ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.122 by root, Sat Nov 17 02:00:48 2007 UTC vs.
Revision 1.377 by root, Wed Jun 8 13:11:55 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
65# define EV_USE_PORT 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
66# endif 127# endif
67 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
68#endif 136# endif
69 137
70#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
71#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
72#include <fcntl.h> 169#include <fcntl.h>
73#include <stddef.h> 170#include <stddef.h>
74 171
75#include <stdio.h> 172#include <stdio.h>
76 173
77#include <assert.h> 174#include <assert.h>
78#include <errno.h> 175#include <errno.h>
79#include <sys/types.h> 176#include <sys/types.h>
80#include <time.h> 177#include <time.h>
178#include <limits.h>
81 179
82#include <signal.h> 180#include <signal.h>
83 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
84#ifndef _WIN32 190#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 191# include <sys/time.h>
87# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
88#else 194#else
195# include <io.h>
89# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 197# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
93# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
94#endif 251# endif
95 252#endif
96/**/
97 253
98#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
99# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
100#endif 260#endif
101 261
102#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
104#endif 272#endif
105 273
106#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
108#endif 276#endif
109 277
110#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
111# ifdef _WIN32 279# ifdef _WIN32
112# define EV_USE_POLL 0 280# define EV_USE_POLL 0
113# else 281# else
114# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
115# endif 283# endif
116#endif 284#endif
117 285
118#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
119# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
120#endif 292#endif
121 293
122#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
124#endif 296#endif
125 297
126#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 299# define EV_USE_PORT 0
128#endif 300#endif
129 301
130/**/ 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
131 309
132/* darwin simply cannot be helped */ 310#ifndef EV_PID_HASHSIZE
133#ifdef __APPLE__ 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 370# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 371# define EV_USE_POLL 0
136#endif 372#endif
137 373
138#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
143#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
146#endif 382#endif
147 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
148#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 407# include <winsock.h>
150#endif 408#endif
151 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
152/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
153 462
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
158 465
159#ifdef EV_H 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
160# include EV_H 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
161#else
162# include "ev.h"
163#endif
164 468
165#if __GNUC__ >= 3 469#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline inline 471# define noinline __attribute__ ((noinline))
168#else 472#else
169# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
170# define inline static 474# define noinline
475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476# define inline
477# endif
171#endif 478#endif
172 479
173#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
482#define inline_size static inline
175 483
484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
487# define inline_speed static noinline
488#endif
489
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
494#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
178 497
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
181 500
182typedef struct ev_watcher *W; 501typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
185 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
514#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
526#endif
187 527
188#ifdef _WIN32 528#ifdef _WIN32
189# include "ev_win32.c" 529# include "ev_win32.c"
190#endif 530#endif
191 531
192/*****************************************************************************/ 532/*****************************************************************************/
193 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
194static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
195 633
634void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 636{
198 syserr_cb = cb; 637 syserr_cb = cb;
199} 638}
200 639
201static void 640static void noinline
202syserr (const char *msg) 641ev_syserr (const char *msg)
203{ 642{
204 if (!msg) 643 if (!msg)
205 msg = "(libev) system error"; 644 msg = "(libev) system error";
206 645
207 if (syserr_cb) 646 if (syserr_cb)
208 syserr_cb (msg); 647 syserr_cb (msg);
209 else 648 else
210 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
211 perror (msg); 656 perror (msg);
657#endif
212 abort (); 658 abort ();
213 } 659 }
214} 660}
215 661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
216static void *(*alloc)(void *ptr, long size); 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 682
683void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 684ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 685{
220 alloc = cb; 686 alloc = cb;
221} 687}
222 688
223static void * 689inline_speed void *
224ev_realloc (void *ptr, long size) 690ev_realloc (void *ptr, long size)
225{ 691{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 692 ptr = alloc (ptr, size);
227 693
228 if (!ptr && size) 694 if (!ptr && size)
229 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
231 abort (); 701 abort ();
232 } 702 }
233 703
234 return ptr; 704 return ptr;
235} 705}
237#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
239 709
240/*****************************************************************************/ 710/*****************************************************************************/
241 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
242typedef struct 716typedef struct
243{ 717{
244 WL head; 718 WL head;
245 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
246 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
247#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
248 SOCKET handle; 727 SOCKET handle;
249#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
250} ANFD; 732} ANFD;
251 733
734/* stores the pending event set for a given watcher */
252typedef struct 735typedef struct
253{ 736{
254 W w; 737 W w;
255 int events; 738 int events; /* the pending event set for the given watcher */
256} ANPENDING; 739} ANPENDING;
740
741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
743typedef struct
744{
745 WL head;
746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
767#endif
257 768
258#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
259 770
260 struct ev_loop 771 struct ev_loop
261 { 772 {
279 790
280 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
281 792
282#endif 793#endif
283 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
284/*****************************************************************************/ 807/*****************************************************************************/
285 808
809#ifndef EV_HAVE_EV_TIME
286ev_tstamp 810ev_tstamp
287ev_time (void) 811ev_time (void)
288{ 812{
289#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
290 struct timespec ts; 816 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 819 }
820#endif
821
294 struct timeval tv; 822 struct timeval tv;
295 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 825}
826#endif
299 827
300inline ev_tstamp 828inline_size ev_tstamp
301get_clock (void) 829get_clock (void)
302{ 830{
303#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
305 { 833 {
318{ 846{
319 return ev_rt_now; 847 return ev_rt_now;
320} 848}
321#endif 849#endif
322 850
323#define array_roundsize(type,n) (((n) | 4) & ~3) 851void
852ev_sleep (ev_tstamp delay)
853{
854 if (delay > 0.)
855 {
856#if EV_USE_NANOSLEEP
857 struct timespec ts;
858
859 EV_TS_SET (ts, delay);
860 nanosleep (&ts, 0);
861#elif defined(_WIN32)
862 Sleep ((unsigned long)(delay * 1e3));
863#else
864 struct timeval tv;
865
866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 /* something not guaranteed by newer posix versions, but guaranteed */
868 /* by older ones */
869 EV_TV_SET (tv, delay);
870 select (0, 0, 0, 0, &tv);
871#endif
872 }
873}
874
875/*****************************************************************************/
876
877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878
879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
882array_nextsize (int elem, int cur, int cnt)
883{
884 int ncur = cur + 1;
885
886 do
887 ncur <<= 1;
888 while (cnt > ncur);
889
890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
892 {
893 ncur *= elem;
894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
895 ncur = ncur - sizeof (void *) * 4;
896 ncur /= elem;
897 }
898
899 return ncur;
900}
901
902static noinline void *
903array_realloc (int elem, void *base, int *cur, int cnt)
904{
905 *cur = array_nextsize (elem, *cur, cnt);
906 return ev_realloc (base, elem * *cur);
907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 911
325#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 913 if (expect_false ((cnt) > (cur))) \
327 { \ 914 { \
328 int newcnt = cur; \ 915 int ocur_ = (cur); \
329 do \ 916 (base) = (type *)array_realloc \
330 { \ 917 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 918 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 919 }
339 920
921#if 0
340#define array_slim(type,stem) \ 922#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 923 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 924 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 925 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 926 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 928 }
929#endif
347 930
348#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 933
351/*****************************************************************************/ 934/*****************************************************************************/
352 935
353static void 936/* dummy callback for pending events */
354anfds_init (ANFD *base, int count) 937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 939{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 940}
365 941
366void 942void noinline
367ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
368{ 944{
369 W w_ = (W)w; 945 W w_ = (W)w;
946 int pri = ABSPRI (w_);
370 947
371 if (w_->pending) 948 if (expect_false (w_->pending))
949 pendings [pri][w_->pending - 1].events |= revents;
950 else
372 { 951 {
952 w_->pending = ++pendingcnt [pri];
953 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
954 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 955 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 956 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 957}
382 958
383static void 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 976{
386 int i; 977 int i;
387 978
388 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
390} 981}
391 982
983/*****************************************************************************/
984
392inline void 985inline_speed void
393fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
394{ 987{
395 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 989 ev_io *w;
397 990
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 992 {
400 int ev = w->events & revents; 993 int ev = w->events & revents;
401 994
402 if (ev) 995 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
404 } 997 }
405} 998}
406 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
407void 1011void
408ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 1013{
1014 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
411} 1016}
412 1017
413/*****************************************************************************/ 1018/* make sure the external fd watch events are in-sync */
414 1019/* with the kernel/libev internal state */
415static void 1020inline_size void
416fd_reify (EV_P) 1021fd_reify (EV_P)
417{ 1022{
418 int i; 1023 int i;
419 1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
420 for (i = 0; i < fdchangecnt; ++i) 1026 for (i = 0; i < fdchangecnt; ++i)
421 { 1027 {
422 int fd = fdchanges [i]; 1028 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 1029 ANFD *anfd = anfds + fd;
424 struct ev_io *w;
425 1030
426 int events = 0; 1031 if (anfd->reify & EV__IOFDSET && anfd->head)
427
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
429 events |= w->events;
430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 { 1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
434 unsigned long argp; 1037 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 1038
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
437 } 1046 }
1047 }
438#endif 1048#endif
439 1049
1050 for (i = 0; i < fdchangecnt; ++i)
1051 {
1052 int fd = fdchanges [i];
1053 ANFD *anfd = anfds + fd;
1054 ev_io *w;
1055
1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
1058
440 anfd->reify = 0; 1059 anfd->reify = 0;
441 1060
442 method_modify (EV_A_ fd, anfd->events, events); 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1062 {
443 anfd->events = events; 1063 anfd->events = 0;
1064
1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1066 anfd->events |= (unsigned char)w->events;
1067
1068 if (o_events != anfd->events)
1069 o_reify = EV__IOFDSET; /* actually |= */
1070 }
1071
1072 if (o_reify & EV__IOFDSET)
1073 backend_modify (EV_A_ fd, o_events, anfd->events);
444 } 1074 }
445 1075
446 fdchangecnt = 0; 1076 fdchangecnt = 0;
447} 1077}
448 1078
449static void 1079/* something about the given fd changed */
1080inline_size void
450fd_change (EV_P_ int fd) 1081fd_change (EV_P_ int fd, int flags)
451{ 1082{
452 if (anfds [fd].reify) 1083 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 1084 anfds [fd].reify |= flags;
456 1085
1086 if (expect_true (!reify))
1087 {
457 ++fdchangecnt; 1088 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
1091 }
460} 1092}
461 1093
462static void 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
463fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
464{ 1097{
465 struct ev_io *w; 1098 ev_io *w;
466 1099
467 while ((w = (struct ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
468 { 1101 {
469 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 1104 }
472} 1105}
473 1106
474static int 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
475fd_valid (int fd) 1109fd_valid (int fd)
476{ 1110{
477#ifdef _WIN32 1111#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 1113#else
480 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
481#endif 1115#endif
482} 1116}
483 1117
484/* called on EBADF to verify fds */ 1118/* called on EBADF to verify fds */
485static void 1119static void noinline
486fd_ebadf (EV_P) 1120fd_ebadf (EV_P)
487{ 1121{
488 int fd; 1122 int fd;
489 1123
490 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 1125 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
494} 1128}
495 1129
496/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 1131static void noinline
498fd_enomem (EV_P) 1132fd_enomem (EV_P)
499{ 1133{
500 int fd; 1134 int fd;
501 1135
502 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 1137 if (anfds [fd].events)
504 { 1138 {
505 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
506 return; 1140 break;
507 } 1141 }
508} 1142}
509 1143
510/* usually called after fork if method needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 1145static void noinline
512fd_rearm_all (EV_P) 1146fd_rearm_all (EV_P)
513{ 1147{
514 int fd; 1148 int fd;
515 1149
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1151 if (anfds [fd].events)
519 { 1152 {
520 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 1154 anfds [fd].emask = 0;
1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 1156 }
523} 1157}
524 1158
525/*****************************************************************************/ 1159/* used to prepare libev internal fd's */
526 1160/* this is not fork-safe */
527static void
528upheap (WT *heap, int k)
529{
530 WT w = heap [k];
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 }
538
539 heap [k] = w;
540 ((W)heap [k])->active = k + 1;
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566}
567
568inline void 1161inline_speed void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574
575/*****************************************************************************/
576
577typedef struct
578{
579 WL head;
580 sig_atomic_t volatile gotsig;
581} ANSIG;
582
583static ANSIG *signals;
584static int signalmax;
585
586static int sigpipe [2];
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589
590static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653inline void
654fd_intern (int fd) 1162fd_intern (int fd)
655{ 1163{
656#ifdef _WIN32 1164#ifdef _WIN32
657 int arg = 1; 1165 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
659#else 1167#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1169 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1170#endif
663} 1171}
664 1172
1173/*****************************************************************************/
1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
1336static void noinline
1337evpipe_init (EV_P)
1338{
1339 if (!ev_is_active (&pipe_w))
1340 {
1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
1347 {
1348 evpipe [0] = -1;
1349 fd_intern (evfd); /* doing it twice doesn't hurt */
1350 ev_io_set (&pipe_w, evfd, EV_READ);
1351 }
1352 else
1353# endif
1354 {
1355 while (pipe (evpipe))
1356 ev_syserr ("(libev) error creating signal/async pipe");
1357
1358 fd_intern (evpipe [0]);
1359 fd_intern (evpipe [1]);
1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1361 }
1362
1363 ev_io_start (EV_A_ &pipe_w);
1364 ev_unref (EV_A); /* watcher should not keep loop alive */
1365 }
1366}
1367
1368inline_size void
1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1370{
1371 if (!*flag)
1372 {
1373 int old_errno = errno; /* save errno because write might clobber it */
1374 char dummy;
1375
1376 *flag = 1;
1377
1378#if EV_USE_EVENTFD
1379 if (evfd >= 0)
1380 {
1381 uint64_t counter = 1;
1382 write (evfd, &counter, sizeof (uint64_t));
1383 }
1384 else
1385#endif
1386 /* win32 people keep sending patches that change this write() to send() */
1387 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1388 /* so when you think this write should be a send instead, please find out */
1389 /* where your send() is from - it's definitely not the microsoft send, and */
1390 /* tell me. thank you. */
1391 write (evpipe [1], &dummy, 1);
1392
1393 errno = old_errno;
1394 }
1395}
1396
1397/* called whenever the libev signal pipe */
1398/* got some events (signal, async) */
665static void 1399static void
666siginit (EV_P) 1400pipecb (EV_P_ ev_io *iow, int revents)
667{ 1401{
668 fd_intern (sigpipe [0]); 1402 int i;
669 fd_intern (sigpipe [1]);
670 1403
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1404#if EV_USE_EVENTFD
672 ev_io_start (EV_A_ &sigev); 1405 if (evfd >= 0)
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1406 {
1407 uint64_t counter;
1408 read (evfd, &counter, sizeof (uint64_t));
1409 }
1410 else
1411#endif
1412 {
1413 char dummy;
1414 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1415 read (evpipe [0], &dummy, 1);
1416 }
1417
1418#if EV_SIGNAL_ENABLE
1419 if (sig_pending)
1420 {
1421 sig_pending = 0;
1422
1423 for (i = EV_NSIG - 1; i--; )
1424 if (expect_false (signals [i].pending))
1425 ev_feed_signal_event (EV_A_ i + 1);
1426 }
1427#endif
1428
1429#if EV_ASYNC_ENABLE
1430 if (async_pending)
1431 {
1432 async_pending = 0;
1433
1434 for (i = asynccnt; i--; )
1435 if (asyncs [i]->sent)
1436 {
1437 asyncs [i]->sent = 0;
1438 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1439 }
1440 }
1441#endif
674} 1442}
675 1443
676/*****************************************************************************/ 1444/*****************************************************************************/
677 1445
678static struct ev_child *childs [PID_HASHSIZE]; 1446void
1447ev_feed_signal (int signum)
1448{
1449#if EV_MULTIPLICITY
1450 EV_P = signals [signum - 1].loop;
679 1451
1452 if (!EV_A)
1453 return;
1454#endif
1455
1456 signals [signum - 1].pending = 1;
1457 evpipe_write (EV_A_ &sig_pending);
1458}
1459
1460static void
1461ev_sighandler (int signum)
1462{
680#ifndef _WIN32 1463#ifdef _WIN32
1464 signal (signum, ev_sighandler);
1465#endif
681 1466
1467 ev_feed_signal (signum);
1468}
1469
1470void noinline
1471ev_feed_signal_event (EV_P_ int signum)
1472{
1473 WL w;
1474
1475 if (expect_false (signum <= 0 || signum > EV_NSIG))
1476 return;
1477
1478 --signum;
1479
1480#if EV_MULTIPLICITY
1481 /* it is permissible to try to feed a signal to the wrong loop */
1482 /* or, likely more useful, feeding a signal nobody is waiting for */
1483
1484 if (expect_false (signals [signum].loop != EV_A))
1485 return;
1486#endif
1487
1488 signals [signum].pending = 0;
1489
1490 for (w = signals [signum].head; w; w = w->next)
1491 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1492}
1493
1494#if EV_USE_SIGNALFD
1495static void
1496sigfdcb (EV_P_ ev_io *iow, int revents)
1497{
1498 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1499
1500 for (;;)
1501 {
1502 ssize_t res = read (sigfd, si, sizeof (si));
1503
1504 /* not ISO-C, as res might be -1, but works with SuS */
1505 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1506 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1507
1508 if (res < (ssize_t)sizeof (si))
1509 break;
1510 }
1511}
1512#endif
1513
1514#endif
1515
1516/*****************************************************************************/
1517
1518#if EV_CHILD_ENABLE
1519static WL childs [EV_PID_HASHSIZE];
1520
682static struct ev_signal childev; 1521static ev_signal childev;
1522
1523#ifndef WIFCONTINUED
1524# define WIFCONTINUED(status) 0
1525#endif
1526
1527/* handle a single child status event */
1528inline_speed void
1529child_reap (EV_P_ int chain, int pid, int status)
1530{
1531 ev_child *w;
1532 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1533
1534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1535 {
1536 if ((w->pid == pid || !w->pid)
1537 && (!traced || (w->flags & 1)))
1538 {
1539 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1540 w->rpid = pid;
1541 w->rstatus = status;
1542 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1543 }
1544 }
1545}
683 1546
684#ifndef WCONTINUED 1547#ifndef WCONTINUED
685# define WCONTINUED 0 1548# define WCONTINUED 0
686#endif 1549#endif
687 1550
1551/* called on sigchld etc., calls waitpid */
688static void 1552static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1553childcb (EV_P_ ev_signal *sw, int revents)
705{ 1554{
706 int pid, status; 1555 int pid, status;
707 1556
1557 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1558 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1559 if (!WCONTINUED
1560 || errno != EINVAL
1561 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1562 return;
1563
710 /* make sure we are called again until all childs have been reaped */ 1564 /* make sure we are called again until all children have been reaped */
1565 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1566 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1567
713 child_reap (EV_A_ sw, pid, pid, status); 1568 child_reap (EV_A_ pid, pid, status);
1569 if ((EV_PID_HASHSIZE) > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1570 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1571}
717 1572
718#endif 1573#endif
719 1574
720/*****************************************************************************/ 1575/*****************************************************************************/
721 1576
1577#if EV_USE_IOCP
1578# include "ev_iocp.c"
1579#endif
722#if EV_USE_PORT 1580#if EV_USE_PORT
723# include "ev_port.c" 1581# include "ev_port.c"
724#endif 1582#endif
725#if EV_USE_KQUEUE 1583#if EV_USE_KQUEUE
726# include "ev_kqueue.c" 1584# include "ev_kqueue.c"
746{ 1604{
747 return EV_VERSION_MINOR; 1605 return EV_VERSION_MINOR;
748} 1606}
749 1607
750/* return true if we are running with elevated privileges and should ignore env variables */ 1608/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1609int inline_size
752enable_secure (void) 1610enable_secure (void)
753{ 1611{
754#ifdef _WIN32 1612#ifdef _WIN32
755 return 0; 1613 return 0;
756#else 1614#else
758 || getgid () != getegid (); 1616 || getgid () != getegid ();
759#endif 1617#endif
760} 1618}
761 1619
762unsigned int 1620unsigned int
1621ev_supported_backends (void)
1622{
1623 unsigned int flags = 0;
1624
1625 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1626 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1627 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1628 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1629 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1630
1631 return flags;
1632}
1633
1634unsigned int
1635ev_recommended_backends (void)
1636{
1637 unsigned int flags = ev_supported_backends ();
1638
1639#ifndef __NetBSD__
1640 /* kqueue is borked on everything but netbsd apparently */
1641 /* it usually doesn't work correctly on anything but sockets and pipes */
1642 flags &= ~EVBACKEND_KQUEUE;
1643#endif
1644#ifdef __APPLE__
1645 /* only select works correctly on that "unix-certified" platform */
1646 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1647 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1648#endif
1649#ifdef __FreeBSD__
1650 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1651#endif
1652
1653 return flags;
1654}
1655
1656unsigned int
1657ev_embeddable_backends (void)
1658{
1659 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1660
1661 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1662 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1663 flags &= ~EVBACKEND_EPOLL;
1664
1665 return flags;
1666}
1667
1668unsigned int
1669ev_backend (EV_P)
1670{
1671 return backend;
1672}
1673
1674#if EV_FEATURE_API
1675unsigned int
1676ev_iteration (EV_P)
1677{
1678 return loop_count;
1679}
1680
1681unsigned int
763ev_method (EV_P) 1682ev_depth (EV_P)
764{ 1683{
765 return method; 1684 return loop_depth;
766} 1685}
767 1686
768static void 1687void
1688ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1689{
1690 io_blocktime = interval;
1691}
1692
1693void
1694ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1695{
1696 timeout_blocktime = interval;
1697}
1698
1699void
1700ev_set_userdata (EV_P_ void *data)
1701{
1702 userdata = data;
1703}
1704
1705void *
1706ev_userdata (EV_P)
1707{
1708 return userdata;
1709}
1710
1711void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1712{
1713 invoke_cb = invoke_pending_cb;
1714}
1715
1716void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1717{
1718 release_cb = release;
1719 acquire_cb = acquire;
1720}
1721#endif
1722
1723/* initialise a loop structure, must be zero-initialised */
1724static void noinline
769loop_init (EV_P_ unsigned int flags) 1725loop_init (EV_P_ unsigned int flags)
770{ 1726{
771 if (!method) 1727 if (!backend)
772 { 1728 {
1729 origflags = flags;
1730
1731#if EV_USE_REALTIME
1732 if (!have_realtime)
1733 {
1734 struct timespec ts;
1735
1736 if (!clock_gettime (CLOCK_REALTIME, &ts))
1737 have_realtime = 1;
1738 }
1739#endif
1740
773#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
1742 if (!have_monotonic)
1743 {
1744 struct timespec ts;
1745
1746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1747 have_monotonic = 1;
1748 }
1749#endif
1750
1751 /* pid check not overridable via env */
1752#ifndef _WIN32
1753 if (flags & EVFLAG_FORKCHECK)
1754 curpid = getpid ();
1755#endif
1756
1757 if (!(flags & EVFLAG_NOENV)
1758 && !enable_secure ()
1759 && getenv ("LIBEV_FLAGS"))
1760 flags = atoi (getenv ("LIBEV_FLAGS"));
1761
1762 ev_rt_now = ev_time ();
1763 mn_now = get_clock ();
1764 now_floor = mn_now;
1765 rtmn_diff = ev_rt_now - mn_now;
1766#if EV_FEATURE_API
1767 invoke_cb = ev_invoke_pending;
1768#endif
1769
1770 io_blocktime = 0.;
1771 timeout_blocktime = 0.;
1772 backend = 0;
1773 backend_fd = -1;
1774 sig_pending = 0;
1775#if EV_ASYNC_ENABLE
1776 async_pending = 0;
1777#endif
1778#if EV_USE_INOTIFY
1779 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1780#endif
1781#if EV_USE_SIGNALFD
1782 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1783#endif
1784
1785 if (!(flags & EVBACKEND_MASK))
1786 flags |= ev_recommended_backends ();
1787
1788#if EV_USE_IOCP
1789 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1790#endif
1791#if EV_USE_PORT
1792 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1793#endif
1794#if EV_USE_KQUEUE
1795 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1796#endif
1797#if EV_USE_EPOLL
1798 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1799#endif
1800#if EV_USE_POLL
1801 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1802#endif
1803#if EV_USE_SELECT
1804 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1805#endif
1806
1807 ev_prepare_init (&pending_w, pendingcb);
1808
1809#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1810 ev_init (&pipe_w, pipecb);
1811 ev_set_priority (&pipe_w, EV_MAXPRI);
1812#endif
1813 }
1814}
1815
1816/* free up a loop structure */
1817void
1818ev_loop_destroy (EV_P)
1819{
1820 int i;
1821
1822#if EV_MULTIPLICITY
1823 /* mimic free (0) */
1824 if (!EV_A)
1825 return;
1826#endif
1827
1828#if EV_CLEANUP_ENABLE
1829 /* queue cleanup watchers (and execute them) */
1830 if (expect_false (cleanupcnt))
1831 {
1832 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1833 EV_INVOKE_PENDING;
1834 }
1835#endif
1836
1837#if EV_CHILD_ENABLE
1838 if (ev_is_active (&childev))
1839 {
1840 ev_ref (EV_A); /* child watcher */
1841 ev_signal_stop (EV_A_ &childev);
1842 }
1843#endif
1844
1845 if (ev_is_active (&pipe_w))
1846 {
1847 /*ev_ref (EV_A);*/
1848 /*ev_io_stop (EV_A_ &pipe_w);*/
1849
1850#if EV_USE_EVENTFD
1851 if (evfd >= 0)
1852 close (evfd);
1853#endif
1854
1855 if (evpipe [0] >= 0)
1856 {
1857 EV_WIN32_CLOSE_FD (evpipe [0]);
1858 EV_WIN32_CLOSE_FD (evpipe [1]);
1859 }
1860 }
1861
1862#if EV_USE_SIGNALFD
1863 if (ev_is_active (&sigfd_w))
1864 close (sigfd);
1865#endif
1866
1867#if EV_USE_INOTIFY
1868 if (fs_fd >= 0)
1869 close (fs_fd);
1870#endif
1871
1872 if (backend_fd >= 0)
1873 close (backend_fd);
1874
1875#if EV_USE_IOCP
1876 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1877#endif
1878#if EV_USE_PORT
1879 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1880#endif
1881#if EV_USE_KQUEUE
1882 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1883#endif
1884#if EV_USE_EPOLL
1885 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1886#endif
1887#if EV_USE_POLL
1888 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1889#endif
1890#if EV_USE_SELECT
1891 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1892#endif
1893
1894 for (i = NUMPRI; i--; )
1895 {
1896 array_free (pending, [i]);
1897#if EV_IDLE_ENABLE
1898 array_free (idle, [i]);
1899#endif
1900 }
1901
1902 ev_free (anfds); anfds = 0; anfdmax = 0;
1903
1904 /* have to use the microsoft-never-gets-it-right macro */
1905 array_free (rfeed, EMPTY);
1906 array_free (fdchange, EMPTY);
1907 array_free (timer, EMPTY);
1908#if EV_PERIODIC_ENABLE
1909 array_free (periodic, EMPTY);
1910#endif
1911#if EV_FORK_ENABLE
1912 array_free (fork, EMPTY);
1913#endif
1914#if EV_CLEANUP_ENABLE
1915 array_free (cleanup, EMPTY);
1916#endif
1917 array_free (prepare, EMPTY);
1918 array_free (check, EMPTY);
1919#if EV_ASYNC_ENABLE
1920 array_free (async, EMPTY);
1921#endif
1922
1923 backend = 0;
1924
1925#if EV_MULTIPLICITY
1926 if (ev_is_default_loop (EV_A))
1927#endif
1928 ev_default_loop_ptr = 0;
1929#if EV_MULTIPLICITY
1930 else
1931 ev_free (EV_A);
1932#endif
1933}
1934
1935#if EV_USE_INOTIFY
1936inline_size void infy_fork (EV_P);
1937#endif
1938
1939inline_size void
1940loop_fork (EV_P)
1941{
1942#if EV_USE_PORT
1943 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1944#endif
1945#if EV_USE_KQUEUE
1946 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1947#endif
1948#if EV_USE_EPOLL
1949 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1950#endif
1951#if EV_USE_INOTIFY
1952 infy_fork (EV_A);
1953#endif
1954
1955 if (ev_is_active (&pipe_w))
1956 {
1957 /* this "locks" the handlers against writing to the pipe */
1958 /* while we modify the fd vars */
1959 sig_pending = 1;
1960#if EV_ASYNC_ENABLE
1961 async_pending = 1;
1962#endif
1963
1964 ev_ref (EV_A);
1965 ev_io_stop (EV_A_ &pipe_w);
1966
1967#if EV_USE_EVENTFD
1968 if (evfd >= 0)
1969 close (evfd);
1970#endif
1971
1972 if (evpipe [0] >= 0)
1973 {
1974 EV_WIN32_CLOSE_FD (evpipe [0]);
1975 EV_WIN32_CLOSE_FD (evpipe [1]);
1976 }
1977
1978#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1979 evpipe_init (EV_A);
1980 /* now iterate over everything, in case we missed something */
1981 pipecb (EV_A_ &pipe_w, EV_READ);
1982#endif
1983 }
1984
1985 postfork = 0;
1986}
1987
1988#if EV_MULTIPLICITY
1989
1990struct ev_loop *
1991ev_loop_new (unsigned int flags)
1992{
1993 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1994
1995 memset (EV_A, 0, sizeof (struct ev_loop));
1996 loop_init (EV_A_ flags);
1997
1998 if (ev_backend (EV_A))
1999 return EV_A;
2000
2001 ev_free (EV_A);
2002 return 0;
2003}
2004
2005#endif /* multiplicity */
2006
2007#if EV_VERIFY
2008static void noinline
2009verify_watcher (EV_P_ W w)
2010{
2011 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2012
2013 if (w->pending)
2014 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2015}
2016
2017static void noinline
2018verify_heap (EV_P_ ANHE *heap, int N)
2019{
2020 int i;
2021
2022 for (i = HEAP0; i < N + HEAP0; ++i)
2023 {
2024 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2025 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2026 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2027
2028 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2029 }
2030}
2031
2032static void noinline
2033array_verify (EV_P_ W *ws, int cnt)
2034{
2035 while (cnt--)
2036 {
2037 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2038 verify_watcher (EV_A_ ws [cnt]);
2039 }
2040}
2041#endif
2042
2043#if EV_FEATURE_API
2044void
2045ev_verify (EV_P)
2046{
2047#if EV_VERIFY
2048 int i;
2049 WL w;
2050
2051 assert (activecnt >= -1);
2052
2053 assert (fdchangemax >= fdchangecnt);
2054 for (i = 0; i < fdchangecnt; ++i)
2055 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2056
2057 assert (anfdmax >= 0);
2058 for (i = 0; i < anfdmax; ++i)
2059 for (w = anfds [i].head; w; w = w->next)
774 { 2060 {
775 struct timespec ts; 2061 verify_watcher (EV_A_ (W)w);
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2062 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
777 have_monotonic = 1; 2063 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
778 } 2064 }
779#endif
780 2065
781 ev_rt_now = ev_time (); 2066 assert (timermax >= timercnt);
782 mn_now = get_clock (); 2067 verify_heap (EV_A_ timers, timercnt);
783 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now;
785 2068
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2069#if EV_PERIODIC_ENABLE
787 flags = atoi (getenv ("LIBEV_FLAGS")); 2070 assert (periodicmax >= periodiccnt);
788 2071 verify_heap (EV_A_ periodics, periodiccnt);
789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
791
792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
796#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
798#endif
799#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
801#endif
802#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
804#endif
805#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
807#endif
808
809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
811 }
812}
813
814void
815loop_destroy (EV_P)
816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
822#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
824#endif
825#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
827#endif
828#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
830#endif
831#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
833#endif 2072#endif
834 2073
835 for (i = NUMPRI; i--; ) 2074 for (i = NUMPRI; i--; )
836 array_free (pending, [i]); 2075 {
2076 assert (pendingmax [i] >= pendingcnt [i]);
2077#if EV_IDLE_ENABLE
2078 assert (idleall >= 0);
2079 assert (idlemax [i] >= idlecnt [i]);
2080 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2081#endif
2082 }
837 2083
838 /* have to use the microsoft-never-gets-it-right macro */ 2084#if EV_FORK_ENABLE
839 array_free (fdchange, EMPTY0); 2085 assert (forkmax >= forkcnt);
840 array_free (timer, EMPTY0); 2086 array_verify (EV_A_ (W *)forks, forkcnt);
841#if EV_PERIODICS 2087#endif
842 array_free (periodic, EMPTY0); 2088
2089#if EV_CLEANUP_ENABLE
2090 assert (cleanupmax >= cleanupcnt);
2091 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2092#endif
2093
2094#if EV_ASYNC_ENABLE
2095 assert (asyncmax >= asynccnt);
2096 array_verify (EV_A_ (W *)asyncs, asynccnt);
2097#endif
2098
2099#if EV_PREPARE_ENABLE
2100 assert (preparemax >= preparecnt);
2101 array_verify (EV_A_ (W *)prepares, preparecnt);
2102#endif
2103
2104#if EV_CHECK_ENABLE
2105 assert (checkmax >= checkcnt);
2106 array_verify (EV_A_ (W *)checks, checkcnt);
2107#endif
2108
2109# if 0
2110#if EV_CHILD_ENABLE
2111 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2112 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2113#endif
843#endif 2114# endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif 2115#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 2116}
2117#endif
881 2118
882#if EV_MULTIPLICITY 2119#if EV_MULTIPLICITY
883struct ev_loop * 2120struct ev_loop *
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags)
916#else 2121#else
917int 2122int
2123#endif
918ev_default_loop (unsigned int flags) 2124ev_default_loop (unsigned int flags)
919#endif
920{ 2125{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 2126 if (!ev_default_loop_ptr)
926 { 2127 {
927#if EV_MULTIPLICITY 2128#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2129 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 2130#else
930 ev_default_loop_ptr = 1; 2131 ev_default_loop_ptr = 1;
931#endif 2132#endif
932 2133
933 loop_init (EV_A_ flags); 2134 loop_init (EV_A_ flags);
934 2135
935 if (ev_method (EV_A)) 2136 if (ev_backend (EV_A))
936 { 2137 {
937 siginit (EV_A); 2138#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 2139 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 2140 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 2141 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2142 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 2143#endif
949 2148
950 return ev_default_loop_ptr; 2149 return ev_default_loop_ptr;
951} 2150}
952 2151
953void 2152void
954ev_default_destroy (void) 2153ev_loop_fork (EV_P)
955{ 2154{
956#if EV_MULTIPLICITY 2155 postfork = 1; /* must be in line with ev_default_fork */
957 struct ev_loop *loop = ev_default_loop_ptr;
958#endif
959
960#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev);
963#endif
964
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A);
972}
973
974void
975ev_default_fork (void)
976{
977#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr;
979#endif
980
981 if (method)
982 postfork = 1;
983} 2156}
984 2157
985/*****************************************************************************/ 2158/*****************************************************************************/
986 2159
987static int 2160void
988any_pending (EV_P) 2161ev_invoke (EV_P_ void *w, int revents)
2162{
2163 EV_CB_INVOKE ((W)w, revents);
2164}
2165
2166unsigned int
2167ev_pending_count (EV_P)
989{ 2168{
990 int pri; 2169 int pri;
2170 unsigned int count = 0;
991 2171
992 for (pri = NUMPRI; pri--; ) 2172 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri]) 2173 count += pendingcnt [pri];
994 return 1;
995 2174
996 return 0; 2175 return count;
997} 2176}
998 2177
999inline void 2178void noinline
1000call_pending (EV_P) 2179ev_invoke_pending (EV_P)
1001{ 2180{
1002 int pri; 2181 int pri;
1003 2182
1004 for (pri = NUMPRI; pri--; ) 2183 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 2184 while (pendingcnt [pri])
1006 { 2185 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2186 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 2187
1009 if (expect_true (p->w))
1010 {
1011 p->w->pending = 0; 2188 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 2189 EV_CB_INVOKE (p->w, p->events);
1013 } 2190 EV_FREQUENT_CHECK;
1014 } 2191 }
1015} 2192}
1016 2193
1017static void 2194#if EV_IDLE_ENABLE
2195/* make idle watchers pending. this handles the "call-idle */
2196/* only when higher priorities are idle" logic */
2197inline_size void
2198idle_reify (EV_P)
2199{
2200 if (expect_false (idleall))
2201 {
2202 int pri;
2203
2204 for (pri = NUMPRI; pri--; )
2205 {
2206 if (pendingcnt [pri])
2207 break;
2208
2209 if (idlecnt [pri])
2210 {
2211 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2212 break;
2213 }
2214 }
2215 }
2216}
2217#endif
2218
2219/* make timers pending */
2220inline_size void
1018timers_reify (EV_P) 2221timers_reify (EV_P)
1019{ 2222{
2223 EV_FREQUENT_CHECK;
2224
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 2225 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 2226 {
1022 struct ev_timer *w = timers [0]; 2227 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 2228 {
2229 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2230
2231 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2232
2233 /* first reschedule or stop timer */
2234 if (w->repeat)
2235 {
2236 ev_at (w) += w->repeat;
2237 if (ev_at (w) < mn_now)
2238 ev_at (w) = mn_now;
2239
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2240 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 2241
1031 ((WT)w)->at += w->repeat; 2242 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 2243 downheap (timers, timercnt, HEAP0);
2244 }
2245 else
2246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2247
2248 EV_FREQUENT_CHECK;
2249 feed_reverse (EV_A_ (W)w);
1036 } 2250 }
1037 else 2251 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 2252
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2253 feed_reverse_done (EV_A_ EV_TIMER);
2254 }
2255}
2256
2257#if EV_PERIODIC_ENABLE
2258
2259static void noinline
2260periodic_recalc (EV_P_ ev_periodic *w)
2261{
2262 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2263 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2264
2265 /* the above almost always errs on the low side */
2266 while (at <= ev_rt_now)
1041 } 2267 {
1042} 2268 ev_tstamp nat = at + w->interval;
1043 2269
1044#if EV_PERIODICS 2270 /* when resolution fails us, we use ev_rt_now */
1045static void 2271 if (expect_false (nat == at))
2272 {
2273 at = ev_rt_now;
2274 break;
2275 }
2276
2277 at = nat;
2278 }
2279
2280 ev_at (w) = at;
2281}
2282
2283/* make periodics pending */
2284inline_size void
1046periodics_reify (EV_P) 2285periodics_reify (EV_P)
1047{ 2286{
2287 EV_FREQUENT_CHECK;
2288
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2289 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 2290 {
1050 struct ev_periodic *w = periodics [0]; 2291 int feed_count = 0;
1051 2292
2293 do
2294 {
2295 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2296
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2297 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 2298
1054 /* first reschedule or stop timer */ 2299 /* first reschedule or stop timer */
2300 if (w->reschedule_cb)
2301 {
2302 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2303
2304 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2305
2306 ANHE_at_cache (periodics [HEAP0]);
2307 downheap (periodics, periodiccnt, HEAP0);
2308 }
2309 else if (w->interval)
2310 {
2311 periodic_recalc (EV_A_ w);
2312 ANHE_at_cache (periodics [HEAP0]);
2313 downheap (periodics, periodiccnt, HEAP0);
2314 }
2315 else
2316 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
2320 }
2321 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2322
2323 feed_reverse_done (EV_A_ EV_PERIODIC);
2324 }
2325}
2326
2327/* simply recalculate all periodics */
2328/* TODO: maybe ensure that at least one event happens when jumping forward? */
2329static void noinline
2330periodics_reschedule (EV_P)
2331{
2332 int i;
2333
2334 /* adjust periodics after time jump */
2335 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2336 {
2337 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2338
1055 if (w->reschedule_cb) 2339 if (w->reschedule_cb)
2340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2341 else if (w->interval)
2342 periodic_recalc (EV_A_ w);
2343
2344 ANHE_at_cache (periodics [i]);
2345 }
2346
2347 reheap (periodics, periodiccnt);
2348}
2349#endif
2350
2351/* adjust all timers by a given offset */
2352static void noinline
2353timers_reschedule (EV_P_ ev_tstamp adjust)
2354{
2355 int i;
2356
2357 for (i = 0; i < timercnt; ++i)
2358 {
2359 ANHE *he = timers + i + HEAP0;
2360 ANHE_w (*he)->at += adjust;
2361 ANHE_at_cache (*he);
2362 }
2363}
2364
2365/* fetch new monotonic and realtime times from the kernel */
2366/* also detect if there was a timejump, and act accordingly */
2367inline_speed void
2368time_update (EV_P_ ev_tstamp max_block)
2369{
2370#if EV_USE_MONOTONIC
2371 if (expect_true (have_monotonic))
2372 {
2373 int i;
2374 ev_tstamp odiff = rtmn_diff;
2375
2376 mn_now = get_clock ();
2377
2378 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2379 /* interpolate in the meantime */
2380 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1056 { 2381 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2382 ev_rt_now = rtmn_diff + mn_now;
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2383 return;
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 2384 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 2385
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now; 2386 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 2387 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 2388
1114static void 2389 /* loop a few times, before making important decisions.
1115time_update (EV_P) 2390 * on the choice of "4": one iteration isn't enough,
1116{ 2391 * in case we get preempted during the calls to
1117 int i; 2392 * ev_time and get_clock. a second call is almost guaranteed
1118 2393 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 2394 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 2395 * in the unlikely event of having been preempted here.
1121 { 2396 */
1122 if (time_update_monotonic (EV_A)) 2397 for (i = 4; --i; )
1123 { 2398 {
1124 ev_tstamp odiff = rtmn_diff; 2399 ev_tstamp diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 2400 rtmn_diff = ev_rt_now - mn_now;
1129 2401
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2402 diff = odiff - rtmn_diff;
2403
2404 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 2405 return; /* all is well */
1132 2406
1133 ev_rt_now = ev_time (); 2407 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 2408 mn_now = get_clock ();
1135 now_floor = mn_now; 2409 now_floor = mn_now;
1136 } 2410 }
1137 2411
2412 /* no timer adjustment, as the monotonic clock doesn't jump */
2413 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 2414# if EV_PERIODIC_ENABLE
2415 periodics_reschedule (EV_A);
2416# endif
2417 }
2418 else
2419#endif
2420 {
2421 ev_rt_now = ev_time ();
2422
2423 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2424 {
2425 /* adjust timers. this is easy, as the offset is the same for all of them */
2426 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2427#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1140# endif 2429#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 2430 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 2431
1161 mn_now = ev_rt_now; 2432 mn_now = ev_rt_now;
1162 } 2433 }
1163} 2434}
1164 2435
1165void 2436void
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 2437ev_run (EV_P_ int flags)
1181{ 2438{
1182 double block; 2439#if EV_FEATURE_API
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2440 ++loop_depth;
2441#endif
1184 2442
1185 while (activecnt) 2443 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2444
2445 loop_done = EVBREAK_CANCEL;
2446
2447 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2448
2449 do
1186 { 2450 {
2451#if EV_VERIFY >= 2
2452 ev_verify (EV_A);
2453#endif
2454
2455#ifndef _WIN32
2456 if (expect_false (curpid)) /* penalise the forking check even more */
2457 if (expect_false (getpid () != curpid))
2458 {
2459 curpid = getpid ();
2460 postfork = 1;
2461 }
2462#endif
2463
2464#if EV_FORK_ENABLE
2465 /* we might have forked, so queue fork handlers */
2466 if (expect_false (postfork))
2467 if (forkcnt)
2468 {
2469 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2470 EV_INVOKE_PENDING;
2471 }
2472#endif
2473
2474#if EV_PREPARE_ENABLE
1187 /* queue check watchers (and execute them) */ 2475 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 2476 if (expect_false (preparecnt))
1189 { 2477 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2478 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 2479 EV_INVOKE_PENDING;
1192 } 2480 }
2481#endif
2482
2483 if (expect_false (loop_done))
2484 break;
1193 2485
1194 /* we might have forked, so reify kernel state if necessary */ 2486 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 2487 if (expect_false (postfork))
1196 loop_fork (EV_A); 2488 loop_fork (EV_A);
1197 2489
1198 /* update fd-related kernel structures */ 2490 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 2491 fd_reify (EV_A);
1200 2492
1201 /* calculate blocking time */ 2493 /* calculate blocking time */
2494 {
2495 ev_tstamp waittime = 0.;
2496 ev_tstamp sleeptime = 0.;
1202 2497
1203 /* we only need this for !monotonic clock or timers, but as we basically 2498 /* remember old timestamp for io_blocktime calculation */
1204 always have timers, we just calculate it always */ 2499 ev_tstamp prev_mn_now = mn_now;
1205#if EV_USE_MONOTONIC 2500
1206 if (expect_true (have_monotonic)) 2501 /* update time to cancel out callback processing overhead */
1207 time_update_monotonic (EV_A); 2502 time_update (EV_A_ 1e100);
1208 else 2503
1209#endif 2504 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1210 { 2505 {
1211 ev_rt_now = ev_time ();
1212 mn_now = ev_rt_now;
1213 }
1214
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 2506 waittime = MAX_BLOCKTIME;
1220 2507
1221 if (timercnt) 2508 if (timercnt)
1222 { 2509 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2510 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1224 if (block > to) block = to; 2511 if (waittime > to) waittime = to;
1225 } 2512 }
1226 2513
1227#if EV_PERIODICS 2514#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 2515 if (periodiccnt)
1229 { 2516 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2517 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1231 if (block > to) block = to; 2518 if (waittime > to) waittime = to;
1232 } 2519 }
1233#endif 2520#endif
1234 2521
1235 if (block < 0.) block = 0.; 2522 /* don't let timeouts decrease the waittime below timeout_blocktime */
2523 if (expect_false (waittime < timeout_blocktime))
2524 waittime = timeout_blocktime;
2525
2526 /* at this point, we NEED to wait, so we have to ensure */
2527 /* to pass a minimum nonzero value to the backend */
2528 if (expect_false (waittime < backend_mintime))
2529 waittime = backend_mintime;
2530
2531 /* extra check because io_blocktime is commonly 0 */
2532 if (expect_false (io_blocktime))
2533 {
2534 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2535
2536 if (sleeptime > waittime - backend_mintime)
2537 sleeptime = waittime - backend_mintime;
2538
2539 if (expect_true (sleeptime > 0.))
2540 {
2541 ev_sleep (sleeptime);
2542 waittime -= sleeptime;
2543 }
2544 }
1236 } 2545 }
1237 2546
1238 method_poll (EV_A_ block); 2547#if EV_FEATURE_API
2548 ++loop_count;
2549#endif
2550 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2551 backend_poll (EV_A_ waittime);
2552 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1239 2553
1240 /* update ev_rt_now, do magic */ 2554 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 2555 time_update (EV_A_ waittime + sleeptime);
2556 }
1242 2557
1243 /* queue pending timers and reschedule them */ 2558 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 2559 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 2560#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 2561 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 2562#endif
1248 2563
2564#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 2565 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 2566 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2567#endif
1252 2568
2569#if EV_CHECK_ENABLE
1253 /* queue check watchers, to be executed first */ 2570 /* queue check watchers, to be executed first */
1254 if (checkcnt) 2571 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2572 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2573#endif
1256 2574
1257 call_pending (EV_A); 2575 EV_INVOKE_PENDING;
1258
1259 if (loop_done)
1260 break;
1261 } 2576 }
2577 while (expect_true (
2578 activecnt
2579 && !loop_done
2580 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2581 ));
1262 2582
1263 if (loop_done != 2) 2583 if (loop_done == EVBREAK_ONE)
1264 loop_done = 0; 2584 loop_done = EVBREAK_CANCEL;
1265}
1266 2585
2586#if EV_FEATURE_API
2587 --loop_depth;
2588#endif
2589}
2590
1267void 2591void
1268ev_unloop (EV_P_ int how) 2592ev_break (EV_P_ int how)
1269{ 2593{
1270 loop_done = how; 2594 loop_done = how;
1271} 2595}
1272 2596
2597void
2598ev_ref (EV_P)
2599{
2600 ++activecnt;
2601}
2602
2603void
2604ev_unref (EV_P)
2605{
2606 --activecnt;
2607}
2608
2609void
2610ev_now_update (EV_P)
2611{
2612 time_update (EV_A_ 1e100);
2613}
2614
2615void
2616ev_suspend (EV_P)
2617{
2618 ev_now_update (EV_A);
2619}
2620
2621void
2622ev_resume (EV_P)
2623{
2624 ev_tstamp mn_prev = mn_now;
2625
2626 ev_now_update (EV_A);
2627 timers_reschedule (EV_A_ mn_now - mn_prev);
2628#if EV_PERIODIC_ENABLE
2629 /* TODO: really do this? */
2630 periodics_reschedule (EV_A);
2631#endif
2632}
2633
1273/*****************************************************************************/ 2634/*****************************************************************************/
2635/* singly-linked list management, used when the expected list length is short */
1274 2636
1275inline void 2637inline_size void
1276wlist_add (WL *head, WL elem) 2638wlist_add (WL *head, WL elem)
1277{ 2639{
1278 elem->next = *head; 2640 elem->next = *head;
1279 *head = elem; 2641 *head = elem;
1280} 2642}
1281 2643
1282inline void 2644inline_size void
1283wlist_del (WL *head, WL elem) 2645wlist_del (WL *head, WL elem)
1284{ 2646{
1285 while (*head) 2647 while (*head)
1286 { 2648 {
1287 if (*head == elem) 2649 if (expect_true (*head == elem))
1288 { 2650 {
1289 *head = elem->next; 2651 *head = elem->next;
1290 return; 2652 break;
1291 } 2653 }
1292 2654
1293 head = &(*head)->next; 2655 head = &(*head)->next;
1294 } 2656 }
1295} 2657}
1296 2658
2659/* internal, faster, version of ev_clear_pending */
1297inline void 2660inline_speed void
1298ev_clear_pending (EV_P_ W w) 2661clear_pending (EV_P_ W w)
1299{ 2662{
1300 if (w->pending) 2663 if (w->pending)
1301 { 2664 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2665 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 2666 w->pending = 0;
1304 } 2667 }
1305} 2668}
1306 2669
2670int
2671ev_clear_pending (EV_P_ void *w)
2672{
2673 W w_ = (W)w;
2674 int pending = w_->pending;
2675
2676 if (expect_true (pending))
2677 {
2678 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2679 p->w = (W)&pending_w;
2680 w_->pending = 0;
2681 return p->events;
2682 }
2683 else
2684 return 0;
2685}
2686
1307inline void 2687inline_size void
2688pri_adjust (EV_P_ W w)
2689{
2690 int pri = ev_priority (w);
2691 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2692 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2693 ev_set_priority (w, pri);
2694}
2695
2696inline_speed void
1308ev_start (EV_P_ W w, int active) 2697ev_start (EV_P_ W w, int active)
1309{ 2698{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2699 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2700 w->active = active;
1314 ev_ref (EV_A); 2701 ev_ref (EV_A);
1315} 2702}
1316 2703
1317inline void 2704inline_size void
1318ev_stop (EV_P_ W w) 2705ev_stop (EV_P_ W w)
1319{ 2706{
1320 ev_unref (EV_A); 2707 ev_unref (EV_A);
1321 w->active = 0; 2708 w->active = 0;
1322} 2709}
1323 2710
1324/*****************************************************************************/ 2711/*****************************************************************************/
1325 2712
1326void 2713void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2714ev_io_start (EV_P_ ev_io *w)
1328{ 2715{
1329 int fd = w->fd; 2716 int fd = w->fd;
1330 2717
1331 if (ev_is_active (w)) 2718 if (expect_false (ev_is_active (w)))
1332 return; 2719 return;
1333 2720
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2721 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2722 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2723
2724 EV_FREQUENT_CHECK;
1335 2725
1336 ev_start (EV_A_ (W)w, 1); 2726 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2727 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2728 wlist_add (&anfds[fd].head, (WL)w);
1339 2729
1340 fd_change (EV_A_ fd); 2730 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1341} 2731 w->events &= ~EV__IOFDSET;
1342 2732
1343void 2733 EV_FREQUENT_CHECK;
2734}
2735
2736void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2737ev_io_stop (EV_P_ ev_io *w)
1345{ 2738{
1346 ev_clear_pending (EV_A_ (W)w); 2739 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 2740 if (expect_false (!ev_is_active (w)))
1348 return; 2741 return;
1349 2742
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2743 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2744
2745 EV_FREQUENT_CHECK;
2746
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2747 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
1354 2749
1355 fd_change (EV_A_ w->fd); 2750 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1356}
1357 2751
1358void 2752 EV_FREQUENT_CHECK;
2753}
2754
2755void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2756ev_timer_start (EV_P_ ev_timer *w)
1360{ 2757{
1361 if (ev_is_active (w)) 2758 if (expect_false (ev_is_active (w)))
1362 return; 2759 return;
1363 2760
1364 ((WT)w)->at += mn_now; 2761 ev_at (w) += mn_now;
1365 2762
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2763 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2764
2765 EV_FREQUENT_CHECK;
2766
2767 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2768 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2769 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2770 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2771 ANHE_at_cache (timers [ev_active (w)]);
2772 upheap (timers, ev_active (w));
1372 2773
2774 EV_FREQUENT_CHECK;
2775
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2776 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2777}
1375 2778
1376void 2779void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2780ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2781{
1379 ev_clear_pending (EV_A_ (W)w); 2782 clear_pending (EV_A_ (W)w);
1380 if (!ev_is_active (w)) 2783 if (expect_false (!ev_is_active (w)))
1381 return; 2784 return;
1382 2785
2786 EV_FREQUENT_CHECK;
2787
2788 {
2789 int active = ev_active (w);
2790
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2791 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2792
1385 if (((W)w)->active < timercnt--) 2793 --timercnt;
2794
2795 if (expect_true (active < timercnt + HEAP0))
1386 { 2796 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2797 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2798 adjustheap (timers, timercnt, active);
1389 } 2799 }
2800 }
1390 2801
1391 ((WT)w)->at -= mn_now; 2802 ev_at (w) -= mn_now;
1392 2803
1393 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
1394}
1395 2805
1396void 2806 EV_FREQUENT_CHECK;
2807}
2808
2809void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2810ev_timer_again (EV_P_ ev_timer *w)
1398{ 2811{
2812 EV_FREQUENT_CHECK;
2813
1399 if (ev_is_active (w)) 2814 if (ev_is_active (w))
1400 { 2815 {
1401 if (w->repeat) 2816 if (w->repeat)
1402 { 2817 {
1403 ((WT)w)->at = mn_now + w->repeat; 2818 ev_at (w) = mn_now + w->repeat;
2819 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2820 adjustheap (timers, timercnt, ev_active (w));
1405 } 2821 }
1406 else 2822 else
1407 ev_timer_stop (EV_A_ w); 2823 ev_timer_stop (EV_A_ w);
1408 } 2824 }
1409 else if (w->repeat) 2825 else if (w->repeat)
1410 { 2826 {
1411 w->at = w->repeat; 2827 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2828 ev_timer_start (EV_A_ w);
1413 } 2829 }
1414}
1415 2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834ev_tstamp
2835ev_timer_remaining (EV_P_ ev_timer *w)
2836{
2837 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2838}
2839
1416#if EV_PERIODICS 2840#if EV_PERIODIC_ENABLE
1417void 2841void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2842ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2843{
1420 if (ev_is_active (w)) 2844 if (expect_false (ev_is_active (w)))
1421 return; 2845 return;
1422 2846
1423 if (w->reschedule_cb) 2847 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2848 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2849 else if (w->interval)
1426 { 2850 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2851 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2852 periodic_recalc (EV_A_ w);
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 } 2853 }
2854 else
2855 ev_at (w) = w->offset;
1431 2856
2857 EV_FREQUENT_CHECK;
2858
2859 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2860 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2861 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2862 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2863 ANHE_at_cache (periodics [ev_active (w)]);
2864 upheap (periodics, ev_active (w));
1436 2865
2866 EV_FREQUENT_CHECK;
2867
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2868 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2869}
1439 2870
1440void 2871void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2872ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2873{
1443 ev_clear_pending (EV_A_ (W)w); 2874 clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w)) 2875 if (expect_false (!ev_is_active (w)))
1445 return; 2876 return;
1446 2877
2878 EV_FREQUENT_CHECK;
2879
2880 {
2881 int active = ev_active (w);
2882
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2883 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2884
1449 if (((W)w)->active < periodiccnt--) 2885 --periodiccnt;
2886
2887 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2888 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2889 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2890 adjustheap (periodics, periodiccnt, active);
1453 } 2891 }
2892 }
1454 2893
1455 ev_stop (EV_A_ (W)w); 2894 ev_stop (EV_A_ (W)w);
1456}
1457 2895
1458void 2896 EV_FREQUENT_CHECK;
2897}
2898
2899void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2900ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2901{
1461 /* TODO: use adjustheap and recalculation */ 2902 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2903 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2904 ev_periodic_start (EV_A_ w);
1464} 2905}
1465#endif 2906#endif
1466 2907
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (ev_is_active (w))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (!ev_is_active (w))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 2908#ifndef SA_RESTART
1534# define SA_RESTART 0 2909# define SA_RESTART 0
1535#endif 2910#endif
1536 2911
1537void 2912#if EV_SIGNAL_ENABLE
2913
2914void noinline
1538ev_signal_start (EV_P_ struct ev_signal *w) 2915ev_signal_start (EV_P_ ev_signal *w)
1539{ 2916{
2917 if (expect_false (ev_is_active (w)))
2918 return;
2919
2920 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2921
1540#if EV_MULTIPLICITY 2922#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2923 assert (("libev: a signal must not be attached to two different loops",
2924 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2925
2926 signals [w->signum - 1].loop = EV_A;
2927#endif
2928
2929 EV_FREQUENT_CHECK;
2930
2931#if EV_USE_SIGNALFD
2932 if (sigfd == -2)
2933 {
2934 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2935 if (sigfd < 0 && errno == EINVAL)
2936 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2937
2938 if (sigfd >= 0)
2939 {
2940 fd_intern (sigfd); /* doing it twice will not hurt */
2941
2942 sigemptyset (&sigfd_set);
2943
2944 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2945 ev_set_priority (&sigfd_w, EV_MAXPRI);
2946 ev_io_start (EV_A_ &sigfd_w);
2947 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2948 }
2949 }
2950
2951 if (sigfd >= 0)
2952 {
2953 /* TODO: check .head */
2954 sigaddset (&sigfd_set, w->signum);
2955 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2956
2957 signalfd (sigfd, &sigfd_set, 0);
2958 }
2959#endif
2960
2961 ev_start (EV_A_ (W)w, 1);
2962 wlist_add (&signals [w->signum - 1].head, (WL)w);
2963
2964 if (!((WL)w)->next)
2965# if EV_USE_SIGNALFD
2966 if (sigfd < 0) /*TODO*/
1542#endif 2967# endif
1543 if (ev_is_active (w)) 2968 {
2969# ifdef _WIN32
2970 evpipe_init (EV_A);
2971
2972 signal (w->signum, ev_sighandler);
2973# else
2974 struct sigaction sa;
2975
2976 evpipe_init (EV_A);
2977
2978 sa.sa_handler = ev_sighandler;
2979 sigfillset (&sa.sa_mask);
2980 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2981 sigaction (w->signum, &sa, 0);
2982
2983 if (origflags & EVFLAG_NOSIGMASK)
2984 {
2985 sigemptyset (&sa.sa_mask);
2986 sigaddset (&sa.sa_mask, w->signum);
2987 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2988 }
2989#endif
2990 }
2991
2992 EV_FREQUENT_CHECK;
2993}
2994
2995void noinline
2996ev_signal_stop (EV_P_ ev_signal *w)
2997{
2998 clear_pending (EV_A_ (W)w);
2999 if (expect_false (!ev_is_active (w)))
1544 return; 3000 return;
1545 3001
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3002 EV_FREQUENT_CHECK;
3003
3004 wlist_del (&signals [w->signum - 1].head, (WL)w);
3005 ev_stop (EV_A_ (W)w);
3006
3007 if (!signals [w->signum - 1].head)
3008 {
3009#if EV_MULTIPLICITY
3010 signals [w->signum - 1].loop = 0; /* unattach from signal */
3011#endif
3012#if EV_USE_SIGNALFD
3013 if (sigfd >= 0)
3014 {
3015 sigset_t ss;
3016
3017 sigemptyset (&ss);
3018 sigaddset (&ss, w->signum);
3019 sigdelset (&sigfd_set, w->signum);
3020
3021 signalfd (sigfd, &sigfd_set, 0);
3022 sigprocmask (SIG_UNBLOCK, &ss, 0);
3023 }
3024 else
3025#endif
3026 signal (w->signum, SIG_DFL);
3027 }
3028
3029 EV_FREQUENT_CHECK;
3030}
3031
3032#endif
3033
3034#if EV_CHILD_ENABLE
3035
3036void
3037ev_child_start (EV_P_ ev_child *w)
3038{
3039#if EV_MULTIPLICITY
3040 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3041#endif
3042 if (expect_false (ev_is_active (w)))
3043 return;
3044
3045 EV_FREQUENT_CHECK;
1547 3046
1548 ev_start (EV_A_ (W)w, 1); 3047 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3048 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 3049
1552 if (!((WL)w)->next) 3050 EV_FREQUENT_CHECK;
3051}
3052
3053void
3054ev_child_stop (EV_P_ ev_child *w)
3055{
3056 clear_pending (EV_A_ (W)w);
3057 if (expect_false (!ev_is_active (w)))
3058 return;
3059
3060 EV_FREQUENT_CHECK;
3061
3062 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3063 ev_stop (EV_A_ (W)w);
3064
3065 EV_FREQUENT_CHECK;
3066}
3067
3068#endif
3069
3070#if EV_STAT_ENABLE
3071
3072# ifdef _WIN32
3073# undef lstat
3074# define lstat(a,b) _stati64 (a,b)
3075# endif
3076
3077#define DEF_STAT_INTERVAL 5.0074891
3078#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3079#define MIN_STAT_INTERVAL 0.1074891
3080
3081static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3082
3083#if EV_USE_INOTIFY
3084
3085/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3086# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3087
3088static void noinline
3089infy_add (EV_P_ ev_stat *w)
3090{
3091 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3092
3093 if (w->wd >= 0)
3094 {
3095 struct statfs sfs;
3096
3097 /* now local changes will be tracked by inotify, but remote changes won't */
3098 /* unless the filesystem is known to be local, we therefore still poll */
3099 /* also do poll on <2.6.25, but with normal frequency */
3100
3101 if (!fs_2625)
3102 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3103 else if (!statfs (w->path, &sfs)
3104 && (sfs.f_type == 0x1373 /* devfs */
3105 || sfs.f_type == 0xEF53 /* ext2/3 */
3106 || sfs.f_type == 0x3153464a /* jfs */
3107 || sfs.f_type == 0x52654973 /* reiser3 */
3108 || sfs.f_type == 0x01021994 /* tempfs */
3109 || sfs.f_type == 0x58465342 /* xfs */))
3110 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3111 else
3112 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1553 { 3113 }
3114 else
3115 {
3116 /* can't use inotify, continue to stat */
3117 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3118
3119 /* if path is not there, monitor some parent directory for speedup hints */
3120 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3121 /* but an efficiency issue only */
3122 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3123 {
3124 char path [4096];
3125 strcpy (path, w->path);
3126
3127 do
3128 {
3129 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3130 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3131
3132 char *pend = strrchr (path, '/');
3133
3134 if (!pend || pend == path)
3135 break;
3136
3137 *pend = 0;
3138 w->wd = inotify_add_watch (fs_fd, path, mask);
3139 }
3140 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3141 }
3142 }
3143
3144 if (w->wd >= 0)
3145 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3146
3147 /* now re-arm timer, if required */
3148 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3149 ev_timer_again (EV_A_ &w->timer);
3150 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3151}
3152
3153static void noinline
3154infy_del (EV_P_ ev_stat *w)
3155{
3156 int slot;
3157 int wd = w->wd;
3158
3159 if (wd < 0)
3160 return;
3161
3162 w->wd = -2;
3163 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3164 wlist_del (&fs_hash [slot].head, (WL)w);
3165
3166 /* remove this watcher, if others are watching it, they will rearm */
3167 inotify_rm_watch (fs_fd, wd);
3168}
3169
3170static void noinline
3171infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3172{
3173 if (slot < 0)
3174 /* overflow, need to check for all hash slots */
3175 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3176 infy_wd (EV_A_ slot, wd, ev);
3177 else
3178 {
3179 WL w_;
3180
3181 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3182 {
3183 ev_stat *w = (ev_stat *)w_;
3184 w_ = w_->next; /* lets us remove this watcher and all before it */
3185
3186 if (w->wd == wd || wd == -1)
3187 {
3188 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3189 {
3190 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3191 w->wd = -1;
3192 infy_add (EV_A_ w); /* re-add, no matter what */
3193 }
3194
3195 stat_timer_cb (EV_A_ &w->timer, 0);
3196 }
3197 }
3198 }
3199}
3200
3201static void
3202infy_cb (EV_P_ ev_io *w, int revents)
3203{
3204 char buf [EV_INOTIFY_BUFSIZE];
3205 int ofs;
3206 int len = read (fs_fd, buf, sizeof (buf));
3207
3208 for (ofs = 0; ofs < len; )
3209 {
3210 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3211 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3212 ofs += sizeof (struct inotify_event) + ev->len;
3213 }
3214}
3215
3216inline_size void
3217ev_check_2625 (EV_P)
3218{
3219 /* kernels < 2.6.25 are borked
3220 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3221 */
3222 if (ev_linux_version () < 0x020619)
3223 return;
3224
3225 fs_2625 = 1;
3226}
3227
3228inline_size int
3229infy_newfd (void)
3230{
3231#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3232 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3233 if (fd >= 0)
3234 return fd;
3235#endif
3236 return inotify_init ();
3237}
3238
3239inline_size void
3240infy_init (EV_P)
3241{
3242 if (fs_fd != -2)
3243 return;
3244
3245 fs_fd = -1;
3246
3247 ev_check_2625 (EV_A);
3248
3249 fs_fd = infy_newfd ();
3250
3251 if (fs_fd >= 0)
3252 {
3253 fd_intern (fs_fd);
3254 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3255 ev_set_priority (&fs_w, EV_MAXPRI);
3256 ev_io_start (EV_A_ &fs_w);
3257 ev_unref (EV_A);
3258 }
3259}
3260
3261inline_size void
3262infy_fork (EV_P)
3263{
3264 int slot;
3265
3266 if (fs_fd < 0)
3267 return;
3268
3269 ev_ref (EV_A);
3270 ev_io_stop (EV_A_ &fs_w);
3271 close (fs_fd);
3272 fs_fd = infy_newfd ();
3273
3274 if (fs_fd >= 0)
3275 {
3276 fd_intern (fs_fd);
3277 ev_io_set (&fs_w, fs_fd, EV_READ);
3278 ev_io_start (EV_A_ &fs_w);
3279 ev_unref (EV_A);
3280 }
3281
3282 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3283 {
3284 WL w_ = fs_hash [slot].head;
3285 fs_hash [slot].head = 0;
3286
3287 while (w_)
3288 {
3289 ev_stat *w = (ev_stat *)w_;
3290 w_ = w_->next; /* lets us add this watcher */
3291
3292 w->wd = -1;
3293
3294 if (fs_fd >= 0)
3295 infy_add (EV_A_ w); /* re-add, no matter what */
3296 else
3297 {
3298 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3299 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3300 ev_timer_again (EV_A_ &w->timer);
3301 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3302 }
3303 }
3304 }
3305}
3306
3307#endif
3308
1554#if _WIN32 3309#ifdef _WIN32
1555 signal (w->signum, sighandler); 3310# define EV_LSTAT(p,b) _stati64 (p, b)
1556#else 3311#else
1557 struct sigaction sa; 3312# define EV_LSTAT(p,b) lstat (p, b)
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif 3313#endif
1563 }
1564}
1565 3314
1566void 3315void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 3316ev_stat_stat (EV_P_ ev_stat *w)
1568{ 3317{
1569 ev_clear_pending (EV_A_ (W)w); 3318 if (lstat (w->path, &w->attr) < 0)
1570 if (!ev_is_active (w)) 3319 w->attr.st_nlink = 0;
3320 else if (!w->attr.st_nlink)
3321 w->attr.st_nlink = 1;
3322}
3323
3324static void noinline
3325stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3326{
3327 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3328
3329 ev_statdata prev = w->attr;
3330 ev_stat_stat (EV_A_ w);
3331
3332 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3333 if (
3334 prev.st_dev != w->attr.st_dev
3335 || prev.st_ino != w->attr.st_ino
3336 || prev.st_mode != w->attr.st_mode
3337 || prev.st_nlink != w->attr.st_nlink
3338 || prev.st_uid != w->attr.st_uid
3339 || prev.st_gid != w->attr.st_gid
3340 || prev.st_rdev != w->attr.st_rdev
3341 || prev.st_size != w->attr.st_size
3342 || prev.st_atime != w->attr.st_atime
3343 || prev.st_mtime != w->attr.st_mtime
3344 || prev.st_ctime != w->attr.st_ctime
3345 ) {
3346 /* we only update w->prev on actual differences */
3347 /* in case we test more often than invoke the callback, */
3348 /* to ensure that prev is always different to attr */
3349 w->prev = prev;
3350
3351 #if EV_USE_INOTIFY
3352 if (fs_fd >= 0)
3353 {
3354 infy_del (EV_A_ w);
3355 infy_add (EV_A_ w);
3356 ev_stat_stat (EV_A_ w); /* avoid race... */
3357 }
3358 #endif
3359
3360 ev_feed_event (EV_A_ w, EV_STAT);
3361 }
3362}
3363
3364void
3365ev_stat_start (EV_P_ ev_stat *w)
3366{
3367 if (expect_false (ev_is_active (w)))
1571 return; 3368 return;
1572 3369
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3370 ev_stat_stat (EV_A_ w);
3371
3372 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3373 w->interval = MIN_STAT_INTERVAL;
3374
3375 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3376 ev_set_priority (&w->timer, ev_priority (w));
3377
3378#if EV_USE_INOTIFY
3379 infy_init (EV_A);
3380
3381 if (fs_fd >= 0)
3382 infy_add (EV_A_ w);
3383 else
3384#endif
3385 {
3386 ev_timer_again (EV_A_ &w->timer);
3387 ev_unref (EV_A);
3388 }
3389
3390 ev_start (EV_A_ (W)w, 1);
3391
3392 EV_FREQUENT_CHECK;
3393}
3394
3395void
3396ev_stat_stop (EV_P_ ev_stat *w)
3397{
3398 clear_pending (EV_A_ (W)w);
3399 if (expect_false (!ev_is_active (w)))
3400 return;
3401
3402 EV_FREQUENT_CHECK;
3403
3404#if EV_USE_INOTIFY
3405 infy_del (EV_A_ w);
3406#endif
3407
3408 if (ev_is_active (&w->timer))
3409 {
3410 ev_ref (EV_A);
3411 ev_timer_stop (EV_A_ &w->timer);
3412 }
3413
1574 ev_stop (EV_A_ (W)w); 3414 ev_stop (EV_A_ (W)w);
1575 3415
1576 if (!signals [w->signum - 1].head) 3416 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 3417}
3418#endif
1579 3419
3420#if EV_IDLE_ENABLE
1580void 3421void
1581ev_child_start (EV_P_ struct ev_child *w) 3422ev_idle_start (EV_P_ ev_idle *w)
1582{ 3423{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif
1586 if (ev_is_active (w)) 3424 if (expect_false (ev_is_active (w)))
1587 return; 3425 return;
1588 3426
3427 pri_adjust (EV_A_ (W)w);
3428
3429 EV_FREQUENT_CHECK;
3430
3431 {
3432 int active = ++idlecnt [ABSPRI (w)];
3433
3434 ++idleall;
3435 ev_start (EV_A_ (W)w, active);
3436
3437 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3438 idles [ABSPRI (w)][active - 1] = w;
3439 }
3440
3441 EV_FREQUENT_CHECK;
3442}
3443
3444void
3445ev_idle_stop (EV_P_ ev_idle *w)
3446{
3447 clear_pending (EV_A_ (W)w);
3448 if (expect_false (!ev_is_active (w)))
3449 return;
3450
3451 EV_FREQUENT_CHECK;
3452
3453 {
3454 int active = ev_active (w);
3455
3456 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3457 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3458
3459 ev_stop (EV_A_ (W)w);
3460 --idleall;
3461 }
3462
3463 EV_FREQUENT_CHECK;
3464}
3465#endif
3466
3467#if EV_PREPARE_ENABLE
3468void
3469ev_prepare_start (EV_P_ ev_prepare *w)
3470{
3471 if (expect_false (ev_is_active (w)))
3472 return;
3473
3474 EV_FREQUENT_CHECK;
3475
3476 ev_start (EV_A_ (W)w, ++preparecnt);
3477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3478 prepares [preparecnt - 1] = w;
3479
3480 EV_FREQUENT_CHECK;
3481}
3482
3483void
3484ev_prepare_stop (EV_P_ ev_prepare *w)
3485{
3486 clear_pending (EV_A_ (W)w);
3487 if (expect_false (!ev_is_active (w)))
3488 return;
3489
3490 EV_FREQUENT_CHECK;
3491
3492 {
3493 int active = ev_active (w);
3494
3495 prepares [active - 1] = prepares [--preparecnt];
3496 ev_active (prepares [active - 1]) = active;
3497 }
3498
3499 ev_stop (EV_A_ (W)w);
3500
3501 EV_FREQUENT_CHECK;
3502}
3503#endif
3504
3505#if EV_CHECK_ENABLE
3506void
3507ev_check_start (EV_P_ ev_check *w)
3508{
3509 if (expect_false (ev_is_active (w)))
3510 return;
3511
3512 EV_FREQUENT_CHECK;
3513
3514 ev_start (EV_A_ (W)w, ++checkcnt);
3515 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3516 checks [checkcnt - 1] = w;
3517
3518 EV_FREQUENT_CHECK;
3519}
3520
3521void
3522ev_check_stop (EV_P_ ev_check *w)
3523{
3524 clear_pending (EV_A_ (W)w);
3525 if (expect_false (!ev_is_active (w)))
3526 return;
3527
3528 EV_FREQUENT_CHECK;
3529
3530 {
3531 int active = ev_active (w);
3532
3533 checks [active - 1] = checks [--checkcnt];
3534 ev_active (checks [active - 1]) = active;
3535 }
3536
3537 ev_stop (EV_A_ (W)w);
3538
3539 EV_FREQUENT_CHECK;
3540}
3541#endif
3542
3543#if EV_EMBED_ENABLE
3544void noinline
3545ev_embed_sweep (EV_P_ ev_embed *w)
3546{
3547 ev_run (w->other, EVRUN_NOWAIT);
3548}
3549
3550static void
3551embed_io_cb (EV_P_ ev_io *io, int revents)
3552{
3553 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3554
3555 if (ev_cb (w))
3556 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3557 else
3558 ev_run (w->other, EVRUN_NOWAIT);
3559}
3560
3561static void
3562embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3563{
3564 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3565
3566 {
3567 EV_P = w->other;
3568
3569 while (fdchangecnt)
3570 {
3571 fd_reify (EV_A);
3572 ev_run (EV_A_ EVRUN_NOWAIT);
3573 }
3574 }
3575}
3576
3577static void
3578embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3579{
3580 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3581
3582 ev_embed_stop (EV_A_ w);
3583
3584 {
3585 EV_P = w->other;
3586
3587 ev_loop_fork (EV_A);
3588 ev_run (EV_A_ EVRUN_NOWAIT);
3589 }
3590
3591 ev_embed_start (EV_A_ w);
3592}
3593
3594#if 0
3595static void
3596embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3597{
3598 ev_idle_stop (EV_A_ idle);
3599}
3600#endif
3601
3602void
3603ev_embed_start (EV_P_ ev_embed *w)
3604{
3605 if (expect_false (ev_is_active (w)))
3606 return;
3607
3608 {
3609 EV_P = w->other;
3610 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3611 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3612 }
3613
3614 EV_FREQUENT_CHECK;
3615
3616 ev_set_priority (&w->io, ev_priority (w));
3617 ev_io_start (EV_A_ &w->io);
3618
3619 ev_prepare_init (&w->prepare, embed_prepare_cb);
3620 ev_set_priority (&w->prepare, EV_MINPRI);
3621 ev_prepare_start (EV_A_ &w->prepare);
3622
3623 ev_fork_init (&w->fork, embed_fork_cb);
3624 ev_fork_start (EV_A_ &w->fork);
3625
3626 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3627
1589 ev_start (EV_A_ (W)w, 1); 3628 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1591}
1592 3629
3630 EV_FREQUENT_CHECK;
3631}
3632
1593void 3633void
1594ev_child_stop (EV_P_ struct ev_child *w) 3634ev_embed_stop (EV_P_ ev_embed *w)
1595{ 3635{
1596 ev_clear_pending (EV_A_ (W)w); 3636 clear_pending (EV_A_ (W)w);
1597 if (!ev_is_active (w)) 3637 if (expect_false (!ev_is_active (w)))
1598 return; 3638 return;
1599 3639
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3640 EV_FREQUENT_CHECK;
3641
3642 ev_io_stop (EV_A_ &w->io);
3643 ev_prepare_stop (EV_A_ &w->prepare);
3644 ev_fork_stop (EV_A_ &w->fork);
3645
1601 ev_stop (EV_A_ (W)w); 3646 ev_stop (EV_A_ (W)w);
3647
3648 EV_FREQUENT_CHECK;
1602} 3649}
3650#endif
3651
3652#if EV_FORK_ENABLE
3653void
3654ev_fork_start (EV_P_ ev_fork *w)
3655{
3656 if (expect_false (ev_is_active (w)))
3657 return;
3658
3659 EV_FREQUENT_CHECK;
3660
3661 ev_start (EV_A_ (W)w, ++forkcnt);
3662 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3663 forks [forkcnt - 1] = w;
3664
3665 EV_FREQUENT_CHECK;
3666}
3667
3668void
3669ev_fork_stop (EV_P_ ev_fork *w)
3670{
3671 clear_pending (EV_A_ (W)w);
3672 if (expect_false (!ev_is_active (w)))
3673 return;
3674
3675 EV_FREQUENT_CHECK;
3676
3677 {
3678 int active = ev_active (w);
3679
3680 forks [active - 1] = forks [--forkcnt];
3681 ev_active (forks [active - 1]) = active;
3682 }
3683
3684 ev_stop (EV_A_ (W)w);
3685
3686 EV_FREQUENT_CHECK;
3687}
3688#endif
3689
3690#if EV_CLEANUP_ENABLE
3691void
3692ev_cleanup_start (EV_P_ ev_cleanup *w)
3693{
3694 if (expect_false (ev_is_active (w)))
3695 return;
3696
3697 EV_FREQUENT_CHECK;
3698
3699 ev_start (EV_A_ (W)w, ++cleanupcnt);
3700 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3701 cleanups [cleanupcnt - 1] = w;
3702
3703 /* cleanup watchers should never keep a refcount on the loop */
3704 ev_unref (EV_A);
3705 EV_FREQUENT_CHECK;
3706}
3707
3708void
3709ev_cleanup_stop (EV_P_ ev_cleanup *w)
3710{
3711 clear_pending (EV_A_ (W)w);
3712 if (expect_false (!ev_is_active (w)))
3713 return;
3714
3715 EV_FREQUENT_CHECK;
3716 ev_ref (EV_A);
3717
3718 {
3719 int active = ev_active (w);
3720
3721 cleanups [active - 1] = cleanups [--cleanupcnt];
3722 ev_active (cleanups [active - 1]) = active;
3723 }
3724
3725 ev_stop (EV_A_ (W)w);
3726
3727 EV_FREQUENT_CHECK;
3728}
3729#endif
3730
3731#if EV_ASYNC_ENABLE
3732void
3733ev_async_start (EV_P_ ev_async *w)
3734{
3735 if (expect_false (ev_is_active (w)))
3736 return;
3737
3738 w->sent = 0;
3739
3740 evpipe_init (EV_A);
3741
3742 EV_FREQUENT_CHECK;
3743
3744 ev_start (EV_A_ (W)w, ++asynccnt);
3745 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3746 asyncs [asynccnt - 1] = w;
3747
3748 EV_FREQUENT_CHECK;
3749}
3750
3751void
3752ev_async_stop (EV_P_ ev_async *w)
3753{
3754 clear_pending (EV_A_ (W)w);
3755 if (expect_false (!ev_is_active (w)))
3756 return;
3757
3758 EV_FREQUENT_CHECK;
3759
3760 {
3761 int active = ev_active (w);
3762
3763 asyncs [active - 1] = asyncs [--asynccnt];
3764 ev_active (asyncs [active - 1]) = active;
3765 }
3766
3767 ev_stop (EV_A_ (W)w);
3768
3769 EV_FREQUENT_CHECK;
3770}
3771
3772void
3773ev_async_send (EV_P_ ev_async *w)
3774{
3775 w->sent = 1;
3776 evpipe_write (EV_A_ &async_pending);
3777}
3778#endif
1603 3779
1604/*****************************************************************************/ 3780/*****************************************************************************/
1605 3781
1606struct ev_once 3782struct ev_once
1607{ 3783{
1608 struct ev_io io; 3784 ev_io io;
1609 struct ev_timer to; 3785 ev_timer to;
1610 void (*cb)(int revents, void *arg); 3786 void (*cb)(int revents, void *arg);
1611 void *arg; 3787 void *arg;
1612}; 3788};
1613 3789
1614static void 3790static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 3791once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 3792{
1617 void (*cb)(int revents, void *arg) = once->cb; 3793 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 3794 void *arg = once->arg;
1619 3795
1620 ev_io_stop (EV_A_ &once->io); 3796 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 3797 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 3798 ev_free (once);
1623 3799
1624 cb (revents, arg); 3800 cb (revents, arg);
1625} 3801}
1626 3802
1627static void 3803static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 3804once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 3805{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3806 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3807
3808 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 3809}
1632 3810
1633static void 3811static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 3812once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 3813{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3814 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3815
3816 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 3817}
1638 3818
1639void 3819void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3820ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 3821{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3822 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 3823
1644 if (!once) 3824 if (expect_false (!once))
3825 {
1645 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3826 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1646 else 3827 return;
1647 { 3828 }
3829
1648 once->cb = cb; 3830 once->cb = cb;
1649 once->arg = arg; 3831 once->arg = arg;
1650 3832
1651 ev_init (&once->io, once_cb_io); 3833 ev_init (&once->io, once_cb_io);
1652 if (fd >= 0) 3834 if (fd >= 0)
3835 {
3836 ev_io_set (&once->io, fd, events);
3837 ev_io_start (EV_A_ &once->io);
3838 }
3839
3840 ev_init (&once->to, once_cb_to);
3841 if (timeout >= 0.)
3842 {
3843 ev_timer_set (&once->to, timeout, 0.);
3844 ev_timer_start (EV_A_ &once->to);
3845 }
3846}
3847
3848/*****************************************************************************/
3849
3850#if EV_WALK_ENABLE
3851void
3852ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3853{
3854 int i, j;
3855 ev_watcher_list *wl, *wn;
3856
3857 if (types & (EV_IO | EV_EMBED))
3858 for (i = 0; i < anfdmax; ++i)
3859 for (wl = anfds [i].head; wl; )
1653 { 3860 {
1654 ev_io_set (&once->io, fd, events); 3861 wn = wl->next;
1655 ev_io_start (EV_A_ &once->io); 3862
3863#if EV_EMBED_ENABLE
3864 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3865 {
3866 if (types & EV_EMBED)
3867 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3868 }
3869 else
3870#endif
3871#if EV_USE_INOTIFY
3872 if (ev_cb ((ev_io *)wl) == infy_cb)
3873 ;
3874 else
3875#endif
3876 if ((ev_io *)wl != &pipe_w)
3877 if (types & EV_IO)
3878 cb (EV_A_ EV_IO, wl);
3879
3880 wl = wn;
1656 } 3881 }
1657 3882
1658 ev_init (&once->to, once_cb_to); 3883 if (types & (EV_TIMER | EV_STAT))
1659 if (timeout >= 0.) 3884 for (i = timercnt + HEAP0; i-- > HEAP0; )
3885#if EV_STAT_ENABLE
3886 /*TODO: timer is not always active*/
3887 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1660 { 3888 {
1661 ev_timer_set (&once->to, timeout, 0.); 3889 if (types & EV_STAT)
1662 ev_timer_start (EV_A_ &once->to); 3890 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1663 } 3891 }
1664 } 3892 else
1665} 3893#endif
3894 if (types & EV_TIMER)
3895 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1666 3896
1667#ifdef __cplusplus 3897#if EV_PERIODIC_ENABLE
1668} 3898 if (types & EV_PERIODIC)
3899 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3900 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3901#endif
3902
3903#if EV_IDLE_ENABLE
3904 if (types & EV_IDLE)
3905 for (j = NUMPRI; i--; )
3906 for (i = idlecnt [j]; i--; )
3907 cb (EV_A_ EV_IDLE, idles [j][i]);
3908#endif
3909
3910#if EV_FORK_ENABLE
3911 if (types & EV_FORK)
3912 for (i = forkcnt; i--; )
3913 if (ev_cb (forks [i]) != embed_fork_cb)
3914 cb (EV_A_ EV_FORK, forks [i]);
3915#endif
3916
3917#if EV_ASYNC_ENABLE
3918 if (types & EV_ASYNC)
3919 for (i = asynccnt; i--; )
3920 cb (EV_A_ EV_ASYNC, asyncs [i]);
3921#endif
3922
3923#if EV_PREPARE_ENABLE
3924 if (types & EV_PREPARE)
3925 for (i = preparecnt; i--; )
3926# if EV_EMBED_ENABLE
3927 if (ev_cb (prepares [i]) != embed_prepare_cb)
1669#endif 3928# endif
3929 cb (EV_A_ EV_PREPARE, prepares [i]);
3930#endif
1670 3931
3932#if EV_CHECK_ENABLE
3933 if (types & EV_CHECK)
3934 for (i = checkcnt; i--; )
3935 cb (EV_A_ EV_CHECK, checks [i]);
3936#endif
3937
3938#if EV_SIGNAL_ENABLE
3939 if (types & EV_SIGNAL)
3940 for (i = 0; i < EV_NSIG - 1; ++i)
3941 for (wl = signals [i].head; wl; )
3942 {
3943 wn = wl->next;
3944 cb (EV_A_ EV_SIGNAL, wl);
3945 wl = wn;
3946 }
3947#endif
3948
3949#if EV_CHILD_ENABLE
3950 if (types & EV_CHILD)
3951 for (i = (EV_PID_HASHSIZE); i--; )
3952 for (wl = childs [i]; wl; )
3953 {
3954 wn = wl->next;
3955 cb (EV_A_ EV_CHILD, wl);
3956 wl = wn;
3957 }
3958#endif
3959/* EV_STAT 0x00001000 /* stat data changed */
3960/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3961}
3962#endif
3963
3964#if EV_MULTIPLICITY
3965 #include "ev_wrap.h"
3966#endif
3967
3968EV_CPP(})
3969

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines