ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.123 by root, Sat Nov 17 02:23:54 2007 UTC vs.
Revision 1.509 by root, Sat Aug 17 05:30:16 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 120# if HAVE_LINUX_AIO_ABI_H
65# define EV_USE_PORT 1 121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
66# endif 127# endif
67 128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
68#endif 136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
69 146
70#include <math.h> 147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
71#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
72#include <fcntl.h> 188#include <fcntl.h>
73#include <stddef.h> 189#include <stddef.h>
74 190
75#include <stdio.h> 191#include <stdio.h>
76 192
77#include <assert.h> 193#include <assert.h>
78#include <errno.h> 194#include <errno.h>
79#include <sys/types.h> 195#include <sys/types.h>
80#include <time.h> 196#include <time.h>
197#include <limits.h>
81 198
82#include <signal.h> 199#include <signal.h>
83 200
201#ifdef EV_H
202# include EV_H
203#else
204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
84#ifndef _WIN32 218#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 219# include <sys/time.h>
87# include <sys/wait.h> 220# include <sys/wait.h>
221# include <unistd.h>
88#else 222#else
223# include <io.h>
89# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
90# include <windows.h> 226# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
93# endif 229# endif
230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
94#endif 269# endif
270#endif
95 271
96/**/ 272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
97 280
98#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
99# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
286# endif
100#endif 287#endif
101 288
102#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
104#endif 299#endif
105 300
106#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
108#endif 303#endif
109 304
110#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
111# ifdef _WIN32 306# ifdef _WIN32
112# define EV_USE_POLL 0 307# define EV_USE_POLL 0
113# else 308# else
114# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
115# endif 310# endif
116#endif 311#endif
117 312
118#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
119# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
120#endif 319#endif
121 320
122#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
124#endif 323#endif
125 324
126#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 326# define EV_USE_PORT 0
128#endif 327#endif
129 328
130/**/ 329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
131 336
132/* darwin simply cannot be helped */ 337#ifndef EV_USE_IOURING
133#ifdef __APPLE__ 338# if __linux
339# define EV_USE_IOURING 0
340# else
341# define EV_USE_IOURING 0
342# endif
343#endif
344
345#ifndef EV_USE_INOTIFY
346# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
347# define EV_USE_INOTIFY EV_FEATURE_OS
348# else
349# define EV_USE_INOTIFY 0
350# endif
351#endif
352
353#ifndef EV_PID_HASHSIZE
354# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
355#endif
356
357#ifndef EV_INOTIFY_HASHSIZE
358# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
359#endif
360
361#ifndef EV_USE_EVENTFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_EVENTFD EV_FEATURE_OS
364# else
365# define EV_USE_EVENTFD 0
366# endif
367#endif
368
369#ifndef EV_USE_SIGNALFD
370# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371# define EV_USE_SIGNALFD EV_FEATURE_OS
372# else
373# define EV_USE_SIGNALFD 0
374# endif
375#endif
376
377#if 0 /* debugging */
378# define EV_VERIFY 3
379# define EV_USE_4HEAP 1
380# define EV_HEAP_CACHE_AT 1
381#endif
382
383#ifndef EV_VERIFY
384# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
385#endif
386
387#ifndef EV_USE_4HEAP
388# define EV_USE_4HEAP EV_FEATURE_DATA
389#endif
390
391#ifndef EV_HEAP_CACHE_AT
392# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393#endif
394
395#ifdef __ANDROID__
396/* supposedly, android doesn't typedef fd_mask */
397# undef EV_USE_SELECT
398# define EV_USE_SELECT 0
399/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400# undef EV_USE_CLOCK_SYSCALL
401# define EV_USE_CLOCK_SYSCALL 0
402#endif
403
404/* aix's poll.h seems to cause lots of trouble */
405#ifdef _AIX
406/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 407# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 408# define EV_USE_POLL 0
409#endif
410
411/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412/* which makes programs even slower. might work on other unices, too. */
413#if EV_USE_CLOCK_SYSCALL
414# include <sys/syscall.h>
415# ifdef SYS_clock_gettime
416# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417# undef EV_USE_MONOTONIC
418# define EV_USE_MONOTONIC 1
419# define EV_NEED_SYSCALL 1
420# else
421# undef EV_USE_CLOCK_SYSCALL
422# define EV_USE_CLOCK_SYSCALL 0
136#endif 423# endif
424#endif
425
426/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 427
138#ifndef CLOCK_MONOTONIC 428#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 429# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 430# define EV_USE_MONOTONIC 0
141#endif 431#endif
143#ifndef CLOCK_REALTIME 433#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 434# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 435# define EV_USE_REALTIME 0
146#endif 436#endif
147 437
148#if EV_SELECT_IS_WINSOCKET 438#if !EV_STAT_ENABLE
149# include <winsock.h> 439# undef EV_USE_INOTIFY
440# define EV_USE_INOTIFY 0
441#endif
442
443#if !EV_USE_NANOSLEEP
444/* hp-ux has it in sys/time.h, which we unconditionally include above */
445# if !defined _WIN32 && !defined __hpux
446# include <sys/select.h>
150#endif 447# endif
448#endif
151 449
152/**/ 450#if EV_USE_LINUXAIO
451# include <sys/syscall.h>
452# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
453# define EV_NEED_SYSCALL 1
454# else
455# undef EV_USE_LINUXAIO
456# define EV_USE_LINUXAIO 0
457# endif
458#endif
153 459
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 460#if EV_USE_IOURING
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 461# include <sys/syscall.h>
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 462# if !SYS_io_uring_setup && __linux && !__alpha
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 463# define SYS_io_uring_setup 425
464# define SYS_io_uring_enter 426
465# define SYS_io_uring_wregister 427
466# endif
467# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
468# define EV_NEED_SYSCALL 1
469# else
470# undef EV_USE_IOURING
471# define EV_USE_IOURING 0
472# endif
473#endif
158 474
159#ifdef EV_H 475#if EV_USE_INOTIFY
160# include EV_H 476# include <sys/statfs.h>
477# include <sys/inotify.h>
478/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
479# ifndef IN_DONT_FOLLOW
480# undef EV_USE_INOTIFY
481# define EV_USE_INOTIFY 0
482# endif
483#endif
484
485#if EV_USE_EVENTFD
486/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
487# include <stdint.h>
488# ifndef EFD_NONBLOCK
489# define EFD_NONBLOCK O_NONBLOCK
490# endif
491# ifndef EFD_CLOEXEC
492# ifdef O_CLOEXEC
493# define EFD_CLOEXEC O_CLOEXEC
494# else
495# define EFD_CLOEXEC 02000000
496# endif
497# endif
498EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499#endif
500
501#if EV_USE_SIGNALFD
502/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503# include <stdint.h>
504# ifndef SFD_NONBLOCK
505# define SFD_NONBLOCK O_NONBLOCK
506# endif
507# ifndef SFD_CLOEXEC
508# ifdef O_CLOEXEC
509# define SFD_CLOEXEC O_CLOEXEC
510# else
511# define SFD_CLOEXEC 02000000
512# endif
513# endif
514EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
515
516struct signalfd_siginfo
517{
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520};
521#endif
522
523/*****************************************************************************/
524
525#if EV_VERIFY >= 3
526# define EV_FREQUENT_CHECK ev_verify (EV_A)
161#else 527#else
162# include "ev.h" 528# define EV_FREQUENT_CHECK do { } while (0)
529#endif
530
531/*
532 * This is used to work around floating point rounding problems.
533 * This value is good at least till the year 4000.
534 */
535#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
536/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
537
538#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
539#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
540
541/* find a portable timestamp that is "always" in the future but fits into time_t.
542 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
543 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
544#define EV_TSTAMP_HUGE \
545 (sizeof (time_t) >= 8 ? 10000000000000. \
546 : 0 < (time_t)4294967295 ? 4294967295. \
547 : 2147483647.) \
548
549#ifndef EV_TS_CONST
550# define EV_TS_CONST(nv) nv
551# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
552# define EV_TS_FROM_USEC(us) us * 1e-6
553# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
554# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
555# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
556# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
557#endif
558
559/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
560/* ECB.H BEGIN */
561/*
562 * libecb - http://software.schmorp.de/pkg/libecb
563 *
564 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
565 * Copyright (©) 2011 Emanuele Giaquinta
566 * All rights reserved.
567 *
568 * Redistribution and use in source and binary forms, with or without modifica-
569 * tion, are permitted provided that the following conditions are met:
570 *
571 * 1. Redistributions of source code must retain the above copyright notice,
572 * this list of conditions and the following disclaimer.
573 *
574 * 2. Redistributions in binary form must reproduce the above copyright
575 * notice, this list of conditions and the following disclaimer in the
576 * documentation and/or other materials provided with the distribution.
577 *
578 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
579 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
580 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
581 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
582 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
583 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
584 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
585 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
586 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
587 * OF THE POSSIBILITY OF SUCH DAMAGE.
588 *
589 * Alternatively, the contents of this file may be used under the terms of
590 * the GNU General Public License ("GPL") version 2 or any later version,
591 * in which case the provisions of the GPL are applicable instead of
592 * the above. If you wish to allow the use of your version of this file
593 * only under the terms of the GPL and not to allow others to use your
594 * version of this file under the BSD license, indicate your decision
595 * by deleting the provisions above and replace them with the notice
596 * and other provisions required by the GPL. If you do not delete the
597 * provisions above, a recipient may use your version of this file under
598 * either the BSD or the GPL.
599 */
600
601#ifndef ECB_H
602#define ECB_H
603
604/* 16 bits major, 16 bits minor */
605#define ECB_VERSION 0x00010006
606
607#ifdef _WIN32
608 typedef signed char int8_t;
609 typedef unsigned char uint8_t;
610 typedef signed short int16_t;
611 typedef unsigned short uint16_t;
612 typedef signed int int32_t;
613 typedef unsigned int uint32_t;
614 #if __GNUC__
615 typedef signed long long int64_t;
616 typedef unsigned long long uint64_t;
617 #else /* _MSC_VER || __BORLANDC__ */
618 typedef signed __int64 int64_t;
619 typedef unsigned __int64 uint64_t;
163#endif 620 #endif
164 621 #ifdef _WIN64
165#if __GNUC__ >= 3 622 #define ECB_PTRSIZE 8
166# define expect(expr,value) __builtin_expect ((expr),(value)) 623 typedef uint64_t uintptr_t;
167# define inline static inline 624 typedef int64_t intptr_t;
625 #else
626 #define ECB_PTRSIZE 4
627 typedef uint32_t uintptr_t;
628 typedef int32_t intptr_t;
629 #endif
168#else 630#else
631 #include <inttypes.h>
632 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
633 #define ECB_PTRSIZE 8
634 #else
635 #define ECB_PTRSIZE 4
636 #endif
637#endif
638
639#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
640#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
641
642/* work around x32 idiocy by defining proper macros */
643#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
644 #if _ILP32
645 #define ECB_AMD64_X32 1
646 #else
647 #define ECB_AMD64 1
648 #endif
649#endif
650
651/* many compilers define _GNUC_ to some versions but then only implement
652 * what their idiot authors think are the "more important" extensions,
653 * causing enormous grief in return for some better fake benchmark numbers.
654 * or so.
655 * we try to detect these and simply assume they are not gcc - if they have
656 * an issue with that they should have done it right in the first place.
657 */
658#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
659 #define ECB_GCC_VERSION(major,minor) 0
660#else
661 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
662#endif
663
664#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
665
666#if __clang__ && defined __has_builtin
667 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
668#else
669 #define ECB_CLANG_BUILTIN(x) 0
670#endif
671
672#if __clang__ && defined __has_extension
673 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
674#else
675 #define ECB_CLANG_EXTENSION(x) 0
676#endif
677
678#define ECB_CPP (__cplusplus+0)
679#define ECB_CPP11 (__cplusplus >= 201103L)
680#define ECB_CPP14 (__cplusplus >= 201402L)
681#define ECB_CPP17 (__cplusplus >= 201703L)
682
683#if ECB_CPP
684 #define ECB_C 0
685 #define ECB_STDC_VERSION 0
686#else
687 #define ECB_C 1
688 #define ECB_STDC_VERSION __STDC_VERSION__
689#endif
690
691#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
692#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
693#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
694
695#if ECB_CPP
696 #define ECB_EXTERN_C extern "C"
697 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
698 #define ECB_EXTERN_C_END }
699#else
700 #define ECB_EXTERN_C extern
701 #define ECB_EXTERN_C_BEG
702 #define ECB_EXTERN_C_END
703#endif
704
705/*****************************************************************************/
706
707/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
708/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
709
710#if ECB_NO_THREADS
711 #define ECB_NO_SMP 1
712#endif
713
714#if ECB_NO_SMP
715 #define ECB_MEMORY_FENCE do { } while (0)
716#endif
717
718/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
719#if __xlC__ && ECB_CPP
720 #include <builtins.h>
721#endif
722
723#if 1400 <= _MSC_VER
724 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
725#endif
726
727#ifndef ECB_MEMORY_FENCE
728 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
730 #if __i386 || __i386__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
732 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
733 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
734 #elif ECB_GCC_AMD64
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
736 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
737 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
738 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
739 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
740 #elif defined __ARM_ARCH_2__ \
741 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
742 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
743 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
744 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
745 || defined __ARM_ARCH_5TEJ__
746 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
747 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
748 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
749 || defined __ARM_ARCH_6T2__
750 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
751 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
752 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
753 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
754 #elif __aarch64__
755 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
756 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
757 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
758 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
759 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
760 #elif defined __s390__ || defined __s390x__
761 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
762 #elif defined __mips__
763 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
764 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
765 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
766 #elif defined __alpha__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
768 #elif defined __hppa__
769 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
770 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
771 #elif defined __ia64__
772 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
773 #elif defined __m68k__
774 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
775 #elif defined __m88k__
776 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
777 #elif defined __sh__
778 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
779 #endif
780 #endif
781#endif
782
783#ifndef ECB_MEMORY_FENCE
784 #if ECB_GCC_VERSION(4,7)
785 /* see comment below (stdatomic.h) about the C11 memory model. */
786 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
787 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
788 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
789 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
790
791 #elif ECB_CLANG_EXTENSION(c_atomic)
792 /* see comment below (stdatomic.h) about the C11 memory model. */
793 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
794 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
795 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
796 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
797
798 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
799 #define ECB_MEMORY_FENCE __sync_synchronize ()
800 #elif _MSC_VER >= 1500 /* VC++ 2008 */
801 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
802 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
803 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
804 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
805 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
806 #elif _MSC_VER >= 1400 /* VC++ 2005 */
807 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
808 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
809 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
810 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
811 #elif defined _WIN32
812 #include <WinNT.h>
813 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
814 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
815 #include <mbarrier.h>
816 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
817 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
818 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
819 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
820 #elif __xlC__
821 #define ECB_MEMORY_FENCE __sync ()
822 #endif
823#endif
824
825#ifndef ECB_MEMORY_FENCE
826 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
827 /* we assume that these memory fences work on all variables/all memory accesses, */
828 /* not just C11 atomics and atomic accesses */
829 #include <stdatomic.h>
830 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
831 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
832 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
833 #endif
834#endif
835
836#ifndef ECB_MEMORY_FENCE
837 #if !ECB_AVOID_PTHREADS
838 /*
839 * if you get undefined symbol references to pthread_mutex_lock,
840 * or failure to find pthread.h, then you should implement
841 * the ECB_MEMORY_FENCE operations for your cpu/compiler
842 * OR provide pthread.h and link against the posix thread library
843 * of your system.
844 */
845 #include <pthread.h>
846 #define ECB_NEEDS_PTHREADS 1
847 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
848
849 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
850 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
851 #endif
852#endif
853
854#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
855 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
856#endif
857
858#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
859 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
860#endif
861
862#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
863 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
864#endif
865
866/*****************************************************************************/
867
868#if ECB_CPP
869 #define ecb_inline static inline
870#elif ECB_GCC_VERSION(2,5)
871 #define ecb_inline static __inline__
872#elif ECB_C99
873 #define ecb_inline static inline
874#else
875 #define ecb_inline static
876#endif
877
878#if ECB_GCC_VERSION(3,3)
879 #define ecb_restrict __restrict__
880#elif ECB_C99
881 #define ecb_restrict restrict
882#else
883 #define ecb_restrict
884#endif
885
886typedef int ecb_bool;
887
888#define ECB_CONCAT_(a, b) a ## b
889#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
890#define ECB_STRINGIFY_(a) # a
891#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
892#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
893
894#define ecb_function_ ecb_inline
895
896#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
897 #define ecb_attribute(attrlist) __attribute__ (attrlist)
898#else
899 #define ecb_attribute(attrlist)
900#endif
901
902#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
903 #define ecb_is_constant(expr) __builtin_constant_p (expr)
904#else
905 /* possible C11 impl for integral types
906 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
907 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
908
909 #define ecb_is_constant(expr) 0
910#endif
911
912#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
913 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
914#else
169# define expect(expr,value) (expr) 915 #define ecb_expect(expr,value) (expr)
170# define inline static
171#endif 916#endif
172 917
918#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
919 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
920#else
921 #define ecb_prefetch(addr,rw,locality)
922#endif
923
924/* no emulation for ecb_decltype */
925#if ECB_CPP11
926 // older implementations might have problems with decltype(x)::type, work around it
927 template<class T> struct ecb_decltype_t { typedef T type; };
928 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
929#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
930 #define ecb_decltype(x) __typeof__ (x)
931#endif
932
933#if _MSC_VER >= 1300
934 #define ecb_deprecated __declspec (deprecated)
935#else
936 #define ecb_deprecated ecb_attribute ((__deprecated__))
937#endif
938
939#if _MSC_VER >= 1500
940 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
941#elif ECB_GCC_VERSION(4,5)
942 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
943#else
944 #define ecb_deprecated_message(msg) ecb_deprecated
945#endif
946
947#if _MSC_VER >= 1400
948 #define ecb_noinline __declspec (noinline)
949#else
950 #define ecb_noinline ecb_attribute ((__noinline__))
951#endif
952
953#define ecb_unused ecb_attribute ((__unused__))
954#define ecb_const ecb_attribute ((__const__))
955#define ecb_pure ecb_attribute ((__pure__))
956
957#if ECB_C11 || __IBMC_NORETURN
958 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
959 #define ecb_noreturn _Noreturn
960#elif ECB_CPP11
961 #define ecb_noreturn [[noreturn]]
962#elif _MSC_VER >= 1200
963 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
964 #define ecb_noreturn __declspec (noreturn)
965#else
966 #define ecb_noreturn ecb_attribute ((__noreturn__))
967#endif
968
969#if ECB_GCC_VERSION(4,3)
970 #define ecb_artificial ecb_attribute ((__artificial__))
971 #define ecb_hot ecb_attribute ((__hot__))
972 #define ecb_cold ecb_attribute ((__cold__))
973#else
974 #define ecb_artificial
975 #define ecb_hot
976 #define ecb_cold
977#endif
978
979/* put around conditional expressions if you are very sure that the */
980/* expression is mostly true or mostly false. note that these return */
981/* booleans, not the expression. */
173#define expect_false(expr) expect ((expr) != 0, 0) 982#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 983#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
984/* for compatibility to the rest of the world */
985#define ecb_likely(expr) ecb_expect_true (expr)
986#define ecb_unlikely(expr) ecb_expect_false (expr)
175 987
988/* count trailing zero bits and count # of one bits */
989#if ECB_GCC_VERSION(3,4) \
990 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
991 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
992 && ECB_CLANG_BUILTIN(__builtin_popcount))
993 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
994 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
995 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
996 #define ecb_ctz32(x) __builtin_ctz (x)
997 #define ecb_ctz64(x) __builtin_ctzll (x)
998 #define ecb_popcount32(x) __builtin_popcount (x)
999 /* no popcountll */
1000#else
1001 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1002 ecb_function_ ecb_const int
1003 ecb_ctz32 (uint32_t x)
1004 {
1005#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1006 unsigned long r;
1007 _BitScanForward (&r, x);
1008 return (int)r;
1009#else
1010 int r = 0;
1011
1012 x &= ~x + 1; /* this isolates the lowest bit */
1013
1014#if ECB_branchless_on_i386
1015 r += !!(x & 0xaaaaaaaa) << 0;
1016 r += !!(x & 0xcccccccc) << 1;
1017 r += !!(x & 0xf0f0f0f0) << 2;
1018 r += !!(x & 0xff00ff00) << 3;
1019 r += !!(x & 0xffff0000) << 4;
1020#else
1021 if (x & 0xaaaaaaaa) r += 1;
1022 if (x & 0xcccccccc) r += 2;
1023 if (x & 0xf0f0f0f0) r += 4;
1024 if (x & 0xff00ff00) r += 8;
1025 if (x & 0xffff0000) r += 16;
1026#endif
1027
1028 return r;
1029#endif
1030 }
1031
1032 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1033 ecb_function_ ecb_const int
1034 ecb_ctz64 (uint64_t x)
1035 {
1036#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1037 unsigned long r;
1038 _BitScanForward64 (&r, x);
1039 return (int)r;
1040#else
1041 int shift = x & 0xffffffff ? 0 : 32;
1042 return ecb_ctz32 (x >> shift) + shift;
1043#endif
1044 }
1045
1046 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1047 ecb_function_ ecb_const int
1048 ecb_popcount32 (uint32_t x)
1049 {
1050 x -= (x >> 1) & 0x55555555;
1051 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1052 x = ((x >> 4) + x) & 0x0f0f0f0f;
1053 x *= 0x01010101;
1054
1055 return x >> 24;
1056 }
1057
1058 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1059 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1060 {
1061#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1062 unsigned long r;
1063 _BitScanReverse (&r, x);
1064 return (int)r;
1065#else
1066 int r = 0;
1067
1068 if (x >> 16) { x >>= 16; r += 16; }
1069 if (x >> 8) { x >>= 8; r += 8; }
1070 if (x >> 4) { x >>= 4; r += 4; }
1071 if (x >> 2) { x >>= 2; r += 2; }
1072 if (x >> 1) { r += 1; }
1073
1074 return r;
1075#endif
1076 }
1077
1078 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1079 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1080 {
1081#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1082 unsigned long r;
1083 _BitScanReverse64 (&r, x);
1084 return (int)r;
1085#else
1086 int r = 0;
1087
1088 if (x >> 32) { x >>= 32; r += 32; }
1089
1090 return r + ecb_ld32 (x);
1091#endif
1092 }
1093#endif
1094
1095ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1096ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1097ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1098ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1099
1100ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1101ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1102{
1103 return ( (x * 0x0802U & 0x22110U)
1104 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1105}
1106
1107ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1108ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1109{
1110 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1111 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1112 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1113 x = ( x >> 8 ) | ( x << 8);
1114
1115 return x;
1116}
1117
1118ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1119ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1120{
1121 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1122 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1123 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1124 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1125 x = ( x >> 16 ) | ( x << 16);
1126
1127 return x;
1128}
1129
1130/* popcount64 is only available on 64 bit cpus as gcc builtin */
1131/* so for this version we are lazy */
1132ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1133ecb_function_ ecb_const int
1134ecb_popcount64 (uint64_t x)
1135{
1136 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1137}
1138
1139ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1140ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1141ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1142ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1143ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1144ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1145ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1146ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1147
1148ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1149ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1150ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1151ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1152ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1153ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1154ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1155ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1156
1157#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1158 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1159 #define ecb_bswap16(x) __builtin_bswap16 (x)
1160 #else
1161 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1162 #endif
1163 #define ecb_bswap32(x) __builtin_bswap32 (x)
1164 #define ecb_bswap64(x) __builtin_bswap64 (x)
1165#elif _MSC_VER
1166 #include <stdlib.h>
1167 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1168 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1169 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1170#else
1171 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1172 ecb_function_ ecb_const uint16_t
1173 ecb_bswap16 (uint16_t x)
1174 {
1175 return ecb_rotl16 (x, 8);
1176 }
1177
1178 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1179 ecb_function_ ecb_const uint32_t
1180 ecb_bswap32 (uint32_t x)
1181 {
1182 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1183 }
1184
1185 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1186 ecb_function_ ecb_const uint64_t
1187 ecb_bswap64 (uint64_t x)
1188 {
1189 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1190 }
1191#endif
1192
1193#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1194 #define ecb_unreachable() __builtin_unreachable ()
1195#else
1196 /* this seems to work fine, but gcc always emits a warning for it :/ */
1197 ecb_inline ecb_noreturn void ecb_unreachable (void);
1198 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1199#endif
1200
1201/* try to tell the compiler that some condition is definitely true */
1202#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1203
1204ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1205ecb_inline ecb_const uint32_t
1206ecb_byteorder_helper (void)
1207{
1208 /* the union code still generates code under pressure in gcc, */
1209 /* but less than using pointers, and always seems to */
1210 /* successfully return a constant. */
1211 /* the reason why we have this horrible preprocessor mess */
1212 /* is to avoid it in all cases, at least on common architectures */
1213 /* or when using a recent enough gcc version (>= 4.6) */
1214#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1215 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1216 #define ECB_LITTLE_ENDIAN 1
1217 return 0x44332211;
1218#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1219 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1220 #define ECB_BIG_ENDIAN 1
1221 return 0x11223344;
1222#else
1223 union
1224 {
1225 uint8_t c[4];
1226 uint32_t u;
1227 } u = { 0x11, 0x22, 0x33, 0x44 };
1228 return u.u;
1229#endif
1230}
1231
1232ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1233ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1234ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1235ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1236
1237#if ECB_GCC_VERSION(3,0) || ECB_C99
1238 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1239#else
1240 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1241#endif
1242
1243#if ECB_CPP
1244 template<typename T>
1245 static inline T ecb_div_rd (T val, T div)
1246 {
1247 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1248 }
1249 template<typename T>
1250 static inline T ecb_div_ru (T val, T div)
1251 {
1252 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1253 }
1254#else
1255 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1256 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1257#endif
1258
1259#if ecb_cplusplus_does_not_suck
1260 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1261 template<typename T, int N>
1262 static inline int ecb_array_length (const T (&arr)[N])
1263 {
1264 return N;
1265 }
1266#else
1267 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1268#endif
1269
1270ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1271ecb_function_ ecb_const uint32_t
1272ecb_binary16_to_binary32 (uint32_t x)
1273{
1274 unsigned int s = (x & 0x8000) << (31 - 15);
1275 int e = (x >> 10) & 0x001f;
1276 unsigned int m = x & 0x03ff;
1277
1278 if (ecb_expect_false (e == 31))
1279 /* infinity or NaN */
1280 e = 255 - (127 - 15);
1281 else if (ecb_expect_false (!e))
1282 {
1283 if (ecb_expect_true (!m))
1284 /* zero, handled by code below by forcing e to 0 */
1285 e = 0 - (127 - 15);
1286 else
1287 {
1288 /* subnormal, renormalise */
1289 unsigned int s = 10 - ecb_ld32 (m);
1290
1291 m = (m << s) & 0x3ff; /* mask implicit bit */
1292 e -= s - 1;
1293 }
1294 }
1295
1296 /* e and m now are normalised, or zero, (or inf or nan) */
1297 e += 127 - 15;
1298
1299 return s | (e << 23) | (m << (23 - 10));
1300}
1301
1302ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1303ecb_function_ ecb_const uint16_t
1304ecb_binary32_to_binary16 (uint32_t x)
1305{
1306 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1307 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1308 unsigned int m = x & 0x007fffff;
1309
1310 x &= 0x7fffffff;
1311
1312 /* if it's within range of binary16 normals, use fast path */
1313 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1314 {
1315 /* mantissa round-to-even */
1316 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1317
1318 /* handle overflow */
1319 if (ecb_expect_false (m >= 0x00800000))
1320 {
1321 m >>= 1;
1322 e += 1;
1323 }
1324
1325 return s | (e << 10) | (m >> (23 - 10));
1326 }
1327
1328 /* handle large numbers and infinity */
1329 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1330 return s | 0x7c00;
1331
1332 /* handle zero, subnormals and small numbers */
1333 if (ecb_expect_true (x < 0x38800000))
1334 {
1335 /* zero */
1336 if (ecb_expect_true (!x))
1337 return s;
1338
1339 /* handle subnormals */
1340
1341 /* too small, will be zero */
1342 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1343 return s;
1344
1345 m |= 0x00800000; /* make implicit bit explicit */
1346
1347 /* very tricky - we need to round to the nearest e (+10) bit value */
1348 {
1349 unsigned int bits = 14 - e;
1350 unsigned int half = (1 << (bits - 1)) - 1;
1351 unsigned int even = (m >> bits) & 1;
1352
1353 /* if this overflows, we will end up with a normalised number */
1354 m = (m + half + even) >> bits;
1355 }
1356
1357 return s | m;
1358 }
1359
1360 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1361 m >>= 13;
1362
1363 return s | 0x7c00 | m | !m;
1364}
1365
1366/*******************************************************************************/
1367/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1368
1369/* basically, everything uses "ieee pure-endian" floating point numbers */
1370/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1371#if 0 \
1372 || __i386 || __i386__ \
1373 || ECB_GCC_AMD64 \
1374 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1375 || defined __s390__ || defined __s390x__ \
1376 || defined __mips__ \
1377 || defined __alpha__ \
1378 || defined __hppa__ \
1379 || defined __ia64__ \
1380 || defined __m68k__ \
1381 || defined __m88k__ \
1382 || defined __sh__ \
1383 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1384 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1385 || defined __aarch64__
1386 #define ECB_STDFP 1
1387 #include <string.h> /* for memcpy */
1388#else
1389 #define ECB_STDFP 0
1390#endif
1391
1392#ifndef ECB_NO_LIBM
1393
1394 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1395
1396 /* only the oldest of old doesn't have this one. solaris. */
1397 #ifdef INFINITY
1398 #define ECB_INFINITY INFINITY
1399 #else
1400 #define ECB_INFINITY HUGE_VAL
1401 #endif
1402
1403 #ifdef NAN
1404 #define ECB_NAN NAN
1405 #else
1406 #define ECB_NAN ECB_INFINITY
1407 #endif
1408
1409 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1410 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1411 #define ecb_frexpf(x,e) frexpf ((x), (e))
1412 #else
1413 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1414 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1415 #endif
1416
1417 /* convert a float to ieee single/binary32 */
1418 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1419 ecb_function_ ecb_const uint32_t
1420 ecb_float_to_binary32 (float x)
1421 {
1422 uint32_t r;
1423
1424 #if ECB_STDFP
1425 memcpy (&r, &x, 4);
1426 #else
1427 /* slow emulation, works for anything but -0 */
1428 uint32_t m;
1429 int e;
1430
1431 if (x == 0e0f ) return 0x00000000U;
1432 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1433 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1434 if (x != x ) return 0x7fbfffffU;
1435
1436 m = ecb_frexpf (x, &e) * 0x1000000U;
1437
1438 r = m & 0x80000000U;
1439
1440 if (r)
1441 m = -m;
1442
1443 if (e <= -126)
1444 {
1445 m &= 0xffffffU;
1446 m >>= (-125 - e);
1447 e = -126;
1448 }
1449
1450 r |= (e + 126) << 23;
1451 r |= m & 0x7fffffU;
1452 #endif
1453
1454 return r;
1455 }
1456
1457 /* converts an ieee single/binary32 to a float */
1458 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1459 ecb_function_ ecb_const float
1460 ecb_binary32_to_float (uint32_t x)
1461 {
1462 float r;
1463
1464 #if ECB_STDFP
1465 memcpy (&r, &x, 4);
1466 #else
1467 /* emulation, only works for normals and subnormals and +0 */
1468 int neg = x >> 31;
1469 int e = (x >> 23) & 0xffU;
1470
1471 x &= 0x7fffffU;
1472
1473 if (e)
1474 x |= 0x800000U;
1475 else
1476 e = 1;
1477
1478 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1479 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1480
1481 r = neg ? -r : r;
1482 #endif
1483
1484 return r;
1485 }
1486
1487 /* convert a double to ieee double/binary64 */
1488 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1489 ecb_function_ ecb_const uint64_t
1490 ecb_double_to_binary64 (double x)
1491 {
1492 uint64_t r;
1493
1494 #if ECB_STDFP
1495 memcpy (&r, &x, 8);
1496 #else
1497 /* slow emulation, works for anything but -0 */
1498 uint64_t m;
1499 int e;
1500
1501 if (x == 0e0 ) return 0x0000000000000000U;
1502 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1503 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1504 if (x != x ) return 0X7ff7ffffffffffffU;
1505
1506 m = frexp (x, &e) * 0x20000000000000U;
1507
1508 r = m & 0x8000000000000000;;
1509
1510 if (r)
1511 m = -m;
1512
1513 if (e <= -1022)
1514 {
1515 m &= 0x1fffffffffffffU;
1516 m >>= (-1021 - e);
1517 e = -1022;
1518 }
1519
1520 r |= ((uint64_t)(e + 1022)) << 52;
1521 r |= m & 0xfffffffffffffU;
1522 #endif
1523
1524 return r;
1525 }
1526
1527 /* converts an ieee double/binary64 to a double */
1528 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1529 ecb_function_ ecb_const double
1530 ecb_binary64_to_double (uint64_t x)
1531 {
1532 double r;
1533
1534 #if ECB_STDFP
1535 memcpy (&r, &x, 8);
1536 #else
1537 /* emulation, only works for normals and subnormals and +0 */
1538 int neg = x >> 63;
1539 int e = (x >> 52) & 0x7ffU;
1540
1541 x &= 0xfffffffffffffU;
1542
1543 if (e)
1544 x |= 0x10000000000000U;
1545 else
1546 e = 1;
1547
1548 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1549 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1550
1551 r = neg ? -r : r;
1552 #endif
1553
1554 return r;
1555 }
1556
1557 /* convert a float to ieee half/binary16 */
1558 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1559 ecb_function_ ecb_const uint16_t
1560 ecb_float_to_binary16 (float x)
1561 {
1562 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1563 }
1564
1565 /* convert an ieee half/binary16 to float */
1566 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1567 ecb_function_ ecb_const float
1568 ecb_binary16_to_float (uint16_t x)
1569 {
1570 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1571 }
1572
1573#endif
1574
1575#endif
1576
1577/* ECB.H END */
1578
1579#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1580/* if your architecture doesn't need memory fences, e.g. because it is
1581 * single-cpu/core, or if you use libev in a project that doesn't use libev
1582 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1583 * libev, in which cases the memory fences become nops.
1584 * alternatively, you can remove this #error and link against libpthread,
1585 * which will then provide the memory fences.
1586 */
1587# error "memory fences not defined for your architecture, please report"
1588#endif
1589
1590#ifndef ECB_MEMORY_FENCE
1591# define ECB_MEMORY_FENCE do { } while (0)
1592# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1593# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1594#endif
1595
1596#define inline_size ecb_inline
1597
1598#if EV_FEATURE_CODE
1599# define inline_speed ecb_inline
1600#else
1601# define inline_speed ecb_noinline static
1602#endif
1603
1604/*****************************************************************************/
1605/* raw syscall wrappers */
1606
1607#if EV_NEED_SYSCALL
1608
1609#include <sys/syscall.h>
1610
1611/*
1612 * define some syscall wrappers for common architectures
1613 * this is mostly for nice looks during debugging, not performance.
1614 * our syscalls return < 0, not == -1, on error. which is good
1615 * enough for linux aio.
1616 * TODO: arm is also common nowadays, maybe even mips and x86
1617 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1618 */
1619#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1620 /* the costly errno access probably kills this for size optimisation */
1621
1622 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1623 ({ \
1624 long res; \
1625 register unsigned long r6 __asm__ ("r9" ); \
1626 register unsigned long r5 __asm__ ("r8" ); \
1627 register unsigned long r4 __asm__ ("r10"); \
1628 register unsigned long r3 __asm__ ("rdx"); \
1629 register unsigned long r2 __asm__ ("rsi"); \
1630 register unsigned long r1 __asm__ ("rdi"); \
1631 if (narg >= 6) r6 = (unsigned long)(arg6); \
1632 if (narg >= 5) r5 = (unsigned long)(arg5); \
1633 if (narg >= 4) r4 = (unsigned long)(arg4); \
1634 if (narg >= 3) r3 = (unsigned long)(arg3); \
1635 if (narg >= 2) r2 = (unsigned long)(arg2); \
1636 if (narg >= 1) r1 = (unsigned long)(arg1); \
1637 __asm__ __volatile__ ( \
1638 "syscall\n\t" \
1639 : "=a" (res) \
1640 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1641 : "cc", "r11", "cx", "memory"); \
1642 errno = -res; \
1643 res; \
1644 })
1645
1646#endif
1647
1648#ifdef ev_syscall
1649 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1650 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1651 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1652 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1653 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1654 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1655 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1656#else
1657 #define ev_syscall0(nr) syscall (nr)
1658 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1659 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1660 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1661 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1662 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1663 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1664#endif
1665
1666#endif
1667
1668/*****************************************************************************/
1669
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1670#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1671
1672#if EV_MINPRI == EV_MAXPRI
1673# define ABSPRI(w) (((W)w), 0)
1674#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1675# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1676#endif
178 1677
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1678#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */
181 1679
182typedef struct ev_watcher *W; 1680typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 1681typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 1682typedef ev_watcher_time *WT;
185 1683
1684#define ev_active(w) ((W)(w))->active
1685#define ev_at(w) ((WT)(w))->at
1686
1687#if EV_USE_REALTIME
1688/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1689/* giving it a reasonably high chance of working on typical architectures */
1690static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1691#endif
1692
1693#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1694static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1695#endif
1696
1697#ifndef EV_FD_TO_WIN32_HANDLE
1698# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1699#endif
1700#ifndef EV_WIN32_HANDLE_TO_FD
1701# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1702#endif
1703#ifndef EV_WIN32_CLOSE_FD
1704# define EV_WIN32_CLOSE_FD(fd) close (fd)
1705#endif
187 1706
188#ifdef _WIN32 1707#ifdef _WIN32
189# include "ev_win32.c" 1708# include "ev_win32.c"
190#endif 1709#endif
191 1710
192/*****************************************************************************/ 1711/*****************************************************************************/
193 1712
1713#if EV_USE_LINUXAIO
1714# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1715#endif
1716
1717/* define a suitable floor function (only used by periodics atm) */
1718
1719#if EV_USE_FLOOR
1720# include <math.h>
1721# define ev_floor(v) floor (v)
1722#else
1723
1724#include <float.h>
1725
1726/* a floor() replacement function, should be independent of ev_tstamp type */
1727ecb_noinline
1728static ev_tstamp
1729ev_floor (ev_tstamp v)
1730{
1731 /* the choice of shift factor is not terribly important */
1732#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1733 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1734#else
1735 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1736#endif
1737
1738 /* special treatment for negative arguments */
1739 if (ecb_expect_false (v < 0.))
1740 {
1741 ev_tstamp f = -ev_floor (-v);
1742
1743 return f - (f == v ? 0 : 1);
1744 }
1745
1746 /* argument too large for an unsigned long? then reduce it */
1747 if (ecb_expect_false (v >= shift))
1748 {
1749 ev_tstamp f;
1750
1751 if (v == v - 1.)
1752 return v; /* very large numbers are assumed to be integer */
1753
1754 f = shift * ev_floor (v * (1. / shift));
1755 return f + ev_floor (v - f);
1756 }
1757
1758 /* fits into an unsigned long */
1759 return (unsigned long)v;
1760}
1761
1762#endif
1763
1764/*****************************************************************************/
1765
1766#ifdef __linux
1767# include <sys/utsname.h>
1768#endif
1769
1770ecb_noinline ecb_cold
1771static unsigned int
1772ev_linux_version (void)
1773{
1774#ifdef __linux
1775 unsigned int v = 0;
1776 struct utsname buf;
1777 int i;
1778 char *p = buf.release;
1779
1780 if (uname (&buf))
1781 return 0;
1782
1783 for (i = 3+1; --i; )
1784 {
1785 unsigned int c = 0;
1786
1787 for (;;)
1788 {
1789 if (*p >= '0' && *p <= '9')
1790 c = c * 10 + *p++ - '0';
1791 else
1792 {
1793 p += *p == '.';
1794 break;
1795 }
1796 }
1797
1798 v = (v << 8) | c;
1799 }
1800
1801 return v;
1802#else
1803 return 0;
1804#endif
1805}
1806
1807/*****************************************************************************/
1808
1809#if EV_AVOID_STDIO
1810ecb_noinline ecb_cold
1811static void
1812ev_printerr (const char *msg)
1813{
1814 write (STDERR_FILENO, msg, strlen (msg));
1815}
1816#endif
1817
194static void (*syserr_cb)(const char *msg); 1818static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
195 1819
1820ecb_cold
1821void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 1822ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
197{ 1823{
198 syserr_cb = cb; 1824 syserr_cb = cb;
199} 1825}
200 1826
1827ecb_noinline ecb_cold
201static void 1828static void
202syserr (const char *msg) 1829ev_syserr (const char *msg)
203{ 1830{
204 if (!msg) 1831 if (!msg)
205 msg = "(libev) system error"; 1832 msg = "(libev) system error";
206 1833
207 if (syserr_cb) 1834 if (syserr_cb)
208 syserr_cb (msg); 1835 syserr_cb (msg);
209 else 1836 else
210 { 1837 {
1838#if EV_AVOID_STDIO
1839 ev_printerr (msg);
1840 ev_printerr (": ");
1841 ev_printerr (strerror (errno));
1842 ev_printerr ("\n");
1843#else
211 perror (msg); 1844 perror (msg);
1845#endif
212 abort (); 1846 abort ();
213 } 1847 }
214} 1848}
215 1849
216static void *(*alloc)(void *ptr, long size); 1850static void *
1851ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1852{
1853 /* some systems, notably openbsd and darwin, fail to properly
1854 * implement realloc (x, 0) (as required by both ansi c-89 and
1855 * the single unix specification, so work around them here.
1856 * recently, also (at least) fedora and debian started breaking it,
1857 * despite documenting it otherwise.
1858 */
217 1859
1860 if (size)
1861 return realloc (ptr, size);
1862
1863 free (ptr);
1864 return 0;
1865}
1866
1867static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1868
1869ecb_cold
1870void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1871ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
219{ 1872{
220 alloc = cb; 1873 alloc = cb;
221} 1874}
222 1875
223static void * 1876inline_speed void *
224ev_realloc (void *ptr, long size) 1877ev_realloc (void *ptr, long size)
225{ 1878{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1879 ptr = alloc (ptr, size);
227 1880
228 if (!ptr && size) 1881 if (!ptr && size)
229 { 1882 {
1883#if EV_AVOID_STDIO
1884 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1885#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1886 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1887#endif
231 abort (); 1888 abort ();
232 } 1889 }
233 1890
234 return ptr; 1891 return ptr;
235} 1892}
237#define ev_malloc(size) ev_realloc (0, (size)) 1894#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 1895#define ev_free(ptr) ev_realloc ((ptr), 0)
239 1896
240/*****************************************************************************/ 1897/*****************************************************************************/
241 1898
1899/* set in reify when reification needed */
1900#define EV_ANFD_REIFY 1
1901
1902/* file descriptor info structure */
242typedef struct 1903typedef struct
243{ 1904{
244 WL head; 1905 WL head;
245 unsigned char events; 1906 unsigned char events; /* the events watched for */
246 unsigned char reify; 1907 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1908 unsigned char emask; /* some backends store the actual kernel mask in here */
1909 unsigned char eflags; /* flags field for use by backends */
1910#if EV_USE_EPOLL
1911 unsigned int egen; /* generation counter to counter epoll bugs */
1912#endif
247#if EV_SELECT_IS_WINSOCKET 1913#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
248 SOCKET handle; 1914 SOCKET handle;
249#endif 1915#endif
1916#if EV_USE_IOCP
1917 OVERLAPPED or, ow;
1918#endif
250} ANFD; 1919} ANFD;
251 1920
1921/* stores the pending event set for a given watcher */
252typedef struct 1922typedef struct
253{ 1923{
254 W w; 1924 W w;
255 int events; 1925 int events; /* the pending event set for the given watcher */
256} ANPENDING; 1926} ANPENDING;
1927
1928#if EV_USE_INOTIFY
1929/* hash table entry per inotify-id */
1930typedef struct
1931{
1932 WL head;
1933} ANFS;
1934#endif
1935
1936/* Heap Entry */
1937#if EV_HEAP_CACHE_AT
1938 /* a heap element */
1939 typedef struct {
1940 ev_tstamp at;
1941 WT w;
1942 } ANHE;
1943
1944 #define ANHE_w(he) (he).w /* access watcher, read-write */
1945 #define ANHE_at(he) (he).at /* access cached at, read-only */
1946 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1947#else
1948 /* a heap element */
1949 typedef WT ANHE;
1950
1951 #define ANHE_w(he) (he)
1952 #define ANHE_at(he) (he)->at
1953 #define ANHE_at_cache(he)
1954#endif
257 1955
258#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
259 1957
260 struct ev_loop 1958 struct ev_loop
261 { 1959 {
266 #undef VAR 1964 #undef VAR
267 }; 1965 };
268 #include "ev_wrap.h" 1966 #include "ev_wrap.h"
269 1967
270 static struct ev_loop default_loop_struct; 1968 static struct ev_loop default_loop_struct;
271 struct ev_loop *ev_default_loop_ptr; 1969 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
272 1970
273#else 1971#else
274 1972
275 ev_tstamp ev_rt_now; 1973 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
276 #define VAR(name,decl) static decl; 1974 #define VAR(name,decl) static decl;
277 #include "ev_vars.h" 1975 #include "ev_vars.h"
278 #undef VAR 1976 #undef VAR
279 1977
280 static int ev_default_loop_ptr; 1978 static int ev_default_loop_ptr;
281 1979
282#endif 1980#endif
283 1981
1982#if EV_FEATURE_API
1983# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1984# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1985# define EV_INVOKE_PENDING invoke_cb (EV_A)
1986#else
1987# define EV_RELEASE_CB (void)0
1988# define EV_ACQUIRE_CB (void)0
1989# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1990#endif
1991
1992#define EVBREAK_RECURSE 0x80
1993
284/*****************************************************************************/ 1994/*****************************************************************************/
285 1995
1996#ifndef EV_HAVE_EV_TIME
286ev_tstamp 1997ev_tstamp
287ev_time (void) 1998ev_time (void) EV_NOEXCEPT
288{ 1999{
289#if EV_USE_REALTIME 2000#if EV_USE_REALTIME
2001 if (ecb_expect_true (have_realtime))
2002 {
290 struct timespec ts; 2003 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 2004 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 2005 return EV_TS_GET (ts);
293#else 2006 }
2007#endif
2008
294 struct timeval tv; 2009 struct timeval tv;
295 gettimeofday (&tv, 0); 2010 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 2011 return EV_TV_GET (tv);
297#endif
298} 2012}
2013#endif
299 2014
300inline ev_tstamp 2015inline_size ev_tstamp
301get_clock (void) 2016get_clock (void)
302{ 2017{
303#if EV_USE_MONOTONIC 2018#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 2019 if (ecb_expect_true (have_monotonic))
305 { 2020 {
306 struct timespec ts; 2021 struct timespec ts;
307 clock_gettime (CLOCK_MONOTONIC, &ts); 2022 clock_gettime (CLOCK_MONOTONIC, &ts);
308 return ts.tv_sec + ts.tv_nsec * 1e-9; 2023 return EV_TS_GET (ts);
309 } 2024 }
310#endif 2025#endif
311 2026
312 return ev_time (); 2027 return ev_time ();
313} 2028}
314 2029
315#if EV_MULTIPLICITY 2030#if EV_MULTIPLICITY
316ev_tstamp 2031ev_tstamp
317ev_now (EV_P) 2032ev_now (EV_P) EV_NOEXCEPT
318{ 2033{
319 return ev_rt_now; 2034 return ev_rt_now;
320} 2035}
321#endif 2036#endif
322 2037
323#define array_roundsize(type,n) (((n) | 4) & ~3) 2038void
2039ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2040{
2041 if (delay > EV_TS_CONST (0.))
2042 {
2043#if EV_USE_NANOSLEEP
2044 struct timespec ts;
2045
2046 EV_TS_SET (ts, delay);
2047 nanosleep (&ts, 0);
2048#elif defined _WIN32
2049 /* maybe this should round up, as ms is very low resolution */
2050 /* compared to select (µs) or nanosleep (ns) */
2051 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2052#else
2053 struct timeval tv;
2054
2055 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2056 /* something not guaranteed by newer posix versions, but guaranteed */
2057 /* by older ones */
2058 EV_TV_SET (tv, delay);
2059 select (0, 0, 0, 0, &tv);
2060#endif
2061 }
2062}
2063
2064/*****************************************************************************/
2065
2066#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2067
2068/* find a suitable new size for the given array, */
2069/* hopefully by rounding to a nice-to-malloc size */
2070inline_size int
2071array_nextsize (int elem, int cur, int cnt)
2072{
2073 int ncur = cur + 1;
2074
2075 do
2076 ncur <<= 1;
2077 while (cnt > ncur);
2078
2079 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2080 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2081 {
2082 ncur *= elem;
2083 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2084 ncur = ncur - sizeof (void *) * 4;
2085 ncur /= elem;
2086 }
2087
2088 return ncur;
2089}
2090
2091ecb_noinline ecb_cold
2092static void *
2093array_realloc (int elem, void *base, int *cur, int cnt)
2094{
2095 *cur = array_nextsize (elem, *cur, cnt);
2096 return ev_realloc (base, elem * *cur);
2097}
2098
2099#define array_needsize_noinit(base,offset,count)
2100
2101#define array_needsize_zerofill(base,offset,count) \
2102 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
324 2103
325#define array_needsize(type,base,cur,cnt,init) \ 2104#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 2105 if (ecb_expect_false ((cnt) > (cur))) \
327 { \ 2106 { \
328 int newcnt = cur; \ 2107 ecb_unused int ocur_ = (cur); \
329 do \ 2108 (base) = (type *)array_realloc \
330 { \ 2109 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 2110 init ((base), ocur_, ((cur) - ocur_)); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 2111 }
339 2112
2113#if 0
340#define array_slim(type,stem) \ 2114#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2115 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 2116 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2117 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2118 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2119 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 2120 }
2121#endif
347 2122
348#define array_free(stem, idx) \ 2123#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2124 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 2125
351/*****************************************************************************/ 2126/*****************************************************************************/
352 2127
2128/* dummy callback for pending events */
2129ecb_noinline
353static void 2130static void
354anfds_init (ANFD *base, int count) 2131pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 2132{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 2133}
365 2134
2135ecb_noinline
366void 2136void
367ev_feed_event (EV_P_ void *w, int revents) 2137ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
368{ 2138{
369 W w_ = (W)w; 2139 W w_ = (W)w;
2140 int pri = ABSPRI (w_);
370 2141
371 if (expect_false (w_->pending)) 2142 if (ecb_expect_false (w_->pending))
2143 pendings [pri][w_->pending - 1].events |= revents;
2144 else
372 { 2145 {
2146 w_->pending = ++pendingcnt [pri];
2147 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2148 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2149 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 2150 }
376 2151
377 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2152 pendingpri = NUMPRI - 1;
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 2153}
382 2154
383static void 2155inline_speed void
2156feed_reverse (EV_P_ W w)
2157{
2158 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2159 rfeeds [rfeedcnt++] = w;
2160}
2161
2162inline_size void
2163feed_reverse_done (EV_P_ int revents)
2164{
2165 do
2166 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2167 while (rfeedcnt);
2168}
2169
2170inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 2171queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 2172{
386 int i; 2173 int i;
387 2174
388 for (i = 0; i < eventcnt; ++i) 2175 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 2176 ev_feed_event (EV_A_ events [i], type);
390} 2177}
391 2178
2179/*****************************************************************************/
2180
392inline void 2181inline_speed void
393fd_event (EV_P_ int fd, int revents) 2182fd_event_nocheck (EV_P_ int fd, int revents)
394{ 2183{
395 ANFD *anfd = anfds + fd; 2184 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 2185 ev_io *w;
397 2186
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2187 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 2188 {
400 int ev = w->events & revents; 2189 int ev = w->events & revents;
401 2190
402 if (ev) 2191 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 2192 ev_feed_event (EV_A_ (W)w, ev);
404 } 2193 }
405} 2194}
406 2195
407void 2196/* do not submit kernel events for fds that have reify set */
2197/* because that means they changed while we were polling for new events */
2198inline_speed void
408ev_feed_fd_event (EV_P_ int fd, int revents) 2199fd_event (EV_P_ int fd, int revents)
409{ 2200{
2201 ANFD *anfd = anfds + fd;
2202
2203 if (ecb_expect_true (!anfd->reify))
410 fd_event (EV_A_ fd, revents); 2204 fd_event_nocheck (EV_A_ fd, revents);
411} 2205}
412 2206
413/*****************************************************************************/ 2207void
2208ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2209{
2210 if (fd >= 0 && fd < anfdmax)
2211 fd_event_nocheck (EV_A_ fd, revents);
2212}
414 2213
2214/* make sure the external fd watch events are in-sync */
2215/* with the kernel/libev internal state */
415inline void 2216inline_size void
416fd_reify (EV_P) 2217fd_reify (EV_P)
417{ 2218{
418 int i; 2219 int i;
419 2220
2221#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
420 for (i = 0; i < fdchangecnt; ++i) 2222 for (i = 0; i < fdchangecnt; ++i)
421 { 2223 {
422 int fd = fdchanges [i]; 2224 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 2225 ANFD *anfd = anfds + fd;
424 struct ev_io *w;
425 2226
426 int events = 0; 2227 if (anfd->reify & EV__IOFDSET && anfd->head)
427
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
429 events |= w->events;
430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 { 2228 {
2229 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2230
2231 if (handle != anfd->handle)
2232 {
434 unsigned long argp; 2233 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 2234
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2235 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2236
2237 /* handle changed, but fd didn't - we need to do it in two steps */
2238 backend_modify (EV_A_ fd, anfd->events, 0);
2239 anfd->events = 0;
2240 anfd->handle = handle;
2241 }
437 } 2242 }
2243 }
438#endif 2244#endif
2245
2246 for (i = 0; i < fdchangecnt; ++i)
2247 {
2248 int fd = fdchanges [i];
2249 ANFD *anfd = anfds + fd;
2250 ev_io *w;
2251
2252 unsigned char o_events = anfd->events;
2253 unsigned char o_reify = anfd->reify;
439 2254
440 anfd->reify = 0; 2255 anfd->reify = 0;
441 2256
442 method_modify (EV_A_ fd, anfd->events, events); 2257 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2258 {
443 anfd->events = events; 2259 anfd->events = 0;
2260
2261 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2262 anfd->events |= (unsigned char)w->events;
2263
2264 if (o_events != anfd->events)
2265 o_reify = EV__IOFDSET; /* actually |= */
2266 }
2267
2268 if (o_reify & EV__IOFDSET)
2269 backend_modify (EV_A_ fd, o_events, anfd->events);
444 } 2270 }
445 2271
446 fdchangecnt = 0; 2272 fdchangecnt = 0;
447} 2273}
448 2274
449static void 2275/* something about the given fd changed */
2276inline_size
2277void
450fd_change (EV_P_ int fd) 2278fd_change (EV_P_ int fd, int flags)
451{ 2279{
452 if (expect_false (anfds [fd].reify)) 2280 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 2281 anfds [fd].reify |= flags;
456 2282
2283 if (ecb_expect_true (!reify))
2284 {
457 ++fdchangecnt; 2285 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2286 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
459 fdchanges [fdchangecnt - 1] = fd; 2287 fdchanges [fdchangecnt - 1] = fd;
2288 }
460} 2289}
461 2290
462static void 2291/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2292inline_speed ecb_cold void
463fd_kill (EV_P_ int fd) 2293fd_kill (EV_P_ int fd)
464{ 2294{
465 struct ev_io *w; 2295 ev_io *w;
466 2296
467 while ((w = (struct ev_io *)anfds [fd].head)) 2297 while ((w = (ev_io *)anfds [fd].head))
468 { 2298 {
469 ev_io_stop (EV_A_ w); 2299 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2300 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 2301 }
472} 2302}
473 2303
474inline int 2304/* check whether the given fd is actually valid, for error recovery */
2305inline_size ecb_cold int
475fd_valid (int fd) 2306fd_valid (int fd)
476{ 2307{
477#ifdef _WIN32 2308#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 2309 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 2310#else
480 return fcntl (fd, F_GETFD) != -1; 2311 return fcntl (fd, F_GETFD) != -1;
481#endif 2312#endif
482} 2313}
483 2314
484/* called on EBADF to verify fds */ 2315/* called on EBADF to verify fds */
2316ecb_noinline ecb_cold
485static void 2317static void
486fd_ebadf (EV_P) 2318fd_ebadf (EV_P)
487{ 2319{
488 int fd; 2320 int fd;
489 2321
490 for (fd = 0; fd < anfdmax; ++fd) 2322 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 2323 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 2324 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 2325 fd_kill (EV_A_ fd);
494} 2326}
495 2327
496/* called on ENOMEM in select/poll to kill some fds and retry */ 2328/* called on ENOMEM in select/poll to kill some fds and retry */
2329ecb_noinline ecb_cold
497static void 2330static void
498fd_enomem (EV_P) 2331fd_enomem (EV_P)
499{ 2332{
500 int fd; 2333 int fd;
501 2334
502 for (fd = anfdmax; fd--; ) 2335 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 2336 if (anfds [fd].events)
504 { 2337 {
505 fd_kill (EV_A_ fd); 2338 fd_kill (EV_A_ fd);
506 return; 2339 break;
507 } 2340 }
508} 2341}
509 2342
510/* usually called after fork if method needs to re-arm all fds from scratch */ 2343/* usually called after fork if backend needs to re-arm all fds from scratch */
2344ecb_noinline
511static void 2345static void
512fd_rearm_all (EV_P) 2346fd_rearm_all (EV_P)
513{ 2347{
514 int fd; 2348 int fd;
515 2349
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 2350 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 2351 if (anfds [fd].events)
519 { 2352 {
520 anfds [fd].events = 0; 2353 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 2354 anfds [fd].emask = 0;
2355 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 2356 }
523} 2357}
524 2358
525/*****************************************************************************/ 2359/* used to prepare libev internal fd's */
526 2360/* this is not fork-safe */
527static void
528upheap (WT *heap, int k)
529{
530 WT w = heap [k];
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 }
538
539 heap [k] = w;
540 ((W)heap [k])->active = k + 1;
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566}
567
568inline void 2361inline_speed void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574
575/*****************************************************************************/
576
577typedef struct
578{
579 WL head;
580 sig_atomic_t volatile gotsig;
581} ANSIG;
582
583static ANSIG *signals;
584static int signalmax;
585
586static int sigpipe [2];
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589
590static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 2362fd_intern (int fd)
655{ 2363{
656#ifdef _WIN32 2364#ifdef _WIN32
657 int arg = 1; 2365 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2366 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
659#else 2367#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 2368 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 2369 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 2370#endif
663} 2371}
664 2372
2373/*****************************************************************************/
2374
2375/*
2376 * the heap functions want a real array index. array index 0 is guaranteed to not
2377 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2378 * the branching factor of the d-tree.
2379 */
2380
2381/*
2382 * at the moment we allow libev the luxury of two heaps,
2383 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2384 * which is more cache-efficient.
2385 * the difference is about 5% with 50000+ watchers.
2386 */
2387#if EV_USE_4HEAP
2388
2389#define DHEAP 4
2390#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2391#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2392#define UPHEAP_DONE(p,k) ((p) == (k))
2393
2394/* away from the root */
2395inline_speed void
2396downheap (ANHE *heap, int N, int k)
2397{
2398 ANHE he = heap [k];
2399 ANHE *E = heap + N + HEAP0;
2400
2401 for (;;)
2402 {
2403 ev_tstamp minat;
2404 ANHE *minpos;
2405 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2406
2407 /* find minimum child */
2408 if (ecb_expect_true (pos + DHEAP - 1 < E))
2409 {
2410 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2411 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2412 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2413 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2414 }
2415 else if (pos < E)
2416 {
2417 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2418 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2419 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2420 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2421 }
2422 else
2423 break;
2424
2425 if (ANHE_at (he) <= minat)
2426 break;
2427
2428 heap [k] = *minpos;
2429 ev_active (ANHE_w (*minpos)) = k;
2430
2431 k = minpos - heap;
2432 }
2433
2434 heap [k] = he;
2435 ev_active (ANHE_w (he)) = k;
2436}
2437
2438#else /* not 4HEAP */
2439
2440#define HEAP0 1
2441#define HPARENT(k) ((k) >> 1)
2442#define UPHEAP_DONE(p,k) (!(p))
2443
2444/* away from the root */
2445inline_speed void
2446downheap (ANHE *heap, int N, int k)
2447{
2448 ANHE he = heap [k];
2449
2450 for (;;)
2451 {
2452 int c = k << 1;
2453
2454 if (c >= N + HEAP0)
2455 break;
2456
2457 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2458 ? 1 : 0;
2459
2460 if (ANHE_at (he) <= ANHE_at (heap [c]))
2461 break;
2462
2463 heap [k] = heap [c];
2464 ev_active (ANHE_w (heap [k])) = k;
2465
2466 k = c;
2467 }
2468
2469 heap [k] = he;
2470 ev_active (ANHE_w (he)) = k;
2471}
2472#endif
2473
2474/* towards the root */
2475inline_speed void
2476upheap (ANHE *heap, int k)
2477{
2478 ANHE he = heap [k];
2479
2480 for (;;)
2481 {
2482 int p = HPARENT (k);
2483
2484 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2485 break;
2486
2487 heap [k] = heap [p];
2488 ev_active (ANHE_w (heap [k])) = k;
2489 k = p;
2490 }
2491
2492 heap [k] = he;
2493 ev_active (ANHE_w (he)) = k;
2494}
2495
2496/* move an element suitably so it is in a correct place */
2497inline_size void
2498adjustheap (ANHE *heap, int N, int k)
2499{
2500 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2501 upheap (heap, k);
2502 else
2503 downheap (heap, N, k);
2504}
2505
2506/* rebuild the heap: this function is used only once and executed rarely */
2507inline_size void
2508reheap (ANHE *heap, int N)
2509{
2510 int i;
2511
2512 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2513 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2514 for (i = 0; i < N; ++i)
2515 upheap (heap, i + HEAP0);
2516}
2517
2518/*****************************************************************************/
2519
2520/* associate signal watchers to a signal signal */
2521typedef struct
2522{
2523 EV_ATOMIC_T pending;
2524#if EV_MULTIPLICITY
2525 EV_P;
2526#endif
2527 WL head;
2528} ANSIG;
2529
2530static ANSIG signals [EV_NSIG - 1];
2531
2532/*****************************************************************************/
2533
2534#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2535
2536ecb_noinline ecb_cold
665static void 2537static void
666siginit (EV_P) 2538evpipe_init (EV_P)
667{ 2539{
668 fd_intern (sigpipe [0]); 2540 if (!ev_is_active (&pipe_w))
2541 {
2542 int fds [2];
2543
2544# if EV_USE_EVENTFD
2545 fds [0] = -1;
2546 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2547 if (fds [1] < 0 && errno == EINVAL)
2548 fds [1] = eventfd (0, 0);
2549
2550 if (fds [1] < 0)
2551# endif
2552 {
2553 while (pipe (fds))
2554 ev_syserr ("(libev) error creating signal/async pipe");
2555
2556 fd_intern (fds [0]);
2557 }
2558
2559 evpipe [0] = fds [0];
2560
2561 if (evpipe [1] < 0)
2562 evpipe [1] = fds [1]; /* first call, set write fd */
2563 else
2564 {
2565 /* on subsequent calls, do not change evpipe [1] */
2566 /* so that evpipe_write can always rely on its value. */
2567 /* this branch does not do anything sensible on windows, */
2568 /* so must not be executed on windows */
2569
2570 dup2 (fds [1], evpipe [1]);
2571 close (fds [1]);
2572 }
2573
669 fd_intern (sigpipe [1]); 2574 fd_intern (evpipe [1]);
670 2575
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 2576 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
672 ev_io_start (EV_A_ &sigev); 2577 ev_io_start (EV_A_ &pipe_w);
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2578 ev_unref (EV_A); /* watcher should not keep loop alive */
2579 }
2580}
2581
2582inline_speed void
2583evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2584{
2585 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2586
2587 if (ecb_expect_true (*flag))
2588 return;
2589
2590 *flag = 1;
2591 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2592
2593 pipe_write_skipped = 1;
2594
2595 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2596
2597 if (pipe_write_wanted)
2598 {
2599 int old_errno;
2600
2601 pipe_write_skipped = 0;
2602 ECB_MEMORY_FENCE_RELEASE;
2603
2604 old_errno = errno; /* save errno because write will clobber it */
2605
2606#if EV_USE_EVENTFD
2607 if (evpipe [0] < 0)
2608 {
2609 uint64_t counter = 1;
2610 write (evpipe [1], &counter, sizeof (uint64_t));
2611 }
2612 else
2613#endif
2614 {
2615#ifdef _WIN32
2616 WSABUF buf;
2617 DWORD sent;
2618 buf.buf = (char *)&buf;
2619 buf.len = 1;
2620 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2621#else
2622 write (evpipe [1], &(evpipe [1]), 1);
2623#endif
2624 }
2625
2626 errno = old_errno;
2627 }
2628}
2629
2630/* called whenever the libev signal pipe */
2631/* got some events (signal, async) */
2632static void
2633pipecb (EV_P_ ev_io *iow, int revents)
2634{
2635 int i;
2636
2637 if (revents & EV_READ)
2638 {
2639#if EV_USE_EVENTFD
2640 if (evpipe [0] < 0)
2641 {
2642 uint64_t counter;
2643 read (evpipe [1], &counter, sizeof (uint64_t));
2644 }
2645 else
2646#endif
2647 {
2648 char dummy[4];
2649#ifdef _WIN32
2650 WSABUF buf;
2651 DWORD recvd;
2652 DWORD flags = 0;
2653 buf.buf = dummy;
2654 buf.len = sizeof (dummy);
2655 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2656#else
2657 read (evpipe [0], &dummy, sizeof (dummy));
2658#endif
2659 }
2660 }
2661
2662 pipe_write_skipped = 0;
2663
2664 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2665
2666#if EV_SIGNAL_ENABLE
2667 if (sig_pending)
2668 {
2669 sig_pending = 0;
2670
2671 ECB_MEMORY_FENCE;
2672
2673 for (i = EV_NSIG - 1; i--; )
2674 if (ecb_expect_false (signals [i].pending))
2675 ev_feed_signal_event (EV_A_ i + 1);
2676 }
2677#endif
2678
2679#if EV_ASYNC_ENABLE
2680 if (async_pending)
2681 {
2682 async_pending = 0;
2683
2684 ECB_MEMORY_FENCE;
2685
2686 for (i = asynccnt; i--; )
2687 if (asyncs [i]->sent)
2688 {
2689 asyncs [i]->sent = 0;
2690 ECB_MEMORY_FENCE_RELEASE;
2691 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2692 }
2693 }
2694#endif
674} 2695}
675 2696
676/*****************************************************************************/ 2697/*****************************************************************************/
677 2698
678static struct ev_child *childs [PID_HASHSIZE]; 2699void
2700ev_feed_signal (int signum) EV_NOEXCEPT
2701{
2702#if EV_MULTIPLICITY
2703 EV_P;
2704 ECB_MEMORY_FENCE_ACQUIRE;
2705 EV_A = signals [signum - 1].loop;
679 2706
2707 if (!EV_A)
2708 return;
2709#endif
2710
2711 signals [signum - 1].pending = 1;
2712 evpipe_write (EV_A_ &sig_pending);
2713}
2714
2715static void
2716ev_sighandler (int signum)
2717{
680#ifndef _WIN32 2718#ifdef _WIN32
2719 signal (signum, ev_sighandler);
2720#endif
681 2721
2722 ev_feed_signal (signum);
2723}
2724
2725ecb_noinline
2726void
2727ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2728{
2729 WL w;
2730
2731 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2732 return;
2733
2734 --signum;
2735
2736#if EV_MULTIPLICITY
2737 /* it is permissible to try to feed a signal to the wrong loop */
2738 /* or, likely more useful, feeding a signal nobody is waiting for */
2739
2740 if (ecb_expect_false (signals [signum].loop != EV_A))
2741 return;
2742#endif
2743
2744 signals [signum].pending = 0;
2745 ECB_MEMORY_FENCE_RELEASE;
2746
2747 for (w = signals [signum].head; w; w = w->next)
2748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2749}
2750
2751#if EV_USE_SIGNALFD
2752static void
2753sigfdcb (EV_P_ ev_io *iow, int revents)
2754{
2755 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2756
2757 for (;;)
2758 {
2759 ssize_t res = read (sigfd, si, sizeof (si));
2760
2761 /* not ISO-C, as res might be -1, but works with SuS */
2762 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2763 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2764
2765 if (res < (ssize_t)sizeof (si))
2766 break;
2767 }
2768}
2769#endif
2770
2771#endif
2772
2773/*****************************************************************************/
2774
2775#if EV_CHILD_ENABLE
2776static WL childs [EV_PID_HASHSIZE];
2777
682static struct ev_signal childev; 2778static ev_signal childev;
2779
2780#ifndef WIFCONTINUED
2781# define WIFCONTINUED(status) 0
2782#endif
2783
2784/* handle a single child status event */
2785inline_speed void
2786child_reap (EV_P_ int chain, int pid, int status)
2787{
2788 ev_child *w;
2789 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2790
2791 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2792 {
2793 if ((w->pid == pid || !w->pid)
2794 && (!traced || (w->flags & 1)))
2795 {
2796 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2797 w->rpid = pid;
2798 w->rstatus = status;
2799 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2800 }
2801 }
2802}
683 2803
684#ifndef WCONTINUED 2804#ifndef WCONTINUED
685# define WCONTINUED 0 2805# define WCONTINUED 0
686#endif 2806#endif
687 2807
2808/* called on sigchld etc., calls waitpid */
688static void 2809static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 2810childcb (EV_P_ ev_signal *sw, int revents)
705{ 2811{
706 int pid, status; 2812 int pid, status;
707 2813
2814 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2815 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 2816 if (!WCONTINUED
2817 || errno != EINVAL
2818 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2819 return;
2820
710 /* make sure we are called again until all childs have been reaped */ 2821 /* make sure we are called again until all children have been reaped */
2822 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2823 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 2824
713 child_reap (EV_A_ sw, pid, pid, status); 2825 child_reap (EV_A_ pid, pid, status);
2826 if ((EV_PID_HASHSIZE) > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2827 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 2828}
717 2829
718#endif 2830#endif
719 2831
720/*****************************************************************************/ 2832/*****************************************************************************/
721 2833
2834#if EV_USE_IOCP
2835# include "ev_iocp.c"
2836#endif
722#if EV_USE_PORT 2837#if EV_USE_PORT
723# include "ev_port.c" 2838# include "ev_port.c"
724#endif 2839#endif
725#if EV_USE_KQUEUE 2840#if EV_USE_KQUEUE
726# include "ev_kqueue.c" 2841# include "ev_kqueue.c"
727#endif 2842#endif
728#if EV_USE_EPOLL 2843#if EV_USE_EPOLL
729# include "ev_epoll.c" 2844# include "ev_epoll.c"
730#endif 2845#endif
2846#if EV_USE_LINUXAIO
2847# include "ev_linuxaio.c"
2848#endif
2849#if EV_USE_IOURING
2850# include "ev_iouring.c"
2851#endif
731#if EV_USE_POLL 2852#if EV_USE_POLL
732# include "ev_poll.c" 2853# include "ev_poll.c"
733#endif 2854#endif
734#if EV_USE_SELECT 2855#if EV_USE_SELECT
735# include "ev_select.c" 2856# include "ev_select.c"
736#endif 2857#endif
737 2858
738int 2859ecb_cold int
739ev_version_major (void) 2860ev_version_major (void) EV_NOEXCEPT
740{ 2861{
741 return EV_VERSION_MAJOR; 2862 return EV_VERSION_MAJOR;
742} 2863}
743 2864
744int 2865ecb_cold int
745ev_version_minor (void) 2866ev_version_minor (void) EV_NOEXCEPT
746{ 2867{
747 return EV_VERSION_MINOR; 2868 return EV_VERSION_MINOR;
748} 2869}
749 2870
750/* return true if we are running with elevated privileges and should ignore env variables */ 2871/* return true if we are running with elevated privileges and should ignore env variables */
751static int 2872inline_size ecb_cold int
752enable_secure (void) 2873enable_secure (void)
753{ 2874{
754#ifdef _WIN32 2875#ifdef _WIN32
755 return 0; 2876 return 0;
756#else 2877#else
757 return getuid () != geteuid () 2878 return getuid () != geteuid ()
758 || getgid () != getegid (); 2879 || getgid () != getegid ();
759#endif 2880#endif
760} 2881}
761 2882
2883ecb_cold
762unsigned int 2884unsigned int
763ev_method (EV_P) 2885ev_supported_backends (void) EV_NOEXCEPT
764{ 2886{
765 return method; 2887 unsigned int flags = 0;
766}
767 2888
2889 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2890 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2891 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2892 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2893 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2894 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2895 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2896
2897 return flags;
2898}
2899
2900ecb_cold
2901unsigned int
2902ev_recommended_backends (void) EV_NOEXCEPT
2903{
2904 unsigned int flags = ev_supported_backends ();
2905
2906#ifndef __NetBSD__
2907 /* kqueue is borked on everything but netbsd apparently */
2908 /* it usually doesn't work correctly on anything but sockets and pipes */
2909 flags &= ~EVBACKEND_KQUEUE;
2910#endif
2911#ifdef __APPLE__
2912 /* only select works correctly on that "unix-certified" platform */
2913 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2914 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2915#endif
2916#ifdef __FreeBSD__
2917 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2918#endif
2919
2920 /* TODO: linuxaio is very experimental */
2921#if !EV_RECOMMEND_LINUXAIO
2922 flags &= ~EVBACKEND_LINUXAIO;
2923#endif
2924 /* TODO: linuxaio is super experimental */
2925#if !EV_RECOMMEND_IOURING
2926 flags &= ~EVBACKEND_IOURING;
2927#endif
2928
2929 return flags;
2930}
2931
2932ecb_cold
2933unsigned int
2934ev_embeddable_backends (void) EV_NOEXCEPT
2935{
2936 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2937
2938 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2939 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2940 flags &= ~EVBACKEND_EPOLL;
2941
2942 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2943
2944 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2945 * because our backend_fd is the epoll fd we need as fallback.
2946 * if the kernel ever is fixed, this might change...
2947 */
2948
2949 return flags;
2950}
2951
2952unsigned int
2953ev_backend (EV_P) EV_NOEXCEPT
2954{
2955 return backend;
2956}
2957
2958#if EV_FEATURE_API
2959unsigned int
2960ev_iteration (EV_P) EV_NOEXCEPT
2961{
2962 return loop_count;
2963}
2964
2965unsigned int
2966ev_depth (EV_P) EV_NOEXCEPT
2967{
2968 return loop_depth;
2969}
2970
2971void
2972ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2973{
2974 io_blocktime = interval;
2975}
2976
2977void
2978ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2979{
2980 timeout_blocktime = interval;
2981}
2982
2983void
2984ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2985{
2986 userdata = data;
2987}
2988
2989void *
2990ev_userdata (EV_P) EV_NOEXCEPT
2991{
2992 return userdata;
2993}
2994
2995void
2996ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2997{
2998 invoke_cb = invoke_pending_cb;
2999}
3000
3001void
3002ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3003{
3004 release_cb = release;
3005 acquire_cb = acquire;
3006}
3007#endif
3008
3009/* initialise a loop structure, must be zero-initialised */
3010ecb_noinline ecb_cold
768static void 3011static void
769loop_init (EV_P_ unsigned int flags) 3012loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
770{ 3013{
771 if (!method) 3014 if (!backend)
772 { 3015 {
3016 origflags = flags;
3017
3018#if EV_USE_REALTIME
3019 if (!have_realtime)
3020 {
3021 struct timespec ts;
3022
3023 if (!clock_gettime (CLOCK_REALTIME, &ts))
3024 have_realtime = 1;
3025 }
3026#endif
3027
773#if EV_USE_MONOTONIC 3028#if EV_USE_MONOTONIC
3029 if (!have_monotonic)
774 { 3030 {
775 struct timespec ts; 3031 struct timespec ts;
3032
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3033 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 3034 have_monotonic = 1;
778 } 3035 }
779#endif 3036#endif
780 3037
781 ev_rt_now = ev_time (); 3038 /* pid check not overridable via env */
782 mn_now = get_clock (); 3039#ifndef _WIN32
783 now_floor = mn_now; 3040 if (flags & EVFLAG_FORKCHECK)
784 rtmn_diff = ev_rt_now - mn_now; 3041 curpid = getpid ();
3042#endif
785 3043
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 3044 if (!(flags & EVFLAG_NOENV)
3045 && !enable_secure ()
3046 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 3047 flags = atoi (getenv ("LIBEV_FLAGS"));
788 3048
789 if (!(flags & 0x0000ffff)) 3049 ev_rt_now = ev_time ();
790 flags |= 0x0000ffff; 3050 mn_now = get_clock ();
3051 now_floor = mn_now;
3052 rtmn_diff = ev_rt_now - mn_now;
3053#if EV_FEATURE_API
3054 invoke_cb = ev_invoke_pending;
3055#endif
791 3056
792 method = 0; 3057 io_blocktime = 0.;
3058 timeout_blocktime = 0.;
3059 backend = 0;
3060 backend_fd = -1;
3061 sig_pending = 0;
3062#if EV_ASYNC_ENABLE
3063 async_pending = 0;
3064#endif
3065 pipe_write_skipped = 0;
3066 pipe_write_wanted = 0;
3067 evpipe [0] = -1;
3068 evpipe [1] = -1;
3069#if EV_USE_INOTIFY
3070 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3071#endif
3072#if EV_USE_SIGNALFD
3073 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3074#endif
3075
3076 if (!(flags & EVBACKEND_MASK))
3077 flags |= ev_recommended_backends ();
3078
3079#if EV_USE_IOCP
3080 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3081#endif
793#if EV_USE_PORT 3082#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 3083 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 3084#endif
796#if EV_USE_KQUEUE 3085#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 3086 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3087#endif
3088#if EV_USE_IOURING
3089 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3090#endif
3091#if EV_USE_LINUXAIO
3092 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
798#endif 3093#endif
799#if EV_USE_EPOLL 3094#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 3095 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 3096#endif
802#if EV_USE_POLL 3097#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 3098 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 3099#endif
805#if EV_USE_SELECT 3100#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 3101 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
807#endif 3102#endif
808 3103
3104 ev_prepare_init (&pending_w, pendingcb);
3105
3106#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
809 ev_init (&sigev, sigcb); 3107 ev_init (&pipe_w, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 3108 ev_set_priority (&pipe_w, EV_MAXPRI);
3109#endif
811 } 3110 }
812} 3111}
813 3112
3113/* free up a loop structure */
3114ecb_cold
814void 3115void
815loop_destroy (EV_P) 3116ev_loop_destroy (EV_P)
816{ 3117{
817 int i; 3118 int i;
818 3119
3120#if EV_MULTIPLICITY
3121 /* mimic free (0) */
3122 if (!EV_A)
3123 return;
3124#endif
3125
3126#if EV_CLEANUP_ENABLE
3127 /* queue cleanup watchers (and execute them) */
3128 if (ecb_expect_false (cleanupcnt))
3129 {
3130 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3131 EV_INVOKE_PENDING;
3132 }
3133#endif
3134
3135#if EV_CHILD_ENABLE
3136 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3137 {
3138 ev_ref (EV_A); /* child watcher */
3139 ev_signal_stop (EV_A_ &childev);
3140 }
3141#endif
3142
3143 if (ev_is_active (&pipe_w))
3144 {
3145 /*ev_ref (EV_A);*/
3146 /*ev_io_stop (EV_A_ &pipe_w);*/
3147
3148 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3149 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3150 }
3151
3152#if EV_USE_SIGNALFD
3153 if (ev_is_active (&sigfd_w))
3154 close (sigfd);
3155#endif
3156
3157#if EV_USE_INOTIFY
3158 if (fs_fd >= 0)
3159 close (fs_fd);
3160#endif
3161
3162 if (backend_fd >= 0)
3163 close (backend_fd);
3164
3165#if EV_USE_IOCP
3166 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3167#endif
819#if EV_USE_PORT 3168#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 3169 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 3170#endif
822#if EV_USE_KQUEUE 3171#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 3172 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3173#endif
3174#if EV_USE_IOURING
3175 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3176#endif
3177#if EV_USE_LINUXAIO
3178 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
824#endif 3179#endif
825#if EV_USE_EPOLL 3180#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 3181 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 3182#endif
828#if EV_USE_POLL 3183#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 3184 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 3185#endif
831#if EV_USE_SELECT 3186#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 3187 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
833#endif 3188#endif
834 3189
835 for (i = NUMPRI; i--; ) 3190 for (i = NUMPRI; i--; )
3191 {
836 array_free (pending, [i]); 3192 array_free (pending, [i]);
3193#if EV_IDLE_ENABLE
3194 array_free (idle, [i]);
3195#endif
3196 }
3197
3198 ev_free (anfds); anfds = 0; anfdmax = 0;
837 3199
838 /* have to use the microsoft-never-gets-it-right macro */ 3200 /* have to use the microsoft-never-gets-it-right macro */
3201 array_free (rfeed, EMPTY);
839 array_free (fdchange, EMPTY0); 3202 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 3203 array_free (timer, EMPTY);
841#if EV_PERIODICS 3204#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 3205 array_free (periodic, EMPTY);
843#endif 3206#endif
3207#if EV_FORK_ENABLE
3208 array_free (fork, EMPTY);
3209#endif
3210#if EV_CLEANUP_ENABLE
844 array_free (idle, EMPTY0); 3211 array_free (cleanup, EMPTY);
3212#endif
845 array_free (prepare, EMPTY0); 3213 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 3214 array_free (check, EMPTY);
3215#if EV_ASYNC_ENABLE
3216 array_free (async, EMPTY);
3217#endif
847 3218
848 method = 0; 3219 backend = 0;
849}
850 3220
3221#if EV_MULTIPLICITY
3222 if (ev_is_default_loop (EV_A))
3223#endif
3224 ev_default_loop_ptr = 0;
3225#if EV_MULTIPLICITY
3226 else
3227 ev_free (EV_A);
3228#endif
3229}
3230
3231#if EV_USE_INOTIFY
3232inline_size void infy_fork (EV_P);
3233#endif
3234
3235inline_size void
3236loop_fork (EV_P)
3237{
3238#if EV_USE_PORT
3239 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3240#endif
3241#if EV_USE_KQUEUE
3242 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3243#endif
3244#if EV_USE_IOURING
3245 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3246#endif
3247#if EV_USE_LINUXAIO
3248 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3249#endif
3250#if EV_USE_EPOLL
3251 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3252#endif
3253#if EV_USE_INOTIFY
3254 infy_fork (EV_A);
3255#endif
3256
3257#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3258 if (ev_is_active (&pipe_w) && postfork != 2)
3259 {
3260 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3261
3262 ev_ref (EV_A);
3263 ev_io_stop (EV_A_ &pipe_w);
3264
3265 if (evpipe [0] >= 0)
3266 EV_WIN32_CLOSE_FD (evpipe [0]);
3267
3268 evpipe_init (EV_A);
3269 /* iterate over everything, in case we missed something before */
3270 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3271 }
3272#endif
3273
3274 postfork = 0;
3275}
3276
3277#if EV_MULTIPLICITY
3278
3279ecb_cold
3280struct ev_loop *
3281ev_loop_new (unsigned int flags) EV_NOEXCEPT
3282{
3283 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3284
3285 memset (EV_A, 0, sizeof (struct ev_loop));
3286 loop_init (EV_A_ flags);
3287
3288 if (ev_backend (EV_A))
3289 return EV_A;
3290
3291 ev_free (EV_A);
3292 return 0;
3293}
3294
3295#endif /* multiplicity */
3296
3297#if EV_VERIFY
3298ecb_noinline ecb_cold
851static void 3299static void
852loop_fork (EV_P) 3300verify_watcher (EV_P_ W w)
853{ 3301{
854#if EV_USE_PORT 3302 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 3303
3304 if (w->pending)
3305 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3306}
3307
3308ecb_noinline ecb_cold
3309static void
3310verify_heap (EV_P_ ANHE *heap, int N)
3311{
3312 int i;
3313
3314 for (i = HEAP0; i < N + HEAP0; ++i)
3315 {
3316 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3317 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3318 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3319
3320 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3321 }
3322}
3323
3324ecb_noinline ecb_cold
3325static void
3326array_verify (EV_P_ W *ws, int cnt)
3327{
3328 while (cnt--)
3329 {
3330 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3331 verify_watcher (EV_A_ ws [cnt]);
3332 }
3333}
3334#endif
3335
3336#if EV_FEATURE_API
3337void ecb_cold
3338ev_verify (EV_P) EV_NOEXCEPT
3339{
3340#if EV_VERIFY
3341 int i;
3342 WL w, w2;
3343
3344 assert (activecnt >= -1);
3345
3346 assert (fdchangemax >= fdchangecnt);
3347 for (i = 0; i < fdchangecnt; ++i)
3348 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3349
3350 assert (anfdmax >= 0);
3351 for (i = 0; i < anfdmax; ++i)
3352 {
3353 int j = 0;
3354
3355 for (w = w2 = anfds [i].head; w; w = w->next)
3356 {
3357 verify_watcher (EV_A_ (W)w);
3358
3359 if (j++ & 1)
3360 {
3361 assert (("libev: io watcher list contains a loop", w != w2));
3362 w2 = w2->next;
3363 }
3364
3365 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3366 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3367 }
3368 }
3369
3370 assert (timermax >= timercnt);
3371 verify_heap (EV_A_ timers, timercnt);
3372
3373#if EV_PERIODIC_ENABLE
3374 assert (periodicmax >= periodiccnt);
3375 verify_heap (EV_A_ periodics, periodiccnt);
3376#endif
3377
3378 for (i = NUMPRI; i--; )
3379 {
3380 assert (pendingmax [i] >= pendingcnt [i]);
3381#if EV_IDLE_ENABLE
3382 assert (idleall >= 0);
3383 assert (idlemax [i] >= idlecnt [i]);
3384 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3385#endif
3386 }
3387
3388#if EV_FORK_ENABLE
3389 assert (forkmax >= forkcnt);
3390 array_verify (EV_A_ (W *)forks, forkcnt);
3391#endif
3392
3393#if EV_CLEANUP_ENABLE
3394 assert (cleanupmax >= cleanupcnt);
3395 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3396#endif
3397
3398#if EV_ASYNC_ENABLE
3399 assert (asyncmax >= asynccnt);
3400 array_verify (EV_A_ (W *)asyncs, asynccnt);
3401#endif
3402
3403#if EV_PREPARE_ENABLE
3404 assert (preparemax >= preparecnt);
3405 array_verify (EV_A_ (W *)prepares, preparecnt);
3406#endif
3407
3408#if EV_CHECK_ENABLE
3409 assert (checkmax >= checkcnt);
3410 array_verify (EV_A_ (W *)checks, checkcnt);
3411#endif
3412
3413# if 0
3414#if EV_CHILD_ENABLE
3415 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3416 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3417#endif
856#endif 3418# endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif 3419#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 3420}
3421#endif
881 3422
882#if EV_MULTIPLICITY 3423#if EV_MULTIPLICITY
3424ecb_cold
883struct ev_loop * 3425struct ev_loop *
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags)
916#else 3426#else
917int 3427int
3428#endif
918ev_default_loop (unsigned int flags) 3429ev_default_loop (unsigned int flags) EV_NOEXCEPT
919#endif
920{ 3430{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 3431 if (!ev_default_loop_ptr)
926 { 3432 {
927#if EV_MULTIPLICITY 3433#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3434 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 3435#else
930 ev_default_loop_ptr = 1; 3436 ev_default_loop_ptr = 1;
931#endif 3437#endif
932 3438
933 loop_init (EV_A_ flags); 3439 loop_init (EV_A_ flags);
934 3440
935 if (ev_method (EV_A)) 3441 if (ev_backend (EV_A))
936 { 3442 {
937 siginit (EV_A); 3443#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 3444 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 3445 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 3446 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3447 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 3448#endif
949 3453
950 return ev_default_loop_ptr; 3454 return ev_default_loop_ptr;
951} 3455}
952 3456
953void 3457void
954ev_default_destroy (void) 3458ev_loop_fork (EV_P) EV_NOEXCEPT
955{ 3459{
956#if EV_MULTIPLICITY 3460 postfork = 1;
957 struct ev_loop *loop = ev_default_loop_ptr; 3461}
3462
3463/*****************************************************************************/
3464
3465void
3466ev_invoke (EV_P_ void *w, int revents)
3467{
3468 EV_CB_INVOKE ((W)w, revents);
3469}
3470
3471unsigned int
3472ev_pending_count (EV_P) EV_NOEXCEPT
3473{
3474 int pri;
3475 unsigned int count = 0;
3476
3477 for (pri = NUMPRI; pri--; )
3478 count += pendingcnt [pri];
3479
3480 return count;
3481}
3482
3483ecb_noinline
3484void
3485ev_invoke_pending (EV_P)
3486{
3487 pendingpri = NUMPRI;
3488
3489 do
3490 {
3491 --pendingpri;
3492
3493 /* pendingpri possibly gets modified in the inner loop */
3494 while (pendingcnt [pendingpri])
3495 {
3496 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3497
3498 p->w->pending = 0;
3499 EV_CB_INVOKE (p->w, p->events);
3500 EV_FREQUENT_CHECK;
3501 }
3502 }
3503 while (pendingpri);
3504}
3505
3506#if EV_IDLE_ENABLE
3507/* make idle watchers pending. this handles the "call-idle */
3508/* only when higher priorities are idle" logic */
3509inline_size void
3510idle_reify (EV_P)
3511{
3512 if (ecb_expect_false (idleall))
3513 {
3514 int pri;
3515
3516 for (pri = NUMPRI; pri--; )
3517 {
3518 if (pendingcnt [pri])
3519 break;
3520
3521 if (idlecnt [pri])
3522 {
3523 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3524 break;
3525 }
3526 }
3527 }
3528}
3529#endif
3530
3531/* make timers pending */
3532inline_size void
3533timers_reify (EV_P)
3534{
3535 EV_FREQUENT_CHECK;
3536
3537 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3538 {
3539 do
3540 {
3541 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3542
3543 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3544
3545 /* first reschedule or stop timer */
3546 if (w->repeat)
3547 {
3548 ev_at (w) += w->repeat;
3549 if (ev_at (w) < mn_now)
3550 ev_at (w) = mn_now;
3551
3552 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3553
3554 ANHE_at_cache (timers [HEAP0]);
3555 downheap (timers, timercnt, HEAP0);
3556 }
3557 else
3558 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3559
3560 EV_FREQUENT_CHECK;
3561 feed_reverse (EV_A_ (W)w);
3562 }
3563 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3564
3565 feed_reverse_done (EV_A_ EV_TIMER);
3566 }
3567}
3568
3569#if EV_PERIODIC_ENABLE
3570
3571ecb_noinline
3572static void
3573periodic_recalc (EV_P_ ev_periodic *w)
3574{
3575 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3576 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3577
3578 /* the above almost always errs on the low side */
3579 while (at <= ev_rt_now)
3580 {
3581 ev_tstamp nat = at + w->interval;
3582
3583 /* when resolution fails us, we use ev_rt_now */
3584 if (ecb_expect_false (nat == at))
3585 {
3586 at = ev_rt_now;
3587 break;
3588 }
3589
3590 at = nat;
3591 }
3592
3593 ev_at (w) = at;
3594}
3595
3596/* make periodics pending */
3597inline_size void
3598periodics_reify (EV_P)
3599{
3600 EV_FREQUENT_CHECK;
3601
3602 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3603 {
3604 do
3605 {
3606 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3607
3608 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3609
3610 /* first reschedule or stop timer */
3611 if (w->reschedule_cb)
3612 {
3613 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3614
3615 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3616
3617 ANHE_at_cache (periodics [HEAP0]);
3618 downheap (periodics, periodiccnt, HEAP0);
3619 }
3620 else if (w->interval)
3621 {
3622 periodic_recalc (EV_A_ w);
3623 ANHE_at_cache (periodics [HEAP0]);
3624 downheap (periodics, periodiccnt, HEAP0);
3625 }
3626 else
3627 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3628
3629 EV_FREQUENT_CHECK;
3630 feed_reverse (EV_A_ (W)w);
3631 }
3632 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3633
3634 feed_reverse_done (EV_A_ EV_PERIODIC);
3635 }
3636}
3637
3638/* simply recalculate all periodics */
3639/* TODO: maybe ensure that at least one event happens when jumping forward? */
3640ecb_noinline ecb_cold
3641static void
3642periodics_reschedule (EV_P)
3643{
3644 int i;
3645
3646 /* adjust periodics after time jump */
3647 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3648 {
3649 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3650
3651 if (w->reschedule_cb)
3652 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3653 else if (w->interval)
3654 periodic_recalc (EV_A_ w);
3655
3656 ANHE_at_cache (periodics [i]);
3657 }
3658
3659 reheap (periodics, periodiccnt);
3660}
3661#endif
3662
3663/* adjust all timers by a given offset */
3664ecb_noinline ecb_cold
3665static void
3666timers_reschedule (EV_P_ ev_tstamp adjust)
3667{
3668 int i;
3669
3670 for (i = 0; i < timercnt; ++i)
3671 {
3672 ANHE *he = timers + i + HEAP0;
3673 ANHE_w (*he)->at += adjust;
3674 ANHE_at_cache (*he);
3675 }
3676}
3677
3678/* fetch new monotonic and realtime times from the kernel */
3679/* also detect if there was a timejump, and act accordingly */
3680inline_speed void
3681time_update (EV_P_ ev_tstamp max_block)
3682{
3683#if EV_USE_MONOTONIC
3684 if (ecb_expect_true (have_monotonic))
3685 {
3686 int i;
3687 ev_tstamp odiff = rtmn_diff;
3688
3689 mn_now = get_clock ();
3690
3691 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3692 /* interpolate in the meantime */
3693 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3694 {
3695 ev_rt_now = rtmn_diff + mn_now;
3696 return;
3697 }
3698
3699 now_floor = mn_now;
3700 ev_rt_now = ev_time ();
3701
3702 /* loop a few times, before making important decisions.
3703 * on the choice of "4": one iteration isn't enough,
3704 * in case we get preempted during the calls to
3705 * ev_time and get_clock. a second call is almost guaranteed
3706 * to succeed in that case, though. and looping a few more times
3707 * doesn't hurt either as we only do this on time-jumps or
3708 * in the unlikely event of having been preempted here.
3709 */
3710 for (i = 4; --i; )
3711 {
3712 ev_tstamp diff;
3713 rtmn_diff = ev_rt_now - mn_now;
3714
3715 diff = odiff - rtmn_diff;
3716
3717 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3718 return; /* all is well */
3719
3720 ev_rt_now = ev_time ();
3721 mn_now = get_clock ();
3722 now_floor = mn_now;
3723 }
3724
3725 /* no timer adjustment, as the monotonic clock doesn't jump */
3726 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3727# if EV_PERIODIC_ENABLE
3728 periodics_reschedule (EV_A);
3729# endif
3730 }
3731 else
3732#endif
3733 {
3734 ev_rt_now = ev_time ();
3735
3736 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
3737 {
3738 /* adjust timers. this is easy, as the offset is the same for all of them */
3739 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3740#if EV_PERIODIC_ENABLE
3741 periodics_reschedule (EV_A);
3742#endif
3743 }
3744
3745 mn_now = ev_rt_now;
3746 }
3747}
3748
3749int
3750ev_run (EV_P_ int flags)
3751{
3752#if EV_FEATURE_API
3753 ++loop_depth;
3754#endif
3755
3756 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3757
3758 loop_done = EVBREAK_CANCEL;
3759
3760 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3761
3762 do
3763 {
3764#if EV_VERIFY >= 2
3765 ev_verify (EV_A);
958#endif 3766#endif
959 3767
960#ifndef _WIN32 3768#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 3769 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
962 ev_signal_stop (EV_A_ &childev); 3770 if (ecb_expect_false (getpid () != curpid))
963#endif 3771 {
964 3772 curpid = getpid ();
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A);
972}
973
974void
975ev_default_fork (void)
976{
977#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr;
979#endif
980
981 if (method)
982 postfork = 1; 3773 postfork = 1;
3774 }
3775#endif
3776
3777#if EV_FORK_ENABLE
3778 /* we might have forked, so queue fork handlers */
3779 if (ecb_expect_false (postfork))
3780 if (forkcnt)
3781 {
3782 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3783 EV_INVOKE_PENDING;
3784 }
3785#endif
3786
3787#if EV_PREPARE_ENABLE
3788 /* queue prepare watchers (and execute them) */
3789 if (ecb_expect_false (preparecnt))
3790 {
3791 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3792 EV_INVOKE_PENDING;
3793 }
3794#endif
3795
3796 if (ecb_expect_false (loop_done))
3797 break;
3798
3799 /* we might have forked, so reify kernel state if necessary */
3800 if (ecb_expect_false (postfork))
3801 loop_fork (EV_A);
3802
3803 /* update fd-related kernel structures */
3804 fd_reify (EV_A);
3805
3806 /* calculate blocking time */
3807 {
3808 ev_tstamp waittime = 0.;
3809 ev_tstamp sleeptime = 0.;
3810
3811 /* remember old timestamp for io_blocktime calculation */
3812 ev_tstamp prev_mn_now = mn_now;
3813
3814 /* update time to cancel out callback processing overhead */
3815 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3816
3817 /* from now on, we want a pipe-wake-up */
3818 pipe_write_wanted = 1;
3819
3820 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3821
3822 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3823 {
3824 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3825
3826 if (timercnt)
3827 {
3828 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3829 if (waittime > to) waittime = to;
3830 }
3831
3832#if EV_PERIODIC_ENABLE
3833 if (periodiccnt)
3834 {
3835 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3836 if (waittime > to) waittime = to;
3837 }
3838#endif
3839
3840 /* don't let timeouts decrease the waittime below timeout_blocktime */
3841 if (ecb_expect_false (waittime < timeout_blocktime))
3842 waittime = timeout_blocktime;
3843
3844 /* at this point, we NEED to wait, so we have to ensure */
3845 /* to pass a minimum nonzero value to the backend */
3846 if (ecb_expect_false (waittime < backend_mintime))
3847 waittime = backend_mintime;
3848
3849 /* extra check because io_blocktime is commonly 0 */
3850 if (ecb_expect_false (io_blocktime))
3851 {
3852 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3853
3854 if (sleeptime > waittime - backend_mintime)
3855 sleeptime = waittime - backend_mintime;
3856
3857 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3858 {
3859 ev_sleep (sleeptime);
3860 waittime -= sleeptime;
3861 }
3862 }
3863 }
3864
3865#if EV_FEATURE_API
3866 ++loop_count;
3867#endif
3868 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3869 backend_poll (EV_A_ waittime);
3870 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3871
3872 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3873
3874 ECB_MEMORY_FENCE_ACQUIRE;
3875 if (pipe_write_skipped)
3876 {
3877 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3878 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3879 }
3880
3881 /* update ev_rt_now, do magic */
3882 time_update (EV_A_ waittime + sleeptime);
3883 }
3884
3885 /* queue pending timers and reschedule them */
3886 timers_reify (EV_A); /* relative timers called last */
3887#if EV_PERIODIC_ENABLE
3888 periodics_reify (EV_A); /* absolute timers called first */
3889#endif
3890
3891#if EV_IDLE_ENABLE
3892 /* queue idle watchers unless other events are pending */
3893 idle_reify (EV_A);
3894#endif
3895
3896#if EV_CHECK_ENABLE
3897 /* queue check watchers, to be executed first */
3898 if (ecb_expect_false (checkcnt))
3899 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3900#endif
3901
3902 EV_INVOKE_PENDING;
3903 }
3904 while (ecb_expect_true (
3905 activecnt
3906 && !loop_done
3907 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3908 ));
3909
3910 if (loop_done == EVBREAK_ONE)
3911 loop_done = EVBREAK_CANCEL;
3912
3913#if EV_FEATURE_API
3914 --loop_depth;
3915#endif
3916
3917 return activecnt;
3918}
3919
3920void
3921ev_break (EV_P_ int how) EV_NOEXCEPT
3922{
3923 loop_done = how;
3924}
3925
3926void
3927ev_ref (EV_P) EV_NOEXCEPT
3928{
3929 ++activecnt;
3930}
3931
3932void
3933ev_unref (EV_P) EV_NOEXCEPT
3934{
3935 --activecnt;
3936}
3937
3938void
3939ev_now_update (EV_P) EV_NOEXCEPT
3940{
3941 time_update (EV_A_ EV_TSTAMP_HUGE);
3942}
3943
3944void
3945ev_suspend (EV_P) EV_NOEXCEPT
3946{
3947 ev_now_update (EV_A);
3948}
3949
3950void
3951ev_resume (EV_P) EV_NOEXCEPT
3952{
3953 ev_tstamp mn_prev = mn_now;
3954
3955 ev_now_update (EV_A);
3956 timers_reschedule (EV_A_ mn_now - mn_prev);
3957#if EV_PERIODIC_ENABLE
3958 /* TODO: really do this? */
3959 periodics_reschedule (EV_A);
3960#endif
983} 3961}
984 3962
985/*****************************************************************************/ 3963/*****************************************************************************/
3964/* singly-linked list management, used when the expected list length is short */
986 3965
987static int 3966inline_size void
988any_pending (EV_P) 3967wlist_add (WL *head, WL elem)
989{ 3968{
990 int pri; 3969 elem->next = *head;
3970 *head = elem;
3971}
991 3972
992 for (pri = NUMPRI; pri--; ) 3973inline_size void
993 if (pendingcnt [pri]) 3974wlist_del (WL *head, WL elem)
994 return 1; 3975{
3976 while (*head)
3977 {
3978 if (ecb_expect_true (*head == elem))
3979 {
3980 *head = elem->next;
3981 break;
3982 }
995 3983
3984 head = &(*head)->next;
3985 }
3986}
3987
3988/* internal, faster, version of ev_clear_pending */
3989inline_speed void
3990clear_pending (EV_P_ W w)
3991{
3992 if (w->pending)
3993 {
3994 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3995 w->pending = 0;
3996 }
3997}
3998
3999int
4000ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4001{
4002 W w_ = (W)w;
4003 int pending = w_->pending;
4004
4005 if (ecb_expect_true (pending))
4006 {
4007 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4008 p->w = (W)&pending_w;
4009 w_->pending = 0;
4010 return p->events;
4011 }
4012 else
996 return 0; 4013 return 0;
997} 4014}
998 4015
999inline void 4016inline_size void
1000call_pending (EV_P) 4017pri_adjust (EV_P_ W w)
1001{ 4018{
1002 int pri; 4019 int pri = ev_priority (w);
4020 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4021 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4022 ev_set_priority (w, pri);
4023}
1003 4024
1004 for (pri = NUMPRI; pri--; ) 4025inline_speed void
1005 while (pendingcnt [pri]) 4026ev_start (EV_P_ W w, int active)
4027{
4028 pri_adjust (EV_A_ w);
4029 w->active = active;
4030 ev_ref (EV_A);
4031}
4032
4033inline_size void
4034ev_stop (EV_P_ W w)
4035{
4036 ev_unref (EV_A);
4037 w->active = 0;
4038}
4039
4040/*****************************************************************************/
4041
4042ecb_noinline
4043void
4044ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4045{
4046 int fd = w->fd;
4047
4048 if (ecb_expect_false (ev_is_active (w)))
4049 return;
4050
4051 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4052 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4053
4054#if EV_VERIFY >= 2
4055 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4056#endif
4057 EV_FREQUENT_CHECK;
4058
4059 ev_start (EV_A_ (W)w, 1);
4060 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4061 wlist_add (&anfds[fd].head, (WL)w);
4062
4063 /* common bug, apparently */
4064 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4065
4066 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4067 w->events &= ~EV__IOFDSET;
4068
4069 EV_FREQUENT_CHECK;
4070}
4071
4072ecb_noinline
4073void
4074ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4075{
4076 clear_pending (EV_A_ (W)w);
4077 if (ecb_expect_false (!ev_is_active (w)))
4078 return;
4079
4080 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4081
4082#if EV_VERIFY >= 2
4083 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4084#endif
4085 EV_FREQUENT_CHECK;
4086
4087 wlist_del (&anfds[w->fd].head, (WL)w);
4088 ev_stop (EV_A_ (W)w);
4089
4090 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4091
4092 EV_FREQUENT_CHECK;
4093}
4094
4095ecb_noinline
4096void
4097ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4098{
4099 if (ecb_expect_false (ev_is_active (w)))
4100 return;
4101
4102 ev_at (w) += mn_now;
4103
4104 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4105
4106 EV_FREQUENT_CHECK;
4107
4108 ++timercnt;
4109 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4110 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4111 ANHE_w (timers [ev_active (w)]) = (WT)w;
4112 ANHE_at_cache (timers [ev_active (w)]);
4113 upheap (timers, ev_active (w));
4114
4115 EV_FREQUENT_CHECK;
4116
4117 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4118}
4119
4120ecb_noinline
4121void
4122ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4123{
4124 clear_pending (EV_A_ (W)w);
4125 if (ecb_expect_false (!ev_is_active (w)))
4126 return;
4127
4128 EV_FREQUENT_CHECK;
4129
4130 {
4131 int active = ev_active (w);
4132
4133 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4134
4135 --timercnt;
4136
4137 if (ecb_expect_true (active < timercnt + HEAP0))
1006 { 4138 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 4139 timers [active] = timers [timercnt + HEAP0];
1008 4140 adjustheap (timers, timercnt, active);
1009 if (expect_true (p->w))
1010 {
1011 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events);
1013 }
1014 } 4141 }
1015} 4142 }
1016 4143
1017inline void 4144 ev_at (w) -= mn_now;
1018timers_reify (EV_P)
1019{
1020 while (timercnt && ((WT)timers [0])->at <= mn_now)
1021 {
1022 struct ev_timer *w = timers [0];
1023 4145
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 4146 ev_stop (EV_A_ (W)w);
1025 4147
1026 /* first reschedule or stop timer */ 4148 EV_FREQUENT_CHECK;
4149}
4150
4151ecb_noinline
4152void
4153ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4154{
4155 EV_FREQUENT_CHECK;
4156
4157 clear_pending (EV_A_ (W)w);
4158
4159 if (ev_is_active (w))
4160 {
1027 if (w->repeat) 4161 if (w->repeat)
1028 { 4162 {
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030
1031 ((WT)w)->at += w->repeat;
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0);
1036 }
1037 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 }
1042}
1043
1044#if EV_PERIODICS
1045inline void
1046periodics_reify (EV_P)
1047{
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1049 {
1050 struct ev_periodic *w = periodics [0];
1051
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1053
1054 /* first reschedule or stop timer */
1055 if (w->reschedule_cb)
1056 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now;
1109 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113
1114inline void
1115time_update (EV_P)
1116{
1117 int i;
1118
1119#if EV_USE_MONOTONIC
1120 if (expect_true (have_monotonic))
1121 {
1122 if (time_update_monotonic (EV_A))
1123 {
1124 ev_tstamp odiff = rtmn_diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now;
1129
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1131 return; /* all is well */
1132
1133 ev_rt_now = ev_time ();
1134 mn_now = get_clock ();
1135 now_floor = mn_now;
1136 }
1137
1138# if EV_PERIODICS
1139 periodics_reschedule (EV_A);
1140# endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160
1161 mn_now = ev_rt_now;
1162 }
1163}
1164
1165void
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags)
1181{
1182 double block;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184
1185 while (activecnt)
1186 {
1187 /* queue check watchers (and execute them) */
1188 if (expect_false (preparecnt))
1189 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A);
1192 }
1193
1194 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork))
1196 loop_fork (EV_A);
1197
1198 /* update fd-related kernel structures */
1199 fd_reify (EV_A);
1200
1201 /* calculate blocking time */
1202
1203 /* we only need this for !monotonic clock or timers, but as we basically
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 {
1211 ev_rt_now = ev_time ();
1212 mn_now = ev_rt_now;
1213 }
1214
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME;
1220
1221 if (timercnt)
1222 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1224 if (block > to) block = to;
1225 }
1226
1227#if EV_PERIODICS
1228 if (periodiccnt)
1229 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1231 if (block > to) block = to;
1232 }
1233#endif
1234
1235 if (expect_false (block < 0.)) block = 0.;
1236 }
1237
1238 method_poll (EV_A_ block);
1239
1240 /* update ev_rt_now, do magic */
1241 time_update (EV_A);
1242
1243 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS
1246 periodics_reify (EV_A); /* absolute timers called first */
1247#endif
1248
1249 /* queue idle watchers unless io or timers are pending */
1250 if (idlecnt && !any_pending (EV_A))
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1252
1253 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256
1257 call_pending (EV_A);
1258
1259 if (expect_false (loop_done))
1260 break;
1261 }
1262
1263 if (loop_done != 2)
1264 loop_done = 0;
1265}
1266
1267void
1268ev_unloop (EV_P_ int how)
1269{
1270 loop_done = how;
1271}
1272
1273/*****************************************************************************/
1274
1275inline void
1276wlist_add (WL *head, WL elem)
1277{
1278 elem->next = *head;
1279 *head = elem;
1280}
1281
1282inline void
1283wlist_del (WL *head, WL elem)
1284{
1285 while (*head)
1286 {
1287 if (*head == elem)
1288 {
1289 *head = elem->next;
1290 return;
1291 }
1292
1293 head = &(*head)->next;
1294 }
1295}
1296
1297inline void
1298ev_clear_pending (EV_P_ W w)
1299{
1300 if (w->pending)
1301 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0;
1304 }
1305}
1306
1307inline void
1308ev_start (EV_P_ W w, int active)
1309{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active;
1314 ev_ref (EV_A);
1315}
1316
1317inline void
1318ev_stop (EV_P_ W w)
1319{
1320 ev_unref (EV_A);
1321 w->active = 0;
1322}
1323
1324/*****************************************************************************/
1325
1326void
1327ev_io_start (EV_P_ struct ev_io *w)
1328{
1329 int fd = w->fd;
1330
1331 if (expect_false (ev_is_active (w)))
1332 return;
1333
1334 assert (("ev_io_start called with negative fd", fd >= 0));
1335
1336 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1339
1340 fd_change (EV_A_ fd);
1341}
1342
1343void
1344ev_io_stop (EV_P_ struct ev_io *w)
1345{
1346 ev_clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w)))
1348 return;
1349
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w);
1354
1355 fd_change (EV_A_ w->fd);
1356}
1357
1358void
1359ev_timer_start (EV_P_ struct ev_timer *w)
1360{
1361 if (expect_false (ev_is_active (w)))
1362 return;
1363
1364 ((WT)w)->at += mn_now;
1365
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367
1368 ev_start (EV_A_ (W)w, ++timercnt);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1370 timers [timercnt - 1] = w;
1371 upheap ((WT *)timers, timercnt - 1);
1372
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1374}
1375
1376void
1377ev_timer_stop (EV_P_ struct ev_timer *w)
1378{
1379 ev_clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w)))
1381 return;
1382
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1384
1385 if (expect_true (((W)w)->active < timercnt--))
1386 {
1387 timers [((W)w)->active - 1] = timers [timercnt];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1389 }
1390
1391 ((WT)w)->at -= mn_now;
1392
1393 ev_stop (EV_A_ (W)w);
1394}
1395
1396void
1397ev_timer_again (EV_P_ struct ev_timer *w)
1398{
1399 if (ev_is_active (w))
1400 {
1401 if (w->repeat)
1402 {
1403 ((WT)w)->at = mn_now + w->repeat; 4163 ev_at (w) = mn_now + w->repeat;
4164 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4165 adjustheap (timers, timercnt, ev_active (w));
1405 } 4166 }
1406 else 4167 else
1407 ev_timer_stop (EV_A_ w); 4168 ev_timer_stop (EV_A_ w);
1408 } 4169 }
1409 else if (w->repeat) 4170 else if (w->repeat)
1410 { 4171 {
1411 w->at = w->repeat; 4172 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 4173 ev_timer_start (EV_A_ w);
1413 } 4174 }
1414}
1415 4175
4176 EV_FREQUENT_CHECK;
4177}
4178
4179ev_tstamp
4180ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4181{
4182 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4183}
4184
1416#if EV_PERIODICS 4185#if EV_PERIODIC_ENABLE
4186ecb_noinline
1417void 4187void
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 4188ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1419{ 4189{
1420 if (expect_false (ev_is_active (w))) 4190 if (ecb_expect_false (ev_is_active (w)))
1421 return; 4191 return;
1422 4192
1423 if (w->reschedule_cb) 4193 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4194 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 4195 else if (w->interval)
1426 { 4196 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4197 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 4198 periodic_recalc (EV_A_ w);
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 } 4199 }
4200 else
4201 ev_at (w) = w->offset;
1431 4202
4203 EV_FREQUENT_CHECK;
4204
4205 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 4206 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4207 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1434 periodics [periodiccnt - 1] = w; 4208 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 4209 ANHE_at_cache (periodics [ev_active (w)]);
4210 upheap (periodics, ev_active (w));
1436 4211
4212 EV_FREQUENT_CHECK;
4213
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4214 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 4215}
1439 4216
4217ecb_noinline
1440void 4218void
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 4219ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1442{ 4220{
1443 ev_clear_pending (EV_A_ (W)w); 4221 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 4222 if (ecb_expect_false (!ev_is_active (w)))
1445 return; 4223 return;
1446 4224
4225 EV_FREQUENT_CHECK;
4226
4227 {
4228 int active = ev_active (w);
4229
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4230 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 4231
4232 --periodiccnt;
4233
1449 if (expect_true (((W)w)->active < periodiccnt--)) 4234 if (ecb_expect_true (active < periodiccnt + HEAP0))
1450 { 4235 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4236 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4237 adjustheap (periodics, periodiccnt, active);
1453 } 4238 }
4239 }
1454 4240
1455 ev_stop (EV_A_ (W)w); 4241 ev_stop (EV_A_ (W)w);
1456}
1457 4242
4243 EV_FREQUENT_CHECK;
4244}
4245
4246ecb_noinline
1458void 4247void
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 4248ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1460{ 4249{
1461 /* TODO: use adjustheap and recalculation */ 4250 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 4251 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 4252 ev_periodic_start (EV_A_ w);
1464} 4253}
1465#endif 4254#endif
1466 4255
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (expect_false (ev_is_active (w)))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w)))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (expect_false (ev_is_active (w)))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w)))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (expect_false (ev_is_active (w)))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w)))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 4256#ifndef SA_RESTART
1534# define SA_RESTART 0 4257# define SA_RESTART 0
1535#endif 4258#endif
1536 4259
4260#if EV_SIGNAL_ENABLE
4261
4262ecb_noinline
1537void 4263void
1538ev_signal_start (EV_P_ struct ev_signal *w) 4264ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1539{ 4265{
4266 if (ecb_expect_false (ev_is_active (w)))
4267 return;
4268
4269 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4270
1540#if EV_MULTIPLICITY 4271#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4272 assert (("libev: a signal must not be attached to two different loops",
4273 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4274
4275 signals [w->signum - 1].loop = EV_A;
4276 ECB_MEMORY_FENCE_RELEASE;
4277#endif
4278
4279 EV_FREQUENT_CHECK;
4280
4281#if EV_USE_SIGNALFD
4282 if (sigfd == -2)
4283 {
4284 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4285 if (sigfd < 0 && errno == EINVAL)
4286 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4287
4288 if (sigfd >= 0)
4289 {
4290 fd_intern (sigfd); /* doing it twice will not hurt */
4291
4292 sigemptyset (&sigfd_set);
4293
4294 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4295 ev_set_priority (&sigfd_w, EV_MAXPRI);
4296 ev_io_start (EV_A_ &sigfd_w);
4297 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4298 }
4299 }
4300
4301 if (sigfd >= 0)
4302 {
4303 /* TODO: check .head */
4304 sigaddset (&sigfd_set, w->signum);
4305 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4306
4307 signalfd (sigfd, &sigfd_set, 0);
4308 }
4309#endif
4310
4311 ev_start (EV_A_ (W)w, 1);
4312 wlist_add (&signals [w->signum - 1].head, (WL)w);
4313
4314 if (!((WL)w)->next)
4315# if EV_USE_SIGNALFD
4316 if (sigfd < 0) /*TODO*/
1542#endif 4317# endif
4318 {
4319# ifdef _WIN32
4320 evpipe_init (EV_A);
4321
4322 signal (w->signum, ev_sighandler);
4323# else
4324 struct sigaction sa;
4325
4326 evpipe_init (EV_A);
4327
4328 sa.sa_handler = ev_sighandler;
4329 sigfillset (&sa.sa_mask);
4330 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4331 sigaction (w->signum, &sa, 0);
4332
4333 if (origflags & EVFLAG_NOSIGMASK)
4334 {
4335 sigemptyset (&sa.sa_mask);
4336 sigaddset (&sa.sa_mask, w->signum);
4337 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4338 }
4339#endif
4340 }
4341
4342 EV_FREQUENT_CHECK;
4343}
4344
4345ecb_noinline
4346void
4347ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4348{
4349 clear_pending (EV_A_ (W)w);
1543 if (expect_false (ev_is_active (w))) 4350 if (ecb_expect_false (!ev_is_active (w)))
1544 return; 4351 return;
1545 4352
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4353 EV_FREQUENT_CHECK;
4354
4355 wlist_del (&signals [w->signum - 1].head, (WL)w);
4356 ev_stop (EV_A_ (W)w);
4357
4358 if (!signals [w->signum - 1].head)
4359 {
4360#if EV_MULTIPLICITY
4361 signals [w->signum - 1].loop = 0; /* unattach from signal */
4362#endif
4363#if EV_USE_SIGNALFD
4364 if (sigfd >= 0)
4365 {
4366 sigset_t ss;
4367
4368 sigemptyset (&ss);
4369 sigaddset (&ss, w->signum);
4370 sigdelset (&sigfd_set, w->signum);
4371
4372 signalfd (sigfd, &sigfd_set, 0);
4373 sigprocmask (SIG_UNBLOCK, &ss, 0);
4374 }
4375 else
4376#endif
4377 signal (w->signum, SIG_DFL);
4378 }
4379
4380 EV_FREQUENT_CHECK;
4381}
4382
4383#endif
4384
4385#if EV_CHILD_ENABLE
4386
4387void
4388ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4389{
4390#if EV_MULTIPLICITY
4391 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4392#endif
4393 if (ecb_expect_false (ev_is_active (w)))
4394 return;
4395
4396 EV_FREQUENT_CHECK;
1547 4397
1548 ev_start (EV_A_ (W)w, 1); 4398 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4399 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 4400
1552 if (!((WL)w)->next) 4401 EV_FREQUENT_CHECK;
4402}
4403
4404void
4405ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4406{
4407 clear_pending (EV_A_ (W)w);
4408 if (ecb_expect_false (!ev_is_active (w)))
4409 return;
4410
4411 EV_FREQUENT_CHECK;
4412
4413 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4414 ev_stop (EV_A_ (W)w);
4415
4416 EV_FREQUENT_CHECK;
4417}
4418
4419#endif
4420
4421#if EV_STAT_ENABLE
4422
4423# ifdef _WIN32
4424# undef lstat
4425# define lstat(a,b) _stati64 (a,b)
4426# endif
4427
4428#define DEF_STAT_INTERVAL 5.0074891
4429#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4430#define MIN_STAT_INTERVAL 0.1074891
4431
4432ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4433
4434#if EV_USE_INOTIFY
4435
4436/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4437# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4438
4439ecb_noinline
4440static void
4441infy_add (EV_P_ ev_stat *w)
4442{
4443 w->wd = inotify_add_watch (fs_fd, w->path,
4444 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4445 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4446 | IN_DONT_FOLLOW | IN_MASK_ADD);
4447
4448 if (w->wd >= 0)
4449 {
4450 struct statfs sfs;
4451
4452 /* now local changes will be tracked by inotify, but remote changes won't */
4453 /* unless the filesystem is known to be local, we therefore still poll */
4454 /* also do poll on <2.6.25, but with normal frequency */
4455
4456 if (!fs_2625)
4457 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4458 else if (!statfs (w->path, &sfs)
4459 && (sfs.f_type == 0x1373 /* devfs */
4460 || sfs.f_type == 0x4006 /* fat */
4461 || sfs.f_type == 0x4d44 /* msdos */
4462 || sfs.f_type == 0xEF53 /* ext2/3 */
4463 || sfs.f_type == 0x72b6 /* jffs2 */
4464 || sfs.f_type == 0x858458f6 /* ramfs */
4465 || sfs.f_type == 0x5346544e /* ntfs */
4466 || sfs.f_type == 0x3153464a /* jfs */
4467 || sfs.f_type == 0x9123683e /* btrfs */
4468 || sfs.f_type == 0x52654973 /* reiser3 */
4469 || sfs.f_type == 0x01021994 /* tmpfs */
4470 || sfs.f_type == 0x58465342 /* xfs */))
4471 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4472 else
4473 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1553 { 4474 }
4475 else
4476 {
4477 /* can't use inotify, continue to stat */
4478 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4479
4480 /* if path is not there, monitor some parent directory for speedup hints */
4481 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4482 /* but an efficiency issue only */
4483 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4484 {
4485 char path [4096];
4486 strcpy (path, w->path);
4487
4488 do
4489 {
4490 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4491 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4492
4493 char *pend = strrchr (path, '/');
4494
4495 if (!pend || pend == path)
4496 break;
4497
4498 *pend = 0;
4499 w->wd = inotify_add_watch (fs_fd, path, mask);
4500 }
4501 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4502 }
4503 }
4504
4505 if (w->wd >= 0)
4506 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4507
4508 /* now re-arm timer, if required */
4509 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4510 ev_timer_again (EV_A_ &w->timer);
4511 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4512}
4513
4514ecb_noinline
4515static void
4516infy_del (EV_P_ ev_stat *w)
4517{
4518 int slot;
4519 int wd = w->wd;
4520
4521 if (wd < 0)
4522 return;
4523
4524 w->wd = -2;
4525 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4526 wlist_del (&fs_hash [slot].head, (WL)w);
4527
4528 /* remove this watcher, if others are watching it, they will rearm */
4529 inotify_rm_watch (fs_fd, wd);
4530}
4531
4532ecb_noinline
4533static void
4534infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4535{
4536 if (slot < 0)
4537 /* overflow, need to check for all hash slots */
4538 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4539 infy_wd (EV_A_ slot, wd, ev);
4540 else
4541 {
4542 WL w_;
4543
4544 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4545 {
4546 ev_stat *w = (ev_stat *)w_;
4547 w_ = w_->next; /* lets us remove this watcher and all before it */
4548
4549 if (w->wd == wd || wd == -1)
4550 {
4551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4552 {
4553 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4554 w->wd = -1;
4555 infy_add (EV_A_ w); /* re-add, no matter what */
4556 }
4557
4558 stat_timer_cb (EV_A_ &w->timer, 0);
4559 }
4560 }
4561 }
4562}
4563
4564static void
4565infy_cb (EV_P_ ev_io *w, int revents)
4566{
4567 char buf [EV_INOTIFY_BUFSIZE];
4568 int ofs;
4569 int len = read (fs_fd, buf, sizeof (buf));
4570
4571 for (ofs = 0; ofs < len; )
4572 {
4573 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4574 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4575 ofs += sizeof (struct inotify_event) + ev->len;
4576 }
4577}
4578
4579inline_size ecb_cold
4580void
4581ev_check_2625 (EV_P)
4582{
4583 /* kernels < 2.6.25 are borked
4584 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4585 */
4586 if (ev_linux_version () < 0x020619)
4587 return;
4588
4589 fs_2625 = 1;
4590}
4591
4592inline_size int
4593infy_newfd (void)
4594{
4595#if defined IN_CLOEXEC && defined IN_NONBLOCK
4596 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4597 if (fd >= 0)
4598 return fd;
4599#endif
4600 return inotify_init ();
4601}
4602
4603inline_size void
4604infy_init (EV_P)
4605{
4606 if (fs_fd != -2)
4607 return;
4608
4609 fs_fd = -1;
4610
4611 ev_check_2625 (EV_A);
4612
4613 fs_fd = infy_newfd ();
4614
4615 if (fs_fd >= 0)
4616 {
4617 fd_intern (fs_fd);
4618 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4619 ev_set_priority (&fs_w, EV_MAXPRI);
4620 ev_io_start (EV_A_ &fs_w);
4621 ev_unref (EV_A);
4622 }
4623}
4624
4625inline_size void
4626infy_fork (EV_P)
4627{
4628 int slot;
4629
4630 if (fs_fd < 0)
4631 return;
4632
4633 ev_ref (EV_A);
4634 ev_io_stop (EV_A_ &fs_w);
4635 close (fs_fd);
4636 fs_fd = infy_newfd ();
4637
4638 if (fs_fd >= 0)
4639 {
4640 fd_intern (fs_fd);
4641 ev_io_set (&fs_w, fs_fd, EV_READ);
4642 ev_io_start (EV_A_ &fs_w);
4643 ev_unref (EV_A);
4644 }
4645
4646 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4647 {
4648 WL w_ = fs_hash [slot].head;
4649 fs_hash [slot].head = 0;
4650
4651 while (w_)
4652 {
4653 ev_stat *w = (ev_stat *)w_;
4654 w_ = w_->next; /* lets us add this watcher */
4655
4656 w->wd = -1;
4657
4658 if (fs_fd >= 0)
4659 infy_add (EV_A_ w); /* re-add, no matter what */
4660 else
4661 {
4662 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4663 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4664 ev_timer_again (EV_A_ &w->timer);
4665 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4666 }
4667 }
4668 }
4669}
4670
4671#endif
4672
1554#if _WIN32 4673#ifdef _WIN32
1555 signal (w->signum, sighandler); 4674# define EV_LSTAT(p,b) _stati64 (p, b)
1556#else 4675#else
1557 struct sigaction sa; 4676# define EV_LSTAT(p,b) lstat (p, b)
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif 4677#endif
1563 }
1564}
1565 4678
1566void 4679void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 4680ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1568{ 4681{
1569 ev_clear_pending (EV_A_ (W)w); 4682 if (lstat (w->path, &w->attr) < 0)
4683 w->attr.st_nlink = 0;
4684 else if (!w->attr.st_nlink)
4685 w->attr.st_nlink = 1;
4686}
4687
4688ecb_noinline
4689static void
4690stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4691{
4692 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4693
4694 ev_statdata prev = w->attr;
4695 ev_stat_stat (EV_A_ w);
4696
4697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4698 if (
4699 prev.st_dev != w->attr.st_dev
4700 || prev.st_ino != w->attr.st_ino
4701 || prev.st_mode != w->attr.st_mode
4702 || prev.st_nlink != w->attr.st_nlink
4703 || prev.st_uid != w->attr.st_uid
4704 || prev.st_gid != w->attr.st_gid
4705 || prev.st_rdev != w->attr.st_rdev
4706 || prev.st_size != w->attr.st_size
4707 || prev.st_atime != w->attr.st_atime
4708 || prev.st_mtime != w->attr.st_mtime
4709 || prev.st_ctime != w->attr.st_ctime
4710 ) {
4711 /* we only update w->prev on actual differences */
4712 /* in case we test more often than invoke the callback, */
4713 /* to ensure that prev is always different to attr */
4714 w->prev = prev;
4715
4716 #if EV_USE_INOTIFY
4717 if (fs_fd >= 0)
4718 {
4719 infy_del (EV_A_ w);
4720 infy_add (EV_A_ w);
4721 ev_stat_stat (EV_A_ w); /* avoid race... */
4722 }
4723 #endif
4724
4725 ev_feed_event (EV_A_ w, EV_STAT);
4726 }
4727}
4728
4729void
4730ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4731{
1570 if (expect_false (!ev_is_active (w))) 4732 if (ecb_expect_false (ev_is_active (w)))
1571 return; 4733 return;
1572 4734
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4735 ev_stat_stat (EV_A_ w);
4736
4737 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4738 w->interval = MIN_STAT_INTERVAL;
4739
4740 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4741 ev_set_priority (&w->timer, ev_priority (w));
4742
4743#if EV_USE_INOTIFY
4744 infy_init (EV_A);
4745
4746 if (fs_fd >= 0)
4747 infy_add (EV_A_ w);
4748 else
4749#endif
4750 {
4751 ev_timer_again (EV_A_ &w->timer);
4752 ev_unref (EV_A);
4753 }
4754
4755 ev_start (EV_A_ (W)w, 1);
4756
4757 EV_FREQUENT_CHECK;
4758}
4759
4760void
4761ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4762{
4763 clear_pending (EV_A_ (W)w);
4764 if (ecb_expect_false (!ev_is_active (w)))
4765 return;
4766
4767 EV_FREQUENT_CHECK;
4768
4769#if EV_USE_INOTIFY
4770 infy_del (EV_A_ w);
4771#endif
4772
4773 if (ev_is_active (&w->timer))
4774 {
4775 ev_ref (EV_A);
4776 ev_timer_stop (EV_A_ &w->timer);
4777 }
4778
1574 ev_stop (EV_A_ (W)w); 4779 ev_stop (EV_A_ (W)w);
1575 4780
1576 if (!signals [w->signum - 1].head) 4781 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 4782}
1579
1580void
1581ev_child_start (EV_P_ struct ev_child *w)
1582{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 4783#endif
4784
4785#if EV_IDLE_ENABLE
4786void
4787ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4788{
1586 if (expect_false (ev_is_active (w))) 4789 if (ecb_expect_false (ev_is_active (w)))
1587 return; 4790 return;
1588 4791
4792 pri_adjust (EV_A_ (W)w);
4793
4794 EV_FREQUENT_CHECK;
4795
4796 {
4797 int active = ++idlecnt [ABSPRI (w)];
4798
4799 ++idleall;
4800 ev_start (EV_A_ (W)w, active);
4801
4802 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4803 idles [ABSPRI (w)][active - 1] = w;
4804 }
4805
4806 EV_FREQUENT_CHECK;
4807}
4808
4809void
4810ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4811{
4812 clear_pending (EV_A_ (W)w);
4813 if (ecb_expect_false (!ev_is_active (w)))
4814 return;
4815
4816 EV_FREQUENT_CHECK;
4817
4818 {
4819 int active = ev_active (w);
4820
4821 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4822 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4823
4824 ev_stop (EV_A_ (W)w);
4825 --idleall;
4826 }
4827
4828 EV_FREQUENT_CHECK;
4829}
4830#endif
4831
4832#if EV_PREPARE_ENABLE
4833void
4834ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4835{
4836 if (ecb_expect_false (ev_is_active (w)))
4837 return;
4838
4839 EV_FREQUENT_CHECK;
4840
4841 ev_start (EV_A_ (W)w, ++preparecnt);
4842 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4843 prepares [preparecnt - 1] = w;
4844
4845 EV_FREQUENT_CHECK;
4846}
4847
4848void
4849ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4850{
4851 clear_pending (EV_A_ (W)w);
4852 if (ecb_expect_false (!ev_is_active (w)))
4853 return;
4854
4855 EV_FREQUENT_CHECK;
4856
4857 {
4858 int active = ev_active (w);
4859
4860 prepares [active - 1] = prepares [--preparecnt];
4861 ev_active (prepares [active - 1]) = active;
4862 }
4863
4864 ev_stop (EV_A_ (W)w);
4865
4866 EV_FREQUENT_CHECK;
4867}
4868#endif
4869
4870#if EV_CHECK_ENABLE
4871void
4872ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4873{
4874 if (ecb_expect_false (ev_is_active (w)))
4875 return;
4876
4877 EV_FREQUENT_CHECK;
4878
4879 ev_start (EV_A_ (W)w, ++checkcnt);
4880 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4881 checks [checkcnt - 1] = w;
4882
4883 EV_FREQUENT_CHECK;
4884}
4885
4886void
4887ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4888{
4889 clear_pending (EV_A_ (W)w);
4890 if (ecb_expect_false (!ev_is_active (w)))
4891 return;
4892
4893 EV_FREQUENT_CHECK;
4894
4895 {
4896 int active = ev_active (w);
4897
4898 checks [active - 1] = checks [--checkcnt];
4899 ev_active (checks [active - 1]) = active;
4900 }
4901
4902 ev_stop (EV_A_ (W)w);
4903
4904 EV_FREQUENT_CHECK;
4905}
4906#endif
4907
4908#if EV_EMBED_ENABLE
4909ecb_noinline
4910void
4911ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4912{
4913 ev_run (w->other, EVRUN_NOWAIT);
4914}
4915
4916static void
4917embed_io_cb (EV_P_ ev_io *io, int revents)
4918{
4919 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4920
4921 if (ev_cb (w))
4922 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4923 else
4924 ev_run (w->other, EVRUN_NOWAIT);
4925}
4926
4927static void
4928embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4929{
4930 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4931
4932 {
4933 EV_P = w->other;
4934
4935 while (fdchangecnt)
4936 {
4937 fd_reify (EV_A);
4938 ev_run (EV_A_ EVRUN_NOWAIT);
4939 }
4940 }
4941}
4942
4943static void
4944embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4945{
4946 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4947
4948 ev_embed_stop (EV_A_ w);
4949
4950 {
4951 EV_P = w->other;
4952
4953 ev_loop_fork (EV_A);
4954 ev_run (EV_A_ EVRUN_NOWAIT);
4955 }
4956
4957 ev_embed_start (EV_A_ w);
4958}
4959
4960#if 0
4961static void
4962embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4963{
4964 ev_idle_stop (EV_A_ idle);
4965}
4966#endif
4967
4968void
4969ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4970{
4971 if (ecb_expect_false (ev_is_active (w)))
4972 return;
4973
4974 {
4975 EV_P = w->other;
4976 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4977 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4978 }
4979
4980 EV_FREQUENT_CHECK;
4981
4982 ev_set_priority (&w->io, ev_priority (w));
4983 ev_io_start (EV_A_ &w->io);
4984
4985 ev_prepare_init (&w->prepare, embed_prepare_cb);
4986 ev_set_priority (&w->prepare, EV_MINPRI);
4987 ev_prepare_start (EV_A_ &w->prepare);
4988
4989 ev_fork_init (&w->fork, embed_fork_cb);
4990 ev_fork_start (EV_A_ &w->fork);
4991
4992 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4993
1589 ev_start (EV_A_ (W)w, 1); 4994 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1591}
1592 4995
4996 EV_FREQUENT_CHECK;
4997}
4998
1593void 4999void
1594ev_child_stop (EV_P_ struct ev_child *w) 5000ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
1595{ 5001{
1596 ev_clear_pending (EV_A_ (W)w); 5002 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 5003 if (ecb_expect_false (!ev_is_active (w)))
1598 return; 5004 return;
1599 5005
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 5006 EV_FREQUENT_CHECK;
5007
5008 ev_io_stop (EV_A_ &w->io);
5009 ev_prepare_stop (EV_A_ &w->prepare);
5010 ev_fork_stop (EV_A_ &w->fork);
5011
1601 ev_stop (EV_A_ (W)w); 5012 ev_stop (EV_A_ (W)w);
5013
5014 EV_FREQUENT_CHECK;
1602} 5015}
5016#endif
5017
5018#if EV_FORK_ENABLE
5019void
5020ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5021{
5022 if (ecb_expect_false (ev_is_active (w)))
5023 return;
5024
5025 EV_FREQUENT_CHECK;
5026
5027 ev_start (EV_A_ (W)w, ++forkcnt);
5028 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5029 forks [forkcnt - 1] = w;
5030
5031 EV_FREQUENT_CHECK;
5032}
5033
5034void
5035ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5036{
5037 clear_pending (EV_A_ (W)w);
5038 if (ecb_expect_false (!ev_is_active (w)))
5039 return;
5040
5041 EV_FREQUENT_CHECK;
5042
5043 {
5044 int active = ev_active (w);
5045
5046 forks [active - 1] = forks [--forkcnt];
5047 ev_active (forks [active - 1]) = active;
5048 }
5049
5050 ev_stop (EV_A_ (W)w);
5051
5052 EV_FREQUENT_CHECK;
5053}
5054#endif
5055
5056#if EV_CLEANUP_ENABLE
5057void
5058ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5059{
5060 if (ecb_expect_false (ev_is_active (w)))
5061 return;
5062
5063 EV_FREQUENT_CHECK;
5064
5065 ev_start (EV_A_ (W)w, ++cleanupcnt);
5066 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5067 cleanups [cleanupcnt - 1] = w;
5068
5069 /* cleanup watchers should never keep a refcount on the loop */
5070 ev_unref (EV_A);
5071 EV_FREQUENT_CHECK;
5072}
5073
5074void
5075ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5076{
5077 clear_pending (EV_A_ (W)w);
5078 if (ecb_expect_false (!ev_is_active (w)))
5079 return;
5080
5081 EV_FREQUENT_CHECK;
5082 ev_ref (EV_A);
5083
5084 {
5085 int active = ev_active (w);
5086
5087 cleanups [active - 1] = cleanups [--cleanupcnt];
5088 ev_active (cleanups [active - 1]) = active;
5089 }
5090
5091 ev_stop (EV_A_ (W)w);
5092
5093 EV_FREQUENT_CHECK;
5094}
5095#endif
5096
5097#if EV_ASYNC_ENABLE
5098void
5099ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5100{
5101 if (ecb_expect_false (ev_is_active (w)))
5102 return;
5103
5104 w->sent = 0;
5105
5106 evpipe_init (EV_A);
5107
5108 EV_FREQUENT_CHECK;
5109
5110 ev_start (EV_A_ (W)w, ++asynccnt);
5111 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5112 asyncs [asynccnt - 1] = w;
5113
5114 EV_FREQUENT_CHECK;
5115}
5116
5117void
5118ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5119{
5120 clear_pending (EV_A_ (W)w);
5121 if (ecb_expect_false (!ev_is_active (w)))
5122 return;
5123
5124 EV_FREQUENT_CHECK;
5125
5126 {
5127 int active = ev_active (w);
5128
5129 asyncs [active - 1] = asyncs [--asynccnt];
5130 ev_active (asyncs [active - 1]) = active;
5131 }
5132
5133 ev_stop (EV_A_ (W)w);
5134
5135 EV_FREQUENT_CHECK;
5136}
5137
5138void
5139ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5140{
5141 w->sent = 1;
5142 evpipe_write (EV_A_ &async_pending);
5143}
5144#endif
1603 5145
1604/*****************************************************************************/ 5146/*****************************************************************************/
1605 5147
1606struct ev_once 5148struct ev_once
1607{ 5149{
1608 struct ev_io io; 5150 ev_io io;
1609 struct ev_timer to; 5151 ev_timer to;
1610 void (*cb)(int revents, void *arg); 5152 void (*cb)(int revents, void *arg);
1611 void *arg; 5153 void *arg;
1612}; 5154};
1613 5155
1614static void 5156static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 5157once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 5158{
1617 void (*cb)(int revents, void *arg) = once->cb; 5159 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 5160 void *arg = once->arg;
1619 5161
1620 ev_io_stop (EV_A_ &once->io); 5162 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 5163 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 5164 ev_free (once);
1623 5165
1624 cb (revents, arg); 5166 cb (revents, arg);
1625} 5167}
1626 5168
1627static void 5169static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 5170once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 5171{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5172 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5173
5174 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 5175}
1632 5176
1633static void 5177static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 5178once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 5179{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5180 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1637}
1638 5181
5182 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5183}
5184
1639void 5185void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5186ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1641{ 5187{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5188 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643
1644 if (expect_false (!once))
1645 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 return;
1648 }
1649 5189
1650 once->cb = cb; 5190 once->cb = cb;
1651 once->arg = arg; 5191 once->arg = arg;
1652 5192
1653 ev_init (&once->io, once_cb_io); 5193 ev_init (&once->io, once_cb_io);
1663 ev_timer_set (&once->to, timeout, 0.); 5203 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 5204 ev_timer_start (EV_A_ &once->to);
1665 } 5205 }
1666} 5206}
1667 5207
1668#ifdef __cplusplus 5208/*****************************************************************************/
1669} 5209
5210#if EV_WALK_ENABLE
5211ecb_cold
5212void
5213ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5214{
5215 int i, j;
5216 ev_watcher_list *wl, *wn;
5217
5218 if (types & (EV_IO | EV_EMBED))
5219 for (i = 0; i < anfdmax; ++i)
5220 for (wl = anfds [i].head; wl; )
5221 {
5222 wn = wl->next;
5223
5224#if EV_EMBED_ENABLE
5225 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5226 {
5227 if (types & EV_EMBED)
5228 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5229 }
5230 else
5231#endif
5232#if EV_USE_INOTIFY
5233 if (ev_cb ((ev_io *)wl) == infy_cb)
5234 ;
5235 else
5236#endif
5237 if ((ev_io *)wl != &pipe_w)
5238 if (types & EV_IO)
5239 cb (EV_A_ EV_IO, wl);
5240
5241 wl = wn;
5242 }
5243
5244 if (types & (EV_TIMER | EV_STAT))
5245 for (i = timercnt + HEAP0; i-- > HEAP0; )
5246#if EV_STAT_ENABLE
5247 /*TODO: timer is not always active*/
5248 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5249 {
5250 if (types & EV_STAT)
5251 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5252 }
5253 else
5254#endif
5255 if (types & EV_TIMER)
5256 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5257
5258#if EV_PERIODIC_ENABLE
5259 if (types & EV_PERIODIC)
5260 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5261 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5262#endif
5263
5264#if EV_IDLE_ENABLE
5265 if (types & EV_IDLE)
5266 for (j = NUMPRI; j--; )
5267 for (i = idlecnt [j]; i--; )
5268 cb (EV_A_ EV_IDLE, idles [j][i]);
5269#endif
5270
5271#if EV_FORK_ENABLE
5272 if (types & EV_FORK)
5273 for (i = forkcnt; i--; )
5274 if (ev_cb (forks [i]) != embed_fork_cb)
5275 cb (EV_A_ EV_FORK, forks [i]);
5276#endif
5277
5278#if EV_ASYNC_ENABLE
5279 if (types & EV_ASYNC)
5280 for (i = asynccnt; i--; )
5281 cb (EV_A_ EV_ASYNC, asyncs [i]);
5282#endif
5283
5284#if EV_PREPARE_ENABLE
5285 if (types & EV_PREPARE)
5286 for (i = preparecnt; i--; )
5287# if EV_EMBED_ENABLE
5288 if (ev_cb (prepares [i]) != embed_prepare_cb)
1670#endif 5289# endif
5290 cb (EV_A_ EV_PREPARE, prepares [i]);
5291#endif
1671 5292
5293#if EV_CHECK_ENABLE
5294 if (types & EV_CHECK)
5295 for (i = checkcnt; i--; )
5296 cb (EV_A_ EV_CHECK, checks [i]);
5297#endif
5298
5299#if EV_SIGNAL_ENABLE
5300 if (types & EV_SIGNAL)
5301 for (i = 0; i < EV_NSIG - 1; ++i)
5302 for (wl = signals [i].head; wl; )
5303 {
5304 wn = wl->next;
5305 cb (EV_A_ EV_SIGNAL, wl);
5306 wl = wn;
5307 }
5308#endif
5309
5310#if EV_CHILD_ENABLE
5311 if (types & EV_CHILD)
5312 for (i = (EV_PID_HASHSIZE); i--; )
5313 for (wl = childs [i]; wl; )
5314 {
5315 wn = wl->next;
5316 cb (EV_A_ EV_CHILD, wl);
5317 wl = wn;
5318 }
5319#endif
5320/* EV_STAT 0x00001000 /* stat data changed */
5321/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5322}
5323#endif
5324
5325#if EV_MULTIPLICITY
5326 #include "ev_wrap.h"
5327#endif
5328

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines