ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.124 by root, Sat Nov 17 02:26:24 2007 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
89# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 160# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
93# endif 163# endif
94#endif 164#endif
95 165
96/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
97 167
98#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
100#endif 170#endif
101 171
102#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
104#endif 178#endif
105 179
106#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
108#endif 182#endif
114# define EV_USE_POLL 1 188# define EV_USE_POLL 1
115# endif 189# endif
116#endif 190#endif
117 191
118#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
119# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
120#endif 198#endif
121 199
122#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
124#endif 202#endif
125 203
126#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 205# define EV_USE_PORT 0
128#endif 206#endif
129 207
130/**/ 208#ifndef EV_USE_INOTIFY
131 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 211# else
134# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 249
138#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
141#endif 253#endif
143#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
146#endif 258#endif
147 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
148#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 276# include <winsock.h>
150#endif 277#endif
151 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
152/**/ 291/**/
292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 302
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 306
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 307#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline 309# define noinline __attribute__ ((noinline))
168#else 310#else
169# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
170# define inline static 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
171#endif 316#endif
172 317
173#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
175 327
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 330
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 332#define EMPTY2(a,b) /* used to suppress some warnings */
181 333
182typedef struct ev_watcher *W; 334typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
185 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
187 346
188#ifdef _WIN32 347#ifdef _WIN32
189# include "ev_win32.c" 348# include "ev_win32.c"
190#endif 349#endif
191 350
192/*****************************************************************************/ 351/*****************************************************************************/
193 352
194static void (*syserr_cb)(const char *msg); 353static void (*syserr_cb)(const char *msg);
195 354
355void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 356ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 357{
198 syserr_cb = cb; 358 syserr_cb = cb;
199} 359}
200 360
201static void 361static void noinline
202syserr (const char *msg) 362syserr (const char *msg)
203{ 363{
204 if (!msg) 364 if (!msg)
205 msg = "(libev) system error"; 365 msg = "(libev) system error";
206 366
211 perror (msg); 371 perror (msg);
212 abort (); 372 abort ();
213 } 373 }
214} 374}
215 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
216static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 392
393void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 395{
220 alloc = cb; 396 alloc = cb;
221} 397}
222 398
223static void * 399inline_speed void *
224ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
225{ 401{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
227 403
228 if (!ptr && size) 404 if (!ptr && size)
229 { 405 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 407 abort ();
252typedef struct 428typedef struct
253{ 429{
254 W w; 430 W w;
255 int events; 431 int events;
256} ANPENDING; 432} ANPENDING;
433
434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
436typedef struct
437{
438 WL head;
439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458#endif
257 459
258#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
259 461
260 struct ev_loop 462 struct ev_loop
261 { 463 {
295 gettimeofday (&tv, 0); 497 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 498 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif 499#endif
298} 500}
299 501
300inline ev_tstamp 502ev_tstamp inline_size
301get_clock (void) 503get_clock (void)
302{ 504{
303#if EV_USE_MONOTONIC 505#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 506 if (expect_true (have_monotonic))
305 { 507 {
318{ 520{
319 return ev_rt_now; 521 return ev_rt_now;
320} 522}
321#endif 523#endif
322 524
323#define array_roundsize(type,n) (((n) | 4) & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
324 581
325#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
327 { \ 584 { \
328 int newcnt = cur; \ 585 int ocur_ = (cur); \
329 do \ 586 (base) = (type *)array_realloc \
330 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 589 }
339 590
591#if 0
340#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 594 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 598 }
599#endif
347 600
348#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
350 603
351/*****************************************************************************/ 604/*****************************************************************************/
352 605
353static void 606void noinline
607ev_feed_event (EV_P_ void *w, int revents)
608{
609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
611
612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents;
620 }
621}
622
623void inline_speed
624queue_events (EV_P_ W *events, int eventcnt, int type)
625{
626 int i;
627
628 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type);
630}
631
632/*****************************************************************************/
633
634void inline_size
354anfds_init (ANFD *base, int count) 635anfds_init (ANFD *base, int count)
355{ 636{
356 while (count--) 637 while (count--)
357 { 638 {
358 base->head = 0; 639 base->head = 0;
361 642
362 ++base; 643 ++base;
363 } 644 }
364} 645}
365 646
366void 647void inline_speed
367ev_feed_event (EV_P_ void *w, int revents)
368{
369 W w_ = (W)w;
370
371 if (expect_false (w_->pending))
372 {
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
374 return;
375 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381}
382
383static void
384queue_events (EV_P_ W *events, int eventcnt, int type)
385{
386 int i;
387
388 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type);
390}
391
392inline void
393fd_event (EV_P_ int fd, int revents) 648fd_event (EV_P_ int fd, int revents)
394{ 649{
395 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 651 ev_io *w;
397 652
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 654 {
400 int ev = w->events & revents; 655 int ev = w->events & revents;
401 656
402 if (ev) 657 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 658 ev_feed_event (EV_A_ (W)w, ev);
405} 660}
406 661
407void 662void
408ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 664{
665 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
411} 667}
412 668
413/*****************************************************************************/ 669void inline_size
414
415inline void
416fd_reify (EV_P) 670fd_reify (EV_P)
417{ 671{
418 int i; 672 int i;
419 673
420 for (i = 0; i < fdchangecnt; ++i) 674 for (i = 0; i < fdchangecnt; ++i)
421 { 675 {
422 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 678 ev_io *w;
425 679
426 int events = 0; 680 unsigned char events = 0;
427 681
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 683 events |= (unsigned char)w->events;
430 684
431#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
432 if (events) 686 if (events)
433 { 687 {
434 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
435 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
437 } 695 }
438#endif 696#endif
439 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
440 anfd->reify = 0; 702 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
444 } 708 }
445 709
446 fdchangecnt = 0; 710 fdchangecnt = 0;
447} 711}
448 712
449static void 713void inline_size
450fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
451{ 715{
452 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
456 718
719 if (expect_true (!reify))
720 {
457 ++fdchangecnt; 721 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
460} 725}
461 726
462static void 727void inline_speed
463fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
464{ 729{
465 struct ev_io *w; 730 ev_io *w;
466 731
467 while ((w = (struct ev_io *)anfds [fd].head)) 732 while ((w = (ev_io *)anfds [fd].head))
468 { 733 {
469 ev_io_stop (EV_A_ w); 734 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 736 }
472} 737}
473 738
474inline int 739int inline_size
475fd_valid (int fd) 740fd_valid (int fd)
476{ 741{
477#ifdef _WIN32 742#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 743 return _get_osfhandle (fd) != -1;
479#else 744#else
480 return fcntl (fd, F_GETFD) != -1; 745 return fcntl (fd, F_GETFD) != -1;
481#endif 746#endif
482} 747}
483 748
484/* called on EBADF to verify fds */ 749/* called on EBADF to verify fds */
485static void 750static void noinline
486fd_ebadf (EV_P) 751fd_ebadf (EV_P)
487{ 752{
488 int fd; 753 int fd;
489 754
490 for (fd = 0; fd < anfdmax; ++fd) 755 for (fd = 0; fd < anfdmax; ++fd)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 757 if (!fd_valid (fd) == -1 && errno == EBADF)
493 fd_kill (EV_A_ fd); 758 fd_kill (EV_A_ fd);
494} 759}
495 760
496/* called on ENOMEM in select/poll to kill some fds and retry */ 761/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 762static void noinline
498fd_enomem (EV_P) 763fd_enomem (EV_P)
499{ 764{
500 int fd; 765 int fd;
501 766
502 for (fd = anfdmax; fd--; ) 767 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 770 fd_kill (EV_A_ fd);
506 return; 771 return;
507 } 772 }
508} 773}
509 774
510/* usually called after fork if method needs to re-arm all fds from scratch */ 775/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 776static void noinline
512fd_rearm_all (EV_P) 777fd_rearm_all (EV_P)
513{ 778{
514 int fd; 779 int fd;
515 780
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 782 if (anfds [fd].events)
519 { 783 {
520 anfds [fd].events = 0; 784 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
522 } 786 }
523} 787}
524 788
525/*****************************************************************************/ 789/*****************************************************************************/
526 790
527static void 791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809/* towards the root */
810void inline_speed
528upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
529{ 812{
530 WT w = heap [k]; 813 ANHE he = heap [k];
531 814
532 while (k && heap [k >> 1]->at > w->at) 815 for (;;)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 } 816 {
817 int p = HPARENT (k);
538 818
539 heap [k] = w; 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
540 ((W)heap [k])->active = k + 1;
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break; 820 break;
558 821
559 heap [k] = heap [j]; 822 heap [k] = heap [p];
560 ((W)heap [k])->active = k + 1; 823 ev_active (ANHE_w (heap [k])) = k;
561 k = j; 824 k = p;
562 } 825 }
563 826
564 heap [k] = w; 827 heap [k] = he;
565 ((W)heap [k])->active = k + 1; 828 ev_active (ANHE_w (he)) = k;
566} 829}
567 830
568inline void 831/* away from the root */
832void inline_speed
833downheap (ANHE *heap, int N, int k)
834{
835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
837
838 for (;;)
839 {
840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
843
844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
860 break;
861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0;
918
919 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break;
921
922 heap [k] = heap [c];
923 ev_active (ANHE_w (heap [k])) = k;
924
925 k = c;
926 }
927
928 heap [k] = he;
929 ev_active (ANHE_w (he)) = k;
930}
931#endif
932
933void inline_size
569adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
570{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
571 upheap (heap, k); 937 upheap (heap, k);
938 else
572 downheap (heap, N, k); 939 downheap (heap, N, k);
573} 940}
574 941
575/*****************************************************************************/ 942/*****************************************************************************/
576 943
577typedef struct 944typedef struct
578{ 945{
579 WL head; 946 WL head;
580 sig_atomic_t volatile gotsig; 947 EV_ATOMIC_T gotsig;
581} ANSIG; 948} ANSIG;
582 949
583static ANSIG *signals; 950static ANSIG *signals;
584static int signalmax; 951static int signalmax;
585 952
586static int sigpipe [2]; 953static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 954
590static void 955void inline_size
591signals_init (ANSIG *base, int count) 956signals_init (ANSIG *base, int count)
592{ 957{
593 while (count--) 958 while (count--)
594 { 959 {
595 base->head = 0; 960 base->head = 0;
597 962
598 ++base; 963 ++base;
599 } 964 }
600} 965}
601 966
602static void 967/*****************************************************************************/
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608 968
609 signals [signum - 1].gotsig = 1; 969void inline_speed
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 970fd_intern (int fd)
655{ 971{
656#ifdef _WIN32 972#ifdef _WIN32
657 int arg = 1; 973 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 976 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 977 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 978#endif
663} 979}
664 980
981static void noinline
982evpipe_init (EV_P)
983{
984 if (!ev_is_active (&pipeev))
985 {
986#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0)
988 {
989 evpipe [0] = -1;
990 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ);
992 }
993 else
994#endif
995 {
996 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe");
998
999 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ);
1002 }
1003
1004 ev_io_start (EV_A_ &pipeev);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 }
1007}
1008
1009void inline_size
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{
1012 if (!*flag)
1013 {
1014 int old_errno = errno; /* save errno because write might clobber it */
1015
1016 *flag = 1;
1017
1018#if EV_USE_EVENTFD
1019 if (evfd >= 0)
1020 {
1021 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t));
1023 }
1024 else
1025#endif
1026 write (evpipe [1], &old_errno, 1);
1027
1028 errno = old_errno;
1029 }
1030}
1031
665static void 1032static void
666siginit (EV_P) 1033pipecb (EV_P_ ev_io *iow, int revents)
667{ 1034{
668 fd_intern (sigpipe [0]); 1035#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 1036 if (evfd >= 0)
1037 {
1038 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t));
1040 }
1041 else
1042#endif
1043 {
1044 char dummy;
1045 read (evpipe [0], &dummy, 1);
1046 }
670 1047
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1048 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 1049 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1050 int signum;
1051 gotsig = 0;
1052
1053 for (signum = signalmax; signum--; )
1054 if (signals [signum].gotsig)
1055 ev_feed_signal_event (EV_A_ signum + 1);
1056 }
1057
1058#if EV_ASYNC_ENABLE
1059 if (gotasync)
1060 {
1061 int i;
1062 gotasync = 0;
1063
1064 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent)
1066 {
1067 asyncs [i]->sent = 0;
1068 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1069 }
1070 }
1071#endif
674} 1072}
675 1073
676/*****************************************************************************/ 1074/*****************************************************************************/
677 1075
678static struct ev_child *childs [PID_HASHSIZE]; 1076static void
1077ev_sighandler (int signum)
1078{
1079#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct;
1081#endif
1082
1083#if _WIN32
1084 signal (signum, ev_sighandler);
1085#endif
1086
1087 signals [signum - 1].gotsig = 1;
1088 evpipe_write (EV_A_ &gotsig);
1089}
1090
1091void noinline
1092ev_feed_signal_event (EV_P_ int signum)
1093{
1094 WL w;
1095
1096#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif
1099
1100 --signum;
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return;
1104
1105 signals [signum].gotsig = 0;
1106
1107 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109}
1110
1111/*****************************************************************************/
1112
1113static WL childs [EV_PID_HASHSIZE];
679 1114
680#ifndef _WIN32 1115#ifndef _WIN32
681 1116
682static struct ev_signal childev; 1117static ev_signal childev;
1118
1119#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0
1121#endif
1122
1123void inline_speed
1124child_reap (EV_P_ int chain, int pid, int status)
1125{
1126 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128
1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 {
1131 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1)))
1133 {
1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1135 w->rpid = pid;
1136 w->rstatus = status;
1137 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1138 }
1139 }
1140}
683 1141
684#ifndef WCONTINUED 1142#ifndef WCONTINUED
685# define WCONTINUED 0 1143# define WCONTINUED 0
686#endif 1144#endif
687 1145
688static void 1146static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1147childcb (EV_P_ ev_signal *sw, int revents)
705{ 1148{
706 int pid, status; 1149 int pid, status;
707 1150
1151 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1152 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1153 if (!WCONTINUED
1154 || errno != EINVAL
1155 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1156 return;
1157
710 /* make sure we are called again until all childs have been reaped */ 1158 /* make sure we are called again until all children have been reaped */
1159 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1161
713 child_reap (EV_A_ sw, pid, pid, status); 1162 child_reap (EV_A_ pid, pid, status);
1163 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1165}
717 1166
718#endif 1167#endif
719 1168
720/*****************************************************************************/ 1169/*****************************************************************************/
746{ 1195{
747 return EV_VERSION_MINOR; 1196 return EV_VERSION_MINOR;
748} 1197}
749 1198
750/* return true if we are running with elevated privileges and should ignore env variables */ 1199/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1200int inline_size
752enable_secure (void) 1201enable_secure (void)
753{ 1202{
754#ifdef _WIN32 1203#ifdef _WIN32
755 return 0; 1204 return 0;
756#else 1205#else
758 || getgid () != getegid (); 1207 || getgid () != getegid ();
759#endif 1208#endif
760} 1209}
761 1210
762unsigned int 1211unsigned int
763ev_method (EV_P) 1212ev_supported_backends (void)
764{ 1213{
765 return method; 1214 unsigned int flags = 0;
766}
767 1215
768static void 1216 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1217 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1218 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1219 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1220 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1221
1222 return flags;
1223}
1224
1225unsigned int
1226ev_recommended_backends (void)
1227{
1228 unsigned int flags = ev_supported_backends ();
1229
1230#ifndef __NetBSD__
1231 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE;
1234#endif
1235#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation
1237 flags &= ~EVBACKEND_POLL;
1238#endif
1239
1240 return flags;
1241}
1242
1243unsigned int
1244ev_embeddable_backends (void)
1245{
1246 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1247
1248 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1249 /* please fix it and tell me how to detect the fix */
1250 flags &= ~EVBACKEND_EPOLL;
1251
1252 return flags;
1253}
1254
1255unsigned int
1256ev_backend (EV_P)
1257{
1258 return backend;
1259}
1260
1261unsigned int
1262ev_loop_count (EV_P)
1263{
1264 return loop_count;
1265}
1266
1267void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{
1270 io_blocktime = interval;
1271}
1272
1273void
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{
1276 timeout_blocktime = interval;
1277}
1278
1279static void noinline
769loop_init (EV_P_ unsigned int flags) 1280loop_init (EV_P_ unsigned int flags)
770{ 1281{
771 if (!method) 1282 if (!backend)
772 { 1283 {
773#if EV_USE_MONOTONIC 1284#if EV_USE_MONOTONIC
774 { 1285 {
775 struct timespec ts; 1286 struct timespec ts;
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 1288 have_monotonic = 1;
778 } 1289 }
779#endif 1290#endif
780 1291
781 ev_rt_now = ev_time (); 1292 ev_rt_now = ev_time ();
782 mn_now = get_clock (); 1293 mn_now = get_clock ();
783 now_floor = mn_now; 1294 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now; 1295 rtmn_diff = ev_rt_now - mn_now;
785 1296
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1297 io_blocktime = 0.;
1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302#if EV_USE_INOTIFY
1303 fs_fd = -2;
1304#endif
1305
1306 /* pid check not overridable via env */
1307#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310#endif
1311
1312 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1315 flags = atoi (getenv ("LIBEV_FLAGS"));
788 1316
789 if (!(flags & 0x0000ffff)) 1317 if (!(flags & 0x0000ffffU))
790 flags |= 0x0000ffff; 1318 flags |= ev_recommended_backends ();
791 1319
792 method = 0;
793#if EV_USE_PORT 1320#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 1322#endif
796#if EV_USE_KQUEUE 1323#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1324 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 1325#endif
799#if EV_USE_EPOLL 1326#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1327 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 1328#endif
802#if EV_USE_POLL 1329#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1330 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 1331#endif
805#if EV_USE_SELECT 1332#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 1334#endif
808 1335
809 ev_init (&sigev, sigcb); 1336 ev_init (&pipeev, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 1337 ev_set_priority (&pipeev, EV_MAXPRI);
811 } 1338 }
812} 1339}
813 1340
814static void 1341static void noinline
815loop_destroy (EV_P) 1342loop_destroy (EV_P)
816{ 1343{
817 int i; 1344 int i;
818 1345
1346 if (ev_is_active (&pipeev))
1347 {
1348 ev_ref (EV_A); /* signal watcher */
1349 ev_io_stop (EV_A_ &pipeev);
1350
1351#if EV_USE_EVENTFD
1352 if (evfd >= 0)
1353 close (evfd);
1354#endif
1355
1356 if (evpipe [0] >= 0)
1357 {
1358 close (evpipe [0]);
1359 close (evpipe [1]);
1360 }
1361 }
1362
1363#if EV_USE_INOTIFY
1364 if (fs_fd >= 0)
1365 close (fs_fd);
1366#endif
1367
1368 if (backend_fd >= 0)
1369 close (backend_fd);
1370
819#if EV_USE_PORT 1371#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1372 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 1373#endif
822#if EV_USE_KQUEUE 1374#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1375 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 1376#endif
825#if EV_USE_EPOLL 1377#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1378 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 1379#endif
828#if EV_USE_POLL 1380#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1381 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 1382#endif
831#if EV_USE_SELECT 1383#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1384 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 1385#endif
834 1386
835 for (i = NUMPRI; i--; ) 1387 for (i = NUMPRI; i--; )
1388 {
836 array_free (pending, [i]); 1389 array_free (pending, [i]);
1390#if EV_IDLE_ENABLE
1391 array_free (idle, [i]);
1392#endif
1393 }
1394
1395 ev_free (anfds); anfdmax = 0;
837 1396
838 /* have to use the microsoft-never-gets-it-right macro */ 1397 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0); 1398 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 1399 array_free (timer, EMPTY);
841#if EV_PERIODICS 1400#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 1401 array_free (periodic, EMPTY);
843#endif 1402#endif
1403#if EV_FORK_ENABLE
844 array_free (idle, EMPTY0); 1404 array_free (fork, EMPTY);
1405#endif
845 array_free (prepare, EMPTY0); 1406 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 1407 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY);
1410#endif
847 1411
848 method = 0; 1412 backend = 0;
849} 1413}
850 1414
851static void 1415#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P);
1417#endif
1418
1419void inline_size
852loop_fork (EV_P) 1420loop_fork (EV_P)
853{ 1421{
854#if EV_USE_PORT 1422#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 1424#endif
857#if EV_USE_KQUEUE 1425#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1426 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 1427#endif
860#if EV_USE_EPOLL 1428#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1429 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
862#endif 1430#endif
1431#if EV_USE_INOTIFY
1432 infy_fork (EV_A);
1433#endif
863 1434
864 if (ev_is_active (&sigev)) 1435 if (ev_is_active (&pipeev))
865 { 1436 {
866 /* default loop */ 1437 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */
1439 gotsig = 1;
1440#if EV_ASYNC_ENABLE
1441 gotasync = 1;
1442#endif
867 1443
868 ev_ref (EV_A); 1444 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev); 1445 ev_io_stop (EV_A_ &pipeev);
1446
1447#if EV_USE_EVENTFD
1448 if (evfd >= 0)
1449 close (evfd);
1450#endif
1451
1452 if (evpipe [0] >= 0)
1453 {
870 close (sigpipe [0]); 1454 close (evpipe [0]);
871 close (sigpipe [1]); 1455 close (evpipe [1]);
1456 }
872 1457
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A); 1458 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ);
877 } 1461 }
878 1462
879 postfork = 0; 1463 postfork = 0;
880} 1464}
881 1465
887 1471
888 memset (loop, 0, sizeof (struct ev_loop)); 1472 memset (loop, 0, sizeof (struct ev_loop));
889 1473
890 loop_init (EV_A_ flags); 1474 loop_init (EV_A_ flags);
891 1475
892 if (ev_method (EV_A)) 1476 if (ev_backend (EV_A))
893 return loop; 1477 return loop;
894 1478
895 return 0; 1479 return 0;
896} 1480}
897 1481
903} 1487}
904 1488
905void 1489void
906ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
907{ 1491{
908 postfork = 1; 1492 postfork = 1; /* must be in line with ev_default_fork */
909} 1493}
910
911#endif 1494#endif
912 1495
913#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
914struct ev_loop * 1497struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
916#else 1499#else
917int 1500int
918ev_default_loop (unsigned int flags) 1501ev_default_loop (unsigned int flags)
919#endif 1502#endif
920{ 1503{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1504 if (!ev_default_loop_ptr)
926 { 1505 {
927#if EV_MULTIPLICITY 1506#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1508#else
930 ev_default_loop_ptr = 1; 1509 ev_default_loop_ptr = 1;
931#endif 1510#endif
932 1511
933 loop_init (EV_A_ flags); 1512 loop_init (EV_A_ flags);
934 1513
935 if (ev_method (EV_A)) 1514 if (ev_backend (EV_A))
936 { 1515 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1516#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1517 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1518 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1519 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1520 ev_unref (EV_A); /* child watcher should not keep loop alive */
960#ifndef _WIN32 1537#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1538 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1539 ev_signal_stop (EV_A_ &childev);
963#endif 1540#endif
964 1541
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1542 loop_destroy (EV_A);
972} 1543}
973 1544
974void 1545void
975ev_default_fork (void) 1546ev_default_fork (void)
976{ 1547{
977#if EV_MULTIPLICITY 1548#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1549 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1550#endif
980 1551
981 if (method) 1552 if (backend)
982 postfork = 1; 1553 postfork = 1; /* must be in line with ev_loop_fork */
983} 1554}
984 1555
985/*****************************************************************************/ 1556/*****************************************************************************/
986 1557
987static int 1558void
988any_pending (EV_P) 1559ev_invoke (EV_P_ void *w, int revents)
989{ 1560{
990 int pri; 1561 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1562}
998 1563
999inline void 1564void inline_speed
1000call_pending (EV_P) 1565call_pending (EV_P)
1001{ 1566{
1002 int pri; 1567 int pri;
1003 1568
1004 for (pri = NUMPRI; pri--; ) 1569 for (pri = NUMPRI; pri--; )
1006 { 1571 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1573
1009 if (expect_true (p->w)) 1574 if (expect_true (p->w))
1010 { 1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1577
1011 p->w->pending = 0; 1578 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1013 } 1580 }
1014 } 1581 }
1015} 1582}
1016 1583
1017inline void 1584#if EV_IDLE_ENABLE
1585void inline_size
1586idle_reify (EV_P)
1587{
1588 if (expect_false (idleall))
1589 {
1590 int pri;
1591
1592 for (pri = NUMPRI; pri--; )
1593 {
1594 if (pendingcnt [pri])
1595 break;
1596
1597 if (idlecnt [pri])
1598 {
1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1600 break;
1601 }
1602 }
1603 }
1604}
1605#endif
1606
1607void inline_size
1018timers_reify (EV_P) 1608timers_reify (EV_P)
1019{ 1609{
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 1611 {
1022 struct ev_timer *w = timers [0]; 1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1023 1613
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1025 1615
1026 /* first reschedule or stop timer */ 1616 /* first reschedule or stop timer */
1027 if (w->repeat) 1617 if (w->repeat)
1028 { 1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1624
1031 ((WT)w)->at += w->repeat; 1625 ANHE_at_set (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 1626 downheap (timers, timercnt, HEAP0);
1036 } 1627 }
1037 else 1628 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1630
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 } 1632 }
1042} 1633}
1043 1634
1044#if EV_PERIODICS 1635#if EV_PERIODIC_ENABLE
1045inline void 1636void inline_size
1046periodics_reify (EV_P) 1637periodics_reify (EV_P)
1047{ 1638{
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 1640 {
1050 struct ev_periodic *w = periodics [0]; 1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1051 1642
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1644
1054 /* first reschedule or stop timer */ 1645 /* first reschedule or stop timer */
1055 if (w->reschedule_cb) 1646 if (w->reschedule_cb)
1056 { 1647 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1059 downheap ((WT *)periodics, periodiccnt, 0); 1653 downheap (periodics, periodiccnt, HEAP0);
1060 } 1654 }
1061 else if (w->interval) 1655 else if (w->interval)
1062 { 1656 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1065 downheap ((WT *)periodics, periodiccnt, 0); 1672 downheap (periodics, periodiccnt, HEAP0);
1066 } 1673 }
1067 else 1674 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1676
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 } 1678 }
1072} 1679}
1073 1680
1074static void 1681static void noinline
1075periodics_reschedule (EV_P) 1682periodics_reschedule (EV_P)
1076{ 1683{
1077 int i; 1684 int i;
1078 1685
1079 /* adjust periodics after time jump */ 1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1080 for (i = 0; i < periodiccnt; ++i) 1701 for (i = 0; i < periodiccnt; ++i)
1081 { 1702 upheap (periodics, i + HEAP0);
1082 struct ev_periodic *w = periodics [i]; 1703}
1704#endif
1083 1705
1084 if (w->reschedule_cb) 1706void inline_speed
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1707time_update (EV_P_ ev_tstamp max_block)
1086 else if (w->interval) 1708{
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1709 int i;
1710
1711#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic))
1088 } 1713 {
1714 ev_tstamp odiff = rtmn_diff;
1089 1715
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock (); 1716 mn_now = get_clock ();
1100 1717
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1719 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1720 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 1721 {
1103 ev_rt_now = rtmn_diff + mn_now; 1722 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 1723 return;
1105 } 1724 }
1106 else 1725
1107 {
1108 now_floor = mn_now; 1726 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1727 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1728
1114inline void 1729 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1730 * on the choice of "4": one iteration isn't enough,
1116{ 1731 * in case we get preempted during the calls to
1117 int i; 1732 * ev_time and get_clock. a second call is almost guaranteed
1118 1733 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1734 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1735 * in the unlikely event of having been preempted here.
1121 { 1736 */
1122 if (time_update_monotonic (EV_A)) 1737 for (i = 4; --i; )
1123 { 1738 {
1124 ev_tstamp odiff = rtmn_diff; 1739 rtmn_diff = ev_rt_now - mn_now;
1125 1740
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1742 return; /* all is well */
1743
1744 ev_rt_now = ev_time ();
1745 mn_now = get_clock ();
1746 now_floor = mn_now;
1747 }
1748
1749# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A);
1751# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 }
1755 else
1756#endif
1757 {
1758 ev_rt_now = ev_time ();
1759
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 {
1762#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A);
1764#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1127 { 1767 {
1128 rtmn_diff = ev_rt_now - mn_now; 1768 ANHE *he = timers + i + HEAP0;
1129 1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1770 ANHE_at_set (*he);
1131 return; /* all is well */
1132
1133 ev_rt_now = ev_time ();
1134 mn_now = get_clock ();
1135 now_floor = mn_now;
1136 } 1771 }
1137
1138# if EV_PERIODICS
1139 periodics_reschedule (EV_A);
1140# endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 1772 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 1773
1161 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1162 } 1775 }
1163} 1776}
1164 1777
1177static int loop_done; 1790static int loop_done;
1178 1791
1179void 1792void
1180ev_loop (EV_P_ int flags) 1793ev_loop (EV_P_ int flags)
1181{ 1794{
1182 double block; 1795 loop_done = EVUNLOOP_CANCEL;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 1796
1185 while (activecnt) 1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1798
1799 do
1186 { 1800 {
1801#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid))
1804 {
1805 curpid = getpid ();
1806 postfork = 1;
1807 }
1808#endif
1809
1810#if EV_FORK_ENABLE
1811 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork))
1813 if (forkcnt)
1814 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A);
1817 }
1818#endif
1819
1187 /* queue check watchers (and execute them) */ 1820 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 1821 if (expect_false (preparecnt))
1189 { 1822 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 1824 call_pending (EV_A);
1192 } 1825 }
1193 1826
1827 if (expect_false (!activecnt))
1828 break;
1829
1194 /* we might have forked, so reify kernel state if necessary */ 1830 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 1831 if (expect_false (postfork))
1196 loop_fork (EV_A); 1832 loop_fork (EV_A);
1197 1833
1198 /* update fd-related kernel structures */ 1834 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 1835 fd_reify (EV_A);
1200 1836
1201 /* calculate blocking time */ 1837 /* calculate blocking time */
1838 {
1839 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.;
1202 1841
1203 /* we only need this for !monotonic clock or timers, but as we basically 1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 1843 {
1211 ev_rt_now = ev_time (); 1844 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 1845 time_update (EV_A_ 1e100);
1213 }
1214 1846
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1220 1848
1221 if (timercnt) 1849 if (timercnt)
1222 { 1850 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 1852 if (waittime > to) waittime = to;
1225 } 1853 }
1226 1854
1227#if EV_PERIODICS 1855#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 1856 if (periodiccnt)
1229 { 1857 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 1859 if (waittime > to) waittime = to;
1232 } 1860 }
1233#endif 1861#endif
1234 1862
1235 if (expect_false (block < 0.)) block = 0.; 1863 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime;
1865
1866 sleeptime = waittime - backend_fudge;
1867
1868 if (expect_true (sleeptime > io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 {
1873 ev_sleep (sleeptime);
1874 waittime -= sleeptime;
1875 }
1236 } 1876 }
1237 1877
1238 method_poll (EV_A_ block); 1878 ++loop_count;
1879 backend_poll (EV_A_ waittime);
1239 1880
1240 /* update ev_rt_now, do magic */ 1881 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 1882 time_update (EV_A_ waittime + sleeptime);
1883 }
1242 1884
1243 /* queue pending timers and reschedule them */ 1885 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 1886 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 1887#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 1888 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 1889#endif
1248 1890
1891#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 1892 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 1893 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1894#endif
1252 1895
1253 /* queue check watchers, to be executed first */ 1896 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 1897 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 1899
1257 call_pending (EV_A); 1900 call_pending (EV_A);
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 1901 }
1902 while (expect_true (
1903 activecnt
1904 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 ));
1262 1907
1263 if (loop_done != 2) 1908 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 1909 loop_done = EVUNLOOP_CANCEL;
1265} 1910}
1266 1911
1267void 1912void
1268ev_unloop (EV_P_ int how) 1913ev_unloop (EV_P_ int how)
1269{ 1914{
1270 loop_done = how; 1915 loop_done = how;
1271} 1916}
1272 1917
1273/*****************************************************************************/ 1918/*****************************************************************************/
1274 1919
1275inline void 1920void inline_size
1276wlist_add (WL *head, WL elem) 1921wlist_add (WL *head, WL elem)
1277{ 1922{
1278 elem->next = *head; 1923 elem->next = *head;
1279 *head = elem; 1924 *head = elem;
1280} 1925}
1281 1926
1282inline void 1927void inline_size
1283wlist_del (WL *head, WL elem) 1928wlist_del (WL *head, WL elem)
1284{ 1929{
1285 while (*head) 1930 while (*head)
1286 { 1931 {
1287 if (*head == elem) 1932 if (*head == elem)
1292 1937
1293 head = &(*head)->next; 1938 head = &(*head)->next;
1294 } 1939 }
1295} 1940}
1296 1941
1297inline void 1942void inline_speed
1298ev_clear_pending (EV_P_ W w) 1943clear_pending (EV_P_ W w)
1299{ 1944{
1300 if (w->pending) 1945 if (w->pending)
1301 { 1946 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1947 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0; 1948 w->pending = 0;
1304 } 1949 }
1305} 1950}
1306 1951
1307inline void 1952int
1953ev_clear_pending (EV_P_ void *w)
1954{
1955 W w_ = (W)w;
1956 int pending = w_->pending;
1957
1958 if (expect_true (pending))
1959 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1961 w_->pending = 0;
1962 p->w = 0;
1963 return p->events;
1964 }
1965 else
1966 return 0;
1967}
1968
1969void inline_size
1970pri_adjust (EV_P_ W w)
1971{
1972 int pri = w->priority;
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri;
1976}
1977
1978void inline_speed
1308ev_start (EV_P_ W w, int active) 1979ev_start (EV_P_ W w, int active)
1309{ 1980{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1981 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 1982 w->active = active;
1314 ev_ref (EV_A); 1983 ev_ref (EV_A);
1315} 1984}
1316 1985
1317inline void 1986void inline_size
1318ev_stop (EV_P_ W w) 1987ev_stop (EV_P_ W w)
1319{ 1988{
1320 ev_unref (EV_A); 1989 ev_unref (EV_A);
1321 w->active = 0; 1990 w->active = 0;
1322} 1991}
1323 1992
1324/*****************************************************************************/ 1993/*****************************************************************************/
1325 1994
1326void 1995void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 1996ev_io_start (EV_P_ ev_io *w)
1328{ 1997{
1329 int fd = w->fd; 1998 int fd = w->fd;
1330 1999
1331 if (expect_false (ev_is_active (w))) 2000 if (expect_false (ev_is_active (w)))
1332 return; 2001 return;
1333 2002
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2003 assert (("ev_io_start called with negative fd", fd >= 0));
1335 2004
1336 ev_start (EV_A_ (W)w, 1); 2005 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2007 wlist_add (&anfds[fd].head, (WL)w);
1339 2008
1340 fd_change (EV_A_ fd); 2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2010 w->events &= ~EV_IOFDSET;
1341} 2011}
1342 2012
1343void 2013void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2014ev_io_stop (EV_P_ ev_io *w)
1345{ 2015{
1346 ev_clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1348 return; 2018 return;
1349 2019
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2021
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1354 2024
1355 fd_change (EV_A_ w->fd); 2025 fd_change (EV_A_ w->fd, 1);
1356} 2026}
1357 2027
1358void 2028void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2029ev_timer_start (EV_P_ ev_timer *w)
1360{ 2030{
1361 if (expect_false (ev_is_active (w))) 2031 if (expect_false (ev_is_active (w)))
1362 return; 2032 return;
1363 2033
1364 ((WT)w)->at += mn_now; 2034 ev_at (w) += mn_now;
1365 2035
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2037
1368 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
1372 2043
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2045}
1375 2046
1376void 2047void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2049{
1379 ev_clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 2051 if (expect_false (!ev_is_active (w)))
1381 return; 2052 return;
1382 2053
2054 {
2055 int active = ev_active (w);
2056
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2058
1385 if (expect_true (((W)w)->active < timercnt--)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1386 { 2060 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2062 adjustheap (timers, timercnt, active);
1389 } 2063 }
1390 2064
1391 ((WT)w)->at -= mn_now; 2065 --timercnt;
2066 }
2067
2068 ev_at (w) -= mn_now;
1392 2069
1393 ev_stop (EV_A_ (W)w); 2070 ev_stop (EV_A_ (W)w);
1394} 2071}
1395 2072
1396void 2073void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2074ev_timer_again (EV_P_ ev_timer *w)
1398{ 2075{
1399 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1400 { 2077 {
1401 if (w->repeat) 2078 if (w->repeat)
1402 { 2079 {
1403 ((WT)w)->at = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2082 adjustheap (timers, timercnt, ev_active (w));
1405 } 2083 }
1406 else 2084 else
1407 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1408 } 2086 }
1409 else if (w->repeat) 2087 else if (w->repeat)
1410 { 2088 {
1411 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1413 } 2091 }
1414} 2092}
1415 2093
1416#if EV_PERIODICS 2094#if EV_PERIODIC_ENABLE
1417void 2095void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2096ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2097{
1420 if (expect_false (ev_is_active (w))) 2098 if (expect_false (ev_is_active (w)))
1421 return; 2099 return;
1422 2100
1423 if (w->reschedule_cb) 2101 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2103 else if (w->interval)
1426 { 2104 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2106 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2108 }
2109 else
2110 ev_at (w) = w->offset;
1431 2111
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1436 2117
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2119}
1439 2120
1440void 2121void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2123{
1443 ev_clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1445 return; 2126 return;
1446 2127
2128 {
2129 int active = ev_active (w);
2130
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2132
1449 if (expect_true (((W)w)->active < periodiccnt--)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1450 { 2134 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2136 adjustheap (periodics, periodiccnt, active);
1453 } 2137 }
2138
2139 --periodiccnt;
2140 }
1454 2141
1455 ev_stop (EV_A_ (W)w); 2142 ev_stop (EV_A_ (W)w);
1456} 2143}
1457 2144
1458void 2145void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2146ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2147{
1461 /* TODO: use adjustheap and recalculation */ 2148 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2149 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2150 ev_periodic_start (EV_A_ w);
1464} 2151}
1465#endif 2152#endif
1466 2153
1467void 2154#ifndef SA_RESTART
1468ev_idle_start (EV_P_ struct ev_idle *w) 2155# define SA_RESTART 0
2156#endif
2157
2158void noinline
2159ev_signal_start (EV_P_ ev_signal *w)
1469{ 2160{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
1470 if (expect_false (ev_is_active (w))) 2164 if (expect_false (ev_is_active (w)))
1471 return; 2165 return;
1472 2166
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w)))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (expect_false (ev_is_active (w)))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w)))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (expect_false (ev_is_active (w)))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w)))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART
1534# define SA_RESTART 0
1535#endif
1536
1537void
1538ev_signal_start (EV_P_ struct ev_signal *w)
1539{
1540#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif
1543 if (expect_false (ev_is_active (w)))
1544 return;
1545
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1547 2168
2169 evpipe_init (EV_A);
2170
2171 {
2172#ifndef _WIN32
2173 sigset_t full, prev;
2174 sigfillset (&full);
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2179
2180#ifndef _WIN32
2181 sigprocmask (SIG_SETMASK, &prev, 0);
2182#endif
2183 }
2184
1548 ev_start (EV_A_ (W)w, 1); 2185 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2186 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2187
1552 if (!((WL)w)->next) 2188 if (!((WL)w)->next)
1553 { 2189 {
1554#if _WIN32 2190#if _WIN32
1555 signal (w->signum, sighandler); 2191 signal (w->signum, ev_sighandler);
1556#else 2192#else
1557 struct sigaction sa; 2193 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2194 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2195 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2197 sigaction (w->signum, &sa, 0);
1562#endif 2198#endif
1563 } 2199 }
1564} 2200}
1565 2201
1566void 2202void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2203ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2204{
1569 ev_clear_pending (EV_A_ (W)w); 2205 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 2206 if (expect_false (!ev_is_active (w)))
1571 return; 2207 return;
1572 2208
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2209 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2210 ev_stop (EV_A_ (W)w);
1575 2211
1576 if (!signals [w->signum - 1].head) 2212 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2213 signal (w->signum, SIG_DFL);
1578} 2214}
1579 2215
1580void 2216void
1581ev_child_start (EV_P_ struct ev_child *w) 2217ev_child_start (EV_P_ ev_child *w)
1582{ 2218{
1583#if EV_MULTIPLICITY 2219#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2221#endif
1586 if (expect_false (ev_is_active (w))) 2222 if (expect_false (ev_is_active (w)))
1587 return; 2223 return;
1588 2224
1589 ev_start (EV_A_ (W)w, 1); 2225 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591} 2227}
1592 2228
1593void 2229void
1594ev_child_stop (EV_P_ struct ev_child *w) 2230ev_child_stop (EV_P_ ev_child *w)
1595{ 2231{
1596 ev_clear_pending (EV_A_ (W)w); 2232 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2233 if (expect_false (!ev_is_active (w)))
1598 return; 2234 return;
1599 2235
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2237 ev_stop (EV_A_ (W)w);
1602} 2238}
1603 2239
2240#if EV_STAT_ENABLE
2241
2242# ifdef _WIN32
2243# undef lstat
2244# define lstat(a,b) _stati64 (a,b)
2245# endif
2246
2247#define DEF_STAT_INTERVAL 5.0074891
2248#define MIN_STAT_INTERVAL 0.1074891
2249
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251
2252#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192
2254
2255static void noinline
2256infy_add (EV_P_ ev_stat *w)
2257{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259
2260 if (w->wd < 0)
2261 {
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2263
2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 {
2269 char path [4096];
2270 strcpy (path, w->path);
2271
2272 do
2273 {
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276
2277 char *pend = strrchr (path, '/');
2278
2279 if (!pend)
2280 break; /* whoops, no '/', complain to your admin */
2281
2282 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 }
2287 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290
2291 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2293}
2294
2295static void noinline
2296infy_del (EV_P_ ev_stat *w)
2297{
2298 int slot;
2299 int wd = w->wd;
2300
2301 if (wd < 0)
2302 return;
2303
2304 w->wd = -2;
2305 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2306 wlist_del (&fs_hash [slot].head, (WL)w);
2307
2308 /* remove this watcher, if others are watching it, they will rearm */
2309 inotify_rm_watch (fs_fd, wd);
2310}
2311
2312static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{
2315 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev);
2319 else
2320 {
2321 WL w_;
2322
2323 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2324 {
2325 ev_stat *w = (ev_stat *)w_;
2326 w_ = w_->next; /* lets us remove this watcher and all before it */
2327
2328 if (w->wd == wd || wd == -1)
2329 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 {
2332 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */
2334 }
2335
2336 stat_timer_cb (EV_A_ &w->timer, 0);
2337 }
2338 }
2339 }
2340}
2341
2342static void
2343infy_cb (EV_P_ ev_io *w, int revents)
2344{
2345 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf));
2349
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2352}
2353
2354void inline_size
2355infy_init (EV_P)
2356{
2357 if (fs_fd != -2)
2358 return;
2359
2360 fs_fd = inotify_init ();
2361
2362 if (fs_fd >= 0)
2363 {
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w);
2367 }
2368}
2369
2370void inline_size
2371infy_fork (EV_P)
2372{
2373 int slot;
2374
2375 if (fs_fd < 0)
2376 return;
2377
2378 close (fs_fd);
2379 fs_fd = inotify_init ();
2380
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2382 {
2383 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0;
2385
2386 while (w_)
2387 {
2388 ev_stat *w = (ev_stat *)w_;
2389 w_ = w_->next; /* lets us add this watcher */
2390
2391 w->wd = -1;
2392
2393 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else
2396 ev_timer_start (EV_A_ &w->timer);
2397 }
2398
2399 }
2400}
2401
2402#endif
2403
2404void
2405ev_stat_stat (EV_P_ ev_stat *w)
2406{
2407 if (lstat (w->path, &w->attr) < 0)
2408 w->attr.st_nlink = 0;
2409 else if (!w->attr.st_nlink)
2410 w->attr.st_nlink = 1;
2411}
2412
2413static void noinline
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417
2418 /* we copy this here each the time so that */
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w);
2422
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if (
2425 w->prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime
2436 ) {
2437 #if EV_USE_INOTIFY
2438 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */
2441 #endif
2442
2443 ev_feed_event (EV_A_ w, EV_STAT);
2444 }
2445}
2446
2447void
2448ev_stat_start (EV_P_ ev_stat *w)
2449{
2450 if (expect_false (ev_is_active (w)))
2451 return;
2452
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w);
2458
2459 if (w->interval < MIN_STAT_INTERVAL)
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2463 ev_set_priority (&w->timer, ev_priority (w));
2464
2465#if EV_USE_INOTIFY
2466 infy_init (EV_A);
2467
2468 if (fs_fd >= 0)
2469 infy_add (EV_A_ w);
2470 else
2471#endif
2472 ev_timer_start (EV_A_ &w->timer);
2473
2474 ev_start (EV_A_ (W)w, 1);
2475}
2476
2477void
2478ev_stat_stop (EV_P_ ev_stat *w)
2479{
2480 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w)))
2482 return;
2483
2484#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w);
2486#endif
2487 ev_timer_stop (EV_A_ &w->timer);
2488
2489 ev_stop (EV_A_ (W)w);
2490}
2491#endif
2492
2493#if EV_IDLE_ENABLE
2494void
2495ev_idle_start (EV_P_ ev_idle *w)
2496{
2497 if (expect_false (ev_is_active (w)))
2498 return;
2499
2500 pri_adjust (EV_A_ (W)w);
2501
2502 {
2503 int active = ++idlecnt [ABSPRI (w)];
2504
2505 ++idleall;
2506 ev_start (EV_A_ (W)w, active);
2507
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w;
2510 }
2511}
2512
2513void
2514ev_idle_stop (EV_P_ ev_idle *w)
2515{
2516 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w)))
2518 return;
2519
2520 {
2521 int active = ev_active (w);
2522
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525
2526 ev_stop (EV_A_ (W)w);
2527 --idleall;
2528 }
2529}
2530#endif
2531
2532void
2533ev_prepare_start (EV_P_ ev_prepare *w)
2534{
2535 if (expect_false (ev_is_active (w)))
2536 return;
2537
2538 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w;
2541}
2542
2543void
2544ev_prepare_stop (EV_P_ ev_prepare *w)
2545{
2546 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w)))
2548 return;
2549
2550 {
2551 int active = ev_active (w);
2552
2553 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active;
2555 }
2556
2557 ev_stop (EV_A_ (W)w);
2558}
2559
2560void
2561ev_check_start (EV_P_ ev_check *w)
2562{
2563 if (expect_false (ev_is_active (w)))
2564 return;
2565
2566 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w;
2569}
2570
2571void
2572ev_check_stop (EV_P_ ev_check *w)
2573{
2574 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w)))
2576 return;
2577
2578 {
2579 int active = ev_active (w);
2580
2581 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active;
2583 }
2584
2585 ev_stop (EV_A_ (W)w);
2586}
2587
2588#if EV_EMBED_ENABLE
2589void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w)
2591{
2592 ev_loop (w->other, EVLOOP_NONBLOCK);
2593}
2594
2595static void
2596embed_io_cb (EV_P_ ev_io *io, int revents)
2597{
2598 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2599
2600 if (ev_cb (w))
2601 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2602 else
2603 ev_loop (w->other, EVLOOP_NONBLOCK);
2604}
2605
2606static void
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610
2611 {
2612 struct ev_loop *loop = w->other;
2613
2614 while (fdchangecnt)
2615 {
2616 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 }
2619 }
2620}
2621
2622#if 0
2623static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{
2626 ev_idle_stop (EV_A_ idle);
2627}
2628#endif
2629
2630void
2631ev_embed_start (EV_P_ ev_embed *w)
2632{
2633 if (expect_false (ev_is_active (w)))
2634 return;
2635
2636 {
2637 struct ev_loop *loop = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 }
2641
2642 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io);
2644
2645 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare);
2648
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650
2651 ev_start (EV_A_ (W)w, 1);
2652}
2653
2654void
2655ev_embed_stop (EV_P_ ev_embed *w)
2656{
2657 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w)))
2659 return;
2660
2661 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare);
2663
2664 ev_stop (EV_A_ (W)w);
2665}
2666#endif
2667
2668#if EV_FORK_ENABLE
2669void
2670ev_fork_start (EV_P_ ev_fork *w)
2671{
2672 if (expect_false (ev_is_active (w)))
2673 return;
2674
2675 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w;
2678}
2679
2680void
2681ev_fork_stop (EV_P_ ev_fork *w)
2682{
2683 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w)))
2685 return;
2686
2687 {
2688 int active = ev_active (w);
2689
2690 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active;
2692 }
2693
2694 ev_stop (EV_A_ (W)w);
2695}
2696#endif
2697
2698#if EV_ASYNC_ENABLE
2699void
2700ev_async_start (EV_P_ ev_async *w)
2701{
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 evpipe_init (EV_A);
2706
2707 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w;
2710}
2711
2712void
2713ev_async_stop (EV_P_ ev_async *w)
2714{
2715 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w)))
2717 return;
2718
2719 {
2720 int active = ev_active (w);
2721
2722 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active;
2724 }
2725
2726 ev_stop (EV_A_ (W)w);
2727}
2728
2729void
2730ev_async_send (EV_P_ ev_async *w)
2731{
2732 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync);
2734}
2735#endif
2736
1604/*****************************************************************************/ 2737/*****************************************************************************/
1605 2738
1606struct ev_once 2739struct ev_once
1607{ 2740{
1608 struct ev_io io; 2741 ev_io io;
1609 struct ev_timer to; 2742 ev_timer to;
1610 void (*cb)(int revents, void *arg); 2743 void (*cb)(int revents, void *arg);
1611 void *arg; 2744 void *arg;
1612}; 2745};
1613 2746
1614static void 2747static void
1623 2756
1624 cb (revents, arg); 2757 cb (revents, arg);
1625} 2758}
1626 2759
1627static void 2760static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 2761once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 2762{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1631} 2764}
1632 2765
1633static void 2766static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 2767once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 2768{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1637} 2770}
1638 2771
1639void 2772void
1663 ev_timer_set (&once->to, timeout, 0.); 2796 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 2797 ev_timer_start (EV_A_ &once->to);
1665 } 2798 }
1666} 2799}
1667 2800
2801#if EV_MULTIPLICITY
2802 #include "ev_wrap.h"
2803#endif
2804
1668#ifdef __cplusplus 2805#ifdef __cplusplus
1669} 2806}
1670#endif 2807#endif
1671 2808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines