ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.123 by root, Sat Nov 17 02:23:54 2007 UTC vs.
Revision 1.234 by root, Tue May 6 23:42:16 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
89# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 160# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
93# endif 163# endif
94#endif 164#endif
95 165
96/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
97 167
98#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
100#endif 170#endif
101 171
102#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
104#endif 178#endif
105 179
106#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
108#endif 182#endif
114# define EV_USE_POLL 1 188# define EV_USE_POLL 1
115# endif 189# endif
116#endif 190#endif
117 191
118#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
119# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
120#endif 198#endif
121 199
122#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
124#endif 202#endif
125 203
126#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 205# define EV_USE_PORT 0
128#endif 206#endif
129 207
130/**/ 208#ifndef EV_USE_INOTIFY
131 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 211# else
134# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 241
138#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
141#endif 245#endif
143#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
146#endif 250#endif
147 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
148#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 268# include <winsock.h>
150#endif 269#endif
151 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
152/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 294
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 298
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 299#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline 301# define noinline __attribute__ ((noinline))
168#else 302#else
169# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
170# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
171#endif 308#endif
172 309
173#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
175 319
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 322
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
181 325
182typedef struct ev_watcher *W; 326typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
185 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
187 338
188#ifdef _WIN32 339#ifdef _WIN32
189# include "ev_win32.c" 340# include "ev_win32.c"
190#endif 341#endif
191 342
192/*****************************************************************************/ 343/*****************************************************************************/
193 344
194static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
195 346
347void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 349{
198 syserr_cb = cb; 350 syserr_cb = cb;
199} 351}
200 352
201static void 353static void noinline
202syserr (const char *msg) 354syserr (const char *msg)
203{ 355{
204 if (!msg) 356 if (!msg)
205 msg = "(libev) system error"; 357 msg = "(libev) system error";
206 358
211 perror (msg); 363 perror (msg);
212 abort (); 364 abort ();
213 } 365 }
214} 366}
215 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
216static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 384
385void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 387{
220 alloc = cb; 388 alloc = cb;
221} 389}
222 390
223static void * 391inline_speed void *
224ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
225{ 393{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
227 395
228 if (!ptr && size) 396 if (!ptr && size)
229 { 397 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 399 abort ();
252typedef struct 420typedef struct
253{ 421{
254 W w; 422 W w;
255 int events; 423 int events;
256} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
257 432
258#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
259 434
260 struct ev_loop 435 struct ev_loop
261 { 436 {
295 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif 472#endif
298} 473}
299 474
300inline ev_tstamp 475ev_tstamp inline_size
301get_clock (void) 476get_clock (void)
302{ 477{
303#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
305 { 480 {
318{ 493{
319 return ev_rt_now; 494 return ev_rt_now;
320} 495}
321#endif 496#endif
322 497
323#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
324 554
325#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
327 { \ 557 { \
328 int newcnt = cur; \ 558 int ocur_ = (cur); \
329 do \ 559 (base) = (type *)array_realloc \
330 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 562 }
339 563
564#if 0
340#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 567 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 571 }
572#endif
347 573
348#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
350 576
351/*****************************************************************************/ 577/*****************************************************************************/
352 578
353static void 579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
354anfds_init (ANFD *base, int count) 608anfds_init (ANFD *base, int count)
355{ 609{
356 while (count--) 610 while (count--)
357 { 611 {
358 base->head = 0; 612 base->head = 0;
361 615
362 ++base; 616 ++base;
363 } 617 }
364} 618}
365 619
366void 620void inline_speed
367ev_feed_event (EV_P_ void *w, int revents)
368{
369 W w_ = (W)w;
370
371 if (expect_false (w_->pending))
372 {
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
374 return;
375 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381}
382
383static void
384queue_events (EV_P_ W *events, int eventcnt, int type)
385{
386 int i;
387
388 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type);
390}
391
392inline void
393fd_event (EV_P_ int fd, int revents) 621fd_event (EV_P_ int fd, int revents)
394{ 622{
395 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 624 ev_io *w;
397 625
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 627 {
400 int ev = w->events & revents; 628 int ev = w->events & revents;
401 629
402 if (ev) 630 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 631 ev_feed_event (EV_A_ (W)w, ev);
405} 633}
406 634
407void 635void
408ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 637{
638 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
411} 640}
412 641
413/*****************************************************************************/ 642void inline_size
414
415inline void
416fd_reify (EV_P) 643fd_reify (EV_P)
417{ 644{
418 int i; 645 int i;
419 646
420 for (i = 0; i < fdchangecnt; ++i) 647 for (i = 0; i < fdchangecnt; ++i)
421 { 648 {
422 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 651 ev_io *w;
425 652
426 int events = 0; 653 unsigned char events = 0;
427 654
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 656 events |= (unsigned char)w->events;
430 657
431#if EV_SELECT_IS_WINSOCKET 658#if EV_SELECT_IS_WINSOCKET
432 if (events) 659 if (events)
433 { 660 {
434 unsigned long argp; 661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
435 anfd->handle = _get_osfhandle (fd); 665 anfd->handle = _get_osfhandle (fd);
666 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
437 } 668 }
438#endif 669#endif
439 670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
440 anfd->reify = 0; 675 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
444 } 681 }
445 682
446 fdchangecnt = 0; 683 fdchangecnt = 0;
447} 684}
448 685
449static void 686void inline_size
450fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
451{ 688{
452 if (expect_false (anfds [fd].reify)) 689 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
456 691
692 if (expect_true (!reify))
693 {
457 ++fdchangecnt; 694 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
460} 698}
461 699
462static void 700void inline_speed
463fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
464{ 702{
465 struct ev_io *w; 703 ev_io *w;
466 704
467 while ((w = (struct ev_io *)anfds [fd].head)) 705 while ((w = (ev_io *)anfds [fd].head))
468 { 706 {
469 ev_io_stop (EV_A_ w); 707 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 709 }
472} 710}
473 711
474inline int 712int inline_size
475fd_valid (int fd) 713fd_valid (int fd)
476{ 714{
477#ifdef _WIN32 715#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 716 return _get_osfhandle (fd) != -1;
479#else 717#else
480 return fcntl (fd, F_GETFD) != -1; 718 return fcntl (fd, F_GETFD) != -1;
481#endif 719#endif
482} 720}
483 721
484/* called on EBADF to verify fds */ 722/* called on EBADF to verify fds */
485static void 723static void noinline
486fd_ebadf (EV_P) 724fd_ebadf (EV_P)
487{ 725{
488 int fd; 726 int fd;
489 727
490 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 730 if (!fd_valid (fd) == -1 && errno == EBADF)
493 fd_kill (EV_A_ fd); 731 fd_kill (EV_A_ fd);
494} 732}
495 733
496/* called on ENOMEM in select/poll to kill some fds and retry */ 734/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 735static void noinline
498fd_enomem (EV_P) 736fd_enomem (EV_P)
499{ 737{
500 int fd; 738 int fd;
501 739
502 for (fd = anfdmax; fd--; ) 740 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 743 fd_kill (EV_A_ fd);
506 return; 744 return;
507 } 745 }
508} 746}
509 747
510/* usually called after fork if method needs to re-arm all fds from scratch */ 748/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 749static void noinline
512fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
513{ 751{
514 int fd; 752 int fd;
515 753
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 755 if (anfds [fd].events)
519 { 756 {
520 anfds [fd].events = 0; 757 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
522 } 759 }
523} 760}
524 761
525/*****************************************************************************/ 762/*****************************************************************************/
526 763
527static void 764/* towards the root */
765void inline_speed
528upheap (WT *heap, int k) 766upheap (WT *heap, int k)
529{ 767{
530 WT w = heap [k]; 768 WT w = heap [k];
531 769
532 while (k && heap [k >> 1]->at > w->at) 770 for (;;)
533 { 771 {
772 int p = k >> 1;
773
774 /* maybe we could use a dummy element at heap [0]? */
775 if (!p || heap [p]->at <= w->at)
776 break;
777
534 heap [k] = heap [k >> 1]; 778 heap [k] = heap [p];
535 ((W)heap [k])->active = k + 1; 779 ev_active (heap [k]) = k;
536 k >>= 1; 780 k = p;
537 } 781 }
538 782
539 heap [k] = w; 783 heap [k] = w;
540 ((W)heap [k])->active = k + 1; 784 ev_active (heap [k]) = k;
541
542} 785}
543 786
544static void 787/* away from the root */
788void inline_speed
545downheap (WT *heap, int N, int k) 789downheap (WT *heap, int N, int k)
546{ 790{
547 WT w = heap [k]; 791 WT w = heap [k];
548 792
549 while (k < (N >> 1)) 793 for (;;)
550 { 794 {
551 int j = k << 1; 795 int c = k << 1;
552 796
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 797 if (c > N)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break; 798 break;
558 799
800 c += c < N && heap [c]->at > heap [c + 1]->at
801 ? 1 : 0;
802
803 if (w->at <= heap [c]->at)
804 break;
805
559 heap [k] = heap [j]; 806 heap [k] = heap [c];
560 ((W)heap [k])->active = k + 1; 807 ev_active (heap [k]) = k;
808
561 k = j; 809 k = c;
562 } 810 }
563 811
564 heap [k] = w; 812 heap [k] = w;
565 ((W)heap [k])->active = k + 1; 813 ev_active (heap [k]) = k;
566} 814}
567 815
568inline void 816void inline_size
569adjustheap (WT *heap, int N, int k) 817adjustheap (WT *heap, int N, int k)
570{ 818{
571 upheap (heap, k); 819 upheap (heap, k);
572 downheap (heap, N, k); 820 downheap (heap, N, k);
573} 821}
575/*****************************************************************************/ 823/*****************************************************************************/
576 824
577typedef struct 825typedef struct
578{ 826{
579 WL head; 827 WL head;
580 sig_atomic_t volatile gotsig; 828 EV_ATOMIC_T gotsig;
581} ANSIG; 829} ANSIG;
582 830
583static ANSIG *signals; 831static ANSIG *signals;
584static int signalmax; 832static int signalmax;
585 833
586static int sigpipe [2]; 834static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 835
590static void 836void inline_size
591signals_init (ANSIG *base, int count) 837signals_init (ANSIG *base, int count)
592{ 838{
593 while (count--) 839 while (count--)
594 { 840 {
595 base->head = 0; 841 base->head = 0;
597 843
598 ++base; 844 ++base;
599 } 845 }
600} 846}
601 847
602static void 848/*****************************************************************************/
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608 849
609 signals [signum - 1].gotsig = 1; 850void inline_speed
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 851fd_intern (int fd)
655{ 852{
656#ifdef _WIN32 853#ifdef _WIN32
657 int arg = 1; 854 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 855 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 857 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 858 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 859#endif
663} 860}
664 861
862static void noinline
863evpipe_init (EV_P)
864{
865 if (!ev_is_active (&pipeev))
866 {
867#if EV_USE_EVENTFD
868 if ((evfd = eventfd (0, 0)) >= 0)
869 {
870 evpipe [0] = -1;
871 fd_intern (evfd);
872 ev_io_set (&pipeev, evfd, EV_READ);
873 }
874 else
875#endif
876 {
877 while (pipe (evpipe))
878 syserr ("(libev) error creating signal/async pipe");
879
880 fd_intern (evpipe [0]);
881 fd_intern (evpipe [1]);
882 ev_io_set (&pipeev, evpipe [0], EV_READ);
883 }
884
885 ev_io_start (EV_A_ &pipeev);
886 ev_unref (EV_A); /* watcher should not keep loop alive */
887 }
888}
889
890void inline_size
891evpipe_write (EV_P_ EV_ATOMIC_T *flag)
892{
893 if (!*flag)
894 {
895 int old_errno = errno; /* save errno because write might clobber it */
896
897 *flag = 1;
898
899#if EV_USE_EVENTFD
900 if (evfd >= 0)
901 {
902 uint64_t counter = 1;
903 write (evfd, &counter, sizeof (uint64_t));
904 }
905 else
906#endif
907 write (evpipe [1], &old_errno, 1);
908
909 errno = old_errno;
910 }
911}
912
665static void 913static void
666siginit (EV_P) 914pipecb (EV_P_ ev_io *iow, int revents)
667{ 915{
668 fd_intern (sigpipe [0]); 916#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 917 if (evfd >= 0)
918 {
919 uint64_t counter;
920 read (evfd, &counter, sizeof (uint64_t));
921 }
922 else
923#endif
924 {
925 char dummy;
926 read (evpipe [0], &dummy, 1);
927 }
670 928
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 929 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 930 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 931 int signum;
932 gotsig = 0;
933
934 for (signum = signalmax; signum--; )
935 if (signals [signum].gotsig)
936 ev_feed_signal_event (EV_A_ signum + 1);
937 }
938
939#if EV_ASYNC_ENABLE
940 if (gotasync)
941 {
942 int i;
943 gotasync = 0;
944
945 for (i = asynccnt; i--; )
946 if (asyncs [i]->sent)
947 {
948 asyncs [i]->sent = 0;
949 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
950 }
951 }
952#endif
674} 953}
675 954
676/*****************************************************************************/ 955/*****************************************************************************/
677 956
678static struct ev_child *childs [PID_HASHSIZE]; 957static void
958ev_sighandler (int signum)
959{
960#if EV_MULTIPLICITY
961 struct ev_loop *loop = &default_loop_struct;
962#endif
963
964#if _WIN32
965 signal (signum, ev_sighandler);
966#endif
967
968 signals [signum - 1].gotsig = 1;
969 evpipe_write (EV_A_ &gotsig);
970}
971
972void noinline
973ev_feed_signal_event (EV_P_ int signum)
974{
975 WL w;
976
977#if EV_MULTIPLICITY
978 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
979#endif
980
981 --signum;
982
983 if (signum < 0 || signum >= signalmax)
984 return;
985
986 signals [signum].gotsig = 0;
987
988 for (w = signals [signum].head; w; w = w->next)
989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
990}
991
992/*****************************************************************************/
993
994static WL childs [EV_PID_HASHSIZE];
679 995
680#ifndef _WIN32 996#ifndef _WIN32
681 997
682static struct ev_signal childev; 998static ev_signal childev;
999
1000#ifndef WIFCONTINUED
1001# define WIFCONTINUED(status) 0
1002#endif
1003
1004void inline_speed
1005child_reap (EV_P_ int chain, int pid, int status)
1006{
1007 ev_child *w;
1008 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1009
1010 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1011 {
1012 if ((w->pid == pid || !w->pid)
1013 && (!traced || (w->flags & 1)))
1014 {
1015 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1016 w->rpid = pid;
1017 w->rstatus = status;
1018 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1019 }
1020 }
1021}
683 1022
684#ifndef WCONTINUED 1023#ifndef WCONTINUED
685# define WCONTINUED 0 1024# define WCONTINUED 0
686#endif 1025#endif
687 1026
688static void 1027static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1028childcb (EV_P_ ev_signal *sw, int revents)
705{ 1029{
706 int pid, status; 1030 int pid, status;
707 1031
1032 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1033 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1034 if (!WCONTINUED
1035 || errno != EINVAL
1036 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1037 return;
1038
710 /* make sure we are called again until all childs have been reaped */ 1039 /* make sure we are called again until all children have been reaped */
1040 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1041 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1042
713 child_reap (EV_A_ sw, pid, pid, status); 1043 child_reap (EV_A_ pid, pid, status);
1044 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1045 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1046}
717 1047
718#endif 1048#endif
719 1049
720/*****************************************************************************/ 1050/*****************************************************************************/
746{ 1076{
747 return EV_VERSION_MINOR; 1077 return EV_VERSION_MINOR;
748} 1078}
749 1079
750/* return true if we are running with elevated privileges and should ignore env variables */ 1080/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1081int inline_size
752enable_secure (void) 1082enable_secure (void)
753{ 1083{
754#ifdef _WIN32 1084#ifdef _WIN32
755 return 0; 1085 return 0;
756#else 1086#else
758 || getgid () != getegid (); 1088 || getgid () != getegid ();
759#endif 1089#endif
760} 1090}
761 1091
762unsigned int 1092unsigned int
763ev_method (EV_P) 1093ev_supported_backends (void)
764{ 1094{
765 return method; 1095 unsigned int flags = 0;
766}
767 1096
768static void 1097 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1098 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1099 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1100 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1101 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1102
1103 return flags;
1104}
1105
1106unsigned int
1107ev_recommended_backends (void)
1108{
1109 unsigned int flags = ev_supported_backends ();
1110
1111#ifndef __NetBSD__
1112 /* kqueue is borked on everything but netbsd apparently */
1113 /* it usually doesn't work correctly on anything but sockets and pipes */
1114 flags &= ~EVBACKEND_KQUEUE;
1115#endif
1116#ifdef __APPLE__
1117 // flags &= ~EVBACKEND_KQUEUE; for documentation
1118 flags &= ~EVBACKEND_POLL;
1119#endif
1120
1121 return flags;
1122}
1123
1124unsigned int
1125ev_embeddable_backends (void)
1126{
1127 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1128
1129 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1130 /* please fix it and tell me how to detect the fix */
1131 flags &= ~EVBACKEND_EPOLL;
1132
1133 return flags;
1134}
1135
1136unsigned int
1137ev_backend (EV_P)
1138{
1139 return backend;
1140}
1141
1142unsigned int
1143ev_loop_count (EV_P)
1144{
1145 return loop_count;
1146}
1147
1148void
1149ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1150{
1151 io_blocktime = interval;
1152}
1153
1154void
1155ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1156{
1157 timeout_blocktime = interval;
1158}
1159
1160static void noinline
769loop_init (EV_P_ unsigned int flags) 1161loop_init (EV_P_ unsigned int flags)
770{ 1162{
771 if (!method) 1163 if (!backend)
772 { 1164 {
773#if EV_USE_MONOTONIC 1165#if EV_USE_MONOTONIC
774 { 1166 {
775 struct timespec ts; 1167 struct timespec ts;
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1168 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 1169 have_monotonic = 1;
778 } 1170 }
779#endif 1171#endif
780 1172
781 ev_rt_now = ev_time (); 1173 ev_rt_now = ev_time ();
782 mn_now = get_clock (); 1174 mn_now = get_clock ();
783 now_floor = mn_now; 1175 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now; 1176 rtmn_diff = ev_rt_now - mn_now;
785 1177
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1178 io_blocktime = 0.;
1179 timeout_blocktime = 0.;
1180 backend = 0;
1181 backend_fd = -1;
1182 gotasync = 0;
1183#if EV_USE_INOTIFY
1184 fs_fd = -2;
1185#endif
1186
1187 /* pid check not overridable via env */
1188#ifndef _WIN32
1189 if (flags & EVFLAG_FORKCHECK)
1190 curpid = getpid ();
1191#endif
1192
1193 if (!(flags & EVFLAG_NOENV)
1194 && !enable_secure ()
1195 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1196 flags = atoi (getenv ("LIBEV_FLAGS"));
788 1197
789 if (!(flags & 0x0000ffff)) 1198 if (!(flags & 0x0000ffffU))
790 flags |= 0x0000ffff; 1199 flags |= ev_recommended_backends ();
791 1200
792 method = 0;
793#if EV_USE_PORT 1201#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1202 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 1203#endif
796#if EV_USE_KQUEUE 1204#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1205 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 1206#endif
799#if EV_USE_EPOLL 1207#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1208 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 1209#endif
802#if EV_USE_POLL 1210#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1211 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 1212#endif
805#if EV_USE_SELECT 1213#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1214 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 1215#endif
808 1216
809 ev_init (&sigev, sigcb); 1217 ev_init (&pipeev, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 1218 ev_set_priority (&pipeev, EV_MAXPRI);
811 } 1219 }
812} 1220}
813 1221
814void 1222static void noinline
815loop_destroy (EV_P) 1223loop_destroy (EV_P)
816{ 1224{
817 int i; 1225 int i;
818 1226
1227 if (ev_is_active (&pipeev))
1228 {
1229 ev_ref (EV_A); /* signal watcher */
1230 ev_io_stop (EV_A_ &pipeev);
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 close (evfd);
1235#endif
1236
1237 if (evpipe [0] >= 0)
1238 {
1239 close (evpipe [0]);
1240 close (evpipe [1]);
1241 }
1242 }
1243
1244#if EV_USE_INOTIFY
1245 if (fs_fd >= 0)
1246 close (fs_fd);
1247#endif
1248
1249 if (backend_fd >= 0)
1250 close (backend_fd);
1251
819#if EV_USE_PORT 1252#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1253 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 1254#endif
822#if EV_USE_KQUEUE 1255#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1256 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 1257#endif
825#if EV_USE_EPOLL 1258#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1259 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 1260#endif
828#if EV_USE_POLL 1261#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1262 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 1263#endif
831#if EV_USE_SELECT 1264#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1265 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 1266#endif
834 1267
835 for (i = NUMPRI; i--; ) 1268 for (i = NUMPRI; i--; )
1269 {
836 array_free (pending, [i]); 1270 array_free (pending, [i]);
1271#if EV_IDLE_ENABLE
1272 array_free (idle, [i]);
1273#endif
1274 }
1275
1276 ev_free (anfds); anfdmax = 0;
837 1277
838 /* have to use the microsoft-never-gets-it-right macro */ 1278 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0); 1279 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 1280 array_free (timer, EMPTY);
841#if EV_PERIODICS 1281#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 1282 array_free (periodic, EMPTY);
843#endif 1283#endif
1284#if EV_FORK_ENABLE
844 array_free (idle, EMPTY0); 1285 array_free (fork, EMPTY);
1286#endif
845 array_free (prepare, EMPTY0); 1287 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 1288 array_free (check, EMPTY);
1289#if EV_ASYNC_ENABLE
1290 array_free (async, EMPTY);
1291#endif
847 1292
848 method = 0; 1293 backend = 0;
849} 1294}
850 1295
851static void 1296#if EV_USE_INOTIFY
1297void inline_size infy_fork (EV_P);
1298#endif
1299
1300void inline_size
852loop_fork (EV_P) 1301loop_fork (EV_P)
853{ 1302{
854#if EV_USE_PORT 1303#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1304 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 1305#endif
857#if EV_USE_KQUEUE 1306#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1307 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 1308#endif
860#if EV_USE_EPOLL 1309#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1310 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
862#endif 1311#endif
1312#if EV_USE_INOTIFY
1313 infy_fork (EV_A);
1314#endif
863 1315
864 if (ev_is_active (&sigev)) 1316 if (ev_is_active (&pipeev))
865 { 1317 {
866 /* default loop */ 1318 /* this "locks" the handlers against writing to the pipe */
1319 /* while we modify the fd vars */
1320 gotsig = 1;
1321#if EV_ASYNC_ENABLE
1322 gotasync = 1;
1323#endif
867 1324
868 ev_ref (EV_A); 1325 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev); 1326 ev_io_stop (EV_A_ &pipeev);
1327
1328#if EV_USE_EVENTFD
1329 if (evfd >= 0)
1330 close (evfd);
1331#endif
1332
1333 if (evpipe [0] >= 0)
1334 {
870 close (sigpipe [0]); 1335 close (evpipe [0]);
871 close (sigpipe [1]); 1336 close (evpipe [1]);
1337 }
872 1338
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A); 1339 evpipe_init (EV_A);
1340 /* now iterate over everything, in case we missed something */
1341 pipecb (EV_A_ &pipeev, EV_READ);
877 } 1342 }
878 1343
879 postfork = 0; 1344 postfork = 0;
880} 1345}
881 1346
887 1352
888 memset (loop, 0, sizeof (struct ev_loop)); 1353 memset (loop, 0, sizeof (struct ev_loop));
889 1354
890 loop_init (EV_A_ flags); 1355 loop_init (EV_A_ flags);
891 1356
892 if (ev_method (EV_A)) 1357 if (ev_backend (EV_A))
893 return loop; 1358 return loop;
894 1359
895 return 0; 1360 return 0;
896} 1361}
897 1362
903} 1368}
904 1369
905void 1370void
906ev_loop_fork (EV_P) 1371ev_loop_fork (EV_P)
907{ 1372{
908 postfork = 1; 1373 postfork = 1; /* must be in line with ev_default_fork */
909} 1374}
910
911#endif 1375#endif
912 1376
913#if EV_MULTIPLICITY 1377#if EV_MULTIPLICITY
914struct ev_loop * 1378struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1379ev_default_loop_init (unsigned int flags)
916#else 1380#else
917int 1381int
918ev_default_loop (unsigned int flags) 1382ev_default_loop (unsigned int flags)
919#endif 1383#endif
920{ 1384{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1385 if (!ev_default_loop_ptr)
926 { 1386 {
927#if EV_MULTIPLICITY 1387#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1388 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1389#else
930 ev_default_loop_ptr = 1; 1390 ev_default_loop_ptr = 1;
931#endif 1391#endif
932 1392
933 loop_init (EV_A_ flags); 1393 loop_init (EV_A_ flags);
934 1394
935 if (ev_method (EV_A)) 1395 if (ev_backend (EV_A))
936 { 1396 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1397#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1398 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1399 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1400 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1401 ev_unref (EV_A); /* child watcher should not keep loop alive */
960#ifndef _WIN32 1418#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1419 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1420 ev_signal_stop (EV_A_ &childev);
963#endif 1421#endif
964 1422
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1423 loop_destroy (EV_A);
972} 1424}
973 1425
974void 1426void
975ev_default_fork (void) 1427ev_default_fork (void)
976{ 1428{
977#if EV_MULTIPLICITY 1429#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1430 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1431#endif
980 1432
981 if (method) 1433 if (backend)
982 postfork = 1; 1434 postfork = 1; /* must be in line with ev_loop_fork */
983} 1435}
984 1436
985/*****************************************************************************/ 1437/*****************************************************************************/
986 1438
987static int 1439void
988any_pending (EV_P) 1440ev_invoke (EV_P_ void *w, int revents)
989{ 1441{
990 int pri; 1442 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1443}
998 1444
999inline void 1445void inline_speed
1000call_pending (EV_P) 1446call_pending (EV_P)
1001{ 1447{
1002 int pri; 1448 int pri;
1003 1449
1004 for (pri = NUMPRI; pri--; ) 1450 for (pri = NUMPRI; pri--; )
1006 { 1452 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1453 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1454
1009 if (expect_true (p->w)) 1455 if (expect_true (p->w))
1010 { 1456 {
1457 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1458
1011 p->w->pending = 0; 1459 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1460 EV_CB_INVOKE (p->w, p->events);
1013 } 1461 }
1014 } 1462 }
1015} 1463}
1016 1464
1017inline void 1465#if EV_IDLE_ENABLE
1466void inline_size
1467idle_reify (EV_P)
1468{
1469 if (expect_false (idleall))
1470 {
1471 int pri;
1472
1473 for (pri = NUMPRI; pri--; )
1474 {
1475 if (pendingcnt [pri])
1476 break;
1477
1478 if (idlecnt [pri])
1479 {
1480 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1481 break;
1482 }
1483 }
1484 }
1485}
1486#endif
1487
1488void inline_size
1018timers_reify (EV_P) 1489timers_reify (EV_P)
1019{ 1490{
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1491 while (timercnt && ev_at (timers [1]) <= mn_now)
1021 { 1492 {
1022 struct ev_timer *w = timers [0]; 1493 ev_timer *w = (ev_timer *)timers [1];
1023 1494
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1495 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1025 1496
1026 /* first reschedule or stop timer */ 1497 /* first reschedule or stop timer */
1027 if (w->repeat) 1498 if (w->repeat)
1028 { 1499 {
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1500 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1501
1031 ((WT)w)->at += w->repeat; 1502 ev_at (w) += w->repeat;
1032 if (((WT)w)->at < mn_now) 1503 if (ev_at (w) < mn_now)
1033 ((WT)w)->at = mn_now; 1504 ev_at (w) = mn_now;
1034 1505
1035 downheap ((WT *)timers, timercnt, 0); 1506 downheap (timers, timercnt, 1);
1036 } 1507 }
1037 else 1508 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1509 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1510
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1511 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 } 1512 }
1042} 1513}
1043 1514
1044#if EV_PERIODICS 1515#if EV_PERIODIC_ENABLE
1045inline void 1516void inline_size
1046periodics_reify (EV_P) 1517periodics_reify (EV_P)
1047{ 1518{
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1519 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1049 { 1520 {
1050 struct ev_periodic *w = periodics [0]; 1521 ev_periodic *w = (ev_periodic *)periodics [1];
1051 1522
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1523 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1524
1054 /* first reschedule or stop timer */ 1525 /* first reschedule or stop timer */
1055 if (w->reschedule_cb) 1526 if (w->reschedule_cb)
1056 { 1527 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1528 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1529 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1059 downheap ((WT *)periodics, periodiccnt, 0); 1530 downheap (periodics, periodiccnt, 1);
1060 } 1531 }
1061 else if (w->interval) 1532 else if (w->interval)
1062 { 1533 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1536 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0); 1537 downheap (periodics, periodiccnt, 1);
1066 } 1538 }
1067 else 1539 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1540 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1541
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1542 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 } 1543 }
1072} 1544}
1073 1545
1074static void 1546static void noinline
1075periodics_reschedule (EV_P) 1547periodics_reschedule (EV_P)
1076{ 1548{
1077 int i; 1549 int i;
1078 1550
1079 /* adjust periodics after time jump */ 1551 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 1552 for (i = 1; i <= periodiccnt; ++i)
1081 { 1553 {
1082 struct ev_periodic *w = periodics [i]; 1554 ev_periodic *w = (ev_periodic *)periodics [i];
1083 1555
1084 if (w->reschedule_cb) 1556 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1557 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 1558 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1559 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1088 } 1560 }
1089 1561
1090 /* now rebuild the heap */ 1562 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; ) 1563 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i); 1564 downheap (periodics, periodiccnt, i);
1093} 1565}
1094#endif 1566#endif
1095 1567
1096inline int 1568void inline_speed
1097time_update_monotonic (EV_P) 1569time_update (EV_P_ ev_tstamp max_block)
1098{ 1570{
1571 int i;
1572
1573#if EV_USE_MONOTONIC
1574 if (expect_true (have_monotonic))
1575 {
1576 ev_tstamp odiff = rtmn_diff;
1577
1099 mn_now = get_clock (); 1578 mn_now = get_clock ();
1100 1579
1580 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1581 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1582 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 1583 {
1103 ev_rt_now = rtmn_diff + mn_now; 1584 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 1585 return;
1105 } 1586 }
1106 else 1587
1107 {
1108 now_floor = mn_now; 1588 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1589 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1590
1114inline void 1591 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1592 * on the choice of "4": one iteration isn't enough,
1116{ 1593 * in case we get preempted during the calls to
1117 int i; 1594 * ev_time and get_clock. a second call is almost guaranteed
1118 1595 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1596 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1597 * in the unlikely event of having been preempted here.
1121 { 1598 */
1122 if (time_update_monotonic (EV_A)) 1599 for (i = 4; --i; )
1123 { 1600 {
1124 ev_tstamp odiff = rtmn_diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 1601 rtmn_diff = ev_rt_now - mn_now;
1129 1602
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1603 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 1604 return; /* all is well */
1132 1605
1133 ev_rt_now = ev_time (); 1606 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 1607 mn_now = get_clock ();
1135 now_floor = mn_now; 1608 now_floor = mn_now;
1136 } 1609 }
1137 1610
1138# if EV_PERIODICS 1611# if EV_PERIODIC_ENABLE
1612 periodics_reschedule (EV_A);
1613# endif
1614 /* no timer adjustment, as the monotonic clock doesn't jump */
1615 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1616 }
1617 else
1618#endif
1619 {
1620 ev_rt_now = ev_time ();
1621
1622 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1623 {
1624#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 1625 periodics_reschedule (EV_A);
1140# endif 1626#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */ 1627 /* adjust timers. this is easy, as the offset is the same for all of them */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1628 for (i = 1; i <= timercnt; ++i)
1629 ev_at (timers [i]) += ev_rt_now - mn_now;
1143 } 1630 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 1631
1161 mn_now = ev_rt_now; 1632 mn_now = ev_rt_now;
1162 } 1633 }
1163} 1634}
1164 1635
1177static int loop_done; 1648static int loop_done;
1178 1649
1179void 1650void
1180ev_loop (EV_P_ int flags) 1651ev_loop (EV_P_ int flags)
1181{ 1652{
1182 double block; 1653 loop_done = EVUNLOOP_CANCEL;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 1654
1185 while (activecnt) 1655 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1656
1657 do
1186 { 1658 {
1659#ifndef _WIN32
1660 if (expect_false (curpid)) /* penalise the forking check even more */
1661 if (expect_false (getpid () != curpid))
1662 {
1663 curpid = getpid ();
1664 postfork = 1;
1665 }
1666#endif
1667
1668#if EV_FORK_ENABLE
1669 /* we might have forked, so queue fork handlers */
1670 if (expect_false (postfork))
1671 if (forkcnt)
1672 {
1673 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1674 call_pending (EV_A);
1675 }
1676#endif
1677
1187 /* queue check watchers (and execute them) */ 1678 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 1679 if (expect_false (preparecnt))
1189 { 1680 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1681 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 1682 call_pending (EV_A);
1192 } 1683 }
1193 1684
1685 if (expect_false (!activecnt))
1686 break;
1687
1194 /* we might have forked, so reify kernel state if necessary */ 1688 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 1689 if (expect_false (postfork))
1196 loop_fork (EV_A); 1690 loop_fork (EV_A);
1197 1691
1198 /* update fd-related kernel structures */ 1692 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 1693 fd_reify (EV_A);
1200 1694
1201 /* calculate blocking time */ 1695 /* calculate blocking time */
1696 {
1697 ev_tstamp waittime = 0.;
1698 ev_tstamp sleeptime = 0.;
1202 1699
1203 /* we only need this for !monotonic clock or timers, but as we basically 1700 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 1701 {
1211 ev_rt_now = ev_time (); 1702 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 1703 time_update (EV_A_ 1e100);
1213 }
1214 1704
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 1705 waittime = MAX_BLOCKTIME;
1220 1706
1221 if (timercnt) 1707 if (timercnt)
1222 { 1708 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1709 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 1710 if (waittime > to) waittime = to;
1225 } 1711 }
1226 1712
1227#if EV_PERIODICS 1713#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 1714 if (periodiccnt)
1229 { 1715 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1716 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 1717 if (waittime > to) waittime = to;
1232 } 1718 }
1233#endif 1719#endif
1234 1720
1235 if (expect_false (block < 0.)) block = 0.; 1721 if (expect_false (waittime < timeout_blocktime))
1722 waittime = timeout_blocktime;
1723
1724 sleeptime = waittime - backend_fudge;
1725
1726 if (expect_true (sleeptime > io_blocktime))
1727 sleeptime = io_blocktime;
1728
1729 if (sleeptime)
1730 {
1731 ev_sleep (sleeptime);
1732 waittime -= sleeptime;
1733 }
1236 } 1734 }
1237 1735
1238 method_poll (EV_A_ block); 1736 ++loop_count;
1737 backend_poll (EV_A_ waittime);
1239 1738
1240 /* update ev_rt_now, do magic */ 1739 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 1740 time_update (EV_A_ waittime + sleeptime);
1741 }
1242 1742
1243 /* queue pending timers and reschedule them */ 1743 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 1744 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 1745#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 1746 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 1747#endif
1248 1748
1749#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 1750 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 1751 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1752#endif
1252 1753
1253 /* queue check watchers, to be executed first */ 1754 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 1755 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1756 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 1757
1257 call_pending (EV_A); 1758 call_pending (EV_A);
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 1759 }
1760 while (expect_true (
1761 activecnt
1762 && !loop_done
1763 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1764 ));
1262 1765
1263 if (loop_done != 2) 1766 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 1767 loop_done = EVUNLOOP_CANCEL;
1265} 1768}
1266 1769
1267void 1770void
1268ev_unloop (EV_P_ int how) 1771ev_unloop (EV_P_ int how)
1269{ 1772{
1270 loop_done = how; 1773 loop_done = how;
1271} 1774}
1272 1775
1273/*****************************************************************************/ 1776/*****************************************************************************/
1274 1777
1275inline void 1778void inline_size
1276wlist_add (WL *head, WL elem) 1779wlist_add (WL *head, WL elem)
1277{ 1780{
1278 elem->next = *head; 1781 elem->next = *head;
1279 *head = elem; 1782 *head = elem;
1280} 1783}
1281 1784
1282inline void 1785void inline_size
1283wlist_del (WL *head, WL elem) 1786wlist_del (WL *head, WL elem)
1284{ 1787{
1285 while (*head) 1788 while (*head)
1286 { 1789 {
1287 if (*head == elem) 1790 if (*head == elem)
1292 1795
1293 head = &(*head)->next; 1796 head = &(*head)->next;
1294 } 1797 }
1295} 1798}
1296 1799
1297inline void 1800void inline_speed
1298ev_clear_pending (EV_P_ W w) 1801clear_pending (EV_P_ W w)
1299{ 1802{
1300 if (w->pending) 1803 if (w->pending)
1301 { 1804 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1805 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0; 1806 w->pending = 0;
1304 } 1807 }
1305} 1808}
1306 1809
1307inline void 1810int
1811ev_clear_pending (EV_P_ void *w)
1812{
1813 W w_ = (W)w;
1814 int pending = w_->pending;
1815
1816 if (expect_true (pending))
1817 {
1818 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1819 w_->pending = 0;
1820 p->w = 0;
1821 return p->events;
1822 }
1823 else
1824 return 0;
1825}
1826
1827void inline_size
1828pri_adjust (EV_P_ W w)
1829{
1830 int pri = w->priority;
1831 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1832 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1833 w->priority = pri;
1834}
1835
1836void inline_speed
1308ev_start (EV_P_ W w, int active) 1837ev_start (EV_P_ W w, int active)
1309{ 1838{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1839 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 1840 w->active = active;
1314 ev_ref (EV_A); 1841 ev_ref (EV_A);
1315} 1842}
1316 1843
1317inline void 1844void inline_size
1318ev_stop (EV_P_ W w) 1845ev_stop (EV_P_ W w)
1319{ 1846{
1320 ev_unref (EV_A); 1847 ev_unref (EV_A);
1321 w->active = 0; 1848 w->active = 0;
1322} 1849}
1323 1850
1324/*****************************************************************************/ 1851/*****************************************************************************/
1325 1852
1326void 1853void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 1854ev_io_start (EV_P_ ev_io *w)
1328{ 1855{
1329 int fd = w->fd; 1856 int fd = w->fd;
1330 1857
1331 if (expect_false (ev_is_active (w))) 1858 if (expect_false (ev_is_active (w)))
1332 return; 1859 return;
1333 1860
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 1861 assert (("ev_io_start called with negative fd", fd >= 0));
1335 1862
1336 ev_start (EV_A_ (W)w, 1); 1863 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1864 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1865 wlist_add (&anfds[fd].head, (WL)w);
1339 1866
1340 fd_change (EV_A_ fd); 1867 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1868 w->events &= ~EV_IOFDSET;
1341} 1869}
1342 1870
1343void 1871void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 1872ev_io_stop (EV_P_ ev_io *w)
1345{ 1873{
1346 ev_clear_pending (EV_A_ (W)w); 1874 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 1875 if (expect_false (!ev_is_active (w)))
1348 return; 1876 return;
1349 1877
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1878 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 1879
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1880 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 1881 ev_stop (EV_A_ (W)w);
1354 1882
1355 fd_change (EV_A_ w->fd); 1883 fd_change (EV_A_ w->fd, 1);
1356} 1884}
1357 1885
1358void 1886void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 1887ev_timer_start (EV_P_ ev_timer *w)
1360{ 1888{
1361 if (expect_false (ev_is_active (w))) 1889 if (expect_false (ev_is_active (w)))
1362 return; 1890 return;
1363 1891
1364 ((WT)w)->at += mn_now; 1892 ev_at (w) += mn_now;
1365 1893
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1894 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 1895
1368 ev_start (EV_A_ (W)w, ++timercnt); 1896 ev_start (EV_A_ (W)w, ++timercnt);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1897 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 1898 timers [timercnt] = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 1899 upheap (timers, timercnt);
1372 1900
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1901 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1374} 1902}
1375 1903
1376void 1904void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 1905ev_timer_stop (EV_P_ ev_timer *w)
1378{ 1906{
1379 ev_clear_pending (EV_A_ (W)w); 1907 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 1908 if (expect_false (!ev_is_active (w)))
1381 return; 1909 return;
1382 1910
1911 {
1912 int active = ev_active (w);
1913
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1914 assert (("internal timer heap corruption", timers [active] == (WT)w));
1384 1915
1385 if (expect_true (((W)w)->active < timercnt--)) 1916 if (expect_true (active < timercnt))
1386 { 1917 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 1918 timers [active] = timers [timercnt];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1919 adjustheap (timers, timercnt, active);
1389 } 1920 }
1390 1921
1391 ((WT)w)->at -= mn_now; 1922 --timercnt;
1923 }
1924
1925 ev_at (w) -= mn_now;
1392 1926
1393 ev_stop (EV_A_ (W)w); 1927 ev_stop (EV_A_ (W)w);
1394} 1928}
1395 1929
1396void 1930void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 1931ev_timer_again (EV_P_ ev_timer *w)
1398{ 1932{
1399 if (ev_is_active (w)) 1933 if (ev_is_active (w))
1400 { 1934 {
1401 if (w->repeat) 1935 if (w->repeat)
1402 { 1936 {
1403 ((WT)w)->at = mn_now + w->repeat; 1937 ev_at (w) = mn_now + w->repeat;
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1938 adjustheap (timers, timercnt, ev_active (w));
1405 } 1939 }
1406 else 1940 else
1407 ev_timer_stop (EV_A_ w); 1941 ev_timer_stop (EV_A_ w);
1408 } 1942 }
1409 else if (w->repeat) 1943 else if (w->repeat)
1410 { 1944 {
1411 w->at = w->repeat; 1945 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 1946 ev_timer_start (EV_A_ w);
1413 } 1947 }
1414} 1948}
1415 1949
1416#if EV_PERIODICS 1950#if EV_PERIODIC_ENABLE
1417void 1951void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 1952ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 1953{
1420 if (expect_false (ev_is_active (w))) 1954 if (expect_false (ev_is_active (w)))
1421 return; 1955 return;
1422 1956
1423 if (w->reschedule_cb) 1957 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1958 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 1959 else if (w->interval)
1426 { 1960 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1961 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 1962 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1963 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 1964 }
1965 else
1966 ev_at (w) = w->offset;
1431 1967
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 1968 ev_start (EV_A_ (W)w, ++periodiccnt);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1969 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 1970 periodics [periodiccnt] = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 1971 upheap (periodics, periodiccnt);
1436 1972
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1973 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1438} 1974}
1439 1975
1440void 1976void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 1977ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 1978{
1443 ev_clear_pending (EV_A_ (W)w); 1979 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 1980 if (expect_false (!ev_is_active (w)))
1445 return; 1981 return;
1446 1982
1983 {
1984 int active = ev_active (w);
1985
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1986 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1448 1987
1449 if (expect_true (((W)w)->active < periodiccnt--)) 1988 if (expect_true (active < periodiccnt))
1450 { 1989 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1990 periodics [active] = periodics [periodiccnt];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1991 adjustheap (periodics, periodiccnt, active);
1453 } 1992 }
1993
1994 --periodiccnt;
1995 }
1454 1996
1455 ev_stop (EV_A_ (W)w); 1997 ev_stop (EV_A_ (W)w);
1456} 1998}
1457 1999
1458void 2000void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2001ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2002{
1461 /* TODO: use adjustheap and recalculation */ 2003 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2004 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2005 ev_periodic_start (EV_A_ w);
1464} 2006}
1465#endif 2007#endif
1466 2008
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (expect_false (ev_is_active (w)))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w)))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (expect_false (ev_is_active (w)))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w)))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (expect_false (ev_is_active (w)))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w)))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 2009#ifndef SA_RESTART
1534# define SA_RESTART 0 2010# define SA_RESTART 0
1535#endif 2011#endif
1536 2012
1537void 2013void noinline
1538ev_signal_start (EV_P_ struct ev_signal *w) 2014ev_signal_start (EV_P_ ev_signal *w)
1539{ 2015{
1540#if EV_MULTIPLICITY 2016#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2017 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 2018#endif
1543 if (expect_false (ev_is_active (w))) 2019 if (expect_false (ev_is_active (w)))
1544 return; 2020 return;
1545 2021
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2022 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1547 2023
2024 evpipe_init (EV_A);
2025
2026 {
2027#ifndef _WIN32
2028 sigset_t full, prev;
2029 sigfillset (&full);
2030 sigprocmask (SIG_SETMASK, &full, &prev);
2031#endif
2032
2033 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2034
2035#ifndef _WIN32
2036 sigprocmask (SIG_SETMASK, &prev, 0);
2037#endif
2038 }
2039
1548 ev_start (EV_A_ (W)w, 1); 2040 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2041 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2042
1552 if (!((WL)w)->next) 2043 if (!((WL)w)->next)
1553 { 2044 {
1554#if _WIN32 2045#if _WIN32
1555 signal (w->signum, sighandler); 2046 signal (w->signum, ev_sighandler);
1556#else 2047#else
1557 struct sigaction sa; 2048 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2049 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2050 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2051 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2052 sigaction (w->signum, &sa, 0);
1562#endif 2053#endif
1563 } 2054 }
1564} 2055}
1565 2056
1566void 2057void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2058ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2059{
1569 ev_clear_pending (EV_A_ (W)w); 2060 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 2061 if (expect_false (!ev_is_active (w)))
1571 return; 2062 return;
1572 2063
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2064 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2065 ev_stop (EV_A_ (W)w);
1575 2066
1576 if (!signals [w->signum - 1].head) 2067 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2068 signal (w->signum, SIG_DFL);
1578} 2069}
1579 2070
1580void 2071void
1581ev_child_start (EV_P_ struct ev_child *w) 2072ev_child_start (EV_P_ ev_child *w)
1582{ 2073{
1583#if EV_MULTIPLICITY 2074#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2075 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2076#endif
1586 if (expect_false (ev_is_active (w))) 2077 if (expect_false (ev_is_active (w)))
1587 return; 2078 return;
1588 2079
1589 ev_start (EV_A_ (W)w, 1); 2080 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2081 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591} 2082}
1592 2083
1593void 2084void
1594ev_child_stop (EV_P_ struct ev_child *w) 2085ev_child_stop (EV_P_ ev_child *w)
1595{ 2086{
1596 ev_clear_pending (EV_A_ (W)w); 2087 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2088 if (expect_false (!ev_is_active (w)))
1598 return; 2089 return;
1599 2090
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2091 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2092 ev_stop (EV_A_ (W)w);
1602} 2093}
1603 2094
2095#if EV_STAT_ENABLE
2096
2097# ifdef _WIN32
2098# undef lstat
2099# define lstat(a,b) _stati64 (a,b)
2100# endif
2101
2102#define DEF_STAT_INTERVAL 5.0074891
2103#define MIN_STAT_INTERVAL 0.1074891
2104
2105static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2106
2107#if EV_USE_INOTIFY
2108# define EV_INOTIFY_BUFSIZE 8192
2109
2110static void noinline
2111infy_add (EV_P_ ev_stat *w)
2112{
2113 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2114
2115 if (w->wd < 0)
2116 {
2117 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2118
2119 /* monitor some parent directory for speedup hints */
2120 /* note that exceeding the hardcoded limit is not a correctness issue, */
2121 /* but an efficiency issue only */
2122 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2123 {
2124 char path [4096];
2125 strcpy (path, w->path);
2126
2127 do
2128 {
2129 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2130 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2131
2132 char *pend = strrchr (path, '/');
2133
2134 if (!pend)
2135 break; /* whoops, no '/', complain to your admin */
2136
2137 *pend = 0;
2138 w->wd = inotify_add_watch (fs_fd, path, mask);
2139 }
2140 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2141 }
2142 }
2143 else
2144 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2145
2146 if (w->wd >= 0)
2147 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2148}
2149
2150static void noinline
2151infy_del (EV_P_ ev_stat *w)
2152{
2153 int slot;
2154 int wd = w->wd;
2155
2156 if (wd < 0)
2157 return;
2158
2159 w->wd = -2;
2160 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2161 wlist_del (&fs_hash [slot].head, (WL)w);
2162
2163 /* remove this watcher, if others are watching it, they will rearm */
2164 inotify_rm_watch (fs_fd, wd);
2165}
2166
2167static void noinline
2168infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2169{
2170 if (slot < 0)
2171 /* overflow, need to check for all hahs slots */
2172 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2173 infy_wd (EV_A_ slot, wd, ev);
2174 else
2175 {
2176 WL w_;
2177
2178 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2179 {
2180 ev_stat *w = (ev_stat *)w_;
2181 w_ = w_->next; /* lets us remove this watcher and all before it */
2182
2183 if (w->wd == wd || wd == -1)
2184 {
2185 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2186 {
2187 w->wd = -1;
2188 infy_add (EV_A_ w); /* re-add, no matter what */
2189 }
2190
2191 stat_timer_cb (EV_A_ &w->timer, 0);
2192 }
2193 }
2194 }
2195}
2196
2197static void
2198infy_cb (EV_P_ ev_io *w, int revents)
2199{
2200 char buf [EV_INOTIFY_BUFSIZE];
2201 struct inotify_event *ev = (struct inotify_event *)buf;
2202 int ofs;
2203 int len = read (fs_fd, buf, sizeof (buf));
2204
2205 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2206 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2207}
2208
2209void inline_size
2210infy_init (EV_P)
2211{
2212 if (fs_fd != -2)
2213 return;
2214
2215 fs_fd = inotify_init ();
2216
2217 if (fs_fd >= 0)
2218 {
2219 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2220 ev_set_priority (&fs_w, EV_MAXPRI);
2221 ev_io_start (EV_A_ &fs_w);
2222 }
2223}
2224
2225void inline_size
2226infy_fork (EV_P)
2227{
2228 int slot;
2229
2230 if (fs_fd < 0)
2231 return;
2232
2233 close (fs_fd);
2234 fs_fd = inotify_init ();
2235
2236 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2237 {
2238 WL w_ = fs_hash [slot].head;
2239 fs_hash [slot].head = 0;
2240
2241 while (w_)
2242 {
2243 ev_stat *w = (ev_stat *)w_;
2244 w_ = w_->next; /* lets us add this watcher */
2245
2246 w->wd = -1;
2247
2248 if (fs_fd >= 0)
2249 infy_add (EV_A_ w); /* re-add, no matter what */
2250 else
2251 ev_timer_start (EV_A_ &w->timer);
2252 }
2253
2254 }
2255}
2256
2257#endif
2258
2259void
2260ev_stat_stat (EV_P_ ev_stat *w)
2261{
2262 if (lstat (w->path, &w->attr) < 0)
2263 w->attr.st_nlink = 0;
2264 else if (!w->attr.st_nlink)
2265 w->attr.st_nlink = 1;
2266}
2267
2268static void noinline
2269stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2270{
2271 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2272
2273 /* we copy this here each the time so that */
2274 /* prev has the old value when the callback gets invoked */
2275 w->prev = w->attr;
2276 ev_stat_stat (EV_A_ w);
2277
2278 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2279 if (
2280 w->prev.st_dev != w->attr.st_dev
2281 || w->prev.st_ino != w->attr.st_ino
2282 || w->prev.st_mode != w->attr.st_mode
2283 || w->prev.st_nlink != w->attr.st_nlink
2284 || w->prev.st_uid != w->attr.st_uid
2285 || w->prev.st_gid != w->attr.st_gid
2286 || w->prev.st_rdev != w->attr.st_rdev
2287 || w->prev.st_size != w->attr.st_size
2288 || w->prev.st_atime != w->attr.st_atime
2289 || w->prev.st_mtime != w->attr.st_mtime
2290 || w->prev.st_ctime != w->attr.st_ctime
2291 ) {
2292 #if EV_USE_INOTIFY
2293 infy_del (EV_A_ w);
2294 infy_add (EV_A_ w);
2295 ev_stat_stat (EV_A_ w); /* avoid race... */
2296 #endif
2297
2298 ev_feed_event (EV_A_ w, EV_STAT);
2299 }
2300}
2301
2302void
2303ev_stat_start (EV_P_ ev_stat *w)
2304{
2305 if (expect_false (ev_is_active (w)))
2306 return;
2307
2308 /* since we use memcmp, we need to clear any padding data etc. */
2309 memset (&w->prev, 0, sizeof (ev_statdata));
2310 memset (&w->attr, 0, sizeof (ev_statdata));
2311
2312 ev_stat_stat (EV_A_ w);
2313
2314 if (w->interval < MIN_STAT_INTERVAL)
2315 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2316
2317 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2318 ev_set_priority (&w->timer, ev_priority (w));
2319
2320#if EV_USE_INOTIFY
2321 infy_init (EV_A);
2322
2323 if (fs_fd >= 0)
2324 infy_add (EV_A_ w);
2325 else
2326#endif
2327 ev_timer_start (EV_A_ &w->timer);
2328
2329 ev_start (EV_A_ (W)w, 1);
2330}
2331
2332void
2333ev_stat_stop (EV_P_ ev_stat *w)
2334{
2335 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w)))
2337 return;
2338
2339#if EV_USE_INOTIFY
2340 infy_del (EV_A_ w);
2341#endif
2342 ev_timer_stop (EV_A_ &w->timer);
2343
2344 ev_stop (EV_A_ (W)w);
2345}
2346#endif
2347
2348#if EV_IDLE_ENABLE
2349void
2350ev_idle_start (EV_P_ ev_idle *w)
2351{
2352 if (expect_false (ev_is_active (w)))
2353 return;
2354
2355 pri_adjust (EV_A_ (W)w);
2356
2357 {
2358 int active = ++idlecnt [ABSPRI (w)];
2359
2360 ++idleall;
2361 ev_start (EV_A_ (W)w, active);
2362
2363 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2364 idles [ABSPRI (w)][active - 1] = w;
2365 }
2366}
2367
2368void
2369ev_idle_stop (EV_P_ ev_idle *w)
2370{
2371 clear_pending (EV_A_ (W)w);
2372 if (expect_false (!ev_is_active (w)))
2373 return;
2374
2375 {
2376 int active = ev_active (w);
2377
2378 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2379 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2380
2381 ev_stop (EV_A_ (W)w);
2382 --idleall;
2383 }
2384}
2385#endif
2386
2387void
2388ev_prepare_start (EV_P_ ev_prepare *w)
2389{
2390 if (expect_false (ev_is_active (w)))
2391 return;
2392
2393 ev_start (EV_A_ (W)w, ++preparecnt);
2394 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2395 prepares [preparecnt - 1] = w;
2396}
2397
2398void
2399ev_prepare_stop (EV_P_ ev_prepare *w)
2400{
2401 clear_pending (EV_A_ (W)w);
2402 if (expect_false (!ev_is_active (w)))
2403 return;
2404
2405 {
2406 int active = ev_active (w);
2407
2408 prepares [active - 1] = prepares [--preparecnt];
2409 ev_active (prepares [active - 1]) = active;
2410 }
2411
2412 ev_stop (EV_A_ (W)w);
2413}
2414
2415void
2416ev_check_start (EV_P_ ev_check *w)
2417{
2418 if (expect_false (ev_is_active (w)))
2419 return;
2420
2421 ev_start (EV_A_ (W)w, ++checkcnt);
2422 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2423 checks [checkcnt - 1] = w;
2424}
2425
2426void
2427ev_check_stop (EV_P_ ev_check *w)
2428{
2429 clear_pending (EV_A_ (W)w);
2430 if (expect_false (!ev_is_active (w)))
2431 return;
2432
2433 {
2434 int active = ev_active (w);
2435
2436 checks [active - 1] = checks [--checkcnt];
2437 ev_active (checks [active - 1]) = active;
2438 }
2439
2440 ev_stop (EV_A_ (W)w);
2441}
2442
2443#if EV_EMBED_ENABLE
2444void noinline
2445ev_embed_sweep (EV_P_ ev_embed *w)
2446{
2447 ev_loop (w->other, EVLOOP_NONBLOCK);
2448}
2449
2450static void
2451embed_io_cb (EV_P_ ev_io *io, int revents)
2452{
2453 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2454
2455 if (ev_cb (w))
2456 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2457 else
2458 ev_loop (w->other, EVLOOP_NONBLOCK);
2459}
2460
2461static void
2462embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2463{
2464 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2465
2466 {
2467 struct ev_loop *loop = w->other;
2468
2469 while (fdchangecnt)
2470 {
2471 fd_reify (EV_A);
2472 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2473 }
2474 }
2475}
2476
2477#if 0
2478static void
2479embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2480{
2481 ev_idle_stop (EV_A_ idle);
2482}
2483#endif
2484
2485void
2486ev_embed_start (EV_P_ ev_embed *w)
2487{
2488 if (expect_false (ev_is_active (w)))
2489 return;
2490
2491 {
2492 struct ev_loop *loop = w->other;
2493 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2494 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2495 }
2496
2497 ev_set_priority (&w->io, ev_priority (w));
2498 ev_io_start (EV_A_ &w->io);
2499
2500 ev_prepare_init (&w->prepare, embed_prepare_cb);
2501 ev_set_priority (&w->prepare, EV_MINPRI);
2502 ev_prepare_start (EV_A_ &w->prepare);
2503
2504 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2505
2506 ev_start (EV_A_ (W)w, 1);
2507}
2508
2509void
2510ev_embed_stop (EV_P_ ev_embed *w)
2511{
2512 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w)))
2514 return;
2515
2516 ev_io_stop (EV_A_ &w->io);
2517 ev_prepare_stop (EV_A_ &w->prepare);
2518
2519 ev_stop (EV_A_ (W)w);
2520}
2521#endif
2522
2523#if EV_FORK_ENABLE
2524void
2525ev_fork_start (EV_P_ ev_fork *w)
2526{
2527 if (expect_false (ev_is_active (w)))
2528 return;
2529
2530 ev_start (EV_A_ (W)w, ++forkcnt);
2531 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2532 forks [forkcnt - 1] = w;
2533}
2534
2535void
2536ev_fork_stop (EV_P_ ev_fork *w)
2537{
2538 clear_pending (EV_A_ (W)w);
2539 if (expect_false (!ev_is_active (w)))
2540 return;
2541
2542 {
2543 int active = ev_active (w);
2544
2545 forks [active - 1] = forks [--forkcnt];
2546 ev_active (forks [active - 1]) = active;
2547 }
2548
2549 ev_stop (EV_A_ (W)w);
2550}
2551#endif
2552
2553#if EV_ASYNC_ENABLE
2554void
2555ev_async_start (EV_P_ ev_async *w)
2556{
2557 if (expect_false (ev_is_active (w)))
2558 return;
2559
2560 evpipe_init (EV_A);
2561
2562 ev_start (EV_A_ (W)w, ++asynccnt);
2563 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2564 asyncs [asynccnt - 1] = w;
2565}
2566
2567void
2568ev_async_stop (EV_P_ ev_async *w)
2569{
2570 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w)))
2572 return;
2573
2574 {
2575 int active = ev_active (w);
2576
2577 asyncs [active - 1] = asyncs [--asynccnt];
2578 ev_active (asyncs [active - 1]) = active;
2579 }
2580
2581 ev_stop (EV_A_ (W)w);
2582}
2583
2584void
2585ev_async_send (EV_P_ ev_async *w)
2586{
2587 w->sent = 1;
2588 evpipe_write (EV_A_ &gotasync);
2589}
2590#endif
2591
1604/*****************************************************************************/ 2592/*****************************************************************************/
1605 2593
1606struct ev_once 2594struct ev_once
1607{ 2595{
1608 struct ev_io io; 2596 ev_io io;
1609 struct ev_timer to; 2597 ev_timer to;
1610 void (*cb)(int revents, void *arg); 2598 void (*cb)(int revents, void *arg);
1611 void *arg; 2599 void *arg;
1612}; 2600};
1613 2601
1614static void 2602static void
1623 2611
1624 cb (revents, arg); 2612 cb (revents, arg);
1625} 2613}
1626 2614
1627static void 2615static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 2616once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 2617{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2618 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1631} 2619}
1632 2620
1633static void 2621static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 2622once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 2623{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2624 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1637} 2625}
1638 2626
1639void 2627void
1663 ev_timer_set (&once->to, timeout, 0.); 2651 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 2652 ev_timer_start (EV_A_ &once->to);
1665 } 2653 }
1666} 2654}
1667 2655
2656#if EV_MULTIPLICITY
2657 #include "ev_wrap.h"
2658#endif
2659
1668#ifdef __cplusplus 2660#ifdef __cplusplus
1669} 2661}
1670#endif 2662#endif
1671 2663

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines