ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.122 by root, Sat Nov 17 02:00:48 2007 UTC vs.
Revision 1.424 by root, Tue May 1 22:01:40 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
65# define EV_USE_PORT 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
66# endif 127# endif
67 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
68#endif 136# endif
69 137
70#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
71#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
72#include <fcntl.h> 169#include <fcntl.h>
73#include <stddef.h> 170#include <stddef.h>
74 171
75#include <stdio.h> 172#include <stdio.h>
76 173
77#include <assert.h> 174#include <assert.h>
78#include <errno.h> 175#include <errno.h>
79#include <sys/types.h> 176#include <sys/types.h>
80#include <time.h> 177#include <time.h>
178#include <limits.h>
81 179
82#include <signal.h> 180#include <signal.h>
83 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
84#ifndef _WIN32 199#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 200# include <sys/time.h>
87# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
88#else 203#else
204# include <io.h>
89# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 206# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
93# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
94#endif 260# endif
95 261#endif
96/**/
97 262
98#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
99# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
100#endif 269#endif
101 270
102#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
104#endif 281#endif
105 282
106#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
108#endif 285#endif
109 286
110#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
111# ifdef _WIN32 288# ifdef _WIN32
112# define EV_USE_POLL 0 289# define EV_USE_POLL 0
113# else 290# else
114# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
115# endif 292# endif
116#endif 293#endif
117 294
118#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
119# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
120#endif 301#endif
121 302
122#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
124#endif 305#endif
125 306
126#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 308# define EV_USE_PORT 0
128#endif 309#endif
129 310
130/**/ 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
315# define EV_USE_INOTIFY 0
316# endif
317#endif
131 318
132/* darwin simply cannot be helped */ 319#ifndef EV_PID_HASHSIZE
133#ifdef __APPLE__ 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
330# else
331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <sys/syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 379# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 380# define EV_USE_POLL 0
136#endif 381#endif
137 382
138#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
143#ifndef CLOCK_REALTIME 388#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 389# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 390# define EV_USE_REALTIME 0
146#endif 391#endif
147 392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
148#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 416# include <winsock.h>
150#endif 417#endif
151 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
152/**/ 457/**/
458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
465/*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
153 471
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
158 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
159#ifdef EV_H 509#ifndef ECB_H
160# include EV_H 510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
161#else 526#else
162# include "ev.h" 527 #include <inttypes.h>
528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
163#endif 542 #endif
543#endif
164 544
165#if __GNUC__ >= 3 545/*****************************************************************************/
166# define expect(expr,value) __builtin_expect ((expr),(value)) 546
167# define inline inline 547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
168#else 649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
169# define expect(expr,value) (expr) 678 #define ecb_expect(expr,value) (expr)
170# define inline static 679 #define ecb_prefetch(addr,rw,locality)
171#endif 680#endif
172 681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
173#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
175 713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
960#define inline_size ecb_inline
961
962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
965# define inline_speed static noinline
966#endif
967
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
972#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
178 975
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
181 978
182typedef struct ev_watcher *W; 979typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 980typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
185 982
983#define ev_active(w) ((W)(w))->active
984#define ev_at(w) ((WT)(w))->at
985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
992#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
1004#endif
187 1005
188#ifdef _WIN32 1006#ifdef _WIN32
189# include "ev_win32.c" 1007# include "ev_win32.c"
190#endif 1008#endif
191 1009
192/*****************************************************************************/ 1010/*****************************************************************************/
193 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
194static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
195 1111
1112void ecb_cold
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
197{ 1114{
198 syserr_cb = cb; 1115 syserr_cb = cb;
199} 1116}
200 1117
201static void 1118static void noinline ecb_cold
202syserr (const char *msg) 1119ev_syserr (const char *msg)
203{ 1120{
204 if (!msg) 1121 if (!msg)
205 msg = "(libev) system error"; 1122 msg = "(libev) system error";
206 1123
207 if (syserr_cb) 1124 if (syserr_cb)
208 syserr_cb (msg); 1125 syserr_cb (msg);
209 else 1126 else
210 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
211 perror (msg); 1134 perror (msg);
1135#endif
212 abort (); 1136 abort ();
213 } 1137 }
214} 1138}
215 1139
1140static void *
1141ev_realloc_emul (void *ptr, long size)
1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
1146 /* some systems, notably openbsd and darwin, fail to properly
1147 * implement realloc (x, 0) (as required by both ansi c-89 and
1148 * the single unix specification, so work around them here.
1149 */
1150
1151 if (size)
1152 return realloc (ptr, size);
1153
1154 free (ptr);
1155 return 0;
1156#endif
1157}
1158
216static void *(*alloc)(void *ptr, long size); 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
217 1160
1161void ecb_cold
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
219{ 1163{
220 alloc = cb; 1164 alloc = cb;
221} 1165}
222 1166
223static void * 1167inline_speed void *
224ev_realloc (void *ptr, long size) 1168ev_realloc (void *ptr, long size)
225{ 1169{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1170 ptr = alloc (ptr, size);
227 1171
228 if (!ptr && size) 1172 if (!ptr && size)
229 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
231 abort (); 1179 abort ();
232 } 1180 }
233 1181
234 return ptr; 1182 return ptr;
235} 1183}
237#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
239 1187
240/*****************************************************************************/ 1188/*****************************************************************************/
241 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
242typedef struct 1194typedef struct
243{ 1195{
244 WL head; 1196 WL head;
245 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
246 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
247#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
248 SOCKET handle; 1205 SOCKET handle;
249#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
250} ANFD; 1210} ANFD;
251 1211
1212/* stores the pending event set for a given watcher */
252typedef struct 1213typedef struct
253{ 1214{
254 W w; 1215 W w;
255 int events; 1216 int events; /* the pending event set for the given watcher */
256} ANPENDING; 1217} ANPENDING;
1218
1219#if EV_USE_INOTIFY
1220/* hash table entry per inotify-id */
1221typedef struct
1222{
1223 WL head;
1224} ANFS;
1225#endif
1226
1227/* Heap Entry */
1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
1230 typedef struct {
1231 ev_tstamp at;
1232 WT w;
1233 } ANHE;
1234
1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1238#else
1239 /* a heap element */
1240 typedef WT ANHE;
1241
1242 #define ANHE_w(he) (he)
1243 #define ANHE_at(he) (he)->at
1244 #define ANHE_at_cache(he)
1245#endif
257 1246
258#if EV_MULTIPLICITY 1247#if EV_MULTIPLICITY
259 1248
260 struct ev_loop 1249 struct ev_loop
261 { 1250 {
266 #undef VAR 1255 #undef VAR
267 }; 1256 };
268 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
269 1258
270 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
271 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
272 1261
273#else 1262#else
274 1263
275 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
276 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
277 #include "ev_vars.h" 1266 #include "ev_vars.h"
278 #undef VAR 1267 #undef VAR
279 1268
280 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
281 1270
282#endif 1271#endif
283 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
284/*****************************************************************************/ 1285/*****************************************************************************/
285 1286
1287#ifndef EV_HAVE_EV_TIME
286ev_tstamp 1288ev_tstamp
287ev_time (void) 1289ev_time (void) EV_THROW
288{ 1290{
289#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
290 struct timespec ts; 1294 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 1297 }
1298#endif
1299
294 struct timeval tv; 1300 struct timeval tv;
295 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 1303}
1304#endif
299 1305
300inline ev_tstamp 1306inline_size ev_tstamp
301get_clock (void) 1307get_clock (void)
302{ 1308{
303#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
305 { 1311 {
312 return ev_time (); 1318 return ev_time ();
313} 1319}
314 1320
315#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
316ev_tstamp 1322ev_tstamp
317ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
318{ 1324{
319 return ev_rt_now; 1325 return ev_rt_now;
320} 1326}
321#endif 1327#endif
322 1328
323#define array_roundsize(type,n) (((n) | 4) & ~3) 1329void
1330ev_sleep (ev_tstamp delay) EV_THROW
1331{
1332 if (delay > 0.)
1333 {
1334#if EV_USE_NANOSLEEP
1335 struct timespec ts;
1336
1337 EV_TS_SET (ts, delay);
1338 nanosleep (&ts, 0);
1339#elif defined _WIN32
1340 Sleep ((unsigned long)(delay * 1e3));
1341#else
1342 struct timeval tv;
1343
1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1345 /* something not guaranteed by newer posix versions, but guaranteed */
1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
1348 select (0, 0, 0, 0, &tv);
1349#endif
1350 }
1351}
1352
1353/*****************************************************************************/
1354
1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1356
1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
1360array_nextsize (int elem, int cur, int cnt)
1361{
1362 int ncur = cur + 1;
1363
1364 do
1365 ncur <<= 1;
1366 while (cnt > ncur);
1367
1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1370 {
1371 ncur *= elem;
1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1373 ncur = ncur - sizeof (void *) * 4;
1374 ncur /= elem;
1375 }
1376
1377 return ncur;
1378}
1379
1380static void * noinline ecb_cold
1381array_realloc (int elem, void *base, int *cur, int cnt)
1382{
1383 *cur = array_nextsize (elem, *cur, cnt);
1384 return ev_realloc (base, elem * *cur);
1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 1389
325#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 1391 if (expect_false ((cnt) > (cur))) \
327 { \ 1392 { \
328 int newcnt = cur; \ 1393 int ecb_unused ocur_ = (cur); \
329 do \ 1394 (base) = (type *)array_realloc \
330 { \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 1397 }
339 1398
1399#if 0
340#define array_slim(type,stem) \ 1400#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1401 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 1402 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1403 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1404 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 1406 }
1407#endif
347 1408
348#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 1411
351/*****************************************************************************/ 1412/*****************************************************************************/
352 1413
353static void 1414/* dummy callback for pending events */
354anfds_init (ANFD *base, int count) 1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 1417{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 1418}
365 1419
366void 1420void noinline
367ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
368{ 1422{
369 W w_ = (W)w; 1423 W w_ = (W)w;
1424 int pri = ABSPRI (w_);
370 1425
371 if (w_->pending) 1426 if (expect_false (w_->pending))
1427 pendings [pri][w_->pending - 1].events |= revents;
1428 else
372 { 1429 {
1430 w_->pending = ++pendingcnt [pri];
1431 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1432 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1433 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 1434 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 1435}
382 1436
383static void 1437inline_speed void
1438feed_reverse (EV_P_ W w)
1439{
1440 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1441 rfeeds [rfeedcnt++] = w;
1442}
1443
1444inline_size void
1445feed_reverse_done (EV_P_ int revents)
1446{
1447 do
1448 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1449 while (rfeedcnt);
1450}
1451
1452inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 1453queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 1454{
386 int i; 1455 int i;
387 1456
388 for (i = 0; i < eventcnt; ++i) 1457 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 1458 ev_feed_event (EV_A_ events [i], type);
390} 1459}
391 1460
1461/*****************************************************************************/
1462
392inline void 1463inline_speed void
393fd_event (EV_P_ int fd, int revents) 1464fd_event_nocheck (EV_P_ int fd, int revents)
394{ 1465{
395 ANFD *anfd = anfds + fd; 1466 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 1467 ev_io *w;
397 1468
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1469 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 1470 {
400 int ev = w->events & revents; 1471 int ev = w->events & revents;
401 1472
402 if (ev) 1473 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 1474 ev_feed_event (EV_A_ (W)w, ev);
404 } 1475 }
405} 1476}
406 1477
1478/* do not submit kernel events for fds that have reify set */
1479/* because that means they changed while we were polling for new events */
1480inline_speed void
1481fd_event (EV_P_ int fd, int revents)
1482{
1483 ANFD *anfd = anfds + fd;
1484
1485 if (expect_true (!anfd->reify))
1486 fd_event_nocheck (EV_A_ fd, revents);
1487}
1488
407void 1489void
408ev_feed_fd_event (EV_P_ int fd, int revents) 1490ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
409{ 1491{
1492 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 1493 fd_event_nocheck (EV_A_ fd, revents);
411} 1494}
412 1495
413/*****************************************************************************/ 1496/* make sure the external fd watch events are in-sync */
414 1497/* with the kernel/libev internal state */
415static void 1498inline_size void
416fd_reify (EV_P) 1499fd_reify (EV_P)
417{ 1500{
418 int i; 1501 int i;
419 1502
1503#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
420 for (i = 0; i < fdchangecnt; ++i) 1504 for (i = 0; i < fdchangecnt; ++i)
421 { 1505 {
422 int fd = fdchanges [i]; 1506 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 1507 ANFD *anfd = anfds + fd;
424 struct ev_io *w;
425 1508
426 int events = 0; 1509 if (anfd->reify & EV__IOFDSET && anfd->head)
427
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
429 events |= w->events;
430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 { 1510 {
1511 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1512
1513 if (handle != anfd->handle)
1514 {
434 unsigned long argp; 1515 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 1516
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1517 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1518
1519 /* handle changed, but fd didn't - we need to do it in two steps */
1520 backend_modify (EV_A_ fd, anfd->events, 0);
1521 anfd->events = 0;
1522 anfd->handle = handle;
1523 }
437 } 1524 }
1525 }
438#endif 1526#endif
439 1527
1528 for (i = 0; i < fdchangecnt; ++i)
1529 {
1530 int fd = fdchanges [i];
1531 ANFD *anfd = anfds + fd;
1532 ev_io *w;
1533
1534 unsigned char o_events = anfd->events;
1535 unsigned char o_reify = anfd->reify;
1536
440 anfd->reify = 0; 1537 anfd->reify = 0;
441 1538
442 method_modify (EV_A_ fd, anfd->events, events); 1539 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1540 {
443 anfd->events = events; 1541 anfd->events = 0;
1542
1543 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1544 anfd->events |= (unsigned char)w->events;
1545
1546 if (o_events != anfd->events)
1547 o_reify = EV__IOFDSET; /* actually |= */
1548 }
1549
1550 if (o_reify & EV__IOFDSET)
1551 backend_modify (EV_A_ fd, o_events, anfd->events);
444 } 1552 }
445 1553
446 fdchangecnt = 0; 1554 fdchangecnt = 0;
447} 1555}
448 1556
449static void 1557/* something about the given fd changed */
1558inline_size void
450fd_change (EV_P_ int fd) 1559fd_change (EV_P_ int fd, int flags)
451{ 1560{
452 if (anfds [fd].reify) 1561 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 1562 anfds [fd].reify |= flags;
456 1563
1564 if (expect_true (!reify))
1565 {
457 ++fdchangecnt; 1566 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1567 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 1568 fdchanges [fdchangecnt - 1] = fd;
1569 }
460} 1570}
461 1571
462static void 1572/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1573inline_speed void ecb_cold
463fd_kill (EV_P_ int fd) 1574fd_kill (EV_P_ int fd)
464{ 1575{
465 struct ev_io *w; 1576 ev_io *w;
466 1577
467 while ((w = (struct ev_io *)anfds [fd].head)) 1578 while ((w = (ev_io *)anfds [fd].head))
468 { 1579 {
469 ev_io_stop (EV_A_ w); 1580 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1581 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 1582 }
472} 1583}
473 1584
474static int 1585/* check whether the given fd is actually valid, for error recovery */
1586inline_size int ecb_cold
475fd_valid (int fd) 1587fd_valid (int fd)
476{ 1588{
477#ifdef _WIN32 1589#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 1590 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 1591#else
480 return fcntl (fd, F_GETFD) != -1; 1592 return fcntl (fd, F_GETFD) != -1;
481#endif 1593#endif
482} 1594}
483 1595
484/* called on EBADF to verify fds */ 1596/* called on EBADF to verify fds */
485static void 1597static void noinline ecb_cold
486fd_ebadf (EV_P) 1598fd_ebadf (EV_P)
487{ 1599{
488 int fd; 1600 int fd;
489 1601
490 for (fd = 0; fd < anfdmax; ++fd) 1602 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 1603 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 1604 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 1605 fd_kill (EV_A_ fd);
494} 1606}
495 1607
496/* called on ENOMEM in select/poll to kill some fds and retry */ 1608/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 1609static void noinline ecb_cold
498fd_enomem (EV_P) 1610fd_enomem (EV_P)
499{ 1611{
500 int fd; 1612 int fd;
501 1613
502 for (fd = anfdmax; fd--; ) 1614 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 1615 if (anfds [fd].events)
504 { 1616 {
505 fd_kill (EV_A_ fd); 1617 fd_kill (EV_A_ fd);
506 return; 1618 break;
507 } 1619 }
508} 1620}
509 1621
510/* usually called after fork if method needs to re-arm all fds from scratch */ 1622/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 1623static void noinline
512fd_rearm_all (EV_P) 1624fd_rearm_all (EV_P)
513{ 1625{
514 int fd; 1626 int fd;
515 1627
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 1628 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1629 if (anfds [fd].events)
519 { 1630 {
520 anfds [fd].events = 0; 1631 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 1632 anfds [fd].emask = 0;
1633 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 1634 }
523} 1635}
524 1636
525/*****************************************************************************/ 1637/* used to prepare libev internal fd's */
526 1638/* this is not fork-safe */
527static void
528upheap (WT *heap, int k)
529{
530 WT w = heap [k];
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 }
538
539 heap [k] = w;
540 ((W)heap [k])->active = k + 1;
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566}
567
568inline void 1639inline_speed void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574
575/*****************************************************************************/
576
577typedef struct
578{
579 WL head;
580 sig_atomic_t volatile gotsig;
581} ANSIG;
582
583static ANSIG *signals;
584static int signalmax;
585
586static int sigpipe [2];
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589
590static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653inline void
654fd_intern (int fd) 1640fd_intern (int fd)
655{ 1641{
656#ifdef _WIN32 1642#ifdef _WIN32
657 int arg = 1; 1643 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1644 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
659#else 1645#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1646 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1647 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1648#endif
663} 1649}
664 1650
1651/*****************************************************************************/
1652
1653/*
1654 * the heap functions want a real array index. array index 0 is guaranteed to not
1655 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1656 * the branching factor of the d-tree.
1657 */
1658
1659/*
1660 * at the moment we allow libev the luxury of two heaps,
1661 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1662 * which is more cache-efficient.
1663 * the difference is about 5% with 50000+ watchers.
1664 */
1665#if EV_USE_4HEAP
1666
1667#define DHEAP 4
1668#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1669#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1670#define UPHEAP_DONE(p,k) ((p) == (k))
1671
1672/* away from the root */
1673inline_speed void
1674downheap (ANHE *heap, int N, int k)
1675{
1676 ANHE he = heap [k];
1677 ANHE *E = heap + N + HEAP0;
1678
1679 for (;;)
1680 {
1681 ev_tstamp minat;
1682 ANHE *minpos;
1683 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1684
1685 /* find minimum child */
1686 if (expect_true (pos + DHEAP - 1 < E))
1687 {
1688 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1691 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1692 }
1693 else if (pos < E)
1694 {
1695 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1696 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1697 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1698 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1699 }
1700 else
1701 break;
1702
1703 if (ANHE_at (he) <= minat)
1704 break;
1705
1706 heap [k] = *minpos;
1707 ev_active (ANHE_w (*minpos)) = k;
1708
1709 k = minpos - heap;
1710 }
1711
1712 heap [k] = he;
1713 ev_active (ANHE_w (he)) = k;
1714}
1715
1716#else /* 4HEAP */
1717
1718#define HEAP0 1
1719#define HPARENT(k) ((k) >> 1)
1720#define UPHEAP_DONE(p,k) (!(p))
1721
1722/* away from the root */
1723inline_speed void
1724downheap (ANHE *heap, int N, int k)
1725{
1726 ANHE he = heap [k];
1727
1728 for (;;)
1729 {
1730 int c = k << 1;
1731
1732 if (c >= N + HEAP0)
1733 break;
1734
1735 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1736 ? 1 : 0;
1737
1738 if (ANHE_at (he) <= ANHE_at (heap [c]))
1739 break;
1740
1741 heap [k] = heap [c];
1742 ev_active (ANHE_w (heap [k])) = k;
1743
1744 k = c;
1745 }
1746
1747 heap [k] = he;
1748 ev_active (ANHE_w (he)) = k;
1749}
1750#endif
1751
1752/* towards the root */
1753inline_speed void
1754upheap (ANHE *heap, int k)
1755{
1756 ANHE he = heap [k];
1757
1758 for (;;)
1759 {
1760 int p = HPARENT (k);
1761
1762 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1763 break;
1764
1765 heap [k] = heap [p];
1766 ev_active (ANHE_w (heap [k])) = k;
1767 k = p;
1768 }
1769
1770 heap [k] = he;
1771 ev_active (ANHE_w (he)) = k;
1772}
1773
1774/* move an element suitably so it is in a correct place */
1775inline_size void
1776adjustheap (ANHE *heap, int N, int k)
1777{
1778 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1779 upheap (heap, k);
1780 else
1781 downheap (heap, N, k);
1782}
1783
1784/* rebuild the heap: this function is used only once and executed rarely */
1785inline_size void
1786reheap (ANHE *heap, int N)
1787{
1788 int i;
1789
1790 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1791 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1792 for (i = 0; i < N; ++i)
1793 upheap (heap, i + HEAP0);
1794}
1795
1796/*****************************************************************************/
1797
1798/* associate signal watchers to a signal signal */
1799typedef struct
1800{
1801 EV_ATOMIC_T pending;
1802#if EV_MULTIPLICITY
1803 EV_P;
1804#endif
1805 WL head;
1806} ANSIG;
1807
1808static ANSIG signals [EV_NSIG - 1];
1809
1810/*****************************************************************************/
1811
1812#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1813
1814static void noinline ecb_cold
1815evpipe_init (EV_P)
1816{
1817 if (!ev_is_active (&pipe_w))
1818 {
1819# if EV_USE_EVENTFD
1820 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1821 if (evfd < 0 && errno == EINVAL)
1822 evfd = eventfd (0, 0);
1823
1824 if (evfd >= 0)
1825 {
1826 evpipe [0] = -1;
1827 fd_intern (evfd); /* doing it twice doesn't hurt */
1828 ev_io_set (&pipe_w, evfd, EV_READ);
1829 }
1830 else
1831# endif
1832 {
1833 while (pipe (evpipe))
1834 ev_syserr ("(libev) error creating signal/async pipe");
1835
1836 fd_intern (evpipe [0]);
1837 fd_intern (evpipe [1]);
1838 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1839 }
1840
1841 ev_io_start (EV_A_ &pipe_w);
1842 ev_unref (EV_A); /* watcher should not keep loop alive */
1843 }
1844}
1845
1846inline_speed void
1847evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1848{
1849 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1850
1851 if (expect_true (*flag))
1852 return;
1853
1854 *flag = 1;
1855
1856 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1857
1858 pipe_write_skipped = 1;
1859
1860 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1861
1862 if (pipe_write_wanted)
1863 {
1864 int old_errno;
1865
1866 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1867
1868 old_errno = errno; /* save errno because write will clobber it */
1869
1870#if EV_USE_EVENTFD
1871 if (evfd >= 0)
1872 {
1873 uint64_t counter = 1;
1874 write (evfd, &counter, sizeof (uint64_t));
1875 }
1876 else
1877#endif
1878 {
1879 /* win32 people keep sending patches that change this write() to send() */
1880 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1881 /* so when you think this write should be a send instead, please find out */
1882 /* where your send() is from - it's definitely not the microsoft send, and */
1883 /* tell me. thank you. */
1884 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1885 /* check the ev documentation on how to use this flag */
1886 write (evpipe [1], &(evpipe [1]), 1);
1887 }
1888
1889 errno = old_errno;
1890 }
1891}
1892
1893/* called whenever the libev signal pipe */
1894/* got some events (signal, async) */
665static void 1895static void
666siginit (EV_P) 1896pipecb (EV_P_ ev_io *iow, int revents)
667{ 1897{
668 fd_intern (sigpipe [0]); 1898 int i;
669 fd_intern (sigpipe [1]);
670 1899
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1900 if (revents & EV_READ)
672 ev_io_start (EV_A_ &sigev); 1901 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1902#if EV_USE_EVENTFD
1903 if (evfd >= 0)
1904 {
1905 uint64_t counter;
1906 read (evfd, &counter, sizeof (uint64_t));
1907 }
1908 else
1909#endif
1910 {
1911 char dummy;
1912 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1913 read (evpipe [0], &dummy, 1);
1914 }
1915 }
1916
1917 pipe_write_skipped = 0;
1918
1919 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1920
1921#if EV_SIGNAL_ENABLE
1922 if (sig_pending)
1923 {
1924 sig_pending = 0;
1925
1926 ECB_MEMORY_FENCE_RELEASE;
1927
1928 for (i = EV_NSIG - 1; i--; )
1929 if (expect_false (signals [i].pending))
1930 ev_feed_signal_event (EV_A_ i + 1);
1931 }
1932#endif
1933
1934#if EV_ASYNC_ENABLE
1935 if (async_pending)
1936 {
1937 async_pending = 0;
1938
1939 ECB_MEMORY_FENCE_RELEASE;
1940
1941 for (i = asynccnt; i--; )
1942 if (asyncs [i]->sent)
1943 {
1944 asyncs [i]->sent = 0;
1945 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1946 }
1947 }
1948#endif
674} 1949}
675 1950
676/*****************************************************************************/ 1951/*****************************************************************************/
677 1952
678static struct ev_child *childs [PID_HASHSIZE]; 1953void
1954ev_feed_signal (int signum) EV_THROW
1955{
1956#if EV_MULTIPLICITY
1957 EV_P = signals [signum - 1].loop;
679 1958
1959 if (!EV_A)
1960 return;
1961#endif
1962
1963 if (!ev_active (&pipe_w))
1964 return;
1965
1966 signals [signum - 1].pending = 1;
1967 evpipe_write (EV_A_ &sig_pending);
1968}
1969
1970static void
1971ev_sighandler (int signum)
1972{
680#ifndef _WIN32 1973#ifdef _WIN32
1974 signal (signum, ev_sighandler);
1975#endif
681 1976
1977 ev_feed_signal (signum);
1978}
1979
1980void noinline
1981ev_feed_signal_event (EV_P_ int signum) EV_THROW
1982{
1983 WL w;
1984
1985 if (expect_false (signum <= 0 || signum > EV_NSIG))
1986 return;
1987
1988 --signum;
1989
1990#if EV_MULTIPLICITY
1991 /* it is permissible to try to feed a signal to the wrong loop */
1992 /* or, likely more useful, feeding a signal nobody is waiting for */
1993
1994 if (expect_false (signals [signum].loop != EV_A))
1995 return;
1996#endif
1997
1998 signals [signum].pending = 0;
1999
2000 for (w = signals [signum].head; w; w = w->next)
2001 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2002}
2003
2004#if EV_USE_SIGNALFD
2005static void
2006sigfdcb (EV_P_ ev_io *iow, int revents)
2007{
2008 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2009
2010 for (;;)
2011 {
2012 ssize_t res = read (sigfd, si, sizeof (si));
2013
2014 /* not ISO-C, as res might be -1, but works with SuS */
2015 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2016 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2017
2018 if (res < (ssize_t)sizeof (si))
2019 break;
2020 }
2021}
2022#endif
2023
2024#endif
2025
2026/*****************************************************************************/
2027
2028#if EV_CHILD_ENABLE
2029static WL childs [EV_PID_HASHSIZE];
2030
682static struct ev_signal childev; 2031static ev_signal childev;
2032
2033#ifndef WIFCONTINUED
2034# define WIFCONTINUED(status) 0
2035#endif
2036
2037/* handle a single child status event */
2038inline_speed void
2039child_reap (EV_P_ int chain, int pid, int status)
2040{
2041 ev_child *w;
2042 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2043
2044 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2045 {
2046 if ((w->pid == pid || !w->pid)
2047 && (!traced || (w->flags & 1)))
2048 {
2049 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2050 w->rpid = pid;
2051 w->rstatus = status;
2052 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2053 }
2054 }
2055}
683 2056
684#ifndef WCONTINUED 2057#ifndef WCONTINUED
685# define WCONTINUED 0 2058# define WCONTINUED 0
686#endif 2059#endif
687 2060
2061/* called on sigchld etc., calls waitpid */
688static void 2062static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 2063childcb (EV_P_ ev_signal *sw, int revents)
705{ 2064{
706 int pid, status; 2065 int pid, status;
707 2066
2067 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2068 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 2069 if (!WCONTINUED
2070 || errno != EINVAL
2071 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2072 return;
2073
710 /* make sure we are called again until all childs have been reaped */ 2074 /* make sure we are called again until all children have been reaped */
2075 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2076 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 2077
713 child_reap (EV_A_ sw, pid, pid, status); 2078 child_reap (EV_A_ pid, pid, status);
2079 if ((EV_PID_HASHSIZE) > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2080 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 2081}
717 2082
718#endif 2083#endif
719 2084
720/*****************************************************************************/ 2085/*****************************************************************************/
721 2086
2087#if EV_USE_IOCP
2088# include "ev_iocp.c"
2089#endif
722#if EV_USE_PORT 2090#if EV_USE_PORT
723# include "ev_port.c" 2091# include "ev_port.c"
724#endif 2092#endif
725#if EV_USE_KQUEUE 2093#if EV_USE_KQUEUE
726# include "ev_kqueue.c" 2094# include "ev_kqueue.c"
733#endif 2101#endif
734#if EV_USE_SELECT 2102#if EV_USE_SELECT
735# include "ev_select.c" 2103# include "ev_select.c"
736#endif 2104#endif
737 2105
738int 2106int ecb_cold
739ev_version_major (void) 2107ev_version_major (void) EV_THROW
740{ 2108{
741 return EV_VERSION_MAJOR; 2109 return EV_VERSION_MAJOR;
742} 2110}
743 2111
744int 2112int ecb_cold
745ev_version_minor (void) 2113ev_version_minor (void) EV_THROW
746{ 2114{
747 return EV_VERSION_MINOR; 2115 return EV_VERSION_MINOR;
748} 2116}
749 2117
750/* return true if we are running with elevated privileges and should ignore env variables */ 2118/* return true if we are running with elevated privileges and should ignore env variables */
751static int 2119int inline_size ecb_cold
752enable_secure (void) 2120enable_secure (void)
753{ 2121{
754#ifdef _WIN32 2122#ifdef _WIN32
755 return 0; 2123 return 0;
756#else 2124#else
757 return getuid () != geteuid () 2125 return getuid () != geteuid ()
758 || getgid () != getegid (); 2126 || getgid () != getegid ();
759#endif 2127#endif
760} 2128}
761 2129
2130unsigned int ecb_cold
2131ev_supported_backends (void) EV_THROW
2132{
2133 unsigned int flags = 0;
2134
2135 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2136 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2137 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2138 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2139 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2140
2141 return flags;
2142}
2143
2144unsigned int ecb_cold
2145ev_recommended_backends (void) EV_THROW
2146{
2147 unsigned int flags = ev_supported_backends ();
2148
2149#ifndef __NetBSD__
2150 /* kqueue is borked on everything but netbsd apparently */
2151 /* it usually doesn't work correctly on anything but sockets and pipes */
2152 flags &= ~EVBACKEND_KQUEUE;
2153#endif
2154#ifdef __APPLE__
2155 /* only select works correctly on that "unix-certified" platform */
2156 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2157 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2158#endif
2159#ifdef __FreeBSD__
2160 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2161#endif
2162
2163 return flags;
2164}
2165
2166unsigned int ecb_cold
2167ev_embeddable_backends (void) EV_THROW
2168{
2169 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2170
2171 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2172 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2173 flags &= ~EVBACKEND_EPOLL;
2174
2175 return flags;
2176}
2177
762unsigned int 2178unsigned int
763ev_method (EV_P) 2179ev_backend (EV_P) EV_THROW
764{ 2180{
765 return method; 2181 return backend;
766} 2182}
767 2183
768static void 2184#if EV_FEATURE_API
2185unsigned int
2186ev_iteration (EV_P) EV_THROW
2187{
2188 return loop_count;
2189}
2190
2191unsigned int
2192ev_depth (EV_P) EV_THROW
2193{
2194 return loop_depth;
2195}
2196
2197void
2198ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2199{
2200 io_blocktime = interval;
2201}
2202
2203void
2204ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2205{
2206 timeout_blocktime = interval;
2207}
2208
2209void
2210ev_set_userdata (EV_P_ void *data) EV_THROW
2211{
2212 userdata = data;
2213}
2214
2215void *
2216ev_userdata (EV_P) EV_THROW
2217{
2218 return userdata;
2219}
2220
2221void
2222ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2223{
2224 invoke_cb = invoke_pending_cb;
2225}
2226
2227void
2228ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2229{
2230 release_cb = release;
2231 acquire_cb = acquire;
2232}
2233#endif
2234
2235/* initialise a loop structure, must be zero-initialised */
2236static void noinline ecb_cold
769loop_init (EV_P_ unsigned int flags) 2237loop_init (EV_P_ unsigned int flags) EV_THROW
770{ 2238{
771 if (!method) 2239 if (!backend)
772 { 2240 {
2241 origflags = flags;
2242
2243#if EV_USE_REALTIME
2244 if (!have_realtime)
2245 {
2246 struct timespec ts;
2247
2248 if (!clock_gettime (CLOCK_REALTIME, &ts))
2249 have_realtime = 1;
2250 }
2251#endif
2252
773#if EV_USE_MONOTONIC 2253#if EV_USE_MONOTONIC
2254 if (!have_monotonic)
2255 {
2256 struct timespec ts;
2257
2258 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2259 have_monotonic = 1;
2260 }
2261#endif
2262
2263 /* pid check not overridable via env */
2264#ifndef _WIN32
2265 if (flags & EVFLAG_FORKCHECK)
2266 curpid = getpid ();
2267#endif
2268
2269 if (!(flags & EVFLAG_NOENV)
2270 && !enable_secure ()
2271 && getenv ("LIBEV_FLAGS"))
2272 flags = atoi (getenv ("LIBEV_FLAGS"));
2273
2274 ev_rt_now = ev_time ();
2275 mn_now = get_clock ();
2276 now_floor = mn_now;
2277 rtmn_diff = ev_rt_now - mn_now;
2278#if EV_FEATURE_API
2279 invoke_cb = ev_invoke_pending;
2280#endif
2281
2282 io_blocktime = 0.;
2283 timeout_blocktime = 0.;
2284 backend = 0;
2285 backend_fd = -1;
2286 sig_pending = 0;
2287#if EV_ASYNC_ENABLE
2288 async_pending = 0;
2289#endif
2290 pipe_write_skipped = 0;
2291 pipe_write_wanted = 0;
2292#if EV_USE_INOTIFY
2293 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2294#endif
2295#if EV_USE_SIGNALFD
2296 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2297#endif
2298
2299 if (!(flags & EVBACKEND_MASK))
2300 flags |= ev_recommended_backends ();
2301
2302#if EV_USE_IOCP
2303 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2304#endif
2305#if EV_USE_PORT
2306 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2307#endif
2308#if EV_USE_KQUEUE
2309 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2310#endif
2311#if EV_USE_EPOLL
2312 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2313#endif
2314#if EV_USE_POLL
2315 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2316#endif
2317#if EV_USE_SELECT
2318 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2319#endif
2320
2321 ev_prepare_init (&pending_w, pendingcb);
2322
2323#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2324 ev_init (&pipe_w, pipecb);
2325 ev_set_priority (&pipe_w, EV_MAXPRI);
2326#endif
2327 }
2328}
2329
2330/* free up a loop structure */
2331void ecb_cold
2332ev_loop_destroy (EV_P)
2333{
2334 int i;
2335
2336#if EV_MULTIPLICITY
2337 /* mimic free (0) */
2338 if (!EV_A)
2339 return;
2340#endif
2341
2342#if EV_CLEANUP_ENABLE
2343 /* queue cleanup watchers (and execute them) */
2344 if (expect_false (cleanupcnt))
2345 {
2346 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2347 EV_INVOKE_PENDING;
2348 }
2349#endif
2350
2351#if EV_CHILD_ENABLE
2352 if (ev_is_active (&childev))
2353 {
2354 ev_ref (EV_A); /* child watcher */
2355 ev_signal_stop (EV_A_ &childev);
2356 }
2357#endif
2358
2359 if (ev_is_active (&pipe_w))
2360 {
2361 /*ev_ref (EV_A);*/
2362 /*ev_io_stop (EV_A_ &pipe_w);*/
2363
2364#if EV_USE_EVENTFD
2365 if (evfd >= 0)
2366 close (evfd);
2367#endif
2368
2369 if (evpipe [0] >= 0)
2370 {
2371 EV_WIN32_CLOSE_FD (evpipe [0]);
2372 EV_WIN32_CLOSE_FD (evpipe [1]);
2373 }
2374 }
2375
2376#if EV_USE_SIGNALFD
2377 if (ev_is_active (&sigfd_w))
2378 close (sigfd);
2379#endif
2380
2381#if EV_USE_INOTIFY
2382 if (fs_fd >= 0)
2383 close (fs_fd);
2384#endif
2385
2386 if (backend_fd >= 0)
2387 close (backend_fd);
2388
2389#if EV_USE_IOCP
2390 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2391#endif
2392#if EV_USE_PORT
2393 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2394#endif
2395#if EV_USE_KQUEUE
2396 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2397#endif
2398#if EV_USE_EPOLL
2399 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2400#endif
2401#if EV_USE_POLL
2402 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2403#endif
2404#if EV_USE_SELECT
2405 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2406#endif
2407
2408 for (i = NUMPRI; i--; )
2409 {
2410 array_free (pending, [i]);
2411#if EV_IDLE_ENABLE
2412 array_free (idle, [i]);
2413#endif
2414 }
2415
2416 ev_free (anfds); anfds = 0; anfdmax = 0;
2417
2418 /* have to use the microsoft-never-gets-it-right macro */
2419 array_free (rfeed, EMPTY);
2420 array_free (fdchange, EMPTY);
2421 array_free (timer, EMPTY);
2422#if EV_PERIODIC_ENABLE
2423 array_free (periodic, EMPTY);
2424#endif
2425#if EV_FORK_ENABLE
2426 array_free (fork, EMPTY);
2427#endif
2428#if EV_CLEANUP_ENABLE
2429 array_free (cleanup, EMPTY);
2430#endif
2431 array_free (prepare, EMPTY);
2432 array_free (check, EMPTY);
2433#if EV_ASYNC_ENABLE
2434 array_free (async, EMPTY);
2435#endif
2436
2437 backend = 0;
2438
2439#if EV_MULTIPLICITY
2440 if (ev_is_default_loop (EV_A))
2441#endif
2442 ev_default_loop_ptr = 0;
2443#if EV_MULTIPLICITY
2444 else
2445 ev_free (EV_A);
2446#endif
2447}
2448
2449#if EV_USE_INOTIFY
2450inline_size void infy_fork (EV_P);
2451#endif
2452
2453inline_size void
2454loop_fork (EV_P)
2455{
2456#if EV_USE_PORT
2457 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2458#endif
2459#if EV_USE_KQUEUE
2460 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2461#endif
2462#if EV_USE_EPOLL
2463 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2464#endif
2465#if EV_USE_INOTIFY
2466 infy_fork (EV_A);
2467#endif
2468
2469 if (ev_is_active (&pipe_w))
2470 {
2471 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2472
2473 ev_ref (EV_A);
2474 ev_io_stop (EV_A_ &pipe_w);
2475
2476#if EV_USE_EVENTFD
2477 if (evfd >= 0)
2478 close (evfd);
2479#endif
2480
2481 if (evpipe [0] >= 0)
2482 {
2483 EV_WIN32_CLOSE_FD (evpipe [0]);
2484 EV_WIN32_CLOSE_FD (evpipe [1]);
2485 }
2486
2487#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2488 evpipe_init (EV_A);
2489 /* now iterate over everything, in case we missed something */
2490 pipecb (EV_A_ &pipe_w, EV_READ);
2491#endif
2492 }
2493
2494 postfork = 0;
2495}
2496
2497#if EV_MULTIPLICITY
2498
2499struct ev_loop * ecb_cold
2500ev_loop_new (unsigned int flags) EV_THROW
2501{
2502 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2503
2504 memset (EV_A, 0, sizeof (struct ev_loop));
2505 loop_init (EV_A_ flags);
2506
2507 if (ev_backend (EV_A))
2508 return EV_A;
2509
2510 ev_free (EV_A);
2511 return 0;
2512}
2513
2514#endif /* multiplicity */
2515
2516#if EV_VERIFY
2517static void noinline ecb_cold
2518verify_watcher (EV_P_ W w)
2519{
2520 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2521
2522 if (w->pending)
2523 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2524}
2525
2526static void noinline ecb_cold
2527verify_heap (EV_P_ ANHE *heap, int N)
2528{
2529 int i;
2530
2531 for (i = HEAP0; i < N + HEAP0; ++i)
2532 {
2533 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2534 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2535 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2536
2537 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2538 }
2539}
2540
2541static void noinline ecb_cold
2542array_verify (EV_P_ W *ws, int cnt)
2543{
2544 while (cnt--)
2545 {
2546 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2547 verify_watcher (EV_A_ ws [cnt]);
2548 }
2549}
2550#endif
2551
2552#if EV_FEATURE_API
2553void ecb_cold
2554ev_verify (EV_P) EV_THROW
2555{
2556#if EV_VERIFY
2557 int i;
2558 WL w;
2559
2560 assert (activecnt >= -1);
2561
2562 assert (fdchangemax >= fdchangecnt);
2563 for (i = 0; i < fdchangecnt; ++i)
2564 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2565
2566 assert (anfdmax >= 0);
2567 for (i = 0; i < anfdmax; ++i)
2568 for (w = anfds [i].head; w; w = w->next)
774 { 2569 {
775 struct timespec ts; 2570 verify_watcher (EV_A_ (W)w);
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2571 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
777 have_monotonic = 1; 2572 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
778 } 2573 }
779#endif
780 2574
781 ev_rt_now = ev_time (); 2575 assert (timermax >= timercnt);
782 mn_now = get_clock (); 2576 verify_heap (EV_A_ timers, timercnt);
783 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now;
785 2577
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2578#if EV_PERIODIC_ENABLE
787 flags = atoi (getenv ("LIBEV_FLAGS")); 2579 assert (periodicmax >= periodiccnt);
788 2580 verify_heap (EV_A_ periodics, periodiccnt);
789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
791
792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
796#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
798#endif
799#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
801#endif
802#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
804#endif
805#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
807#endif
808
809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
811 }
812}
813
814void
815loop_destroy (EV_P)
816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
822#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
824#endif
825#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
827#endif
828#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
830#endif
831#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
833#endif 2581#endif
834 2582
835 for (i = NUMPRI; i--; ) 2583 for (i = NUMPRI; i--; )
836 array_free (pending, [i]); 2584 {
2585 assert (pendingmax [i] >= pendingcnt [i]);
2586#if EV_IDLE_ENABLE
2587 assert (idleall >= 0);
2588 assert (idlemax [i] >= idlecnt [i]);
2589 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2590#endif
2591 }
837 2592
838 /* have to use the microsoft-never-gets-it-right macro */ 2593#if EV_FORK_ENABLE
839 array_free (fdchange, EMPTY0); 2594 assert (forkmax >= forkcnt);
840 array_free (timer, EMPTY0); 2595 array_verify (EV_A_ (W *)forks, forkcnt);
841#if EV_PERIODICS 2596#endif
842 array_free (periodic, EMPTY0); 2597
2598#if EV_CLEANUP_ENABLE
2599 assert (cleanupmax >= cleanupcnt);
2600 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2601#endif
2602
2603#if EV_ASYNC_ENABLE
2604 assert (asyncmax >= asynccnt);
2605 array_verify (EV_A_ (W *)asyncs, asynccnt);
2606#endif
2607
2608#if EV_PREPARE_ENABLE
2609 assert (preparemax >= preparecnt);
2610 array_verify (EV_A_ (W *)prepares, preparecnt);
2611#endif
2612
2613#if EV_CHECK_ENABLE
2614 assert (checkmax >= checkcnt);
2615 array_verify (EV_A_ (W *)checks, checkcnt);
2616#endif
2617
2618# if 0
2619#if EV_CHILD_ENABLE
2620 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2621 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2622#endif
843#endif 2623# endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif 2624#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 2625}
2626#endif
881 2627
882#if EV_MULTIPLICITY 2628#if EV_MULTIPLICITY
883struct ev_loop * 2629struct ev_loop * ecb_cold
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags)
916#else 2630#else
917int 2631int
2632#endif
918ev_default_loop (unsigned int flags) 2633ev_default_loop (unsigned int flags) EV_THROW
919#endif
920{ 2634{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 2635 if (!ev_default_loop_ptr)
926 { 2636 {
927#if EV_MULTIPLICITY 2637#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2638 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 2639#else
930 ev_default_loop_ptr = 1; 2640 ev_default_loop_ptr = 1;
931#endif 2641#endif
932 2642
933 loop_init (EV_A_ flags); 2643 loop_init (EV_A_ flags);
934 2644
935 if (ev_method (EV_A)) 2645 if (ev_backend (EV_A))
936 { 2646 {
937 siginit (EV_A); 2647#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 2648 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 2649 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 2650 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2651 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 2652#endif
949 2657
950 return ev_default_loop_ptr; 2658 return ev_default_loop_ptr;
951} 2659}
952 2660
953void 2661void
954ev_default_destroy (void) 2662ev_loop_fork (EV_P) EV_THROW
955{ 2663{
956#if EV_MULTIPLICITY 2664 postfork = 1; /* must be in line with ev_default_fork */
957 struct ev_loop *loop = ev_default_loop_ptr;
958#endif
959
960#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev);
963#endif
964
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A);
972} 2665}
2666
2667/*****************************************************************************/
973 2668
974void 2669void
975ev_default_fork (void) 2670ev_invoke (EV_P_ void *w, int revents)
976{ 2671{
977#if EV_MULTIPLICITY 2672 EV_CB_INVOKE ((W)w, revents);
978 struct ev_loop *loop = ev_default_loop_ptr;
979#endif
980
981 if (method)
982 postfork = 1;
983} 2673}
984 2674
985/*****************************************************************************/ 2675unsigned int
986 2676ev_pending_count (EV_P) EV_THROW
987static int
988any_pending (EV_P)
989{ 2677{
990 int pri; 2678 int pri;
2679 unsigned int count = 0;
991 2680
992 for (pri = NUMPRI; pri--; ) 2681 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri]) 2682 count += pendingcnt [pri];
994 return 1;
995 2683
996 return 0; 2684 return count;
997} 2685}
998 2686
999inline void 2687void noinline
1000call_pending (EV_P) 2688ev_invoke_pending (EV_P)
1001{ 2689{
1002 int pri; 2690 int pri;
1003 2691
1004 for (pri = NUMPRI; pri--; ) 2692 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 2693 while (pendingcnt [pri])
1006 { 2694 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2695 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 2696
1009 if (expect_true (p->w))
1010 {
1011 p->w->pending = 0; 2697 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 2698 EV_CB_INVOKE (p->w, p->events);
1013 } 2699 EV_FREQUENT_CHECK;
1014 } 2700 }
1015} 2701}
1016 2702
1017static void 2703#if EV_IDLE_ENABLE
2704/* make idle watchers pending. this handles the "call-idle */
2705/* only when higher priorities are idle" logic */
2706inline_size void
2707idle_reify (EV_P)
2708{
2709 if (expect_false (idleall))
2710 {
2711 int pri;
2712
2713 for (pri = NUMPRI; pri--; )
2714 {
2715 if (pendingcnt [pri])
2716 break;
2717
2718 if (idlecnt [pri])
2719 {
2720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2721 break;
2722 }
2723 }
2724 }
2725}
2726#endif
2727
2728/* make timers pending */
2729inline_size void
1018timers_reify (EV_P) 2730timers_reify (EV_P)
1019{ 2731{
2732 EV_FREQUENT_CHECK;
2733
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 2734 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 2735 {
1022 struct ev_timer *w = timers [0]; 2736 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 2737 {
2738 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2739
2740 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2741
2742 /* first reschedule or stop timer */
2743 if (w->repeat)
2744 {
2745 ev_at (w) += w->repeat;
2746 if (ev_at (w) < mn_now)
2747 ev_at (w) = mn_now;
2748
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2749 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 2750
1031 ((WT)w)->at += w->repeat; 2751 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 2752 downheap (timers, timercnt, HEAP0);
2753 }
2754 else
2755 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2756
2757 EV_FREQUENT_CHECK;
2758 feed_reverse (EV_A_ (W)w);
1036 } 2759 }
1037 else 2760 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 2761
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2762 feed_reverse_done (EV_A_ EV_TIMER);
2763 }
2764}
2765
2766#if EV_PERIODIC_ENABLE
2767
2768static void noinline
2769periodic_recalc (EV_P_ ev_periodic *w)
2770{
2771 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2772 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2773
2774 /* the above almost always errs on the low side */
2775 while (at <= ev_rt_now)
1041 } 2776 {
1042} 2777 ev_tstamp nat = at + w->interval;
1043 2778
1044#if EV_PERIODICS 2779 /* when resolution fails us, we use ev_rt_now */
1045static void 2780 if (expect_false (nat == at))
2781 {
2782 at = ev_rt_now;
2783 break;
2784 }
2785
2786 at = nat;
2787 }
2788
2789 ev_at (w) = at;
2790}
2791
2792/* make periodics pending */
2793inline_size void
1046periodics_reify (EV_P) 2794periodics_reify (EV_P)
1047{ 2795{
2796 EV_FREQUENT_CHECK;
2797
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2798 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 2799 {
1050 struct ev_periodic *w = periodics [0]; 2800 int feed_count = 0;
1051 2801
2802 do
2803 {
2804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2805
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2806 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 2807
1054 /* first reschedule or stop timer */ 2808 /* first reschedule or stop timer */
2809 if (w->reschedule_cb)
2810 {
2811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2812
2813 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2814
2815 ANHE_at_cache (periodics [HEAP0]);
2816 downheap (periodics, periodiccnt, HEAP0);
2817 }
2818 else if (w->interval)
2819 {
2820 periodic_recalc (EV_A_ w);
2821 ANHE_at_cache (periodics [HEAP0]);
2822 downheap (periodics, periodiccnt, HEAP0);
2823 }
2824 else
2825 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2826
2827 EV_FREQUENT_CHECK;
2828 feed_reverse (EV_A_ (W)w);
2829 }
2830 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2831
2832 feed_reverse_done (EV_A_ EV_PERIODIC);
2833 }
2834}
2835
2836/* simply recalculate all periodics */
2837/* TODO: maybe ensure that at least one event happens when jumping forward? */
2838static void noinline ecb_cold
2839periodics_reschedule (EV_P)
2840{
2841 int i;
2842
2843 /* adjust periodics after time jump */
2844 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2845 {
2846 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2847
1055 if (w->reschedule_cb) 2848 if (w->reschedule_cb)
2849 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2850 else if (w->interval)
2851 periodic_recalc (EV_A_ w);
2852
2853 ANHE_at_cache (periodics [i]);
2854 }
2855
2856 reheap (periodics, periodiccnt);
2857}
2858#endif
2859
2860/* adjust all timers by a given offset */
2861static void noinline ecb_cold
2862timers_reschedule (EV_P_ ev_tstamp adjust)
2863{
2864 int i;
2865
2866 for (i = 0; i < timercnt; ++i)
2867 {
2868 ANHE *he = timers + i + HEAP0;
2869 ANHE_w (*he)->at += adjust;
2870 ANHE_at_cache (*he);
2871 }
2872}
2873
2874/* fetch new monotonic and realtime times from the kernel */
2875/* also detect if there was a timejump, and act accordingly */
2876inline_speed void
2877time_update (EV_P_ ev_tstamp max_block)
2878{
2879#if EV_USE_MONOTONIC
2880 if (expect_true (have_monotonic))
2881 {
2882 int i;
2883 ev_tstamp odiff = rtmn_diff;
2884
2885 mn_now = get_clock ();
2886
2887 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2888 /* interpolate in the meantime */
2889 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1056 { 2890 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2891 ev_rt_now = rtmn_diff + mn_now;
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2892 return;
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 2893 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 2894
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now; 2895 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 2896 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 2897
1114static void 2898 /* loop a few times, before making important decisions.
1115time_update (EV_P) 2899 * on the choice of "4": one iteration isn't enough,
1116{ 2900 * in case we get preempted during the calls to
1117 int i; 2901 * ev_time and get_clock. a second call is almost guaranteed
1118 2902 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 2903 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 2904 * in the unlikely event of having been preempted here.
1121 { 2905 */
1122 if (time_update_monotonic (EV_A)) 2906 for (i = 4; --i; )
1123 { 2907 {
1124 ev_tstamp odiff = rtmn_diff; 2908 ev_tstamp diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 2909 rtmn_diff = ev_rt_now - mn_now;
1129 2910
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2911 diff = odiff - rtmn_diff;
2912
2913 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 2914 return; /* all is well */
1132 2915
1133 ev_rt_now = ev_time (); 2916 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 2917 mn_now = get_clock ();
1135 now_floor = mn_now; 2918 now_floor = mn_now;
1136 } 2919 }
1137 2920
2921 /* no timer adjustment, as the monotonic clock doesn't jump */
2922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 2923# if EV_PERIODIC_ENABLE
2924 periodics_reschedule (EV_A);
2925# endif
2926 }
2927 else
2928#endif
2929 {
2930 ev_rt_now = ev_time ();
2931
2932 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2933 {
2934 /* adjust timers. this is easy, as the offset is the same for all of them */
2935 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2936#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 2937 periodics_reschedule (EV_A);
1140# endif 2938#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 2939 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 2940
1161 mn_now = ev_rt_now; 2941 mn_now = ev_rt_now;
1162 } 2942 }
1163} 2943}
1164 2944
1165void 2945int
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 2946ev_run (EV_P_ int flags)
1181{ 2947{
1182 double block; 2948#if EV_FEATURE_API
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2949 ++loop_depth;
2950#endif
1184 2951
1185 while (activecnt) 2952 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2953
2954 loop_done = EVBREAK_CANCEL;
2955
2956 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2957
2958 do
1186 { 2959 {
2960#if EV_VERIFY >= 2
2961 ev_verify (EV_A);
2962#endif
2963
2964#ifndef _WIN32
2965 if (expect_false (curpid)) /* penalise the forking check even more */
2966 if (expect_false (getpid () != curpid))
2967 {
2968 curpid = getpid ();
2969 postfork = 1;
2970 }
2971#endif
2972
2973#if EV_FORK_ENABLE
2974 /* we might have forked, so queue fork handlers */
2975 if (expect_false (postfork))
2976 if (forkcnt)
2977 {
2978 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2979 EV_INVOKE_PENDING;
2980 }
2981#endif
2982
2983#if EV_PREPARE_ENABLE
1187 /* queue check watchers (and execute them) */ 2984 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 2985 if (expect_false (preparecnt))
1189 { 2986 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2987 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 2988 EV_INVOKE_PENDING;
1192 } 2989 }
2990#endif
2991
2992 if (expect_false (loop_done))
2993 break;
1193 2994
1194 /* we might have forked, so reify kernel state if necessary */ 2995 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 2996 if (expect_false (postfork))
1196 loop_fork (EV_A); 2997 loop_fork (EV_A);
1197 2998
1198 /* update fd-related kernel structures */ 2999 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 3000 fd_reify (EV_A);
1200 3001
1201 /* calculate blocking time */ 3002 /* calculate blocking time */
3003 {
3004 ev_tstamp waittime = 0.;
3005 ev_tstamp sleeptime = 0.;
1202 3006
1203 /* we only need this for !monotonic clock or timers, but as we basically 3007 /* remember old timestamp for io_blocktime calculation */
1204 always have timers, we just calculate it always */ 3008 ev_tstamp prev_mn_now = mn_now;
1205#if EV_USE_MONOTONIC 3009
1206 if (expect_true (have_monotonic)) 3010 /* update time to cancel out callback processing overhead */
1207 time_update_monotonic (EV_A); 3011 time_update (EV_A_ 1e100);
1208 else 3012
1209#endif 3013 /* from now on, we want a pipe-wake-up */
3014 pipe_write_wanted = 1;
3015
3016 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3017
3018 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1210 { 3019 {
1211 ev_rt_now = ev_time ();
1212 mn_now = ev_rt_now;
1213 }
1214
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 3020 waittime = MAX_BLOCKTIME;
1220 3021
1221 if (timercnt) 3022 if (timercnt)
1222 { 3023 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3024 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1224 if (block > to) block = to; 3025 if (waittime > to) waittime = to;
1225 } 3026 }
1226 3027
1227#if EV_PERIODICS 3028#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 3029 if (periodiccnt)
1229 { 3030 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3031 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1231 if (block > to) block = to; 3032 if (waittime > to) waittime = to;
1232 } 3033 }
1233#endif 3034#endif
1234 3035
1235 if (block < 0.) block = 0.; 3036 /* don't let timeouts decrease the waittime below timeout_blocktime */
3037 if (expect_false (waittime < timeout_blocktime))
3038 waittime = timeout_blocktime;
3039
3040 /* at this point, we NEED to wait, so we have to ensure */
3041 /* to pass a minimum nonzero value to the backend */
3042 if (expect_false (waittime < backend_mintime))
3043 waittime = backend_mintime;
3044
3045 /* extra check because io_blocktime is commonly 0 */
3046 if (expect_false (io_blocktime))
3047 {
3048 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3049
3050 if (sleeptime > waittime - backend_mintime)
3051 sleeptime = waittime - backend_mintime;
3052
3053 if (expect_true (sleeptime > 0.))
3054 {
3055 ev_sleep (sleeptime);
3056 waittime -= sleeptime;
3057 }
3058 }
1236 } 3059 }
1237 3060
1238 method_poll (EV_A_ block); 3061#if EV_FEATURE_API
3062 ++loop_count;
3063#endif
3064 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3065 backend_poll (EV_A_ waittime);
3066 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1239 3067
3068 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3069
3070 if (pipe_write_skipped)
3071 {
3072 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3073 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3074 }
3075
3076
1240 /* update ev_rt_now, do magic */ 3077 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 3078 time_update (EV_A_ waittime + sleeptime);
3079 }
1242 3080
1243 /* queue pending timers and reschedule them */ 3081 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 3082 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 3083#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 3084 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 3085#endif
1248 3086
3087#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 3088 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 3089 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3090#endif
1252 3091
3092#if EV_CHECK_ENABLE
1253 /* queue check watchers, to be executed first */ 3093 /* queue check watchers, to be executed first */
1254 if (checkcnt) 3094 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3095 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3096#endif
1256 3097
1257 call_pending (EV_A); 3098 EV_INVOKE_PENDING;
1258
1259 if (loop_done)
1260 break;
1261 } 3099 }
3100 while (expect_true (
3101 activecnt
3102 && !loop_done
3103 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3104 ));
1262 3105
1263 if (loop_done != 2) 3106 if (loop_done == EVBREAK_ONE)
1264 loop_done = 0; 3107 loop_done = EVBREAK_CANCEL;
3108
3109#if EV_FEATURE_API
3110 --loop_depth;
3111#endif
3112
3113 return activecnt;
1265} 3114}
1266 3115
1267void 3116void
1268ev_unloop (EV_P_ int how) 3117ev_break (EV_P_ int how) EV_THROW
1269{ 3118{
1270 loop_done = how; 3119 loop_done = how;
1271} 3120}
1272 3121
3122void
3123ev_ref (EV_P) EV_THROW
3124{
3125 ++activecnt;
3126}
3127
3128void
3129ev_unref (EV_P) EV_THROW
3130{
3131 --activecnt;
3132}
3133
3134void
3135ev_now_update (EV_P) EV_THROW
3136{
3137 time_update (EV_A_ 1e100);
3138}
3139
3140void
3141ev_suspend (EV_P) EV_THROW
3142{
3143 ev_now_update (EV_A);
3144}
3145
3146void
3147ev_resume (EV_P) EV_THROW
3148{
3149 ev_tstamp mn_prev = mn_now;
3150
3151 ev_now_update (EV_A);
3152 timers_reschedule (EV_A_ mn_now - mn_prev);
3153#if EV_PERIODIC_ENABLE
3154 /* TODO: really do this? */
3155 periodics_reschedule (EV_A);
3156#endif
3157}
3158
1273/*****************************************************************************/ 3159/*****************************************************************************/
3160/* singly-linked list management, used when the expected list length is short */
1274 3161
1275inline void 3162inline_size void
1276wlist_add (WL *head, WL elem) 3163wlist_add (WL *head, WL elem)
1277{ 3164{
1278 elem->next = *head; 3165 elem->next = *head;
1279 *head = elem; 3166 *head = elem;
1280} 3167}
1281 3168
1282inline void 3169inline_size void
1283wlist_del (WL *head, WL elem) 3170wlist_del (WL *head, WL elem)
1284{ 3171{
1285 while (*head) 3172 while (*head)
1286 { 3173 {
1287 if (*head == elem) 3174 if (expect_true (*head == elem))
1288 { 3175 {
1289 *head = elem->next; 3176 *head = elem->next;
1290 return; 3177 break;
1291 } 3178 }
1292 3179
1293 head = &(*head)->next; 3180 head = &(*head)->next;
1294 } 3181 }
1295} 3182}
1296 3183
3184/* internal, faster, version of ev_clear_pending */
1297inline void 3185inline_speed void
1298ev_clear_pending (EV_P_ W w) 3186clear_pending (EV_P_ W w)
1299{ 3187{
1300 if (w->pending) 3188 if (w->pending)
1301 { 3189 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3190 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 3191 w->pending = 0;
1304 } 3192 }
1305} 3193}
1306 3194
3195int
3196ev_clear_pending (EV_P_ void *w) EV_THROW
3197{
3198 W w_ = (W)w;
3199 int pending = w_->pending;
3200
3201 if (expect_true (pending))
3202 {
3203 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3204 p->w = (W)&pending_w;
3205 w_->pending = 0;
3206 return p->events;
3207 }
3208 else
3209 return 0;
3210}
3211
1307inline void 3212inline_size void
3213pri_adjust (EV_P_ W w)
3214{
3215 int pri = ev_priority (w);
3216 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3217 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3218 ev_set_priority (w, pri);
3219}
3220
3221inline_speed void
1308ev_start (EV_P_ W w, int active) 3222ev_start (EV_P_ W w, int active)
1309{ 3223{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3224 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 3225 w->active = active;
1314 ev_ref (EV_A); 3226 ev_ref (EV_A);
1315} 3227}
1316 3228
1317inline void 3229inline_size void
1318ev_stop (EV_P_ W w) 3230ev_stop (EV_P_ W w)
1319{ 3231{
1320 ev_unref (EV_A); 3232 ev_unref (EV_A);
1321 w->active = 0; 3233 w->active = 0;
1322} 3234}
1323 3235
1324/*****************************************************************************/ 3236/*****************************************************************************/
1325 3237
1326void 3238void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 3239ev_io_start (EV_P_ ev_io *w) EV_THROW
1328{ 3240{
1329 int fd = w->fd; 3241 int fd = w->fd;
1330 3242
1331 if (ev_is_active (w)) 3243 if (expect_false (ev_is_active (w)))
1332 return; 3244 return;
1333 3245
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 3246 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3247 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3248
3249 EV_FREQUENT_CHECK;
1335 3250
1336 ev_start (EV_A_ (W)w, 1); 3251 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3252 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3253 wlist_add (&anfds[fd].head, (WL)w);
1339 3254
1340 fd_change (EV_A_ fd); 3255 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1341} 3256 w->events &= ~EV__IOFDSET;
1342 3257
1343void 3258 EV_FREQUENT_CHECK;
3259}
3260
3261void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 3262ev_io_stop (EV_P_ ev_io *w) EV_THROW
1345{ 3263{
1346 ev_clear_pending (EV_A_ (W)w); 3264 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 3265 if (expect_false (!ev_is_active (w)))
1348 return; 3266 return;
1349 3267
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3268 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 3269
3270 EV_FREQUENT_CHECK;
3271
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3272 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 3273 ev_stop (EV_A_ (W)w);
1354 3274
1355 fd_change (EV_A_ w->fd); 3275 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1356}
1357 3276
1358void 3277 EV_FREQUENT_CHECK;
3278}
3279
3280void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 3281ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1360{ 3282{
1361 if (ev_is_active (w)) 3283 if (expect_false (ev_is_active (w)))
1362 return; 3284 return;
1363 3285
1364 ((WT)w)->at += mn_now; 3286 ev_at (w) += mn_now;
1365 3287
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3288 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 3289
3290 EV_FREQUENT_CHECK;
3291
3292 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 3293 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3294 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 3295 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 3296 ANHE_at_cache (timers [ev_active (w)]);
3297 upheap (timers, ev_active (w));
1372 3298
3299 EV_FREQUENT_CHECK;
3300
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3301 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 3302}
1375 3303
1376void 3304void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 3305ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1378{ 3306{
1379 ev_clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
1380 if (!ev_is_active (w)) 3308 if (expect_false (!ev_is_active (w)))
1381 return; 3309 return;
1382 3310
3311 EV_FREQUENT_CHECK;
3312
3313 {
3314 int active = ev_active (w);
3315
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3316 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 3317
1385 if (((W)w)->active < timercnt--) 3318 --timercnt;
3319
3320 if (expect_true (active < timercnt + HEAP0))
1386 { 3321 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 3322 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3323 adjustheap (timers, timercnt, active);
1389 } 3324 }
3325 }
1390 3326
1391 ((WT)w)->at -= mn_now; 3327 ev_at (w) -= mn_now;
1392 3328
1393 ev_stop (EV_A_ (W)w); 3329 ev_stop (EV_A_ (W)w);
1394}
1395 3330
1396void 3331 EV_FREQUENT_CHECK;
3332}
3333
3334void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 3335ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1398{ 3336{
3337 EV_FREQUENT_CHECK;
3338
3339 clear_pending (EV_A_ (W)w);
3340
1399 if (ev_is_active (w)) 3341 if (ev_is_active (w))
1400 { 3342 {
1401 if (w->repeat) 3343 if (w->repeat)
1402 { 3344 {
1403 ((WT)w)->at = mn_now + w->repeat; 3345 ev_at (w) = mn_now + w->repeat;
3346 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3347 adjustheap (timers, timercnt, ev_active (w));
1405 } 3348 }
1406 else 3349 else
1407 ev_timer_stop (EV_A_ w); 3350 ev_timer_stop (EV_A_ w);
1408 } 3351 }
1409 else if (w->repeat) 3352 else if (w->repeat)
1410 { 3353 {
1411 w->at = w->repeat; 3354 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 3355 ev_timer_start (EV_A_ w);
1413 } 3356 }
1414}
1415 3357
3358 EV_FREQUENT_CHECK;
3359}
3360
3361ev_tstamp
3362ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3363{
3364 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3365}
3366
1416#if EV_PERIODICS 3367#if EV_PERIODIC_ENABLE
1417void 3368void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 3369ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1419{ 3370{
1420 if (ev_is_active (w)) 3371 if (expect_false (ev_is_active (w)))
1421 return; 3372 return;
1422 3373
1423 if (w->reschedule_cb) 3374 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3375 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 3376 else if (w->interval)
1426 { 3377 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3378 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 3379 periodic_recalc (EV_A_ w);
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 } 3380 }
3381 else
3382 ev_at (w) = w->offset;
1431 3383
3384 EV_FREQUENT_CHECK;
3385
3386 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 3387 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3388 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 3389 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 3390 ANHE_at_cache (periodics [ev_active (w)]);
3391 upheap (periodics, ev_active (w));
1436 3392
3393 EV_FREQUENT_CHECK;
3394
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3395 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 3396}
1439 3397
1440void 3398void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 3399ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1442{ 3400{
1443 ev_clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w)) 3402 if (expect_false (!ev_is_active (w)))
1445 return; 3403 return;
1446 3404
3405 EV_FREQUENT_CHECK;
3406
3407 {
3408 int active = ev_active (w);
3409
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3410 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 3411
1449 if (((W)w)->active < periodiccnt--) 3412 --periodiccnt;
3413
3414 if (expect_true (active < periodiccnt + HEAP0))
1450 { 3415 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3416 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3417 adjustheap (periodics, periodiccnt, active);
1453 } 3418 }
3419 }
1454 3420
1455 ev_stop (EV_A_ (W)w); 3421 ev_stop (EV_A_ (W)w);
1456}
1457 3422
1458void 3423 EV_FREQUENT_CHECK;
3424}
3425
3426void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 3427ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1460{ 3428{
1461 /* TODO: use adjustheap and recalculation */ 3429 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 3430 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 3431 ev_periodic_start (EV_A_ w);
1464} 3432}
1465#endif 3433#endif
1466 3434
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (ev_is_active (w))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (!ev_is_active (w))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 3435#ifndef SA_RESTART
1534# define SA_RESTART 0 3436# define SA_RESTART 0
1535#endif 3437#endif
1536 3438
3439#if EV_SIGNAL_ENABLE
3440
3441void noinline
3442ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3443{
3444 if (expect_false (ev_is_active (w)))
3445 return;
3446
3447 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3448
3449#if EV_MULTIPLICITY
3450 assert (("libev: a signal must not be attached to two different loops",
3451 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3452
3453 signals [w->signum - 1].loop = EV_A;
3454#endif
3455
3456 EV_FREQUENT_CHECK;
3457
3458#if EV_USE_SIGNALFD
3459 if (sigfd == -2)
3460 {
3461 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3462 if (sigfd < 0 && errno == EINVAL)
3463 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3464
3465 if (sigfd >= 0)
3466 {
3467 fd_intern (sigfd); /* doing it twice will not hurt */
3468
3469 sigemptyset (&sigfd_set);
3470
3471 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3472 ev_set_priority (&sigfd_w, EV_MAXPRI);
3473 ev_io_start (EV_A_ &sigfd_w);
3474 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3475 }
3476 }
3477
3478 if (sigfd >= 0)
3479 {
3480 /* TODO: check .head */
3481 sigaddset (&sigfd_set, w->signum);
3482 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3483
3484 signalfd (sigfd, &sigfd_set, 0);
3485 }
3486#endif
3487
3488 ev_start (EV_A_ (W)w, 1);
3489 wlist_add (&signals [w->signum - 1].head, (WL)w);
3490
3491 if (!((WL)w)->next)
3492# if EV_USE_SIGNALFD
3493 if (sigfd < 0) /*TODO*/
3494# endif
3495 {
3496# ifdef _WIN32
3497 evpipe_init (EV_A);
3498
3499 signal (w->signum, ev_sighandler);
3500# else
3501 struct sigaction sa;
3502
3503 evpipe_init (EV_A);
3504
3505 sa.sa_handler = ev_sighandler;
3506 sigfillset (&sa.sa_mask);
3507 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3508 sigaction (w->signum, &sa, 0);
3509
3510 if (origflags & EVFLAG_NOSIGMASK)
3511 {
3512 sigemptyset (&sa.sa_mask);
3513 sigaddset (&sa.sa_mask, w->signum);
3514 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3515 }
3516#endif
3517 }
3518
3519 EV_FREQUENT_CHECK;
3520}
3521
3522void noinline
3523ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3524{
3525 clear_pending (EV_A_ (W)w);
3526 if (expect_false (!ev_is_active (w)))
3527 return;
3528
3529 EV_FREQUENT_CHECK;
3530
3531 wlist_del (&signals [w->signum - 1].head, (WL)w);
3532 ev_stop (EV_A_ (W)w);
3533
3534 if (!signals [w->signum - 1].head)
3535 {
3536#if EV_MULTIPLICITY
3537 signals [w->signum - 1].loop = 0; /* unattach from signal */
3538#endif
3539#if EV_USE_SIGNALFD
3540 if (sigfd >= 0)
3541 {
3542 sigset_t ss;
3543
3544 sigemptyset (&ss);
3545 sigaddset (&ss, w->signum);
3546 sigdelset (&sigfd_set, w->signum);
3547
3548 signalfd (sigfd, &sigfd_set, 0);
3549 sigprocmask (SIG_UNBLOCK, &ss, 0);
3550 }
3551 else
3552#endif
3553 signal (w->signum, SIG_DFL);
3554 }
3555
3556 EV_FREQUENT_CHECK;
3557}
3558
3559#endif
3560
3561#if EV_CHILD_ENABLE
3562
1537void 3563void
1538ev_signal_start (EV_P_ struct ev_signal *w) 3564ev_child_start (EV_P_ ev_child *w) EV_THROW
1539{ 3565{
1540#if EV_MULTIPLICITY 3566#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3567 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 3568#endif
1543 if (ev_is_active (w)) 3569 if (expect_false (ev_is_active (w)))
1544 return; 3570 return;
1545 3571
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3572 EV_FREQUENT_CHECK;
1547 3573
1548 ev_start (EV_A_ (W)w, 1); 3574 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3575 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 3576
1552 if (!((WL)w)->next) 3577 EV_FREQUENT_CHECK;
3578}
3579
3580void
3581ev_child_stop (EV_P_ ev_child *w) EV_THROW
3582{
3583 clear_pending (EV_A_ (W)w);
3584 if (expect_false (!ev_is_active (w)))
3585 return;
3586
3587 EV_FREQUENT_CHECK;
3588
3589 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3590 ev_stop (EV_A_ (W)w);
3591
3592 EV_FREQUENT_CHECK;
3593}
3594
3595#endif
3596
3597#if EV_STAT_ENABLE
3598
3599# ifdef _WIN32
3600# undef lstat
3601# define lstat(a,b) _stati64 (a,b)
3602# endif
3603
3604#define DEF_STAT_INTERVAL 5.0074891
3605#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3606#define MIN_STAT_INTERVAL 0.1074891
3607
3608static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3609
3610#if EV_USE_INOTIFY
3611
3612/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3613# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3614
3615static void noinline
3616infy_add (EV_P_ ev_stat *w)
3617{
3618 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3619
3620 if (w->wd >= 0)
3621 {
3622 struct statfs sfs;
3623
3624 /* now local changes will be tracked by inotify, but remote changes won't */
3625 /* unless the filesystem is known to be local, we therefore still poll */
3626 /* also do poll on <2.6.25, but with normal frequency */
3627
3628 if (!fs_2625)
3629 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3630 else if (!statfs (w->path, &sfs)
3631 && (sfs.f_type == 0x1373 /* devfs */
3632 || sfs.f_type == 0xEF53 /* ext2/3 */
3633 || sfs.f_type == 0x3153464a /* jfs */
3634 || sfs.f_type == 0x52654973 /* reiser3 */
3635 || sfs.f_type == 0x01021994 /* tempfs */
3636 || sfs.f_type == 0x58465342 /* xfs */))
3637 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3638 else
3639 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1553 { 3640 }
3641 else
3642 {
3643 /* can't use inotify, continue to stat */
3644 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3645
3646 /* if path is not there, monitor some parent directory for speedup hints */
3647 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3648 /* but an efficiency issue only */
3649 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3650 {
3651 char path [4096];
3652 strcpy (path, w->path);
3653
3654 do
3655 {
3656 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3657 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3658
3659 char *pend = strrchr (path, '/');
3660
3661 if (!pend || pend == path)
3662 break;
3663
3664 *pend = 0;
3665 w->wd = inotify_add_watch (fs_fd, path, mask);
3666 }
3667 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3668 }
3669 }
3670
3671 if (w->wd >= 0)
3672 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3673
3674 /* now re-arm timer, if required */
3675 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3676 ev_timer_again (EV_A_ &w->timer);
3677 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3678}
3679
3680static void noinline
3681infy_del (EV_P_ ev_stat *w)
3682{
3683 int slot;
3684 int wd = w->wd;
3685
3686 if (wd < 0)
3687 return;
3688
3689 w->wd = -2;
3690 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3691 wlist_del (&fs_hash [slot].head, (WL)w);
3692
3693 /* remove this watcher, if others are watching it, they will rearm */
3694 inotify_rm_watch (fs_fd, wd);
3695}
3696
3697static void noinline
3698infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3699{
3700 if (slot < 0)
3701 /* overflow, need to check for all hash slots */
3702 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3703 infy_wd (EV_A_ slot, wd, ev);
3704 else
3705 {
3706 WL w_;
3707
3708 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3709 {
3710 ev_stat *w = (ev_stat *)w_;
3711 w_ = w_->next; /* lets us remove this watcher and all before it */
3712
3713 if (w->wd == wd || wd == -1)
3714 {
3715 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3716 {
3717 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3718 w->wd = -1;
3719 infy_add (EV_A_ w); /* re-add, no matter what */
3720 }
3721
3722 stat_timer_cb (EV_A_ &w->timer, 0);
3723 }
3724 }
3725 }
3726}
3727
3728static void
3729infy_cb (EV_P_ ev_io *w, int revents)
3730{
3731 char buf [EV_INOTIFY_BUFSIZE];
3732 int ofs;
3733 int len = read (fs_fd, buf, sizeof (buf));
3734
3735 for (ofs = 0; ofs < len; )
3736 {
3737 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3738 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3739 ofs += sizeof (struct inotify_event) + ev->len;
3740 }
3741}
3742
3743inline_size void ecb_cold
3744ev_check_2625 (EV_P)
3745{
3746 /* kernels < 2.6.25 are borked
3747 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3748 */
3749 if (ev_linux_version () < 0x020619)
3750 return;
3751
3752 fs_2625 = 1;
3753}
3754
3755inline_size int
3756infy_newfd (void)
3757{
3758#if defined IN_CLOEXEC && defined IN_NONBLOCK
3759 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3760 if (fd >= 0)
3761 return fd;
3762#endif
3763 return inotify_init ();
3764}
3765
3766inline_size void
3767infy_init (EV_P)
3768{
3769 if (fs_fd != -2)
3770 return;
3771
3772 fs_fd = -1;
3773
3774 ev_check_2625 (EV_A);
3775
3776 fs_fd = infy_newfd ();
3777
3778 if (fs_fd >= 0)
3779 {
3780 fd_intern (fs_fd);
3781 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3782 ev_set_priority (&fs_w, EV_MAXPRI);
3783 ev_io_start (EV_A_ &fs_w);
3784 ev_unref (EV_A);
3785 }
3786}
3787
3788inline_size void
3789infy_fork (EV_P)
3790{
3791 int slot;
3792
3793 if (fs_fd < 0)
3794 return;
3795
3796 ev_ref (EV_A);
3797 ev_io_stop (EV_A_ &fs_w);
3798 close (fs_fd);
3799 fs_fd = infy_newfd ();
3800
3801 if (fs_fd >= 0)
3802 {
3803 fd_intern (fs_fd);
3804 ev_io_set (&fs_w, fs_fd, EV_READ);
3805 ev_io_start (EV_A_ &fs_w);
3806 ev_unref (EV_A);
3807 }
3808
3809 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3810 {
3811 WL w_ = fs_hash [slot].head;
3812 fs_hash [slot].head = 0;
3813
3814 while (w_)
3815 {
3816 ev_stat *w = (ev_stat *)w_;
3817 w_ = w_->next; /* lets us add this watcher */
3818
3819 w->wd = -1;
3820
3821 if (fs_fd >= 0)
3822 infy_add (EV_A_ w); /* re-add, no matter what */
3823 else
3824 {
3825 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3826 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3827 ev_timer_again (EV_A_ &w->timer);
3828 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3829 }
3830 }
3831 }
3832}
3833
3834#endif
3835
1554#if _WIN32 3836#ifdef _WIN32
1555 signal (w->signum, sighandler); 3837# define EV_LSTAT(p,b) _stati64 (p, b)
1556#else 3838#else
1557 struct sigaction sa; 3839# define EV_LSTAT(p,b) lstat (p, b)
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif 3840#endif
1563 }
1564}
1565 3841
1566void 3842void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 3843ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1568{ 3844{
1569 ev_clear_pending (EV_A_ (W)w); 3845 if (lstat (w->path, &w->attr) < 0)
1570 if (!ev_is_active (w)) 3846 w->attr.st_nlink = 0;
3847 else if (!w->attr.st_nlink)
3848 w->attr.st_nlink = 1;
3849}
3850
3851static void noinline
3852stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3853{
3854 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3855
3856 ev_statdata prev = w->attr;
3857 ev_stat_stat (EV_A_ w);
3858
3859 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3860 if (
3861 prev.st_dev != w->attr.st_dev
3862 || prev.st_ino != w->attr.st_ino
3863 || prev.st_mode != w->attr.st_mode
3864 || prev.st_nlink != w->attr.st_nlink
3865 || prev.st_uid != w->attr.st_uid
3866 || prev.st_gid != w->attr.st_gid
3867 || prev.st_rdev != w->attr.st_rdev
3868 || prev.st_size != w->attr.st_size
3869 || prev.st_atime != w->attr.st_atime
3870 || prev.st_mtime != w->attr.st_mtime
3871 || prev.st_ctime != w->attr.st_ctime
3872 ) {
3873 /* we only update w->prev on actual differences */
3874 /* in case we test more often than invoke the callback, */
3875 /* to ensure that prev is always different to attr */
3876 w->prev = prev;
3877
3878 #if EV_USE_INOTIFY
3879 if (fs_fd >= 0)
3880 {
3881 infy_del (EV_A_ w);
3882 infy_add (EV_A_ w);
3883 ev_stat_stat (EV_A_ w); /* avoid race... */
3884 }
3885 #endif
3886
3887 ev_feed_event (EV_A_ w, EV_STAT);
3888 }
3889}
3890
3891void
3892ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3893{
3894 if (expect_false (ev_is_active (w)))
1571 return; 3895 return;
1572 3896
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3897 ev_stat_stat (EV_A_ w);
3898
3899 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3900 w->interval = MIN_STAT_INTERVAL;
3901
3902 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3903 ev_set_priority (&w->timer, ev_priority (w));
3904
3905#if EV_USE_INOTIFY
3906 infy_init (EV_A);
3907
3908 if (fs_fd >= 0)
3909 infy_add (EV_A_ w);
3910 else
3911#endif
3912 {
3913 ev_timer_again (EV_A_ &w->timer);
3914 ev_unref (EV_A);
3915 }
3916
3917 ev_start (EV_A_ (W)w, 1);
3918
3919 EV_FREQUENT_CHECK;
3920}
3921
3922void
3923ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3924{
3925 clear_pending (EV_A_ (W)w);
3926 if (expect_false (!ev_is_active (w)))
3927 return;
3928
3929 EV_FREQUENT_CHECK;
3930
3931#if EV_USE_INOTIFY
3932 infy_del (EV_A_ w);
3933#endif
3934
3935 if (ev_is_active (&w->timer))
3936 {
3937 ev_ref (EV_A);
3938 ev_timer_stop (EV_A_ &w->timer);
3939 }
3940
1574 ev_stop (EV_A_ (W)w); 3941 ev_stop (EV_A_ (W)w);
1575 3942
1576 if (!signals [w->signum - 1].head) 3943 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 3944}
3945#endif
1579 3946
3947#if EV_IDLE_ENABLE
1580void 3948void
1581ev_child_start (EV_P_ struct ev_child *w) 3949ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1582{ 3950{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif
1586 if (ev_is_active (w)) 3951 if (expect_false (ev_is_active (w)))
1587 return; 3952 return;
1588 3953
3954 pri_adjust (EV_A_ (W)w);
3955
3956 EV_FREQUENT_CHECK;
3957
3958 {
3959 int active = ++idlecnt [ABSPRI (w)];
3960
3961 ++idleall;
3962 ev_start (EV_A_ (W)w, active);
3963
3964 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3965 idles [ABSPRI (w)][active - 1] = w;
3966 }
3967
3968 EV_FREQUENT_CHECK;
3969}
3970
3971void
3972ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3973{
3974 clear_pending (EV_A_ (W)w);
3975 if (expect_false (!ev_is_active (w)))
3976 return;
3977
3978 EV_FREQUENT_CHECK;
3979
3980 {
3981 int active = ev_active (w);
3982
3983 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3984 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3985
3986 ev_stop (EV_A_ (W)w);
3987 --idleall;
3988 }
3989
3990 EV_FREQUENT_CHECK;
3991}
3992#endif
3993
3994#if EV_PREPARE_ENABLE
3995void
3996ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
3997{
3998 if (expect_false (ev_is_active (w)))
3999 return;
4000
4001 EV_FREQUENT_CHECK;
4002
4003 ev_start (EV_A_ (W)w, ++preparecnt);
4004 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4005 prepares [preparecnt - 1] = w;
4006
4007 EV_FREQUENT_CHECK;
4008}
4009
4010void
4011ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4012{
4013 clear_pending (EV_A_ (W)w);
4014 if (expect_false (!ev_is_active (w)))
4015 return;
4016
4017 EV_FREQUENT_CHECK;
4018
4019 {
4020 int active = ev_active (w);
4021
4022 prepares [active - 1] = prepares [--preparecnt];
4023 ev_active (prepares [active - 1]) = active;
4024 }
4025
4026 ev_stop (EV_A_ (W)w);
4027
4028 EV_FREQUENT_CHECK;
4029}
4030#endif
4031
4032#if EV_CHECK_ENABLE
4033void
4034ev_check_start (EV_P_ ev_check *w) EV_THROW
4035{
4036 if (expect_false (ev_is_active (w)))
4037 return;
4038
4039 EV_FREQUENT_CHECK;
4040
4041 ev_start (EV_A_ (W)w, ++checkcnt);
4042 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4043 checks [checkcnt - 1] = w;
4044
4045 EV_FREQUENT_CHECK;
4046}
4047
4048void
4049ev_check_stop (EV_P_ ev_check *w) EV_THROW
4050{
4051 clear_pending (EV_A_ (W)w);
4052 if (expect_false (!ev_is_active (w)))
4053 return;
4054
4055 EV_FREQUENT_CHECK;
4056
4057 {
4058 int active = ev_active (w);
4059
4060 checks [active - 1] = checks [--checkcnt];
4061 ev_active (checks [active - 1]) = active;
4062 }
4063
4064 ev_stop (EV_A_ (W)w);
4065
4066 EV_FREQUENT_CHECK;
4067}
4068#endif
4069
4070#if EV_EMBED_ENABLE
4071void noinline
4072ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4073{
4074 ev_run (w->other, EVRUN_NOWAIT);
4075}
4076
4077static void
4078embed_io_cb (EV_P_ ev_io *io, int revents)
4079{
4080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4081
4082 if (ev_cb (w))
4083 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4084 else
4085 ev_run (w->other, EVRUN_NOWAIT);
4086}
4087
4088static void
4089embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4090{
4091 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4092
4093 {
4094 EV_P = w->other;
4095
4096 while (fdchangecnt)
4097 {
4098 fd_reify (EV_A);
4099 ev_run (EV_A_ EVRUN_NOWAIT);
4100 }
4101 }
4102}
4103
4104static void
4105embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4106{
4107 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4108
4109 ev_embed_stop (EV_A_ w);
4110
4111 {
4112 EV_P = w->other;
4113
4114 ev_loop_fork (EV_A);
4115 ev_run (EV_A_ EVRUN_NOWAIT);
4116 }
4117
4118 ev_embed_start (EV_A_ w);
4119}
4120
4121#if 0
4122static void
4123embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4124{
4125 ev_idle_stop (EV_A_ idle);
4126}
4127#endif
4128
4129void
4130ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4131{
4132 if (expect_false (ev_is_active (w)))
4133 return;
4134
4135 {
4136 EV_P = w->other;
4137 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4138 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4139 }
4140
4141 EV_FREQUENT_CHECK;
4142
4143 ev_set_priority (&w->io, ev_priority (w));
4144 ev_io_start (EV_A_ &w->io);
4145
4146 ev_prepare_init (&w->prepare, embed_prepare_cb);
4147 ev_set_priority (&w->prepare, EV_MINPRI);
4148 ev_prepare_start (EV_A_ &w->prepare);
4149
4150 ev_fork_init (&w->fork, embed_fork_cb);
4151 ev_fork_start (EV_A_ &w->fork);
4152
4153 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4154
1589 ev_start (EV_A_ (W)w, 1); 4155 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4156
4157 EV_FREQUENT_CHECK;
1591} 4158}
1592 4159
1593void 4160void
1594ev_child_stop (EV_P_ struct ev_child *w) 4161ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1595{ 4162{
1596 ev_clear_pending (EV_A_ (W)w); 4163 clear_pending (EV_A_ (W)w);
1597 if (!ev_is_active (w)) 4164 if (expect_false (!ev_is_active (w)))
1598 return; 4165 return;
1599 4166
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4167 EV_FREQUENT_CHECK;
4168
4169 ev_io_stop (EV_A_ &w->io);
4170 ev_prepare_stop (EV_A_ &w->prepare);
4171 ev_fork_stop (EV_A_ &w->fork);
4172
1601 ev_stop (EV_A_ (W)w); 4173 ev_stop (EV_A_ (W)w);
4174
4175 EV_FREQUENT_CHECK;
1602} 4176}
4177#endif
4178
4179#if EV_FORK_ENABLE
4180void
4181ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4182{
4183 if (expect_false (ev_is_active (w)))
4184 return;
4185
4186 EV_FREQUENT_CHECK;
4187
4188 ev_start (EV_A_ (W)w, ++forkcnt);
4189 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4190 forks [forkcnt - 1] = w;
4191
4192 EV_FREQUENT_CHECK;
4193}
4194
4195void
4196ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4197{
4198 clear_pending (EV_A_ (W)w);
4199 if (expect_false (!ev_is_active (w)))
4200 return;
4201
4202 EV_FREQUENT_CHECK;
4203
4204 {
4205 int active = ev_active (w);
4206
4207 forks [active - 1] = forks [--forkcnt];
4208 ev_active (forks [active - 1]) = active;
4209 }
4210
4211 ev_stop (EV_A_ (W)w);
4212
4213 EV_FREQUENT_CHECK;
4214}
4215#endif
4216
4217#if EV_CLEANUP_ENABLE
4218void
4219ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4220{
4221 if (expect_false (ev_is_active (w)))
4222 return;
4223
4224 EV_FREQUENT_CHECK;
4225
4226 ev_start (EV_A_ (W)w, ++cleanupcnt);
4227 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4228 cleanups [cleanupcnt - 1] = w;
4229
4230 /* cleanup watchers should never keep a refcount on the loop */
4231 ev_unref (EV_A);
4232 EV_FREQUENT_CHECK;
4233}
4234
4235void
4236ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4237{
4238 clear_pending (EV_A_ (W)w);
4239 if (expect_false (!ev_is_active (w)))
4240 return;
4241
4242 EV_FREQUENT_CHECK;
4243 ev_ref (EV_A);
4244
4245 {
4246 int active = ev_active (w);
4247
4248 cleanups [active - 1] = cleanups [--cleanupcnt];
4249 ev_active (cleanups [active - 1]) = active;
4250 }
4251
4252 ev_stop (EV_A_ (W)w);
4253
4254 EV_FREQUENT_CHECK;
4255}
4256#endif
4257
4258#if EV_ASYNC_ENABLE
4259void
4260ev_async_start (EV_P_ ev_async *w) EV_THROW
4261{
4262 if (expect_false (ev_is_active (w)))
4263 return;
4264
4265 w->sent = 0;
4266
4267 evpipe_init (EV_A);
4268
4269 EV_FREQUENT_CHECK;
4270
4271 ev_start (EV_A_ (W)w, ++asynccnt);
4272 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4273 asyncs [asynccnt - 1] = w;
4274
4275 EV_FREQUENT_CHECK;
4276}
4277
4278void
4279ev_async_stop (EV_P_ ev_async *w) EV_THROW
4280{
4281 clear_pending (EV_A_ (W)w);
4282 if (expect_false (!ev_is_active (w)))
4283 return;
4284
4285 EV_FREQUENT_CHECK;
4286
4287 {
4288 int active = ev_active (w);
4289
4290 asyncs [active - 1] = asyncs [--asynccnt];
4291 ev_active (asyncs [active - 1]) = active;
4292 }
4293
4294 ev_stop (EV_A_ (W)w);
4295
4296 EV_FREQUENT_CHECK;
4297}
4298
4299void
4300ev_async_send (EV_P_ ev_async *w) EV_THROW
4301{
4302 w->sent = 1;
4303 evpipe_write (EV_A_ &async_pending);
4304}
4305#endif
1603 4306
1604/*****************************************************************************/ 4307/*****************************************************************************/
1605 4308
1606struct ev_once 4309struct ev_once
1607{ 4310{
1608 struct ev_io io; 4311 ev_io io;
1609 struct ev_timer to; 4312 ev_timer to;
1610 void (*cb)(int revents, void *arg); 4313 void (*cb)(int revents, void *arg);
1611 void *arg; 4314 void *arg;
1612}; 4315};
1613 4316
1614static void 4317static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 4318once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 4319{
1617 void (*cb)(int revents, void *arg) = once->cb; 4320 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 4321 void *arg = once->arg;
1619 4322
1620 ev_io_stop (EV_A_ &once->io); 4323 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 4324 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 4325 ev_free (once);
1623 4326
1624 cb (revents, arg); 4327 cb (revents, arg);
1625} 4328}
1626 4329
1627static void 4330static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 4331once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 4332{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4333 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4334
4335 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 4336}
1632 4337
1633static void 4338static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 4339once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 4340{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4341 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4342
4343 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 4344}
1638 4345
1639void 4346void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4347ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1641{ 4348{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4349 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 4350
1644 if (!once) 4351 if (expect_false (!once))
4352 {
1645 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4353 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1646 else 4354 return;
1647 { 4355 }
4356
1648 once->cb = cb; 4357 once->cb = cb;
1649 once->arg = arg; 4358 once->arg = arg;
1650 4359
1651 ev_init (&once->io, once_cb_io); 4360 ev_init (&once->io, once_cb_io);
1652 if (fd >= 0) 4361 if (fd >= 0)
4362 {
4363 ev_io_set (&once->io, fd, events);
4364 ev_io_start (EV_A_ &once->io);
4365 }
4366
4367 ev_init (&once->to, once_cb_to);
4368 if (timeout >= 0.)
4369 {
4370 ev_timer_set (&once->to, timeout, 0.);
4371 ev_timer_start (EV_A_ &once->to);
4372 }
4373}
4374
4375/*****************************************************************************/
4376
4377#if EV_WALK_ENABLE
4378void ecb_cold
4379ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4380{
4381 int i, j;
4382 ev_watcher_list *wl, *wn;
4383
4384 if (types & (EV_IO | EV_EMBED))
4385 for (i = 0; i < anfdmax; ++i)
4386 for (wl = anfds [i].head; wl; )
1653 { 4387 {
1654 ev_io_set (&once->io, fd, events); 4388 wn = wl->next;
1655 ev_io_start (EV_A_ &once->io); 4389
4390#if EV_EMBED_ENABLE
4391 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4392 {
4393 if (types & EV_EMBED)
4394 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4395 }
4396 else
4397#endif
4398#if EV_USE_INOTIFY
4399 if (ev_cb ((ev_io *)wl) == infy_cb)
4400 ;
4401 else
4402#endif
4403 if ((ev_io *)wl != &pipe_w)
4404 if (types & EV_IO)
4405 cb (EV_A_ EV_IO, wl);
4406
4407 wl = wn;
1656 } 4408 }
1657 4409
1658 ev_init (&once->to, once_cb_to); 4410 if (types & (EV_TIMER | EV_STAT))
1659 if (timeout >= 0.) 4411 for (i = timercnt + HEAP0; i-- > HEAP0; )
4412#if EV_STAT_ENABLE
4413 /*TODO: timer is not always active*/
4414 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1660 { 4415 {
1661 ev_timer_set (&once->to, timeout, 0.); 4416 if (types & EV_STAT)
1662 ev_timer_start (EV_A_ &once->to); 4417 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1663 } 4418 }
1664 } 4419 else
1665} 4420#endif
4421 if (types & EV_TIMER)
4422 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1666 4423
1667#ifdef __cplusplus 4424#if EV_PERIODIC_ENABLE
1668} 4425 if (types & EV_PERIODIC)
4426 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4427 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4428#endif
4429
4430#if EV_IDLE_ENABLE
4431 if (types & EV_IDLE)
4432 for (j = NUMPRI; j--; )
4433 for (i = idlecnt [j]; i--; )
4434 cb (EV_A_ EV_IDLE, idles [j][i]);
4435#endif
4436
4437#if EV_FORK_ENABLE
4438 if (types & EV_FORK)
4439 for (i = forkcnt; i--; )
4440 if (ev_cb (forks [i]) != embed_fork_cb)
4441 cb (EV_A_ EV_FORK, forks [i]);
4442#endif
4443
4444#if EV_ASYNC_ENABLE
4445 if (types & EV_ASYNC)
4446 for (i = asynccnt; i--; )
4447 cb (EV_A_ EV_ASYNC, asyncs [i]);
4448#endif
4449
4450#if EV_PREPARE_ENABLE
4451 if (types & EV_PREPARE)
4452 for (i = preparecnt; i--; )
4453# if EV_EMBED_ENABLE
4454 if (ev_cb (prepares [i]) != embed_prepare_cb)
1669#endif 4455# endif
4456 cb (EV_A_ EV_PREPARE, prepares [i]);
4457#endif
1670 4458
4459#if EV_CHECK_ENABLE
4460 if (types & EV_CHECK)
4461 for (i = checkcnt; i--; )
4462 cb (EV_A_ EV_CHECK, checks [i]);
4463#endif
4464
4465#if EV_SIGNAL_ENABLE
4466 if (types & EV_SIGNAL)
4467 for (i = 0; i < EV_NSIG - 1; ++i)
4468 for (wl = signals [i].head; wl; )
4469 {
4470 wn = wl->next;
4471 cb (EV_A_ EV_SIGNAL, wl);
4472 wl = wn;
4473 }
4474#endif
4475
4476#if EV_CHILD_ENABLE
4477 if (types & EV_CHILD)
4478 for (i = (EV_PID_HASHSIZE); i--; )
4479 for (wl = childs [i]; wl; )
4480 {
4481 wn = wl->next;
4482 cb (EV_A_ EV_CHILD, wl);
4483 wl = wn;
4484 }
4485#endif
4486/* EV_STAT 0x00001000 /* stat data changed */
4487/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4488}
4489#endif
4490
4491#if EV_MULTIPLICITY
4492 #include "ev_wrap.h"
4493#endif
4494

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines