ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.123 by root, Sat Nov 17 02:23:54 2007 UTC vs.
Revision 1.306 by root, Sun Jul 19 06:35:25 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
45# endif 79# endif
46# endif 80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
50# endif 88# endif
51 89
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
54# endif 96# endif
55 97
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
58# endif 104# endif
59 105
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
62# endif 112# endif
63 113
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
66# endif 120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
67 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
68#endif 154#endif
69 155
70#include <math.h> 156#include <math.h>
71#include <stdlib.h> 157#include <stdlib.h>
72#include <fcntl.h> 158#include <fcntl.h>
79#include <sys/types.h> 165#include <sys/types.h>
80#include <time.h> 166#include <time.h>
81 167
82#include <signal.h> 168#include <signal.h>
83 169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
84#ifndef _WIN32 176#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 177# include <sys/time.h>
87# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
88#else 180#else
181# include <io.h>
89# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 183# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
93# endif 186# endif
94#endif 187#endif
95 188
96/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192/* one some platforms, NSIG is one too large. we do not bother */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
97 226
98#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
99# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
100#endif 233#endif
101 234
102#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
104#endif 245#endif
105 246
106#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
108#endif 249#endif
114# define EV_USE_POLL 1 255# define EV_USE_POLL 1
115# endif 256# endif
116#endif 257#endif
117 258
118#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
119# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
120#endif 265#endif
121 266
122#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
124#endif 269#endif
125 270
126#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 272# define EV_USE_PORT 0
128#endif 273#endif
129 274
130/**/ 275#ifndef EV_USE_INOTIFY
131 276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 277# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 278# else
134# undef EV_USE_POLL 279# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 280# endif
281#endif
282
283#ifndef EV_PID_HASHSIZE
284# if EV_MINIMAL
285# define EV_PID_HASHSIZE 1
286# else
287# define EV_PID_HASHSIZE 16
288# endif
289#endif
290
291#ifndef EV_INOTIFY_HASHSIZE
292# if EV_MINIMAL
293# define EV_INOTIFY_HASHSIZE 1
294# else
295# define EV_INOTIFY_HASHSIZE 16
296# endif
297#endif
298
299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 348
138#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
141#endif 352#endif
143#ifndef CLOCK_REALTIME 354#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 355# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 356# define EV_USE_REALTIME 0
146#endif 357#endif
147 358
359#if !EV_STAT_ENABLE
360# undef EV_USE_INOTIFY
361# define EV_USE_INOTIFY 0
362#endif
363
364#if !EV_USE_NANOSLEEP
365# ifndef _WIN32
366# include <sys/select.h>
367# endif
368#endif
369
370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
379#endif
380
148#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 382# include <winsock.h>
150#endif 383#endif
151 384
385#if EV_USE_EVENTFD
386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
390# endif
391# ifndef EFD_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# endif
394# ifdef __cplusplus
395extern "C" {
396# endif
397int eventfd (unsigned int initval, int flags);
398# ifdef __cplusplus
399}
400# endif
401#endif
402
403#if EV_USE_SIGNALFD
404# include <sys/signalfd.h>
405#endif
406
152/**/ 407/**/
408
409#if EV_VERIFY >= 3
410# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
411#else
412# define EV_FREQUENT_CHECK do { } while (0)
413#endif
414
415/*
416 * This is used to avoid floating point rounding problems.
417 * It is added to ev_rt_now when scheduling periodics
418 * to ensure progress, time-wise, even when rounding
419 * errors are against us.
420 * This value is good at least till the year 4000.
421 * Better solutions welcome.
422 */
423#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 424
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 425#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 426#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 427/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 428
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 429#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 430# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline 431# define noinline __attribute__ ((noinline))
168#else 432#else
169# define expect(expr,value) (expr) 433# define expect(expr,value) (expr)
170# define inline static 434# define noinline
435# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
436# define inline
437# endif
171#endif 438#endif
172 439
173#define expect_false(expr) expect ((expr) != 0, 0) 440#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 441#define expect_true(expr) expect ((expr) != 0, 1)
442#define inline_size static inline
175 443
444#if EV_MINIMAL
445# define inline_speed static noinline
446#else
447# define inline_speed static inline
448#endif
449
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 450#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
451
452#if EV_MINPRI == EV_MAXPRI
453# define ABSPRI(w) (((W)w), 0)
454#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 455# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
456#endif
178 457
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 458#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 459#define EMPTY2(a,b) /* used to suppress some warnings */
181 460
182typedef struct ev_watcher *W; 461typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 462typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 463typedef ev_watcher_time *WT;
185 464
465#define ev_active(w) ((W)(w))->active
466#define ev_at(w) ((WT)(w))->at
467
468#if EV_USE_REALTIME
469/* sig_atomic_t is used to avoid per-thread variables or locking but still */
470/* giving it a reasonably high chance of working on typical architetcures */
471static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
472#endif
473
474#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 475static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
476#endif
187 477
188#ifdef _WIN32 478#ifdef _WIN32
189# include "ev_win32.c" 479# include "ev_win32.c"
190#endif 480#endif
191 481
192/*****************************************************************************/ 482/*****************************************************************************/
193 483
194static void (*syserr_cb)(const char *msg); 484static void (*syserr_cb)(const char *msg);
195 485
486void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 487ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 488{
198 syserr_cb = cb; 489 syserr_cb = cb;
199} 490}
200 491
201static void 492static void noinline
202syserr (const char *msg) 493ev_syserr (const char *msg)
203{ 494{
204 if (!msg) 495 if (!msg)
205 msg = "(libev) system error"; 496 msg = "(libev) system error";
206 497
207 if (syserr_cb) 498 if (syserr_cb)
211 perror (msg); 502 perror (msg);
212 abort (); 503 abort ();
213 } 504 }
214} 505}
215 506
507static void *
508ev_realloc_emul (void *ptr, long size)
509{
510 /* some systems, notably openbsd and darwin, fail to properly
511 * implement realloc (x, 0) (as required by both ansi c-98 and
512 * the single unix specification, so work around them here.
513 */
514
515 if (size)
516 return realloc (ptr, size);
517
518 free (ptr);
519 return 0;
520}
521
216static void *(*alloc)(void *ptr, long size); 522static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 523
524void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 525ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 526{
220 alloc = cb; 527 alloc = cb;
221} 528}
222 529
223static void * 530inline_speed void *
224ev_realloc (void *ptr, long size) 531ev_realloc (void *ptr, long size)
225{ 532{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 533 ptr = alloc (ptr, size);
227 534
228 if (!ptr && size) 535 if (!ptr && size)
229 { 536 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 537 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 538 abort ();
237#define ev_malloc(size) ev_realloc (0, (size)) 544#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 545#define ev_free(ptr) ev_realloc ((ptr), 0)
239 546
240/*****************************************************************************/ 547/*****************************************************************************/
241 548
549/* set in reify when reification needed */
550#define EV_ANFD_REIFY 1
551
552/* file descriptor info structure */
242typedef struct 553typedef struct
243{ 554{
244 WL head; 555 WL head;
245 unsigned char events; 556 unsigned char events; /* the events watched for */
557 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
558 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
246 unsigned char reify; 559 unsigned char unused;
560#if EV_USE_EPOLL
561 unsigned int egen; /* generation counter to counter epoll bugs */
562#endif
247#if EV_SELECT_IS_WINSOCKET 563#if EV_SELECT_IS_WINSOCKET
248 SOCKET handle; 564 SOCKET handle;
249#endif 565#endif
250} ANFD; 566} ANFD;
251 567
568/* stores the pending event set for a given watcher */
252typedef struct 569typedef struct
253{ 570{
254 W w; 571 W w;
255 int events; 572 int events; /* the pending event set for the given watcher */
256} ANPENDING; 573} ANPENDING;
574
575#if EV_USE_INOTIFY
576/* hash table entry per inotify-id */
577typedef struct
578{
579 WL head;
580} ANFS;
581#endif
582
583/* Heap Entry */
584#if EV_HEAP_CACHE_AT
585 /* a heap element */
586 typedef struct {
587 ev_tstamp at;
588 WT w;
589 } ANHE;
590
591 #define ANHE_w(he) (he).w /* access watcher, read-write */
592 #define ANHE_at(he) (he).at /* access cached at, read-only */
593 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
594#else
595 /* a heap element */
596 typedef WT ANHE;
597
598 #define ANHE_w(he) (he)
599 #define ANHE_at(he) (he)->at
600 #define ANHE_at_cache(he)
601#endif
257 602
258#if EV_MULTIPLICITY 603#if EV_MULTIPLICITY
259 604
260 struct ev_loop 605 struct ev_loop
261 { 606 {
279 624
280 static int ev_default_loop_ptr; 625 static int ev_default_loop_ptr;
281 626
282#endif 627#endif
283 628
629#if EV_MINIMAL < 2
630# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
631# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
632# define EV_INVOKE_PENDING invoke_cb (EV_A)
633#else
634# define EV_RELEASE_CB (void)0
635# define EV_ACQUIRE_CB (void)0
636# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
637#endif
638
639#define EVUNLOOP_RECURSE 0x80
640
284/*****************************************************************************/ 641/*****************************************************************************/
285 642
643#ifndef EV_HAVE_EV_TIME
286ev_tstamp 644ev_tstamp
287ev_time (void) 645ev_time (void)
288{ 646{
289#if EV_USE_REALTIME 647#if EV_USE_REALTIME
648 if (expect_true (have_realtime))
649 {
290 struct timespec ts; 650 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 651 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 652 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 653 }
654#endif
655
294 struct timeval tv; 656 struct timeval tv;
295 gettimeofday (&tv, 0); 657 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 658 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 659}
660#endif
299 661
300inline ev_tstamp 662inline_size ev_tstamp
301get_clock (void) 663get_clock (void)
302{ 664{
303#if EV_USE_MONOTONIC 665#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 666 if (expect_true (have_monotonic))
305 { 667 {
318{ 680{
319 return ev_rt_now; 681 return ev_rt_now;
320} 682}
321#endif 683#endif
322 684
323#define array_roundsize(type,n) (((n) | 4) & ~3) 685void
686ev_sleep (ev_tstamp delay)
687{
688 if (delay > 0.)
689 {
690#if EV_USE_NANOSLEEP
691 struct timespec ts;
692
693 ts.tv_sec = (time_t)delay;
694 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
695
696 nanosleep (&ts, 0);
697#elif defined(_WIN32)
698 Sleep ((unsigned long)(delay * 1e3));
699#else
700 struct timeval tv;
701
702 tv.tv_sec = (time_t)delay;
703 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
704
705 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
706 /* something not guaranteed by newer posix versions, but guaranteed */
707 /* by older ones */
708 select (0, 0, 0, 0, &tv);
709#endif
710 }
711}
712
713/*****************************************************************************/
714
715#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
716
717/* find a suitable new size for the given array, */
718/* hopefully by rounding to a ncie-to-malloc size */
719inline_size int
720array_nextsize (int elem, int cur, int cnt)
721{
722 int ncur = cur + 1;
723
724 do
725 ncur <<= 1;
726 while (cnt > ncur);
727
728 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
729 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
730 {
731 ncur *= elem;
732 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
733 ncur = ncur - sizeof (void *) * 4;
734 ncur /= elem;
735 }
736
737 return ncur;
738}
739
740static noinline void *
741array_realloc (int elem, void *base, int *cur, int cnt)
742{
743 *cur = array_nextsize (elem, *cur, cnt);
744 return ev_realloc (base, elem * *cur);
745}
746
747#define array_init_zero(base,count) \
748 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 749
325#define array_needsize(type,base,cur,cnt,init) \ 750#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 751 if (expect_false ((cnt) > (cur))) \
327 { \ 752 { \
328 int newcnt = cur; \ 753 int ocur_ = (cur); \
329 do \ 754 (base) = (type *)array_realloc \
330 { \ 755 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 756 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 757 }
339 758
759#if 0
340#define array_slim(type,stem) \ 760#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 761 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 762 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 763 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 764 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 765 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 766 }
767#endif
347 768
348#define array_free(stem, idx) \ 769#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 770 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 771
351/*****************************************************************************/ 772/*****************************************************************************/
352 773
353static void 774/* dummy callback for pending events */
354anfds_init (ANFD *base, int count) 775static void noinline
776pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 777{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 778}
365 779
366void 780void noinline
367ev_feed_event (EV_P_ void *w, int revents) 781ev_feed_event (EV_P_ void *w, int revents)
368{ 782{
369 W w_ = (W)w; 783 W w_ = (W)w;
784 int pri = ABSPRI (w_);
370 785
371 if (expect_false (w_->pending)) 786 if (expect_false (w_->pending))
787 pendings [pri][w_->pending - 1].events |= revents;
788 else
372 { 789 {
790 w_->pending = ++pendingcnt [pri];
791 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
792 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 793 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 794 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 795}
382 796
383static void 797inline_speed void
798feed_reverse (EV_P_ W w)
799{
800 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
801 rfeeds [rfeedcnt++] = w;
802}
803
804inline_size void
805feed_reverse_done (EV_P_ int revents)
806{
807 do
808 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
809 while (rfeedcnt);
810}
811
812inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 813queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 814{
386 int i; 815 int i;
387 816
388 for (i = 0; i < eventcnt; ++i) 817 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 818 ev_feed_event (EV_A_ events [i], type);
390} 819}
391 820
821/*****************************************************************************/
822
392inline void 823inline_speed void
393fd_event (EV_P_ int fd, int revents) 824fd_event_nc (EV_P_ int fd, int revents)
394{ 825{
395 ANFD *anfd = anfds + fd; 826 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 827 ev_io *w;
397 828
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 829 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 830 {
400 int ev = w->events & revents; 831 int ev = w->events & revents;
401 832
402 if (ev) 833 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 834 ev_feed_event (EV_A_ (W)w, ev);
404 } 835 }
405} 836}
406 837
838/* do not submit kernel events for fds that have reify set */
839/* because that means they changed while we were polling for new events */
840inline_speed void
841fd_event (EV_P_ int fd, int revents)
842{
843 ANFD *anfd = anfds + fd;
844
845 if (expect_true (!anfd->reify))
846 fd_event_nc (EV_A_ fd, revents);
847}
848
407void 849void
408ev_feed_fd_event (EV_P_ int fd, int revents) 850ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 851{
852 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 853 fd_event_nc (EV_A_ fd, revents);
411} 854}
412 855
413/*****************************************************************************/ 856/* make sure the external fd watch events are in-sync */
414 857/* with the kernel/libev internal state */
415inline void 858inline_size void
416fd_reify (EV_P) 859fd_reify (EV_P)
417{ 860{
418 int i; 861 int i;
419 862
420 for (i = 0; i < fdchangecnt; ++i) 863 for (i = 0; i < fdchangecnt; ++i)
421 { 864 {
422 int fd = fdchanges [i]; 865 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 866 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 867 ev_io *w;
425 868
426 int events = 0; 869 unsigned char events = 0;
427 870
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 871 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 872 events |= (unsigned char)w->events;
430 873
431#if EV_SELECT_IS_WINSOCKET 874#if EV_SELECT_IS_WINSOCKET
432 if (events) 875 if (events)
433 { 876 {
434 unsigned long argp; 877 unsigned long arg;
878 #ifdef EV_FD_TO_WIN32_HANDLE
879 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
880 #else
435 anfd->handle = _get_osfhandle (fd); 881 anfd->handle = _get_osfhandle (fd);
882 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 883 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
437 } 884 }
438#endif 885#endif
439 886
887 {
888 unsigned char o_events = anfd->events;
889 unsigned char o_reify = anfd->reify;
890
440 anfd->reify = 0; 891 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 892 anfd->events = events;
893
894 if (o_events != events || o_reify & EV__IOFDSET)
895 backend_modify (EV_A_ fd, o_events, events);
896 }
444 } 897 }
445 898
446 fdchangecnt = 0; 899 fdchangecnt = 0;
447} 900}
448 901
449static void 902/* something about the given fd changed */
903inline_size void
450fd_change (EV_P_ int fd) 904fd_change (EV_P_ int fd, int flags)
451{ 905{
452 if (expect_false (anfds [fd].reify)) 906 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 907 anfds [fd].reify |= flags;
456 908
909 if (expect_true (!reify))
910 {
457 ++fdchangecnt; 911 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 912 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 913 fdchanges [fdchangecnt - 1] = fd;
914 }
460} 915}
461 916
462static void 917/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
918inline_speed void
463fd_kill (EV_P_ int fd) 919fd_kill (EV_P_ int fd)
464{ 920{
465 struct ev_io *w; 921 ev_io *w;
466 922
467 while ((w = (struct ev_io *)anfds [fd].head)) 923 while ((w = (ev_io *)anfds [fd].head))
468 { 924 {
469 ev_io_stop (EV_A_ w); 925 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 926 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 927 }
472} 928}
473 929
930/* check whether the given fd is atcually valid, for error recovery */
474inline int 931inline_size int
475fd_valid (int fd) 932fd_valid (int fd)
476{ 933{
477#ifdef _WIN32 934#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 935 return _get_osfhandle (fd) != -1;
479#else 936#else
480 return fcntl (fd, F_GETFD) != -1; 937 return fcntl (fd, F_GETFD) != -1;
481#endif 938#endif
482} 939}
483 940
484/* called on EBADF to verify fds */ 941/* called on EBADF to verify fds */
485static void 942static void noinline
486fd_ebadf (EV_P) 943fd_ebadf (EV_P)
487{ 944{
488 int fd; 945 int fd;
489 946
490 for (fd = 0; fd < anfdmax; ++fd) 947 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 948 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 949 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 950 fd_kill (EV_A_ fd);
494} 951}
495 952
496/* called on ENOMEM in select/poll to kill some fds and retry */ 953/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 954static void noinline
498fd_enomem (EV_P) 955fd_enomem (EV_P)
499{ 956{
500 int fd; 957 int fd;
501 958
502 for (fd = anfdmax; fd--; ) 959 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 962 fd_kill (EV_A_ fd);
506 return; 963 return;
507 } 964 }
508} 965}
509 966
510/* usually called after fork if method needs to re-arm all fds from scratch */ 967/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 968static void noinline
512fd_rearm_all (EV_P) 969fd_rearm_all (EV_P)
513{ 970{
514 int fd; 971 int fd;
515 972
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 973 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 974 if (anfds [fd].events)
519 { 975 {
520 anfds [fd].events = 0; 976 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 977 anfds [fd].emask = 0;
978 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 979 }
523} 980}
524 981
525/*****************************************************************************/ 982/*****************************************************************************/
526 983
527static void 984/*
528upheap (WT *heap, int k) 985 * the heap functions want a real array index. array index 0 uis guaranteed to not
529{ 986 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
530 WT w = heap [k]; 987 * the branching factor of the d-tree.
988 */
531 989
532 while (k && heap [k >> 1]->at > w->at) 990/*
533 { 991 * at the moment we allow libev the luxury of two heaps,
534 heap [k] = heap [k >> 1]; 992 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
535 ((W)heap [k])->active = k + 1; 993 * which is more cache-efficient.
536 k >>= 1; 994 * the difference is about 5% with 50000+ watchers.
537 } 995 */
996#if EV_USE_4HEAP
538 997
539 heap [k] = w; 998#define DHEAP 4
540 ((W)heap [k])->active = k + 1; 999#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1000#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1001#define UPHEAP_DONE(p,k) ((p) == (k))
541 1002
542} 1003/* away from the root */
543 1004inline_speed void
544static void
545downheap (WT *heap, int N, int k) 1005downheap (ANHE *heap, int N, int k)
546{ 1006{
547 WT w = heap [k]; 1007 ANHE he = heap [k];
1008 ANHE *E = heap + N + HEAP0;
548 1009
549 while (k < (N >> 1)) 1010 for (;;)
550 { 1011 {
551 int j = k << 1; 1012 ev_tstamp minat;
1013 ANHE *minpos;
1014 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
552 1015
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1016 /* find minimum child */
1017 if (expect_true (pos + DHEAP - 1 < E))
554 ++j; 1018 {
555 1019 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
556 if (w->at <= heap [j]->at) 1020 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1021 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1022 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1023 }
1024 else if (pos < E)
1025 {
1026 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1027 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1028 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1029 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1030 }
1031 else
557 break; 1032 break;
558 1033
1034 if (ANHE_at (he) <= minat)
1035 break;
1036
1037 heap [k] = *minpos;
1038 ev_active (ANHE_w (*minpos)) = k;
1039
1040 k = minpos - heap;
1041 }
1042
1043 heap [k] = he;
1044 ev_active (ANHE_w (he)) = k;
1045}
1046
1047#else /* 4HEAP */
1048
1049#define HEAP0 1
1050#define HPARENT(k) ((k) >> 1)
1051#define UPHEAP_DONE(p,k) (!(p))
1052
1053/* away from the root */
1054inline_speed void
1055downheap (ANHE *heap, int N, int k)
1056{
1057 ANHE he = heap [k];
1058
1059 for (;;)
1060 {
1061 int c = k << 1;
1062
1063 if (c > N + HEAP0 - 1)
1064 break;
1065
1066 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1067 ? 1 : 0;
1068
1069 if (ANHE_at (he) <= ANHE_at (heap [c]))
1070 break;
1071
559 heap [k] = heap [j]; 1072 heap [k] = heap [c];
560 ((W)heap [k])->active = k + 1; 1073 ev_active (ANHE_w (heap [k])) = k;
1074
561 k = j; 1075 k = c;
562 } 1076 }
563 1077
564 heap [k] = w; 1078 heap [k] = he;
565 ((W)heap [k])->active = k + 1; 1079 ev_active (ANHE_w (he)) = k;
566} 1080}
1081#endif
567 1082
1083/* towards the root */
1084inline_speed void
1085upheap (ANHE *heap, int k)
1086{
1087 ANHE he = heap [k];
1088
1089 for (;;)
1090 {
1091 int p = HPARENT (k);
1092
1093 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1094 break;
1095
1096 heap [k] = heap [p];
1097 ev_active (ANHE_w (heap [k])) = k;
1098 k = p;
1099 }
1100
1101 heap [k] = he;
1102 ev_active (ANHE_w (he)) = k;
1103}
1104
1105/* move an element suitably so it is in a correct place */
568inline void 1106inline_size void
569adjustheap (WT *heap, int N, int k) 1107adjustheap (ANHE *heap, int N, int k)
570{ 1108{
1109 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
571 upheap (heap, k); 1110 upheap (heap, k);
1111 else
572 downheap (heap, N, k); 1112 downheap (heap, N, k);
1113}
1114
1115/* rebuild the heap: this function is used only once and executed rarely */
1116inline_size void
1117reheap (ANHE *heap, int N)
1118{
1119 int i;
1120
1121 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1122 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1123 for (i = 0; i < N; ++i)
1124 upheap (heap, i + HEAP0);
573} 1125}
574 1126
575/*****************************************************************************/ 1127/*****************************************************************************/
576 1128
1129/* associate signal watchers to a signal signal */
577typedef struct 1130typedef struct
578{ 1131{
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
579 WL head; 1135 WL head;
580 sig_atomic_t volatile gotsig; 1136 EV_ATOMIC_T gotsig;
581} ANSIG; 1137} ANSIG;
582 1138
583static ANSIG *signals; 1139static ANSIG signals [EV_NSIG - 1];
584static int signalmax; 1140static EV_ATOMIC_T gotsig;
585 1141
586static int sigpipe [2]; 1142/*****************************************************************************/
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 1143
590static void 1144/* used to prepare libev internal fd's */
591signals_init (ANSIG *base, int count) 1145/* this is not fork-safe */
592{ 1146inline_speed void
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 1147fd_intern (int fd)
655{ 1148{
656#ifdef _WIN32 1149#ifdef _WIN32
657 int arg = 1; 1150 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1151 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else 1152#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1153 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1154 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1155#endif
663} 1156}
664 1157
1158static void noinline
1159evpipe_init (EV_P)
1160{
1161 if (!ev_is_active (&pipe_w))
1162 {
1163#if EV_USE_EVENTFD
1164 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1165 if (evfd < 0 && errno == EINVAL)
1166 evfd = eventfd (0, 0);
1167
1168 if (evfd >= 0)
1169 {
1170 evpipe [0] = -1;
1171 fd_intern (evfd); /* doing it twice doesn't hurt */
1172 ev_io_set (&pipe_w, evfd, EV_READ);
1173 }
1174 else
1175#endif
1176 {
1177 while (pipe (evpipe))
1178 ev_syserr ("(libev) error creating signal/async pipe");
1179
1180 fd_intern (evpipe [0]);
1181 fd_intern (evpipe [1]);
1182 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1183 }
1184
1185 ev_io_start (EV_A_ &pipe_w);
1186 ev_unref (EV_A); /* watcher should not keep loop alive */
1187 }
1188}
1189
1190inline_size void
1191evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1192{
1193 if (!*flag)
1194 {
1195 int old_errno = errno; /* save errno because write might clobber it */
1196
1197 *flag = 1;
1198
1199#if EV_USE_EVENTFD
1200 if (evfd >= 0)
1201 {
1202 uint64_t counter = 1;
1203 write (evfd, &counter, sizeof (uint64_t));
1204 }
1205 else
1206#endif
1207 write (evpipe [1], &old_errno, 1);
1208
1209 errno = old_errno;
1210 }
1211}
1212
1213/* called whenever the libev signal pipe */
1214/* got some events (signal, async) */
665static void 1215static void
666siginit (EV_P) 1216pipecb (EV_P_ ev_io *iow, int revents)
667{ 1217{
668 fd_intern (sigpipe [0]); 1218#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 1219 if (evfd >= 0)
1220 {
1221 uint64_t counter;
1222 read (evfd, &counter, sizeof (uint64_t));
1223 }
1224 else
1225#endif
1226 {
1227 char dummy;
1228 read (evpipe [0], &dummy, 1);
1229 }
670 1230
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1231 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 1232 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1233 int signum;
1234 gotsig = 0;
1235
1236 for (signum = EV_NSIG - 1; signum--; )
1237 if (signals [signum].gotsig)
1238 ev_feed_signal_event (EV_A_ signum + 1);
1239 }
1240
1241#if EV_ASYNC_ENABLE
1242 if (gotasync)
1243 {
1244 int i;
1245 gotasync = 0;
1246
1247 for (i = asynccnt; i--; )
1248 if (asyncs [i]->sent)
1249 {
1250 asyncs [i]->sent = 0;
1251 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1252 }
1253 }
1254#endif
674} 1255}
675 1256
676/*****************************************************************************/ 1257/*****************************************************************************/
677 1258
678static struct ev_child *childs [PID_HASHSIZE]; 1259static void
1260ev_sighandler (int signum)
1261{
1262#if EV_MULTIPLICITY
1263 EV_P = signals [signum - 1].loop;
1264#endif
1265
1266#if _WIN32
1267 signal (signum, ev_sighandler);
1268#endif
1269
1270 signals [signum - 1].gotsig = 1;
1271 evpipe_write (EV_A_ &gotsig);
1272}
1273
1274void noinline
1275ev_feed_signal_event (EV_P_ int signum)
1276{
1277 WL w;
1278
1279#if EV_MULTIPLICITY
1280 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1281#endif
1282
1283 if (signum <= 0 || signum > EV_NSIG)
1284 return;
1285
1286 --signum;
1287
1288 signals [signum].gotsig = 0;
1289
1290 for (w = signals [signum].head; w; w = w->next)
1291 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1292}
1293
1294#if EV_USE_SIGNALFD
1295static void
1296sigfdcb (EV_P_ ev_io *iow, int revents)
1297{
1298 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1299
1300 for (;;)
1301 {
1302 ssize_t res = read (sigfd, si, sizeof (si));
1303
1304 /* not ISO-C, as res might be -1, but works with SuS */
1305 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1306 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1307
1308 if (res < (ssize_t)sizeof (si))
1309 break;
1310 }
1311}
1312#endif
1313
1314/*****************************************************************************/
1315
1316static WL childs [EV_PID_HASHSIZE];
679 1317
680#ifndef _WIN32 1318#ifndef _WIN32
681 1319
682static struct ev_signal childev; 1320static ev_signal childev;
1321
1322#ifndef WIFCONTINUED
1323# define WIFCONTINUED(status) 0
1324#endif
1325
1326/* handle a single child status event */
1327inline_speed void
1328child_reap (EV_P_ int chain, int pid, int status)
1329{
1330 ev_child *w;
1331 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1332
1333 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1334 {
1335 if ((w->pid == pid || !w->pid)
1336 && (!traced || (w->flags & 1)))
1337 {
1338 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1339 w->rpid = pid;
1340 w->rstatus = status;
1341 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1342 }
1343 }
1344}
683 1345
684#ifndef WCONTINUED 1346#ifndef WCONTINUED
685# define WCONTINUED 0 1347# define WCONTINUED 0
686#endif 1348#endif
687 1349
1350/* called on sigchld etc., calls waitpid */
688static void 1351static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1352childcb (EV_P_ ev_signal *sw, int revents)
705{ 1353{
706 int pid, status; 1354 int pid, status;
707 1355
1356 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1357 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1358 if (!WCONTINUED
1359 || errno != EINVAL
1360 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1361 return;
1362
710 /* make sure we are called again until all childs have been reaped */ 1363 /* make sure we are called again until all children have been reaped */
1364 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1365 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1366
713 child_reap (EV_A_ sw, pid, pid, status); 1367 child_reap (EV_A_ pid, pid, status);
1368 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1369 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1370}
717 1371
718#endif 1372#endif
719 1373
720/*****************************************************************************/ 1374/*****************************************************************************/
746{ 1400{
747 return EV_VERSION_MINOR; 1401 return EV_VERSION_MINOR;
748} 1402}
749 1403
750/* return true if we are running with elevated privileges and should ignore env variables */ 1404/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1405int inline_size
752enable_secure (void) 1406enable_secure (void)
753{ 1407{
754#ifdef _WIN32 1408#ifdef _WIN32
755 return 0; 1409 return 0;
756#else 1410#else
758 || getgid () != getegid (); 1412 || getgid () != getegid ();
759#endif 1413#endif
760} 1414}
761 1415
762unsigned int 1416unsigned int
763ev_method (EV_P) 1417ev_supported_backends (void)
764{ 1418{
765 return method; 1419 unsigned int flags = 0;
766}
767 1420
768static void 1421 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1422 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1423 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1424 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1425 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1426
1427 return flags;
1428}
1429
1430unsigned int
1431ev_recommended_backends (void)
1432{
1433 unsigned int flags = ev_supported_backends ();
1434
1435#ifndef __NetBSD__
1436 /* kqueue is borked on everything but netbsd apparently */
1437 /* it usually doesn't work correctly on anything but sockets and pipes */
1438 flags &= ~EVBACKEND_KQUEUE;
1439#endif
1440#ifdef __APPLE__
1441 /* only select works correctly on that "unix-certified" platform */
1442 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1443 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1444#endif
1445
1446 return flags;
1447}
1448
1449unsigned int
1450ev_embeddable_backends (void)
1451{
1452 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1453
1454 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1455 /* please fix it and tell me how to detect the fix */
1456 flags &= ~EVBACKEND_EPOLL;
1457
1458 return flags;
1459}
1460
1461unsigned int
1462ev_backend (EV_P)
1463{
1464 return backend;
1465}
1466
1467#if EV_MINIMAL < 2
1468unsigned int
1469ev_loop_count (EV_P)
1470{
1471 return loop_count;
1472}
1473
1474unsigned int
1475ev_loop_depth (EV_P)
1476{
1477 return loop_depth;
1478}
1479
1480void
1481ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1482{
1483 io_blocktime = interval;
1484}
1485
1486void
1487ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1488{
1489 timeout_blocktime = interval;
1490}
1491
1492void
1493ev_set_userdata (EV_P_ void *data)
1494{
1495 userdata = data;
1496}
1497
1498void *
1499ev_userdata (EV_P)
1500{
1501 return userdata;
1502}
1503
1504void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1505{
1506 invoke_cb = invoke_pending_cb;
1507}
1508
1509void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1510{
1511 release_cb = release;
1512 acquire_cb = acquire;
1513}
1514#endif
1515
1516/* initialise a loop structure, must be zero-initialised */
1517static void noinline
769loop_init (EV_P_ unsigned int flags) 1518loop_init (EV_P_ unsigned int flags)
770{ 1519{
771 if (!method) 1520 if (!backend)
772 { 1521 {
1522#if EV_USE_REALTIME
1523 if (!have_realtime)
1524 {
1525 struct timespec ts;
1526
1527 if (!clock_gettime (CLOCK_REALTIME, &ts))
1528 have_realtime = 1;
1529 }
1530#endif
1531
773#if EV_USE_MONOTONIC 1532#if EV_USE_MONOTONIC
1533 if (!have_monotonic)
1534 {
1535 struct timespec ts;
1536
1537 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1538 have_monotonic = 1;
1539 }
1540#endif
1541
1542 /* pid check not overridable via env */
1543#ifndef _WIN32
1544 if (flags & EVFLAG_FORKCHECK)
1545 curpid = getpid ();
1546#endif
1547
1548 if (!(flags & EVFLAG_NOENV)
1549 && !enable_secure ()
1550 && getenv ("LIBEV_FLAGS"))
1551 flags = atoi (getenv ("LIBEV_FLAGS"));
1552
1553 ev_rt_now = ev_time ();
1554 mn_now = get_clock ();
1555 now_floor = mn_now;
1556 rtmn_diff = ev_rt_now - mn_now;
1557#if EV_MINIMAL < 2
1558 invoke_cb = ev_invoke_pending;
1559#endif
1560
1561 io_blocktime = 0.;
1562 timeout_blocktime = 0.;
1563 backend = 0;
1564 backend_fd = -1;
1565 gotasync = 0;
1566#if EV_USE_INOTIFY
1567 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1568#endif
1569#if EV_USE_SIGNALFD
1570 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1571#endif
1572
1573 if (!(flags & 0x0000ffffU))
1574 flags |= ev_recommended_backends ();
1575
1576#if EV_USE_PORT
1577 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1578#endif
1579#if EV_USE_KQUEUE
1580 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1581#endif
1582#if EV_USE_EPOLL
1583 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1584#endif
1585#if EV_USE_POLL
1586 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1587#endif
1588#if EV_USE_SELECT
1589 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1590#endif
1591
1592 ev_prepare_init (&pending_w, pendingcb);
1593
1594 ev_init (&pipe_w, pipecb);
1595 ev_set_priority (&pipe_w, EV_MAXPRI);
1596 }
1597}
1598
1599/* free up a loop structure */
1600static void noinline
1601loop_destroy (EV_P)
1602{
1603 int i;
1604
1605 if (ev_is_active (&pipe_w))
1606 {
1607 /*ev_ref (EV_A);*/
1608 /*ev_io_stop (EV_A_ &pipe_w);*/
1609
1610#if EV_USE_EVENTFD
1611 if (evfd >= 0)
1612 close (evfd);
1613#endif
1614
1615 if (evpipe [0] >= 0)
1616 {
1617 close (evpipe [0]);
1618 close (evpipe [1]);
1619 }
1620 }
1621
1622#if EV_USE_SIGNALFD
1623 if (ev_is_active (&sigfd_w))
1624 {
1625 /*ev_ref (EV_A);*/
1626 /*ev_io_stop (EV_A_ &sigfd_w);*/
1627
1628 close (sigfd);
1629 }
1630#endif
1631
1632#if EV_USE_INOTIFY
1633 if (fs_fd >= 0)
1634 close (fs_fd);
1635#endif
1636
1637 if (backend_fd >= 0)
1638 close (backend_fd);
1639
1640#if EV_USE_PORT
1641 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1642#endif
1643#if EV_USE_KQUEUE
1644 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1645#endif
1646#if EV_USE_EPOLL
1647 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1648#endif
1649#if EV_USE_POLL
1650 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1651#endif
1652#if EV_USE_SELECT
1653 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1654#endif
1655
1656 for (i = NUMPRI; i--; )
1657 {
1658 array_free (pending, [i]);
1659#if EV_IDLE_ENABLE
1660 array_free (idle, [i]);
1661#endif
1662 }
1663
1664 ev_free (anfds); anfds = 0; anfdmax = 0;
1665
1666 /* have to use the microsoft-never-gets-it-right macro */
1667 array_free (rfeed, EMPTY);
1668 array_free (fdchange, EMPTY);
1669 array_free (timer, EMPTY);
1670#if EV_PERIODIC_ENABLE
1671 array_free (periodic, EMPTY);
1672#endif
1673#if EV_FORK_ENABLE
1674 array_free (fork, EMPTY);
1675#endif
1676 array_free (prepare, EMPTY);
1677 array_free (check, EMPTY);
1678#if EV_ASYNC_ENABLE
1679 array_free (async, EMPTY);
1680#endif
1681
1682 backend = 0;
1683}
1684
1685#if EV_USE_INOTIFY
1686inline_size void infy_fork (EV_P);
1687#endif
1688
1689inline_size void
1690loop_fork (EV_P)
1691{
1692#if EV_USE_PORT
1693 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1694#endif
1695#if EV_USE_KQUEUE
1696 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1697#endif
1698#if EV_USE_EPOLL
1699 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1700#endif
1701#if EV_USE_INOTIFY
1702 infy_fork (EV_A);
1703#endif
1704
1705 if (ev_is_active (&pipe_w))
1706 {
1707 /* this "locks" the handlers against writing to the pipe */
1708 /* while we modify the fd vars */
1709 gotsig = 1;
1710#if EV_ASYNC_ENABLE
1711 gotasync = 1;
1712#endif
1713
1714 ev_ref (EV_A);
1715 ev_io_stop (EV_A_ &pipe_w);
1716
1717#if EV_USE_EVENTFD
1718 if (evfd >= 0)
1719 close (evfd);
1720#endif
1721
1722 if (evpipe [0] >= 0)
1723 {
1724 close (evpipe [0]);
1725 close (evpipe [1]);
1726 }
1727
1728 evpipe_init (EV_A);
1729 /* now iterate over everything, in case we missed something */
1730 pipecb (EV_A_ &pipe_w, EV_READ);
1731 }
1732
1733 postfork = 0;
1734}
1735
1736#if EV_MULTIPLICITY
1737
1738struct ev_loop *
1739ev_loop_new (unsigned int flags)
1740{
1741 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1742
1743 memset (EV_A, 0, sizeof (struct ev_loop));
1744 loop_init (EV_A_ flags);
1745
1746 if (ev_backend (EV_A))
1747 return EV_A;
1748
1749 return 0;
1750}
1751
1752void
1753ev_loop_destroy (EV_P)
1754{
1755 loop_destroy (EV_A);
1756 ev_free (loop);
1757}
1758
1759void
1760ev_loop_fork (EV_P)
1761{
1762 postfork = 1; /* must be in line with ev_default_fork */
1763}
1764#endif /* multiplicity */
1765
1766#if EV_VERIFY
1767static void noinline
1768verify_watcher (EV_P_ W w)
1769{
1770 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1771
1772 if (w->pending)
1773 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1774}
1775
1776static void noinline
1777verify_heap (EV_P_ ANHE *heap, int N)
1778{
1779 int i;
1780
1781 for (i = HEAP0; i < N + HEAP0; ++i)
1782 {
1783 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1784 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1785 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1786
1787 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1788 }
1789}
1790
1791static void noinline
1792array_verify (EV_P_ W *ws, int cnt)
1793{
1794 while (cnt--)
1795 {
1796 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1797 verify_watcher (EV_A_ ws [cnt]);
1798 }
1799}
1800#endif
1801
1802#if EV_MINIMAL < 2
1803void
1804ev_loop_verify (EV_P)
1805{
1806#if EV_VERIFY
1807 int i;
1808 WL w;
1809
1810 assert (activecnt >= -1);
1811
1812 assert (fdchangemax >= fdchangecnt);
1813 for (i = 0; i < fdchangecnt; ++i)
1814 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1815
1816 assert (anfdmax >= 0);
1817 for (i = 0; i < anfdmax; ++i)
1818 for (w = anfds [i].head; w; w = w->next)
774 { 1819 {
775 struct timespec ts; 1820 verify_watcher (EV_A_ (W)w);
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1821 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
777 have_monotonic = 1; 1822 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
778 } 1823 }
779#endif
780 1824
781 ev_rt_now = ev_time (); 1825 assert (timermax >= timercnt);
782 mn_now = get_clock (); 1826 verify_heap (EV_A_ timers, timercnt);
783 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now;
785 1827
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1828#if EV_PERIODIC_ENABLE
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1829 assert (periodicmax >= periodiccnt);
788 1830 verify_heap (EV_A_ periodics, periodiccnt);
789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
791
792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
796#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
798#endif
799#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
801#endif
802#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
804#endif
805#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
807#endif
808
809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
811 }
812}
813
814void
815loop_destroy (EV_P)
816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
822#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
824#endif
825#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
827#endif
828#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
830#endif
831#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
833#endif 1831#endif
834 1832
835 for (i = NUMPRI; i--; ) 1833 for (i = NUMPRI; i--; )
836 array_free (pending, [i]); 1834 {
1835 assert (pendingmax [i] >= pendingcnt [i]);
1836#if EV_IDLE_ENABLE
1837 assert (idleall >= 0);
1838 assert (idlemax [i] >= idlecnt [i]);
1839 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1840#endif
1841 }
837 1842
838 /* have to use the microsoft-never-gets-it-right macro */ 1843#if EV_FORK_ENABLE
839 array_free (fdchange, EMPTY0); 1844 assert (forkmax >= forkcnt);
840 array_free (timer, EMPTY0); 1845 array_verify (EV_A_ (W *)forks, forkcnt);
841#if EV_PERIODICS 1846#endif
842 array_free (periodic, EMPTY0); 1847
1848#if EV_ASYNC_ENABLE
1849 assert (asyncmax >= asynccnt);
1850 array_verify (EV_A_ (W *)asyncs, asynccnt);
1851#endif
1852
1853 assert (preparemax >= preparecnt);
1854 array_verify (EV_A_ (W *)prepares, preparecnt);
1855
1856 assert (checkmax >= checkcnt);
1857 array_verify (EV_A_ (W *)checks, checkcnt);
1858
1859# if 0
1860 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1861 for (signum = EV_NSIG; signum--; ) if (signals [signum].gotsig)
843#endif 1862# endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif 1863#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 1864}
1865#endif
881 1866
882#if EV_MULTIPLICITY 1867#if EV_MULTIPLICITY
883struct ev_loop * 1868struct ev_loop *
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1869ev_default_loop_init (unsigned int flags)
916#else 1870#else
917int 1871int
918ev_default_loop (unsigned int flags) 1872ev_default_loop (unsigned int flags)
919#endif 1873#endif
920{ 1874{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1875 if (!ev_default_loop_ptr)
926 { 1876 {
927#if EV_MULTIPLICITY 1877#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1878 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 1879#else
930 ev_default_loop_ptr = 1; 1880 ev_default_loop_ptr = 1;
931#endif 1881#endif
932 1882
933 loop_init (EV_A_ flags); 1883 loop_init (EV_A_ flags);
934 1884
935 if (ev_method (EV_A)) 1885 if (ev_backend (EV_A))
936 { 1886 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1887#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1888 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1889 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1890 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1891 ev_unref (EV_A); /* child watcher should not keep loop alive */
952 1900
953void 1901void
954ev_default_destroy (void) 1902ev_default_destroy (void)
955{ 1903{
956#if EV_MULTIPLICITY 1904#if EV_MULTIPLICITY
957 struct ev_loop *loop = ev_default_loop_ptr; 1905 EV_P = ev_default_loop_ptr;
958#endif 1906#endif
1907
1908 ev_default_loop_ptr = 0;
959 1909
960#ifndef _WIN32 1910#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1911 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1912 ev_signal_stop (EV_A_ &childev);
963#endif 1913#endif
964 1914
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1915 loop_destroy (EV_A);
972} 1916}
973 1917
974void 1918void
975ev_default_fork (void) 1919ev_default_fork (void)
976{ 1920{
977#if EV_MULTIPLICITY 1921#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1922 EV_P = ev_default_loop_ptr;
979#endif 1923#endif
980 1924
981 if (method) 1925 postfork = 1; /* must be in line with ev_loop_fork */
982 postfork = 1;
983} 1926}
984 1927
985/*****************************************************************************/ 1928/*****************************************************************************/
986 1929
987static int 1930void
988any_pending (EV_P) 1931ev_invoke (EV_P_ void *w, int revents)
1932{
1933 EV_CB_INVOKE ((W)w, revents);
1934}
1935
1936unsigned int
1937ev_pending_count (EV_P)
989{ 1938{
990 int pri; 1939 int pri;
1940 unsigned int count = 0;
991 1941
992 for (pri = NUMPRI; pri--; ) 1942 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri]) 1943 count += pendingcnt [pri];
994 return 1;
995 1944
996 return 0; 1945 return count;
997} 1946}
998 1947
999inline void 1948void noinline
1000call_pending (EV_P) 1949ev_invoke_pending (EV_P)
1001{ 1950{
1002 int pri; 1951 int pri;
1003 1952
1004 for (pri = NUMPRI; pri--; ) 1953 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 1954 while (pendingcnt [pri])
1006 { 1955 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1956 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1957
1009 if (expect_true (p->w)) 1958 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1010 { 1959 /* ^ this is no longer true, as pending_w could be here */
1960
1011 p->w->pending = 0; 1961 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1962 EV_CB_INVOKE (p->w, p->events);
1013 } 1963 EV_FREQUENT_CHECK;
1014 } 1964 }
1015} 1965}
1016 1966
1967#if EV_IDLE_ENABLE
1968/* make idle watchers pending. this handles the "call-idle */
1969/* only when higher priorities are idle" logic */
1017inline void 1970inline_size void
1971idle_reify (EV_P)
1972{
1973 if (expect_false (idleall))
1974 {
1975 int pri;
1976
1977 for (pri = NUMPRI; pri--; )
1978 {
1979 if (pendingcnt [pri])
1980 break;
1981
1982 if (idlecnt [pri])
1983 {
1984 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1985 break;
1986 }
1987 }
1988 }
1989}
1990#endif
1991
1992/* make timers pending */
1993inline_size void
1018timers_reify (EV_P) 1994timers_reify (EV_P)
1019{ 1995{
1996 EV_FREQUENT_CHECK;
1997
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1998 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 1999 {
1022 struct ev_timer *w = timers [0]; 2000 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 2001 {
2002 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2003
2004 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2005
2006 /* first reschedule or stop timer */
2007 if (w->repeat)
2008 {
2009 ev_at (w) += w->repeat;
2010 if (ev_at (w) < mn_now)
2011 ev_at (w) = mn_now;
2012
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2013 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 2014
1031 ((WT)w)->at += w->repeat; 2015 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 2016 downheap (timers, timercnt, HEAP0);
2017 }
2018 else
2019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2020
2021 EV_FREQUENT_CHECK;
2022 feed_reverse (EV_A_ (W)w);
1036 } 2023 }
1037 else 2024 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 2025
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2026 feed_reverse_done (EV_A_ EV_TIMEOUT);
1041 } 2027 }
1042} 2028}
1043 2029
1044#if EV_PERIODICS 2030#if EV_PERIODIC_ENABLE
2031/* make periodics pending */
1045inline void 2032inline_size void
1046periodics_reify (EV_P) 2033periodics_reify (EV_P)
1047{ 2034{
2035 EV_FREQUENT_CHECK;
2036
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2037 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 2038 {
1050 struct ev_periodic *w = periodics [0]; 2039 int feed_count = 0;
1051 2040
2041 do
2042 {
2043 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2044
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2045 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 2046
1054 /* first reschedule or stop timer */ 2047 /* first reschedule or stop timer */
2048 if (w->reschedule_cb)
2049 {
2050 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2051
2052 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2053
2054 ANHE_at_cache (periodics [HEAP0]);
2055 downheap (periodics, periodiccnt, HEAP0);
2056 }
2057 else if (w->interval)
2058 {
2059 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2060 /* if next trigger time is not sufficiently in the future, put it there */
2061 /* this might happen because of floating point inexactness */
2062 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2063 {
2064 ev_at (w) += w->interval;
2065
2066 /* if interval is unreasonably low we might still have a time in the past */
2067 /* so correct this. this will make the periodic very inexact, but the user */
2068 /* has effectively asked to get triggered more often than possible */
2069 if (ev_at (w) < ev_rt_now)
2070 ev_at (w) = ev_rt_now;
2071 }
2072
2073 ANHE_at_cache (periodics [HEAP0]);
2074 downheap (periodics, periodiccnt, HEAP0);
2075 }
2076 else
2077 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2078
2079 EV_FREQUENT_CHECK;
2080 feed_reverse (EV_A_ (W)w);
2081 }
2082 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2083
2084 feed_reverse_done (EV_A_ EV_PERIODIC);
2085 }
2086}
2087
2088/* simply recalculate all periodics */
2089/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2090static void noinline
2091periodics_reschedule (EV_P)
2092{
2093 int i;
2094
2095 /* adjust periodics after time jump */
2096 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2097 {
2098 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2099
1055 if (w->reschedule_cb) 2100 if (w->reschedule_cb)
2101 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2102 else if (w->interval)
2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104
2105 ANHE_at_cache (periodics [i]);
2106 }
2107
2108 reheap (periodics, periodiccnt);
2109}
2110#endif
2111
2112/* adjust all timers by a given offset */
2113static void noinline
2114timers_reschedule (EV_P_ ev_tstamp adjust)
2115{
2116 int i;
2117
2118 for (i = 0; i < timercnt; ++i)
2119 {
2120 ANHE *he = timers + i + HEAP0;
2121 ANHE_w (*he)->at += adjust;
2122 ANHE_at_cache (*he);
2123 }
2124}
2125
2126/* fetch new monotonic and realtime times from the kernel */
2127/* also detetc if there was a timejump, and act accordingly */
2128inline_speed void
2129time_update (EV_P_ ev_tstamp max_block)
2130{
2131#if EV_USE_MONOTONIC
2132 if (expect_true (have_monotonic))
2133 {
2134 int i;
2135 ev_tstamp odiff = rtmn_diff;
2136
2137 mn_now = get_clock ();
2138
2139 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2140 /* interpolate in the meantime */
2141 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1056 { 2142 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2143 ev_rt_now = rtmn_diff + mn_now;
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2144 return;
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 2145 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 2146
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now; 2147 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 2148 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 2149
1114inline void 2150 /* loop a few times, before making important decisions.
1115time_update (EV_P) 2151 * on the choice of "4": one iteration isn't enough,
1116{ 2152 * in case we get preempted during the calls to
1117 int i; 2153 * ev_time and get_clock. a second call is almost guaranteed
1118 2154 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 2155 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 2156 * in the unlikely event of having been preempted here.
1121 { 2157 */
1122 if (time_update_monotonic (EV_A)) 2158 for (i = 4; --i; )
1123 { 2159 {
1124 ev_tstamp odiff = rtmn_diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 2160 rtmn_diff = ev_rt_now - mn_now;
1129 2161
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2162 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 2163 return; /* all is well */
1132 2164
1133 ev_rt_now = ev_time (); 2165 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 2166 mn_now = get_clock ();
1135 now_floor = mn_now; 2167 now_floor = mn_now;
1136 } 2168 }
1137 2169
2170 /* no timer adjustment, as the monotonic clock doesn't jump */
2171 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 2172# if EV_PERIODIC_ENABLE
2173 periodics_reschedule (EV_A);
2174# endif
2175 }
2176 else
2177#endif
2178 {
2179 ev_rt_now = ev_time ();
2180
2181 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2182 {
2183 /* adjust timers. this is easy, as the offset is the same for all of them */
2184 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2185#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 2186 periodics_reschedule (EV_A);
1140# endif 2187#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 2188 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 2189
1161 mn_now = ev_rt_now; 2190 mn_now = ev_rt_now;
1162 } 2191 }
1163} 2192}
1164 2193
1165void 2194void
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 2195ev_loop (EV_P_ int flags)
1181{ 2196{
1182 double block; 2197#if EV_MINIMAL < 2
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2198 ++loop_depth;
2199#endif
1184 2200
1185 while (activecnt) 2201 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2202
2203 loop_done = EVUNLOOP_CANCEL;
2204
2205 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2206
2207 do
1186 { 2208 {
2209#if EV_VERIFY >= 2
2210 ev_loop_verify (EV_A);
2211#endif
2212
2213#ifndef _WIN32
2214 if (expect_false (curpid)) /* penalise the forking check even more */
2215 if (expect_false (getpid () != curpid))
2216 {
2217 curpid = getpid ();
2218 postfork = 1;
2219 }
2220#endif
2221
2222#if EV_FORK_ENABLE
2223 /* we might have forked, so queue fork handlers */
2224 if (expect_false (postfork))
2225 if (forkcnt)
2226 {
2227 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2228 EV_INVOKE_PENDING;
2229 }
2230#endif
2231
1187 /* queue check watchers (and execute them) */ 2232 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 2233 if (expect_false (preparecnt))
1189 { 2234 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2235 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 2236 EV_INVOKE_PENDING;
1192 } 2237 }
2238
2239 if (expect_false (loop_done))
2240 break;
1193 2241
1194 /* we might have forked, so reify kernel state if necessary */ 2242 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 2243 if (expect_false (postfork))
1196 loop_fork (EV_A); 2244 loop_fork (EV_A);
1197 2245
1198 /* update fd-related kernel structures */ 2246 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 2247 fd_reify (EV_A);
1200 2248
1201 /* calculate blocking time */ 2249 /* calculate blocking time */
2250 {
2251 ev_tstamp waittime = 0.;
2252 ev_tstamp sleeptime = 0.;
1202 2253
1203 /* we only need this for !monotonic clock or timers, but as we basically 2254 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 2255 {
1211 ev_rt_now = ev_time (); 2256 /* remember old timestamp for io_blocktime calculation */
1212 mn_now = ev_rt_now; 2257 ev_tstamp prev_mn_now = mn_now;
1213 }
1214 2258
1215 if (flags & EVLOOP_NONBLOCK || idlecnt) 2259 /* update time to cancel out callback processing overhead */
1216 block = 0.; 2260 time_update (EV_A_ 1e100);
1217 else 2261
1218 {
1219 block = MAX_BLOCKTIME; 2262 waittime = MAX_BLOCKTIME;
1220 2263
1221 if (timercnt) 2264 if (timercnt)
1222 { 2265 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2266 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 2267 if (waittime > to) waittime = to;
1225 } 2268 }
1226 2269
1227#if EV_PERIODICS 2270#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 2271 if (periodiccnt)
1229 { 2272 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2273 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 2274 if (waittime > to) waittime = to;
1232 } 2275 }
1233#endif 2276#endif
1234 2277
1235 if (expect_false (block < 0.)) block = 0.; 2278 /* don't let timeouts decrease the waittime below timeout_blocktime */
2279 if (expect_false (waittime < timeout_blocktime))
2280 waittime = timeout_blocktime;
2281
2282 /* extra check because io_blocktime is commonly 0 */
2283 if (expect_false (io_blocktime))
2284 {
2285 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2286
2287 if (sleeptime > waittime - backend_fudge)
2288 sleeptime = waittime - backend_fudge;
2289
2290 if (expect_true (sleeptime > 0.))
2291 {
2292 ev_sleep (sleeptime);
2293 waittime -= sleeptime;
2294 }
2295 }
1236 } 2296 }
1237 2297
1238 method_poll (EV_A_ block); 2298#if EV_MINIMAL < 2
2299 ++loop_count;
2300#endif
2301 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2302 backend_poll (EV_A_ waittime);
2303 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1239 2304
1240 /* update ev_rt_now, do magic */ 2305 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 2306 time_update (EV_A_ waittime + sleeptime);
2307 }
1242 2308
1243 /* queue pending timers and reschedule them */ 2309 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 2310 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 2311#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 2312 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 2313#endif
1248 2314
2315#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 2316 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 2317 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2318#endif
1252 2319
1253 /* queue check watchers, to be executed first */ 2320 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 2321 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2322 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 2323
1257 call_pending (EV_A); 2324 EV_INVOKE_PENDING;
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 2325 }
2326 while (expect_true (
2327 activecnt
2328 && !loop_done
2329 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2330 ));
1262 2331
1263 if (loop_done != 2) 2332 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 2333 loop_done = EVUNLOOP_CANCEL;
2334
2335#if EV_MINIMAL < 2
2336 --loop_depth;
2337#endif
1265} 2338}
1266 2339
1267void 2340void
1268ev_unloop (EV_P_ int how) 2341ev_unloop (EV_P_ int how)
1269{ 2342{
1270 loop_done = how; 2343 loop_done = how;
1271} 2344}
1272 2345
2346void
2347ev_ref (EV_P)
2348{
2349 ++activecnt;
2350}
2351
2352void
2353ev_unref (EV_P)
2354{
2355 --activecnt;
2356}
2357
2358void
2359ev_now_update (EV_P)
2360{
2361 time_update (EV_A_ 1e100);
2362}
2363
2364void
2365ev_suspend (EV_P)
2366{
2367 ev_now_update (EV_A);
2368}
2369
2370void
2371ev_resume (EV_P)
2372{
2373 ev_tstamp mn_prev = mn_now;
2374
2375 ev_now_update (EV_A);
2376 timers_reschedule (EV_A_ mn_now - mn_prev);
2377#if EV_PERIODIC_ENABLE
2378 /* TODO: really do this? */
2379 periodics_reschedule (EV_A);
2380#endif
2381}
2382
1273/*****************************************************************************/ 2383/*****************************************************************************/
2384/* singly-linked list management, used when the expected list length is short */
1274 2385
1275inline void 2386inline_size void
1276wlist_add (WL *head, WL elem) 2387wlist_add (WL *head, WL elem)
1277{ 2388{
1278 elem->next = *head; 2389 elem->next = *head;
1279 *head = elem; 2390 *head = elem;
1280} 2391}
1281 2392
1282inline void 2393inline_size void
1283wlist_del (WL *head, WL elem) 2394wlist_del (WL *head, WL elem)
1284{ 2395{
1285 while (*head) 2396 while (*head)
1286 { 2397 {
1287 if (*head == elem) 2398 if (*head == elem)
1292 2403
1293 head = &(*head)->next; 2404 head = &(*head)->next;
1294 } 2405 }
1295} 2406}
1296 2407
2408/* internal, faster, version of ev_clear_pending */
1297inline void 2409inline_speed void
1298ev_clear_pending (EV_P_ W w) 2410clear_pending (EV_P_ W w)
1299{ 2411{
1300 if (w->pending) 2412 if (w->pending)
1301 { 2413 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2414 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 2415 w->pending = 0;
1304 } 2416 }
1305} 2417}
1306 2418
2419int
2420ev_clear_pending (EV_P_ void *w)
2421{
2422 W w_ = (W)w;
2423 int pending = w_->pending;
2424
2425 if (expect_true (pending))
2426 {
2427 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2428 p->w = (W)&pending_w;
2429 w_->pending = 0;
2430 return p->events;
2431 }
2432 else
2433 return 0;
2434}
2435
1307inline void 2436inline_size void
2437pri_adjust (EV_P_ W w)
2438{
2439 int pri = ev_priority (w);
2440 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2441 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2442 ev_set_priority (w, pri);
2443}
2444
2445inline_speed void
1308ev_start (EV_P_ W w, int active) 2446ev_start (EV_P_ W w, int active)
1309{ 2447{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2448 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2449 w->active = active;
1314 ev_ref (EV_A); 2450 ev_ref (EV_A);
1315} 2451}
1316 2452
1317inline void 2453inline_size void
1318ev_stop (EV_P_ W w) 2454ev_stop (EV_P_ W w)
1319{ 2455{
1320 ev_unref (EV_A); 2456 ev_unref (EV_A);
1321 w->active = 0; 2457 w->active = 0;
1322} 2458}
1323 2459
1324/*****************************************************************************/ 2460/*****************************************************************************/
1325 2461
1326void 2462void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2463ev_io_start (EV_P_ ev_io *w)
1328{ 2464{
1329 int fd = w->fd; 2465 int fd = w->fd;
1330 2466
1331 if (expect_false (ev_is_active (w))) 2467 if (expect_false (ev_is_active (w)))
1332 return; 2468 return;
1333 2469
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2470 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2471 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2472
2473 EV_FREQUENT_CHECK;
1335 2474
1336 ev_start (EV_A_ (W)w, 1); 2475 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2476 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2477 wlist_add (&anfds[fd].head, (WL)w);
1339 2478
1340 fd_change (EV_A_ fd); 2479 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1341} 2480 w->events &= ~EV__IOFDSET;
1342 2481
1343void 2482 EV_FREQUENT_CHECK;
2483}
2484
2485void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2486ev_io_stop (EV_P_ ev_io *w)
1345{ 2487{
1346 ev_clear_pending (EV_A_ (W)w); 2488 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 2489 if (expect_false (!ev_is_active (w)))
1348 return; 2490 return;
1349 2491
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2492 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2493
2494 EV_FREQUENT_CHECK;
2495
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2496 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2497 ev_stop (EV_A_ (W)w);
1354 2498
1355 fd_change (EV_A_ w->fd); 2499 fd_change (EV_A_ w->fd, 1);
1356}
1357 2500
1358void 2501 EV_FREQUENT_CHECK;
2502}
2503
2504void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2505ev_timer_start (EV_P_ ev_timer *w)
1360{ 2506{
1361 if (expect_false (ev_is_active (w))) 2507 if (expect_false (ev_is_active (w)))
1362 return; 2508 return;
1363 2509
1364 ((WT)w)->at += mn_now; 2510 ev_at (w) += mn_now;
1365 2511
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2512 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2513
2514 EV_FREQUENT_CHECK;
2515
2516 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2517 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2518 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2519 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2520 ANHE_at_cache (timers [ev_active (w)]);
2521 upheap (timers, ev_active (w));
1372 2522
2523 EV_FREQUENT_CHECK;
2524
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2525 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2526}
1375 2527
1376void 2528void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2529ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2530{
1379 ev_clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 2532 if (expect_false (!ev_is_active (w)))
1381 return; 2533 return;
1382 2534
2535 EV_FREQUENT_CHECK;
2536
2537 {
2538 int active = ev_active (w);
2539
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2540 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2541
2542 --timercnt;
2543
1385 if (expect_true (((W)w)->active < timercnt--)) 2544 if (expect_true (active < timercnt + HEAP0))
1386 { 2545 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2546 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2547 adjustheap (timers, timercnt, active);
1389 } 2548 }
2549 }
1390 2550
1391 ((WT)w)->at -= mn_now; 2551 EV_FREQUENT_CHECK;
2552
2553 ev_at (w) -= mn_now;
1392 2554
1393 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
1394} 2556}
1395 2557
1396void 2558void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2559ev_timer_again (EV_P_ ev_timer *w)
1398{ 2560{
2561 EV_FREQUENT_CHECK;
2562
1399 if (ev_is_active (w)) 2563 if (ev_is_active (w))
1400 { 2564 {
1401 if (w->repeat) 2565 if (w->repeat)
1402 { 2566 {
1403 ((WT)w)->at = mn_now + w->repeat; 2567 ev_at (w) = mn_now + w->repeat;
2568 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2569 adjustheap (timers, timercnt, ev_active (w));
1405 } 2570 }
1406 else 2571 else
1407 ev_timer_stop (EV_A_ w); 2572 ev_timer_stop (EV_A_ w);
1408 } 2573 }
1409 else if (w->repeat) 2574 else if (w->repeat)
1410 { 2575 {
1411 w->at = w->repeat; 2576 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2577 ev_timer_start (EV_A_ w);
1413 } 2578 }
1414}
1415 2579
2580 EV_FREQUENT_CHECK;
2581}
2582
2583ev_tstamp
2584ev_timer_remaining (EV_P_ ev_timer *w)
2585{
2586 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2587}
2588
1416#if EV_PERIODICS 2589#if EV_PERIODIC_ENABLE
1417void 2590void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2591ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2592{
1420 if (expect_false (ev_is_active (w))) 2593 if (expect_false (ev_is_active (w)))
1421 return; 2594 return;
1422 2595
1423 if (w->reschedule_cb) 2596 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2597 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2598 else if (w->interval)
1426 { 2599 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2600 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2601 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2602 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2603 }
2604 else
2605 ev_at (w) = w->offset;
1431 2606
2607 EV_FREQUENT_CHECK;
2608
2609 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2610 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2611 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2612 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2613 ANHE_at_cache (periodics [ev_active (w)]);
2614 upheap (periodics, ev_active (w));
1436 2615
2616 EV_FREQUENT_CHECK;
2617
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2618 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2619}
1439 2620
1440void 2621void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2622ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2623{
1443 ev_clear_pending (EV_A_ (W)w); 2624 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 2625 if (expect_false (!ev_is_active (w)))
1445 return; 2626 return;
1446 2627
2628 EV_FREQUENT_CHECK;
2629
2630 {
2631 int active = ev_active (w);
2632
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2633 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2634
2635 --periodiccnt;
2636
1449 if (expect_true (((W)w)->active < periodiccnt--)) 2637 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2638 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2639 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2640 adjustheap (periodics, periodiccnt, active);
1453 } 2641 }
2642 }
2643
2644 EV_FREQUENT_CHECK;
1454 2645
1455 ev_stop (EV_A_ (W)w); 2646 ev_stop (EV_A_ (W)w);
1456} 2647}
1457 2648
1458void 2649void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2650ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2651{
1461 /* TODO: use adjustheap and recalculation */ 2652 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2653 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2654 ev_periodic_start (EV_A_ w);
1464} 2655}
1465#endif 2656#endif
1466 2657
1467void 2658#ifndef SA_RESTART
1468ev_idle_start (EV_P_ struct ev_idle *w) 2659# define SA_RESTART 0
2660#endif
2661
2662void noinline
2663ev_signal_start (EV_P_ ev_signal *w)
1469{ 2664{
1470 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
1471 return; 2666 return;
1472 2667
2668 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2669
2670#if EV_MULTIPLICITY
2671 assert (("libev: tried to attach to a signal from two different loops",
2672 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2673
2674 signals [w->signum - 1].loop = EV_A;
2675#endif
2676
2677 EV_FREQUENT_CHECK;
2678
2679#if EV_USE_SIGNALFD
2680 if (sigfd == -2)
2681 {
2682 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2683 if (sigfd < 0 && errno == EINVAL)
2684 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2685
2686 if (sigfd >= 0)
2687 {
2688 fd_intern (sigfd); /* doing it twice will not hurt */
2689
2690 sigemptyset (&sigfd_set);
2691
2692 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2693 ev_set_priority (&sigfd_w, EV_MAXPRI);
2694 ev_io_start (EV_A_ &sigfd_w);
2695 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2696 }
2697 }
2698
2699 if (sigfd >= 0)
2700 {
2701 /* TODO: check .head */
2702 sigaddset (&sigfd_set, w->signum);
2703 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2704
2705 signalfd (sigfd, &sigfd_set, 0);
2706 }
2707#endif
2708
1473 ev_start (EV_A_ (W)w, ++idlecnt); 2709 ev_start (EV_A_ (W)w, 1);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2710 wlist_add (&signals [w->signum - 1].head, (WL)w);
1475 idles [idlecnt - 1] = w;
1476}
1477 2711
1478void 2712 if (!((WL)w)->next)
1479ev_idle_stop (EV_P_ struct ev_idle *w) 2713# if EV_USE_SIGNALFD
2714 if (sigfd < 0) /*TODO*/
2715# endif
2716 {
2717# if _WIN32
2718 signal (w->signum, ev_sighandler);
2719# else
2720 struct sigaction sa;
2721
2722 evpipe_init (EV_A);
2723
2724 sa.sa_handler = ev_sighandler;
2725 sigfillset (&sa.sa_mask);
2726 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2727 sigaction (w->signum, &sa, 0);
2728
2729 sigemptyset (&sa.sa_mask);
2730 sigaddset (&sa.sa_mask, w->signum);
2731 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2732#endif
2733 }
2734
2735 EV_FREQUENT_CHECK;
2736}
2737
2738void noinline
2739ev_signal_stop (EV_P_ ev_signal *w)
1480{ 2740{
1481 ev_clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
1483 return; 2743 return;
1484 2744
1485 idles [((W)w)->active - 1] = idles [--idlecnt]; 2745 EV_FREQUENT_CHECK;
2746
2747 wlist_del (&signals [w->signum - 1].head, (WL)w);
1486 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
1487}
1488 2749
2750 if (!signals [w->signum - 1].head)
2751 {
2752 #if EV_MULTIPLICITY
2753 signals [w->signum - 1].loop = 0; /* unattach from signal */
2754 #endif
2755 #if EV_USE_SIGNALFD
2756 if (sigfd >= 0)
2757 {
2758 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2759 sigdelset (&sigfd_set, w->signum);
2760 signalfd (sigfd, &sigfd_set, 0);
2761 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2762 /*TODO: maybe unblock signal? */
2763 }
2764 else
2765 #endif
2766 signal (w->signum, SIG_DFL);
2767 }
2768
2769 EV_FREQUENT_CHECK;
2770}
2771
1489void 2772void
1490ev_prepare_start (EV_P_ struct ev_prepare *w) 2773ev_child_start (EV_P_ ev_child *w)
1491{ 2774{
2775#if EV_MULTIPLICITY
2776 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2777#endif
1492 if (expect_false (ev_is_active (w))) 2778 if (expect_false (ev_is_active (w)))
1493 return; 2779 return;
1494 2780
2781 EV_FREQUENT_CHECK;
2782
1495 ev_start (EV_A_ (W)w, ++preparecnt); 2783 ev_start (EV_A_ (W)w, 1);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2784 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1497 prepares [preparecnt - 1] = w;
1498}
1499 2785
2786 EV_FREQUENT_CHECK;
2787}
2788
1500void 2789void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w) 2790ev_child_stop (EV_P_ ev_child *w)
1502{ 2791{
1503 ev_clear_pending (EV_A_ (W)w); 2792 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 2793 if (expect_false (!ev_is_active (w)))
1505 return; 2794 return;
1506 2795
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2796 EV_FREQUENT_CHECK;
2797
2798 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1508 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
1509}
1510 2800
2801 EV_FREQUENT_CHECK;
2802}
2803
2804#if EV_STAT_ENABLE
2805
2806# ifdef _WIN32
2807# undef lstat
2808# define lstat(a,b) _stati64 (a,b)
2809# endif
2810
2811#define DEF_STAT_INTERVAL 5.0074891
2812#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2813#define MIN_STAT_INTERVAL 0.1074891
2814
2815static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2816
2817#if EV_USE_INOTIFY
2818# define EV_INOTIFY_BUFSIZE 8192
2819
2820static void noinline
2821infy_add (EV_P_ ev_stat *w)
2822{
2823 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2824
2825 if (w->wd < 0)
2826 {
2827 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2828 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2829
2830 /* monitor some parent directory for speedup hints */
2831 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2832 /* but an efficiency issue only */
2833 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2834 {
2835 char path [4096];
2836 strcpy (path, w->path);
2837
2838 do
2839 {
2840 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2841 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2842
2843 char *pend = strrchr (path, '/');
2844
2845 if (!pend || pend == path)
2846 break;
2847
2848 *pend = 0;
2849 w->wd = inotify_add_watch (fs_fd, path, mask);
2850 }
2851 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2852 }
2853 }
2854
2855 if (w->wd >= 0)
2856 {
2857 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2858
2859 /* now local changes will be tracked by inotify, but remote changes won't */
2860 /* unless the filesystem it known to be local, we therefore still poll */
2861 /* also do poll on <2.6.25, but with normal frequency */
2862 struct statfs sfs;
2863
2864 if (fs_2625 && !statfs (w->path, &sfs))
2865 if (sfs.f_type == 0x1373 /* devfs */
2866 || sfs.f_type == 0xEF53 /* ext2/3 */
2867 || sfs.f_type == 0x3153464a /* jfs */
2868 || sfs.f_type == 0x52654973 /* reiser3 */
2869 || sfs.f_type == 0x01021994 /* tempfs */
2870 || sfs.f_type == 0x58465342 /* xfs */)
2871 return;
2872
2873 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2874 ev_timer_again (EV_A_ &w->timer);
2875 }
2876}
2877
2878static void noinline
2879infy_del (EV_P_ ev_stat *w)
2880{
2881 int slot;
2882 int wd = w->wd;
2883
2884 if (wd < 0)
2885 return;
2886
2887 w->wd = -2;
2888 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2889 wlist_del (&fs_hash [slot].head, (WL)w);
2890
2891 /* remove this watcher, if others are watching it, they will rearm */
2892 inotify_rm_watch (fs_fd, wd);
2893}
2894
2895static void noinline
2896infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2897{
2898 if (slot < 0)
2899 /* overflow, need to check for all hash slots */
2900 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2901 infy_wd (EV_A_ slot, wd, ev);
2902 else
2903 {
2904 WL w_;
2905
2906 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2907 {
2908 ev_stat *w = (ev_stat *)w_;
2909 w_ = w_->next; /* lets us remove this watcher and all before it */
2910
2911 if (w->wd == wd || wd == -1)
2912 {
2913 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2914 {
2915 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2916 w->wd = -1;
2917 infy_add (EV_A_ w); /* re-add, no matter what */
2918 }
2919
2920 stat_timer_cb (EV_A_ &w->timer, 0);
2921 }
2922 }
2923 }
2924}
2925
2926static void
2927infy_cb (EV_P_ ev_io *w, int revents)
2928{
2929 char buf [EV_INOTIFY_BUFSIZE];
2930 struct inotify_event *ev = (struct inotify_event *)buf;
2931 int ofs;
2932 int len = read (fs_fd, buf, sizeof (buf));
2933
2934 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2935 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2936}
2937
2938inline_size void
2939check_2625 (EV_P)
2940{
2941 /* kernels < 2.6.25 are borked
2942 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2943 */
2944 struct utsname buf;
2945 int major, minor, micro;
2946
2947 if (uname (&buf))
2948 return;
2949
2950 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2951 return;
2952
2953 if (major < 2
2954 || (major == 2 && minor < 6)
2955 || (major == 2 && minor == 6 && micro < 25))
2956 return;
2957
2958 fs_2625 = 1;
2959}
2960
2961inline_size void
2962infy_init (EV_P)
2963{
2964 if (fs_fd != -2)
2965 return;
2966
2967 fs_fd = -1;
2968
2969 check_2625 (EV_A);
2970
2971 fs_fd = inotify_init ();
2972
2973 if (fs_fd >= 0)
2974 {
2975 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2976 ev_set_priority (&fs_w, EV_MAXPRI);
2977 ev_io_start (EV_A_ &fs_w);
2978 }
2979}
2980
2981inline_size void
2982infy_fork (EV_P)
2983{
2984 int slot;
2985
2986 if (fs_fd < 0)
2987 return;
2988
2989 close (fs_fd);
2990 fs_fd = inotify_init ();
2991
2992 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2993 {
2994 WL w_ = fs_hash [slot].head;
2995 fs_hash [slot].head = 0;
2996
2997 while (w_)
2998 {
2999 ev_stat *w = (ev_stat *)w_;
3000 w_ = w_->next; /* lets us add this watcher */
3001
3002 w->wd = -1;
3003
3004 if (fs_fd >= 0)
3005 infy_add (EV_A_ w); /* re-add, no matter what */
3006 else
3007 ev_timer_again (EV_A_ &w->timer);
3008 }
3009 }
3010}
3011
3012#endif
3013
3014#ifdef _WIN32
3015# define EV_LSTAT(p,b) _stati64 (p, b)
3016#else
3017# define EV_LSTAT(p,b) lstat (p, b)
3018#endif
3019
1511void 3020void
1512ev_check_start (EV_P_ struct ev_check *w) 3021ev_stat_stat (EV_P_ ev_stat *w)
3022{
3023 if (lstat (w->path, &w->attr) < 0)
3024 w->attr.st_nlink = 0;
3025 else if (!w->attr.st_nlink)
3026 w->attr.st_nlink = 1;
3027}
3028
3029static void noinline
3030stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3031{
3032 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3033
3034 /* we copy this here each the time so that */
3035 /* prev has the old value when the callback gets invoked */
3036 w->prev = w->attr;
3037 ev_stat_stat (EV_A_ w);
3038
3039 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3040 if (
3041 w->prev.st_dev != w->attr.st_dev
3042 || w->prev.st_ino != w->attr.st_ino
3043 || w->prev.st_mode != w->attr.st_mode
3044 || w->prev.st_nlink != w->attr.st_nlink
3045 || w->prev.st_uid != w->attr.st_uid
3046 || w->prev.st_gid != w->attr.st_gid
3047 || w->prev.st_rdev != w->attr.st_rdev
3048 || w->prev.st_size != w->attr.st_size
3049 || w->prev.st_atime != w->attr.st_atime
3050 || w->prev.st_mtime != w->attr.st_mtime
3051 || w->prev.st_ctime != w->attr.st_ctime
3052 ) {
3053 #if EV_USE_INOTIFY
3054 if (fs_fd >= 0)
3055 {
3056 infy_del (EV_A_ w);
3057 infy_add (EV_A_ w);
3058 ev_stat_stat (EV_A_ w); /* avoid race... */
3059 }
3060 #endif
3061
3062 ev_feed_event (EV_A_ w, EV_STAT);
3063 }
3064}
3065
3066void
3067ev_stat_start (EV_P_ ev_stat *w)
1513{ 3068{
1514 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
1515 return; 3070 return;
1516 3071
3072 ev_stat_stat (EV_A_ w);
3073
3074 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3075 w->interval = MIN_STAT_INTERVAL;
3076
3077 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3078 ev_set_priority (&w->timer, ev_priority (w));
3079
3080#if EV_USE_INOTIFY
3081 infy_init (EV_A);
3082
3083 if (fs_fd >= 0)
3084 infy_add (EV_A_ w);
3085 else
3086#endif
3087 ev_timer_again (EV_A_ &w->timer);
3088
1517 ev_start (EV_A_ (W)w, ++checkcnt); 3089 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521 3090
3091 EV_FREQUENT_CHECK;
3092}
3093
1522void 3094void
1523ev_check_stop (EV_P_ struct ev_check *w) 3095ev_stat_stop (EV_P_ ev_stat *w)
1524{ 3096{
1525 ev_clear_pending (EV_A_ (W)w); 3097 clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w))) 3098 if (expect_false (!ev_is_active (w)))
1527 return; 3099 return;
1528 3100
1529 checks [((W)w)->active - 1] = checks [--checkcnt]; 3101 EV_FREQUENT_CHECK;
3102
3103#if EV_USE_INOTIFY
3104 infy_del (EV_A_ w);
3105#endif
3106 ev_timer_stop (EV_A_ &w->timer);
3107
1530 ev_stop (EV_A_ (W)w); 3108 ev_stop (EV_A_ (W)w);
1531}
1532 3109
1533#ifndef SA_RESTART 3110 EV_FREQUENT_CHECK;
1534# define SA_RESTART 0 3111}
1535#endif 3112#endif
1536 3113
3114#if EV_IDLE_ENABLE
1537void 3115void
1538ev_signal_start (EV_P_ struct ev_signal *w) 3116ev_idle_start (EV_P_ ev_idle *w)
1539{ 3117{
1540#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif
1543 if (expect_false (ev_is_active (w))) 3118 if (expect_false (ev_is_active (w)))
1544 return; 3119 return;
1545 3120
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3121 pri_adjust (EV_A_ (W)w);
1547 3122
3123 EV_FREQUENT_CHECK;
3124
3125 {
3126 int active = ++idlecnt [ABSPRI (w)];
3127
3128 ++idleall;
1548 ev_start (EV_A_ (W)w, 1); 3129 ev_start (EV_A_ (W)w, active);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 3130
1552 if (!((WL)w)->next) 3131 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1553 { 3132 idles [ABSPRI (w)][active - 1] = w;
1554#if _WIN32
1555 signal (w->signum, sighandler);
1556#else
1557 struct sigaction sa;
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif
1563 } 3133 }
1564}
1565 3134
3135 EV_FREQUENT_CHECK;
3136}
3137
1566void 3138void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 3139ev_idle_stop (EV_P_ ev_idle *w)
1568{ 3140{
1569 ev_clear_pending (EV_A_ (W)w); 3141 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 3142 if (expect_false (!ev_is_active (w)))
1571 return; 3143 return;
1572 3144
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3145 EV_FREQUENT_CHECK;
3146
3147 {
3148 int active = ev_active (w);
3149
3150 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3151 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3152
1574 ev_stop (EV_A_ (W)w); 3153 ev_stop (EV_A_ (W)w);
3154 --idleall;
3155 }
1575 3156
1576 if (!signals [w->signum - 1].head) 3157 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 3158}
1579
1580void
1581ev_child_start (EV_P_ struct ev_child *w)
1582{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 3159#endif
3160
3161void
3162ev_prepare_start (EV_P_ ev_prepare *w)
3163{
1586 if (expect_false (ev_is_active (w))) 3164 if (expect_false (ev_is_active (w)))
1587 return; 3165 return;
1588 3166
3167 EV_FREQUENT_CHECK;
3168
1589 ev_start (EV_A_ (W)w, 1); 3169 ev_start (EV_A_ (W)w, ++preparecnt);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3170 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1591} 3171 prepares [preparecnt - 1] = w;
1592 3172
3173 EV_FREQUENT_CHECK;
3174}
3175
1593void 3176void
1594ev_child_stop (EV_P_ struct ev_child *w) 3177ev_prepare_stop (EV_P_ ev_prepare *w)
1595{ 3178{
1596 ev_clear_pending (EV_A_ (W)w); 3179 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3180 if (expect_false (!ev_is_active (w)))
1598 return; 3181 return;
1599 3182
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3183 EV_FREQUENT_CHECK;
3184
3185 {
3186 int active = ev_active (w);
3187
3188 prepares [active - 1] = prepares [--preparecnt];
3189 ev_active (prepares [active - 1]) = active;
3190 }
3191
1601 ev_stop (EV_A_ (W)w); 3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
1602} 3195}
3196
3197void
3198ev_check_start (EV_P_ ev_check *w)
3199{
3200 if (expect_false (ev_is_active (w)))
3201 return;
3202
3203 EV_FREQUENT_CHECK;
3204
3205 ev_start (EV_A_ (W)w, ++checkcnt);
3206 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3207 checks [checkcnt - 1] = w;
3208
3209 EV_FREQUENT_CHECK;
3210}
3211
3212void
3213ev_check_stop (EV_P_ ev_check *w)
3214{
3215 clear_pending (EV_A_ (W)w);
3216 if (expect_false (!ev_is_active (w)))
3217 return;
3218
3219 EV_FREQUENT_CHECK;
3220
3221 {
3222 int active = ev_active (w);
3223
3224 checks [active - 1] = checks [--checkcnt];
3225 ev_active (checks [active - 1]) = active;
3226 }
3227
3228 ev_stop (EV_A_ (W)w);
3229
3230 EV_FREQUENT_CHECK;
3231}
3232
3233#if EV_EMBED_ENABLE
3234void noinline
3235ev_embed_sweep (EV_P_ ev_embed *w)
3236{
3237 ev_loop (w->other, EVLOOP_NONBLOCK);
3238}
3239
3240static void
3241embed_io_cb (EV_P_ ev_io *io, int revents)
3242{
3243 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3244
3245 if (ev_cb (w))
3246 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3247 else
3248 ev_loop (w->other, EVLOOP_NONBLOCK);
3249}
3250
3251static void
3252embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3253{
3254 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3255
3256 {
3257 EV_P = w->other;
3258
3259 while (fdchangecnt)
3260 {
3261 fd_reify (EV_A);
3262 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3263 }
3264 }
3265}
3266
3267static void
3268embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3269{
3270 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3271
3272 ev_embed_stop (EV_A_ w);
3273
3274 {
3275 EV_P = w->other;
3276
3277 ev_loop_fork (EV_A);
3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3279 }
3280
3281 ev_embed_start (EV_A_ w);
3282}
3283
3284#if 0
3285static void
3286embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3287{
3288 ev_idle_stop (EV_A_ idle);
3289}
3290#endif
3291
3292void
3293ev_embed_start (EV_P_ ev_embed *w)
3294{
3295 if (expect_false (ev_is_active (w)))
3296 return;
3297
3298 {
3299 EV_P = w->other;
3300 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3301 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3302 }
3303
3304 EV_FREQUENT_CHECK;
3305
3306 ev_set_priority (&w->io, ev_priority (w));
3307 ev_io_start (EV_A_ &w->io);
3308
3309 ev_prepare_init (&w->prepare, embed_prepare_cb);
3310 ev_set_priority (&w->prepare, EV_MINPRI);
3311 ev_prepare_start (EV_A_ &w->prepare);
3312
3313 ev_fork_init (&w->fork, embed_fork_cb);
3314 ev_fork_start (EV_A_ &w->fork);
3315
3316 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3317
3318 ev_start (EV_A_ (W)w, 1);
3319
3320 EV_FREQUENT_CHECK;
3321}
3322
3323void
3324ev_embed_stop (EV_P_ ev_embed *w)
3325{
3326 clear_pending (EV_A_ (W)w);
3327 if (expect_false (!ev_is_active (w)))
3328 return;
3329
3330 EV_FREQUENT_CHECK;
3331
3332 ev_io_stop (EV_A_ &w->io);
3333 ev_prepare_stop (EV_A_ &w->prepare);
3334 ev_fork_stop (EV_A_ &w->fork);
3335
3336 EV_FREQUENT_CHECK;
3337}
3338#endif
3339
3340#if EV_FORK_ENABLE
3341void
3342ev_fork_start (EV_P_ ev_fork *w)
3343{
3344 if (expect_false (ev_is_active (w)))
3345 return;
3346
3347 EV_FREQUENT_CHECK;
3348
3349 ev_start (EV_A_ (W)w, ++forkcnt);
3350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3351 forks [forkcnt - 1] = w;
3352
3353 EV_FREQUENT_CHECK;
3354}
3355
3356void
3357ev_fork_stop (EV_P_ ev_fork *w)
3358{
3359 clear_pending (EV_A_ (W)w);
3360 if (expect_false (!ev_is_active (w)))
3361 return;
3362
3363 EV_FREQUENT_CHECK;
3364
3365 {
3366 int active = ev_active (w);
3367
3368 forks [active - 1] = forks [--forkcnt];
3369 ev_active (forks [active - 1]) = active;
3370 }
3371
3372 ev_stop (EV_A_ (W)w);
3373
3374 EV_FREQUENT_CHECK;
3375}
3376#endif
3377
3378#if EV_ASYNC_ENABLE
3379void
3380ev_async_start (EV_P_ ev_async *w)
3381{
3382 if (expect_false (ev_is_active (w)))
3383 return;
3384
3385 evpipe_init (EV_A);
3386
3387 EV_FREQUENT_CHECK;
3388
3389 ev_start (EV_A_ (W)w, ++asynccnt);
3390 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3391 asyncs [asynccnt - 1] = w;
3392
3393 EV_FREQUENT_CHECK;
3394}
3395
3396void
3397ev_async_stop (EV_P_ ev_async *w)
3398{
3399 clear_pending (EV_A_ (W)w);
3400 if (expect_false (!ev_is_active (w)))
3401 return;
3402
3403 EV_FREQUENT_CHECK;
3404
3405 {
3406 int active = ev_active (w);
3407
3408 asyncs [active - 1] = asyncs [--asynccnt];
3409 ev_active (asyncs [active - 1]) = active;
3410 }
3411
3412 ev_stop (EV_A_ (W)w);
3413
3414 EV_FREQUENT_CHECK;
3415}
3416
3417void
3418ev_async_send (EV_P_ ev_async *w)
3419{
3420 w->sent = 1;
3421 evpipe_write (EV_A_ &gotasync);
3422}
3423#endif
1603 3424
1604/*****************************************************************************/ 3425/*****************************************************************************/
1605 3426
1606struct ev_once 3427struct ev_once
1607{ 3428{
1608 struct ev_io io; 3429 ev_io io;
1609 struct ev_timer to; 3430 ev_timer to;
1610 void (*cb)(int revents, void *arg); 3431 void (*cb)(int revents, void *arg);
1611 void *arg; 3432 void *arg;
1612}; 3433};
1613 3434
1614static void 3435static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 3436once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 3437{
1617 void (*cb)(int revents, void *arg) = once->cb; 3438 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 3439 void *arg = once->arg;
1619 3440
1620 ev_io_stop (EV_A_ &once->io); 3441 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 3442 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 3443 ev_free (once);
1623 3444
1624 cb (revents, arg); 3445 cb (revents, arg);
1625} 3446}
1626 3447
1627static void 3448static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 3449once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 3450{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3451 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3452
3453 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 3454}
1632 3455
1633static void 3456static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 3457once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 3458{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3459 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3460
3461 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 3462}
1638 3463
1639void 3464void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 3466{
1663 ev_timer_set (&once->to, timeout, 0.); 3488 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 3489 ev_timer_start (EV_A_ &once->to);
1665 } 3490 }
1666} 3491}
1667 3492
3493/*****************************************************************************/
3494
3495#if EV_WALK_ENABLE
3496void
3497ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3498{
3499 int i, j;
3500 ev_watcher_list *wl, *wn;
3501
3502 if (types & (EV_IO | EV_EMBED))
3503 for (i = 0; i < anfdmax; ++i)
3504 for (wl = anfds [i].head; wl; )
3505 {
3506 wn = wl->next;
3507
3508#if EV_EMBED_ENABLE
3509 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3510 {
3511 if (types & EV_EMBED)
3512 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3513 }
3514 else
3515#endif
3516#if EV_USE_INOTIFY
3517 if (ev_cb ((ev_io *)wl) == infy_cb)
3518 ;
3519 else
3520#endif
3521 if ((ev_io *)wl != &pipe_w)
3522 if (types & EV_IO)
3523 cb (EV_A_ EV_IO, wl);
3524
3525 wl = wn;
3526 }
3527
3528 if (types & (EV_TIMER | EV_STAT))
3529 for (i = timercnt + HEAP0; i-- > HEAP0; )
3530#if EV_STAT_ENABLE
3531 /*TODO: timer is not always active*/
3532 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3533 {
3534 if (types & EV_STAT)
3535 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3536 }
3537 else
3538#endif
3539 if (types & EV_TIMER)
3540 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3541
3542#if EV_PERIODIC_ENABLE
3543 if (types & EV_PERIODIC)
3544 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3545 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3546#endif
3547
3548#if EV_IDLE_ENABLE
3549 if (types & EV_IDLE)
3550 for (j = NUMPRI; i--; )
3551 for (i = idlecnt [j]; i--; )
3552 cb (EV_A_ EV_IDLE, idles [j][i]);
3553#endif
3554
3555#if EV_FORK_ENABLE
3556 if (types & EV_FORK)
3557 for (i = forkcnt; i--; )
3558 if (ev_cb (forks [i]) != embed_fork_cb)
3559 cb (EV_A_ EV_FORK, forks [i]);
3560#endif
3561
3562#if EV_ASYNC_ENABLE
3563 if (types & EV_ASYNC)
3564 for (i = asynccnt; i--; )
3565 cb (EV_A_ EV_ASYNC, asyncs [i]);
3566#endif
3567
3568 if (types & EV_PREPARE)
3569 for (i = preparecnt; i--; )
3570#if EV_EMBED_ENABLE
3571 if (ev_cb (prepares [i]) != embed_prepare_cb)
3572#endif
3573 cb (EV_A_ EV_PREPARE, prepares [i]);
3574
3575 if (types & EV_CHECK)
3576 for (i = checkcnt; i--; )
3577 cb (EV_A_ EV_CHECK, checks [i]);
3578
3579 if (types & EV_SIGNAL)
3580 for (i = 0; i < EV_NSIG - 1; ++i)
3581 for (wl = signals [i].head; wl; )
3582 {
3583 wn = wl->next;
3584 cb (EV_A_ EV_SIGNAL, wl);
3585 wl = wn;
3586 }
3587
3588 if (types & EV_CHILD)
3589 for (i = EV_PID_HASHSIZE; i--; )
3590 for (wl = childs [i]; wl; )
3591 {
3592 wn = wl->next;
3593 cb (EV_A_ EV_CHILD, wl);
3594 wl = wn;
3595 }
3596/* EV_STAT 0x00001000 /* stat data changed */
3597/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3598}
3599#endif
3600
3601#if EV_MULTIPLICITY
3602 #include "ev_wrap.h"
3603#endif
3604
1668#ifdef __cplusplus 3605#ifdef __cplusplus
1669} 3606}
1670#endif 3607#endif
1671 3608

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines