ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.123 by root, Sat Nov 17 02:23:54 2007 UTC vs.
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
89# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 160# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
93# endif 163# endif
94#endif 164#endif
95 165
96/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
97 167
98#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
100#endif 170#endif
101 171
102#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
104#endif 178#endif
105 179
106#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
108#endif 182#endif
114# define EV_USE_POLL 1 188# define EV_USE_POLL 1
115# endif 189# endif
116#endif 190#endif
117 191
118#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
119# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
120#endif 198#endif
121 199
122#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
124#endif 202#endif
125 203
126#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 205# define EV_USE_PORT 0
128#endif 206#endif
129 207
130/**/ 208#ifndef EV_USE_INOTIFY
131 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 211# else
134# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 241
138#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
141#endif 245#endif
143#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
146#endif 250#endif
147 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
148#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 268# include <winsock.h>
150#endif 269#endif
151 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273int eventfd (unsigned int initval, int flags);
274#endif
275
152/**/ 276/**/
277
278/*
279 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding
282 * errors are against us.
283 * This value is good at least till the year 4000.
284 * Better solutions welcome.
285 */
286#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 287
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 288#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 289#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 290/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 291
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 292#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 293# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline 294# define noinline __attribute__ ((noinline))
168#else 295#else
169# define expect(expr,value) (expr) 296# define expect(expr,value) (expr)
170# define inline static 297# define noinline
298# if __STDC_VERSION__ < 199901L
299# define inline
300# endif
171#endif 301#endif
172 302
173#define expect_false(expr) expect ((expr) != 0, 0) 303#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 304#define expect_true(expr) expect ((expr) != 0, 1)
305#define inline_size static inline
306
307#if EV_MINIMAL
308# define inline_speed static noinline
309#else
310# define inline_speed static inline
311#endif
175 312
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 313#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 314#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 315
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 316#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 317#define EMPTY2(a,b) /* used to suppress some warnings */
181 318
182typedef struct ev_watcher *W; 319typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 320typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 321typedef ev_watcher_time *WT;
185 322
323#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif
187 328
188#ifdef _WIN32 329#ifdef _WIN32
189# include "ev_win32.c" 330# include "ev_win32.c"
190#endif 331#endif
191 332
192/*****************************************************************************/ 333/*****************************************************************************/
193 334
194static void (*syserr_cb)(const char *msg); 335static void (*syserr_cb)(const char *msg);
195 336
337void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 338ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 339{
198 syserr_cb = cb; 340 syserr_cb = cb;
199} 341}
200 342
201static void 343static void noinline
202syserr (const char *msg) 344syserr (const char *msg)
203{ 345{
204 if (!msg) 346 if (!msg)
205 msg = "(libev) system error"; 347 msg = "(libev) system error";
206 348
213 } 355 }
214} 356}
215 357
216static void *(*alloc)(void *ptr, long size); 358static void *(*alloc)(void *ptr, long size);
217 359
360void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 361ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 362{
220 alloc = cb; 363 alloc = cb;
221} 364}
222 365
223static void * 366inline_speed void *
224ev_realloc (void *ptr, long size) 367ev_realloc (void *ptr, long size)
225{ 368{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
227 370
228 if (!ptr && size) 371 if (!ptr && size)
252typedef struct 395typedef struct
253{ 396{
254 W w; 397 W w;
255 int events; 398 int events;
256} ANPENDING; 399} ANPENDING;
400
401#if EV_USE_INOTIFY
402typedef struct
403{
404 WL head;
405} ANFS;
406#endif
257 407
258#if EV_MULTIPLICITY 408#if EV_MULTIPLICITY
259 409
260 struct ev_loop 410 struct ev_loop
261 { 411 {
295 gettimeofday (&tv, 0); 445 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 446 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif 447#endif
298} 448}
299 449
300inline ev_tstamp 450ev_tstamp inline_size
301get_clock (void) 451get_clock (void)
302{ 452{
303#if EV_USE_MONOTONIC 453#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 454 if (expect_true (have_monotonic))
305 { 455 {
318{ 468{
319 return ev_rt_now; 469 return ev_rt_now;
320} 470}
321#endif 471#endif
322 472
323#define array_roundsize(type,n) (((n) | 4) & ~3) 473void
474ev_sleep (ev_tstamp delay)
475{
476 if (delay > 0.)
477 {
478#if EV_USE_NANOSLEEP
479 struct timespec ts;
480
481 ts.tv_sec = (time_t)delay;
482 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
483
484 nanosleep (&ts, 0);
485#elif defined(_WIN32)
486 Sleep ((unsigned long)(delay * 1e3));
487#else
488 struct timeval tv;
489
490 tv.tv_sec = (time_t)delay;
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
492
493 select (0, 0, 0, 0, &tv);
494#endif
495 }
496}
497
498/*****************************************************************************/
499
500int inline_size
501array_nextsize (int elem, int cur, int cnt)
502{
503 int ncur = cur + 1;
504
505 do
506 ncur <<= 1;
507 while (cnt > ncur);
508
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096)
511 {
512 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
514 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem;
516 }
517
518 return ncur;
519}
520
521static noinline void *
522array_realloc (int elem, void *base, int *cur, int cnt)
523{
524 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur);
526}
324 527
325#define array_needsize(type,base,cur,cnt,init) \ 528#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 529 if (expect_false ((cnt) > (cur))) \
327 { \ 530 { \
328 int newcnt = cur; \ 531 int ocur_ = (cur); \
329 do \ 532 (base) = (type *)array_realloc \
330 { \ 533 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 534 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 535 }
339 536
537#if 0
340#define array_slim(type,stem) \ 538#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 539 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 540 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 541 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 542 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 543 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 544 }
545#endif
347 546
348#define array_free(stem, idx) \ 547#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 548 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
350 549
351/*****************************************************************************/ 550/*****************************************************************************/
352 551
353static void 552void noinline
553ev_feed_event (EV_P_ void *w, int revents)
554{
555 W w_ = (W)w;
556 int pri = ABSPRI (w_);
557
558 if (expect_false (w_->pending))
559 pendings [pri][w_->pending - 1].events |= revents;
560 else
561 {
562 w_->pending = ++pendingcnt [pri];
563 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
564 pendings [pri][w_->pending - 1].w = w_;
565 pendings [pri][w_->pending - 1].events = revents;
566 }
567}
568
569void inline_speed
570queue_events (EV_P_ W *events, int eventcnt, int type)
571{
572 int i;
573
574 for (i = 0; i < eventcnt; ++i)
575 ev_feed_event (EV_A_ events [i], type);
576}
577
578/*****************************************************************************/
579
580void inline_size
354anfds_init (ANFD *base, int count) 581anfds_init (ANFD *base, int count)
355{ 582{
356 while (count--) 583 while (count--)
357 { 584 {
358 base->head = 0; 585 base->head = 0;
361 588
362 ++base; 589 ++base;
363 } 590 }
364} 591}
365 592
366void 593void inline_speed
367ev_feed_event (EV_P_ void *w, int revents)
368{
369 W w_ = (W)w;
370
371 if (expect_false (w_->pending))
372 {
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
374 return;
375 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381}
382
383static void
384queue_events (EV_P_ W *events, int eventcnt, int type)
385{
386 int i;
387
388 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type);
390}
391
392inline void
393fd_event (EV_P_ int fd, int revents) 594fd_event (EV_P_ int fd, int revents)
394{ 595{
395 ANFD *anfd = anfds + fd; 596 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 597 ev_io *w;
397 598
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 599 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 600 {
400 int ev = w->events & revents; 601 int ev = w->events & revents;
401 602
402 if (ev) 603 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 604 ev_feed_event (EV_A_ (W)w, ev);
405} 606}
406 607
407void 608void
408ev_feed_fd_event (EV_P_ int fd, int revents) 609ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 610{
611 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 612 fd_event (EV_A_ fd, revents);
411} 613}
412 614
413/*****************************************************************************/ 615void inline_size
414
415inline void
416fd_reify (EV_P) 616fd_reify (EV_P)
417{ 617{
418 int i; 618 int i;
419 619
420 for (i = 0; i < fdchangecnt; ++i) 620 for (i = 0; i < fdchangecnt; ++i)
421 { 621 {
422 int fd = fdchanges [i]; 622 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 624 ev_io *w;
425 625
426 int events = 0; 626 unsigned char events = 0;
427 627
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 628 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 629 events |= (unsigned char)w->events;
430 630
431#if EV_SELECT_IS_WINSOCKET 631#if EV_SELECT_IS_WINSOCKET
432 if (events) 632 if (events)
433 { 633 {
434 unsigned long argp; 634 unsigned long argp;
635 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else
435 anfd->handle = _get_osfhandle (fd); 638 anfd->handle = _get_osfhandle (fd);
639 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
437 } 641 }
438#endif 642#endif
439 643
644 {
645 unsigned char o_events = anfd->events;
646 unsigned char o_reify = anfd->reify;
647
440 anfd->reify = 0; 648 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 649 anfd->events = events;
650
651 if (o_events != events || o_reify & EV_IOFDSET)
652 backend_modify (EV_A_ fd, o_events, events);
653 }
444 } 654 }
445 655
446 fdchangecnt = 0; 656 fdchangecnt = 0;
447} 657}
448 658
449static void 659void inline_size
450fd_change (EV_P_ int fd) 660fd_change (EV_P_ int fd, int flags)
451{ 661{
452 if (expect_false (anfds [fd].reify)) 662 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 663 anfds [fd].reify |= flags;
456 664
665 if (expect_true (!reify))
666 {
457 ++fdchangecnt; 667 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 668 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 669 fdchanges [fdchangecnt - 1] = fd;
670 }
460} 671}
461 672
462static void 673void inline_speed
463fd_kill (EV_P_ int fd) 674fd_kill (EV_P_ int fd)
464{ 675{
465 struct ev_io *w; 676 ev_io *w;
466 677
467 while ((w = (struct ev_io *)anfds [fd].head)) 678 while ((w = (ev_io *)anfds [fd].head))
468 { 679 {
469 ev_io_stop (EV_A_ w); 680 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 681 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 682 }
472} 683}
473 684
474inline int 685int inline_size
475fd_valid (int fd) 686fd_valid (int fd)
476{ 687{
477#ifdef _WIN32 688#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 689 return _get_osfhandle (fd) != -1;
479#else 690#else
480 return fcntl (fd, F_GETFD) != -1; 691 return fcntl (fd, F_GETFD) != -1;
481#endif 692#endif
482} 693}
483 694
484/* called on EBADF to verify fds */ 695/* called on EBADF to verify fds */
485static void 696static void noinline
486fd_ebadf (EV_P) 697fd_ebadf (EV_P)
487{ 698{
488 int fd; 699 int fd;
489 700
490 for (fd = 0; fd < anfdmax; ++fd) 701 for (fd = 0; fd < anfdmax; ++fd)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 703 if (!fd_valid (fd) == -1 && errno == EBADF)
493 fd_kill (EV_A_ fd); 704 fd_kill (EV_A_ fd);
494} 705}
495 706
496/* called on ENOMEM in select/poll to kill some fds and retry */ 707/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 708static void noinline
498fd_enomem (EV_P) 709fd_enomem (EV_P)
499{ 710{
500 int fd; 711 int fd;
501 712
502 for (fd = anfdmax; fd--; ) 713 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 716 fd_kill (EV_A_ fd);
506 return; 717 return;
507 } 718 }
508} 719}
509 720
510/* usually called after fork if method needs to re-arm all fds from scratch */ 721/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 722static void noinline
512fd_rearm_all (EV_P) 723fd_rearm_all (EV_P)
513{ 724{
514 int fd; 725 int fd;
515 726
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 727 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 728 if (anfds [fd].events)
519 { 729 {
520 anfds [fd].events = 0; 730 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 731 fd_change (EV_A_ fd, EV_IOFDSET | 1);
522 } 732 }
523} 733}
524 734
525/*****************************************************************************/ 735/*****************************************************************************/
526 736
527static void 737void inline_speed
528upheap (WT *heap, int k) 738upheap (WT *heap, int k)
529{ 739{
530 WT w = heap [k]; 740 WT w = heap [k];
531 741
532 while (k && heap [k >> 1]->at > w->at) 742 while (k)
533 { 743 {
744 int p = (k - 1) >> 1;
745
746 if (heap [p]->at <= w->at)
747 break;
748
534 heap [k] = heap [k >> 1]; 749 heap [k] = heap [p];
535 ((W)heap [k])->active = k + 1; 750 ((W)heap [k])->active = k + 1;
536 k >>= 1; 751 k = p;
537 } 752 }
538 753
539 heap [k] = w; 754 heap [k] = w;
540 ((W)heap [k])->active = k + 1; 755 ((W)heap [k])->active = k + 1;
541
542} 756}
543 757
544static void 758void inline_speed
545downheap (WT *heap, int N, int k) 759downheap (WT *heap, int N, int k)
546{ 760{
547 WT w = heap [k]; 761 WT w = heap [k];
548 762
549 while (k < (N >> 1)) 763 for (;;)
550 { 764 {
551 int j = k << 1; 765 int c = (k << 1) + 1;
552 766
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 767 if (c >= N)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break; 768 break;
558 769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
559 heap [k] = heap [j]; 776 heap [k] = heap [c];
560 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
778
561 k = j; 779 k = c;
562 } 780 }
563 781
564 heap [k] = w; 782 heap [k] = w;
565 ((W)heap [k])->active = k + 1; 783 ((W)heap [k])->active = k + 1;
566} 784}
567 785
568inline void 786void inline_size
569adjustheap (WT *heap, int N, int k) 787adjustheap (WT *heap, int N, int k)
570{ 788{
571 upheap (heap, k); 789 upheap (heap, k);
572 downheap (heap, N, k); 790 downheap (heap, N, k);
573} 791}
575/*****************************************************************************/ 793/*****************************************************************************/
576 794
577typedef struct 795typedef struct
578{ 796{
579 WL head; 797 WL head;
580 sig_atomic_t volatile gotsig; 798 EV_ATOMIC_T gotsig;
581} ANSIG; 799} ANSIG;
582 800
583static ANSIG *signals; 801static ANSIG *signals;
584static int signalmax; 802static int signalmax;
585 803
586static int sigpipe [2]; 804static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 805
590static void 806void inline_size
591signals_init (ANSIG *base, int count) 807signals_init (ANSIG *base, int count)
592{ 808{
593 while (count--) 809 while (count--)
594 { 810 {
595 base->head = 0; 811 base->head = 0;
597 813
598 ++base; 814 ++base;
599 } 815 }
600} 816}
601 817
602static void 818/*****************************************************************************/
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608 819
609 signals [signum - 1].gotsig = 1; 820void inline_speed
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 821fd_intern (int fd)
655{ 822{
656#ifdef _WIN32 823#ifdef _WIN32
657 int arg = 1; 824 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 827 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 828 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 829#endif
663} 830}
664 831
832static void noinline
833evpipe_init (EV_P)
834{
835 if (!ev_is_active (&pipeev))
836 {
837#if EV_USE_EVENTFD
838 if ((evfd = eventfd (0, 0)) >= 0)
839 {
840 evpipe [0] = -1;
841 fd_intern (evfd);
842 ev_io_set (&pipeev, evfd, EV_READ);
843 }
844 else
845#endif
846 {
847 while (pipe (evpipe))
848 syserr ("(libev) error creating signal/async pipe");
849
850 fd_intern (evpipe [0]);
851 fd_intern (evpipe [1]);
852 ev_io_set (&pipeev, evpipe [0], EV_READ);
853 }
854
855 ev_io_start (EV_A_ &pipeev);
856 ev_unref (EV_A); /* watcher should not keep loop alive */
857 }
858}
859
860void inline_size
861evpipe_write (EV_P_ EV_ATOMIC_T *flag)
862{
863 if (!*flag)
864 {
865 int old_errno = errno; /* save errno because write might clobber it */
866
867 *flag = 1;
868
869#if EV_USE_EVENTFD
870 if (evfd >= 0)
871 {
872 uint64_t counter = 1;
873 write (evfd, &counter, sizeof (uint64_t));
874 }
875 else
876#endif
877 write (evpipe [1], &old_errno, 1);
878
879 errno = old_errno;
880 }
881}
882
665static void 883static void
666siginit (EV_P) 884pipecb (EV_P_ ev_io *iow, int revents)
667{ 885{
668 fd_intern (sigpipe [0]); 886#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 887 if (evfd >= 0)
888 {
889 uint64_t counter = 1;
890 read (evfd, &counter, sizeof (uint64_t));
891 }
892 else
893#endif
894 {
895 char dummy;
896 read (evpipe [0], &dummy, 1);
897 }
670 898
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 899 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 900 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 901 int signum;
902 gotsig = 0;
903
904 for (signum = signalmax; signum--; )
905 if (signals [signum].gotsig)
906 ev_feed_signal_event (EV_A_ signum + 1);
907 }
908
909#if EV_ASYNC_ENABLE
910 if (gotasync)
911 {
912 int i;
913 gotasync = 0;
914
915 for (i = asynccnt; i--; )
916 if (asyncs [i]->sent)
917 {
918 asyncs [i]->sent = 0;
919 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
920 }
921 }
922#endif
674} 923}
675 924
676/*****************************************************************************/ 925/*****************************************************************************/
677 926
678static struct ev_child *childs [PID_HASHSIZE]; 927static void
928ev_sighandler (int signum)
929{
930#if EV_MULTIPLICITY
931 struct ev_loop *loop = &default_loop_struct;
932#endif
933
934#if _WIN32
935 signal (signum, ev_sighandler);
936#endif
937
938 signals [signum - 1].gotsig = 1;
939 evpipe_write (EV_A_ &gotsig);
940}
941
942void noinline
943ev_feed_signal_event (EV_P_ int signum)
944{
945 WL w;
946
947#if EV_MULTIPLICITY
948 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
949#endif
950
951 --signum;
952
953 if (signum < 0 || signum >= signalmax)
954 return;
955
956 signals [signum].gotsig = 0;
957
958 for (w = signals [signum].head; w; w = w->next)
959 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
960}
961
962/*****************************************************************************/
963
964static WL childs [EV_PID_HASHSIZE];
679 965
680#ifndef _WIN32 966#ifndef _WIN32
681 967
682static struct ev_signal childev; 968static ev_signal childev;
969
970#ifndef WIFCONTINUED
971# define WIFCONTINUED(status) 0
972#endif
973
974void inline_speed
975child_reap (EV_P_ int chain, int pid, int status)
976{
977 ev_child *w;
978 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
979
980 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
981 {
982 if ((w->pid == pid || !w->pid)
983 && (!traced || (w->flags & 1)))
984 {
985 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
986 w->rpid = pid;
987 w->rstatus = status;
988 ev_feed_event (EV_A_ (W)w, EV_CHILD);
989 }
990 }
991}
683 992
684#ifndef WCONTINUED 993#ifndef WCONTINUED
685# define WCONTINUED 0 994# define WCONTINUED 0
686#endif 995#endif
687 996
688static void 997static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 998childcb (EV_P_ ev_signal *sw, int revents)
705{ 999{
706 int pid, status; 1000 int pid, status;
707 1001
1002 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1003 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1004 if (!WCONTINUED
1005 || errno != EINVAL
1006 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1007 return;
1008
710 /* make sure we are called again until all childs have been reaped */ 1009 /* make sure we are called again until all children have been reaped */
1010 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1011 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1012
713 child_reap (EV_A_ sw, pid, pid, status); 1013 child_reap (EV_A_ pid, pid, status);
1014 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1015 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1016}
717 1017
718#endif 1018#endif
719 1019
720/*****************************************************************************/ 1020/*****************************************************************************/
746{ 1046{
747 return EV_VERSION_MINOR; 1047 return EV_VERSION_MINOR;
748} 1048}
749 1049
750/* return true if we are running with elevated privileges and should ignore env variables */ 1050/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1051int inline_size
752enable_secure (void) 1052enable_secure (void)
753{ 1053{
754#ifdef _WIN32 1054#ifdef _WIN32
755 return 0; 1055 return 0;
756#else 1056#else
758 || getgid () != getegid (); 1058 || getgid () != getegid ();
759#endif 1059#endif
760} 1060}
761 1061
762unsigned int 1062unsigned int
763ev_method (EV_P) 1063ev_supported_backends (void)
764{ 1064{
765 return method; 1065 unsigned int flags = 0;
766}
767 1066
768static void 1067 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1068 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1069 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1070 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1071 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1072
1073 return flags;
1074}
1075
1076unsigned int
1077ev_recommended_backends (void)
1078{
1079 unsigned int flags = ev_supported_backends ();
1080
1081#ifndef __NetBSD__
1082 /* kqueue is borked on everything but netbsd apparently */
1083 /* it usually doesn't work correctly on anything but sockets and pipes */
1084 flags &= ~EVBACKEND_KQUEUE;
1085#endif
1086#ifdef __APPLE__
1087 // flags &= ~EVBACKEND_KQUEUE; for documentation
1088 flags &= ~EVBACKEND_POLL;
1089#endif
1090
1091 return flags;
1092}
1093
1094unsigned int
1095ev_embeddable_backends (void)
1096{
1097 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1098
1099 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1100 /* please fix it and tell me how to detect the fix */
1101 flags &= ~EVBACKEND_EPOLL;
1102
1103 return flags;
1104}
1105
1106unsigned int
1107ev_backend (EV_P)
1108{
1109 return backend;
1110}
1111
1112unsigned int
1113ev_loop_count (EV_P)
1114{
1115 return loop_count;
1116}
1117
1118void
1119ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1120{
1121 io_blocktime = interval;
1122}
1123
1124void
1125ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1126{
1127 timeout_blocktime = interval;
1128}
1129
1130static void noinline
769loop_init (EV_P_ unsigned int flags) 1131loop_init (EV_P_ unsigned int flags)
770{ 1132{
771 if (!method) 1133 if (!backend)
772 { 1134 {
773#if EV_USE_MONOTONIC 1135#if EV_USE_MONOTONIC
774 { 1136 {
775 struct timespec ts; 1137 struct timespec ts;
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1138 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 1139 have_monotonic = 1;
778 } 1140 }
779#endif 1141#endif
780 1142
781 ev_rt_now = ev_time (); 1143 ev_rt_now = ev_time ();
782 mn_now = get_clock (); 1144 mn_now = get_clock ();
783 now_floor = mn_now; 1145 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now; 1146 rtmn_diff = ev_rt_now - mn_now;
785 1147
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1148 io_blocktime = 0.;
1149 timeout_blocktime = 0.;
1150 backend = 0;
1151 backend_fd = -1;
1152 gotasync = 0;
1153#if EV_USE_INOTIFY
1154 fs_fd = -2;
1155#endif
1156
1157 /* pid check not overridable via env */
1158#ifndef _WIN32
1159 if (flags & EVFLAG_FORKCHECK)
1160 curpid = getpid ();
1161#endif
1162
1163 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1166 flags = atoi (getenv ("LIBEV_FLAGS"));
788 1167
789 if (!(flags & 0x0000ffff)) 1168 if (!(flags & 0x0000ffffUL))
790 flags |= 0x0000ffff; 1169 flags |= ev_recommended_backends ();
791 1170
792 method = 0;
793#if EV_USE_PORT 1171#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 1173#endif
796#if EV_USE_KQUEUE 1174#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1175 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 1176#endif
799#if EV_USE_EPOLL 1177#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1178 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 1179#endif
802#if EV_USE_POLL 1180#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1181 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 1182#endif
805#if EV_USE_SELECT 1183#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1184 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 1185#endif
808 1186
809 ev_init (&sigev, sigcb); 1187 ev_init (&pipeev, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 1188 ev_set_priority (&pipeev, EV_MAXPRI);
811 } 1189 }
812} 1190}
813 1191
814void 1192static void noinline
815loop_destroy (EV_P) 1193loop_destroy (EV_P)
816{ 1194{
817 int i; 1195 int i;
818 1196
1197 if (ev_is_active (&pipeev))
1198 {
1199 ev_ref (EV_A); /* signal watcher */
1200 ev_io_stop (EV_A_ &pipeev);
1201
1202#if EV_USE_EVENTFD
1203 if (evfd >= 0)
1204 close (evfd);
1205#endif
1206
1207 if (evpipe [0] >= 0)
1208 {
1209 close (evpipe [0]);
1210 close (evpipe [1]);
1211 }
1212 }
1213
1214#if EV_USE_INOTIFY
1215 if (fs_fd >= 0)
1216 close (fs_fd);
1217#endif
1218
1219 if (backend_fd >= 0)
1220 close (backend_fd);
1221
819#if EV_USE_PORT 1222#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1223 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 1224#endif
822#if EV_USE_KQUEUE 1225#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1226 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 1227#endif
825#if EV_USE_EPOLL 1228#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1229 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 1230#endif
828#if EV_USE_POLL 1231#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1232 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 1233#endif
831#if EV_USE_SELECT 1234#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1235 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 1236#endif
834 1237
835 for (i = NUMPRI; i--; ) 1238 for (i = NUMPRI; i--; )
1239 {
836 array_free (pending, [i]); 1240 array_free (pending, [i]);
1241#if EV_IDLE_ENABLE
1242 array_free (idle, [i]);
1243#endif
1244 }
1245
1246 ev_free (anfds); anfdmax = 0;
837 1247
838 /* have to use the microsoft-never-gets-it-right macro */ 1248 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0); 1249 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 1250 array_free (timer, EMPTY);
841#if EV_PERIODICS 1251#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 1252 array_free (periodic, EMPTY);
843#endif 1253#endif
1254#if EV_FORK_ENABLE
844 array_free (idle, EMPTY0); 1255 array_free (fork, EMPTY);
1256#endif
845 array_free (prepare, EMPTY0); 1257 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 1258 array_free (check, EMPTY);
1259#if EV_ASYNC_ENABLE
1260 array_free (async, EMPTY);
1261#endif
847 1262
848 method = 0; 1263 backend = 0;
849} 1264}
850 1265
851static void 1266void inline_size infy_fork (EV_P);
1267
1268void inline_size
852loop_fork (EV_P) 1269loop_fork (EV_P)
853{ 1270{
854#if EV_USE_PORT 1271#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1272 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 1273#endif
857#if EV_USE_KQUEUE 1274#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1275 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 1276#endif
860#if EV_USE_EPOLL 1277#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1278 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
862#endif 1279#endif
1280#if EV_USE_INOTIFY
1281 infy_fork (EV_A);
1282#endif
863 1283
864 if (ev_is_active (&sigev)) 1284 if (ev_is_active (&pipeev))
865 { 1285 {
866 /* default loop */ 1286 /* this "locks" the handlers against writing to the pipe */
1287 /* while we modify the fd vars */
1288 gotsig = 1;
1289#if EV_ASYNC_ENABLE
1290 gotasync = 1;
1291#endif
867 1292
868 ev_ref (EV_A); 1293 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev); 1294 ev_io_stop (EV_A_ &pipeev);
1295
1296#if EV_USE_EVENTFD
1297 if (evfd >= 0)
1298 close (evfd);
1299#endif
1300
1301 if (evpipe [0] >= 0)
1302 {
870 close (sigpipe [0]); 1303 close (evpipe [0]);
871 close (sigpipe [1]); 1304 close (evpipe [1]);
1305 }
872 1306
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A); 1307 evpipe_init (EV_A);
1308 /* now iterate over everything, in case we missed something */
1309 pipecb (EV_A_ &pipeev, EV_READ);
877 } 1310 }
878 1311
879 postfork = 0; 1312 postfork = 0;
880} 1313}
881 1314
887 1320
888 memset (loop, 0, sizeof (struct ev_loop)); 1321 memset (loop, 0, sizeof (struct ev_loop));
889 1322
890 loop_init (EV_A_ flags); 1323 loop_init (EV_A_ flags);
891 1324
892 if (ev_method (EV_A)) 1325 if (ev_backend (EV_A))
893 return loop; 1326 return loop;
894 1327
895 return 0; 1328 return 0;
896} 1329}
897 1330
903} 1336}
904 1337
905void 1338void
906ev_loop_fork (EV_P) 1339ev_loop_fork (EV_P)
907{ 1340{
908 postfork = 1; 1341 postfork = 1; /* must be in line with ev_default_fork */
909} 1342}
910 1343
911#endif 1344#endif
912 1345
913#if EV_MULTIPLICITY 1346#if EV_MULTIPLICITY
914struct ev_loop * 1347struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1348ev_default_loop_init (unsigned int flags)
916#else 1349#else
917int 1350int
918ev_default_loop (unsigned int flags) 1351ev_default_loop (unsigned int flags)
919#endif 1352#endif
920{ 1353{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1354 if (!ev_default_loop_ptr)
926 { 1355 {
927#if EV_MULTIPLICITY 1356#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1357 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1358#else
930 ev_default_loop_ptr = 1; 1359 ev_default_loop_ptr = 1;
931#endif 1360#endif
932 1361
933 loop_init (EV_A_ flags); 1362 loop_init (EV_A_ flags);
934 1363
935 if (ev_method (EV_A)) 1364 if (ev_backend (EV_A))
936 { 1365 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1366#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1367 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1368 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1369 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1370 ev_unref (EV_A); /* child watcher should not keep loop alive */
960#ifndef _WIN32 1387#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1388 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1389 ev_signal_stop (EV_A_ &childev);
963#endif 1390#endif
964 1391
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1392 loop_destroy (EV_A);
972} 1393}
973 1394
974void 1395void
975ev_default_fork (void) 1396ev_default_fork (void)
976{ 1397{
977#if EV_MULTIPLICITY 1398#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1399 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1400#endif
980 1401
981 if (method) 1402 if (backend)
982 postfork = 1; 1403 postfork = 1; /* must be in line with ev_loop_fork */
983} 1404}
984 1405
985/*****************************************************************************/ 1406/*****************************************************************************/
986 1407
987static int 1408void
988any_pending (EV_P) 1409ev_invoke (EV_P_ void *w, int revents)
989{ 1410{
990 int pri; 1411 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1412}
998 1413
999inline void 1414void inline_speed
1000call_pending (EV_P) 1415call_pending (EV_P)
1001{ 1416{
1002 int pri; 1417 int pri;
1003 1418
1004 for (pri = NUMPRI; pri--; ) 1419 for (pri = NUMPRI; pri--; )
1006 { 1421 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1422 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1423
1009 if (expect_true (p->w)) 1424 if (expect_true (p->w))
1010 { 1425 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1427
1011 p->w->pending = 0; 1428 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1429 EV_CB_INVOKE (p->w, p->events);
1013 } 1430 }
1014 } 1431 }
1015} 1432}
1016 1433
1017inline void 1434void inline_size
1018timers_reify (EV_P) 1435timers_reify (EV_P)
1019{ 1436{
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1021 { 1438 {
1022 struct ev_timer *w = timers [0]; 1439 ev_timer *w = (ev_timer *)timers [0];
1023 1440
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1025 1442
1026 /* first reschedule or stop timer */ 1443 /* first reschedule or stop timer */
1027 if (w->repeat) 1444 if (w->repeat)
1028 { 1445 {
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1447
1031 ((WT)w)->at += w->repeat; 1448 ((WT)w)->at += w->repeat;
1032 if (((WT)w)->at < mn_now) 1449 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now; 1450 ((WT)w)->at = mn_now;
1034 1451
1035 downheap ((WT *)timers, timercnt, 0); 1452 downheap (timers, timercnt, 0);
1036 } 1453 }
1037 else 1454 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1456
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 } 1458 }
1042} 1459}
1043 1460
1044#if EV_PERIODICS 1461#if EV_PERIODIC_ENABLE
1045inline void 1462void inline_size
1046periodics_reify (EV_P) 1463periodics_reify (EV_P)
1047{ 1464{
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1049 { 1466 {
1050 struct ev_periodic *w = periodics [0]; 1467 ev_periodic *w = (ev_periodic *)periodics [0];
1051 1468
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1470
1054 /* first reschedule or stop timer */ 1471 /* first reschedule or stop timer */
1055 if (w->reschedule_cb) 1472 if (w->reschedule_cb)
1056 { 1473 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1059 downheap ((WT *)periodics, periodiccnt, 0); 1476 downheap (periodics, periodiccnt, 0);
1060 } 1477 }
1061 else if (w->interval) 1478 else if (w->interval)
1062 { 1479 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0); 1483 downheap (periodics, periodiccnt, 0);
1066 } 1484 }
1067 else 1485 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1487
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 } 1489 }
1072} 1490}
1073 1491
1074static void 1492static void noinline
1075periodics_reschedule (EV_P) 1493periodics_reschedule (EV_P)
1076{ 1494{
1077 int i; 1495 int i;
1078 1496
1079 /* adjust periodics after time jump */ 1497 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 1498 for (i = 0; i < periodiccnt; ++i)
1081 { 1499 {
1082 struct ev_periodic *w = periodics [i]; 1500 ev_periodic *w = (ev_periodic *)periodics [i];
1083 1501
1084 if (w->reschedule_cb) 1502 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 1504 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1088 } 1506 }
1089 1507
1090 /* now rebuild the heap */ 1508 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; ) 1509 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i); 1510 downheap (periodics, periodiccnt, i);
1093} 1511}
1094#endif 1512#endif
1095 1513
1096inline int 1514#if EV_IDLE_ENABLE
1097time_update_monotonic (EV_P) 1515void inline_size
1516idle_reify (EV_P)
1098{ 1517{
1518 if (expect_false (idleall))
1519 {
1520 int pri;
1521
1522 for (pri = NUMPRI; pri--; )
1523 {
1524 if (pendingcnt [pri])
1525 break;
1526
1527 if (idlecnt [pri])
1528 {
1529 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1530 break;
1531 }
1532 }
1533 }
1534}
1535#endif
1536
1537void inline_speed
1538time_update (EV_P_ ev_tstamp max_block)
1539{
1540 int i;
1541
1542#if EV_USE_MONOTONIC
1543 if (expect_true (have_monotonic))
1544 {
1545 ev_tstamp odiff = rtmn_diff;
1546
1099 mn_now = get_clock (); 1547 mn_now = get_clock ();
1100 1548
1549 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1550 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1551 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 1552 {
1103 ev_rt_now = rtmn_diff + mn_now; 1553 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 1554 return;
1105 } 1555 }
1106 else 1556
1107 {
1108 now_floor = mn_now; 1557 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1558 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1559
1114inline void 1560 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1561 * on the choice of "4": one iteration isn't enough,
1116{ 1562 * in case we get preempted during the calls to
1117 int i; 1563 * ev_time and get_clock. a second call is almost guaranteed
1118 1564 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1565 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1566 * in the unlikely event of having been preempted here.
1121 { 1567 */
1122 if (time_update_monotonic (EV_A)) 1568 for (i = 4; --i; )
1123 { 1569 {
1124 ev_tstamp odiff = rtmn_diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 1570 rtmn_diff = ev_rt_now - mn_now;
1129 1571
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1131 return; /* all is well */ 1573 return; /* all is well */
1132 1574
1133 ev_rt_now = ev_time (); 1575 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 1576 mn_now = get_clock ();
1135 now_floor = mn_now; 1577 now_floor = mn_now;
1136 } 1578 }
1137 1579
1138# if EV_PERIODICS 1580# if EV_PERIODIC_ENABLE
1581 periodics_reschedule (EV_A);
1582# endif
1583 /* no timer adjustment, as the monotonic clock doesn't jump */
1584 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1585 }
1586 else
1587#endif
1588 {
1589 ev_rt_now = ev_time ();
1590
1591 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1592 {
1593#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 1594 periodics_reschedule (EV_A);
1140# endif 1595#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */ 1596 /* adjust timers. this is easy, as the offset is the same for all of them */
1157 for (i = 0; i < timercnt; ++i) 1597 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now; 1598 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 } 1599 }
1160 1600
1161 mn_now = ev_rt_now; 1601 mn_now = ev_rt_now;
1177static int loop_done; 1617static int loop_done;
1178 1618
1179void 1619void
1180ev_loop (EV_P_ int flags) 1620ev_loop (EV_P_ int flags)
1181{ 1621{
1182 double block; 1622 loop_done = EVUNLOOP_CANCEL;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 1623
1185 while (activecnt) 1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1625
1626 do
1186 { 1627 {
1628#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid))
1631 {
1632 curpid = getpid ();
1633 postfork = 1;
1634 }
1635#endif
1636
1637#if EV_FORK_ENABLE
1638 /* we might have forked, so queue fork handlers */
1639 if (expect_false (postfork))
1640 if (forkcnt)
1641 {
1642 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1643 call_pending (EV_A);
1644 }
1645#endif
1646
1187 /* queue check watchers (and execute them) */ 1647 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 1648 if (expect_false (preparecnt))
1189 { 1649 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1650 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 1651 call_pending (EV_A);
1192 } 1652 }
1193 1653
1654 if (expect_false (!activecnt))
1655 break;
1656
1194 /* we might have forked, so reify kernel state if necessary */ 1657 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 1658 if (expect_false (postfork))
1196 loop_fork (EV_A); 1659 loop_fork (EV_A);
1197 1660
1198 /* update fd-related kernel structures */ 1661 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 1662 fd_reify (EV_A);
1200 1663
1201 /* calculate blocking time */ 1664 /* calculate blocking time */
1665 {
1666 ev_tstamp waittime = 0.;
1667 ev_tstamp sleeptime = 0.;
1202 1668
1203 /* we only need this for !monotonic clock or timers, but as we basically 1669 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 1670 {
1211 ev_rt_now = ev_time (); 1671 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 1672 time_update (EV_A_ 1e100);
1213 }
1214 1673
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 1674 waittime = MAX_BLOCKTIME;
1220 1675
1221 if (timercnt) 1676 if (timercnt)
1222 { 1677 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1224 if (block > to) block = to; 1679 if (waittime > to) waittime = to;
1225 } 1680 }
1226 1681
1227#if EV_PERIODICS 1682#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 1683 if (periodiccnt)
1229 { 1684 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 1686 if (waittime > to) waittime = to;
1232 } 1687 }
1233#endif 1688#endif
1234 1689
1235 if (expect_false (block < 0.)) block = 0.; 1690 if (expect_false (waittime < timeout_blocktime))
1691 waittime = timeout_blocktime;
1692
1693 sleeptime = waittime - backend_fudge;
1694
1695 if (expect_true (sleeptime > io_blocktime))
1696 sleeptime = io_blocktime;
1697
1698 if (sleeptime)
1699 {
1700 ev_sleep (sleeptime);
1701 waittime -= sleeptime;
1702 }
1236 } 1703 }
1237 1704
1238 method_poll (EV_A_ block); 1705 ++loop_count;
1706 backend_poll (EV_A_ waittime);
1239 1707
1240 /* update ev_rt_now, do magic */ 1708 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 1709 time_update (EV_A_ waittime + sleeptime);
1710 }
1242 1711
1243 /* queue pending timers and reschedule them */ 1712 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 1713 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 1714#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 1715 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 1716#endif
1248 1717
1718#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 1719 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 1720 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1721#endif
1252 1722
1253 /* queue check watchers, to be executed first */ 1723 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 1724 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1725 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 1726
1257 call_pending (EV_A); 1727 call_pending (EV_A);
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 1728 }
1729 while (expect_true (
1730 activecnt
1731 && !loop_done
1732 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1733 ));
1262 1734
1263 if (loop_done != 2) 1735 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 1736 loop_done = EVUNLOOP_CANCEL;
1265} 1737}
1266 1738
1267void 1739void
1268ev_unloop (EV_P_ int how) 1740ev_unloop (EV_P_ int how)
1269{ 1741{
1270 loop_done = how; 1742 loop_done = how;
1271} 1743}
1272 1744
1273/*****************************************************************************/ 1745/*****************************************************************************/
1274 1746
1275inline void 1747void inline_size
1276wlist_add (WL *head, WL elem) 1748wlist_add (WL *head, WL elem)
1277{ 1749{
1278 elem->next = *head; 1750 elem->next = *head;
1279 *head = elem; 1751 *head = elem;
1280} 1752}
1281 1753
1282inline void 1754void inline_size
1283wlist_del (WL *head, WL elem) 1755wlist_del (WL *head, WL elem)
1284{ 1756{
1285 while (*head) 1757 while (*head)
1286 { 1758 {
1287 if (*head == elem) 1759 if (*head == elem)
1292 1764
1293 head = &(*head)->next; 1765 head = &(*head)->next;
1294 } 1766 }
1295} 1767}
1296 1768
1297inline void 1769void inline_speed
1298ev_clear_pending (EV_P_ W w) 1770clear_pending (EV_P_ W w)
1299{ 1771{
1300 if (w->pending) 1772 if (w->pending)
1301 { 1773 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1774 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0; 1775 w->pending = 0;
1304 } 1776 }
1305} 1777}
1306 1778
1307inline void 1779int
1780ev_clear_pending (EV_P_ void *w)
1781{
1782 W w_ = (W)w;
1783 int pending = w_->pending;
1784
1785 if (expect_true (pending))
1786 {
1787 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1788 w_->pending = 0;
1789 p->w = 0;
1790 return p->events;
1791 }
1792 else
1793 return 0;
1794}
1795
1796void inline_size
1797pri_adjust (EV_P_ W w)
1798{
1799 int pri = w->priority;
1800 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1801 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1802 w->priority = pri;
1803}
1804
1805void inline_speed
1308ev_start (EV_P_ W w, int active) 1806ev_start (EV_P_ W w, int active)
1309{ 1807{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1808 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 1809 w->active = active;
1314 ev_ref (EV_A); 1810 ev_ref (EV_A);
1315} 1811}
1316 1812
1317inline void 1813void inline_size
1318ev_stop (EV_P_ W w) 1814ev_stop (EV_P_ W w)
1319{ 1815{
1320 ev_unref (EV_A); 1816 ev_unref (EV_A);
1321 w->active = 0; 1817 w->active = 0;
1322} 1818}
1323 1819
1324/*****************************************************************************/ 1820/*****************************************************************************/
1325 1821
1326void 1822void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 1823ev_io_start (EV_P_ ev_io *w)
1328{ 1824{
1329 int fd = w->fd; 1825 int fd = w->fd;
1330 1826
1331 if (expect_false (ev_is_active (w))) 1827 if (expect_false (ev_is_active (w)))
1332 return; 1828 return;
1333 1829
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 1830 assert (("ev_io_start called with negative fd", fd >= 0));
1335 1831
1336 ev_start (EV_A_ (W)w, 1); 1832 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1834 wlist_add (&anfds[fd].head, (WL)w);
1339 1835
1340 fd_change (EV_A_ fd); 1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1837 w->events &= ~EV_IOFDSET;
1341} 1838}
1342 1839
1343void 1840void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 1841ev_io_stop (EV_P_ ev_io *w)
1345{ 1842{
1346 ev_clear_pending (EV_A_ (W)w); 1843 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 1844 if (expect_false (!ev_is_active (w)))
1348 return; 1845 return;
1349 1846
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 1848
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1849 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 1850 ev_stop (EV_A_ (W)w);
1354 1851
1355 fd_change (EV_A_ w->fd); 1852 fd_change (EV_A_ w->fd, 1);
1356} 1853}
1357 1854
1358void 1855void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 1856ev_timer_start (EV_P_ ev_timer *w)
1360{ 1857{
1361 if (expect_false (ev_is_active (w))) 1858 if (expect_false (ev_is_active (w)))
1362 return; 1859 return;
1363 1860
1364 ((WT)w)->at += mn_now; 1861 ((WT)w)->at += mn_now;
1365 1862
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 1864
1368 ev_start (EV_A_ (W)w, ++timercnt); 1865 ev_start (EV_A_ (W)w, ++timercnt);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1370 timers [timercnt - 1] = w; 1867 timers [timercnt - 1] = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 1868 upheap (timers, timercnt - 1);
1372 1869
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1374} 1871}
1375 1872
1376void 1873void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 1874ev_timer_stop (EV_P_ ev_timer *w)
1378{ 1875{
1379 ev_clear_pending (EV_A_ (W)w); 1876 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 1877 if (expect_false (!ev_is_active (w)))
1381 return; 1878 return;
1382 1879
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1384 1881
1882 {
1883 int active = ((W)w)->active;
1884
1385 if (expect_true (((W)w)->active < timercnt--)) 1885 if (expect_true (--active < --timercnt))
1386 { 1886 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 1887 timers [active] = timers [timercnt];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1888 adjustheap (timers, timercnt, active);
1389 } 1889 }
1890 }
1390 1891
1391 ((WT)w)->at -= mn_now; 1892 ((WT)w)->at -= mn_now;
1392 1893
1393 ev_stop (EV_A_ (W)w); 1894 ev_stop (EV_A_ (W)w);
1394} 1895}
1395 1896
1396void 1897void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 1898ev_timer_again (EV_P_ ev_timer *w)
1398{ 1899{
1399 if (ev_is_active (w)) 1900 if (ev_is_active (w))
1400 { 1901 {
1401 if (w->repeat) 1902 if (w->repeat)
1402 { 1903 {
1403 ((WT)w)->at = mn_now + w->repeat; 1904 ((WT)w)->at = mn_now + w->repeat;
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1905 adjustheap (timers, timercnt, ((W)w)->active - 1);
1405 } 1906 }
1406 else 1907 else
1407 ev_timer_stop (EV_A_ w); 1908 ev_timer_stop (EV_A_ w);
1408 } 1909 }
1409 else if (w->repeat) 1910 else if (w->repeat)
1411 w->at = w->repeat; 1912 w->at = w->repeat;
1412 ev_timer_start (EV_A_ w); 1913 ev_timer_start (EV_A_ w);
1413 } 1914 }
1414} 1915}
1415 1916
1416#if EV_PERIODICS 1917#if EV_PERIODIC_ENABLE
1417void 1918void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 1919ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 1920{
1420 if (expect_false (ev_is_active (w))) 1921 if (expect_false (ev_is_active (w)))
1421 return; 1922 return;
1422 1923
1423 if (w->reschedule_cb) 1924 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 1926 else if (w->interval)
1426 { 1927 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 1929 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 1931 }
1932 else
1933 ((WT)w)->at = w->offset;
1431 1934
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 1935 ev_start (EV_A_ (W)w, ++periodiccnt);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 1937 periodics [periodiccnt - 1] = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 1938 upheap (periodics, periodiccnt - 1);
1436 1939
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1438} 1941}
1439 1942
1440void 1943void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 1944ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 1945{
1443 ev_clear_pending (EV_A_ (W)w); 1946 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 1947 if (expect_false (!ev_is_active (w)))
1445 return; 1948 return;
1446 1949
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1448 1951
1952 {
1953 int active = ((W)w)->active;
1954
1449 if (expect_true (((W)w)->active < periodiccnt--)) 1955 if (expect_true (--active < --periodiccnt))
1450 { 1956 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1957 periodics [active] = periodics [periodiccnt];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1958 adjustheap (periodics, periodiccnt, active);
1453 } 1959 }
1960 }
1454 1961
1455 ev_stop (EV_A_ (W)w); 1962 ev_stop (EV_A_ (W)w);
1456} 1963}
1457 1964
1458void 1965void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 1966ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 1967{
1461 /* TODO: use adjustheap and recalculation */ 1968 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 1969 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 1970 ev_periodic_start (EV_A_ w);
1464} 1971}
1465#endif 1972#endif
1466 1973
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (expect_false (ev_is_active (w)))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w)))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (expect_false (ev_is_active (w)))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w)))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (expect_false (ev_is_active (w)))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w)))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 1974#ifndef SA_RESTART
1534# define SA_RESTART 0 1975# define SA_RESTART 0
1535#endif 1976#endif
1536 1977
1537void 1978void noinline
1538ev_signal_start (EV_P_ struct ev_signal *w) 1979ev_signal_start (EV_P_ ev_signal *w)
1539{ 1980{
1540#if EV_MULTIPLICITY 1981#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1982 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 1983#endif
1543 if (expect_false (ev_is_active (w))) 1984 if (expect_false (ev_is_active (w)))
1544 return; 1985 return;
1545 1986
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1547 1988
1989 evpipe_init (EV_A);
1990
1991 {
1992#ifndef _WIN32
1993 sigset_t full, prev;
1994 sigfillset (&full);
1995 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif
1997
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1999
2000#ifndef _WIN32
2001 sigprocmask (SIG_SETMASK, &prev, 0);
2002#endif
2003 }
2004
1548 ev_start (EV_A_ (W)w, 1); 2005 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2006 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2007
1552 if (!((WL)w)->next) 2008 if (!((WL)w)->next)
1553 { 2009 {
1554#if _WIN32 2010#if _WIN32
1555 signal (w->signum, sighandler); 2011 signal (w->signum, ev_sighandler);
1556#else 2012#else
1557 struct sigaction sa; 2013 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2014 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2015 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2017 sigaction (w->signum, &sa, 0);
1562#endif 2018#endif
1563 } 2019 }
1564} 2020}
1565 2021
1566void 2022void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2023ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2024{
1569 ev_clear_pending (EV_A_ (W)w); 2025 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 2026 if (expect_false (!ev_is_active (w)))
1571 return; 2027 return;
1572 2028
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2029 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2030 ev_stop (EV_A_ (W)w);
1575 2031
1576 if (!signals [w->signum - 1].head) 2032 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2033 signal (w->signum, SIG_DFL);
1578} 2034}
1579 2035
1580void 2036void
1581ev_child_start (EV_P_ struct ev_child *w) 2037ev_child_start (EV_P_ ev_child *w)
1582{ 2038{
1583#if EV_MULTIPLICITY 2039#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2041#endif
1586 if (expect_false (ev_is_active (w))) 2042 if (expect_false (ev_is_active (w)))
1587 return; 2043 return;
1588 2044
1589 ev_start (EV_A_ (W)w, 1); 2045 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591} 2047}
1592 2048
1593void 2049void
1594ev_child_stop (EV_P_ struct ev_child *w) 2050ev_child_stop (EV_P_ ev_child *w)
1595{ 2051{
1596 ev_clear_pending (EV_A_ (W)w); 2052 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2053 if (expect_false (!ev_is_active (w)))
1598 return; 2054 return;
1599 2055
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2057 ev_stop (EV_A_ (W)w);
1602} 2058}
1603 2059
2060#if EV_STAT_ENABLE
2061
2062# ifdef _WIN32
2063# undef lstat
2064# define lstat(a,b) _stati64 (a,b)
2065# endif
2066
2067#define DEF_STAT_INTERVAL 5.0074891
2068#define MIN_STAT_INTERVAL 0.1074891
2069
2070static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2071
2072#if EV_USE_INOTIFY
2073# define EV_INOTIFY_BUFSIZE 8192
2074
2075static void noinline
2076infy_add (EV_P_ ev_stat *w)
2077{
2078 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2079
2080 if (w->wd < 0)
2081 {
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2083
2084 /* monitor some parent directory for speedup hints */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 {
2087 char path [4096];
2088 strcpy (path, w->path);
2089
2090 do
2091 {
2092 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2093 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2094
2095 char *pend = strrchr (path, '/');
2096
2097 if (!pend)
2098 break; /* whoops, no '/', complain to your admin */
2099
2100 *pend = 0;
2101 w->wd = inotify_add_watch (fs_fd, path, mask);
2102 }
2103 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2104 }
2105 }
2106 else
2107 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2108
2109 if (w->wd >= 0)
2110 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2111}
2112
2113static void noinline
2114infy_del (EV_P_ ev_stat *w)
2115{
2116 int slot;
2117 int wd = w->wd;
2118
2119 if (wd < 0)
2120 return;
2121
2122 w->wd = -2;
2123 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2124 wlist_del (&fs_hash [slot].head, (WL)w);
2125
2126 /* remove this watcher, if others are watching it, they will rearm */
2127 inotify_rm_watch (fs_fd, wd);
2128}
2129
2130static void noinline
2131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2132{
2133 if (slot < 0)
2134 /* overflow, need to check for all hahs slots */
2135 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2136 infy_wd (EV_A_ slot, wd, ev);
2137 else
2138 {
2139 WL w_;
2140
2141 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2142 {
2143 ev_stat *w = (ev_stat *)w_;
2144 w_ = w_->next; /* lets us remove this watcher and all before it */
2145
2146 if (w->wd == wd || wd == -1)
2147 {
2148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2149 {
2150 w->wd = -1;
2151 infy_add (EV_A_ w); /* re-add, no matter what */
2152 }
2153
2154 stat_timer_cb (EV_A_ &w->timer, 0);
2155 }
2156 }
2157 }
2158}
2159
2160static void
2161infy_cb (EV_P_ ev_io *w, int revents)
2162{
2163 char buf [EV_INOTIFY_BUFSIZE];
2164 struct inotify_event *ev = (struct inotify_event *)buf;
2165 int ofs;
2166 int len = read (fs_fd, buf, sizeof (buf));
2167
2168 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2169 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2170}
2171
2172void inline_size
2173infy_init (EV_P)
2174{
2175 if (fs_fd != -2)
2176 return;
2177
2178 fs_fd = inotify_init ();
2179
2180 if (fs_fd >= 0)
2181 {
2182 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2183 ev_set_priority (&fs_w, EV_MAXPRI);
2184 ev_io_start (EV_A_ &fs_w);
2185 }
2186}
2187
2188void inline_size
2189infy_fork (EV_P)
2190{
2191 int slot;
2192
2193 if (fs_fd < 0)
2194 return;
2195
2196 close (fs_fd);
2197 fs_fd = inotify_init ();
2198
2199 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2200 {
2201 WL w_ = fs_hash [slot].head;
2202 fs_hash [slot].head = 0;
2203
2204 while (w_)
2205 {
2206 ev_stat *w = (ev_stat *)w_;
2207 w_ = w_->next; /* lets us add this watcher */
2208
2209 w->wd = -1;
2210
2211 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); /* re-add, no matter what */
2213 else
2214 ev_timer_start (EV_A_ &w->timer);
2215 }
2216
2217 }
2218}
2219
2220#endif
2221
2222void
2223ev_stat_stat (EV_P_ ev_stat *w)
2224{
2225 if (lstat (w->path, &w->attr) < 0)
2226 w->attr.st_nlink = 0;
2227 else if (!w->attr.st_nlink)
2228 w->attr.st_nlink = 1;
2229}
2230
2231static void noinline
2232stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2233{
2234 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2235
2236 /* we copy this here each the time so that */
2237 /* prev has the old value when the callback gets invoked */
2238 w->prev = w->attr;
2239 ev_stat_stat (EV_A_ w);
2240
2241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2242 if (
2243 w->prev.st_dev != w->attr.st_dev
2244 || w->prev.st_ino != w->attr.st_ino
2245 || w->prev.st_mode != w->attr.st_mode
2246 || w->prev.st_nlink != w->attr.st_nlink
2247 || w->prev.st_uid != w->attr.st_uid
2248 || w->prev.st_gid != w->attr.st_gid
2249 || w->prev.st_rdev != w->attr.st_rdev
2250 || w->prev.st_size != w->attr.st_size
2251 || w->prev.st_atime != w->attr.st_atime
2252 || w->prev.st_mtime != w->attr.st_mtime
2253 || w->prev.st_ctime != w->attr.st_ctime
2254 ) {
2255 #if EV_USE_INOTIFY
2256 infy_del (EV_A_ w);
2257 infy_add (EV_A_ w);
2258 ev_stat_stat (EV_A_ w); /* avoid race... */
2259 #endif
2260
2261 ev_feed_event (EV_A_ w, EV_STAT);
2262 }
2263}
2264
2265void
2266ev_stat_start (EV_P_ ev_stat *w)
2267{
2268 if (expect_false (ev_is_active (w)))
2269 return;
2270
2271 /* since we use memcmp, we need to clear any padding data etc. */
2272 memset (&w->prev, 0, sizeof (ev_statdata));
2273 memset (&w->attr, 0, sizeof (ev_statdata));
2274
2275 ev_stat_stat (EV_A_ w);
2276
2277 if (w->interval < MIN_STAT_INTERVAL)
2278 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2279
2280 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2281 ev_set_priority (&w->timer, ev_priority (w));
2282
2283#if EV_USE_INOTIFY
2284 infy_init (EV_A);
2285
2286 if (fs_fd >= 0)
2287 infy_add (EV_A_ w);
2288 else
2289#endif
2290 ev_timer_start (EV_A_ &w->timer);
2291
2292 ev_start (EV_A_ (W)w, 1);
2293}
2294
2295void
2296ev_stat_stop (EV_P_ ev_stat *w)
2297{
2298 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w)))
2300 return;
2301
2302#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w);
2304#endif
2305 ev_timer_stop (EV_A_ &w->timer);
2306
2307 ev_stop (EV_A_ (W)w);
2308}
2309#endif
2310
2311#if EV_IDLE_ENABLE
2312void
2313ev_idle_start (EV_P_ ev_idle *w)
2314{
2315 if (expect_false (ev_is_active (w)))
2316 return;
2317
2318 pri_adjust (EV_A_ (W)w);
2319
2320 {
2321 int active = ++idlecnt [ABSPRI (w)];
2322
2323 ++idleall;
2324 ev_start (EV_A_ (W)w, active);
2325
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w;
2328 }
2329}
2330
2331void
2332ev_idle_stop (EV_P_ ev_idle *w)
2333{
2334 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w)))
2336 return;
2337
2338 {
2339 int active = ((W)w)->active;
2340
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2343
2344 ev_stop (EV_A_ (W)w);
2345 --idleall;
2346 }
2347}
2348#endif
2349
2350void
2351ev_prepare_start (EV_P_ ev_prepare *w)
2352{
2353 if (expect_false (ev_is_active (w)))
2354 return;
2355
2356 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w;
2359}
2360
2361void
2362ev_prepare_stop (EV_P_ ev_prepare *w)
2363{
2364 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w)))
2366 return;
2367
2368 {
2369 int active = ((W)w)->active;
2370 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active;
2372 }
2373
2374 ev_stop (EV_A_ (W)w);
2375}
2376
2377void
2378ev_check_start (EV_P_ ev_check *w)
2379{
2380 if (expect_false (ev_is_active (w)))
2381 return;
2382
2383 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w;
2386}
2387
2388void
2389ev_check_stop (EV_P_ ev_check *w)
2390{
2391 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w)))
2393 return;
2394
2395 {
2396 int active = ((W)w)->active;
2397 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active;
2399 }
2400
2401 ev_stop (EV_A_ (W)w);
2402}
2403
2404#if EV_EMBED_ENABLE
2405void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w)
2407{
2408 ev_loop (w->other, EVLOOP_NONBLOCK);
2409}
2410
2411static void
2412embed_io_cb (EV_P_ ev_io *io, int revents)
2413{
2414 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2415
2416 if (ev_cb (w))
2417 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2418 else
2419 ev_loop (w->other, EVLOOP_NONBLOCK);
2420}
2421
2422static void
2423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2424{
2425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2426
2427 {
2428 struct ev_loop *loop = w->other;
2429
2430 while (fdchangecnt)
2431 {
2432 fd_reify (EV_A);
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2434 }
2435 }
2436}
2437
2438#if 0
2439static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2441{
2442 ev_idle_stop (EV_A_ idle);
2443}
2444#endif
2445
2446void
2447ev_embed_start (EV_P_ ev_embed *w)
2448{
2449 if (expect_false (ev_is_active (w)))
2450 return;
2451
2452 {
2453 struct ev_loop *loop = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 }
2457
2458 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io);
2460
2461 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare);
2464
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466
2467 ev_start (EV_A_ (W)w, 1);
2468}
2469
2470void
2471ev_embed_stop (EV_P_ ev_embed *w)
2472{
2473 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w)))
2475 return;
2476
2477 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare);
2479
2480 ev_stop (EV_A_ (W)w);
2481}
2482#endif
2483
2484#if EV_FORK_ENABLE
2485void
2486ev_fork_start (EV_P_ ev_fork *w)
2487{
2488 if (expect_false (ev_is_active (w)))
2489 return;
2490
2491 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w;
2494}
2495
2496void
2497ev_fork_stop (EV_P_ ev_fork *w)
2498{
2499 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w)))
2501 return;
2502
2503 {
2504 int active = ((W)w)->active;
2505 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active;
2507 }
2508
2509 ev_stop (EV_A_ (W)w);
2510}
2511#endif
2512
2513#if EV_ASYNC_ENABLE
2514void
2515ev_async_start (EV_P_ ev_async *w)
2516{
2517 if (expect_false (ev_is_active (w)))
2518 return;
2519
2520 evpipe_init (EV_A);
2521
2522 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w;
2525}
2526
2527void
2528ev_async_stop (EV_P_ ev_async *w)
2529{
2530 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w)))
2532 return;
2533
2534 {
2535 int active = ((W)w)->active;
2536 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active;
2538 }
2539
2540 ev_stop (EV_A_ (W)w);
2541}
2542
2543void
2544ev_async_send (EV_P_ ev_async *w)
2545{
2546 w->sent = 1;
2547 evpipe_write (EV_A_ &gotasync);
2548}
2549#endif
2550
1604/*****************************************************************************/ 2551/*****************************************************************************/
1605 2552
1606struct ev_once 2553struct ev_once
1607{ 2554{
1608 struct ev_io io; 2555 ev_io io;
1609 struct ev_timer to; 2556 ev_timer to;
1610 void (*cb)(int revents, void *arg); 2557 void (*cb)(int revents, void *arg);
1611 void *arg; 2558 void *arg;
1612}; 2559};
1613 2560
1614static void 2561static void
1623 2570
1624 cb (revents, arg); 2571 cb (revents, arg);
1625} 2572}
1626 2573
1627static void 2574static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 2575once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 2576{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2577 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1631} 2578}
1632 2579
1633static void 2580static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 2581once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 2582{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2583 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1637} 2584}
1638 2585
1639void 2586void
1663 ev_timer_set (&once->to, timeout, 0.); 2610 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 2611 ev_timer_start (EV_A_ &once->to);
1665 } 2612 }
1666} 2613}
1667 2614
2615#if EV_MULTIPLICITY
2616 #include "ev_wrap.h"
2617#endif
2618
1668#ifdef __cplusplus 2619#ifdef __cplusplus
1669} 2620}
1670#endif 2621#endif
1671 2622

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines