ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.124 by root, Sat Nov 17 02:26:24 2007 UTC vs.
Revision 1.269 by root, Wed Oct 29 06:32:48 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
159# include <io.h>
89# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 161# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
93# endif 164# endif
94#endif 165#endif
95 166
96/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
97 168
98#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
99# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
100#endif 175#endif
101 176
102#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
104#endif 187#endif
105 188
106#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
108#endif 191#endif
114# define EV_USE_POLL 1 197# define EV_USE_POLL 1
115# endif 198# endif
116#endif 199#endif
117 200
118#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
119# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
120#endif 207#endif
121 208
122#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
124#endif 211#endif
125 212
126#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 214# define EV_USE_PORT 0
128#endif 215#endif
129 216
130/**/ 217#ifndef EV_USE_INOTIFY
131 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
132/* darwin simply cannot be helped */ 219# define EV_USE_INOTIFY 1
133#ifdef __APPLE__ 220# else
134# undef EV_USE_POLL 221# define EV_USE_INOTIFY 0
135# undef EV_USE_KQUEUE
136#endif 222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 268
138#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
141#endif 272#endif
143#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
146#endif 277#endif
147 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
148#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 301# include <winsock.h>
150#endif 302#endif
151 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
152/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 333
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158 337
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 338#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline 340# define noinline __attribute__ ((noinline))
168#else 341#else
169# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
170# define inline static 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
171#endif 347#endif
172 348
173#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
175 358
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 361
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 363#define EMPTY2(a,b) /* used to suppress some warnings */
181 364
182typedef struct ev_watcher *W; 365typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
185 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
187 377
188#ifdef _WIN32 378#ifdef _WIN32
189# include "ev_win32.c" 379# include "ev_win32.c"
190#endif 380#endif
191 381
192/*****************************************************************************/ 382/*****************************************************************************/
193 383
194static void (*syserr_cb)(const char *msg); 384static void (*syserr_cb)(const char *msg);
195 385
386void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 387ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 388{
198 syserr_cb = cb; 389 syserr_cb = cb;
199} 390}
200 391
201static void 392static void noinline
202syserr (const char *msg) 393ev_syserr (const char *msg)
203{ 394{
204 if (!msg) 395 if (!msg)
205 msg = "(libev) system error"; 396 msg = "(libev) system error";
206 397
207 if (syserr_cb) 398 if (syserr_cb)
211 perror (msg); 402 perror (msg);
212 abort (); 403 abort ();
213 } 404 }
214} 405}
215 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
216static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 423
424void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 426{
220 alloc = cb; 427 alloc = cb;
221} 428}
222 429
223static void * 430inline_speed void *
224ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
225{ 432{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
227 434
228 if (!ptr && size) 435 if (!ptr && size)
229 { 436 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort (); 438 abort ();
242typedef struct 449typedef struct
243{ 450{
244 WL head; 451 WL head;
245 unsigned char events; 452 unsigned char events;
246 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused;
456#if EV_USE_EPOLL
457 unsigned int egen; /* generation counter to counter epoll bugs */
458#endif
247#if EV_SELECT_IS_WINSOCKET 459#if EV_SELECT_IS_WINSOCKET
248 SOCKET handle; 460 SOCKET handle;
249#endif 461#endif
250} ANFD; 462} ANFD;
251 463
252typedef struct 464typedef struct
253{ 465{
254 W w; 466 W w;
255 int events; 467 int events;
256} ANPENDING; 468} ANPENDING;
469
470#if EV_USE_INOTIFY
471/* hash table entry per inotify-id */
472typedef struct
473{
474 WL head;
475} ANFS;
476#endif
477
478/* Heap Entry */
479#if EV_HEAP_CACHE_AT
480 typedef struct {
481 ev_tstamp at;
482 WT w;
483 } ANHE;
484
485 #define ANHE_w(he) (he).w /* access watcher, read-write */
486 #define ANHE_at(he) (he).at /* access cached at, read-only */
487 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
488#else
489 typedef WT ANHE;
490
491 #define ANHE_w(he) (he)
492 #define ANHE_at(he) (he)->at
493 #define ANHE_at_cache(he)
494#endif
257 495
258#if EV_MULTIPLICITY 496#if EV_MULTIPLICITY
259 497
260 struct ev_loop 498 struct ev_loop
261 { 499 {
295 gettimeofday (&tv, 0); 533 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 534 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif 535#endif
298} 536}
299 537
300inline ev_tstamp 538ev_tstamp inline_size
301get_clock (void) 539get_clock (void)
302{ 540{
303#if EV_USE_MONOTONIC 541#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 542 if (expect_true (have_monotonic))
305 { 543 {
318{ 556{
319 return ev_rt_now; 557 return ev_rt_now;
320} 558}
321#endif 559#endif
322 560
323#define array_roundsize(type,n) (((n) | 4) & ~3) 561void
562ev_sleep (ev_tstamp delay)
563{
564 if (delay > 0.)
565 {
566#if EV_USE_NANOSLEEP
567 struct timespec ts;
568
569 ts.tv_sec = (time_t)delay;
570 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
571
572 nanosleep (&ts, 0);
573#elif defined(_WIN32)
574 Sleep ((unsigned long)(delay * 1e3));
575#else
576 struct timeval tv;
577
578 tv.tv_sec = (time_t)delay;
579 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
580
581 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
582 /* somehting nto guaranteed by newer posix versions, but guaranteed */
583 /* by older ones */
584 select (0, 0, 0, 0, &tv);
585#endif
586 }
587}
588
589/*****************************************************************************/
590
591#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
592
593int inline_size
594array_nextsize (int elem, int cur, int cnt)
595{
596 int ncur = cur + 1;
597
598 do
599 ncur <<= 1;
600 while (cnt > ncur);
601
602 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
603 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
604 {
605 ncur *= elem;
606 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
607 ncur = ncur - sizeof (void *) * 4;
608 ncur /= elem;
609 }
610
611 return ncur;
612}
613
614static noinline void *
615array_realloc (int elem, void *base, int *cur, int cnt)
616{
617 *cur = array_nextsize (elem, *cur, cnt);
618 return ev_realloc (base, elem * *cur);
619}
620
621#define array_init_zero(base,count) \
622 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 623
325#define array_needsize(type,base,cur,cnt,init) \ 624#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 625 if (expect_false ((cnt) > (cur))) \
327 { \ 626 { \
328 int newcnt = cur; \ 627 int ocur_ = (cur); \
329 do \ 628 (base) = (type *)array_realloc \
330 { \ 629 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 630 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 631 }
339 632
633#if 0
340#define array_slim(type,stem) \ 634#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 635 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 636 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 637 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 638 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 639 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 640 }
641#endif
347 642
348#define array_free(stem, idx) \ 643#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 644 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
350 645
351/*****************************************************************************/ 646/*****************************************************************************/
352 647
353static void 648void noinline
354anfds_init (ANFD *base, int count)
355{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364}
365
366void
367ev_feed_event (EV_P_ void *w, int revents) 649ev_feed_event (EV_P_ void *w, int revents)
368{ 650{
369 W w_ = (W)w; 651 W w_ = (W)w;
652 int pri = ABSPRI (w_);
370 653
371 if (expect_false (w_->pending)) 654 if (expect_false (w_->pending))
655 pendings [pri][w_->pending - 1].events |= revents;
656 else
372 { 657 {
658 w_->pending = ++pendingcnt [pri];
659 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
660 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 661 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 662 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 663}
382 664
383static void 665void inline_speed
384queue_events (EV_P_ W *events, int eventcnt, int type) 666queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 667{
386 int i; 668 int i;
387 669
388 for (i = 0; i < eventcnt; ++i) 670 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 671 ev_feed_event (EV_A_ events [i], type);
390} 672}
391 673
392inline void 674/*****************************************************************************/
675
676void inline_speed
393fd_event (EV_P_ int fd, int revents) 677fd_event (EV_P_ int fd, int revents)
394{ 678{
395 ANFD *anfd = anfds + fd; 679 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 680 ev_io *w;
397 681
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 683 {
400 int ev = w->events & revents; 684 int ev = w->events & revents;
401 685
402 if (ev) 686 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 687 ev_feed_event (EV_A_ (W)w, ev);
405} 689}
406 690
407void 691void
408ev_feed_fd_event (EV_P_ int fd, int revents) 692ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 693{
694 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 695 fd_event (EV_A_ fd, revents);
411} 696}
412 697
413/*****************************************************************************/ 698void inline_size
414
415inline void
416fd_reify (EV_P) 699fd_reify (EV_P)
417{ 700{
418 int i; 701 int i;
419 702
420 for (i = 0; i < fdchangecnt; ++i) 703 for (i = 0; i < fdchangecnt; ++i)
421 { 704 {
422 int fd = fdchanges [i]; 705 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 706 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 707 ev_io *w;
425 708
426 int events = 0; 709 unsigned char events = 0;
427 710
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 711 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 712 events |= (unsigned char)w->events;
430 713
431#if EV_SELECT_IS_WINSOCKET 714#if EV_SELECT_IS_WINSOCKET
432 if (events) 715 if (events)
433 { 716 {
434 unsigned long argp; 717 unsigned long arg;
718 #ifdef EV_FD_TO_WIN32_HANDLE
719 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
720 #else
435 anfd->handle = _get_osfhandle (fd); 721 anfd->handle = _get_osfhandle (fd);
722 #endif
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 723 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
437 } 724 }
438#endif 725#endif
439 726
727 {
728 unsigned char o_events = anfd->events;
729 unsigned char o_reify = anfd->reify;
730
440 anfd->reify = 0; 731 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 732 anfd->events = events;
733
734 if (o_events != events || o_reify & EV_IOFDSET)
735 backend_modify (EV_A_ fd, o_events, events);
736 }
444 } 737 }
445 738
446 fdchangecnt = 0; 739 fdchangecnt = 0;
447} 740}
448 741
449static void 742void inline_size
450fd_change (EV_P_ int fd) 743fd_change (EV_P_ int fd, int flags)
451{ 744{
452 if (expect_false (anfds [fd].reify)) 745 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 746 anfds [fd].reify |= flags;
456 747
748 if (expect_true (!reify))
749 {
457 ++fdchangecnt; 750 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 751 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 752 fdchanges [fdchangecnt - 1] = fd;
753 }
460} 754}
461 755
462static void 756void inline_speed
463fd_kill (EV_P_ int fd) 757fd_kill (EV_P_ int fd)
464{ 758{
465 struct ev_io *w; 759 ev_io *w;
466 760
467 while ((w = (struct ev_io *)anfds [fd].head)) 761 while ((w = (ev_io *)anfds [fd].head))
468 { 762 {
469 ev_io_stop (EV_A_ w); 763 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 764 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 765 }
472} 766}
473 767
474inline int 768int inline_size
475fd_valid (int fd) 769fd_valid (int fd)
476{ 770{
477#ifdef _WIN32 771#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 772 return _get_osfhandle (fd) != -1;
479#else 773#else
480 return fcntl (fd, F_GETFD) != -1; 774 return fcntl (fd, F_GETFD) != -1;
481#endif 775#endif
482} 776}
483 777
484/* called on EBADF to verify fds */ 778/* called on EBADF to verify fds */
485static void 779static void noinline
486fd_ebadf (EV_P) 780fd_ebadf (EV_P)
487{ 781{
488 int fd; 782 int fd;
489 783
490 for (fd = 0; fd < anfdmax; ++fd) 784 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 785 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 786 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 787 fd_kill (EV_A_ fd);
494} 788}
495 789
496/* called on ENOMEM in select/poll to kill some fds and retry */ 790/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 791static void noinline
498fd_enomem (EV_P) 792fd_enomem (EV_P)
499{ 793{
500 int fd; 794 int fd;
501 795
502 for (fd = anfdmax; fd--; ) 796 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 799 fd_kill (EV_A_ fd);
506 return; 800 return;
507 } 801 }
508} 802}
509 803
510/* usually called after fork if method needs to re-arm all fds from scratch */ 804/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 805static void noinline
512fd_rearm_all (EV_P) 806fd_rearm_all (EV_P)
513{ 807{
514 int fd; 808 int fd;
515 809
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 810 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 811 if (anfds [fd].events)
519 { 812 {
520 anfds [fd].events = 0; 813 anfds [fd].events = 0;
814 anfds [fd].emask = 0;
521 fd_change (EV_A_ fd); 815 fd_change (EV_A_ fd, EV_IOFDSET | 1);
522 } 816 }
523} 817}
524 818
525/*****************************************************************************/ 819/*****************************************************************************/
526 820
527static void 821/*
528upheap (WT *heap, int k) 822 * the heap functions want a real array index. array index 0 uis guaranteed to not
529{ 823 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
530 WT w = heap [k]; 824 * the branching factor of the d-tree.
825 */
531 826
532 while (k && heap [k >> 1]->at > w->at) 827/*
533 { 828 * at the moment we allow libev the luxury of two heaps,
534 heap [k] = heap [k >> 1]; 829 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
535 ((W)heap [k])->active = k + 1; 830 * which is more cache-efficient.
536 k >>= 1; 831 * the difference is about 5% with 50000+ watchers.
537 } 832 */
833#if EV_USE_4HEAP
538 834
539 heap [k] = w; 835#define DHEAP 4
540 ((W)heap [k])->active = k + 1; 836#define HEAP0 (DHEAP - 1) /* index of first element in heap */
837#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
838#define UPHEAP_DONE(p,k) ((p) == (k))
541 839
542} 840/* away from the root */
543 841void inline_speed
544static void
545downheap (WT *heap, int N, int k) 842downheap (ANHE *heap, int N, int k)
546{ 843{
547 WT w = heap [k]; 844 ANHE he = heap [k];
845 ANHE *E = heap + N + HEAP0;
548 846
549 while (k < (N >> 1)) 847 for (;;)
550 { 848 {
551 int j = k << 1; 849 ev_tstamp minat;
850 ANHE *minpos;
851 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
552 852
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 853 /* find minimum child */
854 if (expect_true (pos + DHEAP - 1 < E))
554 ++j; 855 {
555 856 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
556 if (w->at <= heap [j]->at) 857 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
860 }
861 else if (pos < E)
862 {
863 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
864 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
865 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
866 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
867 }
868 else
557 break; 869 break;
558 870
871 if (ANHE_at (he) <= minat)
872 break;
873
874 heap [k] = *minpos;
875 ev_active (ANHE_w (*minpos)) = k;
876
877 k = minpos - heap;
878 }
879
880 heap [k] = he;
881 ev_active (ANHE_w (he)) = k;
882}
883
884#else /* 4HEAP */
885
886#define HEAP0 1
887#define HPARENT(k) ((k) >> 1)
888#define UPHEAP_DONE(p,k) (!(p))
889
890/* away from the root */
891void inline_speed
892downheap (ANHE *heap, int N, int k)
893{
894 ANHE he = heap [k];
895
896 for (;;)
897 {
898 int c = k << 1;
899
900 if (c > N + HEAP0 - 1)
901 break;
902
903 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
904 ? 1 : 0;
905
906 if (ANHE_at (he) <= ANHE_at (heap [c]))
907 break;
908
559 heap [k] = heap [j]; 909 heap [k] = heap [c];
560 ((W)heap [k])->active = k + 1; 910 ev_active (ANHE_w (heap [k])) = k;
911
561 k = j; 912 k = c;
562 } 913 }
563 914
564 heap [k] = w; 915 heap [k] = he;
565 ((W)heap [k])->active = k + 1; 916 ev_active (ANHE_w (he)) = k;
566} 917}
918#endif
567 919
568inline void 920/* towards the root */
921void inline_speed
922upheap (ANHE *heap, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int p = HPARENT (k);
929
930 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
931 break;
932
933 heap [k] = heap [p];
934 ev_active (ANHE_w (heap [k])) = k;
935 k = p;
936 }
937
938 heap [k] = he;
939 ev_active (ANHE_w (he)) = k;
940}
941
942void inline_size
569adjustheap (WT *heap, int N, int k) 943adjustheap (ANHE *heap, int N, int k)
570{ 944{
945 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
571 upheap (heap, k); 946 upheap (heap, k);
947 else
572 downheap (heap, N, k); 948 downheap (heap, N, k);
949}
950
951/* rebuild the heap: this function is used only once and executed rarely */
952void inline_size
953reheap (ANHE *heap, int N)
954{
955 int i;
956
957 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
959 for (i = 0; i < N; ++i)
960 upheap (heap, i + HEAP0);
573} 961}
574 962
575/*****************************************************************************/ 963/*****************************************************************************/
576 964
577typedef struct 965typedef struct
578{ 966{
579 WL head; 967 WL head;
580 sig_atomic_t volatile gotsig; 968 EV_ATOMIC_T gotsig;
581} ANSIG; 969} ANSIG;
582 970
583static ANSIG *signals; 971static ANSIG *signals;
584static int signalmax; 972static int signalmax;
585 973
586static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589 975
590static void 976/*****************************************************************************/
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597 977
598 ++base; 978void inline_speed
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 979fd_intern (int fd)
655{ 980{
656#ifdef _WIN32 981#ifdef _WIN32
657 int arg = 1; 982 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 983 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else 984#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 985 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 986 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 987#endif
663} 988}
664 989
990static void noinline
991evpipe_init (EV_P)
992{
993 if (!ev_is_active (&pipeev))
994 {
995#if EV_USE_EVENTFD
996 if ((evfd = eventfd (0, 0)) >= 0)
997 {
998 evpipe [0] = -1;
999 fd_intern (evfd);
1000 ev_io_set (&pipeev, evfd, EV_READ);
1001 }
1002 else
1003#endif
1004 {
1005 while (pipe (evpipe))
1006 ev_syserr ("(libev) error creating signal/async pipe");
1007
1008 fd_intern (evpipe [0]);
1009 fd_intern (evpipe [1]);
1010 ev_io_set (&pipeev, evpipe [0], EV_READ);
1011 }
1012
1013 ev_io_start (EV_A_ &pipeev);
1014 ev_unref (EV_A); /* watcher should not keep loop alive */
1015 }
1016}
1017
1018void inline_size
1019evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1020{
1021 if (!*flag)
1022 {
1023 int old_errno = errno; /* save errno because write might clobber it */
1024
1025 *flag = 1;
1026
1027#if EV_USE_EVENTFD
1028 if (evfd >= 0)
1029 {
1030 uint64_t counter = 1;
1031 write (evfd, &counter, sizeof (uint64_t));
1032 }
1033 else
1034#endif
1035 write (evpipe [1], &old_errno, 1);
1036
1037 errno = old_errno;
1038 }
1039}
1040
665static void 1041static void
666siginit (EV_P) 1042pipecb (EV_P_ ev_io *iow, int revents)
667{ 1043{
668 fd_intern (sigpipe [0]); 1044#if EV_USE_EVENTFD
669 fd_intern (sigpipe [1]); 1045 if (evfd >= 0)
1046 {
1047 uint64_t counter;
1048 read (evfd, &counter, sizeof (uint64_t));
1049 }
1050 else
1051#endif
1052 {
1053 char dummy;
1054 read (evpipe [0], &dummy, 1);
1055 }
670 1056
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1057 if (gotsig && ev_is_default_loop (EV_A))
672 ev_io_start (EV_A_ &sigev); 1058 {
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1059 int signum;
1060 gotsig = 0;
1061
1062 for (signum = signalmax; signum--; )
1063 if (signals [signum].gotsig)
1064 ev_feed_signal_event (EV_A_ signum + 1);
1065 }
1066
1067#if EV_ASYNC_ENABLE
1068 if (gotasync)
1069 {
1070 int i;
1071 gotasync = 0;
1072
1073 for (i = asynccnt; i--; )
1074 if (asyncs [i]->sent)
1075 {
1076 asyncs [i]->sent = 0;
1077 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1078 }
1079 }
1080#endif
674} 1081}
675 1082
676/*****************************************************************************/ 1083/*****************************************************************************/
677 1084
678static struct ev_child *childs [PID_HASHSIZE]; 1085static void
1086ev_sighandler (int signum)
1087{
1088#if EV_MULTIPLICITY
1089 struct ev_loop *loop = &default_loop_struct;
1090#endif
1091
1092#if _WIN32
1093 signal (signum, ev_sighandler);
1094#endif
1095
1096 signals [signum - 1].gotsig = 1;
1097 evpipe_write (EV_A_ &gotsig);
1098}
1099
1100void noinline
1101ev_feed_signal_event (EV_P_ int signum)
1102{
1103 WL w;
1104
1105#if EV_MULTIPLICITY
1106 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1107#endif
1108
1109 --signum;
1110
1111 if (signum < 0 || signum >= signalmax)
1112 return;
1113
1114 signals [signum].gotsig = 0;
1115
1116 for (w = signals [signum].head; w; w = w->next)
1117 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1118}
1119
1120/*****************************************************************************/
1121
1122static WL childs [EV_PID_HASHSIZE];
679 1123
680#ifndef _WIN32 1124#ifndef _WIN32
681 1125
682static struct ev_signal childev; 1126static ev_signal childev;
1127
1128#ifndef WIFCONTINUED
1129# define WIFCONTINUED(status) 0
1130#endif
1131
1132void inline_speed
1133child_reap (EV_P_ int chain, int pid, int status)
1134{
1135 ev_child *w;
1136 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1137
1138 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1139 {
1140 if ((w->pid == pid || !w->pid)
1141 && (!traced || (w->flags & 1)))
1142 {
1143 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1144 w->rpid = pid;
1145 w->rstatus = status;
1146 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1147 }
1148 }
1149}
683 1150
684#ifndef WCONTINUED 1151#ifndef WCONTINUED
685# define WCONTINUED 0 1152# define WCONTINUED 0
686#endif 1153#endif
687 1154
688static void 1155static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1156childcb (EV_P_ ev_signal *sw, int revents)
705{ 1157{
706 int pid, status; 1158 int pid, status;
707 1159
1160 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1161 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1162 if (!WCONTINUED
1163 || errno != EINVAL
1164 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1165 return;
1166
710 /* make sure we are called again until all childs have been reaped */ 1167 /* make sure we are called again until all children have been reaped */
1168 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1169 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1170
713 child_reap (EV_A_ sw, pid, pid, status); 1171 child_reap (EV_A_ pid, pid, status);
1172 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1173 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1174}
717 1175
718#endif 1176#endif
719 1177
720/*****************************************************************************/ 1178/*****************************************************************************/
746{ 1204{
747 return EV_VERSION_MINOR; 1205 return EV_VERSION_MINOR;
748} 1206}
749 1207
750/* return true if we are running with elevated privileges and should ignore env variables */ 1208/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1209int inline_size
752enable_secure (void) 1210enable_secure (void)
753{ 1211{
754#ifdef _WIN32 1212#ifdef _WIN32
755 return 0; 1213 return 0;
756#else 1214#else
758 || getgid () != getegid (); 1216 || getgid () != getegid ();
759#endif 1217#endif
760} 1218}
761 1219
762unsigned int 1220unsigned int
763ev_method (EV_P) 1221ev_supported_backends (void)
764{ 1222{
765 return method; 1223 unsigned int flags = 0;
766}
767 1224
768static void 1225 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1226 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1227 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1228 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1229 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1230
1231 return flags;
1232}
1233
1234unsigned int
1235ev_recommended_backends (void)
1236{
1237 unsigned int flags = ev_supported_backends ();
1238
1239#ifndef __NetBSD__
1240 /* kqueue is borked on everything but netbsd apparently */
1241 /* it usually doesn't work correctly on anything but sockets and pipes */
1242 flags &= ~EVBACKEND_KQUEUE;
1243#endif
1244#ifdef __APPLE__
1245 // flags &= ~EVBACKEND_KQUEUE; for documentation
1246 flags &= ~EVBACKEND_POLL;
1247#endif
1248
1249 return flags;
1250}
1251
1252unsigned int
1253ev_embeddable_backends (void)
1254{
1255 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1256
1257 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1258 /* please fix it and tell me how to detect the fix */
1259 flags &= ~EVBACKEND_EPOLL;
1260
1261 return flags;
1262}
1263
1264unsigned int
1265ev_backend (EV_P)
1266{
1267 return backend;
1268}
1269
1270unsigned int
1271ev_loop_count (EV_P)
1272{
1273 return loop_count;
1274}
1275
1276void
1277ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1278{
1279 io_blocktime = interval;
1280}
1281
1282void
1283ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1284{
1285 timeout_blocktime = interval;
1286}
1287
1288static void noinline
769loop_init (EV_P_ unsigned int flags) 1289loop_init (EV_P_ unsigned int flags)
770{ 1290{
771 if (!method) 1291 if (!backend)
772 { 1292 {
773#if EV_USE_MONOTONIC 1293#if EV_USE_MONOTONIC
774 { 1294 {
775 struct timespec ts; 1295 struct timespec ts;
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1296 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 1297 have_monotonic = 1;
778 } 1298 }
779#endif 1299#endif
780 1300
781 ev_rt_now = ev_time (); 1301 ev_rt_now = ev_time ();
782 mn_now = get_clock (); 1302 mn_now = get_clock ();
783 now_floor = mn_now; 1303 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now; 1304 rtmn_diff = ev_rt_now - mn_now;
785 1305
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1306 io_blocktime = 0.;
1307 timeout_blocktime = 0.;
1308 backend = 0;
1309 backend_fd = -1;
1310 gotasync = 0;
1311#if EV_USE_INOTIFY
1312 fs_fd = -2;
1313#endif
1314
1315 /* pid check not overridable via env */
1316#ifndef _WIN32
1317 if (flags & EVFLAG_FORKCHECK)
1318 curpid = getpid ();
1319#endif
1320
1321 if (!(flags & EVFLAG_NOENV)
1322 && !enable_secure ()
1323 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1324 flags = atoi (getenv ("LIBEV_FLAGS"));
788 1325
789 if (!(flags & 0x0000ffff)) 1326 if (!(flags & 0x0000ffffU))
790 flags |= 0x0000ffff; 1327 flags |= ev_recommended_backends ();
791 1328
792 method = 0;
793#if EV_USE_PORT 1329#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1330 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 1331#endif
796#if EV_USE_KQUEUE 1332#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1333 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 1334#endif
799#if EV_USE_EPOLL 1335#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 1337#endif
802#if EV_USE_POLL 1338#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1339 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 1340#endif
805#if EV_USE_SELECT 1341#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 1343#endif
808 1344
809 ev_init (&sigev, sigcb); 1345 ev_init (&pipeev, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 1346 ev_set_priority (&pipeev, EV_MAXPRI);
811 } 1347 }
812} 1348}
813 1349
814static void 1350static void noinline
815loop_destroy (EV_P) 1351loop_destroy (EV_P)
816{ 1352{
817 int i; 1353 int i;
818 1354
1355 if (ev_is_active (&pipeev))
1356 {
1357 ev_ref (EV_A); /* signal watcher */
1358 ev_io_stop (EV_A_ &pipeev);
1359
1360#if EV_USE_EVENTFD
1361 if (evfd >= 0)
1362 close (evfd);
1363#endif
1364
1365 if (evpipe [0] >= 0)
1366 {
1367 close (evpipe [0]);
1368 close (evpipe [1]);
1369 }
1370 }
1371
1372#if EV_USE_INOTIFY
1373 if (fs_fd >= 0)
1374 close (fs_fd);
1375#endif
1376
1377 if (backend_fd >= 0)
1378 close (backend_fd);
1379
819#if EV_USE_PORT 1380#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1381 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 1382#endif
822#if EV_USE_KQUEUE 1383#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1384 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 1385#endif
825#if EV_USE_EPOLL 1386#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1387 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 1388#endif
828#if EV_USE_POLL 1389#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1390 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 1391#endif
831#if EV_USE_SELECT 1392#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1393 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 1394#endif
834 1395
835 for (i = NUMPRI; i--; ) 1396 for (i = NUMPRI; i--; )
1397 {
836 array_free (pending, [i]); 1398 array_free (pending, [i]);
1399#if EV_IDLE_ENABLE
1400 array_free (idle, [i]);
1401#endif
1402 }
1403
1404 ev_free (anfds); anfdmax = 0;
837 1405
838 /* have to use the microsoft-never-gets-it-right macro */ 1406 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0); 1407 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 1408 array_free (timer, EMPTY);
841#if EV_PERIODICS 1409#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 1410 array_free (periodic, EMPTY);
843#endif 1411#endif
1412#if EV_FORK_ENABLE
844 array_free (idle, EMPTY0); 1413 array_free (fork, EMPTY);
1414#endif
845 array_free (prepare, EMPTY0); 1415 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 1416 array_free (check, EMPTY);
1417#if EV_ASYNC_ENABLE
1418 array_free (async, EMPTY);
1419#endif
847 1420
848 method = 0; 1421 backend = 0;
849} 1422}
850 1423
851static void 1424#if EV_USE_INOTIFY
1425void inline_size infy_fork (EV_P);
1426#endif
1427
1428void inline_size
852loop_fork (EV_P) 1429loop_fork (EV_P)
853{ 1430{
854#if EV_USE_PORT 1431#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1432 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 1433#endif
857#if EV_USE_KQUEUE 1434#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1435 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 1436#endif
860#if EV_USE_EPOLL 1437#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1438 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
862#endif 1439#endif
1440#if EV_USE_INOTIFY
1441 infy_fork (EV_A);
1442#endif
863 1443
864 if (ev_is_active (&sigev)) 1444 if (ev_is_active (&pipeev))
865 { 1445 {
866 /* default loop */ 1446 /* this "locks" the handlers against writing to the pipe */
1447 /* while we modify the fd vars */
1448 gotsig = 1;
1449#if EV_ASYNC_ENABLE
1450 gotasync = 1;
1451#endif
867 1452
868 ev_ref (EV_A); 1453 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev); 1454 ev_io_stop (EV_A_ &pipeev);
1455
1456#if EV_USE_EVENTFD
1457 if (evfd >= 0)
1458 close (evfd);
1459#endif
1460
1461 if (evpipe [0] >= 0)
1462 {
870 close (sigpipe [0]); 1463 close (evpipe [0]);
871 close (sigpipe [1]); 1464 close (evpipe [1]);
1465 }
872 1466
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A); 1467 evpipe_init (EV_A);
1468 /* now iterate over everything, in case we missed something */
1469 pipecb (EV_A_ &pipeev, EV_READ);
877 } 1470 }
878 1471
879 postfork = 0; 1472 postfork = 0;
880} 1473}
1474
1475#if EV_MULTIPLICITY
1476
1477struct ev_loop *
1478ev_loop_new (unsigned int flags)
1479{
1480 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1481
1482 memset (loop, 0, sizeof (struct ev_loop));
1483
1484 loop_init (EV_A_ flags);
1485
1486 if (ev_backend (EV_A))
1487 return loop;
1488
1489 return 0;
1490}
1491
1492void
1493ev_loop_destroy (EV_P)
1494{
1495 loop_destroy (EV_A);
1496 ev_free (loop);
1497}
1498
1499void
1500ev_loop_fork (EV_P)
1501{
1502 postfork = 1; /* must be in line with ev_default_fork */
1503}
1504
1505#if EV_VERIFY
1506static void noinline
1507verify_watcher (EV_P_ W w)
1508{
1509 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1510
1511 if (w->pending)
1512 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1513}
1514
1515static void noinline
1516verify_heap (EV_P_ ANHE *heap, int N)
1517{
1518 int i;
1519
1520 for (i = HEAP0; i < N + HEAP0; ++i)
1521 {
1522 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1523 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1524 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1525
1526 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1527 }
1528}
1529
1530static void noinline
1531array_verify (EV_P_ W *ws, int cnt)
1532{
1533 while (cnt--)
1534 {
1535 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1536 verify_watcher (EV_A_ ws [cnt]);
1537 }
1538}
1539#endif
1540
1541void
1542ev_loop_verify (EV_P)
1543{
1544#if EV_VERIFY
1545 int i;
1546 WL w;
1547
1548 assert (activecnt >= -1);
1549
1550 assert (fdchangemax >= fdchangecnt);
1551 for (i = 0; i < fdchangecnt; ++i)
1552 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1553
1554 assert (anfdmax >= 0);
1555 for (i = 0; i < anfdmax; ++i)
1556 for (w = anfds [i].head; w; w = w->next)
1557 {
1558 verify_watcher (EV_A_ (W)w);
1559 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1560 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1561 }
1562
1563 assert (timermax >= timercnt);
1564 verify_heap (EV_A_ timers, timercnt);
1565
1566#if EV_PERIODIC_ENABLE
1567 assert (periodicmax >= periodiccnt);
1568 verify_heap (EV_A_ periodics, periodiccnt);
1569#endif
1570
1571 for (i = NUMPRI; i--; )
1572 {
1573 assert (pendingmax [i] >= pendingcnt [i]);
1574#if EV_IDLE_ENABLE
1575 assert (idleall >= 0);
1576 assert (idlemax [i] >= idlecnt [i]);
1577 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1578#endif
1579 }
1580
1581#if EV_FORK_ENABLE
1582 assert (forkmax >= forkcnt);
1583 array_verify (EV_A_ (W *)forks, forkcnt);
1584#endif
1585
1586#if EV_ASYNC_ENABLE
1587 assert (asyncmax >= asynccnt);
1588 array_verify (EV_A_ (W *)asyncs, asynccnt);
1589#endif
1590
1591 assert (preparemax >= preparecnt);
1592 array_verify (EV_A_ (W *)prepares, preparecnt);
1593
1594 assert (checkmax >= checkcnt);
1595 array_verify (EV_A_ (W *)checks, checkcnt);
1596
1597# if 0
1598 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1599 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1600# endif
1601#endif
1602}
1603
1604#endif /* multiplicity */
881 1605
882#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
883struct ev_loop * 1607struct ev_loop *
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1608ev_default_loop_init (unsigned int flags)
916#else 1609#else
917int 1610int
918ev_default_loop (unsigned int flags) 1611ev_default_loop (unsigned int flags)
919#endif 1612#endif
920{ 1613{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1614 if (!ev_default_loop_ptr)
926 { 1615 {
927#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1617 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
929#else 1618#else
930 ev_default_loop_ptr = 1; 1619 ev_default_loop_ptr = 1;
931#endif 1620#endif
932 1621
933 loop_init (EV_A_ flags); 1622 loop_init (EV_A_ flags);
934 1623
935 if (ev_method (EV_A)) 1624 if (ev_backend (EV_A))
936 { 1625 {
937 siginit (EV_A);
938
939#ifndef _WIN32 1626#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1627 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1628 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1629 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1630 ev_unref (EV_A); /* child watcher should not keep loop alive */
955{ 1642{
956#if EV_MULTIPLICITY 1643#if EV_MULTIPLICITY
957 struct ev_loop *loop = ev_default_loop_ptr; 1644 struct ev_loop *loop = ev_default_loop_ptr;
958#endif 1645#endif
959 1646
1647 ev_default_loop_ptr = 0;
1648
960#ifndef _WIN32 1649#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 1650 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1651 ev_signal_stop (EV_A_ &childev);
963#endif 1652#endif
964 1653
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1654 loop_destroy (EV_A);
972} 1655}
973 1656
974void 1657void
975ev_default_fork (void) 1658ev_default_fork (void)
976{ 1659{
977#if EV_MULTIPLICITY 1660#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1661 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1662#endif
980 1663
981 if (method) 1664 ev_loop_fork (EV_A);
982 postfork = 1;
983} 1665}
984 1666
985/*****************************************************************************/ 1667/*****************************************************************************/
986 1668
987static int 1669void
988any_pending (EV_P) 1670ev_invoke (EV_P_ void *w, int revents)
989{ 1671{
990 int pri; 1672 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1673}
998 1674
999inline void 1675void inline_speed
1000call_pending (EV_P) 1676call_pending (EV_P)
1001{ 1677{
1002 int pri; 1678 int pri;
1003 1679
1004 for (pri = NUMPRI; pri--; ) 1680 for (pri = NUMPRI; pri--; )
1006 { 1682 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1683 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1684
1009 if (expect_true (p->w)) 1685 if (expect_true (p->w))
1010 { 1686 {
1687 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1688
1011 p->w->pending = 0; 1689 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1690 EV_CB_INVOKE (p->w, p->events);
1691 EV_FREQUENT_CHECK;
1013 } 1692 }
1014 } 1693 }
1015} 1694}
1016 1695
1017inline void 1696#if EV_IDLE_ENABLE
1697void inline_size
1698idle_reify (EV_P)
1699{
1700 if (expect_false (idleall))
1701 {
1702 int pri;
1703
1704 for (pri = NUMPRI; pri--; )
1705 {
1706 if (pendingcnt [pri])
1707 break;
1708
1709 if (idlecnt [pri])
1710 {
1711 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1712 break;
1713 }
1714 }
1715 }
1716}
1717#endif
1718
1719void inline_size
1018timers_reify (EV_P) 1720timers_reify (EV_P)
1019{ 1721{
1722 EV_FREQUENT_CHECK;
1723
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1724 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 1725 {
1022 struct ev_timer *w = timers [0]; 1726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1023 1727
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1728 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1025 1729
1026 /* first reschedule or stop timer */ 1730 /* first reschedule or stop timer */
1027 if (w->repeat) 1731 if (w->repeat)
1028 { 1732 {
1733 ev_at (w) += w->repeat;
1734 if (ev_at (w) < mn_now)
1735 ev_at (w) = mn_now;
1736
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1737 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 1738
1031 ((WT)w)->at += w->repeat; 1739 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 1740 downheap (timers, timercnt, HEAP0);
1036 } 1741 }
1037 else 1742 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 1744
1745 EV_FREQUENT_CHECK;
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1746 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 } 1747 }
1042} 1748}
1043 1749
1044#if EV_PERIODICS 1750#if EV_PERIODIC_ENABLE
1045inline void 1751void inline_size
1046periodics_reify (EV_P) 1752periodics_reify (EV_P)
1047{ 1753{
1754 EV_FREQUENT_CHECK;
1755
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1756 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 1757 {
1050 struct ev_periodic *w = periodics [0]; 1758 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1051 1759
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1760 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1761
1054 /* first reschedule or stop timer */ 1762 /* first reschedule or stop timer */
1055 if (w->reschedule_cb) 1763 if (w->reschedule_cb)
1056 { 1764 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1765 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1766
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1767 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1768
1769 ANHE_at_cache (periodics [HEAP0]);
1059 downheap ((WT *)periodics, periodiccnt, 0); 1770 downheap (periodics, periodiccnt, HEAP0);
1060 } 1771 }
1061 else if (w->interval) 1772 else if (w->interval)
1062 { 1773 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1774 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1775 /* if next trigger time is not sufficiently in the future, put it there */
1776 /* this might happen because of floating point inexactness */
1777 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1778 {
1779 ev_at (w) += w->interval;
1780
1781 /* if interval is unreasonably low we might still have a time in the past */
1782 /* so correct this. this will make the periodic very inexact, but the user */
1783 /* has effectively asked to get triggered more often than possible */
1784 if (ev_at (w) < ev_rt_now)
1785 ev_at (w) = ev_rt_now;
1786 }
1787
1788 ANHE_at_cache (periodics [HEAP0]);
1065 downheap ((WT *)periodics, periodiccnt, 0); 1789 downheap (periodics, periodiccnt, HEAP0);
1066 } 1790 }
1067 else 1791 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1793
1794 EV_FREQUENT_CHECK;
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1795 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 } 1796 }
1072} 1797}
1073 1798
1074static void 1799static void noinline
1075periodics_reschedule (EV_P) 1800periodics_reschedule (EV_P)
1076{ 1801{
1077 int i; 1802 int i;
1078 1803
1079 /* adjust periodics after time jump */ 1804 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 1805 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1081 { 1806 {
1082 struct ev_periodic *w = periodics [i]; 1807 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1083 1808
1084 if (w->reschedule_cb) 1809 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1810 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 1811 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1812 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1813
1814 ANHE_at_cache (periodics [i]);
1815 }
1816
1817 reheap (periodics, periodiccnt);
1818}
1819#endif
1820
1821void inline_speed
1822time_update (EV_P_ ev_tstamp max_block)
1823{
1824 int i;
1825
1826#if EV_USE_MONOTONIC
1827 if (expect_true (have_monotonic))
1088 } 1828 {
1829 ev_tstamp odiff = rtmn_diff;
1089 1830
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock (); 1831 mn_now = get_clock ();
1100 1832
1833 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1834 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1835 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 1836 {
1103 ev_rt_now = rtmn_diff + mn_now; 1837 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 1838 return;
1105 } 1839 }
1106 else 1840
1107 {
1108 now_floor = mn_now; 1841 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1842 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1843
1114inline void 1844 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1845 * on the choice of "4": one iteration isn't enough,
1116{ 1846 * in case we get preempted during the calls to
1117 int i; 1847 * ev_time and get_clock. a second call is almost guaranteed
1118 1848 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1849 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1850 * in the unlikely event of having been preempted here.
1121 { 1851 */
1122 if (time_update_monotonic (EV_A)) 1852 for (i = 4; --i; )
1123 { 1853 {
1124 ev_tstamp odiff = rtmn_diff; 1854 rtmn_diff = ev_rt_now - mn_now;
1125 1855
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1856 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1857 return; /* all is well */
1858
1859 ev_rt_now = ev_time ();
1860 mn_now = get_clock ();
1861 now_floor = mn_now;
1862 }
1863
1864# if EV_PERIODIC_ENABLE
1865 periodics_reschedule (EV_A);
1866# endif
1867 /* no timer adjustment, as the monotonic clock doesn't jump */
1868 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1869 }
1870 else
1871#endif
1872 {
1873 ev_rt_now = ev_time ();
1874
1875 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1876 {
1877#if EV_PERIODIC_ENABLE
1878 periodics_reschedule (EV_A);
1879#endif
1880 /* adjust timers. this is easy, as the offset is the same for all of them */
1881 for (i = 0; i < timercnt; ++i)
1127 { 1882 {
1128 rtmn_diff = ev_rt_now - mn_now; 1883 ANHE *he = timers + i + HEAP0;
1129 1884 ANHE_w (*he)->at += ev_rt_now - mn_now;
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1885 ANHE_at_cache (*he);
1131 return; /* all is well */
1132
1133 ev_rt_now = ev_time ();
1134 mn_now = get_clock ();
1135 now_floor = mn_now;
1136 } 1886 }
1137
1138# if EV_PERIODICS
1139 periodics_reschedule (EV_A);
1140# endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 1887 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 1888
1161 mn_now = ev_rt_now; 1889 mn_now = ev_rt_now;
1162 } 1890 }
1163} 1891}
1164 1892
1172ev_unref (EV_P) 1900ev_unref (EV_P)
1173{ 1901{
1174 --activecnt; 1902 --activecnt;
1175} 1903}
1176 1904
1905void
1906ev_now_update (EV_P)
1907{
1908 time_update (EV_A_ 1e100);
1909}
1910
1177static int loop_done; 1911static int loop_done;
1178 1912
1179void 1913void
1180ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1181{ 1915{
1182 double block; 1916 loop_done = EVUNLOOP_CANCEL;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184 1917
1185 while (activecnt) 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1919
1920 do
1186 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1926#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid))
1929 {
1930 curpid = getpid ();
1931 postfork = 1;
1932 }
1933#endif
1934
1935#if EV_FORK_ENABLE
1936 /* we might have forked, so queue fork handlers */
1937 if (expect_false (postfork))
1938 if (forkcnt)
1939 {
1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1941 call_pending (EV_A);
1942 }
1943#endif
1944
1187 /* queue check watchers (and execute them) */ 1945 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 1946 if (expect_false (preparecnt))
1189 { 1947 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 1949 call_pending (EV_A);
1192 } 1950 }
1193 1951
1952 if (expect_false (!activecnt))
1953 break;
1954
1194 /* we might have forked, so reify kernel state if necessary */ 1955 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 1956 if (expect_false (postfork))
1196 loop_fork (EV_A); 1957 loop_fork (EV_A);
1197 1958
1198 /* update fd-related kernel structures */ 1959 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 1960 fd_reify (EV_A);
1200 1961
1201 /* calculate blocking time */ 1962 /* calculate blocking time */
1963 {
1964 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.;
1202 1966
1203 /* we only need this for !monotonic clock or timers, but as we basically 1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 1968 {
1211 ev_rt_now = ev_time (); 1969 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 1970 time_update (EV_A_ 1e100);
1213 }
1214 1971
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1220 1973
1221 if (timercnt) 1974 if (timercnt)
1222 { 1975 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 1977 if (waittime > to) waittime = to;
1225 } 1978 }
1226 1979
1227#if EV_PERIODICS 1980#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 1981 if (periodiccnt)
1229 { 1982 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 1984 if (waittime > to) waittime = to;
1232 } 1985 }
1233#endif 1986#endif
1234 1987
1235 if (expect_false (block < 0.)) block = 0.; 1988 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime;
1990
1991 sleeptime = waittime - backend_fudge;
1992
1993 if (expect_true (sleeptime > io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 {
1998 ev_sleep (sleeptime);
1999 waittime -= sleeptime;
2000 }
1236 } 2001 }
1237 2002
1238 method_poll (EV_A_ block); 2003 ++loop_count;
2004 backend_poll (EV_A_ waittime);
1239 2005
1240 /* update ev_rt_now, do magic */ 2006 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 2007 time_update (EV_A_ waittime + sleeptime);
2008 }
1242 2009
1243 /* queue pending timers and reschedule them */ 2010 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 2011 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 2012#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 2013 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 2014#endif
1248 2015
2016#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 2017 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 2018 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2019#endif
1252 2020
1253 /* queue check watchers, to be executed first */ 2021 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 2022 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 2024
1257 call_pending (EV_A); 2025 call_pending (EV_A);
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 2026 }
2027 while (expect_true (
2028 activecnt
2029 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2031 ));
1262 2032
1263 if (loop_done != 2) 2033 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 2034 loop_done = EVUNLOOP_CANCEL;
1265} 2035}
1266 2036
1267void 2037void
1268ev_unloop (EV_P_ int how) 2038ev_unloop (EV_P_ int how)
1269{ 2039{
1270 loop_done = how; 2040 loop_done = how;
1271} 2041}
1272 2042
1273/*****************************************************************************/ 2043/*****************************************************************************/
1274 2044
1275inline void 2045void inline_size
1276wlist_add (WL *head, WL elem) 2046wlist_add (WL *head, WL elem)
1277{ 2047{
1278 elem->next = *head; 2048 elem->next = *head;
1279 *head = elem; 2049 *head = elem;
1280} 2050}
1281 2051
1282inline void 2052void inline_size
1283wlist_del (WL *head, WL elem) 2053wlist_del (WL *head, WL elem)
1284{ 2054{
1285 while (*head) 2055 while (*head)
1286 { 2056 {
1287 if (*head == elem) 2057 if (*head == elem)
1292 2062
1293 head = &(*head)->next; 2063 head = &(*head)->next;
1294 } 2064 }
1295} 2065}
1296 2066
1297inline void 2067void inline_speed
1298ev_clear_pending (EV_P_ W w) 2068clear_pending (EV_P_ W w)
1299{ 2069{
1300 if (w->pending) 2070 if (w->pending)
1301 { 2071 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2072 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0; 2073 w->pending = 0;
1304 } 2074 }
1305} 2075}
1306 2076
1307inline void 2077int
2078ev_clear_pending (EV_P_ void *w)
2079{
2080 W w_ = (W)w;
2081 int pending = w_->pending;
2082
2083 if (expect_true (pending))
2084 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2086 w_->pending = 0;
2087 p->w = 0;
2088 return p->events;
2089 }
2090 else
2091 return 0;
2092}
2093
2094void inline_size
2095pri_adjust (EV_P_ W w)
2096{
2097 int pri = w->priority;
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri;
2101}
2102
2103void inline_speed
1308ev_start (EV_P_ W w, int active) 2104ev_start (EV_P_ W w, int active)
1309{ 2105{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2106 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2107 w->active = active;
1314 ev_ref (EV_A); 2108 ev_ref (EV_A);
1315} 2109}
1316 2110
1317inline void 2111void inline_size
1318ev_stop (EV_P_ W w) 2112ev_stop (EV_P_ W w)
1319{ 2113{
1320 ev_unref (EV_A); 2114 ev_unref (EV_A);
1321 w->active = 0; 2115 w->active = 0;
1322} 2116}
1323 2117
1324/*****************************************************************************/ 2118/*****************************************************************************/
1325 2119
1326void 2120void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2121ev_io_start (EV_P_ ev_io *w)
1328{ 2122{
1329 int fd = w->fd; 2123 int fd = w->fd;
1330 2124
1331 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1332 return; 2126 return;
1333 2127
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
2129 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2130
2131 EV_FREQUENT_CHECK;
1335 2132
1336 ev_start (EV_A_ (W)w, 1); 2133 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2134 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2135 wlist_add (&anfds[fd].head, (WL)w);
1339 2136
1340 fd_change (EV_A_ fd); 2137 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1341} 2138 w->events &= ~EV_IOFDSET;
1342 2139
1343void 2140 EV_FREQUENT_CHECK;
2141}
2142
2143void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2144ev_io_stop (EV_P_ ev_io *w)
1345{ 2145{
1346 ev_clear_pending (EV_A_ (W)w); 2146 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 2147 if (expect_false (!ev_is_active (w)))
1348 return; 2148 return;
1349 2149
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2150 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2151
2152 EV_FREQUENT_CHECK;
2153
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2154 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2155 ev_stop (EV_A_ (W)w);
1354 2156
1355 fd_change (EV_A_ w->fd); 2157 fd_change (EV_A_ w->fd, 1);
1356}
1357 2158
1358void 2159 EV_FREQUENT_CHECK;
2160}
2161
2162void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2163ev_timer_start (EV_P_ ev_timer *w)
1360{ 2164{
1361 if (expect_false (ev_is_active (w))) 2165 if (expect_false (ev_is_active (w)))
1362 return; 2166 return;
1363 2167
1364 ((WT)w)->at += mn_now; 2168 ev_at (w) += mn_now;
1365 2169
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2170 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2171
2172 EV_FREQUENT_CHECK;
2173
2174 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2175 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2176 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2177 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2178 ANHE_at_cache (timers [ev_active (w)]);
2179 upheap (timers, ev_active (w));
1372 2180
2181 EV_FREQUENT_CHECK;
2182
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2183 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2184}
1375 2185
1376void 2186void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2187ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2188{
1379 ev_clear_pending (EV_A_ (W)w); 2189 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 2190 if (expect_false (!ev_is_active (w)))
1381 return; 2191 return;
1382 2192
2193 EV_FREQUENT_CHECK;
2194
2195 {
2196 int active = ev_active (w);
2197
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2198 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2199
2200 --timercnt;
2201
1385 if (expect_true (((W)w)->active < timercnt--)) 2202 if (expect_true (active < timercnt + HEAP0))
1386 { 2203 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2204 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2205 adjustheap (timers, timercnt, active);
1389 } 2206 }
2207 }
1390 2208
1391 ((WT)w)->at -= mn_now; 2209 EV_FREQUENT_CHECK;
2210
2211 ev_at (w) -= mn_now;
1392 2212
1393 ev_stop (EV_A_ (W)w); 2213 ev_stop (EV_A_ (W)w);
1394} 2214}
1395 2215
1396void 2216void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2217ev_timer_again (EV_P_ ev_timer *w)
1398{ 2218{
2219 EV_FREQUENT_CHECK;
2220
1399 if (ev_is_active (w)) 2221 if (ev_is_active (w))
1400 { 2222 {
1401 if (w->repeat) 2223 if (w->repeat)
1402 { 2224 {
1403 ((WT)w)->at = mn_now + w->repeat; 2225 ev_at (w) = mn_now + w->repeat;
2226 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2227 adjustheap (timers, timercnt, ev_active (w));
1405 } 2228 }
1406 else 2229 else
1407 ev_timer_stop (EV_A_ w); 2230 ev_timer_stop (EV_A_ w);
1408 } 2231 }
1409 else if (w->repeat) 2232 else if (w->repeat)
1410 { 2233 {
1411 w->at = w->repeat; 2234 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2235 ev_timer_start (EV_A_ w);
1413 } 2236 }
1414}
1415 2237
2238 EV_FREQUENT_CHECK;
2239}
2240
1416#if EV_PERIODICS 2241#if EV_PERIODIC_ENABLE
1417void 2242void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2243ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2244{
1420 if (expect_false (ev_is_active (w))) 2245 if (expect_false (ev_is_active (w)))
1421 return; 2246 return;
1422 2247
1423 if (w->reschedule_cb) 2248 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2249 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2250 else if (w->interval)
1426 { 2251 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2252 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2253 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2254 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2255 }
2256 else
2257 ev_at (w) = w->offset;
1431 2258
2259 EV_FREQUENT_CHECK;
2260
2261 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2262 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2263 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2264 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2265 ANHE_at_cache (periodics [ev_active (w)]);
2266 upheap (periodics, ev_active (w));
1436 2267
2268 EV_FREQUENT_CHECK;
2269
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2270 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2271}
1439 2272
1440void 2273void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2274ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2275{
1443 ev_clear_pending (EV_A_ (W)w); 2276 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 2277 if (expect_false (!ev_is_active (w)))
1445 return; 2278 return;
1446 2279
2280 EV_FREQUENT_CHECK;
2281
2282 {
2283 int active = ev_active (w);
2284
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2285 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2286
2287 --periodiccnt;
2288
1449 if (expect_true (((W)w)->active < periodiccnt--)) 2289 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2290 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2291 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2292 adjustheap (periodics, periodiccnt, active);
1453 } 2293 }
2294 }
2295
2296 EV_FREQUENT_CHECK;
1454 2297
1455 ev_stop (EV_A_ (W)w); 2298 ev_stop (EV_A_ (W)w);
1456} 2299}
1457 2300
1458void 2301void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2302ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2303{
1461 /* TODO: use adjustheap and recalculation */ 2304 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2305 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2306 ev_periodic_start (EV_A_ w);
1464} 2307}
1465#endif 2308#endif
1466 2309
1467void 2310#ifndef SA_RESTART
1468ev_idle_start (EV_P_ struct ev_idle *w) 2311# define SA_RESTART 0
2312#endif
2313
2314void noinline
2315ev_signal_start (EV_P_ ev_signal *w)
1469{ 2316{
2317#if EV_MULTIPLICITY
2318 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2319#endif
1470 if (expect_false (ev_is_active (w))) 2320 if (expect_false (ev_is_active (w)))
1471 return; 2321 return;
1472 2322
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w)))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (expect_false (ev_is_active (w)))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w)))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (expect_false (ev_is_active (w)))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w)))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART
1534# define SA_RESTART 0
1535#endif
1536
1537void
1538ev_signal_start (EV_P_ struct ev_signal *w)
1539{
1540#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif
1543 if (expect_false (ev_is_active (w)))
1544 return;
1545
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2323 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1547 2324
2325 evpipe_init (EV_A);
2326
2327 EV_FREQUENT_CHECK;
2328
2329 {
2330#ifndef _WIN32
2331 sigset_t full, prev;
2332 sigfillset (&full);
2333 sigprocmask (SIG_SETMASK, &full, &prev);
2334#endif
2335
2336 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2337
2338#ifndef _WIN32
2339 sigprocmask (SIG_SETMASK, &prev, 0);
2340#endif
2341 }
2342
1548 ev_start (EV_A_ (W)w, 1); 2343 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2344 wlist_add (&signals [w->signum - 1].head, (WL)w);
1551 2345
1552 if (!((WL)w)->next) 2346 if (!((WL)w)->next)
1553 { 2347 {
1554#if _WIN32 2348#if _WIN32
1555 signal (w->signum, sighandler); 2349 signal (w->signum, ev_sighandler);
1556#else 2350#else
1557 struct sigaction sa; 2351 struct sigaction sa;
1558 sa.sa_handler = sighandler; 2352 sa.sa_handler = ev_sighandler;
1559 sigfillset (&sa.sa_mask); 2353 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0); 2355 sigaction (w->signum, &sa, 0);
1562#endif 2356#endif
1563 } 2357 }
1564}
1565 2358
1566void 2359 EV_FREQUENT_CHECK;
2360}
2361
2362void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 2363ev_signal_stop (EV_P_ ev_signal *w)
1568{ 2364{
1569 ev_clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 2366 if (expect_false (!ev_is_active (w)))
1571 return; 2367 return;
1572 2368
2369 EV_FREQUENT_CHECK;
2370
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2371 wlist_del (&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 2372 ev_stop (EV_A_ (W)w);
1575 2373
1576 if (!signals [w->signum - 1].head) 2374 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 2375 signal (w->signum, SIG_DFL);
1578}
1579 2376
2377 EV_FREQUENT_CHECK;
2378}
2379
1580void 2380void
1581ev_child_start (EV_P_ struct ev_child *w) 2381ev_child_start (EV_P_ ev_child *w)
1582{ 2382{
1583#if EV_MULTIPLICITY 2383#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2384 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 2385#endif
1586 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
1587 return; 2387 return;
1588 2388
2389 EV_FREQUENT_CHECK;
2390
1589 ev_start (EV_A_ (W)w, 1); 2391 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2392 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591}
1592 2393
2394 EV_FREQUENT_CHECK;
2395}
2396
1593void 2397void
1594ev_child_stop (EV_P_ struct ev_child *w) 2398ev_child_stop (EV_P_ ev_child *w)
1595{ 2399{
1596 ev_clear_pending (EV_A_ (W)w); 2400 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2401 if (expect_false (!ev_is_active (w)))
1598 return; 2402 return;
1599 2403
2404 EV_FREQUENT_CHECK;
2405
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2406 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 2407 ev_stop (EV_A_ (W)w);
2408
2409 EV_FREQUENT_CHECK;
1602} 2410}
2411
2412#if EV_STAT_ENABLE
2413
2414# ifdef _WIN32
2415# undef lstat
2416# define lstat(a,b) _stati64 (a,b)
2417# endif
2418
2419#define DEF_STAT_INTERVAL 5.0074891
2420#define MIN_STAT_INTERVAL 0.1074891
2421
2422static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2423
2424#if EV_USE_INOTIFY
2425# define EV_INOTIFY_BUFSIZE 8192
2426
2427static void noinline
2428infy_add (EV_P_ ev_stat *w)
2429{
2430 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2431
2432 if (w->wd < 0)
2433 {
2434 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2435
2436 /* monitor some parent directory for speedup hints */
2437 /* note that exceeding the hardcoded limit is not a correctness issue, */
2438 /* but an efficiency issue only */
2439 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2440 {
2441 char path [4096];
2442 strcpy (path, w->path);
2443
2444 do
2445 {
2446 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2447 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2448
2449 char *pend = strrchr (path, '/');
2450
2451 if (!pend)
2452 break; /* whoops, no '/', complain to your admin */
2453
2454 *pend = 0;
2455 w->wd = inotify_add_watch (fs_fd, path, mask);
2456 }
2457 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2458 }
2459 }
2460 else
2461 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2462
2463 if (w->wd >= 0)
2464 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2465}
2466
2467static void noinline
2468infy_del (EV_P_ ev_stat *w)
2469{
2470 int slot;
2471 int wd = w->wd;
2472
2473 if (wd < 0)
2474 return;
2475
2476 w->wd = -2;
2477 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2478 wlist_del (&fs_hash [slot].head, (WL)w);
2479
2480 /* remove this watcher, if others are watching it, they will rearm */
2481 inotify_rm_watch (fs_fd, wd);
2482}
2483
2484static void noinline
2485infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2486{
2487 if (slot < 0)
2488 /* overflow, need to check for all hash slots */
2489 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2490 infy_wd (EV_A_ slot, wd, ev);
2491 else
2492 {
2493 WL w_;
2494
2495 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2496 {
2497 ev_stat *w = (ev_stat *)w_;
2498 w_ = w_->next; /* lets us remove this watcher and all before it */
2499
2500 if (w->wd == wd || wd == -1)
2501 {
2502 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2503 {
2504 w->wd = -1;
2505 infy_add (EV_A_ w); /* re-add, no matter what */
2506 }
2507
2508 stat_timer_cb (EV_A_ &w->timer, 0);
2509 }
2510 }
2511 }
2512}
2513
2514static void
2515infy_cb (EV_P_ ev_io *w, int revents)
2516{
2517 char buf [EV_INOTIFY_BUFSIZE];
2518 struct inotify_event *ev = (struct inotify_event *)buf;
2519 int ofs;
2520 int len = read (fs_fd, buf, sizeof (buf));
2521
2522 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2523 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2524}
2525
2526void inline_size
2527infy_init (EV_P)
2528{
2529 if (fs_fd != -2)
2530 return;
2531
2532 /* kernels < 2.6.25 are borked
2533 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2534 */
2535 {
2536 struct utsname buf;
2537 int major, minor, micro;
2538
2539 fs_fd = -1;
2540
2541 if (uname (&buf))
2542 return;
2543
2544 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2545 return;
2546
2547 if (major < 2
2548 || (major == 2 && minor < 6)
2549 || (major == 2 && minor == 6 && micro < 25))
2550 return;
2551 }
2552
2553 fs_fd = inotify_init ();
2554
2555 if (fs_fd >= 0)
2556 {
2557 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2558 ev_set_priority (&fs_w, EV_MAXPRI);
2559 ev_io_start (EV_A_ &fs_w);
2560 }
2561}
2562
2563void inline_size
2564infy_fork (EV_P)
2565{
2566 int slot;
2567
2568 if (fs_fd < 0)
2569 return;
2570
2571 close (fs_fd);
2572 fs_fd = inotify_init ();
2573
2574 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2575 {
2576 WL w_ = fs_hash [slot].head;
2577 fs_hash [slot].head = 0;
2578
2579 while (w_)
2580 {
2581 ev_stat *w = (ev_stat *)w_;
2582 w_ = w_->next; /* lets us add this watcher */
2583
2584 w->wd = -1;
2585
2586 if (fs_fd >= 0)
2587 infy_add (EV_A_ w); /* re-add, no matter what */
2588 else
2589 ev_timer_start (EV_A_ &w->timer);
2590 }
2591 }
2592}
2593
2594#endif
2595
2596#ifdef _WIN32
2597# define EV_LSTAT(p,b) _stati64 (p, b)
2598#else
2599# define EV_LSTAT(p,b) lstat (p, b)
2600#endif
2601
2602void
2603ev_stat_stat (EV_P_ ev_stat *w)
2604{
2605 if (lstat (w->path, &w->attr) < 0)
2606 w->attr.st_nlink = 0;
2607 else if (!w->attr.st_nlink)
2608 w->attr.st_nlink = 1;
2609}
2610
2611static void noinline
2612stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2613{
2614 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2615
2616 /* we copy this here each the time so that */
2617 /* prev has the old value when the callback gets invoked */
2618 w->prev = w->attr;
2619 ev_stat_stat (EV_A_ w);
2620
2621 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2622 if (
2623 w->prev.st_dev != w->attr.st_dev
2624 || w->prev.st_ino != w->attr.st_ino
2625 || w->prev.st_mode != w->attr.st_mode
2626 || w->prev.st_nlink != w->attr.st_nlink
2627 || w->prev.st_uid != w->attr.st_uid
2628 || w->prev.st_gid != w->attr.st_gid
2629 || w->prev.st_rdev != w->attr.st_rdev
2630 || w->prev.st_size != w->attr.st_size
2631 || w->prev.st_atime != w->attr.st_atime
2632 || w->prev.st_mtime != w->attr.st_mtime
2633 || w->prev.st_ctime != w->attr.st_ctime
2634 ) {
2635 #if EV_USE_INOTIFY
2636 if (fs_fd >= 0)
2637 {
2638 infy_del (EV_A_ w);
2639 infy_add (EV_A_ w);
2640 ev_stat_stat (EV_A_ w); /* avoid race... */
2641 }
2642 #endif
2643
2644 ev_feed_event (EV_A_ w, EV_STAT);
2645 }
2646}
2647
2648void
2649ev_stat_start (EV_P_ ev_stat *w)
2650{
2651 if (expect_false (ev_is_active (w)))
2652 return;
2653
2654 /* since we use memcmp, we need to clear any padding data etc. */
2655 memset (&w->prev, 0, sizeof (ev_statdata));
2656 memset (&w->attr, 0, sizeof (ev_statdata));
2657
2658 ev_stat_stat (EV_A_ w);
2659
2660 if (w->interval < MIN_STAT_INTERVAL)
2661 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2662
2663 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2664 ev_set_priority (&w->timer, ev_priority (w));
2665
2666#if EV_USE_INOTIFY
2667 infy_init (EV_A);
2668
2669 if (fs_fd >= 0)
2670 infy_add (EV_A_ w);
2671 else
2672#endif
2673 ev_timer_start (EV_A_ &w->timer);
2674
2675 ev_start (EV_A_ (W)w, 1);
2676
2677 EV_FREQUENT_CHECK;
2678}
2679
2680void
2681ev_stat_stop (EV_P_ ev_stat *w)
2682{
2683 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w)))
2685 return;
2686
2687 EV_FREQUENT_CHECK;
2688
2689#if EV_USE_INOTIFY
2690 infy_del (EV_A_ w);
2691#endif
2692 ev_timer_stop (EV_A_ &w->timer);
2693
2694 ev_stop (EV_A_ (W)w);
2695
2696 EV_FREQUENT_CHECK;
2697}
2698#endif
2699
2700#if EV_IDLE_ENABLE
2701void
2702ev_idle_start (EV_P_ ev_idle *w)
2703{
2704 if (expect_false (ev_is_active (w)))
2705 return;
2706
2707 pri_adjust (EV_A_ (W)w);
2708
2709 EV_FREQUENT_CHECK;
2710
2711 {
2712 int active = ++idlecnt [ABSPRI (w)];
2713
2714 ++idleall;
2715 ev_start (EV_A_ (W)w, active);
2716
2717 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2718 idles [ABSPRI (w)][active - 1] = w;
2719 }
2720
2721 EV_FREQUENT_CHECK;
2722}
2723
2724void
2725ev_idle_stop (EV_P_ ev_idle *w)
2726{
2727 clear_pending (EV_A_ (W)w);
2728 if (expect_false (!ev_is_active (w)))
2729 return;
2730
2731 EV_FREQUENT_CHECK;
2732
2733 {
2734 int active = ev_active (w);
2735
2736 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2737 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2738
2739 ev_stop (EV_A_ (W)w);
2740 --idleall;
2741 }
2742
2743 EV_FREQUENT_CHECK;
2744}
2745#endif
2746
2747void
2748ev_prepare_start (EV_P_ ev_prepare *w)
2749{
2750 if (expect_false (ev_is_active (w)))
2751 return;
2752
2753 EV_FREQUENT_CHECK;
2754
2755 ev_start (EV_A_ (W)w, ++preparecnt);
2756 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2757 prepares [preparecnt - 1] = w;
2758
2759 EV_FREQUENT_CHECK;
2760}
2761
2762void
2763ev_prepare_stop (EV_P_ ev_prepare *w)
2764{
2765 clear_pending (EV_A_ (W)w);
2766 if (expect_false (!ev_is_active (w)))
2767 return;
2768
2769 EV_FREQUENT_CHECK;
2770
2771 {
2772 int active = ev_active (w);
2773
2774 prepares [active - 1] = prepares [--preparecnt];
2775 ev_active (prepares [active - 1]) = active;
2776 }
2777
2778 ev_stop (EV_A_ (W)w);
2779
2780 EV_FREQUENT_CHECK;
2781}
2782
2783void
2784ev_check_start (EV_P_ ev_check *w)
2785{
2786 if (expect_false (ev_is_active (w)))
2787 return;
2788
2789 EV_FREQUENT_CHECK;
2790
2791 ev_start (EV_A_ (W)w, ++checkcnt);
2792 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2793 checks [checkcnt - 1] = w;
2794
2795 EV_FREQUENT_CHECK;
2796}
2797
2798void
2799ev_check_stop (EV_P_ ev_check *w)
2800{
2801 clear_pending (EV_A_ (W)w);
2802 if (expect_false (!ev_is_active (w)))
2803 return;
2804
2805 EV_FREQUENT_CHECK;
2806
2807 {
2808 int active = ev_active (w);
2809
2810 checks [active - 1] = checks [--checkcnt];
2811 ev_active (checks [active - 1]) = active;
2812 }
2813
2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2817}
2818
2819#if EV_EMBED_ENABLE
2820void noinline
2821ev_embed_sweep (EV_P_ ev_embed *w)
2822{
2823 ev_loop (w->other, EVLOOP_NONBLOCK);
2824}
2825
2826static void
2827embed_io_cb (EV_P_ ev_io *io, int revents)
2828{
2829 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2830
2831 if (ev_cb (w))
2832 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2833 else
2834 ev_loop (w->other, EVLOOP_NONBLOCK);
2835}
2836
2837static void
2838embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2839{
2840 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2841
2842 {
2843 struct ev_loop *loop = w->other;
2844
2845 while (fdchangecnt)
2846 {
2847 fd_reify (EV_A);
2848 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2849 }
2850 }
2851}
2852
2853static void
2854embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2855{
2856 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2857
2858 {
2859 struct ev_loop *loop = w->other;
2860
2861 ev_loop_fork (EV_A);
2862 }
2863}
2864
2865#if 0
2866static void
2867embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2868{
2869 ev_idle_stop (EV_A_ idle);
2870}
2871#endif
2872
2873void
2874ev_embed_start (EV_P_ ev_embed *w)
2875{
2876 if (expect_false (ev_is_active (w)))
2877 return;
2878
2879 {
2880 struct ev_loop *loop = w->other;
2881 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2882 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2883 }
2884
2885 EV_FREQUENT_CHECK;
2886
2887 ev_set_priority (&w->io, ev_priority (w));
2888 ev_io_start (EV_A_ &w->io);
2889
2890 ev_prepare_init (&w->prepare, embed_prepare_cb);
2891 ev_set_priority (&w->prepare, EV_MINPRI);
2892 ev_prepare_start (EV_A_ &w->prepare);
2893
2894 ev_fork_init (&w->fork, embed_fork_cb);
2895 ev_fork_start (EV_A_ &w->fork);
2896
2897 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2898
2899 ev_start (EV_A_ (W)w, 1);
2900
2901 EV_FREQUENT_CHECK;
2902}
2903
2904void
2905ev_embed_stop (EV_P_ ev_embed *w)
2906{
2907 clear_pending (EV_A_ (W)w);
2908 if (expect_false (!ev_is_active (w)))
2909 return;
2910
2911 EV_FREQUENT_CHECK;
2912
2913 ev_io_stop (EV_A_ &w->io);
2914 ev_prepare_stop (EV_A_ &w->prepare);
2915 ev_fork_stop (EV_A_ &w->fork);
2916
2917 EV_FREQUENT_CHECK;
2918}
2919#endif
2920
2921#if EV_FORK_ENABLE
2922void
2923ev_fork_start (EV_P_ ev_fork *w)
2924{
2925 if (expect_false (ev_is_active (w)))
2926 return;
2927
2928 EV_FREQUENT_CHECK;
2929
2930 ev_start (EV_A_ (W)w, ++forkcnt);
2931 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2932 forks [forkcnt - 1] = w;
2933
2934 EV_FREQUENT_CHECK;
2935}
2936
2937void
2938ev_fork_stop (EV_P_ ev_fork *w)
2939{
2940 clear_pending (EV_A_ (W)w);
2941 if (expect_false (!ev_is_active (w)))
2942 return;
2943
2944 EV_FREQUENT_CHECK;
2945
2946 {
2947 int active = ev_active (w);
2948
2949 forks [active - 1] = forks [--forkcnt];
2950 ev_active (forks [active - 1]) = active;
2951 }
2952
2953 ev_stop (EV_A_ (W)w);
2954
2955 EV_FREQUENT_CHECK;
2956}
2957#endif
2958
2959#if EV_ASYNC_ENABLE
2960void
2961ev_async_start (EV_P_ ev_async *w)
2962{
2963 if (expect_false (ev_is_active (w)))
2964 return;
2965
2966 evpipe_init (EV_A);
2967
2968 EV_FREQUENT_CHECK;
2969
2970 ev_start (EV_A_ (W)w, ++asynccnt);
2971 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2972 asyncs [asynccnt - 1] = w;
2973
2974 EV_FREQUENT_CHECK;
2975}
2976
2977void
2978ev_async_stop (EV_P_ ev_async *w)
2979{
2980 clear_pending (EV_A_ (W)w);
2981 if (expect_false (!ev_is_active (w)))
2982 return;
2983
2984 EV_FREQUENT_CHECK;
2985
2986 {
2987 int active = ev_active (w);
2988
2989 asyncs [active - 1] = asyncs [--asynccnt];
2990 ev_active (asyncs [active - 1]) = active;
2991 }
2992
2993 ev_stop (EV_A_ (W)w);
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_send (EV_P_ ev_async *w)
3000{
3001 w->sent = 1;
3002 evpipe_write (EV_A_ &gotasync);
3003}
3004#endif
1603 3005
1604/*****************************************************************************/ 3006/*****************************************************************************/
1605 3007
1606struct ev_once 3008struct ev_once
1607{ 3009{
1608 struct ev_io io; 3010 ev_io io;
1609 struct ev_timer to; 3011 ev_timer to;
1610 void (*cb)(int revents, void *arg); 3012 void (*cb)(int revents, void *arg);
1611 void *arg; 3013 void *arg;
1612}; 3014};
1613 3015
1614static void 3016static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 3017once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 3018{
1617 void (*cb)(int revents, void *arg) = once->cb; 3019 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 3020 void *arg = once->arg;
1619 3021
1620 ev_io_stop (EV_A_ &once->io); 3022 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 3023 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 3024 ev_free (once);
1623 3025
1624 cb (revents, arg); 3026 cb (revents, arg);
1625} 3027}
1626 3028
1627static void 3029static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 3030once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 3031{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3032 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3033
3034 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 3035}
1632 3036
1633static void 3037static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 3038once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 3039{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3040 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3041
3042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 3043}
1638 3044
1639void 3045void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3046ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 3047{
1663 ev_timer_set (&once->to, timeout, 0.); 3069 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 3070 ev_timer_start (EV_A_ &once->to);
1665 } 3071 }
1666} 3072}
1667 3073
3074#if EV_MULTIPLICITY
3075 #include "ev_wrap.h"
3076#endif
3077
1668#ifdef __cplusplus 3078#ifdef __cplusplus
1669} 3079}
1670#endif 3080#endif
1671 3081

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines