ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.123 by root, Sat Nov 17 02:23:54 2007 UTC vs.
Revision 1.295 by root, Wed Jul 8 04:29:31 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
45# endif 79# endif
46# endif 80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
50# endif 88# endif
51 89
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
54# endif 96# endif
55 97
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
58# endif 104# endif
59 105
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
62# endif 112# endif
63 113
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
66# endif 120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
67 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
68#endif 146#endif
69 147
70#include <math.h> 148#include <math.h>
71#include <stdlib.h> 149#include <stdlib.h>
72#include <fcntl.h> 150#include <fcntl.h>
79#include <sys/types.h> 157#include <sys/types.h>
80#include <time.h> 158#include <time.h>
81 159
82#include <signal.h> 160#include <signal.h>
83 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
84#ifndef _WIN32 168#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 169# include <sys/time.h>
87# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
88#else 172#else
173# include <io.h>
89# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 175# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
93# endif 178# endif
94#endif 179#endif
95 180
96/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
97 190
98#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
99# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
100#endif 197#endif
101 198
102#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
104#endif 209#endif
105 210
106#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
108#endif 213#endif
114# define EV_USE_POLL 1 219# define EV_USE_POLL 1
115# endif 220# endif
116#endif 221#endif
117 222
118#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
119# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
120#endif 229#endif
121 230
122#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
124#endif 233#endif
125 234
126#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 236# define EV_USE_PORT 0
128#endif 237#endif
129 238
130/**/ 239#ifndef EV_USE_INOTIFY
131 240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 241# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 242# else
134# undef EV_USE_POLL 243# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 244# endif
245#endif
246
247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 304
138#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
141#endif 308#endif
143#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
146#endif 313#endif
147 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
148#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 338# include <winsock.h>
150#endif 339#endif
151 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
152/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 370
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 374
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 375#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline 377# define noinline __attribute__ ((noinline))
168#else 378#else
169# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
170# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
171#endif 384#endif
172 385
173#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
175 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
178 403
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
181 406
182typedef struct ev_watcher *W; 407typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
185 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
187 423
188#ifdef _WIN32 424#ifdef _WIN32
189# include "ev_win32.c" 425# include "ev_win32.c"
190#endif 426#endif
191 427
192/*****************************************************************************/ 428/*****************************************************************************/
193 429
194static void (*syserr_cb)(const char *msg); 430static void (*syserr_cb)(const char *msg);
195 431
432void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 433ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 434{
198 syserr_cb = cb; 435 syserr_cb = cb;
199} 436}
200 437
201static void 438static void noinline
202syserr (const char *msg) 439ev_syserr (const char *msg)
203{ 440{
204 if (!msg) 441 if (!msg)
205 msg = "(libev) system error"; 442 msg = "(libev) system error";
206 443
207 if (syserr_cb) 444 if (syserr_cb)
211 perror (msg); 448 perror (msg);
212 abort (); 449 abort ();
213 } 450 }
214} 451}
215 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
216static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 469
470void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 472{
220 alloc = cb; 473 alloc = cb;
221} 474}
222 475
223static void * 476inline_speed void *
224ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
225{ 478{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
227 480
228 if (!ptr && size) 481 if (!ptr && size)
229 { 482 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 484 abort ();
237#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
239 492
240/*****************************************************************************/ 493/*****************************************************************************/
241 494
495/* file descriptor info structure */
242typedef struct 496typedef struct
243{ 497{
244 WL head; 498 WL head;
245 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
246 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
247#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
248 SOCKET handle; 507 SOCKET handle;
249#endif 508#endif
250} ANFD; 509} ANFD;
251 510
511/* stores the pending event set for a given watcher */
252typedef struct 512typedef struct
253{ 513{
254 W w; 514 W w;
255 int events; 515 int events; /* the pending event set for the given watcher */
256} ANPENDING; 516} ANPENDING;
517
518#if EV_USE_INOTIFY
519/* hash table entry per inotify-id */
520typedef struct
521{
522 WL head;
523} ANFS;
524#endif
525
526/* Heap Entry */
527#if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537#else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
544#endif
257 545
258#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
259 547
260 struct ev_loop 548 struct ev_loop
261 { 549 {
281 569
282#endif 570#endif
283 571
284/*****************************************************************************/ 572/*****************************************************************************/
285 573
574#ifndef EV_HAVE_EV_TIME
286ev_tstamp 575ev_tstamp
287ev_time (void) 576ev_time (void)
288{ 577{
289#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
290 struct timespec ts; 581 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 584 }
585#endif
586
294 struct timeval tv; 587 struct timeval tv;
295 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 590}
591#endif
299 592
300inline ev_tstamp 593inline_size ev_tstamp
301get_clock (void) 594get_clock (void)
302{ 595{
303#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
305 { 598 {
318{ 611{
319 return ev_rt_now; 612 return ev_rt_now;
320} 613}
321#endif 614#endif
322 615
323#define array_roundsize(type,n) (((n) | 4) & ~3) 616void
617ev_sleep (ev_tstamp delay)
618{
619 if (delay > 0.)
620 {
621#if EV_USE_NANOSLEEP
622 struct timespec ts;
623
624 ts.tv_sec = (time_t)delay;
625 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
626
627 nanosleep (&ts, 0);
628#elif defined(_WIN32)
629 Sleep ((unsigned long)(delay * 1e3));
630#else
631 struct timeval tv;
632
633 tv.tv_sec = (time_t)delay;
634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
639 select (0, 0, 0, 0, &tv);
640#endif
641 }
642}
643
644/*****************************************************************************/
645
646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
647
648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
651array_nextsize (int elem, int cur, int cnt)
652{
653 int ncur = cur + 1;
654
655 do
656 ncur <<= 1;
657 while (cnt > ncur);
658
659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
661 {
662 ncur *= elem;
663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
664 ncur = ncur - sizeof (void *) * 4;
665 ncur /= elem;
666 }
667
668 return ncur;
669}
670
671static noinline void *
672array_realloc (int elem, void *base, int *cur, int cnt)
673{
674 *cur = array_nextsize (elem, *cur, cnt);
675 return ev_realloc (base, elem * *cur);
676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 680
325#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 682 if (expect_false ((cnt) > (cur))) \
327 { \ 683 { \
328 int newcnt = cur; \ 684 int ocur_ = (cur); \
329 do \ 685 (base) = (type *)array_realloc \
330 { \ 686 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 687 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 688 }
339 689
690#if 0
340#define array_slim(type,stem) \ 691#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 692 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 693 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 694 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 695 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 697 }
698#endif
347 699
348#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 702
351/*****************************************************************************/ 703/*****************************************************************************/
352 704
353static void 705/* dummy callback for pending events */
354anfds_init (ANFD *base, int count) 706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 708{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 709}
365 710
366void 711void noinline
367ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
368{ 713{
369 W w_ = (W)w; 714 W w_ = (W)w;
715 int pri = ABSPRI (w_);
370 716
371 if (expect_false (w_->pending)) 717 if (expect_false (w_->pending))
718 pendings [pri][w_->pending - 1].events |= revents;
719 else
372 { 720 {
721 w_->pending = ++pendingcnt [pri];
722 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
723 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 724 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 725 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 726}
382 727
383static void 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 745{
386 int i; 746 int i;
387 747
388 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
390} 750}
391 751
752/*****************************************************************************/
753
392inline void 754inline_speed void
393fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
394{ 756{
395 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 758 ev_io *w;
397 759
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 760 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 761 {
400 int ev = w->events & revents; 762 int ev = w->events & revents;
401 763
402 if (ev) 764 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 765 ev_feed_event (EV_A_ (W)w, ev);
405} 767}
406 768
407void 769void
408ev_feed_fd_event (EV_P_ int fd, int revents) 770ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 771{
772 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
411} 774}
412 775
413/*****************************************************************************/ 776/* make sure the external fd watch events are in-sync */
414 777/* with the kernel/libev internal state */
415inline void 778inline_size void
416fd_reify (EV_P) 779fd_reify (EV_P)
417{ 780{
418 int i; 781 int i;
419 782
420 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
421 { 784 {
422 int fd = fdchanges [i]; 785 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 786 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 787 ev_io *w;
425 788
426 int events = 0; 789 unsigned char events = 0;
427 790
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 791 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 792 events |= (unsigned char)w->events;
430 793
431#if EV_SELECT_IS_WINSOCKET 794#if EV_SELECT_IS_WINSOCKET
432 if (events) 795 if (events)
433 { 796 {
434 unsigned long argp; 797 unsigned long arg;
798 #ifdef EV_FD_TO_WIN32_HANDLE
799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
800 #else
435 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
802 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
437 } 804 }
438#endif 805#endif
439 806
807 {
808 unsigned char o_events = anfd->events;
809 unsigned char o_reify = anfd->reify;
810
440 anfd->reify = 0; 811 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 812 anfd->events = events;
813
814 if (o_events != events || o_reify & EV__IOFDSET)
815 backend_modify (EV_A_ fd, o_events, events);
816 }
444 } 817 }
445 818
446 fdchangecnt = 0; 819 fdchangecnt = 0;
447} 820}
448 821
449static void 822/* something about the given fd changed */
823inline_size void
450fd_change (EV_P_ int fd) 824fd_change (EV_P_ int fd, int flags)
451{ 825{
452 if (expect_false (anfds [fd].reify)) 826 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 827 anfds [fd].reify |= flags;
456 828
829 if (expect_true (!reify))
830 {
457 ++fdchangecnt; 831 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
834 }
460} 835}
461 836
462static void 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
463fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
464{ 840{
465 struct ev_io *w; 841 ev_io *w;
466 842
467 while ((w = (struct ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
468 { 844 {
469 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 847 }
472} 848}
473 849
850/* check whether the given fd is atcually valid, for error recovery */
474inline int 851inline_size int
475fd_valid (int fd) 852fd_valid (int fd)
476{ 853{
477#ifdef _WIN32 854#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
479#else 856#else
480 return fcntl (fd, F_GETFD) != -1; 857 return fcntl (fd, F_GETFD) != -1;
481#endif 858#endif
482} 859}
483 860
484/* called on EBADF to verify fds */ 861/* called on EBADF to verify fds */
485static void 862static void noinline
486fd_ebadf (EV_P) 863fd_ebadf (EV_P)
487{ 864{
488 int fd; 865 int fd;
489 866
490 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 868 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 870 fd_kill (EV_A_ fd);
494} 871}
495 872
496/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 874static void noinline
498fd_enomem (EV_P) 875fd_enomem (EV_P)
499{ 876{
500 int fd; 877 int fd;
501 878
502 for (fd = anfdmax; fd--; ) 879 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 882 fd_kill (EV_A_ fd);
506 return; 883 return;
507 } 884 }
508} 885}
509 886
510/* usually called after fork if method needs to re-arm all fds from scratch */ 887/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 888static void noinline
512fd_rearm_all (EV_P) 889fd_rearm_all (EV_P)
513{ 890{
514 int fd; 891 int fd;
515 892
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 894 if (anfds [fd].events)
519 { 895 {
520 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
521 fd_change (EV_A_ fd); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
522 } 899 }
523} 900}
524 901
525/*****************************************************************************/ 902/*****************************************************************************/
526 903
527static void 904/*
528upheap (WT *heap, int k) 905 * the heap functions want a real array index. array index 0 uis guaranteed to not
529{ 906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
530 WT w = heap [k]; 907 * the branching factor of the d-tree.
908 */
531 909
532 while (k && heap [k >> 1]->at > w->at) 910/*
533 { 911 * at the moment we allow libev the luxury of two heaps,
534 heap [k] = heap [k >> 1]; 912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
535 ((W)heap [k])->active = k + 1; 913 * which is more cache-efficient.
536 k >>= 1; 914 * the difference is about 5% with 50000+ watchers.
537 } 915 */
916#if EV_USE_4HEAP
538 917
539 heap [k] = w; 918#define DHEAP 4
540 ((W)heap [k])->active = k + 1; 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
921#define UPHEAP_DONE(p,k) ((p) == (k))
541 922
542} 923/* away from the root */
543 924inline_speed void
544static void
545downheap (WT *heap, int N, int k) 925downheap (ANHE *heap, int N, int k)
546{ 926{
547 WT w = heap [k]; 927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
548 929
549 while (k < (N >> 1)) 930 for (;;)
550 { 931 {
551 int j = k << 1; 932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
552 935
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
554 ++j; 938 {
555 939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
556 if (w->at <= heap [j]->at) 940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
557 break; 952 break;
558 953
954 if (ANHE_at (he) <= minat)
955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965}
966
967#else /* 4HEAP */
968
969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
972
973/* away from the root */
974inline_speed void
975downheap (ANHE *heap, int N, int k)
976{
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
559 heap [k] = heap [j]; 992 heap [k] = heap [c];
560 ((W)heap [k])->active = k + 1; 993 ev_active (ANHE_w (heap [k])) = k;
994
561 k = j; 995 k = c;
562 } 996 }
563 997
564 heap [k] = w; 998 heap [k] = he;
565 ((W)heap [k])->active = k + 1; 999 ev_active (ANHE_w (he)) = k;
566} 1000}
1001#endif
567 1002
1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
1016 heap [k] = heap [p];
1017 ev_active (ANHE_w (heap [k])) = k;
1018 k = p;
1019 }
1020
1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023}
1024
1025/* move an element suitably so it is in a correct place */
568inline void 1026inline_size void
569adjustheap (WT *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
570{ 1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
571 upheap (heap, k); 1030 upheap (heap, k);
1031 else
572 downheap (heap, N, k); 1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
573} 1045}
574 1046
575/*****************************************************************************/ 1047/*****************************************************************************/
576 1048
1049/* associate signal watchers to a signal signal */
577typedef struct 1050typedef struct
578{ 1051{
579 WL head; 1052 WL head;
580 sig_atomic_t volatile gotsig; 1053 EV_ATOMIC_T gotsig;
581} ANSIG; 1054} ANSIG;
582 1055
583static ANSIG *signals; 1056static ANSIG *signals;
584static int signalmax; 1057static int signalmax;
585 1058
586static int sigpipe [2]; 1059static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 1060
590static void 1061/*****************************************************************************/
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597 1062
598 ++base; 1063/* used to prepare libev internal fd's */
599 } 1064/* this is not fork-safe */
600} 1065inline_speed void
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 1066fd_intern (int fd)
655{ 1067{
656#ifdef _WIN32 1068#ifdef _WIN32
657 int arg = 1; 1069 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else 1071#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1073 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1074#endif
663} 1075}
664 1076
1077static void noinline
1078evpipe_init (EV_P)
1079{
1080 if (!ev_is_active (&pipe_w))
1081 {
1082#if EV_USE_EVENTFD
1083 if ((evfd = eventfd (0, 0)) >= 0)
1084 {
1085 evpipe [0] = -1;
1086 fd_intern (evfd);
1087 ev_io_set (&pipe_w, evfd, EV_READ);
1088 }
1089 else
1090#endif
1091 {
1092 while (pipe (evpipe))
1093 ev_syserr ("(libev) error creating signal/async pipe");
1094
1095 fd_intern (evpipe [0]);
1096 fd_intern (evpipe [1]);
1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1098 }
1099
1100 ev_io_start (EV_A_ &pipe_w);
1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1102 }
1103}
1104
1105inline_size void
1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1107{
1108 if (!*flag)
1109 {
1110 int old_errno = errno; /* save errno because write might clobber it */
1111
1112 *flag = 1;
1113
1114#if EV_USE_EVENTFD
1115 if (evfd >= 0)
1116 {
1117 uint64_t counter = 1;
1118 write (evfd, &counter, sizeof (uint64_t));
1119 }
1120 else
1121#endif
1122 write (evpipe [1], &old_errno, 1);
1123
1124 errno = old_errno;
1125 }
1126}
1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
665static void 1130static void
666siginit (EV_P) 1131pipecb (EV_P_ ev_io *iow, int revents)
667{ 1132{
668 fd_intern (sigpipe [0]); 1133#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 1134 if (evfd >= 0)
1135 {
1136 uint64_t counter;
1137 read (evfd, &counter, sizeof (uint64_t));
1138 }
1139 else
1140#endif
1141 {
1142 char dummy;
1143 read (evpipe [0], &dummy, 1);
1144 }
670 1145
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1146 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 1147 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1148 int signum;
1149 gotsig = 0;
1150
1151 for (signum = signalmax; signum--; )
1152 if (signals [signum].gotsig)
1153 ev_feed_signal_event (EV_A_ signum + 1);
1154 }
1155
1156#if EV_ASYNC_ENABLE
1157 if (gotasync)
1158 {
1159 int i;
1160 gotasync = 0;
1161
1162 for (i = asynccnt; i--; )
1163 if (asyncs [i]->sent)
1164 {
1165 asyncs [i]->sent = 0;
1166 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1167 }
1168 }
1169#endif
674} 1170}
675 1171
676/*****************************************************************************/ 1172/*****************************************************************************/
677 1173
678static struct ev_child *childs [PID_HASHSIZE]; 1174static void
1175ev_sighandler (int signum)
1176{
1177#if EV_MULTIPLICITY
1178 struct ev_loop *loop = &default_loop_struct;
1179#endif
1180
1181#if _WIN32
1182 signal (signum, ev_sighandler);
1183#endif
1184
1185 signals [signum - 1].gotsig = 1;
1186 evpipe_write (EV_A_ &gotsig);
1187}
1188
1189void noinline
1190ev_feed_signal_event (EV_P_ int signum)
1191{
1192 WL w;
1193
1194#if EV_MULTIPLICITY
1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1196#endif
1197
1198 --signum;
1199
1200 if (signum < 0 || signum >= signalmax)
1201 return;
1202
1203 signals [signum].gotsig = 0;
1204
1205 for (w = signals [signum].head; w; w = w->next)
1206 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1207}
1208
1209/*****************************************************************************/
1210
1211static WL childs [EV_PID_HASHSIZE];
679 1212
680#ifndef _WIN32 1213#ifndef _WIN32
681 1214
682static struct ev_signal childev; 1215static ev_signal childev;
1216
1217#ifndef WIFCONTINUED
1218# define WIFCONTINUED(status) 0
1219#endif
1220
1221/* handle a single child status event */
1222inline_speed void
1223child_reap (EV_P_ int chain, int pid, int status)
1224{
1225 ev_child *w;
1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1227
1228 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1229 {
1230 if ((w->pid == pid || !w->pid)
1231 && (!traced || (w->flags & 1)))
1232 {
1233 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1234 w->rpid = pid;
1235 w->rstatus = status;
1236 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1237 }
1238 }
1239}
683 1240
684#ifndef WCONTINUED 1241#ifndef WCONTINUED
685# define WCONTINUED 0 1242# define WCONTINUED 0
686#endif 1243#endif
687 1244
1245/* called on sigchld etc., calls waitpid */
688static void 1246static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
705{ 1248{
706 int pid, status; 1249 int pid, status;
707 1250
1251 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1252 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1253 if (!WCONTINUED
1254 || errno != EINVAL
1255 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1256 return;
1257
710 /* make sure we are called again until all childs have been reaped */ 1258 /* make sure we are called again until all children have been reaped */
1259 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1260 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1261
713 child_reap (EV_A_ sw, pid, pid, status); 1262 child_reap (EV_A_ pid, pid, status);
1263 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1264 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1265}
717 1266
718#endif 1267#endif
719 1268
720/*****************************************************************************/ 1269/*****************************************************************************/
746{ 1295{
747 return EV_VERSION_MINOR; 1296 return EV_VERSION_MINOR;
748} 1297}
749 1298
750/* return true if we are running with elevated privileges and should ignore env variables */ 1299/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1300int inline_size
752enable_secure (void) 1301enable_secure (void)
753{ 1302{
754#ifdef _WIN32 1303#ifdef _WIN32
755 return 0; 1304 return 0;
756#else 1305#else
758 || getgid () != getegid (); 1307 || getgid () != getegid ();
759#endif 1308#endif
760} 1309}
761 1310
762unsigned int 1311unsigned int
763ev_method (EV_P) 1312ev_supported_backends (void)
764{ 1313{
765 return method; 1314 unsigned int flags = 0;
766}
767 1315
768static void 1316 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1317 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1318 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1319 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1320 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1321
1322 return flags;
1323}
1324
1325unsigned int
1326ev_recommended_backends (void)
1327{
1328 unsigned int flags = ev_supported_backends ();
1329
1330#ifndef __NetBSD__
1331 /* kqueue is borked on everything but netbsd apparently */
1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1333 flags &= ~EVBACKEND_KQUEUE;
1334#endif
1335#ifdef __APPLE__
1336 /* only select works correctly on that "unix-certified" platform */
1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1339#endif
1340
1341 return flags;
1342}
1343
1344unsigned int
1345ev_embeddable_backends (void)
1346{
1347 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1348
1349 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1350 /* please fix it and tell me how to detect the fix */
1351 flags &= ~EVBACKEND_EPOLL;
1352
1353 return flags;
1354}
1355
1356unsigned int
1357ev_backend (EV_P)
1358{
1359 return backend;
1360}
1361
1362unsigned int
1363ev_loop_count (EV_P)
1364{
1365 return loop_count;
1366}
1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1374void
1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1376{
1377 io_blocktime = interval;
1378}
1379
1380void
1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1382{
1383 timeout_blocktime = interval;
1384}
1385
1386/* initialise a loop structure, must be zero-initialised */
1387static void noinline
769loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
770{ 1389{
771 if (!method) 1390 if (!backend)
772 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
773#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1404 {
1405 struct timespec ts;
1406
1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1408 have_monotonic = 1;
1409 }
1410#endif
1411
1412 ev_rt_now = ev_time ();
1413 mn_now = get_clock ();
1414 now_floor = mn_now;
1415 rtmn_diff = ev_rt_now - mn_now;
1416
1417 io_blocktime = 0.;
1418 timeout_blocktime = 0.;
1419 backend = 0;
1420 backend_fd = -1;
1421 gotasync = 0;
1422#if EV_USE_INOTIFY
1423 fs_fd = -2;
1424#endif
1425
1426 /* pid check not overridable via env */
1427#ifndef _WIN32
1428 if (flags & EVFLAG_FORKCHECK)
1429 curpid = getpid ();
1430#endif
1431
1432 if (!(flags & EVFLAG_NOENV)
1433 && !enable_secure ()
1434 && getenv ("LIBEV_FLAGS"))
1435 flags = atoi (getenv ("LIBEV_FLAGS"));
1436
1437 if (!(flags & 0x0000ffffU))
1438 flags |= ev_recommended_backends ();
1439
1440#if EV_USE_PORT
1441 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1442#endif
1443#if EV_USE_KQUEUE
1444 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1445#endif
1446#if EV_USE_EPOLL
1447 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1448#endif
1449#if EV_USE_POLL
1450 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1451#endif
1452#if EV_USE_SELECT
1453 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1454#endif
1455
1456 ev_prepare_init (&pending_w, pendingcb);
1457
1458 ev_init (&pipe_w, pipecb);
1459 ev_set_priority (&pipe_w, EV_MAXPRI);
1460 }
1461}
1462
1463/* free up a loop structure */
1464static void noinline
1465loop_destroy (EV_P)
1466{
1467 int i;
1468
1469 if (ev_is_active (&pipe_w))
1470 {
1471 ev_ref (EV_A); /* signal watcher */
1472 ev_io_stop (EV_A_ &pipe_w);
1473
1474#if EV_USE_EVENTFD
1475 if (evfd >= 0)
1476 close (evfd);
1477#endif
1478
1479 if (evpipe [0] >= 0)
1480 {
1481 close (evpipe [0]);
1482 close (evpipe [1]);
1483 }
1484 }
1485
1486#if EV_USE_INOTIFY
1487 if (fs_fd >= 0)
1488 close (fs_fd);
1489#endif
1490
1491 if (backend_fd >= 0)
1492 close (backend_fd);
1493
1494#if EV_USE_PORT
1495 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1496#endif
1497#if EV_USE_KQUEUE
1498 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1499#endif
1500#if EV_USE_EPOLL
1501 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1502#endif
1503#if EV_USE_POLL
1504 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1505#endif
1506#if EV_USE_SELECT
1507 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1508#endif
1509
1510 for (i = NUMPRI; i--; )
1511 {
1512 array_free (pending, [i]);
1513#if EV_IDLE_ENABLE
1514 array_free (idle, [i]);
1515#endif
1516 }
1517
1518 ev_free (anfds); anfdmax = 0;
1519
1520 /* have to use the microsoft-never-gets-it-right macro */
1521 array_free (rfeed, EMPTY);
1522 array_free (fdchange, EMPTY);
1523 array_free (timer, EMPTY);
1524#if EV_PERIODIC_ENABLE
1525 array_free (periodic, EMPTY);
1526#endif
1527#if EV_FORK_ENABLE
1528 array_free (fork, EMPTY);
1529#endif
1530 array_free (prepare, EMPTY);
1531 array_free (check, EMPTY);
1532#if EV_ASYNC_ENABLE
1533 array_free (async, EMPTY);
1534#endif
1535
1536 backend = 0;
1537}
1538
1539#if EV_USE_INOTIFY
1540inline_size void infy_fork (EV_P);
1541#endif
1542
1543inline_size void
1544loop_fork (EV_P)
1545{
1546#if EV_USE_PORT
1547 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1548#endif
1549#if EV_USE_KQUEUE
1550 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1551#endif
1552#if EV_USE_EPOLL
1553 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1554#endif
1555#if EV_USE_INOTIFY
1556 infy_fork (EV_A);
1557#endif
1558
1559 if (ev_is_active (&pipe_w))
1560 {
1561 /* this "locks" the handlers against writing to the pipe */
1562 /* while we modify the fd vars */
1563 gotsig = 1;
1564#if EV_ASYNC_ENABLE
1565 gotasync = 1;
1566#endif
1567
1568 ev_ref (EV_A);
1569 ev_io_stop (EV_A_ &pipe_w);
1570
1571#if EV_USE_EVENTFD
1572 if (evfd >= 0)
1573 close (evfd);
1574#endif
1575
1576 if (evpipe [0] >= 0)
1577 {
1578 close (evpipe [0]);
1579 close (evpipe [1]);
1580 }
1581
1582 evpipe_init (EV_A);
1583 /* now iterate over everything, in case we missed something */
1584 pipecb (EV_A_ &pipe_w, EV_READ);
1585 }
1586
1587 postfork = 0;
1588}
1589
1590#if EV_MULTIPLICITY
1591
1592struct ev_loop *
1593ev_loop_new (unsigned int flags)
1594{
1595 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1596
1597 memset (loop, 0, sizeof (struct ev_loop));
1598
1599 loop_init (EV_A_ flags);
1600
1601 if (ev_backend (EV_A))
1602 return loop;
1603
1604 return 0;
1605}
1606
1607void
1608ev_loop_destroy (EV_P)
1609{
1610 loop_destroy (EV_A);
1611 ev_free (loop);
1612}
1613
1614void
1615ev_loop_fork (EV_P)
1616{
1617 postfork = 1; /* must be in line with ev_default_fork */
1618}
1619
1620#if EV_VERIFY
1621static void noinline
1622verify_watcher (EV_P_ W w)
1623{
1624 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1625
1626 if (w->pending)
1627 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1628}
1629
1630static void noinline
1631verify_heap (EV_P_ ANHE *heap, int N)
1632{
1633 int i;
1634
1635 for (i = HEAP0; i < N + HEAP0; ++i)
1636 {
1637 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1638 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1639 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1640
1641 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1642 }
1643}
1644
1645static void noinline
1646array_verify (EV_P_ W *ws, int cnt)
1647{
1648 while (cnt--)
1649 {
1650 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1651 verify_watcher (EV_A_ ws [cnt]);
1652 }
1653}
1654#endif
1655
1656void
1657ev_loop_verify (EV_P)
1658{
1659#if EV_VERIFY
1660 int i;
1661 WL w;
1662
1663 assert (activecnt >= -1);
1664
1665 assert (fdchangemax >= fdchangecnt);
1666 for (i = 0; i < fdchangecnt; ++i)
1667 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1668
1669 assert (anfdmax >= 0);
1670 for (i = 0; i < anfdmax; ++i)
1671 for (w = anfds [i].head; w; w = w->next)
774 { 1672 {
775 struct timespec ts; 1673 verify_watcher (EV_A_ (W)w);
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1674 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
777 have_monotonic = 1; 1675 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
778 } 1676 }
779#endif
780 1677
781 ev_rt_now = ev_time (); 1678 assert (timermax >= timercnt);
782 mn_now = get_clock (); 1679 verify_heap (EV_A_ timers, timercnt);
783 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now;
785 1680
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1681#if EV_PERIODIC_ENABLE
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1682 assert (periodicmax >= periodiccnt);
788 1683 verify_heap (EV_A_ periodics, periodiccnt);
789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
791
792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
796#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
798#endif
799#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
801#endif
802#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
804#endif
805#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
807#endif
808
809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
811 }
812}
813
814void
815loop_destroy (EV_P)
816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
822#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
824#endif
825#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
827#endif
828#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
830#endif
831#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
833#endif 1684#endif
834 1685
835 for (i = NUMPRI; i--; ) 1686 for (i = NUMPRI; i--; )
836 array_free (pending, [i]); 1687 {
1688 assert (pendingmax [i] >= pendingcnt [i]);
1689#if EV_IDLE_ENABLE
1690 assert (idleall >= 0);
1691 assert (idlemax [i] >= idlecnt [i]);
1692 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1693#endif
1694 }
837 1695
838 /* have to use the microsoft-never-gets-it-right macro */ 1696#if EV_FORK_ENABLE
839 array_free (fdchange, EMPTY0); 1697 assert (forkmax >= forkcnt);
840 array_free (timer, EMPTY0); 1698 array_verify (EV_A_ (W *)forks, forkcnt);
841#if EV_PERIODICS 1699#endif
842 array_free (periodic, EMPTY0); 1700
1701#if EV_ASYNC_ENABLE
1702 assert (asyncmax >= asynccnt);
1703 array_verify (EV_A_ (W *)asyncs, asynccnt);
1704#endif
1705
1706 assert (preparemax >= preparecnt);
1707 array_verify (EV_A_ (W *)prepares, preparecnt);
1708
1709 assert (checkmax >= checkcnt);
1710 array_verify (EV_A_ (W *)checks, checkcnt);
1711
1712# if 0
1713 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1714 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
843#endif 1715# endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif 1716#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 1717}
1718
1719#endif /* multiplicity */
881 1720
882#if EV_MULTIPLICITY 1721#if EV_MULTIPLICITY
883struct ev_loop * 1722struct ev_loop *
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1723ev_default_loop_init (unsigned int flags)
916#else 1724#else
917int 1725int
918ev_default_loop (unsigned int flags) 1726ev_default_loop (unsigned int flags)
919#endif 1727#endif
920{ 1728{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1729 if (!ev_default_loop_ptr)
926 { 1730 {
927#if EV_MULTIPLICITY 1731#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1732 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1733#else
930 ev_default_loop_ptr = 1; 1734 ev_default_loop_ptr = 1;
931#endif 1735#endif
932 1736
933 loop_init (EV_A_ flags); 1737 loop_init (EV_A_ flags);
934 1738
935 if (ev_method (EV_A)) 1739 if (ev_backend (EV_A))
936 { 1740 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1741#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1742 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1743 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1744 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1745 ev_unref (EV_A); /* child watcher should not keep loop alive */
955{ 1757{
956#if EV_MULTIPLICITY 1758#if EV_MULTIPLICITY
957 struct ev_loop *loop = ev_default_loop_ptr; 1759 struct ev_loop *loop = ev_default_loop_ptr;
958#endif 1760#endif
959 1761
1762 ev_default_loop_ptr = 0;
1763
960#ifndef _WIN32 1764#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1765 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1766 ev_signal_stop (EV_A_ &childev);
963#endif 1767#endif
964 1768
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1769 loop_destroy (EV_A);
972} 1770}
973 1771
974void 1772void
975ev_default_fork (void) 1773ev_default_fork (void)
976{ 1774{
977#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1776 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1777#endif
980 1778
981 if (method) 1779 postfork = 1; /* must be in line with ev_loop_fork */
982 postfork = 1;
983} 1780}
984 1781
985/*****************************************************************************/ 1782/*****************************************************************************/
986 1783
987static int 1784void
988any_pending (EV_P) 1785ev_invoke (EV_P_ void *w, int revents)
989{ 1786{
990 int pri; 1787 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1788}
998 1789
999inline void 1790inline_speed void
1000call_pending (EV_P) 1791call_pending (EV_P)
1001{ 1792{
1002 int pri; 1793 int pri;
1003 1794
1004 for (pri = NUMPRI; pri--; ) 1795 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 1796 while (pendingcnt [pri])
1006 { 1797 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1798 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1799
1009 if (expect_true (p->w)) 1800 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1010 { 1801 /* ^ this is no longer true, as pending_w could be here */
1802
1011 p->w->pending = 0; 1803 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1804 EV_CB_INVOKE (p->w, p->events);
1013 } 1805 EV_FREQUENT_CHECK;
1014 } 1806 }
1015} 1807}
1016 1808
1809#if EV_IDLE_ENABLE
1810/* make idle watchers pending. this handles the "call-idle */
1811/* only when higher priorities are idle" logic */
1017inline void 1812inline_size void
1813idle_reify (EV_P)
1814{
1815 if (expect_false (idleall))
1816 {
1817 int pri;
1818
1819 for (pri = NUMPRI; pri--; )
1820 {
1821 if (pendingcnt [pri])
1822 break;
1823
1824 if (idlecnt [pri])
1825 {
1826 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1827 break;
1828 }
1829 }
1830 }
1831}
1832#endif
1833
1834/* make timers pending */
1835inline_size void
1018timers_reify (EV_P) 1836timers_reify (EV_P)
1019{ 1837{
1838 EV_FREQUENT_CHECK;
1839
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1840 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 1841 {
1022 struct ev_timer *w = timers [0]; 1842 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 1843 {
1844 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1845
1846 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1847
1848 /* first reschedule or stop timer */
1849 if (w->repeat)
1850 {
1851 ev_at (w) += w->repeat;
1852 if (ev_at (w) < mn_now)
1853 ev_at (w) = mn_now;
1854
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1855 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1856
1031 ((WT)w)->at += w->repeat; 1857 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 1858 downheap (timers, timercnt, HEAP0);
1859 }
1860 else
1861 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1862
1863 EV_FREQUENT_CHECK;
1864 feed_reverse (EV_A_ (W)w);
1036 } 1865 }
1037 else 1866 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1867
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1868 feed_reverse_done (EV_A_ EV_TIMEOUT);
1041 } 1869 }
1042} 1870}
1043 1871
1044#if EV_PERIODICS 1872#if EV_PERIODIC_ENABLE
1873/* make periodics pending */
1045inline void 1874inline_size void
1046periodics_reify (EV_P) 1875periodics_reify (EV_P)
1047{ 1876{
1877 EV_FREQUENT_CHECK;
1878
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 1880 {
1050 struct ev_periodic *w = periodics [0]; 1881 int feed_count = 0;
1051 1882
1883 do
1884 {
1885 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1886
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1887 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1888
1054 /* first reschedule or stop timer */ 1889 /* first reschedule or stop timer */
1890 if (w->reschedule_cb)
1891 {
1892 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1893
1894 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1895
1896 ANHE_at_cache (periodics [HEAP0]);
1897 downheap (periodics, periodiccnt, HEAP0);
1898 }
1899 else if (w->interval)
1900 {
1901 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1902 /* if next trigger time is not sufficiently in the future, put it there */
1903 /* this might happen because of floating point inexactness */
1904 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1905 {
1906 ev_at (w) += w->interval;
1907
1908 /* if interval is unreasonably low we might still have a time in the past */
1909 /* so correct this. this will make the periodic very inexact, but the user */
1910 /* has effectively asked to get triggered more often than possible */
1911 if (ev_at (w) < ev_rt_now)
1912 ev_at (w) = ev_rt_now;
1913 }
1914
1915 ANHE_at_cache (periodics [HEAP0]);
1916 downheap (periodics, periodiccnt, HEAP0);
1917 }
1918 else
1919 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1920
1921 EV_FREQUENT_CHECK;
1922 feed_reverse (EV_A_ (W)w);
1923 }
1924 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1925
1926 feed_reverse_done (EV_A_ EV_PERIODIC);
1927 }
1928}
1929
1930/* simply recalculate all periodics */
1931/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1932static void noinline
1933periodics_reschedule (EV_P)
1934{
1935 int i;
1936
1937 /* adjust periodics after time jump */
1938 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1941
1055 if (w->reschedule_cb) 1942 if (w->reschedule_cb)
1943 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1944 else if (w->interval)
1945 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1946
1947 ANHE_at_cache (periodics [i]);
1948 }
1949
1950 reheap (periodics, periodiccnt);
1951}
1952#endif
1953
1954/* adjust all timers by a given offset */
1955static void noinline
1956timers_reschedule (EV_P_ ev_tstamp adjust)
1957{
1958 int i;
1959
1960 for (i = 0; i < timercnt; ++i)
1961 {
1962 ANHE *he = timers + i + HEAP0;
1963 ANHE_w (*he)->at += adjust;
1964 ANHE_at_cache (*he);
1965 }
1966}
1967
1968/* fetch new monotonic and realtime times from the kernel */
1969/* also detetc if there was a timejump, and act accordingly */
1970inline_speed void
1971time_update (EV_P_ ev_tstamp max_block)
1972{
1973#if EV_USE_MONOTONIC
1974 if (expect_true (have_monotonic))
1975 {
1976 int i;
1977 ev_tstamp odiff = rtmn_diff;
1978
1979 mn_now = get_clock ();
1980
1981 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1982 /* interpolate in the meantime */
1983 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1056 { 1984 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1985 ev_rt_now = rtmn_diff + mn_now;
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1986 return;
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 1987 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1988
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now; 1989 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1990 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1991
1114inline void 1992 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1993 * on the choice of "4": one iteration isn't enough,
1116{ 1994 * in case we get preempted during the calls to
1117 int i; 1995 * ev_time and get_clock. a second call is almost guaranteed
1118 1996 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1997 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1998 * in the unlikely event of having been preempted here.
1121 { 1999 */
1122 if (time_update_monotonic (EV_A)) 2000 for (i = 4; --i; )
1123 { 2001 {
1124 ev_tstamp odiff = rtmn_diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 2002 rtmn_diff = ev_rt_now - mn_now;
1129 2003
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2004 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 2005 return; /* all is well */
1132 2006
1133 ev_rt_now = ev_time (); 2007 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 2008 mn_now = get_clock ();
1135 now_floor = mn_now; 2009 now_floor = mn_now;
1136 } 2010 }
1137 2011
2012 /* no timer adjustment, as the monotonic clock doesn't jump */
2013 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 2014# if EV_PERIODIC_ENABLE
2015 periodics_reschedule (EV_A);
2016# endif
2017 }
2018 else
2019#endif
2020 {
2021 ev_rt_now = ev_time ();
2022
2023 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2024 {
2025 /* adjust timers. this is easy, as the offset is the same for all of them */
2026 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2027#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 2028 periodics_reschedule (EV_A);
1140# endif 2029#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 2030 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 2031
1161 mn_now = ev_rt_now; 2032 mn_now = ev_rt_now;
1162 } 2033 }
1163} 2034}
1164 2035
1165void 2036void
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 2037ev_loop (EV_P_ int flags)
1181{ 2038{
1182 double block; 2039 ++loop_depth;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 2040
1185 while (activecnt) 2041 loop_done = EVUNLOOP_CANCEL;
2042
2043 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2044
2045 do
1186 { 2046 {
2047#if EV_VERIFY >= 2
2048 ev_loop_verify (EV_A);
2049#endif
2050
2051#ifndef _WIN32
2052 if (expect_false (curpid)) /* penalise the forking check even more */
2053 if (expect_false (getpid () != curpid))
2054 {
2055 curpid = getpid ();
2056 postfork = 1;
2057 }
2058#endif
2059
2060#if EV_FORK_ENABLE
2061 /* we might have forked, so queue fork handlers */
2062 if (expect_false (postfork))
2063 if (forkcnt)
2064 {
2065 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2066 call_pending (EV_A);
2067 }
2068#endif
2069
1187 /* queue check watchers (and execute them) */ 2070 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 2071 if (expect_false (preparecnt))
1189 { 2072 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 2074 call_pending (EV_A);
1192 } 2075 }
1197 2080
1198 /* update fd-related kernel structures */ 2081 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 2082 fd_reify (EV_A);
1200 2083
1201 /* calculate blocking time */ 2084 /* calculate blocking time */
2085 {
2086 ev_tstamp waittime = 0.;
2087 ev_tstamp sleeptime = 0.;
1202 2088
1203 /* we only need this for !monotonic clock or timers, but as we basically 2089 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 2090 {
1211 ev_rt_now = ev_time (); 2091 /* remember old timestamp for io_blocktime calculation */
1212 mn_now = ev_rt_now; 2092 ev_tstamp prev_mn_now = mn_now;
1213 }
1214 2093
1215 if (flags & EVLOOP_NONBLOCK || idlecnt) 2094 /* update time to cancel out callback processing overhead */
1216 block = 0.; 2095 time_update (EV_A_ 1e100);
1217 else 2096
1218 {
1219 block = MAX_BLOCKTIME; 2097 waittime = MAX_BLOCKTIME;
1220 2098
1221 if (timercnt) 2099 if (timercnt)
1222 { 2100 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2101 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 2102 if (waittime > to) waittime = to;
1225 } 2103 }
1226 2104
1227#if EV_PERIODICS 2105#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 2106 if (periodiccnt)
1229 { 2107 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 2109 if (waittime > to) waittime = to;
1232 } 2110 }
1233#endif 2111#endif
1234 2112
1235 if (expect_false (block < 0.)) block = 0.; 2113 /* don't let timeouts decrease the waittime below timeout_blocktime */
2114 if (expect_false (waittime < timeout_blocktime))
2115 waittime = timeout_blocktime;
2116
2117 /* extra check because io_blocktime is commonly 0 */
2118 if (expect_false (io_blocktime))
2119 {
2120 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2121
2122 if (sleeptime > waittime - backend_fudge)
2123 sleeptime = waittime - backend_fudge;
2124
2125 if (expect_true (sleeptime > 0.))
2126 {
2127 ev_sleep (sleeptime);
2128 waittime -= sleeptime;
2129 }
2130 }
1236 } 2131 }
1237 2132
1238 method_poll (EV_A_ block); 2133 ++loop_count;
2134 backend_poll (EV_A_ waittime);
1239 2135
1240 /* update ev_rt_now, do magic */ 2136 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 2137 time_update (EV_A_ waittime + sleeptime);
2138 }
1242 2139
1243 /* queue pending timers and reschedule them */ 2140 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 2141 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 2142#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 2143 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 2144#endif
1248 2145
2146#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 2147 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 2148 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2149#endif
1252 2150
1253 /* queue check watchers, to be executed first */ 2151 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 2152 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2153 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 2154
1257 call_pending (EV_A); 2155 call_pending (EV_A);
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 2156 }
2157 while (expect_true (
2158 activecnt
2159 && !loop_done
2160 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2161 ));
1262 2162
1263 if (loop_done != 2) 2163 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 2164 loop_done = EVUNLOOP_CANCEL;
2165
2166 --loop_depth;
1265} 2167}
1266 2168
1267void 2169void
1268ev_unloop (EV_P_ int how) 2170ev_unloop (EV_P_ int how)
1269{ 2171{
1270 loop_done = how; 2172 loop_done = how;
1271} 2173}
1272 2174
2175void
2176ev_ref (EV_P)
2177{
2178 ++activecnt;
2179}
2180
2181void
2182ev_unref (EV_P)
2183{
2184 --activecnt;
2185}
2186
2187void
2188ev_now_update (EV_P)
2189{
2190 time_update (EV_A_ 1e100);
2191}
2192
2193void
2194ev_suspend (EV_P)
2195{
2196 ev_now_update (EV_A);
2197}
2198
2199void
2200ev_resume (EV_P)
2201{
2202 ev_tstamp mn_prev = mn_now;
2203
2204 ev_now_update (EV_A);
2205 timers_reschedule (EV_A_ mn_now - mn_prev);
2206#if EV_PERIODIC_ENABLE
2207 /* TODO: really do this? */
2208 periodics_reschedule (EV_A);
2209#endif
2210}
2211
1273/*****************************************************************************/ 2212/*****************************************************************************/
2213/* singly-linked list management, used when the expected list length is short */
1274 2214
1275inline void 2215inline_size void
1276wlist_add (WL *head, WL elem) 2216wlist_add (WL *head, WL elem)
1277{ 2217{
1278 elem->next = *head; 2218 elem->next = *head;
1279 *head = elem; 2219 *head = elem;
1280} 2220}
1281 2221
1282inline void 2222inline_size void
1283wlist_del (WL *head, WL elem) 2223wlist_del (WL *head, WL elem)
1284{ 2224{
1285 while (*head) 2225 while (*head)
1286 { 2226 {
1287 if (*head == elem) 2227 if (*head == elem)
1292 2232
1293 head = &(*head)->next; 2233 head = &(*head)->next;
1294 } 2234 }
1295} 2235}
1296 2236
2237/* internal, faster, version of ev_clear_pending */
1297inline void 2238inline_speed void
1298ev_clear_pending (EV_P_ W w) 2239clear_pending (EV_P_ W w)
1299{ 2240{
1300 if (w->pending) 2241 if (w->pending)
1301 { 2242 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2243 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 2244 w->pending = 0;
1304 } 2245 }
1305} 2246}
1306 2247
2248int
2249ev_clear_pending (EV_P_ void *w)
2250{
2251 W w_ = (W)w;
2252 int pending = w_->pending;
2253
2254 if (expect_true (pending))
2255 {
2256 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2257 p->w = (W)&pending_w;
2258 w_->pending = 0;
2259 return p->events;
2260 }
2261 else
2262 return 0;
2263}
2264
1307inline void 2265inline_size void
2266pri_adjust (EV_P_ W w)
2267{
2268 int pri = ev_priority (w);
2269 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2270 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2271 ev_set_priority (w, pri);
2272}
2273
2274inline_speed void
1308ev_start (EV_P_ W w, int active) 2275ev_start (EV_P_ W w, int active)
1309{ 2276{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2277 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2278 w->active = active;
1314 ev_ref (EV_A); 2279 ev_ref (EV_A);
1315} 2280}
1316 2281
1317inline void 2282inline_size void
1318ev_stop (EV_P_ W w) 2283ev_stop (EV_P_ W w)
1319{ 2284{
1320 ev_unref (EV_A); 2285 ev_unref (EV_A);
1321 w->active = 0; 2286 w->active = 0;
1322} 2287}
1323 2288
1324/*****************************************************************************/ 2289/*****************************************************************************/
1325 2290
1326void 2291void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2292ev_io_start (EV_P_ ev_io *w)
1328{ 2293{
1329 int fd = w->fd; 2294 int fd = w->fd;
1330 2295
1331 if (expect_false (ev_is_active (w))) 2296 if (expect_false (ev_is_active (w)))
1332 return; 2297 return;
1333 2298
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2299 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2300 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2301
2302 EV_FREQUENT_CHECK;
1335 2303
1336 ev_start (EV_A_ (W)w, 1); 2304 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2305 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2306 wlist_add (&anfds[fd].head, (WL)w);
1339 2307
1340 fd_change (EV_A_ fd); 2308 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1341} 2309 w->events &= ~EV__IOFDSET;
1342 2310
1343void 2311 EV_FREQUENT_CHECK;
2312}
2313
2314void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2315ev_io_stop (EV_P_ ev_io *w)
1345{ 2316{
1346 ev_clear_pending (EV_A_ (W)w); 2317 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 2318 if (expect_false (!ev_is_active (w)))
1348 return; 2319 return;
1349 2320
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2321 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2322
2323 EV_FREQUENT_CHECK;
2324
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2325 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2326 ev_stop (EV_A_ (W)w);
1354 2327
1355 fd_change (EV_A_ w->fd); 2328 fd_change (EV_A_ w->fd, 1);
1356}
1357 2329
1358void 2330 EV_FREQUENT_CHECK;
2331}
2332
2333void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2334ev_timer_start (EV_P_ ev_timer *w)
1360{ 2335{
1361 if (expect_false (ev_is_active (w))) 2336 if (expect_false (ev_is_active (w)))
1362 return; 2337 return;
1363 2338
1364 ((WT)w)->at += mn_now; 2339 ev_at (w) += mn_now;
1365 2340
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2341 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2342
2343 EV_FREQUENT_CHECK;
2344
2345 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2346 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2347 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2348 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2349 ANHE_at_cache (timers [ev_active (w)]);
2350 upheap (timers, ev_active (w));
1372 2351
2352 EV_FREQUENT_CHECK;
2353
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2354 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2355}
1375 2356
1376void 2357void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2358ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2359{
1379 ev_clear_pending (EV_A_ (W)w); 2360 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 2361 if (expect_false (!ev_is_active (w)))
1381 return; 2362 return;
1382 2363
2364 EV_FREQUENT_CHECK;
2365
2366 {
2367 int active = ev_active (w);
2368
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2369 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2370
2371 --timercnt;
2372
1385 if (expect_true (((W)w)->active < timercnt--)) 2373 if (expect_true (active < timercnt + HEAP0))
1386 { 2374 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2375 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2376 adjustheap (timers, timercnt, active);
1389 } 2377 }
2378 }
1390 2379
1391 ((WT)w)->at -= mn_now; 2380 EV_FREQUENT_CHECK;
2381
2382 ev_at (w) -= mn_now;
1392 2383
1393 ev_stop (EV_A_ (W)w); 2384 ev_stop (EV_A_ (W)w);
1394} 2385}
1395 2386
1396void 2387void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2388ev_timer_again (EV_P_ ev_timer *w)
1398{ 2389{
2390 EV_FREQUENT_CHECK;
2391
1399 if (ev_is_active (w)) 2392 if (ev_is_active (w))
1400 { 2393 {
1401 if (w->repeat) 2394 if (w->repeat)
1402 { 2395 {
1403 ((WT)w)->at = mn_now + w->repeat; 2396 ev_at (w) = mn_now + w->repeat;
2397 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2398 adjustheap (timers, timercnt, ev_active (w));
1405 } 2399 }
1406 else 2400 else
1407 ev_timer_stop (EV_A_ w); 2401 ev_timer_stop (EV_A_ w);
1408 } 2402 }
1409 else if (w->repeat) 2403 else if (w->repeat)
1410 { 2404 {
1411 w->at = w->repeat; 2405 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2406 ev_timer_start (EV_A_ w);
1413 } 2407 }
1414}
1415 2408
2409 EV_FREQUENT_CHECK;
2410}
2411
1416#if EV_PERIODICS 2412#if EV_PERIODIC_ENABLE
1417void 2413void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2414ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2415{
1420 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1421 return; 2417 return;
1422 2418
1423 if (w->reschedule_cb) 2419 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2420 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2421 else if (w->interval)
1426 { 2422 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2423 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2424 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2425 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2426 }
2427 else
2428 ev_at (w) = w->offset;
1431 2429
2430 EV_FREQUENT_CHECK;
2431
2432 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2433 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2434 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2435 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2436 ANHE_at_cache (periodics [ev_active (w)]);
2437 upheap (periodics, ev_active (w));
1436 2438
2439 EV_FREQUENT_CHECK;
2440
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2441 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2442}
1439 2443
1440void 2444void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2445ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2446{
1443 ev_clear_pending (EV_A_ (W)w); 2447 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 2448 if (expect_false (!ev_is_active (w)))
1445 return; 2449 return;
1446 2450
2451 EV_FREQUENT_CHECK;
2452
2453 {
2454 int active = ev_active (w);
2455
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2456 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2457
2458 --periodiccnt;
2459
1449 if (expect_true (((W)w)->active < periodiccnt--)) 2460 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2461 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2462 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2463 adjustheap (periodics, periodiccnt, active);
1453 } 2464 }
2465 }
2466
2467 EV_FREQUENT_CHECK;
1454 2468
1455 ev_stop (EV_A_ (W)w); 2469 ev_stop (EV_A_ (W)w);
1456} 2470}
1457 2471
1458void 2472void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2473ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2474{
1461 /* TODO: use adjustheap and recalculation */ 2475 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2476 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2477 ev_periodic_start (EV_A_ w);
1464} 2478}
1465#endif 2479#endif
1466 2480
1467void 2481#ifndef SA_RESTART
1468ev_idle_start (EV_P_ struct ev_idle *w) 2482# define SA_RESTART 0
2483#endif
2484
2485void noinline
2486ev_signal_start (EV_P_ ev_signal *w)
1469{ 2487{
2488#if EV_MULTIPLICITY
2489 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2490#endif
1470 if (expect_false (ev_is_active (w))) 2491 if (expect_false (ev_is_active (w)))
1471 return; 2492 return;
1472 2493
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w)))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (expect_false (ev_is_active (w)))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w)))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (expect_false (ev_is_active (w)))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w)))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART
1534# define SA_RESTART 0
1535#endif
1536
1537void
1538ev_signal_start (EV_P_ struct ev_signal *w)
1539{
1540#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif
1543 if (expect_false (ev_is_active (w)))
1544 return;
1545
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2494 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2495
2496 evpipe_init (EV_A);
2497
2498 EV_FREQUENT_CHECK;
2499
2500 {
2501#ifndef _WIN32
2502 sigset_t full, prev;
2503 sigfillset (&full);
2504 sigprocmask (SIG_SETMASK, &full, &prev);
2505#endif
2506
2507 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2508
2509#ifndef _WIN32
2510 sigprocmask (SIG_SETMASK, &prev, 0);
2511#endif
2512 }
1547 2513
1548 ev_start (EV_A_ (W)w, 1); 2514 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2515 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2516
1552 if (!((WL)w)->next) 2517 if (!((WL)w)->next)
1553 { 2518 {
1554#if _WIN32 2519#if _WIN32
1555 signal (w->signum, sighandler); 2520 signal (w->signum, ev_sighandler);
1556#else 2521#else
1557 struct sigaction sa; 2522 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2523 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2524 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2526 sigaction (w->signum, &sa, 0);
1562#endif 2527#endif
1563 } 2528 }
1564}
1565 2529
1566void 2530 EV_FREQUENT_CHECK;
2531}
2532
2533void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2534ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2535{
1569 ev_clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1571 return; 2538 return;
1572 2539
2540 EV_FREQUENT_CHECK;
2541
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2542 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2543 ev_stop (EV_A_ (W)w);
1575 2544
1576 if (!signals [w->signum - 1].head) 2545 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2546 signal (w->signum, SIG_DFL);
1578}
1579 2547
2548 EV_FREQUENT_CHECK;
2549}
2550
1580void 2551void
1581ev_child_start (EV_P_ struct ev_child *w) 2552ev_child_start (EV_P_ ev_child *w)
1582{ 2553{
1583#if EV_MULTIPLICITY 2554#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2556#endif
1586 if (expect_false (ev_is_active (w))) 2557 if (expect_false (ev_is_active (w)))
1587 return; 2558 return;
1588 2559
2560 EV_FREQUENT_CHECK;
2561
1589 ev_start (EV_A_ (W)w, 1); 2562 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2563 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591}
1592 2564
2565 EV_FREQUENT_CHECK;
2566}
2567
1593void 2568void
1594ev_child_stop (EV_P_ struct ev_child *w) 2569ev_child_stop (EV_P_ ev_child *w)
1595{ 2570{
1596 ev_clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2572 if (expect_false (!ev_is_active (w)))
1598 return; 2573 return;
1599 2574
2575 EV_FREQUENT_CHECK;
2576
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2577 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2578 ev_stop (EV_A_ (W)w);
2579
2580 EV_FREQUENT_CHECK;
1602} 2581}
2582
2583#if EV_STAT_ENABLE
2584
2585# ifdef _WIN32
2586# undef lstat
2587# define lstat(a,b) _stati64 (a,b)
2588# endif
2589
2590#define DEF_STAT_INTERVAL 5.0074891
2591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2592#define MIN_STAT_INTERVAL 0.1074891
2593
2594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2595
2596#if EV_USE_INOTIFY
2597# define EV_INOTIFY_BUFSIZE 8192
2598
2599static void noinline
2600infy_add (EV_P_ ev_stat *w)
2601{
2602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2603
2604 if (w->wd < 0)
2605 {
2606 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2607 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2608
2609 /* monitor some parent directory for speedup hints */
2610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2611 /* but an efficiency issue only */
2612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2613 {
2614 char path [4096];
2615 strcpy (path, w->path);
2616
2617 do
2618 {
2619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2621
2622 char *pend = strrchr (path, '/');
2623
2624 if (!pend || pend == path)
2625 break;
2626
2627 *pend = 0;
2628 w->wd = inotify_add_watch (fs_fd, path, mask);
2629 }
2630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2631 }
2632 }
2633
2634 if (w->wd >= 0)
2635 {
2636 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2637
2638 /* now local changes will be tracked by inotify, but remote changes won't */
2639 /* unless the filesystem it known to be local, we therefore still poll */
2640 /* also do poll on <2.6.25, but with normal frequency */
2641 struct statfs sfs;
2642
2643 if (fs_2625 && !statfs (w->path, &sfs))
2644 if (sfs.f_type == 0x1373 /* devfs */
2645 || sfs.f_type == 0xEF53 /* ext2/3 */
2646 || sfs.f_type == 0x3153464a /* jfs */
2647 || sfs.f_type == 0x52654973 /* reiser3 */
2648 || sfs.f_type == 0x01021994 /* tempfs */
2649 || sfs.f_type == 0x58465342 /* xfs */)
2650 return;
2651
2652 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2653 ev_timer_again (EV_A_ &w->timer);
2654 }
2655}
2656
2657static void noinline
2658infy_del (EV_P_ ev_stat *w)
2659{
2660 int slot;
2661 int wd = w->wd;
2662
2663 if (wd < 0)
2664 return;
2665
2666 w->wd = -2;
2667 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2668 wlist_del (&fs_hash [slot].head, (WL)w);
2669
2670 /* remove this watcher, if others are watching it, they will rearm */
2671 inotify_rm_watch (fs_fd, wd);
2672}
2673
2674static void noinline
2675infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2676{
2677 if (slot < 0)
2678 /* overflow, need to check for all hash slots */
2679 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2680 infy_wd (EV_A_ slot, wd, ev);
2681 else
2682 {
2683 WL w_;
2684
2685 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2686 {
2687 ev_stat *w = (ev_stat *)w_;
2688 w_ = w_->next; /* lets us remove this watcher and all before it */
2689
2690 if (w->wd == wd || wd == -1)
2691 {
2692 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2693 {
2694 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2695 w->wd = -1;
2696 infy_add (EV_A_ w); /* re-add, no matter what */
2697 }
2698
2699 stat_timer_cb (EV_A_ &w->timer, 0);
2700 }
2701 }
2702 }
2703}
2704
2705static void
2706infy_cb (EV_P_ ev_io *w, int revents)
2707{
2708 char buf [EV_INOTIFY_BUFSIZE];
2709 struct inotify_event *ev = (struct inotify_event *)buf;
2710 int ofs;
2711 int len = read (fs_fd, buf, sizeof (buf));
2712
2713 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2714 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2715}
2716
2717inline_size void
2718check_2625 (EV_P)
2719{
2720 /* kernels < 2.6.25 are borked
2721 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2722 */
2723 struct utsname buf;
2724 int major, minor, micro;
2725
2726 if (uname (&buf))
2727 return;
2728
2729 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2730 return;
2731
2732 if (major < 2
2733 || (major == 2 && minor < 6)
2734 || (major == 2 && minor == 6 && micro < 25))
2735 return;
2736
2737 fs_2625 = 1;
2738}
2739
2740inline_size void
2741infy_init (EV_P)
2742{
2743 if (fs_fd != -2)
2744 return;
2745
2746 fs_fd = -1;
2747
2748 check_2625 (EV_A);
2749
2750 fs_fd = inotify_init ();
2751
2752 if (fs_fd >= 0)
2753 {
2754 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2755 ev_set_priority (&fs_w, EV_MAXPRI);
2756 ev_io_start (EV_A_ &fs_w);
2757 }
2758}
2759
2760inline_size void
2761infy_fork (EV_P)
2762{
2763 int slot;
2764
2765 if (fs_fd < 0)
2766 return;
2767
2768 close (fs_fd);
2769 fs_fd = inotify_init ();
2770
2771 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2772 {
2773 WL w_ = fs_hash [slot].head;
2774 fs_hash [slot].head = 0;
2775
2776 while (w_)
2777 {
2778 ev_stat *w = (ev_stat *)w_;
2779 w_ = w_->next; /* lets us add this watcher */
2780
2781 w->wd = -1;
2782
2783 if (fs_fd >= 0)
2784 infy_add (EV_A_ w); /* re-add, no matter what */
2785 else
2786 ev_timer_again (EV_A_ &w->timer);
2787 }
2788 }
2789}
2790
2791#endif
2792
2793#ifdef _WIN32
2794# define EV_LSTAT(p,b) _stati64 (p, b)
2795#else
2796# define EV_LSTAT(p,b) lstat (p, b)
2797#endif
2798
2799void
2800ev_stat_stat (EV_P_ ev_stat *w)
2801{
2802 if (lstat (w->path, &w->attr) < 0)
2803 w->attr.st_nlink = 0;
2804 else if (!w->attr.st_nlink)
2805 w->attr.st_nlink = 1;
2806}
2807
2808static void noinline
2809stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2810{
2811 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2812
2813 /* we copy this here each the time so that */
2814 /* prev has the old value when the callback gets invoked */
2815 w->prev = w->attr;
2816 ev_stat_stat (EV_A_ w);
2817
2818 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2819 if (
2820 w->prev.st_dev != w->attr.st_dev
2821 || w->prev.st_ino != w->attr.st_ino
2822 || w->prev.st_mode != w->attr.st_mode
2823 || w->prev.st_nlink != w->attr.st_nlink
2824 || w->prev.st_uid != w->attr.st_uid
2825 || w->prev.st_gid != w->attr.st_gid
2826 || w->prev.st_rdev != w->attr.st_rdev
2827 || w->prev.st_size != w->attr.st_size
2828 || w->prev.st_atime != w->attr.st_atime
2829 || w->prev.st_mtime != w->attr.st_mtime
2830 || w->prev.st_ctime != w->attr.st_ctime
2831 ) {
2832 #if EV_USE_INOTIFY
2833 if (fs_fd >= 0)
2834 {
2835 infy_del (EV_A_ w);
2836 infy_add (EV_A_ w);
2837 ev_stat_stat (EV_A_ w); /* avoid race... */
2838 }
2839 #endif
2840
2841 ev_feed_event (EV_A_ w, EV_STAT);
2842 }
2843}
2844
2845void
2846ev_stat_start (EV_P_ ev_stat *w)
2847{
2848 if (expect_false (ev_is_active (w)))
2849 return;
2850
2851 ev_stat_stat (EV_A_ w);
2852
2853 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2854 w->interval = MIN_STAT_INTERVAL;
2855
2856 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2857 ev_set_priority (&w->timer, ev_priority (w));
2858
2859#if EV_USE_INOTIFY
2860 infy_init (EV_A);
2861
2862 if (fs_fd >= 0)
2863 infy_add (EV_A_ w);
2864 else
2865#endif
2866 ev_timer_again (EV_A_ &w->timer);
2867
2868 ev_start (EV_A_ (W)w, 1);
2869
2870 EV_FREQUENT_CHECK;
2871}
2872
2873void
2874ev_stat_stop (EV_P_ ev_stat *w)
2875{
2876 clear_pending (EV_A_ (W)w);
2877 if (expect_false (!ev_is_active (w)))
2878 return;
2879
2880 EV_FREQUENT_CHECK;
2881
2882#if EV_USE_INOTIFY
2883 infy_del (EV_A_ w);
2884#endif
2885 ev_timer_stop (EV_A_ &w->timer);
2886
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890}
2891#endif
2892
2893#if EV_IDLE_ENABLE
2894void
2895ev_idle_start (EV_P_ ev_idle *w)
2896{
2897 if (expect_false (ev_is_active (w)))
2898 return;
2899
2900 pri_adjust (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903
2904 {
2905 int active = ++idlecnt [ABSPRI (w)];
2906
2907 ++idleall;
2908 ev_start (EV_A_ (W)w, active);
2909
2910 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2911 idles [ABSPRI (w)][active - 1] = w;
2912 }
2913
2914 EV_FREQUENT_CHECK;
2915}
2916
2917void
2918ev_idle_stop (EV_P_ ev_idle *w)
2919{
2920 clear_pending (EV_A_ (W)w);
2921 if (expect_false (!ev_is_active (w)))
2922 return;
2923
2924 EV_FREQUENT_CHECK;
2925
2926 {
2927 int active = ev_active (w);
2928
2929 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2930 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2931
2932 ev_stop (EV_A_ (W)w);
2933 --idleall;
2934 }
2935
2936 EV_FREQUENT_CHECK;
2937}
2938#endif
2939
2940void
2941ev_prepare_start (EV_P_ ev_prepare *w)
2942{
2943 if (expect_false (ev_is_active (w)))
2944 return;
2945
2946 EV_FREQUENT_CHECK;
2947
2948 ev_start (EV_A_ (W)w, ++preparecnt);
2949 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2950 prepares [preparecnt - 1] = w;
2951
2952 EV_FREQUENT_CHECK;
2953}
2954
2955void
2956ev_prepare_stop (EV_P_ ev_prepare *w)
2957{
2958 clear_pending (EV_A_ (W)w);
2959 if (expect_false (!ev_is_active (w)))
2960 return;
2961
2962 EV_FREQUENT_CHECK;
2963
2964 {
2965 int active = ev_active (w);
2966
2967 prepares [active - 1] = prepares [--preparecnt];
2968 ev_active (prepares [active - 1]) = active;
2969 }
2970
2971 ev_stop (EV_A_ (W)w);
2972
2973 EV_FREQUENT_CHECK;
2974}
2975
2976void
2977ev_check_start (EV_P_ ev_check *w)
2978{
2979 if (expect_false (ev_is_active (w)))
2980 return;
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++checkcnt);
2985 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2986 checks [checkcnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991void
2992ev_check_stop (EV_P_ ev_check *w)
2993{
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 checks [active - 1] = checks [--checkcnt];
3004 ev_active (checks [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012#if EV_EMBED_ENABLE
3013void noinline
3014ev_embed_sweep (EV_P_ ev_embed *w)
3015{
3016 ev_loop (w->other, EVLOOP_NONBLOCK);
3017}
3018
3019static void
3020embed_io_cb (EV_P_ ev_io *io, int revents)
3021{
3022 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3023
3024 if (ev_cb (w))
3025 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3026 else
3027 ev_loop (w->other, EVLOOP_NONBLOCK);
3028}
3029
3030static void
3031embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3032{
3033 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3034
3035 {
3036 struct ev_loop *loop = w->other;
3037
3038 while (fdchangecnt)
3039 {
3040 fd_reify (EV_A);
3041 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3042 }
3043 }
3044}
3045
3046static void
3047embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3048{
3049 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3050
3051 ev_embed_stop (EV_A_ w);
3052
3053 {
3054 struct ev_loop *loop = w->other;
3055
3056 ev_loop_fork (EV_A);
3057 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3058 }
3059
3060 ev_embed_start (EV_A_ w);
3061}
3062
3063#if 0
3064static void
3065embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3066{
3067 ev_idle_stop (EV_A_ idle);
3068}
3069#endif
3070
3071void
3072ev_embed_start (EV_P_ ev_embed *w)
3073{
3074 if (expect_false (ev_is_active (w)))
3075 return;
3076
3077 {
3078 struct ev_loop *loop = w->other;
3079 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3080 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3081 }
3082
3083 EV_FREQUENT_CHECK;
3084
3085 ev_set_priority (&w->io, ev_priority (w));
3086 ev_io_start (EV_A_ &w->io);
3087
3088 ev_prepare_init (&w->prepare, embed_prepare_cb);
3089 ev_set_priority (&w->prepare, EV_MINPRI);
3090 ev_prepare_start (EV_A_ &w->prepare);
3091
3092 ev_fork_init (&w->fork, embed_fork_cb);
3093 ev_fork_start (EV_A_ &w->fork);
3094
3095 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3096
3097 ev_start (EV_A_ (W)w, 1);
3098
3099 EV_FREQUENT_CHECK;
3100}
3101
3102void
3103ev_embed_stop (EV_P_ ev_embed *w)
3104{
3105 clear_pending (EV_A_ (W)w);
3106 if (expect_false (!ev_is_active (w)))
3107 return;
3108
3109 EV_FREQUENT_CHECK;
3110
3111 ev_io_stop (EV_A_ &w->io);
3112 ev_prepare_stop (EV_A_ &w->prepare);
3113 ev_fork_stop (EV_A_ &w->fork);
3114
3115 EV_FREQUENT_CHECK;
3116}
3117#endif
3118
3119#if EV_FORK_ENABLE
3120void
3121ev_fork_start (EV_P_ ev_fork *w)
3122{
3123 if (expect_false (ev_is_active (w)))
3124 return;
3125
3126 EV_FREQUENT_CHECK;
3127
3128 ev_start (EV_A_ (W)w, ++forkcnt);
3129 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3130 forks [forkcnt - 1] = w;
3131
3132 EV_FREQUENT_CHECK;
3133}
3134
3135void
3136ev_fork_stop (EV_P_ ev_fork *w)
3137{
3138 clear_pending (EV_A_ (W)w);
3139 if (expect_false (!ev_is_active (w)))
3140 return;
3141
3142 EV_FREQUENT_CHECK;
3143
3144 {
3145 int active = ev_active (w);
3146
3147 forks [active - 1] = forks [--forkcnt];
3148 ev_active (forks [active - 1]) = active;
3149 }
3150
3151 ev_stop (EV_A_ (W)w);
3152
3153 EV_FREQUENT_CHECK;
3154}
3155#endif
3156
3157#if EV_ASYNC_ENABLE
3158void
3159ev_async_start (EV_P_ ev_async *w)
3160{
3161 if (expect_false (ev_is_active (w)))
3162 return;
3163
3164 evpipe_init (EV_A);
3165
3166 EV_FREQUENT_CHECK;
3167
3168 ev_start (EV_A_ (W)w, ++asynccnt);
3169 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3170 asyncs [asynccnt - 1] = w;
3171
3172 EV_FREQUENT_CHECK;
3173}
3174
3175void
3176ev_async_stop (EV_P_ ev_async *w)
3177{
3178 clear_pending (EV_A_ (W)w);
3179 if (expect_false (!ev_is_active (w)))
3180 return;
3181
3182 EV_FREQUENT_CHECK;
3183
3184 {
3185 int active = ev_active (w);
3186
3187 asyncs [active - 1] = asyncs [--asynccnt];
3188 ev_active (asyncs [active - 1]) = active;
3189 }
3190
3191 ev_stop (EV_A_ (W)w);
3192
3193 EV_FREQUENT_CHECK;
3194}
3195
3196void
3197ev_async_send (EV_P_ ev_async *w)
3198{
3199 w->sent = 1;
3200 evpipe_write (EV_A_ &gotasync);
3201}
3202#endif
1603 3203
1604/*****************************************************************************/ 3204/*****************************************************************************/
1605 3205
1606struct ev_once 3206struct ev_once
1607{ 3207{
1608 struct ev_io io; 3208 ev_io io;
1609 struct ev_timer to; 3209 ev_timer to;
1610 void (*cb)(int revents, void *arg); 3210 void (*cb)(int revents, void *arg);
1611 void *arg; 3211 void *arg;
1612}; 3212};
1613 3213
1614static void 3214static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 3215once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 3216{
1617 void (*cb)(int revents, void *arg) = once->cb; 3217 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 3218 void *arg = once->arg;
1619 3219
1620 ev_io_stop (EV_A_ &once->io); 3220 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 3221 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 3222 ev_free (once);
1623 3223
1624 cb (revents, arg); 3224 cb (revents, arg);
1625} 3225}
1626 3226
1627static void 3227static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 3228once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 3229{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3230 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3231
3232 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 3233}
1632 3234
1633static void 3235static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 3236once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 3237{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3238 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3239
3240 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 3241}
1638 3242
1639void 3243void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3244ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 3245{
1663 ev_timer_set (&once->to, timeout, 0.); 3267 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 3268 ev_timer_start (EV_A_ &once->to);
1665 } 3269 }
1666} 3270}
1667 3271
3272/*****************************************************************************/
3273
3274#if EV_WALK_ENABLE
3275void
3276ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3277{
3278 int i, j;
3279 ev_watcher_list *wl, *wn;
3280
3281 if (types & (EV_IO | EV_EMBED))
3282 for (i = 0; i < anfdmax; ++i)
3283 for (wl = anfds [i].head; wl; )
3284 {
3285 wn = wl->next;
3286
3287#if EV_EMBED_ENABLE
3288 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3289 {
3290 if (types & EV_EMBED)
3291 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3292 }
3293 else
3294#endif
3295#if EV_USE_INOTIFY
3296 if (ev_cb ((ev_io *)wl) == infy_cb)
3297 ;
3298 else
3299#endif
3300 if ((ev_io *)wl != &pipe_w)
3301 if (types & EV_IO)
3302 cb (EV_A_ EV_IO, wl);
3303
3304 wl = wn;
3305 }
3306
3307 if (types & (EV_TIMER | EV_STAT))
3308 for (i = timercnt + HEAP0; i-- > HEAP0; )
3309#if EV_STAT_ENABLE
3310 /*TODO: timer is not always active*/
3311 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3312 {
3313 if (types & EV_STAT)
3314 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3315 }
3316 else
3317#endif
3318 if (types & EV_TIMER)
3319 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3320
3321#if EV_PERIODIC_ENABLE
3322 if (types & EV_PERIODIC)
3323 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3324 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3325#endif
3326
3327#if EV_IDLE_ENABLE
3328 if (types & EV_IDLE)
3329 for (j = NUMPRI; i--; )
3330 for (i = idlecnt [j]; i--; )
3331 cb (EV_A_ EV_IDLE, idles [j][i]);
3332#endif
3333
3334#if EV_FORK_ENABLE
3335 if (types & EV_FORK)
3336 for (i = forkcnt; i--; )
3337 if (ev_cb (forks [i]) != embed_fork_cb)
3338 cb (EV_A_ EV_FORK, forks [i]);
3339#endif
3340
3341#if EV_ASYNC_ENABLE
3342 if (types & EV_ASYNC)
3343 for (i = asynccnt; i--; )
3344 cb (EV_A_ EV_ASYNC, asyncs [i]);
3345#endif
3346
3347 if (types & EV_PREPARE)
3348 for (i = preparecnt; i--; )
3349#if EV_EMBED_ENABLE
3350 if (ev_cb (prepares [i]) != embed_prepare_cb)
3351#endif
3352 cb (EV_A_ EV_PREPARE, prepares [i]);
3353
3354 if (types & EV_CHECK)
3355 for (i = checkcnt; i--; )
3356 cb (EV_A_ EV_CHECK, checks [i]);
3357
3358 if (types & EV_SIGNAL)
3359 for (i = 0; i < signalmax; ++i)
3360 for (wl = signals [i].head; wl; )
3361 {
3362 wn = wl->next;
3363 cb (EV_A_ EV_SIGNAL, wl);
3364 wl = wn;
3365 }
3366
3367 if (types & EV_CHILD)
3368 for (i = EV_PID_HASHSIZE; i--; )
3369 for (wl = childs [i]; wl; )
3370 {
3371 wn = wl->next;
3372 cb (EV_A_ EV_CHILD, wl);
3373 wl = wn;
3374 }
3375/* EV_STAT 0x00001000 /* stat data changed */
3376/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3377}
3378#endif
3379
3380#if EV_MULTIPLICITY
3381 #include "ev_wrap.h"
3382#endif
3383
1668#ifdef __cplusplus 3384#ifdef __cplusplus
1669} 3385}
1670#endif 3386#endif
1671 3387

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines