ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.122 by root, Sat Nov 17 02:00:48 2007 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
38 63
39# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
42# endif 67# endif
43# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
45# endif 77# endif
46# endif 78# endif
47 79
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
50# endif 86# endif
51 87
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
54# endif 94# endif
55 95
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
58# endif 102# endif
59 103
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
62# endif 110# endif
63 111
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
66# endif 118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
67 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
68#endif 144#endif
69 145
70#include <math.h> 146#include <math.h>
71#include <stdlib.h> 147#include <stdlib.h>
72#include <fcntl.h> 148#include <fcntl.h>
79#include <sys/types.h> 155#include <sys/types.h>
80#include <time.h> 156#include <time.h>
81 157
82#include <signal.h> 158#include <signal.h>
83 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
84#ifndef _WIN32 166#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 167# include <sys/time.h>
87# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
88#else 170#else
171# include <io.h>
89# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 173# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
93# endif 176# endif
94#endif 177#endif
95 178
96/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
97 188
98#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
99# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
100#endif 195#endif
101 196
102#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
104#endif 207#endif
105 208
106#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
108#endif 211#endif
114# define EV_USE_POLL 1 217# define EV_USE_POLL 1
115# endif 218# endif
116#endif 219#endif
117 220
118#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
119# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
120#endif 227#endif
121 228
122#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
124#endif 231#endif
125 232
126#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 234# define EV_USE_PORT 0
128#endif 235#endif
129 236
130/**/ 237#ifndef EV_USE_INOTIFY
131 238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 239# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 240# else
134# undef EV_USE_POLL 241# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 288
138#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
141#endif 292#endif
143#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
146#endif 297#endif
147 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
148#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 322# include <winsock.h>
150#endif 323#endif
151 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
152/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 363
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 367
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 368#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline inline 370# define noinline __attribute__ ((noinline))
168#else 371#else
169# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
170# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
171#endif 377#endif
172 378
173#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
175 388
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 391
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
181 394
182typedef struct ev_watcher *W; 395typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
185 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
187 411
188#ifdef _WIN32 412#ifdef _WIN32
189# include "ev_win32.c" 413# include "ev_win32.c"
190#endif 414#endif
191 415
192/*****************************************************************************/ 416/*****************************************************************************/
193 417
194static void (*syserr_cb)(const char *msg); 418static void (*syserr_cb)(const char *msg);
195 419
420void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 421ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 422{
198 syserr_cb = cb; 423 syserr_cb = cb;
199} 424}
200 425
201static void 426static void noinline
202syserr (const char *msg) 427ev_syserr (const char *msg)
203{ 428{
204 if (!msg) 429 if (!msg)
205 msg = "(libev) system error"; 430 msg = "(libev) system error";
206 431
207 if (syserr_cb) 432 if (syserr_cb)
211 perror (msg); 436 perror (msg);
212 abort (); 437 abort ();
213 } 438 }
214} 439}
215 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
216static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 457
458void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 460{
220 alloc = cb; 461 alloc = cb;
221} 462}
222 463
223static void * 464inline_speed void *
224ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
225{ 466{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
227 468
228 if (!ptr && size) 469 if (!ptr && size)
229 { 470 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 472 abort ();
237#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
239 480
240/*****************************************************************************/ 481/*****************************************************************************/
241 482
483/* file descriptor info structure */
242typedef struct 484typedef struct
243{ 485{
244 WL head; 486 WL head;
245 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
246 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
247#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
248 SOCKET handle; 495 SOCKET handle;
249#endif 496#endif
250} ANFD; 497} ANFD;
251 498
499/* stores the pending event set for a given watcher */
252typedef struct 500typedef struct
253{ 501{
254 W w; 502 W w;
255 int events; 503 int events; /* the pending event set for the given watcher */
256} ANPENDING; 504} ANPENDING;
505
506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
508typedef struct
509{
510 WL head;
511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
532#endif
257 533
258#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
259 535
260 struct ev_loop 536 struct ev_loop
261 { 537 {
285 561
286ev_tstamp 562ev_tstamp
287ev_time (void) 563ev_time (void)
288{ 564{
289#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
290 struct timespec ts; 568 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 571 }
572#endif
573
294 struct timeval tv; 574 struct timeval tv;
295 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 577}
299 578
300inline ev_tstamp 579inline_size ev_tstamp
301get_clock (void) 580get_clock (void)
302{ 581{
303#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
305 { 584 {
318{ 597{
319 return ev_rt_now; 598 return ev_rt_now;
320} 599}
321#endif 600#endif
322 601
323#define array_roundsize(type,n) (((n) | 4) & ~3) 602void
603ev_sleep (ev_tstamp delay)
604{
605 if (delay > 0.)
606 {
607#if EV_USE_NANOSLEEP
608 struct timespec ts;
609
610 ts.tv_sec = (time_t)delay;
611 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
612
613 nanosleep (&ts, 0);
614#elif defined(_WIN32)
615 Sleep ((unsigned long)(delay * 1e3));
616#else
617 struct timeval tv;
618
619 tv.tv_sec = (time_t)delay;
620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
625 select (0, 0, 0, 0, &tv);
626#endif
627 }
628}
629
630/*****************************************************************************/
631
632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
637array_nextsize (int elem, int cur, int cnt)
638{
639 int ncur = cur + 1;
640
641 do
642 ncur <<= 1;
643 while (cnt > ncur);
644
645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
647 {
648 ncur *= elem;
649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
650 ncur = ncur - sizeof (void *) * 4;
651 ncur /= elem;
652 }
653
654 return ncur;
655}
656
657static noinline void *
658array_realloc (int elem, void *base, int *cur, int cnt)
659{
660 *cur = array_nextsize (elem, *cur, cnt);
661 return ev_realloc (base, elem * *cur);
662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 666
325#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 668 if (expect_false ((cnt) > (cur))) \
327 { \ 669 { \
328 int newcnt = cur; \ 670 int ocur_ = (cur); \
329 do \ 671 (base) = (type *)array_realloc \
330 { \ 672 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 673 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 674 }
339 675
676#if 0
340#define array_slim(type,stem) \ 677#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 678 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 679 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 680 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 681 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 683 }
684#endif
347 685
348#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 688
351/*****************************************************************************/ 689/*****************************************************************************/
352 690
353static void 691/* dummy callback for pending events */
354anfds_init (ANFD *base, int count) 692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 694{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 695}
365 696
366void 697void noinline
367ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
368{ 699{
369 W w_ = (W)w; 700 W w_ = (W)w;
701 int pri = ABSPRI (w_);
370 702
371 if (w_->pending) 703 if (expect_false (w_->pending))
704 pendings [pri][w_->pending - 1].events |= revents;
705 else
372 { 706 {
707 w_->pending = ++pendingcnt [pri];
708 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
709 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 710 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 711 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 712}
382 713
383static void 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 731{
386 int i; 732 int i;
387 733
388 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
390} 736}
391 737
738/*****************************************************************************/
739
392inline void 740inline_speed void
393fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
394{ 742{
395 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 744 ev_io *w;
397 745
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 746 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 747 {
400 int ev = w->events & revents; 748 int ev = w->events & revents;
401 749
402 if (ev) 750 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 751 ev_feed_event (EV_A_ (W)w, ev);
405} 753}
406 754
407void 755void
408ev_feed_fd_event (EV_P_ int fd, int revents) 756ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 757{
758 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
411} 760}
412 761
413/*****************************************************************************/ 762/* make sure the external fd watch events are in-sync */
414 763/* with the kernel/libev internal state */
415static void 764inline_size void
416fd_reify (EV_P) 765fd_reify (EV_P)
417{ 766{
418 int i; 767 int i;
419 768
420 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
421 { 770 {
422 int fd = fdchanges [i]; 771 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 773 ev_io *w;
425 774
426 int events = 0; 775 unsigned char events = 0;
427 776
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 777 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 778 events |= (unsigned char)w->events;
430 779
431#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
432 if (events) 781 if (events)
433 { 782 {
434 unsigned long argp; 783 unsigned long arg;
784 #ifdef EV_FD_TO_WIN32_HANDLE
785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
786 #else
435 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
788 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
437 } 790 }
438#endif 791#endif
439 792
793 {
794 unsigned char o_events = anfd->events;
795 unsigned char o_reify = anfd->reify;
796
440 anfd->reify = 0; 797 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 798 anfd->events = events;
799
800 if (o_events != events || o_reify & EV__IOFDSET)
801 backend_modify (EV_A_ fd, o_events, events);
802 }
444 } 803 }
445 804
446 fdchangecnt = 0; 805 fdchangecnt = 0;
447} 806}
448 807
449static void 808/* something about the given fd changed */
809inline_size void
450fd_change (EV_P_ int fd) 810fd_change (EV_P_ int fd, int flags)
451{ 811{
452 if (anfds [fd].reify) 812 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 813 anfds [fd].reify |= flags;
456 814
815 if (expect_true (!reify))
816 {
457 ++fdchangecnt; 817 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
820 }
460} 821}
461 822
462static void 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
463fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
464{ 826{
465 struct ev_io *w; 827 ev_io *w;
466 828
467 while ((w = (struct ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
468 { 830 {
469 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 833 }
472} 834}
473 835
474static int 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
475fd_valid (int fd) 838fd_valid (int fd)
476{ 839{
477#ifdef _WIN32 840#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
479#else 842#else
480 return fcntl (fd, F_GETFD) != -1; 843 return fcntl (fd, F_GETFD) != -1;
481#endif 844#endif
482} 845}
483 846
484/* called on EBADF to verify fds */ 847/* called on EBADF to verify fds */
485static void 848static void noinline
486fd_ebadf (EV_P) 849fd_ebadf (EV_P)
487{ 850{
488 int fd; 851 int fd;
489 852
490 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 854 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
494} 857}
495 858
496/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 860static void noinline
498fd_enomem (EV_P) 861fd_enomem (EV_P)
499{ 862{
500 int fd; 863 int fd;
501 864
502 for (fd = anfdmax; fd--; ) 865 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 868 fd_kill (EV_A_ fd);
506 return; 869 return;
507 } 870 }
508} 871}
509 872
510/* usually called after fork if method needs to re-arm all fds from scratch */ 873/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 874static void noinline
512fd_rearm_all (EV_P) 875fd_rearm_all (EV_P)
513{ 876{
514 int fd; 877 int fd;
515 878
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 880 if (anfds [fd].events)
519 { 881 {
520 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
521 fd_change (EV_A_ fd); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
522 } 885 }
523} 886}
524 887
525/*****************************************************************************/ 888/*****************************************************************************/
526 889
527static void 890/*
528upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
529{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
530 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
531 895
532 while (k && heap [k >> 1]->at > w->at) 896/*
533 { 897 * at the moment we allow libev the luxury of two heaps,
534 heap [k] = heap [k >> 1]; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
535 ((W)heap [k])->active = k + 1; 899 * which is more cache-efficient.
536 k >>= 1; 900 * the difference is about 5% with 50000+ watchers.
537 } 901 */
902#if EV_USE_4HEAP
538 903
539 heap [k] = w; 904#define DHEAP 4
540 ((W)heap [k])->active = k + 1; 905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
541 908
542} 909/* away from the root */
543 910inline_speed void
544static void
545downheap (WT *heap, int N, int k) 911downheap (ANHE *heap, int N, int k)
546{ 912{
547 WT w = heap [k]; 913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
548 915
549 while (k < (N >> 1)) 916 for (;;)
550 { 917 {
551 int j = k << 1; 918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
552 921
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
554 ++j; 924 {
555 925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
556 if (w->at <= heap [j]->at) 926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
557 break; 938 break;
558 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
559 heap [k] = heap [j]; 978 heap [k] = heap [c];
560 ((W)heap [k])->active = k + 1; 979 ev_active (ANHE_w (heap [k])) = k;
980
561 k = j; 981 k = c;
562 } 982 }
563 983
564 heap [k] = w; 984 heap [k] = he;
565 ((W)heap [k])->active = k + 1; 985 ev_active (ANHE_w (he)) = k;
566} 986}
987#endif
567 988
989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
1002 heap [k] = heap [p];
1003 ev_active (ANHE_w (heap [k])) = k;
1004 k = p;
1005 }
1006
1007 heap [k] = he;
1008 ev_active (ANHE_w (he)) = k;
1009}
1010
1011/* move an element suitably so it is in a correct place */
568inline void 1012inline_size void
569adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
570{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
571 upheap (heap, k); 1016 upheap (heap, k);
1017 else
572 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
573} 1031}
574 1032
575/*****************************************************************************/ 1033/*****************************************************************************/
576 1034
1035/* associate signal watchers to a signal signal */
577typedef struct 1036typedef struct
578{ 1037{
579 WL head; 1038 WL head;
580 sig_atomic_t volatile gotsig; 1039 EV_ATOMIC_T gotsig;
581} ANSIG; 1040} ANSIG;
582 1041
583static ANSIG *signals; 1042static ANSIG *signals;
584static int signalmax; 1043static int signalmax;
585 1044
586static int sigpipe [2]; 1045static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 1046
590static void 1047/*****************************************************************************/
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597 1048
598 ++base; 1049/* used to prepare libev internal fd's */
599 } 1050/* this is not fork-safe */
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653inline void 1051inline_speed void
654fd_intern (int fd) 1052fd_intern (int fd)
655{ 1053{
656#ifdef _WIN32 1054#ifdef _WIN32
657 int arg = 1; 1055 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else 1057#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1060#endif
663} 1061}
664 1062
1063static void noinline
1064evpipe_init (EV_P)
1065{
1066 if (!ev_is_active (&pipe_w))
1067 {
1068#if EV_USE_EVENTFD
1069 if ((evfd = eventfd (0, 0)) >= 0)
1070 {
1071 evpipe [0] = -1;
1072 fd_intern (evfd);
1073 ev_io_set (&pipe_w, evfd, EV_READ);
1074 }
1075 else
1076#endif
1077 {
1078 while (pipe (evpipe))
1079 ev_syserr ("(libev) error creating signal/async pipe");
1080
1081 fd_intern (evpipe [0]);
1082 fd_intern (evpipe [1]);
1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 }
1085
1086 ev_io_start (EV_A_ &pipe_w);
1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1088 }
1089}
1090
1091inline_size void
1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1093{
1094 if (!*flag)
1095 {
1096 int old_errno = errno; /* save errno because write might clobber it */
1097
1098 *flag = 1;
1099
1100#if EV_USE_EVENTFD
1101 if (evfd >= 0)
1102 {
1103 uint64_t counter = 1;
1104 write (evfd, &counter, sizeof (uint64_t));
1105 }
1106 else
1107#endif
1108 write (evpipe [1], &old_errno, 1);
1109
1110 errno = old_errno;
1111 }
1112}
1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
665static void 1116static void
666siginit (EV_P) 1117pipecb (EV_P_ ev_io *iow, int revents)
667{ 1118{
668 fd_intern (sigpipe [0]); 1119#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 1120 if (evfd >= 0)
1121 {
1122 uint64_t counter;
1123 read (evfd, &counter, sizeof (uint64_t));
1124 }
1125 else
1126#endif
1127 {
1128 char dummy;
1129 read (evpipe [0], &dummy, 1);
1130 }
670 1131
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1132 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 1133 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1134 int signum;
1135 gotsig = 0;
1136
1137 for (signum = signalmax; signum--; )
1138 if (signals [signum].gotsig)
1139 ev_feed_signal_event (EV_A_ signum + 1);
1140 }
1141
1142#if EV_ASYNC_ENABLE
1143 if (gotasync)
1144 {
1145 int i;
1146 gotasync = 0;
1147
1148 for (i = asynccnt; i--; )
1149 if (asyncs [i]->sent)
1150 {
1151 asyncs [i]->sent = 0;
1152 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1153 }
1154 }
1155#endif
674} 1156}
675 1157
676/*****************************************************************************/ 1158/*****************************************************************************/
677 1159
678static struct ev_child *childs [PID_HASHSIZE]; 1160static void
1161ev_sighandler (int signum)
1162{
1163#if EV_MULTIPLICITY
1164 struct ev_loop *loop = &default_loop_struct;
1165#endif
1166
1167#if _WIN32
1168 signal (signum, ev_sighandler);
1169#endif
1170
1171 signals [signum - 1].gotsig = 1;
1172 evpipe_write (EV_A_ &gotsig);
1173}
1174
1175void noinline
1176ev_feed_signal_event (EV_P_ int signum)
1177{
1178 WL w;
1179
1180#if EV_MULTIPLICITY
1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1182#endif
1183
1184 --signum;
1185
1186 if (signum < 0 || signum >= signalmax)
1187 return;
1188
1189 signals [signum].gotsig = 0;
1190
1191 for (w = signals [signum].head; w; w = w->next)
1192 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1193}
1194
1195/*****************************************************************************/
1196
1197static WL childs [EV_PID_HASHSIZE];
679 1198
680#ifndef _WIN32 1199#ifndef _WIN32
681 1200
682static struct ev_signal childev; 1201static ev_signal childev;
1202
1203#ifndef WIFCONTINUED
1204# define WIFCONTINUED(status) 0
1205#endif
1206
1207/* handle a single child status event */
1208inline_speed void
1209child_reap (EV_P_ int chain, int pid, int status)
1210{
1211 ev_child *w;
1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1213
1214 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1215 {
1216 if ((w->pid == pid || !w->pid)
1217 && (!traced || (w->flags & 1)))
1218 {
1219 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1220 w->rpid = pid;
1221 w->rstatus = status;
1222 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1223 }
1224 }
1225}
683 1226
684#ifndef WCONTINUED 1227#ifndef WCONTINUED
685# define WCONTINUED 0 1228# define WCONTINUED 0
686#endif 1229#endif
687 1230
1231/* called on sigchld etc., calls waitpid */
688static void 1232static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
705{ 1234{
706 int pid, status; 1235 int pid, status;
707 1236
1237 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1238 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1239 if (!WCONTINUED
1240 || errno != EINVAL
1241 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1242 return;
1243
710 /* make sure we are called again until all childs have been reaped */ 1244 /* make sure we are called again until all children have been reaped */
1245 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1246 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1247
713 child_reap (EV_A_ sw, pid, pid, status); 1248 child_reap (EV_A_ pid, pid, status);
1249 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1250 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1251}
717 1252
718#endif 1253#endif
719 1254
720/*****************************************************************************/ 1255/*****************************************************************************/
746{ 1281{
747 return EV_VERSION_MINOR; 1282 return EV_VERSION_MINOR;
748} 1283}
749 1284
750/* return true if we are running with elevated privileges and should ignore env variables */ 1285/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1286int inline_size
752enable_secure (void) 1287enable_secure (void)
753{ 1288{
754#ifdef _WIN32 1289#ifdef _WIN32
755 return 0; 1290 return 0;
756#else 1291#else
758 || getgid () != getegid (); 1293 || getgid () != getegid ();
759#endif 1294#endif
760} 1295}
761 1296
762unsigned int 1297unsigned int
763ev_method (EV_P) 1298ev_supported_backends (void)
764{ 1299{
765 return method; 1300 unsigned int flags = 0;
766}
767 1301
768static void 1302 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1303 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1304 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1305 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1306 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1307
1308 return flags;
1309}
1310
1311unsigned int
1312ev_recommended_backends (void)
1313{
1314 unsigned int flags = ev_supported_backends ();
1315
1316#ifndef __NetBSD__
1317 /* kqueue is borked on everything but netbsd apparently */
1318 /* it usually doesn't work correctly on anything but sockets and pipes */
1319 flags &= ~EVBACKEND_KQUEUE;
1320#endif
1321#ifdef __APPLE__
1322 /* only select works correctly on that "unix-certified" platform */
1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1325#endif
1326
1327 return flags;
1328}
1329
1330unsigned int
1331ev_embeddable_backends (void)
1332{
1333 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1334
1335 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1336 /* please fix it and tell me how to detect the fix */
1337 flags &= ~EVBACKEND_EPOLL;
1338
1339 return flags;
1340}
1341
1342unsigned int
1343ev_backend (EV_P)
1344{
1345 return backend;
1346}
1347
1348unsigned int
1349ev_loop_count (EV_P)
1350{
1351 return loop_count;
1352}
1353
1354void
1355ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1356{
1357 io_blocktime = interval;
1358}
1359
1360void
1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1362{
1363 timeout_blocktime = interval;
1364}
1365
1366/* initialise a loop structure, must be zero-initialised */
1367static void noinline
769loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
770{ 1369{
771 if (!method) 1370 if (!backend)
772 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
773#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1384 {
1385 struct timespec ts;
1386
1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1388 have_monotonic = 1;
1389 }
1390#endif
1391
1392 ev_rt_now = ev_time ();
1393 mn_now = get_clock ();
1394 now_floor = mn_now;
1395 rtmn_diff = ev_rt_now - mn_now;
1396
1397 io_blocktime = 0.;
1398 timeout_blocktime = 0.;
1399 backend = 0;
1400 backend_fd = -1;
1401 gotasync = 0;
1402#if EV_USE_INOTIFY
1403 fs_fd = -2;
1404#endif
1405
1406 /* pid check not overridable via env */
1407#ifndef _WIN32
1408 if (flags & EVFLAG_FORKCHECK)
1409 curpid = getpid ();
1410#endif
1411
1412 if (!(flags & EVFLAG_NOENV)
1413 && !enable_secure ()
1414 && getenv ("LIBEV_FLAGS"))
1415 flags = atoi (getenv ("LIBEV_FLAGS"));
1416
1417 if (!(flags & 0x0000ffffU))
1418 flags |= ev_recommended_backends ();
1419
1420#if EV_USE_PORT
1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1422#endif
1423#if EV_USE_KQUEUE
1424 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1425#endif
1426#if EV_USE_EPOLL
1427 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1428#endif
1429#if EV_USE_POLL
1430 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1431#endif
1432#if EV_USE_SELECT
1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1434#endif
1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1438 ev_init (&pipe_w, pipecb);
1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1440 }
1441}
1442
1443/* free up a loop structure */
1444static void noinline
1445loop_destroy (EV_P)
1446{
1447 int i;
1448
1449 if (ev_is_active (&pipe_w))
1450 {
1451 ev_ref (EV_A); /* signal watcher */
1452 ev_io_stop (EV_A_ &pipe_w);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464 }
1465
1466#if EV_USE_INOTIFY
1467 if (fs_fd >= 0)
1468 close (fs_fd);
1469#endif
1470
1471 if (backend_fd >= 0)
1472 close (backend_fd);
1473
1474#if EV_USE_PORT
1475 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1476#endif
1477#if EV_USE_KQUEUE
1478 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1479#endif
1480#if EV_USE_EPOLL
1481 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1482#endif
1483#if EV_USE_POLL
1484 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1485#endif
1486#if EV_USE_SELECT
1487 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1488#endif
1489
1490 for (i = NUMPRI; i--; )
1491 {
1492 array_free (pending, [i]);
1493#if EV_IDLE_ENABLE
1494 array_free (idle, [i]);
1495#endif
1496 }
1497
1498 ev_free (anfds); anfdmax = 0;
1499
1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1502 array_free (fdchange, EMPTY);
1503 array_free (timer, EMPTY);
1504#if EV_PERIODIC_ENABLE
1505 array_free (periodic, EMPTY);
1506#endif
1507#if EV_FORK_ENABLE
1508 array_free (fork, EMPTY);
1509#endif
1510 array_free (prepare, EMPTY);
1511 array_free (check, EMPTY);
1512#if EV_ASYNC_ENABLE
1513 array_free (async, EMPTY);
1514#endif
1515
1516 backend = 0;
1517}
1518
1519#if EV_USE_INOTIFY
1520inline_size void infy_fork (EV_P);
1521#endif
1522
1523inline_size void
1524loop_fork (EV_P)
1525{
1526#if EV_USE_PORT
1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1528#endif
1529#if EV_USE_KQUEUE
1530 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1531#endif
1532#if EV_USE_EPOLL
1533 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1534#endif
1535#if EV_USE_INOTIFY
1536 infy_fork (EV_A);
1537#endif
1538
1539 if (ev_is_active (&pipe_w))
1540 {
1541 /* this "locks" the handlers against writing to the pipe */
1542 /* while we modify the fd vars */
1543 gotsig = 1;
1544#if EV_ASYNC_ENABLE
1545 gotasync = 1;
1546#endif
1547
1548 ev_ref (EV_A);
1549 ev_io_stop (EV_A_ &pipe_w);
1550
1551#if EV_USE_EVENTFD
1552 if (evfd >= 0)
1553 close (evfd);
1554#endif
1555
1556 if (evpipe [0] >= 0)
1557 {
1558 close (evpipe [0]);
1559 close (evpipe [1]);
1560 }
1561
1562 evpipe_init (EV_A);
1563 /* now iterate over everything, in case we missed something */
1564 pipecb (EV_A_ &pipe_w, EV_READ);
1565 }
1566
1567 postfork = 0;
1568}
1569
1570#if EV_MULTIPLICITY
1571
1572struct ev_loop *
1573ev_loop_new (unsigned int flags)
1574{
1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1576
1577 memset (loop, 0, sizeof (struct ev_loop));
1578
1579 loop_init (EV_A_ flags);
1580
1581 if (ev_backend (EV_A))
1582 return loop;
1583
1584 return 0;
1585}
1586
1587void
1588ev_loop_destroy (EV_P)
1589{
1590 loop_destroy (EV_A);
1591 ev_free (loop);
1592}
1593
1594void
1595ev_loop_fork (EV_P)
1596{
1597 postfork = 1; /* must be in line with ev_default_fork */
1598}
1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
774 { 1652 {
775 struct timespec ts; 1653 verify_watcher (EV_A_ (W)w);
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
777 have_monotonic = 1; 1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
778 } 1656 }
779#endif
780 1657
781 ev_rt_now = ev_time (); 1658 assert (timermax >= timercnt);
782 mn_now = get_clock (); 1659 verify_heap (EV_A_ timers, timercnt);
783 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now;
785 1660
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1661#if EV_PERIODIC_ENABLE
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1662 assert (periodicmax >= periodiccnt);
788 1663 verify_heap (EV_A_ periodics, periodiccnt);
789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
791
792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
796#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
798#endif
799#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
801#endif
802#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
804#endif
805#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
807#endif
808
809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
811 }
812}
813
814void
815loop_destroy (EV_P)
816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
822#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
824#endif
825#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
827#endif
828#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
830#endif
831#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
833#endif 1664#endif
834 1665
835 for (i = NUMPRI; i--; ) 1666 for (i = NUMPRI; i--; )
836 array_free (pending, [i]); 1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
837 1675
838 /* have to use the microsoft-never-gets-it-right macro */ 1676#if EV_FORK_ENABLE
839 array_free (fdchange, EMPTY0); 1677 assert (forkmax >= forkcnt);
840 array_free (timer, EMPTY0); 1678 array_verify (EV_A_ (W *)forks, forkcnt);
841#if EV_PERIODICS 1679#endif
842 array_free (periodic, EMPTY0); 1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
843#endif 1695# endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif 1696#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 1697}
1698
1699#endif /* multiplicity */
881 1700
882#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
883struct ev_loop * 1702struct ev_loop *
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
916#else 1704#else
917int 1705int
918ev_default_loop (unsigned int flags) 1706ev_default_loop (unsigned int flags)
919#endif 1707#endif
920{ 1708{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1709 if (!ev_default_loop_ptr)
926 { 1710 {
927#if EV_MULTIPLICITY 1711#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1712 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1713#else
930 ev_default_loop_ptr = 1; 1714 ev_default_loop_ptr = 1;
931#endif 1715#endif
932 1716
933 loop_init (EV_A_ flags); 1717 loop_init (EV_A_ flags);
934 1718
935 if (ev_method (EV_A)) 1719 if (ev_backend (EV_A))
936 { 1720 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1721#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1722 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1723 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1724 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1725 ev_unref (EV_A); /* child watcher should not keep loop alive */
955{ 1737{
956#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
957 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
958#endif 1740#endif
959 1741
1742 ev_default_loop_ptr = 0;
1743
960#ifndef _WIN32 1744#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
963#endif 1747#endif
964 1748
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1749 loop_destroy (EV_A);
972} 1750}
973 1751
974void 1752void
975ev_default_fork (void) 1753ev_default_fork (void)
976{ 1754{
977#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1757#endif
980 1758
981 if (method) 1759 postfork = 1; /* must be in line with ev_loop_fork */
982 postfork = 1;
983} 1760}
984 1761
985/*****************************************************************************/ 1762/*****************************************************************************/
986 1763
987static int 1764void
988any_pending (EV_P) 1765ev_invoke (EV_P_ void *w, int revents)
989{ 1766{
990 int pri; 1767 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1768}
998 1769
999inline void 1770inline_speed void
1000call_pending (EV_P) 1771call_pending (EV_P)
1001{ 1772{
1002 int pri; 1773 int pri;
1003 1774
1004 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1006 { 1777 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1779
1009 if (expect_true (p->w)) 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1010 { 1781 /* ^ this is no longer true, as pending_w could be here */
1782
1011 p->w->pending = 0; 1783 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1013 } 1785 EV_FREQUENT_CHECK;
1014 } 1786 }
1015} 1787}
1016 1788
1017static void 1789#if EV_IDLE_ENABLE
1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1793idle_reify (EV_P)
1794{
1795 if (expect_false (idleall))
1796 {
1797 int pri;
1798
1799 for (pri = NUMPRI; pri--; )
1800 {
1801 if (pendingcnt [pri])
1802 break;
1803
1804 if (idlecnt [pri])
1805 {
1806 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1807 break;
1808 }
1809 }
1810 }
1811}
1812#endif
1813
1814/* make timers pending */
1815inline_size void
1018timers_reify (EV_P) 1816timers_reify (EV_P)
1019{ 1817{
1818 EV_FREQUENT_CHECK;
1819
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 1821 {
1022 struct ev_timer *w = timers [0]; 1822 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1836
1031 ((WT)w)->at += w->repeat; 1837 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1036 } 1845 }
1037 else 1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1847
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1041 } 1849 }
1042} 1850}
1043 1851
1044#if EV_PERIODICS 1852#if EV_PERIODIC_ENABLE
1045static void 1853/* make periodics pending */
1854inline_size void
1046periodics_reify (EV_P) 1855periodics_reify (EV_P)
1047{ 1856{
1857 EV_FREQUENT_CHECK;
1858
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 1860 {
1050 struct ev_periodic *w = periodics [0]; 1861 int feed_count = 0;
1051 1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1868
1054 /* first reschedule or stop timer */ 1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1055 if (w->reschedule_cb) 1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1951time_update (EV_P_ ev_tstamp max_block)
1952{
1953 int i;
1954
1955#if EV_USE_MONOTONIC
1956 if (expect_true (have_monotonic))
1957 {
1958 ev_tstamp odiff = rtmn_diff;
1959
1960 mn_now = get_clock ();
1961
1962 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1963 /* interpolate in the meantime */
1964 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1056 { 1965 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1966 ev_rt_now = rtmn_diff + mn_now;
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1967 return;
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 1968 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1969
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now; 1970 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1971 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1972
1114static void 1973 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1974 * on the choice of "4": one iteration isn't enough,
1116{ 1975 * in case we get preempted during the calls to
1117 int i; 1976 * ev_time and get_clock. a second call is almost guaranteed
1118 1977 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1978 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1979 * in the unlikely event of having been preempted here.
1121 { 1980 */
1122 if (time_update_monotonic (EV_A)) 1981 for (i = 4; --i; )
1123 { 1982 {
1124 ev_tstamp odiff = rtmn_diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 1983 rtmn_diff = ev_rt_now - mn_now;
1129 1984
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1985 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 1986 return; /* all is well */
1132 1987
1133 ev_rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 1989 mn_now = get_clock ();
1135 now_floor = mn_now; 1990 now_floor = mn_now;
1136 } 1991 }
1137 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 1995# if EV_PERIODIC_ENABLE
1996 periodics_reschedule (EV_A);
1997# endif
1998 }
1999 else
2000#endif
2001 {
2002 ev_rt_now = ev_time ();
2003
2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2008#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1140# endif 2010#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 2011 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 2012
1161 mn_now = ev_rt_now; 2013 mn_now = ev_rt_now;
1162 } 2014 }
1163} 2015}
1164 2016
1165void
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done; 2017static int loop_done;
1178 2018
1179void 2019void
1180ev_loop (EV_P_ int flags) 2020ev_loop (EV_P_ int flags)
1181{ 2021{
1182 double block; 2022 loop_done = EVUNLOOP_CANCEL;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 2023
1185 while (activecnt) 2024 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2025
2026 do
1186 { 2027 {
2028#if EV_VERIFY >= 2
2029 ev_loop_verify (EV_A);
2030#endif
2031
2032#ifndef _WIN32
2033 if (expect_false (curpid)) /* penalise the forking check even more */
2034 if (expect_false (getpid () != curpid))
2035 {
2036 curpid = getpid ();
2037 postfork = 1;
2038 }
2039#endif
2040
2041#if EV_FORK_ENABLE
2042 /* we might have forked, so queue fork handlers */
2043 if (expect_false (postfork))
2044 if (forkcnt)
2045 {
2046 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2047 call_pending (EV_A);
2048 }
2049#endif
2050
1187 /* queue check watchers (and execute them) */ 2051 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 2052 if (expect_false (preparecnt))
1189 { 2053 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 2055 call_pending (EV_A);
1192 } 2056 }
1197 2061
1198 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 2063 fd_reify (EV_A);
1200 2064
1201 /* calculate blocking time */ 2065 /* calculate blocking time */
2066 {
2067 ev_tstamp waittime = 0.;
2068 ev_tstamp sleeptime = 0.;
1202 2069
1203 /* we only need this for !monotonic clock or timers, but as we basically 2070 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 2071 {
1211 ev_rt_now = ev_time (); 2072 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 2073 time_update (EV_A_ 1e100);
1213 }
1214 2074
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 2075 waittime = MAX_BLOCKTIME;
1220 2076
1221 if (timercnt) 2077 if (timercnt)
1222 { 2078 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2079 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 2080 if (waittime > to) waittime = to;
1225 } 2081 }
1226 2082
1227#if EV_PERIODICS 2083#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 2084 if (periodiccnt)
1229 { 2085 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2086 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 2087 if (waittime > to) waittime = to;
1232 } 2088 }
1233#endif 2089#endif
1234 2090
1235 if (block < 0.) block = 0.; 2091 if (expect_false (waittime < timeout_blocktime))
2092 waittime = timeout_blocktime;
2093
2094 sleeptime = waittime - backend_fudge;
2095
2096 if (expect_true (sleeptime > io_blocktime))
2097 sleeptime = io_blocktime;
2098
2099 if (sleeptime)
2100 {
2101 ev_sleep (sleeptime);
2102 waittime -= sleeptime;
2103 }
1236 } 2104 }
1237 2105
1238 method_poll (EV_A_ block); 2106 ++loop_count;
2107 backend_poll (EV_A_ waittime);
1239 2108
1240 /* update ev_rt_now, do magic */ 2109 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 2110 time_update (EV_A_ waittime + sleeptime);
2111 }
1242 2112
1243 /* queue pending timers and reschedule them */ 2113 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 2114 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 2115#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 2116 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 2117#endif
1248 2118
2119#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 2120 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 2121 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2122#endif
1252 2123
1253 /* queue check watchers, to be executed first */ 2124 /* queue check watchers, to be executed first */
1254 if (checkcnt) 2125 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2126 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 2127
1257 call_pending (EV_A); 2128 call_pending (EV_A);
1258
1259 if (loop_done)
1260 break;
1261 } 2129 }
2130 while (expect_true (
2131 activecnt
2132 && !loop_done
2133 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2134 ));
1262 2135
1263 if (loop_done != 2) 2136 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 2137 loop_done = EVUNLOOP_CANCEL;
1265} 2138}
1266 2139
1267void 2140void
1268ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
1269{ 2142{
1270 loop_done = how; 2143 loop_done = how;
1271} 2144}
1272 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
1273/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
1274 2185
1275inline void 2186inline_size void
1276wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
1277{ 2188{
1278 elem->next = *head; 2189 elem->next = *head;
1279 *head = elem; 2190 *head = elem;
1280} 2191}
1281 2192
1282inline void 2193inline_size void
1283wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
1284{ 2195{
1285 while (*head) 2196 while (*head)
1286 { 2197 {
1287 if (*head == elem) 2198 if (*head == elem)
1292 2203
1293 head = &(*head)->next; 2204 head = &(*head)->next;
1294 } 2205 }
1295} 2206}
1296 2207
2208/* internal, faster, version of ev_clear_pending */
1297inline void 2209inline_speed void
1298ev_clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
1299{ 2211{
1300 if (w->pending) 2212 if (w->pending)
1301 { 2213 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 2215 w->pending = 0;
1304 } 2216 }
1305} 2217}
1306 2218
2219int
2220ev_clear_pending (EV_P_ void *w)
2221{
2222 W w_ = (W)w;
2223 int pending = w_->pending;
2224
2225 if (expect_true (pending))
2226 {
2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
2229 w_->pending = 0;
2230 return p->events;
2231 }
2232 else
2233 return 0;
2234}
2235
1307inline void 2236inline_size void
2237pri_adjust (EV_P_ W w)
2238{
2239 int pri = w->priority;
2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2242 w->priority = pri;
2243}
2244
2245inline_speed void
1308ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
1309{ 2247{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2248 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2249 w->active = active;
1314 ev_ref (EV_A); 2250 ev_ref (EV_A);
1315} 2251}
1316 2252
1317inline void 2253inline_size void
1318ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
1319{ 2255{
1320 ev_unref (EV_A); 2256 ev_unref (EV_A);
1321 w->active = 0; 2257 w->active = 0;
1322} 2258}
1323 2259
1324/*****************************************************************************/ 2260/*****************************************************************************/
1325 2261
1326void 2262void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2263ev_io_start (EV_P_ ev_io *w)
1328{ 2264{
1329 int fd = w->fd; 2265 int fd = w->fd;
1330 2266
1331 if (ev_is_active (w)) 2267 if (expect_false (ev_is_active (w)))
1332 return; 2268 return;
1333 2269
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2272
2273 EV_FREQUENT_CHECK;
1335 2274
1336 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
1339 2278
1340 fd_change (EV_A_ fd); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1341} 2280 w->events &= ~EV__IOFDSET;
1342 2281
1343void 2282 EV_FREQUENT_CHECK;
2283}
2284
2285void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2286ev_io_stop (EV_P_ ev_io *w)
1345{ 2287{
1346 ev_clear_pending (EV_A_ (W)w); 2288 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 2289 if (expect_false (!ev_is_active (w)))
1348 return; 2290 return;
1349 2291
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2292 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2293
2294 EV_FREQUENT_CHECK;
2295
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2296 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1354 2298
1355 fd_change (EV_A_ w->fd); 2299 fd_change (EV_A_ w->fd, 1);
1356}
1357 2300
1358void 2301 EV_FREQUENT_CHECK;
2302}
2303
2304void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2305ev_timer_start (EV_P_ ev_timer *w)
1360{ 2306{
1361 if (ev_is_active (w)) 2307 if (expect_false (ev_is_active (w)))
1362 return; 2308 return;
1363 2309
1364 ((WT)w)->at += mn_now; 2310 ev_at (w) += mn_now;
1365 2311
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2312 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2313
2314 EV_FREQUENT_CHECK;
2315
2316 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2317 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2318 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2319 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2320 ANHE_at_cache (timers [ev_active (w)]);
2321 upheap (timers, ev_active (w));
1372 2322
2323 EV_FREQUENT_CHECK;
2324
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2325 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2326}
1375 2327
1376void 2328void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2329ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2330{
1379 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1380 if (!ev_is_active (w)) 2332 if (expect_false (!ev_is_active (w)))
1381 return; 2333 return;
1382 2334
2335 EV_FREQUENT_CHECK;
2336
2337 {
2338 int active = ev_active (w);
2339
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2340 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2341
1385 if (((W)w)->active < timercnt--) 2342 --timercnt;
2343
2344 if (expect_true (active < timercnt + HEAP0))
1386 { 2345 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2346 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2347 adjustheap (timers, timercnt, active);
1389 } 2348 }
2349 }
1390 2350
1391 ((WT)w)->at -= mn_now; 2351 EV_FREQUENT_CHECK;
2352
2353 ev_at (w) -= mn_now;
1392 2354
1393 ev_stop (EV_A_ (W)w); 2355 ev_stop (EV_A_ (W)w);
1394} 2356}
1395 2357
1396void 2358void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2359ev_timer_again (EV_P_ ev_timer *w)
1398{ 2360{
2361 EV_FREQUENT_CHECK;
2362
1399 if (ev_is_active (w)) 2363 if (ev_is_active (w))
1400 { 2364 {
1401 if (w->repeat) 2365 if (w->repeat)
1402 { 2366 {
1403 ((WT)w)->at = mn_now + w->repeat; 2367 ev_at (w) = mn_now + w->repeat;
2368 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2369 adjustheap (timers, timercnt, ev_active (w));
1405 } 2370 }
1406 else 2371 else
1407 ev_timer_stop (EV_A_ w); 2372 ev_timer_stop (EV_A_ w);
1408 } 2373 }
1409 else if (w->repeat) 2374 else if (w->repeat)
1410 { 2375 {
1411 w->at = w->repeat; 2376 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2377 ev_timer_start (EV_A_ w);
1413 } 2378 }
1414}
1415 2379
2380 EV_FREQUENT_CHECK;
2381}
2382
1416#if EV_PERIODICS 2383#if EV_PERIODIC_ENABLE
1417void 2384void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2385ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2386{
1420 if (ev_is_active (w)) 2387 if (expect_false (ev_is_active (w)))
1421 return; 2388 return;
1422 2389
1423 if (w->reschedule_cb) 2390 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2392 else if (w->interval)
1426 { 2393 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2395 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2396 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2397 }
2398 else
2399 ev_at (w) = w->offset;
1431 2400
2401 EV_FREQUENT_CHECK;
2402
2403 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2404 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2405 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2406 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2407 ANHE_at_cache (periodics [ev_active (w)]);
2408 upheap (periodics, ev_active (w));
1436 2409
2410 EV_FREQUENT_CHECK;
2411
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2412 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2413}
1439 2414
1440void 2415void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2416ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2417{
1443 ev_clear_pending (EV_A_ (W)w); 2418 clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w)) 2419 if (expect_false (!ev_is_active (w)))
1445 return; 2420 return;
1446 2421
2422 EV_FREQUENT_CHECK;
2423
2424 {
2425 int active = ev_active (w);
2426
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2427 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2428
1449 if (((W)w)->active < periodiccnt--) 2429 --periodiccnt;
2430
2431 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2432 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2433 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2434 adjustheap (periodics, periodiccnt, active);
1453 } 2435 }
2436 }
2437
2438 EV_FREQUENT_CHECK;
1454 2439
1455 ev_stop (EV_A_ (W)w); 2440 ev_stop (EV_A_ (W)w);
1456} 2441}
1457 2442
1458void 2443void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2444ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2445{
1461 /* TODO: use adjustheap and recalculation */ 2446 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2447 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2448 ev_periodic_start (EV_A_ w);
1464} 2449}
1465#endif 2450#endif
1466 2451
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (ev_is_active (w))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (!ev_is_active (w))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 2452#ifndef SA_RESTART
1534# define SA_RESTART 0 2453# define SA_RESTART 0
1535#endif 2454#endif
1536 2455
1537void 2456void noinline
1538ev_signal_start (EV_P_ struct ev_signal *w) 2457ev_signal_start (EV_P_ ev_signal *w)
1539{ 2458{
1540#if EV_MULTIPLICITY 2459#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2460 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 2461#endif
1543 if (ev_is_active (w)) 2462 if (expect_false (ev_is_active (w)))
1544 return; 2463 return;
1545 2464
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2466
2467 evpipe_init (EV_A);
2468
2469 EV_FREQUENT_CHECK;
2470
2471 {
2472#ifndef _WIN32
2473 sigset_t full, prev;
2474 sigfillset (&full);
2475 sigprocmask (SIG_SETMASK, &full, &prev);
2476#endif
2477
2478 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2479
2480#ifndef _WIN32
2481 sigprocmask (SIG_SETMASK, &prev, 0);
2482#endif
2483 }
1547 2484
1548 ev_start (EV_A_ (W)w, 1); 2485 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2486 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2487
1552 if (!((WL)w)->next) 2488 if (!((WL)w)->next)
1553 { 2489 {
1554#if _WIN32 2490#if _WIN32
1555 signal (w->signum, sighandler); 2491 signal (w->signum, ev_sighandler);
1556#else 2492#else
1557 struct sigaction sa; 2493 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2494 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2495 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2496 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2497 sigaction (w->signum, &sa, 0);
1562#endif 2498#endif
1563 } 2499 }
1564}
1565 2500
1566void 2501 EV_FREQUENT_CHECK;
2502}
2503
2504void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2505ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2506{
1569 ev_clear_pending (EV_A_ (W)w); 2507 clear_pending (EV_A_ (W)w);
1570 if (!ev_is_active (w)) 2508 if (expect_false (!ev_is_active (w)))
1571 return; 2509 return;
1572 2510
2511 EV_FREQUENT_CHECK;
2512
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2513 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
1575 2515
1576 if (!signals [w->signum - 1].head) 2516 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2517 signal (w->signum, SIG_DFL);
1578}
1579 2518
2519 EV_FREQUENT_CHECK;
2520}
2521
1580void 2522void
1581ev_child_start (EV_P_ struct ev_child *w) 2523ev_child_start (EV_P_ ev_child *w)
1582{ 2524{
1583#if EV_MULTIPLICITY 2525#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2526 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2527#endif
1586 if (ev_is_active (w)) 2528 if (expect_false (ev_is_active (w)))
1587 return; 2529 return;
1588 2530
2531 EV_FREQUENT_CHECK;
2532
1589 ev_start (EV_A_ (W)w, 1); 2533 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2534 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591}
1592 2535
2536 EV_FREQUENT_CHECK;
2537}
2538
1593void 2539void
1594ev_child_stop (EV_P_ struct ev_child *w) 2540ev_child_stop (EV_P_ ev_child *w)
1595{ 2541{
1596 ev_clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
1597 if (!ev_is_active (w)) 2543 if (expect_false (!ev_is_active (w)))
1598 return; 2544 return;
1599 2545
2546 EV_FREQUENT_CHECK;
2547
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2548 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
2550
2551 EV_FREQUENT_CHECK;
1602} 2552}
2553
2554#if EV_STAT_ENABLE
2555
2556# ifdef _WIN32
2557# undef lstat
2558# define lstat(a,b) _stati64 (a,b)
2559# endif
2560
2561#define DEF_STAT_INTERVAL 5.0074891
2562#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2563#define MIN_STAT_INTERVAL 0.1074891
2564
2565static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2566
2567#if EV_USE_INOTIFY
2568# define EV_INOTIFY_BUFSIZE 8192
2569
2570static void noinline
2571infy_add (EV_P_ ev_stat *w)
2572{
2573 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2574
2575 if (w->wd < 0)
2576 {
2577 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2578 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2579
2580 /* monitor some parent directory for speedup hints */
2581 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2582 /* but an efficiency issue only */
2583 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2584 {
2585 char path [4096];
2586 strcpy (path, w->path);
2587
2588 do
2589 {
2590 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2591 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2592
2593 char *pend = strrchr (path, '/');
2594
2595 if (!pend || pend == path)
2596 break;
2597
2598 *pend = 0;
2599 w->wd = inotify_add_watch (fs_fd, path, mask);
2600 }
2601 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2602 }
2603 }
2604
2605 if (w->wd >= 0)
2606 {
2607 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608
2609 /* now local changes will be tracked by inotify, but remote changes won't */
2610 /* unless the filesystem it known to be local, we therefore still poll */
2611 /* also do poll on <2.6.25, but with normal frequency */
2612 struct statfs sfs;
2613
2614 if (fs_2625 && !statfs (w->path, &sfs))
2615 if (sfs.f_type == 0x1373 /* devfs */
2616 || sfs.f_type == 0xEF53 /* ext2/3 */
2617 || sfs.f_type == 0x3153464a /* jfs */
2618 || sfs.f_type == 0x52654973 /* reiser3 */
2619 || sfs.f_type == 0x01021994 /* tempfs */
2620 || sfs.f_type == 0x58465342 /* xfs */)
2621 return;
2622
2623 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624 ev_timer_again (EV_A_ &w->timer);
2625 }
2626}
2627
2628static void noinline
2629infy_del (EV_P_ ev_stat *w)
2630{
2631 int slot;
2632 int wd = w->wd;
2633
2634 if (wd < 0)
2635 return;
2636
2637 w->wd = -2;
2638 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2639 wlist_del (&fs_hash [slot].head, (WL)w);
2640
2641 /* remove this watcher, if others are watching it, they will rearm */
2642 inotify_rm_watch (fs_fd, wd);
2643}
2644
2645static void noinline
2646infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2647{
2648 if (slot < 0)
2649 /* overflow, need to check for all hash slots */
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2651 infy_wd (EV_A_ slot, wd, ev);
2652 else
2653 {
2654 WL w_;
2655
2656 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2657 {
2658 ev_stat *w = (ev_stat *)w_;
2659 w_ = w_->next; /* lets us remove this watcher and all before it */
2660
2661 if (w->wd == wd || wd == -1)
2662 {
2663 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2664 {
2665 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2666 w->wd = -1;
2667 infy_add (EV_A_ w); /* re-add, no matter what */
2668 }
2669
2670 stat_timer_cb (EV_A_ &w->timer, 0);
2671 }
2672 }
2673 }
2674}
2675
2676static void
2677infy_cb (EV_P_ ev_io *w, int revents)
2678{
2679 char buf [EV_INOTIFY_BUFSIZE];
2680 struct inotify_event *ev = (struct inotify_event *)buf;
2681 int ofs;
2682 int len = read (fs_fd, buf, sizeof (buf));
2683
2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2686}
2687
2688inline_size void
2689check_2625 (EV_P)
2690{
2691 /* kernels < 2.6.25 are borked
2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693 */
2694 struct utsname buf;
2695 int major, minor, micro;
2696
2697 if (uname (&buf))
2698 return;
2699
2700 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701 return;
2702
2703 if (major < 2
2704 || (major == 2 && minor < 6)
2705 || (major == 2 && minor == 6 && micro < 25))
2706 return;
2707
2708 fs_2625 = 1;
2709}
2710
2711inline_size void
2712infy_init (EV_P)
2713{
2714 if (fs_fd != -2)
2715 return;
2716
2717 fs_fd = -1;
2718
2719 check_2625 (EV_A);
2720
2721 fs_fd = inotify_init ();
2722
2723 if (fs_fd >= 0)
2724 {
2725 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2726 ev_set_priority (&fs_w, EV_MAXPRI);
2727 ev_io_start (EV_A_ &fs_w);
2728 }
2729}
2730
2731inline_size void
2732infy_fork (EV_P)
2733{
2734 int slot;
2735
2736 if (fs_fd < 0)
2737 return;
2738
2739 close (fs_fd);
2740 fs_fd = inotify_init ();
2741
2742 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2743 {
2744 WL w_ = fs_hash [slot].head;
2745 fs_hash [slot].head = 0;
2746
2747 while (w_)
2748 {
2749 ev_stat *w = (ev_stat *)w_;
2750 w_ = w_->next; /* lets us add this watcher */
2751
2752 w->wd = -1;
2753
2754 if (fs_fd >= 0)
2755 infy_add (EV_A_ w); /* re-add, no matter what */
2756 else
2757 ev_timer_again (EV_A_ &w->timer);
2758 }
2759 }
2760}
2761
2762#endif
2763
2764#ifdef _WIN32
2765# define EV_LSTAT(p,b) _stati64 (p, b)
2766#else
2767# define EV_LSTAT(p,b) lstat (p, b)
2768#endif
2769
2770void
2771ev_stat_stat (EV_P_ ev_stat *w)
2772{
2773 if (lstat (w->path, &w->attr) < 0)
2774 w->attr.st_nlink = 0;
2775 else if (!w->attr.st_nlink)
2776 w->attr.st_nlink = 1;
2777}
2778
2779static void noinline
2780stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2781{
2782 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2783
2784 /* we copy this here each the time so that */
2785 /* prev has the old value when the callback gets invoked */
2786 w->prev = w->attr;
2787 ev_stat_stat (EV_A_ w);
2788
2789 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2790 if (
2791 w->prev.st_dev != w->attr.st_dev
2792 || w->prev.st_ino != w->attr.st_ino
2793 || w->prev.st_mode != w->attr.st_mode
2794 || w->prev.st_nlink != w->attr.st_nlink
2795 || w->prev.st_uid != w->attr.st_uid
2796 || w->prev.st_gid != w->attr.st_gid
2797 || w->prev.st_rdev != w->attr.st_rdev
2798 || w->prev.st_size != w->attr.st_size
2799 || w->prev.st_atime != w->attr.st_atime
2800 || w->prev.st_mtime != w->attr.st_mtime
2801 || w->prev.st_ctime != w->attr.st_ctime
2802 ) {
2803 #if EV_USE_INOTIFY
2804 if (fs_fd >= 0)
2805 {
2806 infy_del (EV_A_ w);
2807 infy_add (EV_A_ w);
2808 ev_stat_stat (EV_A_ w); /* avoid race... */
2809 }
2810 #endif
2811
2812 ev_feed_event (EV_A_ w, EV_STAT);
2813 }
2814}
2815
2816void
2817ev_stat_start (EV_P_ ev_stat *w)
2818{
2819 if (expect_false (ev_is_active (w)))
2820 return;
2821
2822 ev_stat_stat (EV_A_ w);
2823
2824 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2825 w->interval = MIN_STAT_INTERVAL;
2826
2827 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2828 ev_set_priority (&w->timer, ev_priority (w));
2829
2830#if EV_USE_INOTIFY
2831 infy_init (EV_A);
2832
2833 if (fs_fd >= 0)
2834 infy_add (EV_A_ w);
2835 else
2836#endif
2837 ev_timer_again (EV_A_ &w->timer);
2838
2839 ev_start (EV_A_ (W)w, 1);
2840
2841 EV_FREQUENT_CHECK;
2842}
2843
2844void
2845ev_stat_stop (EV_P_ ev_stat *w)
2846{
2847 clear_pending (EV_A_ (W)w);
2848 if (expect_false (!ev_is_active (w)))
2849 return;
2850
2851 EV_FREQUENT_CHECK;
2852
2853#if EV_USE_INOTIFY
2854 infy_del (EV_A_ w);
2855#endif
2856 ev_timer_stop (EV_A_ &w->timer);
2857
2858 ev_stop (EV_A_ (W)w);
2859
2860 EV_FREQUENT_CHECK;
2861}
2862#endif
2863
2864#if EV_IDLE_ENABLE
2865void
2866ev_idle_start (EV_P_ ev_idle *w)
2867{
2868 if (expect_false (ev_is_active (w)))
2869 return;
2870
2871 pri_adjust (EV_A_ (W)w);
2872
2873 EV_FREQUENT_CHECK;
2874
2875 {
2876 int active = ++idlecnt [ABSPRI (w)];
2877
2878 ++idleall;
2879 ev_start (EV_A_ (W)w, active);
2880
2881 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2882 idles [ABSPRI (w)][active - 1] = w;
2883 }
2884
2885 EV_FREQUENT_CHECK;
2886}
2887
2888void
2889ev_idle_stop (EV_P_ ev_idle *w)
2890{
2891 clear_pending (EV_A_ (W)w);
2892 if (expect_false (!ev_is_active (w)))
2893 return;
2894
2895 EV_FREQUENT_CHECK;
2896
2897 {
2898 int active = ev_active (w);
2899
2900 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2901 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2902
2903 ev_stop (EV_A_ (W)w);
2904 --idleall;
2905 }
2906
2907 EV_FREQUENT_CHECK;
2908}
2909#endif
2910
2911void
2912ev_prepare_start (EV_P_ ev_prepare *w)
2913{
2914 if (expect_false (ev_is_active (w)))
2915 return;
2916
2917 EV_FREQUENT_CHECK;
2918
2919 ev_start (EV_A_ (W)w, ++preparecnt);
2920 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2921 prepares [preparecnt - 1] = w;
2922
2923 EV_FREQUENT_CHECK;
2924}
2925
2926void
2927ev_prepare_stop (EV_P_ ev_prepare *w)
2928{
2929 clear_pending (EV_A_ (W)w);
2930 if (expect_false (!ev_is_active (w)))
2931 return;
2932
2933 EV_FREQUENT_CHECK;
2934
2935 {
2936 int active = ev_active (w);
2937
2938 prepares [active - 1] = prepares [--preparecnt];
2939 ev_active (prepares [active - 1]) = active;
2940 }
2941
2942 ev_stop (EV_A_ (W)w);
2943
2944 EV_FREQUENT_CHECK;
2945}
2946
2947void
2948ev_check_start (EV_P_ ev_check *w)
2949{
2950 if (expect_false (ev_is_active (w)))
2951 return;
2952
2953 EV_FREQUENT_CHECK;
2954
2955 ev_start (EV_A_ (W)w, ++checkcnt);
2956 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2957 checks [checkcnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962void
2963ev_check_stop (EV_P_ ev_check *w)
2964{
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 checks [active - 1] = checks [--checkcnt];
2975 ev_active (checks [active - 1]) = active;
2976 }
2977
2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2981}
2982
2983#if EV_EMBED_ENABLE
2984void noinline
2985ev_embed_sweep (EV_P_ ev_embed *w)
2986{
2987 ev_loop (w->other, EVLOOP_NONBLOCK);
2988}
2989
2990static void
2991embed_io_cb (EV_P_ ev_io *io, int revents)
2992{
2993 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2994
2995 if (ev_cb (w))
2996 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2997 else
2998 ev_loop (w->other, EVLOOP_NONBLOCK);
2999}
3000
3001static void
3002embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3003{
3004 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3005
3006 {
3007 struct ev_loop *loop = w->other;
3008
3009 while (fdchangecnt)
3010 {
3011 fd_reify (EV_A);
3012 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3013 }
3014 }
3015}
3016
3017static void
3018embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021
3022 ev_embed_stop (EV_A_ w);
3023
3024 {
3025 struct ev_loop *loop = w->other;
3026
3027 ev_loop_fork (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030
3031 ev_embed_start (EV_A_ w);
3032}
3033
3034#if 0
3035static void
3036embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3037{
3038 ev_idle_stop (EV_A_ idle);
3039}
3040#endif
3041
3042void
3043ev_embed_start (EV_P_ ev_embed *w)
3044{
3045 if (expect_false (ev_is_active (w)))
3046 return;
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3051 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3052 }
3053
3054 EV_FREQUENT_CHECK;
3055
3056 ev_set_priority (&w->io, ev_priority (w));
3057 ev_io_start (EV_A_ &w->io);
3058
3059 ev_prepare_init (&w->prepare, embed_prepare_cb);
3060 ev_set_priority (&w->prepare, EV_MINPRI);
3061 ev_prepare_start (EV_A_ &w->prepare);
3062
3063 ev_fork_init (&w->fork, embed_fork_cb);
3064 ev_fork_start (EV_A_ &w->fork);
3065
3066 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3067
3068 ev_start (EV_A_ (W)w, 1);
3069
3070 EV_FREQUENT_CHECK;
3071}
3072
3073void
3074ev_embed_stop (EV_P_ ev_embed *w)
3075{
3076 clear_pending (EV_A_ (W)w);
3077 if (expect_false (!ev_is_active (w)))
3078 return;
3079
3080 EV_FREQUENT_CHECK;
3081
3082 ev_io_stop (EV_A_ &w->io);
3083 ev_prepare_stop (EV_A_ &w->prepare);
3084 ev_fork_stop (EV_A_ &w->fork);
3085
3086 EV_FREQUENT_CHECK;
3087}
3088#endif
3089
3090#if EV_FORK_ENABLE
3091void
3092ev_fork_start (EV_P_ ev_fork *w)
3093{
3094 if (expect_false (ev_is_active (w)))
3095 return;
3096
3097 EV_FREQUENT_CHECK;
3098
3099 ev_start (EV_A_ (W)w, ++forkcnt);
3100 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3101 forks [forkcnt - 1] = w;
3102
3103 EV_FREQUENT_CHECK;
3104}
3105
3106void
3107ev_fork_stop (EV_P_ ev_fork *w)
3108{
3109 clear_pending (EV_A_ (W)w);
3110 if (expect_false (!ev_is_active (w)))
3111 return;
3112
3113 EV_FREQUENT_CHECK;
3114
3115 {
3116 int active = ev_active (w);
3117
3118 forks [active - 1] = forks [--forkcnt];
3119 ev_active (forks [active - 1]) = active;
3120 }
3121
3122 ev_stop (EV_A_ (W)w);
3123
3124 EV_FREQUENT_CHECK;
3125}
3126#endif
3127
3128#if EV_ASYNC_ENABLE
3129void
3130ev_async_start (EV_P_ ev_async *w)
3131{
3132 if (expect_false (ev_is_active (w)))
3133 return;
3134
3135 evpipe_init (EV_A);
3136
3137 EV_FREQUENT_CHECK;
3138
3139 ev_start (EV_A_ (W)w, ++asynccnt);
3140 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3141 asyncs [asynccnt - 1] = w;
3142
3143 EV_FREQUENT_CHECK;
3144}
3145
3146void
3147ev_async_stop (EV_P_ ev_async *w)
3148{
3149 clear_pending (EV_A_ (W)w);
3150 if (expect_false (!ev_is_active (w)))
3151 return;
3152
3153 EV_FREQUENT_CHECK;
3154
3155 {
3156 int active = ev_active (w);
3157
3158 asyncs [active - 1] = asyncs [--asynccnt];
3159 ev_active (asyncs [active - 1]) = active;
3160 }
3161
3162 ev_stop (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
3165}
3166
3167void
3168ev_async_send (EV_P_ ev_async *w)
3169{
3170 w->sent = 1;
3171 evpipe_write (EV_A_ &gotasync);
3172}
3173#endif
1603 3174
1604/*****************************************************************************/ 3175/*****************************************************************************/
1605 3176
1606struct ev_once 3177struct ev_once
1607{ 3178{
1608 struct ev_io io; 3179 ev_io io;
1609 struct ev_timer to; 3180 ev_timer to;
1610 void (*cb)(int revents, void *arg); 3181 void (*cb)(int revents, void *arg);
1611 void *arg; 3182 void *arg;
1612}; 3183};
1613 3184
1614static void 3185static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 3186once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 3187{
1617 void (*cb)(int revents, void *arg) = once->cb; 3188 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 3189 void *arg = once->arg;
1619 3190
1620 ev_io_stop (EV_A_ &once->io); 3191 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 3192 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 3193 ev_free (once);
1623 3194
1624 cb (revents, arg); 3195 cb (revents, arg);
1625} 3196}
1626 3197
1627static void 3198static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 3199once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 3200{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3201 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202
3203 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 3204}
1632 3205
1633static void 3206static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 3207once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 3208{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 3212}
1638 3213
1639void 3214void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3215ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 3216{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3217 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 3218
1644 if (!once) 3219 if (expect_false (!once))
3220 {
1645 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3221 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1646 else 3222 return;
1647 { 3223 }
3224
1648 once->cb = cb; 3225 once->cb = cb;
1649 once->arg = arg; 3226 once->arg = arg;
1650 3227
1651 ev_init (&once->io, once_cb_io); 3228 ev_init (&once->io, once_cb_io);
1652 if (fd >= 0) 3229 if (fd >= 0)
3230 {
3231 ev_io_set (&once->io, fd, events);
3232 ev_io_start (EV_A_ &once->io);
3233 }
3234
3235 ev_init (&once->to, once_cb_to);
3236 if (timeout >= 0.)
3237 {
3238 ev_timer_set (&once->to, timeout, 0.);
3239 ev_timer_start (EV_A_ &once->to);
3240 }
3241}
3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
1653 { 3255 {
1654 ev_io_set (&once->io, fd, events); 3256 wn = wl->next;
1655 ev_io_start (EV_A_ &once->io); 3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
1656 } 3276 }
1657 3277
1658 ev_init (&once->to, once_cb_to); 3278 if (types & (EV_TIMER | EV_STAT))
1659 if (timeout >= 0.) 3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1660 { 3283 {
1661 ev_timer_set (&once->to, timeout, 0.); 3284 if (types & EV_STAT)
1662 ev_timer_start (EV_A_ &once->to); 3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1663 } 3286 }
1664 } 3287 else
3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1665} 3348}
3349#endif
3350
3351#if EV_MULTIPLICITY
3352 #include "ev_wrap.h"
3353#endif
1666 3354
1667#ifdef __cplusplus 3355#ifdef __cplusplus
1668} 3356}
1669#endif 3357#endif
1670 3358

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines