ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.122 by root, Sat Nov 17 02:00:48 2007 UTC vs.
Revision 1.433 by root, Tue May 15 13:03:20 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
65# define EV_USE_PORT 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
66# endif 127# endif
67 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
68#endif 136# endif
69 137
70#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
71#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
72#include <fcntl.h> 169#include <fcntl.h>
73#include <stddef.h> 170#include <stddef.h>
74 171
75#include <stdio.h> 172#include <stdio.h>
76 173
77#include <assert.h> 174#include <assert.h>
78#include <errno.h> 175#include <errno.h>
79#include <sys/types.h> 176#include <sys/types.h>
80#include <time.h> 177#include <time.h>
178#include <limits.h>
81 179
82#include <signal.h> 180#include <signal.h>
83 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
84#ifndef _WIN32 199#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 200# include <sys/time.h>
87# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
88#else 203#else
204# include <io.h>
89# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
90# include <windows.h> 207# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
93# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
94#endif 261# endif
95 262#endif
96/**/
97 263
98#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
99# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
100#endif 270#endif
101 271
102#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
104#endif 282#endif
105 283
106#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
108#endif 286#endif
109 287
110#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
111# ifdef _WIN32 289# ifdef _WIN32
112# define EV_USE_POLL 0 290# define EV_USE_POLL 0
113# else 291# else
114# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
115# endif 293# endif
116#endif 294#endif
117 295
118#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
119# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
120#endif 302#endif
121 303
122#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
124#endif 306#endif
125 307
126#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 309# define EV_USE_PORT 0
128#endif 310#endif
129 311
130/**/ 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
317# endif
318#endif
131 319
132/* darwin simply cannot be helped */ 320#ifndef EV_PID_HASHSIZE
133#ifdef __APPLE__ 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 380# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 381# define EV_USE_POLL 0
136#endif 382#endif
137 383
138#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
143#ifndef CLOCK_REALTIME 389#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 390# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 391# define EV_USE_REALTIME 0
146#endif 392#endif
147 393
148#if EV_SELECT_IS_WINSOCKET 394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
149# include <winsock.h> 418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
150#endif 452#endif
151 453
152/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
153 468
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
158 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
159#ifdef EV_H 506#ifndef ECB_H
160# include EV_H 507#define ECB_H
508
509#ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
516 #if __GNUC__
517 typedef signed long long int64_t;
518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
161#else 523#else
162# include "ev.h" 524 #include <inttypes.h>
525#endif
526
527/* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534#ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
163#endif 539 #endif
540#endif
164 541
165#if __GNUC__ >= 3 542/*****************************************************************************/
166# define expect(expr,value) __builtin_expect ((expr),(value)) 543
167# define inline inline 544/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547#if ECB_NO_THREADS
548# define ECB_NO_SMP 1
549#endif
550
551#if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553#endif
554
555#ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585#endif
586
587#ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608#endif
609
610#ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626#endif
627
628#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630#endif
631
632#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634#endif
635
636/*****************************************************************************/
637
638#define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640#if __cplusplus
641 #define ecb_inline static inline
642#elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644#elif ECB_C99
645 #define ecb_inline static inline
168#else 646#else
647 #define ecb_inline static
648#endif
649
650#if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652#elif ECB_C99
653 #define ecb_restrict restrict
654#else
655 #define ecb_restrict
656#endif
657
658typedef int ecb_bool;
659
660#define ECB_CONCAT_(a, b) a ## b
661#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662#define ECB_STRINGIFY_(a) # a
663#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665#define ecb_function_ ecb_inline
666
667#if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672#else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
169# define expect(expr,value) (expr) 675 #define ecb_expect(expr,value) (expr)
170# define inline static 676 #define ecb_prefetch(addr,rw,locality)
171#endif 677#endif
172 678
679/* no emulation for ecb_decltype */
680#if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682#elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684#endif
685
686#define ecb_noinline ecb_attribute ((__noinline__))
687#define ecb_noreturn ecb_attribute ((__noreturn__))
688#define ecb_unused ecb_attribute ((__unused__))
689#define ecb_const ecb_attribute ((__const__))
690#define ecb_pure ecb_attribute ((__pure__))
691
692#if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696#else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700#endif
701
702/* put around conditional expressions if you are very sure that the */
703/* expression is mostly true or mostly false. note that these return */
704/* booleans, not the expression. */
173#define expect_false(expr) expect ((expr) != 0, 0) 705#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 706#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707/* for compatibility to the rest of the world */
708#define ecb_likely(expr) ecb_expect_true (expr)
709#define ecb_unlikely(expr) ecb_expect_false (expr)
175 710
711/* count trailing zero bits and count # of one bits */
712#if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720#else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729#if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735#else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741#endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789#endif
790
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793{
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796}
797
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800{
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807}
808
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811{
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819}
820
821/* popcount64 is only available on 64 bit cpus as gcc builtin */
822/* so for this version we are lazy */
823ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824ecb_function_ int
825ecb_popcount64 (uint64_t x)
826{
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828}
829
830ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848#if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852#else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873#endif
874
875#if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877#else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881#endif
882
883/* try to tell the compiler that some condition is definitely true */
884#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887ecb_inline unsigned char
888ecb_byteorder_helper (void)
889{
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892}
893
894ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899#if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901#else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903#endif
904
905#if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916#else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919#endif
920
921#if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928#else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930#endif
931
932#endif
933
934/* ECB.H END */
935
936#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937/* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944# error "memory fences not defined for your architecture, please report"
945#endif
946
947#ifndef ECB_MEMORY_FENCE
948# define ECB_MEMORY_FENCE do { } while (0)
949# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951#endif
952
953#define expect_false(cond) ecb_expect_false (cond)
954#define expect_true(cond) ecb_expect_true (cond)
955#define noinline ecb_noinline
956
957#define inline_size ecb_inline
958
959#if EV_FEATURE_CODE
960# define inline_speed ecb_inline
961#else
962# define inline_speed static noinline
963#endif
964
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 965#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967#if EV_MINPRI == EV_MAXPRI
968# define ABSPRI(w) (((W)w), 0)
969#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 970# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971#endif
178 972
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 973#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 974#define EMPTY2(a,b) /* used to suppress some warnings */
181 975
182typedef struct ev_watcher *W; 976typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 977typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 978typedef ev_watcher_time *WT;
185 979
980#define ev_active(w) ((W)(w))->active
981#define ev_at(w) ((WT)(w))->at
982
983#if EV_USE_REALTIME
984/* sig_atomic_t is used to avoid per-thread variables or locking but still */
985/* giving it a reasonably high chance of working on typical architectures */
986static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987#endif
988
989#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 990static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991#endif
992
993#ifndef EV_FD_TO_WIN32_HANDLE
994# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995#endif
996#ifndef EV_WIN32_HANDLE_TO_FD
997# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998#endif
999#ifndef EV_WIN32_CLOSE_FD
1000# define EV_WIN32_CLOSE_FD(fd) close (fd)
1001#endif
187 1002
188#ifdef _WIN32 1003#ifdef _WIN32
189# include "ev_win32.c" 1004# include "ev_win32.c"
190#endif 1005#endif
191 1006
192/*****************************************************************************/ 1007/*****************************************************************************/
193 1008
1009/* define a suitable floor function (only used by periodics atm) */
1010
1011#if EV_USE_FLOOR
1012# include <math.h>
1013# define ev_floor(v) floor (v)
1014#else
1015
1016#include <float.h>
1017
1018/* a floor() replacement function, should be independent of ev_tstamp type */
1019static ev_tstamp noinline
1020ev_floor (ev_tstamp v)
1021{
1022 /* the choice of shift factor is not terribly important */
1023#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025#else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027#endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051}
1052
1053#endif
1054
1055/*****************************************************************************/
1056
1057#ifdef __linux
1058# include <sys/utsname.h>
1059#endif
1060
1061static unsigned int noinline ecb_cold
1062ev_linux_version (void)
1063{
1064#ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092#else
1093 return 0;
1094#endif
1095}
1096
1097/*****************************************************************************/
1098
1099#if EV_AVOID_STDIO
1100static void noinline ecb_cold
1101ev_printerr (const char *msg)
1102{
1103 write (STDERR_FILENO, msg, strlen (msg));
1104}
1105#endif
1106
194static void (*syserr_cb)(const char *msg); 1107static void (*syserr_cb)(const char *msg) EV_THROW;
195 1108
1109void ecb_cold
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 1110ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
197{ 1111{
198 syserr_cb = cb; 1112 syserr_cb = cb;
199} 1113}
200 1114
201static void 1115static void noinline ecb_cold
202syserr (const char *msg) 1116ev_syserr (const char *msg)
203{ 1117{
204 if (!msg) 1118 if (!msg)
205 msg = "(libev) system error"; 1119 msg = "(libev) system error";
206 1120
207 if (syserr_cb) 1121 if (syserr_cb)
208 syserr_cb (msg); 1122 syserr_cb (msg);
209 else 1123 else
210 { 1124 {
1125#if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130#else
211 perror (msg); 1131 perror (msg);
1132#endif
212 abort (); 1133 abort ();
213 } 1134 }
214} 1135}
215 1136
1137static void *
1138ev_realloc_emul (void *ptr, long size)
1139{
1140#if __GLIBC__
1141 return realloc (ptr, size);
1142#else
1143 /* some systems, notably openbsd and darwin, fail to properly
1144 * implement realloc (x, 0) (as required by both ansi c-89 and
1145 * the single unix specification, so work around them here.
1146 */
1147
1148 if (size)
1149 return realloc (ptr, size);
1150
1151 free (ptr);
1152 return 0;
1153#endif
1154}
1155
216static void *(*alloc)(void *ptr, long size); 1156static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
217 1157
1158void ecb_cold
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1159ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
219{ 1160{
220 alloc = cb; 1161 alloc = cb;
221} 1162}
222 1163
223static void * 1164inline_speed void *
224ev_realloc (void *ptr, long size) 1165ev_realloc (void *ptr, long size)
225{ 1166{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1167 ptr = alloc (ptr, size);
227 1168
228 if (!ptr && size) 1169 if (!ptr && size)
229 { 1170 {
1171#if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175#endif
231 abort (); 1176 abort ();
232 } 1177 }
233 1178
234 return ptr; 1179 return ptr;
235} 1180}
237#define ev_malloc(size) ev_realloc (0, (size)) 1182#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 1183#define ev_free(ptr) ev_realloc ((ptr), 0)
239 1184
240/*****************************************************************************/ 1185/*****************************************************************************/
241 1186
1187/* set in reify when reification needed */
1188#define EV_ANFD_REIFY 1
1189
1190/* file descriptor info structure */
242typedef struct 1191typedef struct
243{ 1192{
244 WL head; 1193 WL head;
245 unsigned char events; 1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
246 unsigned char reify; 1197 unsigned char unused;
1198#if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200#endif
247#if EV_SELECT_IS_WINSOCKET 1201#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
248 SOCKET handle; 1202 SOCKET handle;
249#endif 1203#endif
1204#if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206#endif
250} ANFD; 1207} ANFD;
251 1208
1209/* stores the pending event set for a given watcher */
252typedef struct 1210typedef struct
253{ 1211{
254 W w; 1212 W w;
255 int events; 1213 int events; /* the pending event set for the given watcher */
256} ANPENDING; 1214} ANPENDING;
1215
1216#if EV_USE_INOTIFY
1217/* hash table entry per inotify-id */
1218typedef struct
1219{
1220 WL head;
1221} ANFS;
1222#endif
1223
1224/* Heap Entry */
1225#if EV_HEAP_CACHE_AT
1226 /* a heap element */
1227 typedef struct {
1228 ev_tstamp at;
1229 WT w;
1230 } ANHE;
1231
1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1235#else
1236 /* a heap element */
1237 typedef WT ANHE;
1238
1239 #define ANHE_w(he) (he)
1240 #define ANHE_at(he) (he)->at
1241 #define ANHE_at_cache(he)
1242#endif
257 1243
258#if EV_MULTIPLICITY 1244#if EV_MULTIPLICITY
259 1245
260 struct ev_loop 1246 struct ev_loop
261 { 1247 {
266 #undef VAR 1252 #undef VAR
267 }; 1253 };
268 #include "ev_wrap.h" 1254 #include "ev_wrap.h"
269 1255
270 static struct ev_loop default_loop_struct; 1256 static struct ev_loop default_loop_struct;
271 struct ev_loop *ev_default_loop_ptr; 1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
272 1258
273#else 1259#else
274 1260
275 ev_tstamp ev_rt_now; 1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
276 #define VAR(name,decl) static decl; 1262 #define VAR(name,decl) static decl;
277 #include "ev_vars.h" 1263 #include "ev_vars.h"
278 #undef VAR 1264 #undef VAR
279 1265
280 static int ev_default_loop_ptr; 1266 static int ev_default_loop_ptr;
281 1267
282#endif 1268#endif
283 1269
1270#if EV_FEATURE_API
1271# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273# define EV_INVOKE_PENDING invoke_cb (EV_A)
1274#else
1275# define EV_RELEASE_CB (void)0
1276# define EV_ACQUIRE_CB (void)0
1277# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278#endif
1279
1280#define EVBREAK_RECURSE 0x80
1281
284/*****************************************************************************/ 1282/*****************************************************************************/
285 1283
1284#ifndef EV_HAVE_EV_TIME
286ev_tstamp 1285ev_tstamp
287ev_time (void) 1286ev_time (void) EV_THROW
288{ 1287{
289#if EV_USE_REALTIME 1288#if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
290 struct timespec ts; 1291 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 1292 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 1294 }
1295#endif
1296
294 struct timeval tv; 1297 struct timeval tv;
295 gettimeofday (&tv, 0); 1298 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 1299 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 1300}
1301#endif
299 1302
300inline ev_tstamp 1303inline_size ev_tstamp
301get_clock (void) 1304get_clock (void)
302{ 1305{
303#if EV_USE_MONOTONIC 1306#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 1307 if (expect_true (have_monotonic))
305 { 1308 {
312 return ev_time (); 1315 return ev_time ();
313} 1316}
314 1317
315#if EV_MULTIPLICITY 1318#if EV_MULTIPLICITY
316ev_tstamp 1319ev_tstamp
317ev_now (EV_P) 1320ev_now (EV_P) EV_THROW
318{ 1321{
319 return ev_rt_now; 1322 return ev_rt_now;
320} 1323}
321#endif 1324#endif
322 1325
323#define array_roundsize(type,n) (((n) | 4) & ~3) 1326void
1327ev_sleep (ev_tstamp delay) EV_THROW
1328{
1329 if (delay > 0.)
1330 {
1331#if EV_USE_NANOSLEEP
1332 struct timespec ts;
1333
1334 EV_TS_SET (ts, delay);
1335 nanosleep (&ts, 0);
1336#elif defined _WIN32
1337 Sleep ((unsigned long)(delay * 1e3));
1338#else
1339 struct timeval tv;
1340
1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1342 /* something not guaranteed by newer posix versions, but guaranteed */
1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
1345 select (0, 0, 0, 0, &tv);
1346#endif
1347 }
1348}
1349
1350/*****************************************************************************/
1351
1352#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1353
1354/* find a suitable new size for the given array, */
1355/* hopefully by rounding to a nice-to-malloc size */
1356inline_size int
1357array_nextsize (int elem, int cur, int cnt)
1358{
1359 int ncur = cur + 1;
1360
1361 do
1362 ncur <<= 1;
1363 while (cnt > ncur);
1364
1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1367 {
1368 ncur *= elem;
1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1370 ncur = ncur - sizeof (void *) * 4;
1371 ncur /= elem;
1372 }
1373
1374 return ncur;
1375}
1376
1377static void * noinline ecb_cold
1378array_realloc (int elem, void *base, int *cur, int cnt)
1379{
1380 *cur = array_nextsize (elem, *cur, cnt);
1381 return ev_realloc (base, elem * *cur);
1382}
1383
1384#define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 1386
325#define array_needsize(type,base,cur,cnt,init) \ 1387#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 1388 if (expect_false ((cnt) > (cur))) \
327 { \ 1389 { \
328 int newcnt = cur; \ 1390 int ecb_unused ocur_ = (cur); \
329 do \ 1391 (base) = (type *)array_realloc \
330 { \ 1392 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 1393 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 1394 }
339 1395
1396#if 0
340#define array_slim(type,stem) \ 1397#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1398 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 1399 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1400 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1401 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 1403 }
1404#endif
347 1405
348#define array_free(stem, idx) \ 1406#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 1408
351/*****************************************************************************/ 1409/*****************************************************************************/
352 1410
353static void 1411/* dummy callback for pending events */
354anfds_init (ANFD *base, int count) 1412static void noinline
1413pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 1414{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 1415}
365 1416
366void 1417void noinline
367ev_feed_event (EV_P_ void *w, int revents) 1418ev_feed_event (EV_P_ void *w, int revents) EV_THROW
368{ 1419{
369 W w_ = (W)w; 1420 W w_ = (W)w;
1421 int pri = ABSPRI (w_);
370 1422
371 if (w_->pending) 1423 if (expect_false (w_->pending))
1424 pendings [pri][w_->pending - 1].events |= revents;
1425 else
372 { 1426 {
1427 w_->pending = ++pendingcnt [pri];
1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1429 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1430 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 1431 }
376 1432
377 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1433 pendingpri = NUMPRI - 1;
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 1434}
382 1435
383static void 1436inline_speed void
1437feed_reverse (EV_P_ W w)
1438{
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441}
1442
1443inline_size void
1444feed_reverse_done (EV_P_ int revents)
1445{
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449}
1450
1451inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 1452queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 1453{
386 int i; 1454 int i;
387 1455
388 for (i = 0; i < eventcnt; ++i) 1456 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 1457 ev_feed_event (EV_A_ events [i], type);
390} 1458}
391 1459
1460/*****************************************************************************/
1461
392inline void 1462inline_speed void
393fd_event (EV_P_ int fd, int revents) 1463fd_event_nocheck (EV_P_ int fd, int revents)
394{ 1464{
395 ANFD *anfd = anfds + fd; 1465 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 1466 ev_io *w;
397 1467
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 1469 {
400 int ev = w->events & revents; 1470 int ev = w->events & revents;
401 1471
402 if (ev) 1472 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 1473 ev_feed_event (EV_A_ (W)w, ev);
404 } 1474 }
405} 1475}
406 1476
1477/* do not submit kernel events for fds that have reify set */
1478/* because that means they changed while we were polling for new events */
1479inline_speed void
1480fd_event (EV_P_ int fd, int revents)
1481{
1482 ANFD *anfd = anfds + fd;
1483
1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486}
1487
407void 1488void
408ev_feed_fd_event (EV_P_ int fd, int revents) 1489ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
409{ 1490{
1491 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 1492 fd_event_nocheck (EV_A_ fd, revents);
411} 1493}
412 1494
413/*****************************************************************************/ 1495/* make sure the external fd watch events are in-sync */
414 1496/* with the kernel/libev internal state */
415static void 1497inline_size void
416fd_reify (EV_P) 1498fd_reify (EV_P)
417{ 1499{
418 int i; 1500 int i;
419 1501
1502#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
420 for (i = 0; i < fdchangecnt; ++i) 1503 for (i = 0; i < fdchangecnt; ++i)
421 { 1504 {
422 int fd = fdchanges [i]; 1505 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 1506 ANFD *anfd = anfds + fd;
424 struct ev_io *w;
425 1507
426 int events = 0; 1508 if (anfd->reify & EV__IOFDSET && anfd->head)
427
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
429 events |= w->events;
430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 { 1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
434 unsigned long argp; 1514 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 1515
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
1519 backend_modify (EV_A_ fd, anfd->events, 0);
1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
437 } 1523 }
1524 }
438#endif 1525#endif
439 1526
1527 for (i = 0; i < fdchangecnt; ++i)
1528 {
1529 int fd = fdchanges [i];
1530 ANFD *anfd = anfds + fd;
1531 ev_io *w;
1532
1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
1535
440 anfd->reify = 0; 1536 anfd->reify = 0;
441 1537
442 method_modify (EV_A_ fd, anfd->events, events); 1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1539 {
443 anfd->events = events; 1540 anfd->events = 0;
1541
1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1543 anfd->events |= (unsigned char)w->events;
1544
1545 if (o_events != anfd->events)
1546 o_reify = EV__IOFDSET; /* actually |= */
1547 }
1548
1549 if (o_reify & EV__IOFDSET)
1550 backend_modify (EV_A_ fd, o_events, anfd->events);
444 } 1551 }
445 1552
446 fdchangecnt = 0; 1553 fdchangecnt = 0;
447} 1554}
448 1555
449static void 1556/* something about the given fd changed */
1557inline_size void
450fd_change (EV_P_ int fd) 1558fd_change (EV_P_ int fd, int flags)
451{ 1559{
452 if (anfds [fd].reify) 1560 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 1561 anfds [fd].reify |= flags;
456 1562
1563 if (expect_true (!reify))
1564 {
457 ++fdchangecnt; 1565 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 1567 fdchanges [fdchangecnt - 1] = fd;
1568 }
460} 1569}
461 1570
462static void 1571/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572inline_speed void ecb_cold
463fd_kill (EV_P_ int fd) 1573fd_kill (EV_P_ int fd)
464{ 1574{
465 struct ev_io *w; 1575 ev_io *w;
466 1576
467 while ((w = (struct ev_io *)anfds [fd].head)) 1577 while ((w = (ev_io *)anfds [fd].head))
468 { 1578 {
469 ev_io_stop (EV_A_ w); 1579 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 1581 }
472} 1582}
473 1583
474static int 1584/* check whether the given fd is actually valid, for error recovery */
1585inline_size int ecb_cold
475fd_valid (int fd) 1586fd_valid (int fd)
476{ 1587{
477#ifdef _WIN32 1588#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 1590#else
480 return fcntl (fd, F_GETFD) != -1; 1591 return fcntl (fd, F_GETFD) != -1;
481#endif 1592#endif
482} 1593}
483 1594
484/* called on EBADF to verify fds */ 1595/* called on EBADF to verify fds */
485static void 1596static void noinline ecb_cold
486fd_ebadf (EV_P) 1597fd_ebadf (EV_P)
487{ 1598{
488 int fd; 1599 int fd;
489 1600
490 for (fd = 0; fd < anfdmax; ++fd) 1601 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 1602 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 1603 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 1604 fd_kill (EV_A_ fd);
494} 1605}
495 1606
496/* called on ENOMEM in select/poll to kill some fds and retry */ 1607/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 1608static void noinline ecb_cold
498fd_enomem (EV_P) 1609fd_enomem (EV_P)
499{ 1610{
500 int fd; 1611 int fd;
501 1612
502 for (fd = anfdmax; fd--; ) 1613 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 1614 if (anfds [fd].events)
504 { 1615 {
505 fd_kill (EV_A_ fd); 1616 fd_kill (EV_A_ fd);
506 return; 1617 break;
507 } 1618 }
508} 1619}
509 1620
510/* usually called after fork if method needs to re-arm all fds from scratch */ 1621/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 1622static void noinline
512fd_rearm_all (EV_P) 1623fd_rearm_all (EV_P)
513{ 1624{
514 int fd; 1625 int fd;
515 1626
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 1627 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1628 if (anfds [fd].events)
519 { 1629 {
520 anfds [fd].events = 0; 1630 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 1631 anfds [fd].emask = 0;
1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 1633 }
523} 1634}
524 1635
525/*****************************************************************************/ 1636/* used to prepare libev internal fd's */
526 1637/* this is not fork-safe */
527static void
528upheap (WT *heap, int k)
529{
530 WT w = heap [k];
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 }
538
539 heap [k] = w;
540 ((W)heap [k])->active = k + 1;
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566}
567
568inline void 1638inline_speed void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574
575/*****************************************************************************/
576
577typedef struct
578{
579 WL head;
580 sig_atomic_t volatile gotsig;
581} ANSIG;
582
583static ANSIG *signals;
584static int signalmax;
585
586static int sigpipe [2];
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589
590static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653inline void
654fd_intern (int fd) 1639fd_intern (int fd)
655{ 1640{
656#ifdef _WIN32 1641#ifdef _WIN32
657 int arg = 1; 1642 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
659#else 1644#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1646 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1647#endif
663} 1648}
664 1649
1650/*****************************************************************************/
1651
1652/*
1653 * the heap functions want a real array index. array index 0 is guaranteed to not
1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1655 * the branching factor of the d-tree.
1656 */
1657
1658/*
1659 * at the moment we allow libev the luxury of two heaps,
1660 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1661 * which is more cache-efficient.
1662 * the difference is about 5% with 50000+ watchers.
1663 */
1664#if EV_USE_4HEAP
1665
1666#define DHEAP 4
1667#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1668#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1669#define UPHEAP_DONE(p,k) ((p) == (k))
1670
1671/* away from the root */
1672inline_speed void
1673downheap (ANHE *heap, int N, int k)
1674{
1675 ANHE he = heap [k];
1676 ANHE *E = heap + N + HEAP0;
1677
1678 for (;;)
1679 {
1680 ev_tstamp minat;
1681 ANHE *minpos;
1682 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1683
1684 /* find minimum child */
1685 if (expect_true (pos + DHEAP - 1 < E))
1686 {
1687 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1691 }
1692 else if (pos < E)
1693 {
1694 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1695 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1696 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1697 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1698 }
1699 else
1700 break;
1701
1702 if (ANHE_at (he) <= minat)
1703 break;
1704
1705 heap [k] = *minpos;
1706 ev_active (ANHE_w (*minpos)) = k;
1707
1708 k = minpos - heap;
1709 }
1710
1711 heap [k] = he;
1712 ev_active (ANHE_w (he)) = k;
1713}
1714
1715#else /* 4HEAP */
1716
1717#define HEAP0 1
1718#define HPARENT(k) ((k) >> 1)
1719#define UPHEAP_DONE(p,k) (!(p))
1720
1721/* away from the root */
1722inline_speed void
1723downheap (ANHE *heap, int N, int k)
1724{
1725 ANHE he = heap [k];
1726
1727 for (;;)
1728 {
1729 int c = k << 1;
1730
1731 if (c >= N + HEAP0)
1732 break;
1733
1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1735 ? 1 : 0;
1736
1737 if (ANHE_at (he) <= ANHE_at (heap [c]))
1738 break;
1739
1740 heap [k] = heap [c];
1741 ev_active (ANHE_w (heap [k])) = k;
1742
1743 k = c;
1744 }
1745
1746 heap [k] = he;
1747 ev_active (ANHE_w (he)) = k;
1748}
1749#endif
1750
1751/* towards the root */
1752inline_speed void
1753upheap (ANHE *heap, int k)
1754{
1755 ANHE he = heap [k];
1756
1757 for (;;)
1758 {
1759 int p = HPARENT (k);
1760
1761 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1762 break;
1763
1764 heap [k] = heap [p];
1765 ev_active (ANHE_w (heap [k])) = k;
1766 k = p;
1767 }
1768
1769 heap [k] = he;
1770 ev_active (ANHE_w (he)) = k;
1771}
1772
1773/* move an element suitably so it is in a correct place */
1774inline_size void
1775adjustheap (ANHE *heap, int N, int k)
1776{
1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1778 upheap (heap, k);
1779 else
1780 downheap (heap, N, k);
1781}
1782
1783/* rebuild the heap: this function is used only once and executed rarely */
1784inline_size void
1785reheap (ANHE *heap, int N)
1786{
1787 int i;
1788
1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1790 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1791 for (i = 0; i < N; ++i)
1792 upheap (heap, i + HEAP0);
1793}
1794
1795/*****************************************************************************/
1796
1797/* associate signal watchers to a signal signal */
1798typedef struct
1799{
1800 EV_ATOMIC_T pending;
1801#if EV_MULTIPLICITY
1802 EV_P;
1803#endif
1804 WL head;
1805} ANSIG;
1806
1807static ANSIG signals [EV_NSIG - 1];
1808
1809/*****************************************************************************/
1810
1811#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1812
1813static void noinline ecb_cold
1814evpipe_init (EV_P)
1815{
1816 if (!ev_is_active (&pipe_w))
1817 {
1818# if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
1824 {
1825 evpipe [0] = -1;
1826 fd_intern (evfd); /* doing it twice doesn't hurt */
1827 ev_io_set (&pipe_w, evfd, EV_READ);
1828 }
1829 else
1830# endif
1831 {
1832 while (pipe (evpipe))
1833 ev_syserr ("(libev) error creating signal/async pipe");
1834
1835 fd_intern (evpipe [0]);
1836 fd_intern (evpipe [1]);
1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1838 }
1839
1840 ev_io_start (EV_A_ &pipe_w);
1841 ev_unref (EV_A); /* watcher should not keep loop alive */
1842 }
1843}
1844
1845inline_speed void
1846evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1847{
1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854
1855 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1856
1857 pipe_write_skipped = 1;
1858
1859 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1860
1861 if (pipe_write_wanted)
1862 {
1863 int old_errno;
1864
1865 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1866
1867 old_errno = errno; /* save errno because write will clobber it */
1868
1869#if EV_USE_EVENTFD
1870 if (evfd >= 0)
1871 {
1872 uint64_t counter = 1;
1873 write (evfd, &counter, sizeof (uint64_t));
1874 }
1875 else
1876#endif
1877 {
1878#ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884#else
1885 write (evpipe [1], &(evpipe [1]), 1);
1886#endif
1887 }
1888
1889 errno = old_errno;
1890 }
1891}
1892
1893/* called whenever the libev signal pipe */
1894/* got some events (signal, async) */
665static void 1895static void
666siginit (EV_P) 1896pipecb (EV_P_ ev_io *iow, int revents)
667{ 1897{
668 fd_intern (sigpipe [0]); 1898 int i;
669 fd_intern (sigpipe [1]);
670 1899
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1900 if (revents & EV_READ)
672 ev_io_start (EV_A_ &sigev); 1901 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1902#if EV_USE_EVENTFD
1903 if (evfd >= 0)
1904 {
1905 uint64_t counter;
1906 read (evfd, &counter, sizeof (uint64_t));
1907 }
1908 else
1909#endif
1910 {
1911 char dummy[4];
1912#ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 DWORD flags = 0;
1916 buf.buf = dummy;
1917 buf.len = sizeof (dummy);
1918 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1919#else
1920 read (evpipe [0], &dummy, sizeof (dummy));
1921#endif
1922 }
1923 }
1924
1925 pipe_write_skipped = 0;
1926
1927 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1928
1929#if EV_SIGNAL_ENABLE
1930 if (sig_pending)
1931 {
1932 sig_pending = 0;
1933
1934 ECB_MEMORY_FENCE_RELEASE;
1935
1936 for (i = EV_NSIG - 1; i--; )
1937 if (expect_false (signals [i].pending))
1938 ev_feed_signal_event (EV_A_ i + 1);
1939 }
1940#endif
1941
1942#if EV_ASYNC_ENABLE
1943 if (async_pending)
1944 {
1945 async_pending = 0;
1946
1947 ECB_MEMORY_FENCE_RELEASE;
1948
1949 for (i = asynccnt; i--; )
1950 if (asyncs [i]->sent)
1951 {
1952 asyncs [i]->sent = 0;
1953 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1954 }
1955 }
1956#endif
674} 1957}
675 1958
676/*****************************************************************************/ 1959/*****************************************************************************/
677 1960
678static struct ev_child *childs [PID_HASHSIZE]; 1961void
1962ev_feed_signal (int signum) EV_THROW
1963{
1964#if EV_MULTIPLICITY
1965 EV_P = signals [signum - 1].loop;
679 1966
1967 if (!EV_A)
1968 return;
1969#endif
1970
1971 if (!ev_active (&pipe_w))
1972 return;
1973
1974 signals [signum - 1].pending = 1;
1975 evpipe_write (EV_A_ &sig_pending);
1976}
1977
1978static void
1979ev_sighandler (int signum)
1980{
680#ifndef _WIN32 1981#ifdef _WIN32
1982 signal (signum, ev_sighandler);
1983#endif
681 1984
1985 ev_feed_signal (signum);
1986}
1987
1988void noinline
1989ev_feed_signal_event (EV_P_ int signum) EV_THROW
1990{
1991 WL w;
1992
1993 if (expect_false (signum <= 0 || signum > EV_NSIG))
1994 return;
1995
1996 --signum;
1997
1998#if EV_MULTIPLICITY
1999 /* it is permissible to try to feed a signal to the wrong loop */
2000 /* or, likely more useful, feeding a signal nobody is waiting for */
2001
2002 if (expect_false (signals [signum].loop != EV_A))
2003 return;
2004#endif
2005
2006 signals [signum].pending = 0;
2007
2008 for (w = signals [signum].head; w; w = w->next)
2009 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2010}
2011
2012#if EV_USE_SIGNALFD
2013static void
2014sigfdcb (EV_P_ ev_io *iow, int revents)
2015{
2016 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2017
2018 for (;;)
2019 {
2020 ssize_t res = read (sigfd, si, sizeof (si));
2021
2022 /* not ISO-C, as res might be -1, but works with SuS */
2023 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2024 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2025
2026 if (res < (ssize_t)sizeof (si))
2027 break;
2028 }
2029}
2030#endif
2031
2032#endif
2033
2034/*****************************************************************************/
2035
2036#if EV_CHILD_ENABLE
2037static WL childs [EV_PID_HASHSIZE];
2038
682static struct ev_signal childev; 2039static ev_signal childev;
2040
2041#ifndef WIFCONTINUED
2042# define WIFCONTINUED(status) 0
2043#endif
2044
2045/* handle a single child status event */
2046inline_speed void
2047child_reap (EV_P_ int chain, int pid, int status)
2048{
2049 ev_child *w;
2050 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2051
2052 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2053 {
2054 if ((w->pid == pid || !w->pid)
2055 && (!traced || (w->flags & 1)))
2056 {
2057 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2058 w->rpid = pid;
2059 w->rstatus = status;
2060 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2061 }
2062 }
2063}
683 2064
684#ifndef WCONTINUED 2065#ifndef WCONTINUED
685# define WCONTINUED 0 2066# define WCONTINUED 0
686#endif 2067#endif
687 2068
2069/* called on sigchld etc., calls waitpid */
688static void 2070static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 2071childcb (EV_P_ ev_signal *sw, int revents)
705{ 2072{
706 int pid, status; 2073 int pid, status;
707 2074
2075 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2076 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 2077 if (!WCONTINUED
2078 || errno != EINVAL
2079 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2080 return;
2081
710 /* make sure we are called again until all childs have been reaped */ 2082 /* make sure we are called again until all children have been reaped */
2083 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2084 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 2085
713 child_reap (EV_A_ sw, pid, pid, status); 2086 child_reap (EV_A_ pid, pid, status);
2087 if ((EV_PID_HASHSIZE) > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2088 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 2089}
717 2090
718#endif 2091#endif
719 2092
720/*****************************************************************************/ 2093/*****************************************************************************/
721 2094
2095#if EV_USE_IOCP
2096# include "ev_iocp.c"
2097#endif
722#if EV_USE_PORT 2098#if EV_USE_PORT
723# include "ev_port.c" 2099# include "ev_port.c"
724#endif 2100#endif
725#if EV_USE_KQUEUE 2101#if EV_USE_KQUEUE
726# include "ev_kqueue.c" 2102# include "ev_kqueue.c"
733#endif 2109#endif
734#if EV_USE_SELECT 2110#if EV_USE_SELECT
735# include "ev_select.c" 2111# include "ev_select.c"
736#endif 2112#endif
737 2113
738int 2114int ecb_cold
739ev_version_major (void) 2115ev_version_major (void) EV_THROW
740{ 2116{
741 return EV_VERSION_MAJOR; 2117 return EV_VERSION_MAJOR;
742} 2118}
743 2119
744int 2120int ecb_cold
745ev_version_minor (void) 2121ev_version_minor (void) EV_THROW
746{ 2122{
747 return EV_VERSION_MINOR; 2123 return EV_VERSION_MINOR;
748} 2124}
749 2125
750/* return true if we are running with elevated privileges and should ignore env variables */ 2126/* return true if we are running with elevated privileges and should ignore env variables */
751static int 2127int inline_size ecb_cold
752enable_secure (void) 2128enable_secure (void)
753{ 2129{
754#ifdef _WIN32 2130#ifdef _WIN32
755 return 0; 2131 return 0;
756#else 2132#else
757 return getuid () != geteuid () 2133 return getuid () != geteuid ()
758 || getgid () != getegid (); 2134 || getgid () != getegid ();
759#endif 2135#endif
760} 2136}
761 2137
2138unsigned int ecb_cold
2139ev_supported_backends (void) EV_THROW
2140{
2141 unsigned int flags = 0;
2142
2143 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2144 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2145 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2146 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2147 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2148
2149 return flags;
2150}
2151
2152unsigned int ecb_cold
2153ev_recommended_backends (void) EV_THROW
2154{
2155 unsigned int flags = ev_supported_backends ();
2156
2157#ifndef __NetBSD__
2158 /* kqueue is borked on everything but netbsd apparently */
2159 /* it usually doesn't work correctly on anything but sockets and pipes */
2160 flags &= ~EVBACKEND_KQUEUE;
2161#endif
2162#ifdef __APPLE__
2163 /* only select works correctly on that "unix-certified" platform */
2164 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2165 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2166#endif
2167#ifdef __FreeBSD__
2168 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2169#endif
2170
2171 return flags;
2172}
2173
2174unsigned int ecb_cold
2175ev_embeddable_backends (void) EV_THROW
2176{
2177 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2178
2179 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2180 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2181 flags &= ~EVBACKEND_EPOLL;
2182
2183 return flags;
2184}
2185
762unsigned int 2186unsigned int
763ev_method (EV_P) 2187ev_backend (EV_P) EV_THROW
764{ 2188{
765 return method; 2189 return backend;
766} 2190}
767 2191
768static void 2192#if EV_FEATURE_API
2193unsigned int
2194ev_iteration (EV_P) EV_THROW
2195{
2196 return loop_count;
2197}
2198
2199unsigned int
2200ev_depth (EV_P) EV_THROW
2201{
2202 return loop_depth;
2203}
2204
2205void
2206ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2207{
2208 io_blocktime = interval;
2209}
2210
2211void
2212ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2213{
2214 timeout_blocktime = interval;
2215}
2216
2217void
2218ev_set_userdata (EV_P_ void *data) EV_THROW
2219{
2220 userdata = data;
2221}
2222
2223void *
2224ev_userdata (EV_P) EV_THROW
2225{
2226 return userdata;
2227}
2228
2229void
2230ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2231{
2232 invoke_cb = invoke_pending_cb;
2233}
2234
2235void
2236ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2237{
2238 release_cb = release;
2239 acquire_cb = acquire;
2240}
2241#endif
2242
2243/* initialise a loop structure, must be zero-initialised */
2244static void noinline ecb_cold
769loop_init (EV_P_ unsigned int flags) 2245loop_init (EV_P_ unsigned int flags) EV_THROW
770{ 2246{
771 if (!method) 2247 if (!backend)
772 { 2248 {
2249 origflags = flags;
2250
2251#if EV_USE_REALTIME
2252 if (!have_realtime)
2253 {
2254 struct timespec ts;
2255
2256 if (!clock_gettime (CLOCK_REALTIME, &ts))
2257 have_realtime = 1;
2258 }
2259#endif
2260
773#if EV_USE_MONOTONIC 2261#if EV_USE_MONOTONIC
2262 if (!have_monotonic)
774 { 2263 {
775 struct timespec ts; 2264 struct timespec ts;
2265
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2266 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 2267 have_monotonic = 1;
778 } 2268 }
779#endif 2269#endif
780 2270
781 ev_rt_now = ev_time (); 2271 /* pid check not overridable via env */
782 mn_now = get_clock (); 2272#ifndef _WIN32
783 now_floor = mn_now; 2273 if (flags & EVFLAG_FORKCHECK)
784 rtmn_diff = ev_rt_now - mn_now; 2274 curpid = getpid ();
2275#endif
785 2276
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2277 if (!(flags & EVFLAG_NOENV)
2278 && !enable_secure ()
2279 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 2280 flags = atoi (getenv ("LIBEV_FLAGS"));
788 2281
789 if (!(flags & 0x0000ffff)) 2282 ev_rt_now = ev_time ();
790 flags |= 0x0000ffff; 2283 mn_now = get_clock ();
2284 now_floor = mn_now;
2285 rtmn_diff = ev_rt_now - mn_now;
2286#if EV_FEATURE_API
2287 invoke_cb = ev_invoke_pending;
2288#endif
791 2289
792 method = 0; 2290 io_blocktime = 0.;
2291 timeout_blocktime = 0.;
2292 backend = 0;
2293 backend_fd = -1;
2294 sig_pending = 0;
2295#if EV_ASYNC_ENABLE
2296 async_pending = 0;
2297#endif
2298 pipe_write_skipped = 0;
2299 pipe_write_wanted = 0;
2300#if EV_USE_INOTIFY
2301 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2302#endif
2303#if EV_USE_SIGNALFD
2304 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2305#endif
2306
2307 if (!(flags & EVBACKEND_MASK))
2308 flags |= ev_recommended_backends ();
2309
2310#if EV_USE_IOCP
2311 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2312#endif
793#if EV_USE_PORT 2313#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 2314 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 2315#endif
796#if EV_USE_KQUEUE 2316#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 2317 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 2318#endif
799#if EV_USE_EPOLL 2319#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 2320 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 2321#endif
802#if EV_USE_POLL 2322#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 2323 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 2324#endif
805#if EV_USE_SELECT 2325#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 2326 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 2327#endif
808 2328
2329 ev_prepare_init (&pending_w, pendingcb);
2330
2331#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
809 ev_init (&sigev, sigcb); 2332 ev_init (&pipe_w, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 2333 ev_set_priority (&pipe_w, EV_MAXPRI);
2334#endif
811 } 2335 }
812} 2336}
813 2337
814void 2338/* free up a loop structure */
2339void ecb_cold
815loop_destroy (EV_P) 2340ev_loop_destroy (EV_P)
816{ 2341{
817 int i; 2342 int i;
818 2343
2344#if EV_MULTIPLICITY
2345 /* mimic free (0) */
2346 if (!EV_A)
2347 return;
2348#endif
2349
2350#if EV_CLEANUP_ENABLE
2351 /* queue cleanup watchers (and execute them) */
2352 if (expect_false (cleanupcnt))
2353 {
2354 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2355 EV_INVOKE_PENDING;
2356 }
2357#endif
2358
2359#if EV_CHILD_ENABLE
2360 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2361 {
2362 ev_ref (EV_A); /* child watcher */
2363 ev_signal_stop (EV_A_ &childev);
2364 }
2365#endif
2366
2367 if (ev_is_active (&pipe_w))
2368 {
2369 /*ev_ref (EV_A);*/
2370 /*ev_io_stop (EV_A_ &pipe_w);*/
2371
2372#if EV_USE_EVENTFD
2373 if (evfd >= 0)
2374 close (evfd);
2375#endif
2376
2377 if (evpipe [0] >= 0)
2378 {
2379 EV_WIN32_CLOSE_FD (evpipe [0]);
2380 EV_WIN32_CLOSE_FD (evpipe [1]);
2381 }
2382 }
2383
2384#if EV_USE_SIGNALFD
2385 if (ev_is_active (&sigfd_w))
2386 close (sigfd);
2387#endif
2388
2389#if EV_USE_INOTIFY
2390 if (fs_fd >= 0)
2391 close (fs_fd);
2392#endif
2393
2394 if (backend_fd >= 0)
2395 close (backend_fd);
2396
2397#if EV_USE_IOCP
2398 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2399#endif
819#if EV_USE_PORT 2400#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 2401 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 2402#endif
822#if EV_USE_KQUEUE 2403#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 2404 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 2405#endif
825#if EV_USE_EPOLL 2406#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 2407 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 2408#endif
828#if EV_USE_POLL 2409#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 2410 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 2411#endif
831#if EV_USE_SELECT 2412#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 2413 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 2414#endif
834 2415
835 for (i = NUMPRI; i--; ) 2416 for (i = NUMPRI; i--; )
2417 {
836 array_free (pending, [i]); 2418 array_free (pending, [i]);
2419#if EV_IDLE_ENABLE
2420 array_free (idle, [i]);
2421#endif
2422 }
2423
2424 ev_free (anfds); anfds = 0; anfdmax = 0;
837 2425
838 /* have to use the microsoft-never-gets-it-right macro */ 2426 /* have to use the microsoft-never-gets-it-right macro */
2427 array_free (rfeed, EMPTY);
839 array_free (fdchange, EMPTY0); 2428 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 2429 array_free (timer, EMPTY);
841#if EV_PERIODICS 2430#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 2431 array_free (periodic, EMPTY);
843#endif 2432#endif
2433#if EV_FORK_ENABLE
2434 array_free (fork, EMPTY);
2435#endif
2436#if EV_CLEANUP_ENABLE
844 array_free (idle, EMPTY0); 2437 array_free (cleanup, EMPTY);
2438#endif
845 array_free (prepare, EMPTY0); 2439 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 2440 array_free (check, EMPTY);
2441#if EV_ASYNC_ENABLE
2442 array_free (async, EMPTY);
2443#endif
847 2444
848 method = 0; 2445 backend = 0;
849}
850 2446
851static void 2447#if EV_MULTIPLICITY
2448 if (ev_is_default_loop (EV_A))
2449#endif
2450 ev_default_loop_ptr = 0;
2451#if EV_MULTIPLICITY
2452 else
2453 ev_free (EV_A);
2454#endif
2455}
2456
2457#if EV_USE_INOTIFY
2458inline_size void infy_fork (EV_P);
2459#endif
2460
2461inline_size void
852loop_fork (EV_P) 2462loop_fork (EV_P)
853{ 2463{
854#if EV_USE_PORT 2464#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 2465 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 2466#endif
857#if EV_USE_KQUEUE 2467#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 2468 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 2469#endif
860#if EV_USE_EPOLL 2470#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2471 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
862#endif 2472#endif
2473#if EV_USE_INOTIFY
2474 infy_fork (EV_A);
2475#endif
863 2476
864 if (ev_is_active (&sigev)) 2477 if (ev_is_active (&pipe_w))
865 { 2478 {
866 /* default loop */ 2479 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
867 2480
868 ev_ref (EV_A); 2481 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev); 2482 ev_io_stop (EV_A_ &pipe_w);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872 2483
873 while (pipe (sigpipe)) 2484#if EV_USE_EVENTFD
874 syserr ("(libev) error creating pipe"); 2485 if (evfd >= 0)
2486 close (evfd);
2487#endif
875 2488
2489 if (evpipe [0] >= 0)
2490 {
2491 EV_WIN32_CLOSE_FD (evpipe [0]);
2492 EV_WIN32_CLOSE_FD (evpipe [1]);
2493 }
2494
2495#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
876 siginit (EV_A); 2496 evpipe_init (EV_A);
2497 /* now iterate over everything, in case we missed something */
2498 pipecb (EV_A_ &pipe_w, EV_READ);
2499#endif
877 } 2500 }
878 2501
879 postfork = 0; 2502 postfork = 0;
880} 2503}
881 2504
882#if EV_MULTIPLICITY 2505#if EV_MULTIPLICITY
2506
883struct ev_loop * 2507struct ev_loop * ecb_cold
884ev_loop_new (unsigned int flags) 2508ev_loop_new (unsigned int flags) EV_THROW
885{ 2509{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2510 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887 2511
888 memset (loop, 0, sizeof (struct ev_loop)); 2512 memset (EV_A, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags); 2513 loop_init (EV_A_ flags);
891 2514
892 if (ev_method (EV_A)) 2515 if (ev_backend (EV_A))
893 return loop; 2516 return EV_A;
894 2517
2518 ev_free (EV_A);
895 return 0; 2519 return 0;
896} 2520}
897 2521
898void 2522#endif /* multiplicity */
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904 2523
905void 2524#if EV_VERIFY
906ev_loop_fork (EV_P) 2525static void noinline ecb_cold
2526verify_watcher (EV_P_ W w)
907{ 2527{
908 postfork = 1; 2528 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
909}
910 2529
2530 if (w->pending)
2531 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2532}
2533
2534static void noinline ecb_cold
2535verify_heap (EV_P_ ANHE *heap, int N)
2536{
2537 int i;
2538
2539 for (i = HEAP0; i < N + HEAP0; ++i)
2540 {
2541 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2542 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2543 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2544
2545 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2546 }
2547}
2548
2549static void noinline ecb_cold
2550array_verify (EV_P_ W *ws, int cnt)
2551{
2552 while (cnt--)
2553 {
2554 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2555 verify_watcher (EV_A_ ws [cnt]);
2556 }
2557}
2558#endif
2559
2560#if EV_FEATURE_API
2561void ecb_cold
2562ev_verify (EV_P) EV_THROW
2563{
2564#if EV_VERIFY
2565 int i;
2566 WL w, w2;
2567
2568 assert (activecnt >= -1);
2569
2570 assert (fdchangemax >= fdchangecnt);
2571 for (i = 0; i < fdchangecnt; ++i)
2572 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2573
2574 assert (anfdmax >= 0);
2575 for (i = 0; i < anfdmax; ++i)
2576 {
2577 int j = 0;
2578
2579 for (w = w2 = anfds [i].head; w; w = w->next)
2580 {
2581 verify_watcher (EV_A_ (W)w);
2582
2583 if (j++ & 1)
2584 {
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 w2 = w2->next;
2587 }
2588
2589 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2590 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2591 }
2592 }
2593
2594 assert (timermax >= timercnt);
2595 verify_heap (EV_A_ timers, timercnt);
2596
2597#if EV_PERIODIC_ENABLE
2598 assert (periodicmax >= periodiccnt);
2599 verify_heap (EV_A_ periodics, periodiccnt);
2600#endif
2601
2602 for (i = NUMPRI; i--; )
2603 {
2604 assert (pendingmax [i] >= pendingcnt [i]);
2605#if EV_IDLE_ENABLE
2606 assert (idleall >= 0);
2607 assert (idlemax [i] >= idlecnt [i]);
2608 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2609#endif
2610 }
2611
2612#if EV_FORK_ENABLE
2613 assert (forkmax >= forkcnt);
2614 array_verify (EV_A_ (W *)forks, forkcnt);
2615#endif
2616
2617#if EV_CLEANUP_ENABLE
2618 assert (cleanupmax >= cleanupcnt);
2619 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2620#endif
2621
2622#if EV_ASYNC_ENABLE
2623 assert (asyncmax >= asynccnt);
2624 array_verify (EV_A_ (W *)asyncs, asynccnt);
2625#endif
2626
2627#if EV_PREPARE_ENABLE
2628 assert (preparemax >= preparecnt);
2629 array_verify (EV_A_ (W *)prepares, preparecnt);
2630#endif
2631
2632#if EV_CHECK_ENABLE
2633 assert (checkmax >= checkcnt);
2634 array_verify (EV_A_ (W *)checks, checkcnt);
2635#endif
2636
2637# if 0
2638#if EV_CHILD_ENABLE
2639 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2640 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2641#endif
2642# endif
2643#endif
2644}
911#endif 2645#endif
912 2646
913#if EV_MULTIPLICITY 2647#if EV_MULTIPLICITY
914struct ev_loop * 2648struct ev_loop * ecb_cold
915ev_default_loop_ (unsigned int flags)
916#else 2649#else
917int 2650int
2651#endif
918ev_default_loop (unsigned int flags) 2652ev_default_loop (unsigned int flags) EV_THROW
919#endif
920{ 2653{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 2654 if (!ev_default_loop_ptr)
926 { 2655 {
927#if EV_MULTIPLICITY 2656#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2657 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 2658#else
930 ev_default_loop_ptr = 1; 2659 ev_default_loop_ptr = 1;
931#endif 2660#endif
932 2661
933 loop_init (EV_A_ flags); 2662 loop_init (EV_A_ flags);
934 2663
935 if (ev_method (EV_A)) 2664 if (ev_backend (EV_A))
936 { 2665 {
937 siginit (EV_A); 2666#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 2667 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 2668 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 2669 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2670 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 2671#endif
949 2676
950 return ev_default_loop_ptr; 2677 return ev_default_loop_ptr;
951} 2678}
952 2679
953void 2680void
954ev_default_destroy (void) 2681ev_loop_fork (EV_P) EV_THROW
955{ 2682{
956#if EV_MULTIPLICITY 2683 postfork = 1; /* must be in line with ev_default_fork */
957 struct ev_loop *loop = ev_default_loop_ptr;
958#endif
959
960#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev);
963#endif
964
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A);
972} 2684}
2685
2686/*****************************************************************************/
973 2687
974void 2688void
975ev_default_fork (void) 2689ev_invoke (EV_P_ void *w, int revents)
976{ 2690{
977#if EV_MULTIPLICITY 2691 EV_CB_INVOKE ((W)w, revents);
978 struct ev_loop *loop = ev_default_loop_ptr;
979#endif
980
981 if (method)
982 postfork = 1;
983} 2692}
984 2693
985/*****************************************************************************/ 2694unsigned int
986 2695ev_pending_count (EV_P) EV_THROW
987static int
988any_pending (EV_P)
989{ 2696{
990 int pri; 2697 int pri;
2698 unsigned int count = 0;
991 2699
992 for (pri = NUMPRI; pri--; ) 2700 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri]) 2701 count += pendingcnt [pri];
994 return 1;
995 2702
996 return 0; 2703 return count;
997} 2704}
998 2705
999inline void 2706void noinline
1000call_pending (EV_P) 2707ev_invoke_pending (EV_P)
1001{ 2708{
1002 int pri; 2709 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1003
1004 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 2710 while (pendingcnt [pendingpri])
1006 { 2711 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2712 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1008 2713
1009 if (expect_true (p->w))
1010 {
1011 p->w->pending = 0; 2714 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 2715 EV_CB_INVOKE (p->w, p->events);
1013 } 2716 EV_FREQUENT_CHECK;
1014 } 2717 }
1015} 2718}
1016 2719
1017static void 2720#if EV_IDLE_ENABLE
2721/* make idle watchers pending. this handles the "call-idle */
2722/* only when higher priorities are idle" logic */
2723inline_size void
2724idle_reify (EV_P)
2725{
2726 if (expect_false (idleall))
2727 {
2728 int pri;
2729
2730 for (pri = NUMPRI; pri--; )
2731 {
2732 if (pendingcnt [pri])
2733 break;
2734
2735 if (idlecnt [pri])
2736 {
2737 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2738 break;
2739 }
2740 }
2741 }
2742}
2743#endif
2744
2745/* make timers pending */
2746inline_size void
1018timers_reify (EV_P) 2747timers_reify (EV_P)
1019{ 2748{
2749 EV_FREQUENT_CHECK;
2750
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 2751 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 2752 {
1022 struct ev_timer *w = timers [0]; 2753 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 2754 {
2755 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2756
2757 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2758
2759 /* first reschedule or stop timer */
2760 if (w->repeat)
2761 {
2762 ev_at (w) += w->repeat;
2763 if (ev_at (w) < mn_now)
2764 ev_at (w) = mn_now;
2765
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2766 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 2767
1031 ((WT)w)->at += w->repeat; 2768 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 2769 downheap (timers, timercnt, HEAP0);
2770 }
2771 else
2772 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2773
2774 EV_FREQUENT_CHECK;
2775 feed_reverse (EV_A_ (W)w);
1036 } 2776 }
1037 else 2777 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 2778
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2779 feed_reverse_done (EV_A_ EV_TIMER);
2780 }
2781}
2782
2783#if EV_PERIODIC_ENABLE
2784
2785static void noinline
2786periodic_recalc (EV_P_ ev_periodic *w)
2787{
2788 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2789 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2790
2791 /* the above almost always errs on the low side */
2792 while (at <= ev_rt_now)
1041 } 2793 {
1042} 2794 ev_tstamp nat = at + w->interval;
1043 2795
1044#if EV_PERIODICS 2796 /* when resolution fails us, we use ev_rt_now */
1045static void 2797 if (expect_false (nat == at))
2798 {
2799 at = ev_rt_now;
2800 break;
2801 }
2802
2803 at = nat;
2804 }
2805
2806 ev_at (w) = at;
2807}
2808
2809/* make periodics pending */
2810inline_size void
1046periodics_reify (EV_P) 2811periodics_reify (EV_P)
1047{ 2812{
2813 EV_FREQUENT_CHECK;
2814
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2815 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 2816 {
1050 struct ev_periodic *w = periodics [0]; 2817 int feed_count = 0;
1051 2818
2819 do
2820 {
2821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2822
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2823 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 2824
1054 /* first reschedule or stop timer */ 2825 /* first reschedule or stop timer */
2826 if (w->reschedule_cb)
2827 {
2828 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2829
2830 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2831
2832 ANHE_at_cache (periodics [HEAP0]);
2833 downheap (periodics, periodiccnt, HEAP0);
2834 }
2835 else if (w->interval)
2836 {
2837 periodic_recalc (EV_A_ w);
2838 ANHE_at_cache (periodics [HEAP0]);
2839 downheap (periodics, periodiccnt, HEAP0);
2840 }
2841 else
2842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2843
2844 EV_FREQUENT_CHECK;
2845 feed_reverse (EV_A_ (W)w);
2846 }
2847 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2848
2849 feed_reverse_done (EV_A_ EV_PERIODIC);
2850 }
2851}
2852
2853/* simply recalculate all periodics */
2854/* TODO: maybe ensure that at least one event happens when jumping forward? */
2855static void noinline ecb_cold
2856periodics_reschedule (EV_P)
2857{
2858 int i;
2859
2860 /* adjust periodics after time jump */
2861 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2862 {
2863 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2864
1055 if (w->reschedule_cb) 2865 if (w->reschedule_cb)
2866 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2867 else if (w->interval)
2868 periodic_recalc (EV_A_ w);
2869
2870 ANHE_at_cache (periodics [i]);
2871 }
2872
2873 reheap (periodics, periodiccnt);
2874}
2875#endif
2876
2877/* adjust all timers by a given offset */
2878static void noinline ecb_cold
2879timers_reschedule (EV_P_ ev_tstamp adjust)
2880{
2881 int i;
2882
2883 for (i = 0; i < timercnt; ++i)
2884 {
2885 ANHE *he = timers + i + HEAP0;
2886 ANHE_w (*he)->at += adjust;
2887 ANHE_at_cache (*he);
2888 }
2889}
2890
2891/* fetch new monotonic and realtime times from the kernel */
2892/* also detect if there was a timejump, and act accordingly */
2893inline_speed void
2894time_update (EV_P_ ev_tstamp max_block)
2895{
2896#if EV_USE_MONOTONIC
2897 if (expect_true (have_monotonic))
2898 {
2899 int i;
2900 ev_tstamp odiff = rtmn_diff;
2901
2902 mn_now = get_clock ();
2903
2904 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2905 /* interpolate in the meantime */
2906 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1056 { 2907 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2908 ev_rt_now = rtmn_diff + mn_now;
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2909 return;
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 2910 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 2911
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now; 2912 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 2913 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 2914
1114static void 2915 /* loop a few times, before making important decisions.
1115time_update (EV_P) 2916 * on the choice of "4": one iteration isn't enough,
1116{ 2917 * in case we get preempted during the calls to
1117 int i; 2918 * ev_time and get_clock. a second call is almost guaranteed
1118 2919 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 2920 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 2921 * in the unlikely event of having been preempted here.
1121 { 2922 */
1122 if (time_update_monotonic (EV_A)) 2923 for (i = 4; --i; )
1123 { 2924 {
1124 ev_tstamp odiff = rtmn_diff; 2925 ev_tstamp diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 2926 rtmn_diff = ev_rt_now - mn_now;
1129 2927
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2928 diff = odiff - rtmn_diff;
2929
2930 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 2931 return; /* all is well */
1132 2932
1133 ev_rt_now = ev_time (); 2933 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 2934 mn_now = get_clock ();
1135 now_floor = mn_now; 2935 now_floor = mn_now;
1136 } 2936 }
1137 2937
2938 /* no timer adjustment, as the monotonic clock doesn't jump */
2939 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 2940# if EV_PERIODIC_ENABLE
2941 periodics_reschedule (EV_A);
2942# endif
2943 }
2944 else
2945#endif
2946 {
2947 ev_rt_now = ev_time ();
2948
2949 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2950 {
2951 /* adjust timers. this is easy, as the offset is the same for all of them */
2952 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2953#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 2954 periodics_reschedule (EV_A);
1140# endif 2955#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 2956 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 2957
1161 mn_now = ev_rt_now; 2958 mn_now = ev_rt_now;
1162 } 2959 }
1163} 2960}
1164 2961
1165void 2962int
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 2963ev_run (EV_P_ int flags)
1181{ 2964{
1182 double block; 2965#if EV_FEATURE_API
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2966 ++loop_depth;
2967#endif
1184 2968
1185 while (activecnt) 2969 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2970
2971 loop_done = EVBREAK_CANCEL;
2972
2973 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2974
2975 do
1186 { 2976 {
2977#if EV_VERIFY >= 2
2978 ev_verify (EV_A);
2979#endif
2980
2981#ifndef _WIN32
2982 if (expect_false (curpid)) /* penalise the forking check even more */
2983 if (expect_false (getpid () != curpid))
2984 {
2985 curpid = getpid ();
2986 postfork = 1;
2987 }
2988#endif
2989
2990#if EV_FORK_ENABLE
2991 /* we might have forked, so queue fork handlers */
2992 if (expect_false (postfork))
2993 if (forkcnt)
2994 {
2995 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2996 EV_INVOKE_PENDING;
2997 }
2998#endif
2999
3000#if EV_PREPARE_ENABLE
1187 /* queue check watchers (and execute them) */ 3001 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 3002 if (expect_false (preparecnt))
1189 { 3003 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3004 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 3005 EV_INVOKE_PENDING;
1192 } 3006 }
3007#endif
3008
3009 if (expect_false (loop_done))
3010 break;
1193 3011
1194 /* we might have forked, so reify kernel state if necessary */ 3012 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 3013 if (expect_false (postfork))
1196 loop_fork (EV_A); 3014 loop_fork (EV_A);
1197 3015
1198 /* update fd-related kernel structures */ 3016 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 3017 fd_reify (EV_A);
1200 3018
1201 /* calculate blocking time */ 3019 /* calculate blocking time */
3020 {
3021 ev_tstamp waittime = 0.;
3022 ev_tstamp sleeptime = 0.;
1202 3023
1203 /* we only need this for !monotonic clock or timers, but as we basically 3024 /* remember old timestamp for io_blocktime calculation */
1204 always have timers, we just calculate it always */ 3025 ev_tstamp prev_mn_now = mn_now;
1205#if EV_USE_MONOTONIC 3026
1206 if (expect_true (have_monotonic)) 3027 /* update time to cancel out callback processing overhead */
1207 time_update_monotonic (EV_A); 3028 time_update (EV_A_ 1e100);
1208 else 3029
1209#endif 3030 /* from now on, we want a pipe-wake-up */
3031 pipe_write_wanted = 1;
3032
3033 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3034
3035 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1210 { 3036 {
1211 ev_rt_now = ev_time ();
1212 mn_now = ev_rt_now;
1213 }
1214
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 3037 waittime = MAX_BLOCKTIME;
1220 3038
1221 if (timercnt) 3039 if (timercnt)
1222 { 3040 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1224 if (block > to) block = to; 3042 if (waittime > to) waittime = to;
1225 } 3043 }
1226 3044
1227#if EV_PERIODICS 3045#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 3046 if (periodiccnt)
1229 { 3047 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1231 if (block > to) block = to; 3049 if (waittime > to) waittime = to;
1232 } 3050 }
1233#endif 3051#endif
1234 3052
1235 if (block < 0.) block = 0.; 3053 /* don't let timeouts decrease the waittime below timeout_blocktime */
3054 if (expect_false (waittime < timeout_blocktime))
3055 waittime = timeout_blocktime;
3056
3057 /* at this point, we NEED to wait, so we have to ensure */
3058 /* to pass a minimum nonzero value to the backend */
3059 if (expect_false (waittime < backend_mintime))
3060 waittime = backend_mintime;
3061
3062 /* extra check because io_blocktime is commonly 0 */
3063 if (expect_false (io_blocktime))
3064 {
3065 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3066
3067 if (sleeptime > waittime - backend_mintime)
3068 sleeptime = waittime - backend_mintime;
3069
3070 if (expect_true (sleeptime > 0.))
3071 {
3072 ev_sleep (sleeptime);
3073 waittime -= sleeptime;
3074 }
3075 }
1236 } 3076 }
1237 3077
1238 method_poll (EV_A_ block); 3078#if EV_FEATURE_API
3079 ++loop_count;
3080#endif
3081 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3082 backend_poll (EV_A_ waittime);
3083 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1239 3084
3085 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3086
3087 if (pipe_write_skipped)
3088 {
3089 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3091 }
3092
3093
1240 /* update ev_rt_now, do magic */ 3094 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 3095 time_update (EV_A_ waittime + sleeptime);
3096 }
1242 3097
1243 /* queue pending timers and reschedule them */ 3098 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 3099 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 3100#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 3101 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 3102#endif
1248 3103
3104#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 3105 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 3106 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3107#endif
1252 3108
3109#if EV_CHECK_ENABLE
1253 /* queue check watchers, to be executed first */ 3110 /* queue check watchers, to be executed first */
1254 if (checkcnt) 3111 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3112 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3113#endif
1256 3114
1257 call_pending (EV_A); 3115 EV_INVOKE_PENDING;
1258
1259 if (loop_done)
1260 break;
1261 } 3116 }
3117 while (expect_true (
3118 activecnt
3119 && !loop_done
3120 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3121 ));
1262 3122
1263 if (loop_done != 2) 3123 if (loop_done == EVBREAK_ONE)
1264 loop_done = 0; 3124 loop_done = EVBREAK_CANCEL;
3125
3126#if EV_FEATURE_API
3127 --loop_depth;
3128#endif
3129
3130 return activecnt;
1265} 3131}
1266 3132
1267void 3133void
1268ev_unloop (EV_P_ int how) 3134ev_break (EV_P_ int how) EV_THROW
1269{ 3135{
1270 loop_done = how; 3136 loop_done = how;
1271} 3137}
1272 3138
3139void
3140ev_ref (EV_P) EV_THROW
3141{
3142 ++activecnt;
3143}
3144
3145void
3146ev_unref (EV_P) EV_THROW
3147{
3148 --activecnt;
3149}
3150
3151void
3152ev_now_update (EV_P) EV_THROW
3153{
3154 time_update (EV_A_ 1e100);
3155}
3156
3157void
3158ev_suspend (EV_P) EV_THROW
3159{
3160 ev_now_update (EV_A);
3161}
3162
3163void
3164ev_resume (EV_P) EV_THROW
3165{
3166 ev_tstamp mn_prev = mn_now;
3167
3168 ev_now_update (EV_A);
3169 timers_reschedule (EV_A_ mn_now - mn_prev);
3170#if EV_PERIODIC_ENABLE
3171 /* TODO: really do this? */
3172 periodics_reschedule (EV_A);
3173#endif
3174}
3175
1273/*****************************************************************************/ 3176/*****************************************************************************/
3177/* singly-linked list management, used when the expected list length is short */
1274 3178
1275inline void 3179inline_size void
1276wlist_add (WL *head, WL elem) 3180wlist_add (WL *head, WL elem)
1277{ 3181{
1278 elem->next = *head; 3182 elem->next = *head;
1279 *head = elem; 3183 *head = elem;
1280} 3184}
1281 3185
1282inline void 3186inline_size void
1283wlist_del (WL *head, WL elem) 3187wlist_del (WL *head, WL elem)
1284{ 3188{
1285 while (*head) 3189 while (*head)
1286 { 3190 {
1287 if (*head == elem) 3191 if (expect_true (*head == elem))
1288 { 3192 {
1289 *head = elem->next; 3193 *head = elem->next;
1290 return; 3194 break;
1291 } 3195 }
1292 3196
1293 head = &(*head)->next; 3197 head = &(*head)->next;
1294 } 3198 }
1295} 3199}
1296 3200
3201/* internal, faster, version of ev_clear_pending */
1297inline void 3202inline_speed void
1298ev_clear_pending (EV_P_ W w) 3203clear_pending (EV_P_ W w)
1299{ 3204{
1300 if (w->pending) 3205 if (w->pending)
1301 { 3206 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3207 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 3208 w->pending = 0;
1304 } 3209 }
1305} 3210}
1306 3211
3212int
3213ev_clear_pending (EV_P_ void *w) EV_THROW
3214{
3215 W w_ = (W)w;
3216 int pending = w_->pending;
3217
3218 if (expect_true (pending))
3219 {
3220 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3221 p->w = (W)&pending_w;
3222 w_->pending = 0;
3223 return p->events;
3224 }
3225 else
3226 return 0;
3227}
3228
1307inline void 3229inline_size void
3230pri_adjust (EV_P_ W w)
3231{
3232 int pri = ev_priority (w);
3233 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3234 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3235 ev_set_priority (w, pri);
3236}
3237
3238inline_speed void
1308ev_start (EV_P_ W w, int active) 3239ev_start (EV_P_ W w, int active)
1309{ 3240{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3241 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 3242 w->active = active;
1314 ev_ref (EV_A); 3243 ev_ref (EV_A);
1315} 3244}
1316 3245
1317inline void 3246inline_size void
1318ev_stop (EV_P_ W w) 3247ev_stop (EV_P_ W w)
1319{ 3248{
1320 ev_unref (EV_A); 3249 ev_unref (EV_A);
1321 w->active = 0; 3250 w->active = 0;
1322} 3251}
1323 3252
1324/*****************************************************************************/ 3253/*****************************************************************************/
1325 3254
1326void 3255void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 3256ev_io_start (EV_P_ ev_io *w) EV_THROW
1328{ 3257{
1329 int fd = w->fd; 3258 int fd = w->fd;
1330 3259
1331 if (ev_is_active (w)) 3260 if (expect_false (ev_is_active (w)))
1332 return; 3261 return;
1333 3262
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 3263 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3264 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3265
3266 EV_FREQUENT_CHECK;
1335 3267
1336 ev_start (EV_A_ (W)w, 1); 3268 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3269 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3270 wlist_add (&anfds[fd].head, (WL)w);
1339 3271
1340 fd_change (EV_A_ fd); 3272 /* common bug, apparently */
1341} 3273 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1342 3274
1343void 3275 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3276 w->events &= ~EV__IOFDSET;
3277
3278 EV_FREQUENT_CHECK;
3279}
3280
3281void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 3282ev_io_stop (EV_P_ ev_io *w) EV_THROW
1345{ 3283{
1346 ev_clear_pending (EV_A_ (W)w); 3284 clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 3285 if (expect_false (!ev_is_active (w)))
1348 return; 3286 return;
1349 3287
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3288 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 3289
3290 EV_FREQUENT_CHECK;
3291
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3292 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 3293 ev_stop (EV_A_ (W)w);
1354 3294
1355 fd_change (EV_A_ w->fd); 3295 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1356}
1357 3296
1358void 3297 EV_FREQUENT_CHECK;
3298}
3299
3300void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 3301ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1360{ 3302{
1361 if (ev_is_active (w)) 3303 if (expect_false (ev_is_active (w)))
1362 return; 3304 return;
1363 3305
1364 ((WT)w)->at += mn_now; 3306 ev_at (w) += mn_now;
1365 3307
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3308 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 3309
3310 EV_FREQUENT_CHECK;
3311
3312 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 3313 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3314 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 3315 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 3316 ANHE_at_cache (timers [ev_active (w)]);
3317 upheap (timers, ev_active (w));
1372 3318
3319 EV_FREQUENT_CHECK;
3320
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3321 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 3322}
1375 3323
1376void 3324void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 3325ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1378{ 3326{
1379 ev_clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
1380 if (!ev_is_active (w)) 3328 if (expect_false (!ev_is_active (w)))
1381 return; 3329 return;
1382 3330
3331 EV_FREQUENT_CHECK;
3332
3333 {
3334 int active = ev_active (w);
3335
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3336 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 3337
1385 if (((W)w)->active < timercnt--) 3338 --timercnt;
3339
3340 if (expect_true (active < timercnt + HEAP0))
1386 { 3341 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 3342 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3343 adjustheap (timers, timercnt, active);
1389 } 3344 }
3345 }
1390 3346
1391 ((WT)w)->at -= mn_now; 3347 ev_at (w) -= mn_now;
1392 3348
1393 ev_stop (EV_A_ (W)w); 3349 ev_stop (EV_A_ (W)w);
1394}
1395 3350
1396void 3351 EV_FREQUENT_CHECK;
3352}
3353
3354void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 3355ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1398{ 3356{
3357 EV_FREQUENT_CHECK;
3358
3359 clear_pending (EV_A_ (W)w);
3360
1399 if (ev_is_active (w)) 3361 if (ev_is_active (w))
1400 { 3362 {
1401 if (w->repeat) 3363 if (w->repeat)
1402 { 3364 {
1403 ((WT)w)->at = mn_now + w->repeat; 3365 ev_at (w) = mn_now + w->repeat;
3366 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3367 adjustheap (timers, timercnt, ev_active (w));
1405 } 3368 }
1406 else 3369 else
1407 ev_timer_stop (EV_A_ w); 3370 ev_timer_stop (EV_A_ w);
1408 } 3371 }
1409 else if (w->repeat) 3372 else if (w->repeat)
1410 { 3373 {
1411 w->at = w->repeat; 3374 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 3375 ev_timer_start (EV_A_ w);
1413 } 3376 }
1414}
1415 3377
3378 EV_FREQUENT_CHECK;
3379}
3380
3381ev_tstamp
3382ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3383{
3384 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3385}
3386
1416#if EV_PERIODICS 3387#if EV_PERIODIC_ENABLE
1417void 3388void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 3389ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1419{ 3390{
1420 if (ev_is_active (w)) 3391 if (expect_false (ev_is_active (w)))
1421 return; 3392 return;
1422 3393
1423 if (w->reschedule_cb) 3394 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3395 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 3396 else if (w->interval)
1426 { 3397 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3398 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 3399 periodic_recalc (EV_A_ w);
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 } 3400 }
3401 else
3402 ev_at (w) = w->offset;
1431 3403
3404 EV_FREQUENT_CHECK;
3405
3406 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 3407 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3408 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 3409 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 3410 ANHE_at_cache (periodics [ev_active (w)]);
3411 upheap (periodics, ev_active (w));
1436 3412
3413 EV_FREQUENT_CHECK;
3414
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3415 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 3416}
1439 3417
1440void 3418void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 3419ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1442{ 3420{
1443 ev_clear_pending (EV_A_ (W)w); 3421 clear_pending (EV_A_ (W)w);
1444 if (!ev_is_active (w)) 3422 if (expect_false (!ev_is_active (w)))
1445 return; 3423 return;
1446 3424
3425 EV_FREQUENT_CHECK;
3426
3427 {
3428 int active = ev_active (w);
3429
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3430 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 3431
1449 if (((W)w)->active < periodiccnt--) 3432 --periodiccnt;
3433
3434 if (expect_true (active < periodiccnt + HEAP0))
1450 { 3435 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3436 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3437 adjustheap (periodics, periodiccnt, active);
1453 } 3438 }
3439 }
1454 3440
1455 ev_stop (EV_A_ (W)w); 3441 ev_stop (EV_A_ (W)w);
1456}
1457 3442
1458void 3443 EV_FREQUENT_CHECK;
3444}
3445
3446void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 3447ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1460{ 3448{
1461 /* TODO: use adjustheap and recalculation */ 3449 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 3450 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 3451 ev_periodic_start (EV_A_ w);
1464} 3452}
1465#endif 3453#endif
1466 3454
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (ev_is_active (w))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (ev_is_active (w))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (ev_is_active (w))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (!ev_is_active (w))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 3455#ifndef SA_RESTART
1534# define SA_RESTART 0 3456# define SA_RESTART 0
1535#endif 3457#endif
1536 3458
3459#if EV_SIGNAL_ENABLE
3460
3461void noinline
3462ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3463{
3464 if (expect_false (ev_is_active (w)))
3465 return;
3466
3467 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3468
3469#if EV_MULTIPLICITY
3470 assert (("libev: a signal must not be attached to two different loops",
3471 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3472
3473 signals [w->signum - 1].loop = EV_A;
3474#endif
3475
3476 EV_FREQUENT_CHECK;
3477
3478#if EV_USE_SIGNALFD
3479 if (sigfd == -2)
3480 {
3481 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3482 if (sigfd < 0 && errno == EINVAL)
3483 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3484
3485 if (sigfd >= 0)
3486 {
3487 fd_intern (sigfd); /* doing it twice will not hurt */
3488
3489 sigemptyset (&sigfd_set);
3490
3491 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3492 ev_set_priority (&sigfd_w, EV_MAXPRI);
3493 ev_io_start (EV_A_ &sigfd_w);
3494 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3495 }
3496 }
3497
3498 if (sigfd >= 0)
3499 {
3500 /* TODO: check .head */
3501 sigaddset (&sigfd_set, w->signum);
3502 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3503
3504 signalfd (sigfd, &sigfd_set, 0);
3505 }
3506#endif
3507
3508 ev_start (EV_A_ (W)w, 1);
3509 wlist_add (&signals [w->signum - 1].head, (WL)w);
3510
3511 if (!((WL)w)->next)
3512# if EV_USE_SIGNALFD
3513 if (sigfd < 0) /*TODO*/
3514# endif
3515 {
3516# ifdef _WIN32
3517 evpipe_init (EV_A);
3518
3519 signal (w->signum, ev_sighandler);
3520# else
3521 struct sigaction sa;
3522
3523 evpipe_init (EV_A);
3524
3525 sa.sa_handler = ev_sighandler;
3526 sigfillset (&sa.sa_mask);
3527 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3528 sigaction (w->signum, &sa, 0);
3529
3530 if (origflags & EVFLAG_NOSIGMASK)
3531 {
3532 sigemptyset (&sa.sa_mask);
3533 sigaddset (&sa.sa_mask, w->signum);
3534 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3535 }
3536#endif
3537 }
3538
3539 EV_FREQUENT_CHECK;
3540}
3541
3542void noinline
3543ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3544{
3545 clear_pending (EV_A_ (W)w);
3546 if (expect_false (!ev_is_active (w)))
3547 return;
3548
3549 EV_FREQUENT_CHECK;
3550
3551 wlist_del (&signals [w->signum - 1].head, (WL)w);
3552 ev_stop (EV_A_ (W)w);
3553
3554 if (!signals [w->signum - 1].head)
3555 {
3556#if EV_MULTIPLICITY
3557 signals [w->signum - 1].loop = 0; /* unattach from signal */
3558#endif
3559#if EV_USE_SIGNALFD
3560 if (sigfd >= 0)
3561 {
3562 sigset_t ss;
3563
3564 sigemptyset (&ss);
3565 sigaddset (&ss, w->signum);
3566 sigdelset (&sigfd_set, w->signum);
3567
3568 signalfd (sigfd, &sigfd_set, 0);
3569 sigprocmask (SIG_UNBLOCK, &ss, 0);
3570 }
3571 else
3572#endif
3573 signal (w->signum, SIG_DFL);
3574 }
3575
3576 EV_FREQUENT_CHECK;
3577}
3578
3579#endif
3580
3581#if EV_CHILD_ENABLE
3582
1537void 3583void
1538ev_signal_start (EV_P_ struct ev_signal *w) 3584ev_child_start (EV_P_ ev_child *w) EV_THROW
1539{ 3585{
1540#if EV_MULTIPLICITY 3586#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3587 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 3588#endif
1543 if (ev_is_active (w)) 3589 if (expect_false (ev_is_active (w)))
1544 return; 3590 return;
1545 3591
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3592 EV_FREQUENT_CHECK;
1547 3593
1548 ev_start (EV_A_ (W)w, 1); 3594 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3595 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 3596
1552 if (!((WL)w)->next) 3597 EV_FREQUENT_CHECK;
3598}
3599
3600void
3601ev_child_stop (EV_P_ ev_child *w) EV_THROW
3602{
3603 clear_pending (EV_A_ (W)w);
3604 if (expect_false (!ev_is_active (w)))
3605 return;
3606
3607 EV_FREQUENT_CHECK;
3608
3609 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3610 ev_stop (EV_A_ (W)w);
3611
3612 EV_FREQUENT_CHECK;
3613}
3614
3615#endif
3616
3617#if EV_STAT_ENABLE
3618
3619# ifdef _WIN32
3620# undef lstat
3621# define lstat(a,b) _stati64 (a,b)
3622# endif
3623
3624#define DEF_STAT_INTERVAL 5.0074891
3625#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3626#define MIN_STAT_INTERVAL 0.1074891
3627
3628static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3629
3630#if EV_USE_INOTIFY
3631
3632/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3633# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3634
3635static void noinline
3636infy_add (EV_P_ ev_stat *w)
3637{
3638 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3639
3640 if (w->wd >= 0)
3641 {
3642 struct statfs sfs;
3643
3644 /* now local changes will be tracked by inotify, but remote changes won't */
3645 /* unless the filesystem is known to be local, we therefore still poll */
3646 /* also do poll on <2.6.25, but with normal frequency */
3647
3648 if (!fs_2625)
3649 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3650 else if (!statfs (w->path, &sfs)
3651 && (sfs.f_type == 0x1373 /* devfs */
3652 || sfs.f_type == 0xEF53 /* ext2/3 */
3653 || sfs.f_type == 0x3153464a /* jfs */
3654 || sfs.f_type == 0x52654973 /* reiser3 */
3655 || sfs.f_type == 0x01021994 /* tempfs */
3656 || sfs.f_type == 0x58465342 /* xfs */))
3657 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3658 else
3659 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1553 { 3660 }
3661 else
3662 {
3663 /* can't use inotify, continue to stat */
3664 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3665
3666 /* if path is not there, monitor some parent directory for speedup hints */
3667 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3668 /* but an efficiency issue only */
3669 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3670 {
3671 char path [4096];
3672 strcpy (path, w->path);
3673
3674 do
3675 {
3676 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3677 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3678
3679 char *pend = strrchr (path, '/');
3680
3681 if (!pend || pend == path)
3682 break;
3683
3684 *pend = 0;
3685 w->wd = inotify_add_watch (fs_fd, path, mask);
3686 }
3687 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3688 }
3689 }
3690
3691 if (w->wd >= 0)
3692 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3693
3694 /* now re-arm timer, if required */
3695 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3696 ev_timer_again (EV_A_ &w->timer);
3697 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3698}
3699
3700static void noinline
3701infy_del (EV_P_ ev_stat *w)
3702{
3703 int slot;
3704 int wd = w->wd;
3705
3706 if (wd < 0)
3707 return;
3708
3709 w->wd = -2;
3710 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3711 wlist_del (&fs_hash [slot].head, (WL)w);
3712
3713 /* remove this watcher, if others are watching it, they will rearm */
3714 inotify_rm_watch (fs_fd, wd);
3715}
3716
3717static void noinline
3718infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3719{
3720 if (slot < 0)
3721 /* overflow, need to check for all hash slots */
3722 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3723 infy_wd (EV_A_ slot, wd, ev);
3724 else
3725 {
3726 WL w_;
3727
3728 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3729 {
3730 ev_stat *w = (ev_stat *)w_;
3731 w_ = w_->next; /* lets us remove this watcher and all before it */
3732
3733 if (w->wd == wd || wd == -1)
3734 {
3735 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3736 {
3737 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3738 w->wd = -1;
3739 infy_add (EV_A_ w); /* re-add, no matter what */
3740 }
3741
3742 stat_timer_cb (EV_A_ &w->timer, 0);
3743 }
3744 }
3745 }
3746}
3747
3748static void
3749infy_cb (EV_P_ ev_io *w, int revents)
3750{
3751 char buf [EV_INOTIFY_BUFSIZE];
3752 int ofs;
3753 int len = read (fs_fd, buf, sizeof (buf));
3754
3755 for (ofs = 0; ofs < len; )
3756 {
3757 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3758 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3759 ofs += sizeof (struct inotify_event) + ev->len;
3760 }
3761}
3762
3763inline_size void ecb_cold
3764ev_check_2625 (EV_P)
3765{
3766 /* kernels < 2.6.25 are borked
3767 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3768 */
3769 if (ev_linux_version () < 0x020619)
3770 return;
3771
3772 fs_2625 = 1;
3773}
3774
3775inline_size int
3776infy_newfd (void)
3777{
3778#if defined IN_CLOEXEC && defined IN_NONBLOCK
3779 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3780 if (fd >= 0)
3781 return fd;
3782#endif
3783 return inotify_init ();
3784}
3785
3786inline_size void
3787infy_init (EV_P)
3788{
3789 if (fs_fd != -2)
3790 return;
3791
3792 fs_fd = -1;
3793
3794 ev_check_2625 (EV_A);
3795
3796 fs_fd = infy_newfd ();
3797
3798 if (fs_fd >= 0)
3799 {
3800 fd_intern (fs_fd);
3801 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3802 ev_set_priority (&fs_w, EV_MAXPRI);
3803 ev_io_start (EV_A_ &fs_w);
3804 ev_unref (EV_A);
3805 }
3806}
3807
3808inline_size void
3809infy_fork (EV_P)
3810{
3811 int slot;
3812
3813 if (fs_fd < 0)
3814 return;
3815
3816 ev_ref (EV_A);
3817 ev_io_stop (EV_A_ &fs_w);
3818 close (fs_fd);
3819 fs_fd = infy_newfd ();
3820
3821 if (fs_fd >= 0)
3822 {
3823 fd_intern (fs_fd);
3824 ev_io_set (&fs_w, fs_fd, EV_READ);
3825 ev_io_start (EV_A_ &fs_w);
3826 ev_unref (EV_A);
3827 }
3828
3829 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3830 {
3831 WL w_ = fs_hash [slot].head;
3832 fs_hash [slot].head = 0;
3833
3834 while (w_)
3835 {
3836 ev_stat *w = (ev_stat *)w_;
3837 w_ = w_->next; /* lets us add this watcher */
3838
3839 w->wd = -1;
3840
3841 if (fs_fd >= 0)
3842 infy_add (EV_A_ w); /* re-add, no matter what */
3843 else
3844 {
3845 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3846 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3847 ev_timer_again (EV_A_ &w->timer);
3848 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3849 }
3850 }
3851 }
3852}
3853
3854#endif
3855
1554#if _WIN32 3856#ifdef _WIN32
1555 signal (w->signum, sighandler); 3857# define EV_LSTAT(p,b) _stati64 (p, b)
1556#else 3858#else
1557 struct sigaction sa; 3859# define EV_LSTAT(p,b) lstat (p, b)
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif 3860#endif
1563 }
1564}
1565 3861
1566void 3862void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 3863ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1568{ 3864{
1569 ev_clear_pending (EV_A_ (W)w); 3865 if (lstat (w->path, &w->attr) < 0)
1570 if (!ev_is_active (w)) 3866 w->attr.st_nlink = 0;
3867 else if (!w->attr.st_nlink)
3868 w->attr.st_nlink = 1;
3869}
3870
3871static void noinline
3872stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3873{
3874 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3875
3876 ev_statdata prev = w->attr;
3877 ev_stat_stat (EV_A_ w);
3878
3879 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3880 if (
3881 prev.st_dev != w->attr.st_dev
3882 || prev.st_ino != w->attr.st_ino
3883 || prev.st_mode != w->attr.st_mode
3884 || prev.st_nlink != w->attr.st_nlink
3885 || prev.st_uid != w->attr.st_uid
3886 || prev.st_gid != w->attr.st_gid
3887 || prev.st_rdev != w->attr.st_rdev
3888 || prev.st_size != w->attr.st_size
3889 || prev.st_atime != w->attr.st_atime
3890 || prev.st_mtime != w->attr.st_mtime
3891 || prev.st_ctime != w->attr.st_ctime
3892 ) {
3893 /* we only update w->prev on actual differences */
3894 /* in case we test more often than invoke the callback, */
3895 /* to ensure that prev is always different to attr */
3896 w->prev = prev;
3897
3898 #if EV_USE_INOTIFY
3899 if (fs_fd >= 0)
3900 {
3901 infy_del (EV_A_ w);
3902 infy_add (EV_A_ w);
3903 ev_stat_stat (EV_A_ w); /* avoid race... */
3904 }
3905 #endif
3906
3907 ev_feed_event (EV_A_ w, EV_STAT);
3908 }
3909}
3910
3911void
3912ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3913{
3914 if (expect_false (ev_is_active (w)))
1571 return; 3915 return;
1572 3916
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3917 ev_stat_stat (EV_A_ w);
3918
3919 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3920 w->interval = MIN_STAT_INTERVAL;
3921
3922 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3923 ev_set_priority (&w->timer, ev_priority (w));
3924
3925#if EV_USE_INOTIFY
3926 infy_init (EV_A);
3927
3928 if (fs_fd >= 0)
3929 infy_add (EV_A_ w);
3930 else
3931#endif
3932 {
3933 ev_timer_again (EV_A_ &w->timer);
3934 ev_unref (EV_A);
3935 }
3936
3937 ev_start (EV_A_ (W)w, 1);
3938
3939 EV_FREQUENT_CHECK;
3940}
3941
3942void
3943ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3944{
3945 clear_pending (EV_A_ (W)w);
3946 if (expect_false (!ev_is_active (w)))
3947 return;
3948
3949 EV_FREQUENT_CHECK;
3950
3951#if EV_USE_INOTIFY
3952 infy_del (EV_A_ w);
3953#endif
3954
3955 if (ev_is_active (&w->timer))
3956 {
3957 ev_ref (EV_A);
3958 ev_timer_stop (EV_A_ &w->timer);
3959 }
3960
1574 ev_stop (EV_A_ (W)w); 3961 ev_stop (EV_A_ (W)w);
1575 3962
1576 if (!signals [w->signum - 1].head) 3963 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 3964}
3965#endif
1579 3966
3967#if EV_IDLE_ENABLE
1580void 3968void
1581ev_child_start (EV_P_ struct ev_child *w) 3969ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1582{ 3970{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif
1586 if (ev_is_active (w)) 3971 if (expect_false (ev_is_active (w)))
1587 return; 3972 return;
1588 3973
3974 pri_adjust (EV_A_ (W)w);
3975
3976 EV_FREQUENT_CHECK;
3977
3978 {
3979 int active = ++idlecnt [ABSPRI (w)];
3980
3981 ++idleall;
3982 ev_start (EV_A_ (W)w, active);
3983
3984 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3985 idles [ABSPRI (w)][active - 1] = w;
3986 }
3987
3988 EV_FREQUENT_CHECK;
3989}
3990
3991void
3992ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3993{
3994 clear_pending (EV_A_ (W)w);
3995 if (expect_false (!ev_is_active (w)))
3996 return;
3997
3998 EV_FREQUENT_CHECK;
3999
4000 {
4001 int active = ev_active (w);
4002
4003 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4004 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4005
4006 ev_stop (EV_A_ (W)w);
4007 --idleall;
4008 }
4009
4010 EV_FREQUENT_CHECK;
4011}
4012#endif
4013
4014#if EV_PREPARE_ENABLE
4015void
4016ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4017{
4018 if (expect_false (ev_is_active (w)))
4019 return;
4020
4021 EV_FREQUENT_CHECK;
4022
4023 ev_start (EV_A_ (W)w, ++preparecnt);
4024 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4025 prepares [preparecnt - 1] = w;
4026
4027 EV_FREQUENT_CHECK;
4028}
4029
4030void
4031ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4032{
4033 clear_pending (EV_A_ (W)w);
4034 if (expect_false (!ev_is_active (w)))
4035 return;
4036
4037 EV_FREQUENT_CHECK;
4038
4039 {
4040 int active = ev_active (w);
4041
4042 prepares [active - 1] = prepares [--preparecnt];
4043 ev_active (prepares [active - 1]) = active;
4044 }
4045
4046 ev_stop (EV_A_ (W)w);
4047
4048 EV_FREQUENT_CHECK;
4049}
4050#endif
4051
4052#if EV_CHECK_ENABLE
4053void
4054ev_check_start (EV_P_ ev_check *w) EV_THROW
4055{
4056 if (expect_false (ev_is_active (w)))
4057 return;
4058
4059 EV_FREQUENT_CHECK;
4060
4061 ev_start (EV_A_ (W)w, ++checkcnt);
4062 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4063 checks [checkcnt - 1] = w;
4064
4065 EV_FREQUENT_CHECK;
4066}
4067
4068void
4069ev_check_stop (EV_P_ ev_check *w) EV_THROW
4070{
4071 clear_pending (EV_A_ (W)w);
4072 if (expect_false (!ev_is_active (w)))
4073 return;
4074
4075 EV_FREQUENT_CHECK;
4076
4077 {
4078 int active = ev_active (w);
4079
4080 checks [active - 1] = checks [--checkcnt];
4081 ev_active (checks [active - 1]) = active;
4082 }
4083
4084 ev_stop (EV_A_ (W)w);
4085
4086 EV_FREQUENT_CHECK;
4087}
4088#endif
4089
4090#if EV_EMBED_ENABLE
4091void noinline
4092ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4093{
4094 ev_run (w->other, EVRUN_NOWAIT);
4095}
4096
4097static void
4098embed_io_cb (EV_P_ ev_io *io, int revents)
4099{
4100 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4101
4102 if (ev_cb (w))
4103 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4104 else
4105 ev_run (w->other, EVRUN_NOWAIT);
4106}
4107
4108static void
4109embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4110{
4111 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4112
4113 {
4114 EV_P = w->other;
4115
4116 while (fdchangecnt)
4117 {
4118 fd_reify (EV_A);
4119 ev_run (EV_A_ EVRUN_NOWAIT);
4120 }
4121 }
4122}
4123
4124static void
4125embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4126{
4127 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4128
4129 ev_embed_stop (EV_A_ w);
4130
4131 {
4132 EV_P = w->other;
4133
4134 ev_loop_fork (EV_A);
4135 ev_run (EV_A_ EVRUN_NOWAIT);
4136 }
4137
4138 ev_embed_start (EV_A_ w);
4139}
4140
4141#if 0
4142static void
4143embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4144{
4145 ev_idle_stop (EV_A_ idle);
4146}
4147#endif
4148
4149void
4150ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4151{
4152 if (expect_false (ev_is_active (w)))
4153 return;
4154
4155 {
4156 EV_P = w->other;
4157 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4158 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4159 }
4160
4161 EV_FREQUENT_CHECK;
4162
4163 ev_set_priority (&w->io, ev_priority (w));
4164 ev_io_start (EV_A_ &w->io);
4165
4166 ev_prepare_init (&w->prepare, embed_prepare_cb);
4167 ev_set_priority (&w->prepare, EV_MINPRI);
4168 ev_prepare_start (EV_A_ &w->prepare);
4169
4170 ev_fork_init (&w->fork, embed_fork_cb);
4171 ev_fork_start (EV_A_ &w->fork);
4172
4173 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4174
1589 ev_start (EV_A_ (W)w, 1); 4175 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4176
4177 EV_FREQUENT_CHECK;
1591} 4178}
1592 4179
1593void 4180void
1594ev_child_stop (EV_P_ struct ev_child *w) 4181ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1595{ 4182{
1596 ev_clear_pending (EV_A_ (W)w); 4183 clear_pending (EV_A_ (W)w);
1597 if (!ev_is_active (w)) 4184 if (expect_false (!ev_is_active (w)))
1598 return; 4185 return;
1599 4186
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4187 EV_FREQUENT_CHECK;
4188
4189 ev_io_stop (EV_A_ &w->io);
4190 ev_prepare_stop (EV_A_ &w->prepare);
4191 ev_fork_stop (EV_A_ &w->fork);
4192
1601 ev_stop (EV_A_ (W)w); 4193 ev_stop (EV_A_ (W)w);
4194
4195 EV_FREQUENT_CHECK;
1602} 4196}
4197#endif
4198
4199#if EV_FORK_ENABLE
4200void
4201ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4202{
4203 if (expect_false (ev_is_active (w)))
4204 return;
4205
4206 EV_FREQUENT_CHECK;
4207
4208 ev_start (EV_A_ (W)w, ++forkcnt);
4209 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4210 forks [forkcnt - 1] = w;
4211
4212 EV_FREQUENT_CHECK;
4213}
4214
4215void
4216ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4217{
4218 clear_pending (EV_A_ (W)w);
4219 if (expect_false (!ev_is_active (w)))
4220 return;
4221
4222 EV_FREQUENT_CHECK;
4223
4224 {
4225 int active = ev_active (w);
4226
4227 forks [active - 1] = forks [--forkcnt];
4228 ev_active (forks [active - 1]) = active;
4229 }
4230
4231 ev_stop (EV_A_ (W)w);
4232
4233 EV_FREQUENT_CHECK;
4234}
4235#endif
4236
4237#if EV_CLEANUP_ENABLE
4238void
4239ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4240{
4241 if (expect_false (ev_is_active (w)))
4242 return;
4243
4244 EV_FREQUENT_CHECK;
4245
4246 ev_start (EV_A_ (W)w, ++cleanupcnt);
4247 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4248 cleanups [cleanupcnt - 1] = w;
4249
4250 /* cleanup watchers should never keep a refcount on the loop */
4251 ev_unref (EV_A);
4252 EV_FREQUENT_CHECK;
4253}
4254
4255void
4256ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4257{
4258 clear_pending (EV_A_ (W)w);
4259 if (expect_false (!ev_is_active (w)))
4260 return;
4261
4262 EV_FREQUENT_CHECK;
4263 ev_ref (EV_A);
4264
4265 {
4266 int active = ev_active (w);
4267
4268 cleanups [active - 1] = cleanups [--cleanupcnt];
4269 ev_active (cleanups [active - 1]) = active;
4270 }
4271
4272 ev_stop (EV_A_ (W)w);
4273
4274 EV_FREQUENT_CHECK;
4275}
4276#endif
4277
4278#if EV_ASYNC_ENABLE
4279void
4280ev_async_start (EV_P_ ev_async *w) EV_THROW
4281{
4282 if (expect_false (ev_is_active (w)))
4283 return;
4284
4285 w->sent = 0;
4286
4287 evpipe_init (EV_A);
4288
4289 EV_FREQUENT_CHECK;
4290
4291 ev_start (EV_A_ (W)w, ++asynccnt);
4292 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4293 asyncs [asynccnt - 1] = w;
4294
4295 EV_FREQUENT_CHECK;
4296}
4297
4298void
4299ev_async_stop (EV_P_ ev_async *w) EV_THROW
4300{
4301 clear_pending (EV_A_ (W)w);
4302 if (expect_false (!ev_is_active (w)))
4303 return;
4304
4305 EV_FREQUENT_CHECK;
4306
4307 {
4308 int active = ev_active (w);
4309
4310 asyncs [active - 1] = asyncs [--asynccnt];
4311 ev_active (asyncs [active - 1]) = active;
4312 }
4313
4314 ev_stop (EV_A_ (W)w);
4315
4316 EV_FREQUENT_CHECK;
4317}
4318
4319void
4320ev_async_send (EV_P_ ev_async *w) EV_THROW
4321{
4322 w->sent = 1;
4323 evpipe_write (EV_A_ &async_pending);
4324}
4325#endif
1603 4326
1604/*****************************************************************************/ 4327/*****************************************************************************/
1605 4328
1606struct ev_once 4329struct ev_once
1607{ 4330{
1608 struct ev_io io; 4331 ev_io io;
1609 struct ev_timer to; 4332 ev_timer to;
1610 void (*cb)(int revents, void *arg); 4333 void (*cb)(int revents, void *arg);
1611 void *arg; 4334 void *arg;
1612}; 4335};
1613 4336
1614static void 4337static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 4338once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 4339{
1617 void (*cb)(int revents, void *arg) = once->cb; 4340 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 4341 void *arg = once->arg;
1619 4342
1620 ev_io_stop (EV_A_ &once->io); 4343 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 4344 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 4345 ev_free (once);
1623 4346
1624 cb (revents, arg); 4347 cb (revents, arg);
1625} 4348}
1626 4349
1627static void 4350static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 4351once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 4352{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4353 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4354
4355 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 4356}
1632 4357
1633static void 4358static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 4359once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 4360{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4361 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4362
4363 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 4364}
1638 4365
1639void 4366void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4367ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1641{ 4368{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4369 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 4370
1644 if (!once) 4371 if (expect_false (!once))
4372 {
1645 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4373 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1646 else 4374 return;
1647 { 4375 }
4376
1648 once->cb = cb; 4377 once->cb = cb;
1649 once->arg = arg; 4378 once->arg = arg;
1650 4379
1651 ev_init (&once->io, once_cb_io); 4380 ev_init (&once->io, once_cb_io);
1652 if (fd >= 0) 4381 if (fd >= 0)
4382 {
4383 ev_io_set (&once->io, fd, events);
4384 ev_io_start (EV_A_ &once->io);
4385 }
4386
4387 ev_init (&once->to, once_cb_to);
4388 if (timeout >= 0.)
4389 {
4390 ev_timer_set (&once->to, timeout, 0.);
4391 ev_timer_start (EV_A_ &once->to);
4392 }
4393}
4394
4395/*****************************************************************************/
4396
4397#if EV_WALK_ENABLE
4398void ecb_cold
4399ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4400{
4401 int i, j;
4402 ev_watcher_list *wl, *wn;
4403
4404 if (types & (EV_IO | EV_EMBED))
4405 for (i = 0; i < anfdmax; ++i)
4406 for (wl = anfds [i].head; wl; )
1653 { 4407 {
1654 ev_io_set (&once->io, fd, events); 4408 wn = wl->next;
1655 ev_io_start (EV_A_ &once->io); 4409
4410#if EV_EMBED_ENABLE
4411 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4412 {
4413 if (types & EV_EMBED)
4414 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4415 }
4416 else
4417#endif
4418#if EV_USE_INOTIFY
4419 if (ev_cb ((ev_io *)wl) == infy_cb)
4420 ;
4421 else
4422#endif
4423 if ((ev_io *)wl != &pipe_w)
4424 if (types & EV_IO)
4425 cb (EV_A_ EV_IO, wl);
4426
4427 wl = wn;
1656 } 4428 }
1657 4429
1658 ev_init (&once->to, once_cb_to); 4430 if (types & (EV_TIMER | EV_STAT))
1659 if (timeout >= 0.) 4431 for (i = timercnt + HEAP0; i-- > HEAP0; )
4432#if EV_STAT_ENABLE
4433 /*TODO: timer is not always active*/
4434 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1660 { 4435 {
1661 ev_timer_set (&once->to, timeout, 0.); 4436 if (types & EV_STAT)
1662 ev_timer_start (EV_A_ &once->to); 4437 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1663 } 4438 }
1664 } 4439 else
1665} 4440#endif
4441 if (types & EV_TIMER)
4442 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1666 4443
1667#ifdef __cplusplus 4444#if EV_PERIODIC_ENABLE
1668} 4445 if (types & EV_PERIODIC)
4446 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4447 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4448#endif
4449
4450#if EV_IDLE_ENABLE
4451 if (types & EV_IDLE)
4452 for (j = NUMPRI; j--; )
4453 for (i = idlecnt [j]; i--; )
4454 cb (EV_A_ EV_IDLE, idles [j][i]);
4455#endif
4456
4457#if EV_FORK_ENABLE
4458 if (types & EV_FORK)
4459 for (i = forkcnt; i--; )
4460 if (ev_cb (forks [i]) != embed_fork_cb)
4461 cb (EV_A_ EV_FORK, forks [i]);
4462#endif
4463
4464#if EV_ASYNC_ENABLE
4465 if (types & EV_ASYNC)
4466 for (i = asynccnt; i--; )
4467 cb (EV_A_ EV_ASYNC, asyncs [i]);
4468#endif
4469
4470#if EV_PREPARE_ENABLE
4471 if (types & EV_PREPARE)
4472 for (i = preparecnt; i--; )
4473# if EV_EMBED_ENABLE
4474 if (ev_cb (prepares [i]) != embed_prepare_cb)
1669#endif 4475# endif
4476 cb (EV_A_ EV_PREPARE, prepares [i]);
4477#endif
1670 4478
4479#if EV_CHECK_ENABLE
4480 if (types & EV_CHECK)
4481 for (i = checkcnt; i--; )
4482 cb (EV_A_ EV_CHECK, checks [i]);
4483#endif
4484
4485#if EV_SIGNAL_ENABLE
4486 if (types & EV_SIGNAL)
4487 for (i = 0; i < EV_NSIG - 1; ++i)
4488 for (wl = signals [i].head; wl; )
4489 {
4490 wn = wl->next;
4491 cb (EV_A_ EV_SIGNAL, wl);
4492 wl = wn;
4493 }
4494#endif
4495
4496#if EV_CHILD_ENABLE
4497 if (types & EV_CHILD)
4498 for (i = (EV_PID_HASHSIZE); i--; )
4499 for (wl = childs [i]; wl; )
4500 {
4501 wn = wl->next;
4502 cb (EV_A_ EV_CHILD, wl);
4503 wl = wn;
4504 }
4505#endif
4506/* EV_STAT 0x00001000 /* stat data changed */
4507/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4508}
4509#endif
4510
4511#if EV_MULTIPLICITY
4512 #include "ev_wrap.h"
4513#endif
4514

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines