heap [j]->at) 854 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else if (pos < E)
859 {
860 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else
557 break; 866 break;
558 867
868 if (ANHE_at (he) <= minat)
869 break;
870
871 heap [k] = *minpos;
872 ev_active (ANHE_w (*minpos)) = k;
873
874 k = minpos - heap;
875 }
876
877 heap [k] = he;
878 ev_active (ANHE_w (he)) = k;
879}
880
881#else /* 4HEAP */
882
883#define HEAP0 1
884#define HPARENT(k) ((k) >> 1)
885#define UPHEAP_DONE(p,k) (!(p))
886
887/* away from the root */
888void inline_speed
889downheap (ANHE *heap, int N, int k)
890{
891 ANHE he = heap [k];
892
893 for (;;)
894 {
895 int c = k << 1;
896
897 if (c > N + HEAP0 - 1)
898 break;
899
900 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
901 ? 1 : 0;
902
903 if (ANHE_at (he) <= ANHE_at (heap [c]))
904 break;
905
559 heap [k] = heap [j]; 906 heap [k] = heap [c];
560 ((W)heap [k])->active = k + 1; 907 ev_active (ANHE_w (heap [k])) = k;
908
561 k = j; 909 k = c;
562 } 910 }
563 911
564 heap [k] = w; 912 heap [k] = he;
565 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (he)) = k;
566} 914}
915#endif
567 916
568inline void 917/* towards the root */
918void inline_speed
919upheap (ANHE *heap, int k)
920{
921 ANHE he = heap [k];
922
923 for (;;)
924 {
925 int p = HPARENT (k);
926
927 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
928 break;
929
930 heap [k] = heap [p];
931 ev_active (ANHE_w (heap [k])) = k;
932 k = p;
933 }
934
935 heap [k] = he;
936 ev_active (ANHE_w (he)) = k;
937}
938
939void inline_size
569adjustheap (WT *heap, int N, int k) 940adjustheap (ANHE *heap, int N, int k)
570{ 941{
942 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
571 upheap (heap, k); 943 upheap (heap, k);
944 else
572 downheap (heap, N, k); 945 downheap (heap, N, k);
946}
947
948/* rebuild the heap: this function is used only once and executed rarely */
949void inline_size
950reheap (ANHE *heap, int N)
951{
952 int i;
953
954 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
956 for (i = 0; i < N; ++i)
957 upheap (heap, i + HEAP0);
573} 958}
574 959
575/*****************************************************************************/ 960/*****************************************************************************/
576 961
577typedef struct 962typedef struct
578{ 963{
579 WL head; 964 WL head;
580 sig_atomic_t volatile gotsig; 965 EV_ATOMIC_T gotsig;
581} ANSIG; 966} ANSIG;
582 967
583static ANSIG *signals; 968static ANSIG *signals;
584static int signalmax; 969static int signalmax;
585 970
586static int sigpipe [2]; 971static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 972
590static void 973/*****************************************************************************/
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597 974
598 ++base; 975void inline_speed
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653inline void
654fd_intern (int fd) 976fd_intern (int fd)
655{ 977{
656#ifdef _WIN32 978#ifdef _WIN32
657 int arg = 1; 979 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 980 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else 981#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 982 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 983 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 984#endif
663} 985}
664 986
987static void noinline
988evpipe_init (EV_P)
989{
990 if (!ev_is_active (&pipeev))
991 {
992#if EV_USE_EVENTFD
993 if ((evfd = eventfd (0, 0)) >= 0)
994 {
995 evpipe [0] = -1;
996 fd_intern (evfd);
997 ev_io_set (&pipeev, evfd, EV_READ);
998 }
999 else
1000#endif
1001 {
1002 while (pipe (evpipe))
1003 syserr ("(libev) error creating signal/async pipe");
1004
1005 fd_intern (evpipe [0]);
1006 fd_intern (evpipe [1]);
1007 ev_io_set (&pipeev, evpipe [0], EV_READ);
1008 }
1009
1010 ev_io_start (EV_A_ &pipeev);
1011 ev_unref (EV_A); /* watcher should not keep loop alive */
1012 }
1013}
1014
1015void inline_size
1016evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1017{
1018 if (!*flag)
1019 {
1020 int old_errno = errno; /* save errno because write might clobber it */
1021
1022 *flag = 1;
1023
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter = 1;
1028 write (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 write (evpipe [1], &old_errno, 1);
1033
1034 errno = old_errno;
1035 }
1036}
1037
665static void 1038static void
666siginit (EV_P) 1039pipecb (EV_P_ ev_io *iow, int revents)
667{ 1040{
668 fd_intern (sigpipe [0]); 1041#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 1042 if (evfd >= 0)
1043 {
1044 uint64_t counter;
1045 read (evfd, &counter, sizeof (uint64_t));
1046 }
1047 else
1048#endif
1049 {
1050 char dummy;
1051 read (evpipe [0], &dummy, 1);
1052 }
670 1053
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1054 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 1055 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1056 int signum;
1057 gotsig = 0;
1058
1059 for (signum = signalmax; signum--; )
1060 if (signals [signum].gotsig)
1061 ev_feed_signal_event (EV_A_ signum + 1);
1062 }
1063
1064#if EV_ASYNC_ENABLE
1065 if (gotasync)
1066 {
1067 int i;
1068 gotasync = 0;
1069
1070 for (i = asynccnt; i--; )
1071 if (asyncs [i]->sent)
1072 {
1073 asyncs [i]->sent = 0;
1074 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1075 }
1076 }
1077#endif
674} 1078}
675 1079
676/*****************************************************************************/ 1080/*****************************************************************************/
677 1081
678static struct ev_child *childs [PID_HASHSIZE]; 1082static void
1083ev_sighandler (int signum)
1084{
1085#if EV_MULTIPLICITY
1086 struct ev_loop *loop = &default_loop_struct;
1087#endif
1088
1089#if _WIN32
1090 signal (signum, ev_sighandler);
1091#endif
1092
1093 signals [signum - 1].gotsig = 1;
1094 evpipe_write (EV_A_ &gotsig);
1095}
1096
1097void noinline
1098ev_feed_signal_event (EV_P_ int signum)
1099{
1100 WL w;
1101
1102#if EV_MULTIPLICITY
1103 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1104#endif
1105
1106 --signum;
1107
1108 if (signum < 0 || signum >= signalmax)
1109 return;
1110
1111 signals [signum].gotsig = 0;
1112
1113 for (w = signals [signum].head; w; w = w->next)
1114 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1115}
1116
1117/*****************************************************************************/
1118
1119static WL childs [EV_PID_HASHSIZE];
679 1120
680#ifndef _WIN32 1121#ifndef _WIN32
681 1122
682static struct ev_signal childev; 1123static ev_signal childev;
1124
1125#ifndef WIFCONTINUED
1126# define WIFCONTINUED(status) 0
1127#endif
1128
1129void inline_speed
1130child_reap (EV_P_ int chain, int pid, int status)
1131{
1132 ev_child *w;
1133 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1134
1135 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1136 {
1137 if ((w->pid == pid || !w->pid)
1138 && (!traced || (w->flags & 1)))
1139 {
1140 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1141 w->rpid = pid;
1142 w->rstatus = status;
1143 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1144 }
1145 }
1146}
683 1147
684#ifndef WCONTINUED 1148#ifndef WCONTINUED
685# define WCONTINUED 0 1149# define WCONTINUED 0
686#endif 1150#endif
687 1151
688static void 1152static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1153childcb (EV_P_ ev_signal *sw, int revents)
705{ 1154{
706 int pid, status; 1155 int pid, status;
707 1156
1157 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1158 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1159 if (!WCONTINUED
1160 || errno != EINVAL
1161 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1162 return;
1163
710 /* make sure we are called again until all childs have been reaped */ 1164 /* make sure we are called again until all children have been reaped */
1165 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1166 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1167
713 child_reap (EV_A_ sw, pid, pid, status); 1168 child_reap (EV_A_ pid, pid, status);
1169 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1170 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1171}
717 1172
718#endif 1173#endif
719 1174
720/*****************************************************************************/ 1175/*****************************************************************************/
746{ 1201{
747 return EV_VERSION_MINOR; 1202 return EV_VERSION_MINOR;
748} 1203}
749 1204
750/* return true if we are running with elevated privileges and should ignore env variables */ 1205/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1206int inline_size
752enable_secure (void) 1207enable_secure (void)
753{ 1208{
754#ifdef _WIN32 1209#ifdef _WIN32
755 return 0; 1210 return 0;
756#else 1211#else
758 || getgid () != getegid (); 1213 || getgid () != getegid ();
759#endif 1214#endif
760} 1215}
761 1216
762unsigned int 1217unsigned int
763ev_method (EV_P) 1218ev_supported_backends (void)
764{ 1219{
765 return method; 1220 unsigned int flags = 0;
766}
767 1221
768static void 1222 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1223 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1224 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1225 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1226 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1227
1228 return flags;
1229}
1230
1231unsigned int
1232ev_recommended_backends (void)
1233{
1234 unsigned int flags = ev_supported_backends ();
1235
1236#ifndef __NetBSD__
1237 /* kqueue is borked on everything but netbsd apparently */
1238 /* it usually doesn't work correctly on anything but sockets and pipes */
1239 flags &= ~EVBACKEND_KQUEUE;
1240#endif
1241#ifdef __APPLE__
1242 // flags &= ~EVBACKEND_KQUEUE; for documentation
1243 flags &= ~EVBACKEND_POLL;
1244#endif
1245
1246 return flags;
1247}
1248
1249unsigned int
1250ev_embeddable_backends (void)
1251{
1252 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1253
1254 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1255 /* please fix it and tell me how to detect the fix */
1256 flags &= ~EVBACKEND_EPOLL;
1257
1258 return flags;
1259}
1260
1261unsigned int
1262ev_backend (EV_P)
1263{
1264 return backend;
1265}
1266
1267unsigned int
1268ev_loop_count (EV_P)
1269{
1270 return loop_count;
1271}
1272
1273void
1274ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1275{
1276 io_blocktime = interval;
1277}
1278
1279void
1280ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1281{
1282 timeout_blocktime = interval;
1283}
1284
1285static void noinline
769loop_init (EV_P_ unsigned int flags) 1286loop_init (EV_P_ unsigned int flags)
770{ 1287{
771 if (!method) 1288 if (!backend)
772 { 1289 {
773#if EV_USE_MONOTONIC 1290#if EV_USE_MONOTONIC
774 { 1291 {
775 struct timespec ts; 1292 struct timespec ts;
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1293 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 1294 have_monotonic = 1;
778 } 1295 }
779#endif 1296#endif
780 1297
781 ev_rt_now = ev_time (); 1298 ev_rt_now = ev_time ();
782 mn_now = get_clock (); 1299 mn_now = get_clock ();
783 now_floor = mn_now; 1300 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now; 1301 rtmn_diff = ev_rt_now - mn_now;
785 1302
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1303 io_blocktime = 0.;
1304 timeout_blocktime = 0.;
1305 backend = 0;
1306 backend_fd = -1;
1307 gotasync = 0;
1308#if EV_USE_INOTIFY
1309 fs_fd = -2;
1310#endif
1311
1312 /* pid check not overridable via env */
1313#ifndef _WIN32
1314 if (flags & EVFLAG_FORKCHECK)
1315 curpid = getpid ();
1316#endif
1317
1318 if (!(flags & EVFLAG_NOENV)
1319 && !enable_secure ()
1320 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1321 flags = atoi (getenv ("LIBEV_FLAGS"));
788 1322
789 if (!(flags & 0x0000ffff)) 1323 if (!(flags & 0x0000ffffU))
790 flags |= 0x0000ffff; 1324 flags |= ev_recommended_backends ();
791 1325
792 method = 0;
793#if EV_USE_PORT 1326#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 1328#endif
796#if EV_USE_KQUEUE 1329#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1330 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 1331#endif
799#if EV_USE_EPOLL 1332#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1333 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 1334#endif
802#if EV_USE_POLL 1335#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 1337#endif
805#if EV_USE_SELECT 1338#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1339 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 1340#endif
808 1341
809 ev_init (&sigev, sigcb); 1342 ev_init (&pipeev, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 1343 ev_set_priority (&pipeev, EV_MAXPRI);
811 } 1344 }
812} 1345}
813 1346
814void 1347static void noinline
815loop_destroy (EV_P) 1348loop_destroy (EV_P)
816{ 1349{
817 int i; 1350 int i;
818 1351
1352 if (ev_is_active (&pipeev))
1353 {
1354 ev_ref (EV_A); /* signal watcher */
1355 ev_io_stop (EV_A_ &pipeev);
1356
1357#if EV_USE_EVENTFD
1358 if (evfd >= 0)
1359 close (evfd);
1360#endif
1361
1362 if (evpipe [0] >= 0)
1363 {
1364 close (evpipe [0]);
1365 close (evpipe [1]);
1366 }
1367 }
1368
1369#if EV_USE_INOTIFY
1370 if (fs_fd >= 0)
1371 close (fs_fd);
1372#endif
1373
1374 if (backend_fd >= 0)
1375 close (backend_fd);
1376
819#if EV_USE_PORT 1377#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1378 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 1379#endif
822#if EV_USE_KQUEUE 1380#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1381 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 1382#endif
825#if EV_USE_EPOLL 1383#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1384 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 1385#endif
828#if EV_USE_POLL 1386#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1387 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 1388#endif
831#if EV_USE_SELECT 1389#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1390 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 1391#endif
834 1392
835 for (i = NUMPRI; i--; ) 1393 for (i = NUMPRI; i--; )
1394 {
836 array_free (pending, [i]); 1395 array_free (pending, [i]);
1396#if EV_IDLE_ENABLE
1397 array_free (idle, [i]);
1398#endif
1399 }
1400
1401 ev_free (anfds); anfdmax = 0;
837 1402
838 /* have to use the microsoft-never-gets-it-right macro */ 1403 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0); 1404 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 1405 array_free (timer, EMPTY);
841#if EV_PERIODICS 1406#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 1407 array_free (periodic, EMPTY);
843#endif 1408#endif
1409#if EV_FORK_ENABLE
844 array_free (idle, EMPTY0); 1410 array_free (fork, EMPTY);
1411#endif
845 array_free (prepare, EMPTY0); 1412 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 1413 array_free (check, EMPTY);
1414#if EV_ASYNC_ENABLE
1415 array_free (async, EMPTY);
1416#endif
847 1417
848 method = 0; 1418 backend = 0;
849} 1419}
850 1420
851static void 1421#if EV_USE_INOTIFY
1422void inline_size infy_fork (EV_P);
1423#endif
1424
1425void inline_size
852loop_fork (EV_P) 1426loop_fork (EV_P)
853{ 1427{
854#if EV_USE_PORT 1428#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1429 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 1430#endif
857#if EV_USE_KQUEUE 1431#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1432 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 1433#endif
860#if EV_USE_EPOLL 1434#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1435 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
862#endif 1436#endif
1437#if EV_USE_INOTIFY
1438 infy_fork (EV_A);
1439#endif
863 1440
864 if (ev_is_active (&sigev)) 1441 if (ev_is_active (&pipeev))
865 { 1442 {
866 /* default loop */ 1443 /* this "locks" the handlers against writing to the pipe */
1444 /* while we modify the fd vars */
1445 gotsig = 1;
1446#if EV_ASYNC_ENABLE
1447 gotasync = 1;
1448#endif
867 1449
868 ev_ref (EV_A); 1450 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev); 1451 ev_io_stop (EV_A_ &pipeev);
1452
1453#if EV_USE_EVENTFD
1454 if (evfd >= 0)
1455 close (evfd);
1456#endif
1457
1458 if (evpipe [0] >= 0)
1459 {
870 close (sigpipe [0]); 1460 close (evpipe [0]);
871 close (sigpipe [1]); 1461 close (evpipe [1]);
1462 }
872 1463
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A); 1464 evpipe_init (EV_A);
1465 /* now iterate over everything, in case we missed something */
1466 pipecb (EV_A_ &pipeev, EV_READ);
877 } 1467 }
878 1468
879 postfork = 0; 1469 postfork = 0;
880} 1470}
1471
1472#if EV_MULTIPLICITY
1473
1474struct ev_loop *
1475ev_loop_new (unsigned int flags)
1476{
1477 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1478
1479 memset (loop, 0, sizeof (struct ev_loop));
1480
1481 loop_init (EV_A_ flags);
1482
1483 if (ev_backend (EV_A))
1484 return loop;
1485
1486 return 0;
1487}
1488
1489void
1490ev_loop_destroy (EV_P)
1491{
1492 loop_destroy (EV_A);
1493 ev_free (loop);
1494}
1495
1496void
1497ev_loop_fork (EV_P)
1498{
1499 postfork = 1; /* must be in line with ev_default_fork */
1500}
1501
1502#if EV_VERIFY
1503static void noinline
1504verify_watcher (EV_P_ W w)
1505{
1506 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1507
1508 if (w->pending)
1509 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1510}
1511
1512static void noinline
1513verify_heap (EV_P_ ANHE *heap, int N)
1514{
1515 int i;
1516
1517 for (i = HEAP0; i < N + HEAP0; ++i)
1518 {
1519 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1520 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1521 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1522
1523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1524 }
1525}
1526
1527static void noinline
1528array_verify (EV_P_ W *ws, int cnt)
1529{
1530 while (cnt--)
1531 {
1532 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1533 verify_watcher (EV_A_ ws [cnt]);
1534 }
1535}
1536#endif
1537
1538void
1539ev_loop_verify (EV_P)
1540{
1541#if EV_VERIFY
1542 int i;
1543 WL w;
1544
1545 assert (activecnt >= -1);
1546
1547 assert (fdchangemax >= fdchangecnt);
1548 for (i = 0; i < fdchangecnt; ++i)
1549 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1550
1551 assert (anfdmax >= 0);
1552 for (i = 0; i < anfdmax; ++i)
1553 for (w = anfds [i].head; w; w = w->next)
1554 {
1555 verify_watcher (EV_A_ (W)w);
1556 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1557 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1558 }
1559
1560 assert (timermax >= timercnt);
1561 verify_heap (EV_A_ timers, timercnt);
1562
1563#if EV_PERIODIC_ENABLE
1564 assert (periodicmax >= periodiccnt);
1565 verify_heap (EV_A_ periodics, periodiccnt);
1566#endif
1567
1568 for (i = NUMPRI; i--; )
1569 {
1570 assert (pendingmax [i] >= pendingcnt [i]);
1571#if EV_IDLE_ENABLE
1572 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
881 1602
882#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
883struct ev_loop * 1604struct ev_loop *
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
916#else 1606#else
917int 1607int
918ev_default_loop (unsigned int flags) 1608ev_default_loop (unsigned int flags)
919#endif 1609#endif
920{ 1610{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1611 if (!ev_default_loop_ptr)
926 { 1612 {
927#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1615#else
930 ev_default_loop_ptr = 1; 1616 ev_default_loop_ptr = 1;
931#endif 1617#endif
932 1618
933 loop_init (EV_A_ flags); 1619 loop_init (EV_A_ flags);
934 1620
935 if (ev_method (EV_A)) 1621 if (ev_backend (EV_A))
936 { 1622 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1623#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
955{ 1639{
956#if EV_MULTIPLICITY 1640#if EV_MULTIPLICITY
957 struct ev_loop *loop = ev_default_loop_ptr; 1641 struct ev_loop *loop = ev_default_loop_ptr;
958#endif 1642#endif
959 1643
1644 ev_default_loop_ptr = 0;
1645
960#ifndef _WIN32 1646#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1647 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1648 ev_signal_stop (EV_A_ &childev);
963#endif 1649#endif
964 1650
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1651 loop_destroy (EV_A);
972} 1652}
973 1653
974void 1654void
975ev_default_fork (void) 1655ev_default_fork (void)
976{ 1656{
977#if EV_MULTIPLICITY 1657#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1658 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1659#endif
980 1660
981 if (method) 1661 if (backend)
982 postfork = 1; 1662 postfork = 1; /* must be in line with ev_loop_fork */
983} 1663}
984 1664
985/*****************************************************************************/ 1665/*****************************************************************************/
986 1666
987static int 1667void
988any_pending (EV_P) 1668ev_invoke (EV_P_ void *w, int revents)
989{ 1669{
990 int pri; 1670 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1671}
998 1672
999inline void 1673void inline_speed
1000call_pending (EV_P) 1674call_pending (EV_P)
1001{ 1675{
1002 int pri; 1676 int pri;
1003 1677
1004 for (pri = NUMPRI; pri--; ) 1678 for (pri = NUMPRI; pri--; )
1006 { 1680 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1681 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1682
1009 if (expect_true (p->w)) 1683 if (expect_true (p->w))
1010 { 1684 {
1685 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1686
1011 p->w->pending = 0; 1687 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1688 EV_CB_INVOKE (p->w, p->events);
1689 EV_FREQUENT_CHECK;
1013 } 1690 }
1014 } 1691 }
1015} 1692}
1016 1693
1017static void 1694#if EV_IDLE_ENABLE
1695void inline_size
1696idle_reify (EV_P)
1697{
1698 if (expect_false (idleall))
1699 {
1700 int pri;
1701
1702 for (pri = NUMPRI; pri--; )
1703 {
1704 if (pendingcnt [pri])
1705 break;
1706
1707 if (idlecnt [pri])
1708 {
1709 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1710 break;
1711 }
1712 }
1713 }
1714}
1715#endif
1716
1717void inline_size
1018timers_reify (EV_P) 1718timers_reify (EV_P)
1019{ 1719{
1720 EV_FREQUENT_CHECK;
1721
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1722 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 1723 {
1022 struct ev_timer *w = timers [0]; 1724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1023 1725
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1726 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1025 1727
1026 /* first reschedule or stop timer */ 1728 /* first reschedule or stop timer */
1027 if (w->repeat) 1729 if (w->repeat)
1028 { 1730 {
1731 ev_at (w) += w->repeat;
1732 if (ev_at (w) < mn_now)
1733 ev_at (w) = mn_now;
1734
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1735 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1736
1031 ((WT)w)->at += w->repeat; 1737 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 1738 downheap (timers, timercnt, HEAP0);
1036 } 1739 }
1037 else 1740 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1742
1743 EV_FREQUENT_CHECK;
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1744 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 } 1745 }
1042} 1746}
1043 1747
1044#if EV_PERIODICS 1748#if EV_PERIODIC_ENABLE
1045static void 1749void inline_size
1046periodics_reify (EV_P) 1750periodics_reify (EV_P)
1047{ 1751{
1752 EV_FREQUENT_CHECK;
1753
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1754 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 1755 {
1050 struct ev_periodic *w = periodics [0]; 1756 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1051 1757
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1758 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1759
1054 /* first reschedule or stop timer */ 1760 /* first reschedule or stop timer */
1055 if (w->reschedule_cb) 1761 if (w->reschedule_cb)
1056 { 1762 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1764
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1765 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1766
1767 ANHE_at_cache (periodics [HEAP0]);
1059 downheap ((WT *)periodics, periodiccnt, 0); 1768 downheap (periodics, periodiccnt, HEAP0);
1060 } 1769 }
1061 else if (w->interval) 1770 else if (w->interval)
1062 { 1771 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1772 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1773 /* if next trigger time is not sufficiently in the future, put it there */
1774 /* this might happen because of floating point inexactness */
1775 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1776 {
1777 ev_at (w) += w->interval;
1778
1779 /* if interval is unreasonably low we might still have a time in the past */
1780 /* so correct this. this will make the periodic very inexact, but the user */
1781 /* has effectively asked to get triggered more often than possible */
1782 if (ev_at (w) < ev_rt_now)
1783 ev_at (w) = ev_rt_now;
1784 }
1785
1786 ANHE_at_cache (periodics [HEAP0]);
1065 downheap ((WT *)periodics, periodiccnt, 0); 1787 downheap (periodics, periodiccnt, HEAP0);
1066 } 1788 }
1067 else 1789 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1790 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1791
1792 EV_FREQUENT_CHECK;
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1793 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 } 1794 }
1072} 1795}
1073 1796
1074static void 1797static void noinline
1075periodics_reschedule (EV_P) 1798periodics_reschedule (EV_P)
1076{ 1799{
1077 int i; 1800 int i;
1078 1801
1079 /* adjust periodics after time jump */ 1802 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 1803 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1081 { 1804 {
1082 struct ev_periodic *w = periodics [i]; 1805 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1083 1806
1084 if (w->reschedule_cb) 1807 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1808 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 1809 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1810 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1811
1812 ANHE_at_cache (periodics [i]);
1813 }
1814
1815 reheap (periodics, periodiccnt);
1816}
1817#endif
1818
1819void inline_speed
1820time_update (EV_P_ ev_tstamp max_block)
1821{
1822 int i;
1823
1824#if EV_USE_MONOTONIC
1825 if (expect_true (have_monotonic))
1088 } 1826 {
1827 ev_tstamp odiff = rtmn_diff;
1089 1828
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock (); 1829 mn_now = get_clock ();
1100 1830
1831 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1832 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1833 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 1834 {
1103 ev_rt_now = rtmn_diff + mn_now; 1835 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 1836 return;
1105 } 1837 }
1106 else 1838
1107 {
1108 now_floor = mn_now; 1839 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1840 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1841
1114static void 1842 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1843 * on the choice of "4": one iteration isn't enough,
1116{ 1844 * in case we get preempted during the calls to
1117 int i; 1845 * ev_time and get_clock. a second call is almost guaranteed
1118 1846 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1847 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1848 * in the unlikely event of having been preempted here.
1121 { 1849 */
1122 if (time_update_monotonic (EV_A)) 1850 for (i = 4; --i; )
1123 { 1851 {
1124 ev_tstamp odiff = rtmn_diff; 1852 rtmn_diff = ev_rt_now - mn_now;
1125 1853
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1854 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1855 return; /* all is well */
1856
1857 ev_rt_now = ev_time ();
1858 mn_now = get_clock ();
1859 now_floor = mn_now;
1860 }
1861
1862# if EV_PERIODIC_ENABLE
1863 periodics_reschedule (EV_A);
1864# endif
1865 /* no timer adjustment, as the monotonic clock doesn't jump */
1866 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1867 }
1868 else
1869#endif
1870 {
1871 ev_rt_now = ev_time ();
1872
1873 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1874 {
1875#if EV_PERIODIC_ENABLE
1876 periodics_reschedule (EV_A);
1877#endif
1878 /* adjust timers. this is easy, as the offset is the same for all of them */
1879 for (i = 0; i < timercnt; ++i)
1127 { 1880 {
1128 rtmn_diff = ev_rt_now - mn_now; 1881 ANHE *he = timers + i + HEAP0;
1129 1882 ANHE_w (*he)->at += ev_rt_now - mn_now;
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1883 ANHE_at_cache (*he);
1131 return; /* all is well */
1132
1133 ev_rt_now = ev_time ();
1134 mn_now = get_clock ();
1135 now_floor = mn_now;
1136 } 1884 }
1137
1138# if EV_PERIODICS
1139 periodics_reschedule (EV_A);
1140# endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 1885 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 1886
1161 mn_now = ev_rt_now; 1887 mn_now = ev_rt_now;
1162 } 1888 }
1163} 1889}
1164 1890
1172ev_unref (EV_P) 1898ev_unref (EV_P)
1173{ 1899{
1174 --activecnt; 1900 --activecnt;
1175} 1901}
1176 1902
1903void
1904ev_now_update (EV_P)
1905{
1906 time_update (EV_A_ 1e100);
1907}
1908
1177static int loop_done; 1909static int loop_done;
1178 1910
1179void 1911void
1180ev_loop (EV_P_ int flags) 1912ev_loop (EV_P_ int flags)
1181{ 1913{
1182 double block; 1914 loop_done = EVUNLOOP_CANCEL;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 1915
1185 while (activecnt) 1916 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1917
1918 do
1186 { 1919 {
1920#if EV_VERIFY >= 2
1921 ev_loop_verify (EV_A);
1922#endif
1923
1924#ifndef _WIN32
1925 if (expect_false (curpid)) /* penalise the forking check even more */
1926 if (expect_false (getpid () != curpid))
1927 {
1928 curpid = getpid ();
1929 postfork = 1;
1930 }
1931#endif
1932
1933#if EV_FORK_ENABLE
1934 /* we might have forked, so queue fork handlers */
1935 if (expect_false (postfork))
1936 if (forkcnt)
1937 {
1938 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1939 call_pending (EV_A);
1940 }
1941#endif
1942
1187 /* queue check watchers (and execute them) */ 1943 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 1944 if (expect_false (preparecnt))
1189 { 1945 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1946 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 1947 call_pending (EV_A);
1192 } 1948 }
1193 1949
1950 if (expect_false (!activecnt))
1951 break;
1952
1194 /* we might have forked, so reify kernel state if necessary */ 1953 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 1954 if (expect_false (postfork))
1196 loop_fork (EV_A); 1955 loop_fork (EV_A);
1197 1956
1198 /* update fd-related kernel structures */ 1957 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 1958 fd_reify (EV_A);
1200 1959
1201 /* calculate blocking time */ 1960 /* calculate blocking time */
1961 {
1962 ev_tstamp waittime = 0.;
1963 ev_tstamp sleeptime = 0.;
1202 1964
1203 /* we only need this for !monotonic clock or timers, but as we basically 1965 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 1966 {
1211 ev_rt_now = ev_time (); 1967 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 1968 time_update (EV_A_ 1e100);
1213 }
1214 1969
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 1970 waittime = MAX_BLOCKTIME;
1220 1971
1221 if (timercnt) 1972 if (timercnt)
1222 { 1973 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1974 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 1975 if (waittime > to) waittime = to;
1225 } 1976 }
1226 1977
1227#if EV_PERIODICS 1978#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 1979 if (periodiccnt)
1229 { 1980 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1981 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 1982 if (waittime > to) waittime = to;
1232 } 1983 }
1233#endif 1984#endif
1234 1985
1235 if (block < 0.) block = 0.; 1986 if (expect_false (waittime < timeout_blocktime))
1987 waittime = timeout_blocktime;
1988
1989 sleeptime = waittime - backend_fudge;
1990
1991 if (expect_true (sleeptime > io_blocktime))
1992 sleeptime = io_blocktime;
1993
1994 if (sleeptime)
1995 {
1996 ev_sleep (sleeptime);
1997 waittime -= sleeptime;
1998 }
1236 } 1999 }
1237 2000
1238 method_poll (EV_A_ block); 2001 ++loop_count;
2002 backend_poll (EV_A_ waittime);
1239 2003
1240 /* update ev_rt_now, do magic */ 2004 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 2005 time_update (EV_A_ waittime + sleeptime);
2006 }
1242 2007
1243 /* queue pending timers and reschedule them */ 2008 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 2009 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 2010#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 2011 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 2012#endif
1248 2013
2014#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 2015 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 2016 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2017#endif
1252 2018
1253 /* queue check watchers, to be executed first */ 2019 /* queue check watchers, to be executed first */
1254 if (checkcnt) 2020 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2021 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 2022
1257 call_pending (EV_A); 2023 call_pending (EV_A);
1258
1259 if (loop_done)
1260 break;
1261 } 2024 }
2025 while (expect_true (
2026 activecnt
2027 && !loop_done
2028 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2029 ));
1262 2030
1263 if (loop_done != 2) 2031 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 2032 loop_done = EVUNLOOP_CANCEL;
1265} 2033}
1266 2034
1267void 2035void
1268ev_unloop (EV_P_ int how) 2036ev_unloop (EV_P_ int how)
1269{ 2037{
1270 loop_done = how; 2038 loop_done = how;
1271} 2039}
1272 2040
1273/*****************************************************************************/ 2041/*****************************************************************************/
1274 2042
1275inline void 2043void inline_size
1276wlist_add (WL *head, WL elem) 2044wlist_add (WL *head, WL elem)
1277{ 2045{
1278 elem->next = *head; 2046 elem->next = *head;
1279 *head = elem; 2047 *head = elem;
1280} 2048}
1281 2049
1282inline void 2050void inline_size
1283wlist_del (WL *head, WL elem) 2051wlist_del (WL *head, WL elem)
1284{ 2052{
1285 while (*head) 2053 while (*head)
1286 { 2054 {
1287 if (*head == elem) 2055 if (*head == elem)
1292 2060
1293 head = &(*head)->next; 2061 head = &(*head)->next;
1294 } 2062 }
1295} 2063}
1296 2064
1297inline void 2065void inline_speed
1298ev_clear_pending (EV_P_ W w) 2066clear_pending (EV_P_ W w)
1299{ 2067{
1300 if (w->pending) 2068 if (w->pending)
1301 { 2069 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0; 2071 w->pending = 0;
1304 } 2072 }
1305} 2073}
1306 2074
1307inline void 2075int
2076ev_clear_pending (EV_P_ void *w)
2077{
2078 W w_ = (W)w;
2079 int pending = w_->pending;
2080
2081 if (expect_true (pending))
2082 {
2083 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2084 w_->pending = 0;
2085 p->w = 0;
2086 return p->events;
2087 }
2088 else
2089 return 0;
2090}
2091
2092void inline_size
2093pri_adjust (EV_P_ W w)
2094{
2095 int pri = w->priority;
2096 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2097 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2098 w->priority = pri;
2099}
2100
2101void inline_speed
1308ev_start (EV_P_ W w, int active) 2102ev_start (EV_P_ W w, int active)
1309{ 2103{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2104 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2105 w->active = active;
1314 ev_ref (EV_A); 2106 ev_ref (EV_A);
1315} 2107}
1316 2108
1317inline void 2109void inline_size
1318ev_stop (EV_P_ W w) 2110ev_stop (EV_P_ W w)
1319{ 2111{
1320 ev_unref (EV_A); 2112 ev_unref (EV_A);
1321 w->active = 0; 2113 w->active = 0;
1322} 2114}
1323 2115
1324/*****************************************************************************/ 2116/*****************************************************************************/
1325 2117
1326void 2118void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2119ev_io_start (EV_P_ ev_io *w)
1328{ 2120{
1329 int fd = w->fd; 2121 int fd = w->fd;
1330 2122
1331 if (ev_is_active (w)) 2123 if (expect_false (ev_is_active (w)))
1332 return; 2124 return;
1333 2125
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2126 assert (("ev_io_start called with negative fd", fd >= 0));
2127 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2128
2129 EV_FREQUENT_CHECK;
1335 2130
1336 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1339 2134
1340 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1341} 2136 w->events &= ~EV_IOFDSET;
1342 2137
1343void 2138 EV_FREQUENT_CHECK;
2139}
2140
2141void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1345{ 2143{
1346 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 2145 if (expect_false (!ev_is_active (w)))
1348 return; 2146 return;
1349 2147
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2149
2150 EV_FREQUENT_CHECK;
2151
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1354 2154
1355 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
1356}
1357 2156
1358void 2157 EV_FREQUENT_CHECK;
2158}
2159
2160void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1360{ 2162{
1361 if (ev_is_active (w)) 2163 if (expect_false (ev_is_active (w)))
1362 return; 2164 return;
1363 2165
1364 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1365 2167
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1372 2178
2179 EV_FREQUENT_CHECK;
2180
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2182}
1375 2183
1376void 2184void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2186{
1379 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1380 if (!ev_is_active (w)) 2188 if (expect_false (!ev_is_active (w)))
1381 return; 2189 return;
1382 2190
2191 EV_FREQUENT_CHECK;
2192
2193 {
2194 int active = ev_active (w);
2195
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2197
1385 if (((W)w)->active < timercnt--) 2198 --timercnt;
2199
2200 if (expect_true (active < timercnt + HEAP0))
1386 { 2201 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2203 adjustheap (timers, timercnt, active);
1389 } 2204 }
2205 }
1390 2206
1391 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1392 2210
1393 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1394} 2212}
1395 2213
1396void 2214void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1398{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1399 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1400 { 2220 {
1401 if (w->repeat) 2221 if (w->repeat)
1402 { 2222 {
1403 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1405 } 2226 }
1406 else 2227 else
1407 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1408 } 2229 }
1409 else if (w->repeat) 2230 else if (w->repeat)
1410 { 2231 {
1411 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1413 } 2234 }
1414}
1415 2235
2236 EV_FREQUENT_CHECK;
2237}
2238
1416#if EV_PERIODICS 2239#if EV_PERIODIC_ENABLE
1417void 2240void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2242{
1420 if (ev_is_active (w)) 2243 if (expect_false (ev_is_active (w)))
1421 return; 2244 return;
1422 2245
1423 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2248 else if (w->interval)
1426 { 2249 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2253 }
2254 else
2255 ev_at (w) = w->offset;
1431 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1436 2265
2266 EV_FREQUENT_CHECK;
2267
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2269}
1439 2270
1440void 2271void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2273{
1443 ev_clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w)) 2275 if (expect_false (!ev_is_active (w)))
1445 return; 2276 return;
1446 2277
2278 EV_FREQUENT_CHECK;
2279
2280 {
2281 int active = ev_active (w);
2282
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2284
1449 if (((W)w)->active < periodiccnt--) 2285 --periodiccnt;
2286
2287 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2288 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2290 adjustheap (periodics, periodiccnt, active);
1453 } 2291 }
2292 }
2293
2294 EV_FREQUENT_CHECK;
1454 2295
1455 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1456} 2297}
1457 2298
1458void 2299void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2301{
1461 /* TODO: use adjustheap and recalculation */ 2302 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2303 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2304 ev_periodic_start (EV_A_ w);
1464} 2305}
1465#endif 2306#endif
1466 2307
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (ev_is_active (w))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (!ev_is_active (w))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 2308#ifndef SA_RESTART
1534# define SA_RESTART 0 2309# define SA_RESTART 0
1535#endif 2310#endif
1536 2311
1537void 2312void noinline
1538ev_signal_start (EV_P_ struct ev_signal *w) 2313ev_signal_start (EV_P_ ev_signal *w)
1539{ 2314{
1540#if EV_MULTIPLICITY 2315#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 2317#endif
1543 if (ev_is_active (w)) 2318 if (expect_false (ev_is_active (w)))
1544 return; 2319 return;
1545 2320
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1547 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1548 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2343
1552 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1553 { 2345 {
1554#if _WIN32 2346#if _WIN32
1555 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1556#else 2348#else
1557 struct sigaction sa; 2349 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1562#endif 2354#endif
1563 } 2355 }
1564}
1565 2356
1566void 2357 EV_FREQUENT_CHECK;
2358}
2359
2360void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2362{
1569 ev_clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1570 if (!ev_is_active (w)) 2364 if (expect_false (!ev_is_active (w)))
1571 return; 2365 return;
1572 2366
2367 EV_FREQUENT_CHECK;
2368
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1575 2371
1576 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
1578}
1579 2374
2375 EV_FREQUENT_CHECK;
2376}
2377
1580void 2378void
1581ev_child_start (EV_P_ struct ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1582{ 2380{
1583#if EV_MULTIPLICITY 2381#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2383#endif
1586 if (ev_is_active (w)) 2384 if (expect_false (ev_is_active (w)))
1587 return; 2385 return;
1588 2386
2387 EV_FREQUENT_CHECK;
2388
1589 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591}
1592 2391
2392 EV_FREQUENT_CHECK;
2393}
2394
1593void 2395void
1594ev_child_stop (EV_P_ struct ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1595{ 2397{
1596 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1597 if (!ev_is_active (w)) 2399 if (expect_false (!ev_is_active (w)))
1598 return; 2400 return;
1599 2401
2402 EV_FREQUENT_CHECK;
2403
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1602} 2408}
2409
2410#if EV_STAT_ENABLE
2411
2412# ifdef _WIN32
2413# undef lstat
2414# define lstat(a,b) _stati64 (a,b)
2415# endif
2416
2417#define DEF_STAT_INTERVAL 5.0074891
2418#define MIN_STAT_INTERVAL 0.1074891
2419
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421
2422#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192
2424
2425static void noinline
2426infy_add (EV_P_ ev_stat *w)
2427{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429
2430 if (w->wd < 0)
2431 {
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2433
2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 {
2439 char path [4096];
2440 strcpy (path, w->path);
2441
2442 do
2443 {
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446
2447 char *pend = strrchr (path, '/');
2448
2449 if (!pend)
2450 break; /* whoops, no '/', complain to your admin */
2451
2452 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 }
2457 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460
2461 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2463}
2464
2465static void noinline
2466infy_del (EV_P_ ev_stat *w)
2467{
2468 int slot;
2469 int wd = w->wd;
2470
2471 if (wd < 0)
2472 return;
2473
2474 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w);
2477
2478 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd);
2480}
2481
2482static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{
2485 if (slot < 0)
2486 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2488 infy_wd (EV_A_ slot, wd, ev);
2489 else
2490 {
2491 WL w_;
2492
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2494 {
2495 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */
2497
2498 if (w->wd == wd || wd == -1)
2499 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 {
2502 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */
2504 }
2505
2506 stat_timer_cb (EV_A_ &w->timer, 0);
2507 }
2508 }
2509 }
2510}
2511
2512static void
2513infy_cb (EV_P_ ev_io *w, int revents)
2514{
2515 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf));
2519
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2522}
2523
2524void inline_size
2525infy_init (EV_P)
2526{
2527 if (fs_fd != -2)
2528 return;
2529
2530 /* kernels < 2.6.25 are borked
2531 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2532 */
2533 {
2534 struct utsname buf;
2535 int major, minor, micro;
2536
2537 fs_fd = -1;
2538
2539 if (uname (&buf))
2540 return;
2541
2542 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2543 return;
2544
2545 if (major < 2
2546 || (major == 2 && minor < 6)
2547 || (major == 2 && minor == 6 && micro < 25))
2548 return;
2549 }
2550
2551 fs_fd = inotify_init ();
2552
2553 if (fs_fd >= 0)
2554 {
2555 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2556 ev_set_priority (&fs_w, EV_MAXPRI);
2557 ev_io_start (EV_A_ &fs_w);
2558 }
2559}
2560
2561void inline_size
2562infy_fork (EV_P)
2563{
2564 int slot;
2565
2566 if (fs_fd < 0)
2567 return;
2568
2569 close (fs_fd);
2570 fs_fd = inotify_init ();
2571
2572 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2573 {
2574 WL w_ = fs_hash [slot].head;
2575 fs_hash [slot].head = 0;
2576
2577 while (w_)
2578 {
2579 ev_stat *w = (ev_stat *)w_;
2580 w_ = w_->next; /* lets us add this watcher */
2581
2582 w->wd = -1;
2583
2584 if (fs_fd >= 0)
2585 infy_add (EV_A_ w); /* re-add, no matter what */
2586 else
2587 ev_timer_start (EV_A_ &w->timer);
2588 }
2589 }
2590}
2591
2592#endif
2593
2594#ifdef _WIN32
2595# define EV_LSTAT(p,b) _stati64 (p, b)
2596#else
2597# define EV_LSTAT(p,b) lstat (p, b)
2598#endif
2599
2600void
2601ev_stat_stat (EV_P_ ev_stat *w)
2602{
2603 if (lstat (w->path, &w->attr) < 0)
2604 w->attr.st_nlink = 0;
2605 else if (!w->attr.st_nlink)
2606 w->attr.st_nlink = 1;
2607}
2608
2609static void noinline
2610stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2611{
2612 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2613
2614 /* we copy this here each the time so that */
2615 /* prev has the old value when the callback gets invoked */
2616 w->prev = w->attr;
2617 ev_stat_stat (EV_A_ w);
2618
2619 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2620 if (
2621 w->prev.st_dev != w->attr.st_dev
2622 || w->prev.st_ino != w->attr.st_ino
2623 || w->prev.st_mode != w->attr.st_mode
2624 || w->prev.st_nlink != w->attr.st_nlink
2625 || w->prev.st_uid != w->attr.st_uid
2626 || w->prev.st_gid != w->attr.st_gid
2627 || w->prev.st_rdev != w->attr.st_rdev
2628 || w->prev.st_size != w->attr.st_size
2629 || w->prev.st_atime != w->attr.st_atime
2630 || w->prev.st_mtime != w->attr.st_mtime
2631 || w->prev.st_ctime != w->attr.st_ctime
2632 ) {
2633 #if EV_USE_INOTIFY
2634 if (fs_fd >= 0)
2635 {
2636 infy_del (EV_A_ w);
2637 infy_add (EV_A_ w);
2638 ev_stat_stat (EV_A_ w); /* avoid race... */
2639 }
2640 #endif
2641
2642 ev_feed_event (EV_A_ w, EV_STAT);
2643 }
2644}
2645
2646void
2647ev_stat_start (EV_P_ ev_stat *w)
2648{
2649 if (expect_false (ev_is_active (w)))
2650 return;
2651
2652 /* since we use memcmp, we need to clear any padding data etc. */
2653 memset (&w->prev, 0, sizeof (ev_statdata));
2654 memset (&w->attr, 0, sizeof (ev_statdata));
2655
2656 ev_stat_stat (EV_A_ w);
2657
2658 if (w->interval < MIN_STAT_INTERVAL)
2659 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2660
2661 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2662 ev_set_priority (&w->timer, ev_priority (w));
2663
2664#if EV_USE_INOTIFY
2665 infy_init (EV_A);
2666
2667 if (fs_fd >= 0)
2668 infy_add (EV_A_ w);
2669 else
2670#endif
2671 ev_timer_start (EV_A_ &w->timer);
2672
2673 ev_start (EV_A_ (W)w, 1);
2674
2675 EV_FREQUENT_CHECK;
2676}
2677
2678void
2679ev_stat_stop (EV_P_ ev_stat *w)
2680{
2681 clear_pending (EV_A_ (W)w);
2682 if (expect_false (!ev_is_active (w)))
2683 return;
2684
2685 EV_FREQUENT_CHECK;
2686
2687#if EV_USE_INOTIFY
2688 infy_del (EV_A_ w);
2689#endif
2690 ev_timer_stop (EV_A_ &w->timer);
2691
2692 ev_stop (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2695}
2696#endif
2697
2698#if EV_IDLE_ENABLE
2699void
2700ev_idle_start (EV_P_ ev_idle *w)
2701{
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 pri_adjust (EV_A_ (W)w);
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ++idlecnt [ABSPRI (w)];
2711
2712 ++idleall;
2713 ev_start (EV_A_ (W)w, active);
2714
2715 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2716 idles [ABSPRI (w)][active - 1] = w;
2717 }
2718
2719 EV_FREQUENT_CHECK;
2720}
2721
2722void
2723ev_idle_stop (EV_P_ ev_idle *w)
2724{
2725 clear_pending (EV_A_ (W)w);
2726 if (expect_false (!ev_is_active (w)))
2727 return;
2728
2729 EV_FREQUENT_CHECK;
2730
2731 {
2732 int active = ev_active (w);
2733
2734 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2735 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2736
2737 ev_stop (EV_A_ (W)w);
2738 --idleall;
2739 }
2740
2741 EV_FREQUENT_CHECK;
2742}
2743#endif
2744
2745void
2746ev_prepare_start (EV_P_ ev_prepare *w)
2747{
2748 if (expect_false (ev_is_active (w)))
2749 return;
2750
2751 EV_FREQUENT_CHECK;
2752
2753 ev_start (EV_A_ (W)w, ++preparecnt);
2754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2755 prepares [preparecnt - 1] = w;
2756
2757 EV_FREQUENT_CHECK;
2758}
2759
2760void
2761ev_prepare_stop (EV_P_ ev_prepare *w)
2762{
2763 clear_pending (EV_A_ (W)w);
2764 if (expect_false (!ev_is_active (w)))
2765 return;
2766
2767 EV_FREQUENT_CHECK;
2768
2769 {
2770 int active = ev_active (w);
2771
2772 prepares [active - 1] = prepares [--preparecnt];
2773 ev_active (prepares [active - 1]) = active;
2774 }
2775
2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2779}
2780
2781void
2782ev_check_start (EV_P_ ev_check *w)
2783{
2784 if (expect_false (ev_is_active (w)))
2785 return;
2786
2787 EV_FREQUENT_CHECK;
2788
2789 ev_start (EV_A_ (W)w, ++checkcnt);
2790 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2791 checks [checkcnt - 1] = w;
2792
2793 EV_FREQUENT_CHECK;
2794}
2795
2796void
2797ev_check_stop (EV_P_ ev_check *w)
2798{
2799 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 {
2806 int active = ev_active (w);
2807
2808 checks [active - 1] = checks [--checkcnt];
2809 ev_active (checks [active - 1]) = active;
2810 }
2811
2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2815}
2816
2817#if EV_EMBED_ENABLE
2818void noinline
2819ev_embed_sweep (EV_P_ ev_embed *w)
2820{
2821 ev_loop (w->other, EVLOOP_NONBLOCK);
2822}
2823
2824static void
2825embed_io_cb (EV_P_ ev_io *io, int revents)
2826{
2827 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2828
2829 if (ev_cb (w))
2830 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2831 else
2832 ev_loop (w->other, EVLOOP_NONBLOCK);
2833}
2834
2835static void
2836embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2837{
2838 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2839
2840 {
2841 struct ev_loop *loop = w->other;
2842
2843 while (fdchangecnt)
2844 {
2845 fd_reify (EV_A);
2846 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2847 }
2848 }
2849}
2850
2851static void
2852embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 ev_loop_fork (EV_A);
2860 }
2861}
2862
2863#if 0
2864static void
2865embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2866{
2867 ev_idle_stop (EV_A_ idle);
2868}
2869#endif
2870
2871void
2872ev_embed_start (EV_P_ ev_embed *w)
2873{
2874 if (expect_false (ev_is_active (w)))
2875 return;
2876
2877 {
2878 struct ev_loop *loop = w->other;
2879 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2880 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2881 }
2882
2883 EV_FREQUENT_CHECK;
2884
2885 ev_set_priority (&w->io, ev_priority (w));
2886 ev_io_start (EV_A_ &w->io);
2887
2888 ev_prepare_init (&w->prepare, embed_prepare_cb);
2889 ev_set_priority (&w->prepare, EV_MINPRI);
2890 ev_prepare_start (EV_A_ &w->prepare);
2891
2892 ev_fork_init (&w->fork, embed_fork_cb);
2893 ev_fork_start (EV_A_ &w->fork);
2894
2895 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2896
2897 ev_start (EV_A_ (W)w, 1);
2898
2899 EV_FREQUENT_CHECK;
2900}
2901
2902void
2903ev_embed_stop (EV_P_ ev_embed *w)
2904{
2905 clear_pending (EV_A_ (W)w);
2906 if (expect_false (!ev_is_active (w)))
2907 return;
2908
2909 EV_FREQUENT_CHECK;
2910
2911 ev_io_stop (EV_A_ &w->io);
2912 ev_prepare_stop (EV_A_ &w->prepare);
2913 ev_fork_stop (EV_A_ &w->fork);
2914
2915 EV_FREQUENT_CHECK;
2916}
2917#endif
2918
2919#if EV_FORK_ENABLE
2920void
2921ev_fork_start (EV_P_ ev_fork *w)
2922{
2923 if (expect_false (ev_is_active (w)))
2924 return;
2925
2926 EV_FREQUENT_CHECK;
2927
2928 ev_start (EV_A_ (W)w, ++forkcnt);
2929 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2930 forks [forkcnt - 1] = w;
2931
2932 EV_FREQUENT_CHECK;
2933}
2934
2935void
2936ev_fork_stop (EV_P_ ev_fork *w)
2937{
2938 clear_pending (EV_A_ (W)w);
2939 if (expect_false (!ev_is_active (w)))
2940 return;
2941
2942 EV_FREQUENT_CHECK;
2943
2944 {
2945 int active = ev_active (w);
2946
2947 forks [active - 1] = forks [--forkcnt];
2948 ev_active (forks [active - 1]) = active;
2949 }
2950
2951 ev_stop (EV_A_ (W)w);
2952
2953 EV_FREQUENT_CHECK;
2954}
2955#endif
2956
2957#if EV_ASYNC_ENABLE
2958void
2959ev_async_start (EV_P_ ev_async *w)
2960{
2961 if (expect_false (ev_is_active (w)))
2962 return;
2963
2964 evpipe_init (EV_A);
2965
2966 EV_FREQUENT_CHECK;
2967
2968 ev_start (EV_A_ (W)w, ++asynccnt);
2969 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2970 asyncs [asynccnt - 1] = w;
2971
2972 EV_FREQUENT_CHECK;
2973}
2974
2975void
2976ev_async_stop (EV_P_ ev_async *w)
2977{
2978 clear_pending (EV_A_ (W)w);
2979 if (expect_false (!ev_is_active (w)))
2980 return;
2981
2982 EV_FREQUENT_CHECK;
2983
2984 {
2985 int active = ev_active (w);
2986
2987 asyncs [active - 1] = asyncs [--asynccnt];
2988 ev_active (asyncs [active - 1]) = active;
2989 }
2990
2991 ev_stop (EV_A_ (W)w);
2992
2993 EV_FREQUENT_CHECK;
2994}
2995
2996void
2997ev_async_send (EV_P_ ev_async *w)
2998{
2999 w->sent = 1;
3000 evpipe_write (EV_A_ &gotasync);
3001}
3002#endif
1603 3003
1604/*****************************************************************************/ 3004/*****************************************************************************/
1605 3005
1606struct ev_once 3006struct ev_once
1607{ 3007{
1608 struct ev_io io; 3008 ev_io io;
1609 struct ev_timer to; 3009 ev_timer to;
1610 void (*cb)(int revents, void *arg); 3010 void (*cb)(int revents, void *arg);
1611 void *arg; 3011 void *arg;
1612}; 3012};
1613 3013
1614static void 3014static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 3015once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 3016{
1617 void (*cb)(int revents, void *arg) = once->cb; 3017 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 3018 void *arg = once->arg;
1619 3019
1620 ev_io_stop (EV_A_ &once->io); 3020 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 3021 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 3022 ev_free (once);
1623 3023
1624 cb (revents, arg); 3024 cb (revents, arg);
1625} 3025}
1626 3026
1627static void 3027static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 3028once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 3029{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 3033}
1632 3034
1633static void 3035static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 3036once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 3037{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3038 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3039
3040 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 3041}
1638 3042
1639void 3043void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3044ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 3045{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3046 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 3047
1644 if (!once) 3048 if (expect_false (!once))
3049 {
1645 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3050 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1646 else 3051 return;
1647 { 3052 }
3053
1648 once->cb = cb; 3054 once->cb = cb;
1649 once->arg = arg; 3055 once->arg = arg;
1650 3056
1651 ev_init (&once->io, once_cb_io); 3057 ev_init (&once->io, once_cb_io);
1652 if (fd >= 0) 3058 if (fd >= 0)
1653 { 3059 {
1654 ev_io_set (&once->io, fd, events); 3060 ev_io_set (&once->io, fd, events);
1655 ev_io_start (EV_A_ &once->io); 3061 ev_io_start (EV_A_ &once->io);
1656 } 3062 }
1657 3063
1658 ev_init (&once->to, once_cb_to); 3064 ev_init (&once->to, once_cb_to);
1659 if (timeout >= 0.) 3065 if (timeout >= 0.)
1660 { 3066 {
1661 ev_timer_set (&once->to, timeout, 0.); 3067 ev_timer_set (&once->to, timeout, 0.);
1662 ev_timer_start (EV_A_ &once->to); 3068 ev_timer_start (EV_A_ &once->to);
1663 }
1664 } 3069 }
1665} 3070}
3071
3072#if EV_MULTIPLICITY
3073 #include "ev_wrap.h"
3074#endif
1666 3075
1667#ifdef __cplusplus 3076#ifdef __cplusplus
1668} 3077}
1669#endif 3078#endif
1670 3079

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines