ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.124 by root, Sat Nov 17 02:26:24 2007 UTC vs.
Revision 1.354 by root, Fri Oct 22 09:24:11 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
38 61
39# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
42# endif 65# endif
43# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
45# endif 75# endif
46# endif 76# endif
47 77
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 78# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
50# endif 85# endif
51 86
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
53# define EV_USE_POLL 1 93# define EV_USE_SELECT 0
54# endif 94# endif
55 95
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 102# define EV_USE_POLL 0
58# endif 103# endif
59 104
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
62# endif 112# endif
63 113
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
65# define EV_USE_PORT 1 115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
66# endif 121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
67 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
68#endif 159#endif
69 160
70#include <math.h> 161#include <math.h>
71#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
72#include <fcntl.h> 164#include <fcntl.h>
73#include <stddef.h> 165#include <stddef.h>
74 166
75#include <stdio.h> 167#include <stdio.h>
76 168
77#include <assert.h> 169#include <assert.h>
78#include <errno.h> 170#include <errno.h>
79#include <sys/types.h> 171#include <sys/types.h>
80#include <time.h> 172#include <time.h>
173#include <limits.h>
81 174
82#include <signal.h> 175#include <signal.h>
83 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
84#ifndef _WIN32 185#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 186# include <sys/time.h>
87# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
88#else 189#else
190# include <io.h>
89# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 192# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
93# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
94#endif 242# endif
95 243#endif
96/**/
97 244
98#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
99# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
100#endif 251#endif
101 252
102#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
104#endif 263#endif
105 264
106#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
108#endif 267#endif
109 268
110#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
111# ifdef _WIN32 270# ifdef _WIN32
112# define EV_USE_POLL 0 271# define EV_USE_POLL 0
113# else 272# else
114# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
115# endif 274# endif
116#endif 275#endif
117 276
118#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
119# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
120#endif 283#endif
121 284
122#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
124#endif 287#endif
125 288
126#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 290# define EV_USE_PORT 0
128#endif 291#endif
129 292
130/**/ 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
131 300
132/* darwin simply cannot be helped */ 301#ifndef EV_PID_HASHSIZE
133#ifdef __APPLE__ 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 361# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 362# define EV_USE_POLL 0
136#endif 363#endif
137 364
138#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
143#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
146#endif 373#endif
147 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/utsname.h>
388# include <sys/statfs.h>
389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
395#endif
396
148#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 398# include <winsock.h>
150#endif 399#endif
151 400
401#if EV_USE_EVENTFD
402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437#endif
438
152/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
446
447/*
448 * This is used to avoid floating point rounding problems.
449 * It is added to ev_rt_now when scheduling periodics
450 * to ensure progress, time-wise, even when rounding
451 * errors are against us.
452 * This value is good at least till the year 4000.
453 * Better solutions welcome.
454 */
455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 456
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
158 459
159#ifdef EV_H 460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
160# include EV_H 461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
161#else
162# include "ev.h"
163#endif
164 462
165#if __GNUC__ >= 3 463#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline 465# define noinline __attribute__ ((noinline))
168#else 466#else
169# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
170# define inline static 468# define noinline
469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
470# define inline
471# endif
171#endif 472#endif
172 473
173#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
476#define inline_size static inline
175 477
478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
481# define inline_speed static noinline
482#endif
483
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
178 491
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
181 494
182typedef struct ev_watcher *W; 495typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
185 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
187 521
188#ifdef _WIN32 522#ifdef _WIN32
189# include "ev_win32.c" 523# include "ev_win32.c"
190#endif 524#endif
191 525
192/*****************************************************************************/ 526/*****************************************************************************/
193 527
528#if EV_AVOID_STDIO
529static void noinline
530ev_printerr (const char *msg)
531{
532 write (STDERR_FILENO, msg, strlen (msg));
533}
534#endif
535
194static void (*syserr_cb)(const char *msg); 536static void (*syserr_cb)(const char *msg);
195 537
538void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 539ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 540{
198 syserr_cb = cb; 541 syserr_cb = cb;
199} 542}
200 543
201static void 544static void noinline
202syserr (const char *msg) 545ev_syserr (const char *msg)
203{ 546{
204 if (!msg) 547 if (!msg)
205 msg = "(libev) system error"; 548 msg = "(libev) system error";
206 549
207 if (syserr_cb) 550 if (syserr_cb)
208 syserr_cb (msg); 551 syserr_cb (msg);
209 else 552 else
210 { 553 {
554#if EV_AVOID_STDIO
555 const char *err = strerror (errno);
556
557 ev_printerr (msg);
558 ev_printerr (": ");
559 ev_printerr (err);
560 ev_printerr ("\n");
561#else
211 perror (msg); 562 perror (msg);
563#endif
212 abort (); 564 abort ();
213 } 565 }
214} 566}
215 567
568static void *
569ev_realloc_emul (void *ptr, long size)
570{
571#if __GLIBC__
572 return realloc (ptr, size);
573#else
574 /* some systems, notably openbsd and darwin, fail to properly
575 * implement realloc (x, 0) (as required by both ansi c-89 and
576 * the single unix specification, so work around them here.
577 */
578
579 if (size)
580 return realloc (ptr, size);
581
582 free (ptr);
583 return 0;
584#endif
585}
586
216static void *(*alloc)(void *ptr, long size); 587static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 588
589void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 590ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 591{
220 alloc = cb; 592 alloc = cb;
221} 593}
222 594
223static void * 595inline_speed void *
224ev_realloc (void *ptr, long size) 596ev_realloc (void *ptr, long size)
225{ 597{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 598 ptr = alloc (ptr, size);
227 599
228 if (!ptr && size) 600 if (!ptr && size)
229 { 601 {
602#if EV_AVOID_STDIO
603 ev_printerr ("libev: memory allocation failed, aborting.\n");
604#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 605 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
606#endif
231 abort (); 607 abort ();
232 } 608 }
233 609
234 return ptr; 610 return ptr;
235} 611}
237#define ev_malloc(size) ev_realloc (0, (size)) 613#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 614#define ev_free(ptr) ev_realloc ((ptr), 0)
239 615
240/*****************************************************************************/ 616/*****************************************************************************/
241 617
618/* set in reify when reification needed */
619#define EV_ANFD_REIFY 1
620
621/* file descriptor info structure */
242typedef struct 622typedef struct
243{ 623{
244 WL head; 624 WL head;
245 unsigned char events; 625 unsigned char events; /* the events watched for */
626 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
627 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
246 unsigned char reify; 628 unsigned char unused;
629#if EV_USE_EPOLL
630 unsigned int egen; /* generation counter to counter epoll bugs */
631#endif
247#if EV_SELECT_IS_WINSOCKET 632#if EV_SELECT_IS_WINSOCKET
248 SOCKET handle; 633 SOCKET handle;
249#endif 634#endif
250} ANFD; 635} ANFD;
251 636
637/* stores the pending event set for a given watcher */
252typedef struct 638typedef struct
253{ 639{
254 W w; 640 W w;
255 int events; 641 int events; /* the pending event set for the given watcher */
256} ANPENDING; 642} ANPENDING;
643
644#if EV_USE_INOTIFY
645/* hash table entry per inotify-id */
646typedef struct
647{
648 WL head;
649} ANFS;
650#endif
651
652/* Heap Entry */
653#if EV_HEAP_CACHE_AT
654 /* a heap element */
655 typedef struct {
656 ev_tstamp at;
657 WT w;
658 } ANHE;
659
660 #define ANHE_w(he) (he).w /* access watcher, read-write */
661 #define ANHE_at(he) (he).at /* access cached at, read-only */
662 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
663#else
664 /* a heap element */
665 typedef WT ANHE;
666
667 #define ANHE_w(he) (he)
668 #define ANHE_at(he) (he)->at
669 #define ANHE_at_cache(he)
670#endif
257 671
258#if EV_MULTIPLICITY 672#if EV_MULTIPLICITY
259 673
260 struct ev_loop 674 struct ev_loop
261 { 675 {
279 693
280 static int ev_default_loop_ptr; 694 static int ev_default_loop_ptr;
281 695
282#endif 696#endif
283 697
698#if EV_FEATURE_API
699# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
700# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
701# define EV_INVOKE_PENDING invoke_cb (EV_A)
702#else
703# define EV_RELEASE_CB (void)0
704# define EV_ACQUIRE_CB (void)0
705# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
706#endif
707
708#define EVBREAK_RECURSE 0x80
709
284/*****************************************************************************/ 710/*****************************************************************************/
285 711
712#ifndef EV_HAVE_EV_TIME
286ev_tstamp 713ev_tstamp
287ev_time (void) 714ev_time (void)
288{ 715{
289#if EV_USE_REALTIME 716#if EV_USE_REALTIME
717 if (expect_true (have_realtime))
718 {
290 struct timespec ts; 719 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 720 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 721 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 722 }
723#endif
724
294 struct timeval tv; 725 struct timeval tv;
295 gettimeofday (&tv, 0); 726 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 727 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 728}
729#endif
299 730
300inline ev_tstamp 731inline_size ev_tstamp
301get_clock (void) 732get_clock (void)
302{ 733{
303#if EV_USE_MONOTONIC 734#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 735 if (expect_true (have_monotonic))
305 { 736 {
318{ 749{
319 return ev_rt_now; 750 return ev_rt_now;
320} 751}
321#endif 752#endif
322 753
323#define array_roundsize(type,n) (((n) | 4) & ~3) 754void
755ev_sleep (ev_tstamp delay)
756{
757 if (delay > 0.)
758 {
759#if EV_USE_NANOSLEEP
760 struct timespec ts;
761
762 EV_TS_SET (ts, delay);
763 nanosleep (&ts, 0);
764#elif defined(_WIN32)
765 Sleep ((unsigned long)(delay * 1e3));
766#else
767 struct timeval tv;
768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
772 EV_TV_SET (tv, delay);
773 select (0, 0, 0, 0, &tv);
774#endif
775 }
776}
777
778/*****************************************************************************/
779
780#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
781
782/* find a suitable new size for the given array, */
783/* hopefully by rounding to a nice-to-malloc size */
784inline_size int
785array_nextsize (int elem, int cur, int cnt)
786{
787 int ncur = cur + 1;
788
789 do
790 ncur <<= 1;
791 while (cnt > ncur);
792
793 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
794 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
795 {
796 ncur *= elem;
797 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
798 ncur = ncur - sizeof (void *) * 4;
799 ncur /= elem;
800 }
801
802 return ncur;
803}
804
805static noinline void *
806array_realloc (int elem, void *base, int *cur, int cnt)
807{
808 *cur = array_nextsize (elem, *cur, cnt);
809 return ev_realloc (base, elem * *cur);
810}
811
812#define array_init_zero(base,count) \
813 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 814
325#define array_needsize(type,base,cur,cnt,init) \ 815#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 816 if (expect_false ((cnt) > (cur))) \
327 { \ 817 { \
328 int newcnt = cur; \ 818 int ocur_ = (cur); \
329 do \ 819 (base) = (type *)array_realloc \
330 { \ 820 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 821 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 822 }
339 823
824#if 0
340#define array_slim(type,stem) \ 825#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 826 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 827 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 828 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 829 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 830 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 831 }
832#endif
347 833
348#define array_free(stem, idx) \ 834#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 835 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 836
351/*****************************************************************************/ 837/*****************************************************************************/
352 838
353static void 839/* dummy callback for pending events */
354anfds_init (ANFD *base, int count) 840static void noinline
841pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 842{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 843}
365 844
366void 845void noinline
367ev_feed_event (EV_P_ void *w, int revents) 846ev_feed_event (EV_P_ void *w, int revents)
368{ 847{
369 W w_ = (W)w; 848 W w_ = (W)w;
849 int pri = ABSPRI (w_);
370 850
371 if (expect_false (w_->pending)) 851 if (expect_false (w_->pending))
852 pendings [pri][w_->pending - 1].events |= revents;
853 else
372 { 854 {
855 w_->pending = ++pendingcnt [pri];
856 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
857 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 858 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 859 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 860}
382 861
383static void 862inline_speed void
863feed_reverse (EV_P_ W w)
864{
865 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
866 rfeeds [rfeedcnt++] = w;
867}
868
869inline_size void
870feed_reverse_done (EV_P_ int revents)
871{
872 do
873 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
874 while (rfeedcnt);
875}
876
877inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 878queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 879{
386 int i; 880 int i;
387 881
388 for (i = 0; i < eventcnt; ++i) 882 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 883 ev_feed_event (EV_A_ events [i], type);
390} 884}
391 885
886/*****************************************************************************/
887
392inline void 888inline_speed void
393fd_event (EV_P_ int fd, int revents) 889fd_event_nocheck (EV_P_ int fd, int revents)
394{ 890{
395 ANFD *anfd = anfds + fd; 891 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 892 ev_io *w;
397 893
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 894 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 895 {
400 int ev = w->events & revents; 896 int ev = w->events & revents;
401 897
402 if (ev) 898 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 899 ev_feed_event (EV_A_ (W)w, ev);
404 } 900 }
405} 901}
406 902
903/* do not submit kernel events for fds that have reify set */
904/* because that means they changed while we were polling for new events */
905inline_speed void
906fd_event (EV_P_ int fd, int revents)
907{
908 ANFD *anfd = anfds + fd;
909
910 if (expect_true (!anfd->reify))
911 fd_event_nocheck (EV_A_ fd, revents);
912}
913
407void 914void
408ev_feed_fd_event (EV_P_ int fd, int revents) 915ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 916{
917 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 918 fd_event_nocheck (EV_A_ fd, revents);
411} 919}
412 920
413/*****************************************************************************/ 921/* make sure the external fd watch events are in-sync */
414 922/* with the kernel/libev internal state */
415inline void 923inline_size void
416fd_reify (EV_P) 924fd_reify (EV_P)
417{ 925{
418 int i; 926 int i;
419 927
420 for (i = 0; i < fdchangecnt; ++i) 928 for (i = 0; i < fdchangecnt; ++i)
421 { 929 {
422 int fd = fdchanges [i]; 930 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 931 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 932 ev_io *w;
425 933
426 int events = 0; 934 unsigned char o_events = anfd->events;
935 unsigned char o_reify = anfd->reify;
427 936
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 937 anfd->reify = 0;
429 events |= w->events;
430 938
431#if EV_SELECT_IS_WINSOCKET 939#if EV_SELECT_IS_WINSOCKET
432 if (events) 940 if (o_reify & EV__IOFDSET)
433 { 941 {
434 unsigned long argp; 942 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 943 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 944 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
437 } 945 }
438#endif 946#endif
439 947
440 anfd->reify = 0; 948 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
441 949 {
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 950 anfd->events = 0;
951
952 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
953 anfd->events |= (unsigned char)w->events;
954
955 if (o_events != anfd->events)
956 o_reify = EV__IOFDSET; /* actually |= */
957 }
958
959 if (o_reify & EV__IOFDSET)
960 backend_modify (EV_A_ fd, o_events, anfd->events);
444 } 961 }
445 962
446 fdchangecnt = 0; 963 fdchangecnt = 0;
447} 964}
448 965
449static void 966/* something about the given fd changed */
967inline_size void
450fd_change (EV_P_ int fd) 968fd_change (EV_P_ int fd, int flags)
451{ 969{
452 if (expect_false (anfds [fd].reify)) 970 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 971 anfds [fd].reify |= flags;
456 972
973 if (expect_true (!reify))
974 {
457 ++fdchangecnt; 975 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 976 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 977 fdchanges [fdchangecnt - 1] = fd;
978 }
460} 979}
461 980
462static void 981/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
982inline_speed void
463fd_kill (EV_P_ int fd) 983fd_kill (EV_P_ int fd)
464{ 984{
465 struct ev_io *w; 985 ev_io *w;
466 986
467 while ((w = (struct ev_io *)anfds [fd].head)) 987 while ((w = (ev_io *)anfds [fd].head))
468 { 988 {
469 ev_io_stop (EV_A_ w); 989 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 990 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 991 }
472} 992}
473 993
994/* check whether the given fd is actually valid, for error recovery */
474inline int 995inline_size int
475fd_valid (int fd) 996fd_valid (int fd)
476{ 997{
477#ifdef _WIN32 998#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 999 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 1000#else
480 return fcntl (fd, F_GETFD) != -1; 1001 return fcntl (fd, F_GETFD) != -1;
481#endif 1002#endif
482} 1003}
483 1004
484/* called on EBADF to verify fds */ 1005/* called on EBADF to verify fds */
485static void 1006static void noinline
486fd_ebadf (EV_P) 1007fd_ebadf (EV_P)
487{ 1008{
488 int fd; 1009 int fd;
489 1010
490 for (fd = 0; fd < anfdmax; ++fd) 1011 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 1012 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 1013 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 1014 fd_kill (EV_A_ fd);
494} 1015}
495 1016
496/* called on ENOMEM in select/poll to kill some fds and retry */ 1017/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 1018static void noinline
498fd_enomem (EV_P) 1019fd_enomem (EV_P)
499{ 1020{
500 int fd; 1021 int fd;
501 1022
502 for (fd = anfdmax; fd--; ) 1023 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 1024 if (anfds [fd].events)
504 { 1025 {
505 fd_kill (EV_A_ fd); 1026 fd_kill (EV_A_ fd);
506 return; 1027 break;
507 } 1028 }
508} 1029}
509 1030
510/* usually called after fork if method needs to re-arm all fds from scratch */ 1031/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 1032static void noinline
512fd_rearm_all (EV_P) 1033fd_rearm_all (EV_P)
513{ 1034{
514 int fd; 1035 int fd;
515 1036
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 1037 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1038 if (anfds [fd].events)
519 { 1039 {
520 anfds [fd].events = 0; 1040 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 1041 anfds [fd].emask = 0;
1042 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 1043 }
523} 1044}
524 1045
525/*****************************************************************************/ 1046/* used to prepare libev internal fd's */
526 1047/* this is not fork-safe */
527static void
528upheap (WT *heap, int k)
529{
530 WT w = heap [k];
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 }
538
539 heap [k] = w;
540 ((W)heap [k])->active = k + 1;
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566}
567
568inline void 1048inline_speed void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574
575/*****************************************************************************/
576
577typedef struct
578{
579 WL head;
580 sig_atomic_t volatile gotsig;
581} ANSIG;
582
583static ANSIG *signals;
584static int signalmax;
585
586static int sigpipe [2];
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589
590static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 1049fd_intern (int fd)
655{ 1050{
656#ifdef _WIN32 1051#ifdef _WIN32
657 int arg = 1; 1052 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1053 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
659#else 1054#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1055 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1056 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1057#endif
663} 1058}
664 1059
1060/*****************************************************************************/
1061
1062/*
1063 * the heap functions want a real array index. array index 0 is guaranteed to not
1064 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1065 * the branching factor of the d-tree.
1066 */
1067
1068/*
1069 * at the moment we allow libev the luxury of two heaps,
1070 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1071 * which is more cache-efficient.
1072 * the difference is about 5% with 50000+ watchers.
1073 */
1074#if EV_USE_4HEAP
1075
1076#define DHEAP 4
1077#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1078#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1079#define UPHEAP_DONE(p,k) ((p) == (k))
1080
1081/* away from the root */
1082inline_speed void
1083downheap (ANHE *heap, int N, int k)
1084{
1085 ANHE he = heap [k];
1086 ANHE *E = heap + N + HEAP0;
1087
1088 for (;;)
1089 {
1090 ev_tstamp minat;
1091 ANHE *minpos;
1092 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1093
1094 /* find minimum child */
1095 if (expect_true (pos + DHEAP - 1 < E))
1096 {
1097 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1098 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1099 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1100 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1101 }
1102 else if (pos < E)
1103 {
1104 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1105 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1106 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1107 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1108 }
1109 else
1110 break;
1111
1112 if (ANHE_at (he) <= minat)
1113 break;
1114
1115 heap [k] = *minpos;
1116 ev_active (ANHE_w (*minpos)) = k;
1117
1118 k = minpos - heap;
1119 }
1120
1121 heap [k] = he;
1122 ev_active (ANHE_w (he)) = k;
1123}
1124
1125#else /* 4HEAP */
1126
1127#define HEAP0 1
1128#define HPARENT(k) ((k) >> 1)
1129#define UPHEAP_DONE(p,k) (!(p))
1130
1131/* away from the root */
1132inline_speed void
1133downheap (ANHE *heap, int N, int k)
1134{
1135 ANHE he = heap [k];
1136
1137 for (;;)
1138 {
1139 int c = k << 1;
1140
1141 if (c >= N + HEAP0)
1142 break;
1143
1144 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1145 ? 1 : 0;
1146
1147 if (ANHE_at (he) <= ANHE_at (heap [c]))
1148 break;
1149
1150 heap [k] = heap [c];
1151 ev_active (ANHE_w (heap [k])) = k;
1152
1153 k = c;
1154 }
1155
1156 heap [k] = he;
1157 ev_active (ANHE_w (he)) = k;
1158}
1159#endif
1160
1161/* towards the root */
1162inline_speed void
1163upheap (ANHE *heap, int k)
1164{
1165 ANHE he = heap [k];
1166
1167 for (;;)
1168 {
1169 int p = HPARENT (k);
1170
1171 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1172 break;
1173
1174 heap [k] = heap [p];
1175 ev_active (ANHE_w (heap [k])) = k;
1176 k = p;
1177 }
1178
1179 heap [k] = he;
1180 ev_active (ANHE_w (he)) = k;
1181}
1182
1183/* move an element suitably so it is in a correct place */
1184inline_size void
1185adjustheap (ANHE *heap, int N, int k)
1186{
1187 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1188 upheap (heap, k);
1189 else
1190 downheap (heap, N, k);
1191}
1192
1193/* rebuild the heap: this function is used only once and executed rarely */
1194inline_size void
1195reheap (ANHE *heap, int N)
1196{
1197 int i;
1198
1199 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1200 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1201 for (i = 0; i < N; ++i)
1202 upheap (heap, i + HEAP0);
1203}
1204
1205/*****************************************************************************/
1206
1207/* associate signal watchers to a signal signal */
1208typedef struct
1209{
1210 EV_ATOMIC_T pending;
1211#if EV_MULTIPLICITY
1212 EV_P;
1213#endif
1214 WL head;
1215} ANSIG;
1216
1217static ANSIG signals [EV_NSIG - 1];
1218
1219/*****************************************************************************/
1220
1221#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1222
1223static void noinline
1224evpipe_init (EV_P)
1225{
1226 if (!ev_is_active (&pipe_w))
1227 {
1228# if EV_USE_EVENTFD
1229 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1230 if (evfd < 0 && errno == EINVAL)
1231 evfd = eventfd (0, 0);
1232
1233 if (evfd >= 0)
1234 {
1235 evpipe [0] = -1;
1236 fd_intern (evfd); /* doing it twice doesn't hurt */
1237 ev_io_set (&pipe_w, evfd, EV_READ);
1238 }
1239 else
1240# endif
1241 {
1242 while (pipe (evpipe))
1243 ev_syserr ("(libev) error creating signal/async pipe");
1244
1245 fd_intern (evpipe [0]);
1246 fd_intern (evpipe [1]);
1247 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1248 }
1249
1250 ev_io_start (EV_A_ &pipe_w);
1251 ev_unref (EV_A); /* watcher should not keep loop alive */
1252 }
1253}
1254
1255inline_size void
1256evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1257{
1258 if (!*flag)
1259 {
1260 int old_errno = errno; /* save errno because write might clobber it */
1261 char dummy;
1262
1263 *flag = 1;
1264
1265#if EV_USE_EVENTFD
1266 if (evfd >= 0)
1267 {
1268 uint64_t counter = 1;
1269 write (evfd, &counter, sizeof (uint64_t));
1270 }
1271 else
1272#endif
1273 /* win32 people keep sending patches that change this write() to send() */
1274 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1275 /* so when you think this write should be a send instead, please find out */
1276 /* where your send() is from - it's definitely not the microsoft send, and */
1277 /* tell me. thank you. */
1278 write (evpipe [1], &dummy, 1);
1279
1280 errno = old_errno;
1281 }
1282}
1283
1284/* called whenever the libev signal pipe */
1285/* got some events (signal, async) */
665static void 1286static void
666siginit (EV_P) 1287pipecb (EV_P_ ev_io *iow, int revents)
667{ 1288{
668 fd_intern (sigpipe [0]); 1289 int i;
669 fd_intern (sigpipe [1]);
670 1290
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1291#if EV_USE_EVENTFD
672 ev_io_start (EV_A_ &sigev); 1292 if (evfd >= 0)
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1293 {
1294 uint64_t counter;
1295 read (evfd, &counter, sizeof (uint64_t));
1296 }
1297 else
1298#endif
1299 {
1300 char dummy;
1301 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1302 read (evpipe [0], &dummy, 1);
1303 }
1304
1305 if (sig_pending)
1306 {
1307 sig_pending = 0;
1308
1309 for (i = EV_NSIG - 1; i--; )
1310 if (expect_false (signals [i].pending))
1311 ev_feed_signal_event (EV_A_ i + 1);
1312 }
1313
1314#if EV_ASYNC_ENABLE
1315 if (async_pending)
1316 {
1317 async_pending = 0;
1318
1319 for (i = asynccnt; i--; )
1320 if (asyncs [i]->sent)
1321 {
1322 asyncs [i]->sent = 0;
1323 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1324 }
1325 }
1326#endif
674} 1327}
675 1328
676/*****************************************************************************/ 1329/*****************************************************************************/
677 1330
678static struct ev_child *childs [PID_HASHSIZE]; 1331static void
1332ev_sighandler (int signum)
1333{
1334#if EV_MULTIPLICITY
1335 EV_P = signals [signum - 1].loop;
1336#endif
679 1337
680#ifndef _WIN32 1338#ifdef _WIN32
1339 signal (signum, ev_sighandler);
1340#endif
681 1341
1342 signals [signum - 1].pending = 1;
1343 evpipe_write (EV_A_ &sig_pending);
1344}
1345
1346void noinline
1347ev_feed_signal_event (EV_P_ int signum)
1348{
1349 WL w;
1350
1351 if (expect_false (signum <= 0 || signum > EV_NSIG))
1352 return;
1353
1354 --signum;
1355
1356#if EV_MULTIPLICITY
1357 /* it is permissible to try to feed a signal to the wrong loop */
1358 /* or, likely more useful, feeding a signal nobody is waiting for */
1359
1360 if (expect_false (signals [signum].loop != EV_A))
1361 return;
1362#endif
1363
1364 signals [signum].pending = 0;
1365
1366 for (w = signals [signum].head; w; w = w->next)
1367 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1368}
1369
1370#if EV_USE_SIGNALFD
1371static void
1372sigfdcb (EV_P_ ev_io *iow, int revents)
1373{
1374 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1375
1376 for (;;)
1377 {
1378 ssize_t res = read (sigfd, si, sizeof (si));
1379
1380 /* not ISO-C, as res might be -1, but works with SuS */
1381 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1382 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1383
1384 if (res < (ssize_t)sizeof (si))
1385 break;
1386 }
1387}
1388#endif
1389
1390#endif
1391
1392/*****************************************************************************/
1393
1394#if EV_CHILD_ENABLE
1395static WL childs [EV_PID_HASHSIZE];
1396
682static struct ev_signal childev; 1397static ev_signal childev;
1398
1399#ifndef WIFCONTINUED
1400# define WIFCONTINUED(status) 0
1401#endif
1402
1403/* handle a single child status event */
1404inline_speed void
1405child_reap (EV_P_ int chain, int pid, int status)
1406{
1407 ev_child *w;
1408 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1409
1410 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1411 {
1412 if ((w->pid == pid || !w->pid)
1413 && (!traced || (w->flags & 1)))
1414 {
1415 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1416 w->rpid = pid;
1417 w->rstatus = status;
1418 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1419 }
1420 }
1421}
683 1422
684#ifndef WCONTINUED 1423#ifndef WCONTINUED
685# define WCONTINUED 0 1424# define WCONTINUED 0
686#endif 1425#endif
687 1426
1427/* called on sigchld etc., calls waitpid */
688static void 1428static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1429childcb (EV_P_ ev_signal *sw, int revents)
705{ 1430{
706 int pid, status; 1431 int pid, status;
707 1432
1433 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1434 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1435 if (!WCONTINUED
1436 || errno != EINVAL
1437 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1438 return;
1439
710 /* make sure we are called again until all childs have been reaped */ 1440 /* make sure we are called again until all children have been reaped */
1441 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1442 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1443
713 child_reap (EV_A_ sw, pid, pid, status); 1444 child_reap (EV_A_ pid, pid, status);
1445 if ((EV_PID_HASHSIZE) > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1446 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1447}
717 1448
718#endif 1449#endif
719 1450
720/*****************************************************************************/ 1451/*****************************************************************************/
746{ 1477{
747 return EV_VERSION_MINOR; 1478 return EV_VERSION_MINOR;
748} 1479}
749 1480
750/* return true if we are running with elevated privileges and should ignore env variables */ 1481/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1482int inline_size
752enable_secure (void) 1483enable_secure (void)
753{ 1484{
754#ifdef _WIN32 1485#ifdef _WIN32
755 return 0; 1486 return 0;
756#else 1487#else
758 || getgid () != getegid (); 1489 || getgid () != getegid ();
759#endif 1490#endif
760} 1491}
761 1492
762unsigned int 1493unsigned int
1494ev_supported_backends (void)
1495{
1496 unsigned int flags = 0;
1497
1498 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1499 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1500 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1501 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1502 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1503
1504 return flags;
1505}
1506
1507unsigned int
1508ev_recommended_backends (void)
1509{
1510 unsigned int flags = ev_supported_backends ();
1511
1512#ifndef __NetBSD__
1513 /* kqueue is borked on everything but netbsd apparently */
1514 /* it usually doesn't work correctly on anything but sockets and pipes */
1515 flags &= ~EVBACKEND_KQUEUE;
1516#endif
1517#ifdef __APPLE__
1518 /* only select works correctly on that "unix-certified" platform */
1519 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1520 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1521#endif
1522#ifdef __FreeBSD__
1523 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1524#endif
1525
1526 return flags;
1527}
1528
1529unsigned int
1530ev_embeddable_backends (void)
1531{
1532 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1533
1534 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1535 /* please fix it and tell me how to detect the fix */
1536 flags &= ~EVBACKEND_EPOLL;
1537
1538 return flags;
1539}
1540
1541unsigned int
1542ev_backend (EV_P)
1543{
1544 return backend;
1545}
1546
1547#if EV_FEATURE_API
1548unsigned int
1549ev_iteration (EV_P)
1550{
1551 return loop_count;
1552}
1553
1554unsigned int
763ev_method (EV_P) 1555ev_depth (EV_P)
764{ 1556{
765 return method; 1557 return loop_depth;
766} 1558}
767 1559
768static void 1560void
1561ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1562{
1563 io_blocktime = interval;
1564}
1565
1566void
1567ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1568{
1569 timeout_blocktime = interval;
1570}
1571
1572void
1573ev_set_userdata (EV_P_ void *data)
1574{
1575 userdata = data;
1576}
1577
1578void *
1579ev_userdata (EV_P)
1580{
1581 return userdata;
1582}
1583
1584void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1585{
1586 invoke_cb = invoke_pending_cb;
1587}
1588
1589void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1590{
1591 release_cb = release;
1592 acquire_cb = acquire;
1593}
1594#endif
1595
1596/* initialise a loop structure, must be zero-initialised */
1597static void noinline
769loop_init (EV_P_ unsigned int flags) 1598loop_init (EV_P_ unsigned int flags)
770{ 1599{
771 if (!method) 1600 if (!backend)
772 { 1601 {
1602#if EV_USE_REALTIME
1603 if (!have_realtime)
1604 {
1605 struct timespec ts;
1606
1607 if (!clock_gettime (CLOCK_REALTIME, &ts))
1608 have_realtime = 1;
1609 }
1610#endif
1611
773#if EV_USE_MONOTONIC 1612#if EV_USE_MONOTONIC
1613 if (!have_monotonic)
1614 {
1615 struct timespec ts;
1616
1617 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1618 have_monotonic = 1;
1619 }
1620#endif
1621
1622 /* pid check not overridable via env */
1623#ifndef _WIN32
1624 if (flags & EVFLAG_FORKCHECK)
1625 curpid = getpid ();
1626#endif
1627
1628 if (!(flags & EVFLAG_NOENV)
1629 && !enable_secure ()
1630 && getenv ("LIBEV_FLAGS"))
1631 flags = atoi (getenv ("LIBEV_FLAGS"));
1632
1633 ev_rt_now = ev_time ();
1634 mn_now = get_clock ();
1635 now_floor = mn_now;
1636 rtmn_diff = ev_rt_now - mn_now;
1637#if EV_FEATURE_API
1638 invoke_cb = ev_invoke_pending;
1639#endif
1640
1641 io_blocktime = 0.;
1642 timeout_blocktime = 0.;
1643 backend = 0;
1644 backend_fd = -1;
1645 sig_pending = 0;
1646#if EV_ASYNC_ENABLE
1647 async_pending = 0;
1648#endif
1649#if EV_USE_INOTIFY
1650 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1651#endif
1652#if EV_USE_SIGNALFD
1653 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1654#endif
1655
1656 if (!(flags & 0x0000ffffU))
1657 flags |= ev_recommended_backends ();
1658
1659#if EV_USE_PORT
1660 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1661#endif
1662#if EV_USE_KQUEUE
1663 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1664#endif
1665#if EV_USE_EPOLL
1666 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1667#endif
1668#if EV_USE_POLL
1669 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1670#endif
1671#if EV_USE_SELECT
1672 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1673#endif
1674
1675 ev_prepare_init (&pending_w, pendingcb);
1676
1677#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1678 ev_init (&pipe_w, pipecb);
1679 ev_set_priority (&pipe_w, EV_MAXPRI);
1680#endif
1681 }
1682}
1683
1684/* free up a loop structure */
1685static void noinline
1686loop_destroy (EV_P)
1687{
1688 int i;
1689
1690 if (ev_is_active (&pipe_w))
1691 {
1692 /*ev_ref (EV_A);*/
1693 /*ev_io_stop (EV_A_ &pipe_w);*/
1694
1695#if EV_USE_EVENTFD
1696 if (evfd >= 0)
1697 close (evfd);
1698#endif
1699
1700 if (evpipe [0] >= 0)
1701 {
1702 EV_WIN32_CLOSE_FD (evpipe [0]);
1703 EV_WIN32_CLOSE_FD (evpipe [1]);
1704 }
1705 }
1706
1707#if EV_USE_SIGNALFD
1708 if (ev_is_active (&sigfd_w))
1709 close (sigfd);
1710#endif
1711
1712#if EV_USE_INOTIFY
1713 if (fs_fd >= 0)
1714 close (fs_fd);
1715#endif
1716
1717 if (backend_fd >= 0)
1718 close (backend_fd);
1719
1720#if EV_USE_PORT
1721 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1722#endif
1723#if EV_USE_KQUEUE
1724 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1725#endif
1726#if EV_USE_EPOLL
1727 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1728#endif
1729#if EV_USE_POLL
1730 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1731#endif
1732#if EV_USE_SELECT
1733 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1734#endif
1735
1736 for (i = NUMPRI; i--; )
1737 {
1738 array_free (pending, [i]);
1739#if EV_IDLE_ENABLE
1740 array_free (idle, [i]);
1741#endif
1742 }
1743
1744 ev_free (anfds); anfds = 0; anfdmax = 0;
1745
1746 /* have to use the microsoft-never-gets-it-right macro */
1747 array_free (rfeed, EMPTY);
1748 array_free (fdchange, EMPTY);
1749 array_free (timer, EMPTY);
1750#if EV_PERIODIC_ENABLE
1751 array_free (periodic, EMPTY);
1752#endif
1753#if EV_FORK_ENABLE
1754 array_free (fork, EMPTY);
1755#endif
1756 array_free (prepare, EMPTY);
1757 array_free (check, EMPTY);
1758#if EV_ASYNC_ENABLE
1759 array_free (async, EMPTY);
1760#endif
1761
1762 backend = 0;
1763}
1764
1765#if EV_USE_INOTIFY
1766inline_size void infy_fork (EV_P);
1767#endif
1768
1769inline_size void
1770loop_fork (EV_P)
1771{
1772#if EV_USE_PORT
1773 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1774#endif
1775#if EV_USE_KQUEUE
1776 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1777#endif
1778#if EV_USE_EPOLL
1779 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1780#endif
1781#if EV_USE_INOTIFY
1782 infy_fork (EV_A);
1783#endif
1784
1785 if (ev_is_active (&pipe_w))
1786 {
1787 /* this "locks" the handlers against writing to the pipe */
1788 /* while we modify the fd vars */
1789 sig_pending = 1;
1790#if EV_ASYNC_ENABLE
1791 async_pending = 1;
1792#endif
1793
1794 ev_ref (EV_A);
1795 ev_io_stop (EV_A_ &pipe_w);
1796
1797#if EV_USE_EVENTFD
1798 if (evfd >= 0)
1799 close (evfd);
1800#endif
1801
1802 if (evpipe [0] >= 0)
1803 {
1804 EV_WIN32_CLOSE_FD (evpipe [0]);
1805 EV_WIN32_CLOSE_FD (evpipe [1]);
1806 }
1807
1808#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1809 evpipe_init (EV_A);
1810 /* now iterate over everything, in case we missed something */
1811 pipecb (EV_A_ &pipe_w, EV_READ);
1812#endif
1813 }
1814
1815 postfork = 0;
1816}
1817
1818#if EV_MULTIPLICITY
1819
1820struct ev_loop *
1821ev_loop_new (unsigned int flags)
1822{
1823 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1824
1825 memset (EV_A, 0, sizeof (struct ev_loop));
1826 loop_init (EV_A_ flags);
1827
1828 if (ev_backend (EV_A))
1829 return EV_A;
1830
1831 return 0;
1832}
1833
1834void
1835ev_loop_destroy (EV_P)
1836{
1837 loop_destroy (EV_A);
1838 ev_free (loop);
1839}
1840
1841void
1842ev_loop_fork (EV_P)
1843{
1844 postfork = 1; /* must be in line with ev_default_fork */
1845}
1846#endif /* multiplicity */
1847
1848#if EV_VERIFY
1849static void noinline
1850verify_watcher (EV_P_ W w)
1851{
1852 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1853
1854 if (w->pending)
1855 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1856}
1857
1858static void noinline
1859verify_heap (EV_P_ ANHE *heap, int N)
1860{
1861 int i;
1862
1863 for (i = HEAP0; i < N + HEAP0; ++i)
1864 {
1865 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1866 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1867 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1868
1869 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1870 }
1871}
1872
1873static void noinline
1874array_verify (EV_P_ W *ws, int cnt)
1875{
1876 while (cnt--)
1877 {
1878 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1879 verify_watcher (EV_A_ ws [cnt]);
1880 }
1881}
1882#endif
1883
1884#if EV_FEATURE_API
1885void
1886ev_verify (EV_P)
1887{
1888#if EV_VERIFY
1889 int i;
1890 WL w;
1891
1892 assert (activecnt >= -1);
1893
1894 assert (fdchangemax >= fdchangecnt);
1895 for (i = 0; i < fdchangecnt; ++i)
1896 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1897
1898 assert (anfdmax >= 0);
1899 for (i = 0; i < anfdmax; ++i)
1900 for (w = anfds [i].head; w; w = w->next)
774 { 1901 {
775 struct timespec ts; 1902 verify_watcher (EV_A_ (W)w);
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1903 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
777 have_monotonic = 1; 1904 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
778 } 1905 }
779#endif
780 1906
781 ev_rt_now = ev_time (); 1907 assert (timermax >= timercnt);
782 mn_now = get_clock (); 1908 verify_heap (EV_A_ timers, timercnt);
783 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now;
785 1909
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1910#if EV_PERIODIC_ENABLE
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1911 assert (periodicmax >= periodiccnt);
788 1912 verify_heap (EV_A_ periodics, periodiccnt);
789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
791
792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
796#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
798#endif
799#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
801#endif
802#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
804#endif
805#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
807#endif
808
809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
811 }
812}
813
814static void
815loop_destroy (EV_P)
816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
822#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
824#endif
825#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
827#endif
828#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
830#endif
831#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
833#endif 1913#endif
834 1914
835 for (i = NUMPRI; i--; ) 1915 for (i = NUMPRI; i--; )
836 array_free (pending, [i]); 1916 {
1917 assert (pendingmax [i] >= pendingcnt [i]);
1918#if EV_IDLE_ENABLE
1919 assert (idleall >= 0);
1920 assert (idlemax [i] >= idlecnt [i]);
1921 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1922#endif
1923 }
837 1924
838 /* have to use the microsoft-never-gets-it-right macro */ 1925#if EV_FORK_ENABLE
839 array_free (fdchange, EMPTY0); 1926 assert (forkmax >= forkcnt);
840 array_free (timer, EMPTY0); 1927 array_verify (EV_A_ (W *)forks, forkcnt);
841#if EV_PERIODICS 1928#endif
842 array_free (periodic, EMPTY0); 1929
1930#if EV_ASYNC_ENABLE
1931 assert (asyncmax >= asynccnt);
1932 array_verify (EV_A_ (W *)asyncs, asynccnt);
1933#endif
1934
1935#if EV_PREPARE_ENABLE
1936 assert (preparemax >= preparecnt);
1937 array_verify (EV_A_ (W *)prepares, preparecnt);
1938#endif
1939
1940#if EV_CHECK_ENABLE
1941 assert (checkmax >= checkcnt);
1942 array_verify (EV_A_ (W *)checks, checkcnt);
1943#endif
1944
1945# if 0
1946#if EV_CHILD_ENABLE
1947 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1948 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1949#endif
843#endif 1950# endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif 1951#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 1952}
1953#endif
881 1954
882#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
883struct ev_loop * 1956struct ev_loop *
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1957ev_default_loop_init (unsigned int flags)
916#else 1958#else
917int 1959int
918ev_default_loop (unsigned int flags) 1960ev_default_loop (unsigned int flags)
919#endif 1961#endif
920{ 1962{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1963 if (!ev_default_loop_ptr)
926 { 1964 {
927#if EV_MULTIPLICITY 1965#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1966 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 1967#else
930 ev_default_loop_ptr = 1; 1968 ev_default_loop_ptr = 1;
931#endif 1969#endif
932 1970
933 loop_init (EV_A_ flags); 1971 loop_init (EV_A_ flags);
934 1972
935 if (ev_method (EV_A)) 1973 if (ev_backend (EV_A))
936 { 1974 {
937 siginit (EV_A); 1975#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1976 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1977 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1978 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1979 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 1980#endif
952 1988
953void 1989void
954ev_default_destroy (void) 1990ev_default_destroy (void)
955{ 1991{
956#if EV_MULTIPLICITY 1992#if EV_MULTIPLICITY
957 struct ev_loop *loop = ev_default_loop_ptr; 1993 EV_P = ev_default_loop_ptr;
958#endif 1994#endif
959 1995
960#ifndef _WIN32 1996 ev_default_loop_ptr = 0;
1997
1998#if EV_CHILD_ENABLE
961 ev_ref (EV_A); /* child watcher */ 1999 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 2000 ev_signal_stop (EV_A_ &childev);
963#endif 2001#endif
964 2002
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 2003 loop_destroy (EV_A);
972} 2004}
973 2005
974void 2006void
975ev_default_fork (void) 2007ev_default_fork (void)
976{ 2008{
977#if EV_MULTIPLICITY 2009#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 2010 EV_P = ev_default_loop_ptr;
979#endif 2011#endif
980 2012
981 if (method) 2013 postfork = 1; /* must be in line with ev_loop_fork */
982 postfork = 1;
983} 2014}
984 2015
985/*****************************************************************************/ 2016/*****************************************************************************/
986 2017
987static int 2018void
988any_pending (EV_P) 2019ev_invoke (EV_P_ void *w, int revents)
2020{
2021 EV_CB_INVOKE ((W)w, revents);
2022}
2023
2024unsigned int
2025ev_pending_count (EV_P)
989{ 2026{
990 int pri; 2027 int pri;
2028 unsigned int count = 0;
991 2029
992 for (pri = NUMPRI; pri--; ) 2030 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri]) 2031 count += pendingcnt [pri];
994 return 1;
995 2032
996 return 0; 2033 return count;
997} 2034}
998 2035
999inline void 2036void noinline
1000call_pending (EV_P) 2037ev_invoke_pending (EV_P)
1001{ 2038{
1002 int pri; 2039 int pri;
1003 2040
1004 for (pri = NUMPRI; pri--; ) 2041 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 2042 while (pendingcnt [pri])
1006 { 2043 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2044 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 2045
1009 if (expect_true (p->w)) 2046 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1010 { 2047 /* ^ this is no longer true, as pending_w could be here */
2048
1011 p->w->pending = 0; 2049 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 2050 EV_CB_INVOKE (p->w, p->events);
1013 } 2051 EV_FREQUENT_CHECK;
1014 } 2052 }
1015} 2053}
1016 2054
2055#if EV_IDLE_ENABLE
2056/* make idle watchers pending. this handles the "call-idle */
2057/* only when higher priorities are idle" logic */
1017inline void 2058inline_size void
2059idle_reify (EV_P)
2060{
2061 if (expect_false (idleall))
2062 {
2063 int pri;
2064
2065 for (pri = NUMPRI; pri--; )
2066 {
2067 if (pendingcnt [pri])
2068 break;
2069
2070 if (idlecnt [pri])
2071 {
2072 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2073 break;
2074 }
2075 }
2076 }
2077}
2078#endif
2079
2080/* make timers pending */
2081inline_size void
1018timers_reify (EV_P) 2082timers_reify (EV_P)
1019{ 2083{
2084 EV_FREQUENT_CHECK;
2085
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 2086 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 2087 {
1022 struct ev_timer *w = timers [0]; 2088 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 2089 {
2090 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2091
2092 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2093
2094 /* first reschedule or stop timer */
2095 if (w->repeat)
2096 {
2097 ev_at (w) += w->repeat;
2098 if (ev_at (w) < mn_now)
2099 ev_at (w) = mn_now;
2100
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2101 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 2102
1031 ((WT)w)->at += w->repeat; 2103 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 2104 downheap (timers, timercnt, HEAP0);
2105 }
2106 else
2107 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2108
2109 EV_FREQUENT_CHECK;
2110 feed_reverse (EV_A_ (W)w);
1036 } 2111 }
1037 else 2112 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 2113
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2114 feed_reverse_done (EV_A_ EV_TIMER);
1041 } 2115 }
1042} 2116}
1043 2117
1044#if EV_PERIODICS 2118#if EV_PERIODIC_ENABLE
2119/* make periodics pending */
1045inline void 2120inline_size void
1046periodics_reify (EV_P) 2121periodics_reify (EV_P)
1047{ 2122{
2123 EV_FREQUENT_CHECK;
2124
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2125 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 2126 {
1050 struct ev_periodic *w = periodics [0]; 2127 int feed_count = 0;
1051 2128
2129 do
2130 {
2131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2132
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2133 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 2134
1054 /* first reschedule or stop timer */ 2135 /* first reschedule or stop timer */
2136 if (w->reschedule_cb)
2137 {
2138 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2139
2140 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2141
2142 ANHE_at_cache (periodics [HEAP0]);
2143 downheap (periodics, periodiccnt, HEAP0);
2144 }
2145 else if (w->interval)
2146 {
2147 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2148 /* if next trigger time is not sufficiently in the future, put it there */
2149 /* this might happen because of floating point inexactness */
2150 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2151 {
2152 ev_at (w) += w->interval;
2153
2154 /* if interval is unreasonably low we might still have a time in the past */
2155 /* so correct this. this will make the periodic very inexact, but the user */
2156 /* has effectively asked to get triggered more often than possible */
2157 if (ev_at (w) < ev_rt_now)
2158 ev_at (w) = ev_rt_now;
2159 }
2160
2161 ANHE_at_cache (periodics [HEAP0]);
2162 downheap (periodics, periodiccnt, HEAP0);
2163 }
2164 else
2165 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2166
2167 EV_FREQUENT_CHECK;
2168 feed_reverse (EV_A_ (W)w);
2169 }
2170 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2171
2172 feed_reverse_done (EV_A_ EV_PERIODIC);
2173 }
2174}
2175
2176/* simply recalculate all periodics */
2177/* TODO: maybe ensure that at least one event happens when jumping forward? */
2178static void noinline
2179periodics_reschedule (EV_P)
2180{
2181 int i;
2182
2183 /* adjust periodics after time jump */
2184 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2185 {
2186 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2187
1055 if (w->reschedule_cb) 2188 if (w->reschedule_cb)
2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2190 else if (w->interval)
2191 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2192
2193 ANHE_at_cache (periodics [i]);
2194 }
2195
2196 reheap (periodics, periodiccnt);
2197}
2198#endif
2199
2200/* adjust all timers by a given offset */
2201static void noinline
2202timers_reschedule (EV_P_ ev_tstamp adjust)
2203{
2204 int i;
2205
2206 for (i = 0; i < timercnt; ++i)
2207 {
2208 ANHE *he = timers + i + HEAP0;
2209 ANHE_w (*he)->at += adjust;
2210 ANHE_at_cache (*he);
2211 }
2212}
2213
2214/* fetch new monotonic and realtime times from the kernel */
2215/* also detect if there was a timejump, and act accordingly */
2216inline_speed void
2217time_update (EV_P_ ev_tstamp max_block)
2218{
2219#if EV_USE_MONOTONIC
2220 if (expect_true (have_monotonic))
2221 {
2222 int i;
2223 ev_tstamp odiff = rtmn_diff;
2224
2225 mn_now = get_clock ();
2226
2227 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2228 /* interpolate in the meantime */
2229 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1056 { 2230 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2231 ev_rt_now = rtmn_diff + mn_now;
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2232 return;
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 2233 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 2234
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now; 2235 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 2236 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 2237
1114inline void 2238 /* loop a few times, before making important decisions.
1115time_update (EV_P) 2239 * on the choice of "4": one iteration isn't enough,
1116{ 2240 * in case we get preempted during the calls to
1117 int i; 2241 * ev_time and get_clock. a second call is almost guaranteed
1118 2242 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 2243 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 2244 * in the unlikely event of having been preempted here.
1121 { 2245 */
1122 if (time_update_monotonic (EV_A)) 2246 for (i = 4; --i; )
1123 { 2247 {
1124 ev_tstamp odiff = rtmn_diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 2248 rtmn_diff = ev_rt_now - mn_now;
1129 2249
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2250 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 2251 return; /* all is well */
1132 2252
1133 ev_rt_now = ev_time (); 2253 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 2254 mn_now = get_clock ();
1135 now_floor = mn_now; 2255 now_floor = mn_now;
1136 } 2256 }
1137 2257
2258 /* no timer adjustment, as the monotonic clock doesn't jump */
2259 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 2260# if EV_PERIODIC_ENABLE
2261 periodics_reschedule (EV_A);
2262# endif
2263 }
2264 else
2265#endif
2266 {
2267 ev_rt_now = ev_time ();
2268
2269 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2270 {
2271 /* adjust timers. this is easy, as the offset is the same for all of them */
2272 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2273#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 2274 periodics_reschedule (EV_A);
1140# endif 2275#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 2276 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 2277
1161 mn_now = ev_rt_now; 2278 mn_now = ev_rt_now;
1162 } 2279 }
1163} 2280}
1164 2281
1165void 2282void
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 2283ev_run (EV_P_ int flags)
1181{ 2284{
1182 double block; 2285#if EV_FEATURE_API
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2286 ++loop_depth;
2287#endif
1184 2288
1185 while (activecnt) 2289 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2290
2291 loop_done = EVBREAK_CANCEL;
2292
2293 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2294
2295 do
1186 { 2296 {
2297#if EV_VERIFY >= 2
2298 ev_verify (EV_A);
2299#endif
2300
2301#ifndef _WIN32
2302 if (expect_false (curpid)) /* penalise the forking check even more */
2303 if (expect_false (getpid () != curpid))
2304 {
2305 curpid = getpid ();
2306 postfork = 1;
2307 }
2308#endif
2309
2310#if EV_FORK_ENABLE
2311 /* we might have forked, so queue fork handlers */
2312 if (expect_false (postfork))
2313 if (forkcnt)
2314 {
2315 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2316 EV_INVOKE_PENDING;
2317 }
2318#endif
2319
2320#if EV_PREPARE_ENABLE
1187 /* queue check watchers (and execute them) */ 2321 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 2322 if (expect_false (preparecnt))
1189 { 2323 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2324 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 2325 EV_INVOKE_PENDING;
1192 } 2326 }
2327#endif
2328
2329 if (expect_false (loop_done))
2330 break;
1193 2331
1194 /* we might have forked, so reify kernel state if necessary */ 2332 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 2333 if (expect_false (postfork))
1196 loop_fork (EV_A); 2334 loop_fork (EV_A);
1197 2335
1198 /* update fd-related kernel structures */ 2336 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 2337 fd_reify (EV_A);
1200 2338
1201 /* calculate blocking time */ 2339 /* calculate blocking time */
2340 {
2341 ev_tstamp waittime = 0.;
2342 ev_tstamp sleeptime = 0.;
1202 2343
1203 /* we only need this for !monotonic clock or timers, but as we basically 2344 /* remember old timestamp for io_blocktime calculation */
1204 always have timers, we just calculate it always */ 2345 ev_tstamp prev_mn_now = mn_now;
1205#if EV_USE_MONOTONIC 2346
1206 if (expect_true (have_monotonic)) 2347 /* update time to cancel out callback processing overhead */
1207 time_update_monotonic (EV_A); 2348 time_update (EV_A_ 1e100);
1208 else 2349
1209#endif 2350 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1210 { 2351 {
1211 ev_rt_now = ev_time ();
1212 mn_now = ev_rt_now;
1213 }
1214
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 2352 waittime = MAX_BLOCKTIME;
1220 2353
1221 if (timercnt) 2354 if (timercnt)
1222 { 2355 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2356 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 2357 if (waittime > to) waittime = to;
1225 } 2358 }
1226 2359
1227#if EV_PERIODICS 2360#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 2361 if (periodiccnt)
1229 { 2362 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2363 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 2364 if (waittime > to) waittime = to;
1232 } 2365 }
1233#endif 2366#endif
1234 2367
1235 if (expect_false (block < 0.)) block = 0.; 2368 /* don't let timeouts decrease the waittime below timeout_blocktime */
2369 if (expect_false (waittime < timeout_blocktime))
2370 waittime = timeout_blocktime;
2371
2372 /* extra check because io_blocktime is commonly 0 */
2373 if (expect_false (io_blocktime))
2374 {
2375 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2376
2377 if (sleeptime > waittime - backend_fudge)
2378 sleeptime = waittime - backend_fudge;
2379
2380 if (expect_true (sleeptime > 0.))
2381 {
2382 ev_sleep (sleeptime);
2383 waittime -= sleeptime;
2384 }
2385 }
1236 } 2386 }
1237 2387
1238 method_poll (EV_A_ block); 2388#if EV_FEATURE_API
2389 ++loop_count;
2390#endif
2391 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2392 backend_poll (EV_A_ waittime);
2393 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1239 2394
1240 /* update ev_rt_now, do magic */ 2395 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 2396 time_update (EV_A_ waittime + sleeptime);
2397 }
1242 2398
1243 /* queue pending timers and reschedule them */ 2399 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 2400 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 2401#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 2402 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 2403#endif
1248 2404
2405#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 2406 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 2407 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2408#endif
1252 2409
2410#if EV_CHECK_ENABLE
1253 /* queue check watchers, to be executed first */ 2411 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 2412 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2413 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2414#endif
1256 2415
1257 call_pending (EV_A); 2416 EV_INVOKE_PENDING;
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 2417 }
2418 while (expect_true (
2419 activecnt
2420 && !loop_done
2421 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2422 ));
1262 2423
1263 if (loop_done != 2) 2424 if (loop_done == EVBREAK_ONE)
1264 loop_done = 0; 2425 loop_done = EVBREAK_CANCEL;
1265}
1266 2426
2427#if EV_FEATURE_API
2428 --loop_depth;
2429#endif
2430}
2431
1267void 2432void
1268ev_unloop (EV_P_ int how) 2433ev_break (EV_P_ int how)
1269{ 2434{
1270 loop_done = how; 2435 loop_done = how;
1271} 2436}
1272 2437
2438void
2439ev_ref (EV_P)
2440{
2441 ++activecnt;
2442}
2443
2444void
2445ev_unref (EV_P)
2446{
2447 --activecnt;
2448}
2449
2450void
2451ev_now_update (EV_P)
2452{
2453 time_update (EV_A_ 1e100);
2454}
2455
2456void
2457ev_suspend (EV_P)
2458{
2459 ev_now_update (EV_A);
2460}
2461
2462void
2463ev_resume (EV_P)
2464{
2465 ev_tstamp mn_prev = mn_now;
2466
2467 ev_now_update (EV_A);
2468 timers_reschedule (EV_A_ mn_now - mn_prev);
2469#if EV_PERIODIC_ENABLE
2470 /* TODO: really do this? */
2471 periodics_reschedule (EV_A);
2472#endif
2473}
2474
1273/*****************************************************************************/ 2475/*****************************************************************************/
2476/* singly-linked list management, used when the expected list length is short */
1274 2477
1275inline void 2478inline_size void
1276wlist_add (WL *head, WL elem) 2479wlist_add (WL *head, WL elem)
1277{ 2480{
1278 elem->next = *head; 2481 elem->next = *head;
1279 *head = elem; 2482 *head = elem;
1280} 2483}
1281 2484
1282inline void 2485inline_size void
1283wlist_del (WL *head, WL elem) 2486wlist_del (WL *head, WL elem)
1284{ 2487{
1285 while (*head) 2488 while (*head)
1286 { 2489 {
1287 if (*head == elem) 2490 if (expect_true (*head == elem))
1288 { 2491 {
1289 *head = elem->next; 2492 *head = elem->next;
1290 return; 2493 break;
1291 } 2494 }
1292 2495
1293 head = &(*head)->next; 2496 head = &(*head)->next;
1294 } 2497 }
1295} 2498}
1296 2499
2500/* internal, faster, version of ev_clear_pending */
1297inline void 2501inline_speed void
1298ev_clear_pending (EV_P_ W w) 2502clear_pending (EV_P_ W w)
1299{ 2503{
1300 if (w->pending) 2504 if (w->pending)
1301 { 2505 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2506 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 2507 w->pending = 0;
1304 } 2508 }
1305} 2509}
1306 2510
2511int
2512ev_clear_pending (EV_P_ void *w)
2513{
2514 W w_ = (W)w;
2515 int pending = w_->pending;
2516
2517 if (expect_true (pending))
2518 {
2519 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2520 p->w = (W)&pending_w;
2521 w_->pending = 0;
2522 return p->events;
2523 }
2524 else
2525 return 0;
2526}
2527
1307inline void 2528inline_size void
2529pri_adjust (EV_P_ W w)
2530{
2531 int pri = ev_priority (w);
2532 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2533 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2534 ev_set_priority (w, pri);
2535}
2536
2537inline_speed void
1308ev_start (EV_P_ W w, int active) 2538ev_start (EV_P_ W w, int active)
1309{ 2539{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2540 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2541 w->active = active;
1314 ev_ref (EV_A); 2542 ev_ref (EV_A);
1315} 2543}
1316 2544
1317inline void 2545inline_size void
1318ev_stop (EV_P_ W w) 2546ev_stop (EV_P_ W w)
1319{ 2547{
1320 ev_unref (EV_A); 2548 ev_unref (EV_A);
1321 w->active = 0; 2549 w->active = 0;
1322} 2550}
1323 2551
1324/*****************************************************************************/ 2552/*****************************************************************************/
1325 2553
1326void 2554void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2555ev_io_start (EV_P_ ev_io *w)
1328{ 2556{
1329 int fd = w->fd; 2557 int fd = w->fd;
1330 2558
1331 if (expect_false (ev_is_active (w))) 2559 if (expect_false (ev_is_active (w)))
1332 return; 2560 return;
1333 2561
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2562 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2563 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2564
2565 EV_FREQUENT_CHECK;
1335 2566
1336 ev_start (EV_A_ (W)w, 1); 2567 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2568 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2569 wlist_add (&anfds[fd].head, (WL)w);
1339 2570
1340 fd_change (EV_A_ fd); 2571 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1341} 2572 w->events &= ~EV__IOFDSET;
1342 2573
1343void 2574 EV_FREQUENT_CHECK;
2575}
2576
2577void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2578ev_io_stop (EV_P_ ev_io *w)
1345{ 2579{
1346 ev_clear_pending (EV_A_ (W)w); 2580 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 2581 if (expect_false (!ev_is_active (w)))
1348 return; 2582 return;
1349 2583
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2584 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2585
2586 EV_FREQUENT_CHECK;
2587
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2588 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2589 ev_stop (EV_A_ (W)w);
1354 2590
1355 fd_change (EV_A_ w->fd); 2591 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1356}
1357 2592
1358void 2593 EV_FREQUENT_CHECK;
2594}
2595
2596void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2597ev_timer_start (EV_P_ ev_timer *w)
1360{ 2598{
1361 if (expect_false (ev_is_active (w))) 2599 if (expect_false (ev_is_active (w)))
1362 return; 2600 return;
1363 2601
1364 ((WT)w)->at += mn_now; 2602 ev_at (w) += mn_now;
1365 2603
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2604 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2605
2606 EV_FREQUENT_CHECK;
2607
2608 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2609 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2610 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2611 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2612 ANHE_at_cache (timers [ev_active (w)]);
2613 upheap (timers, ev_active (w));
1372 2614
2615 EV_FREQUENT_CHECK;
2616
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2617 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2618}
1375 2619
1376void 2620void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2621ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2622{
1379 ev_clear_pending (EV_A_ (W)w); 2623 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 2624 if (expect_false (!ev_is_active (w)))
1381 return; 2625 return;
1382 2626
2627 EV_FREQUENT_CHECK;
2628
2629 {
2630 int active = ev_active (w);
2631
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2632 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2633
2634 --timercnt;
2635
1385 if (expect_true (((W)w)->active < timercnt--)) 2636 if (expect_true (active < timercnt + HEAP0))
1386 { 2637 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2638 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2639 adjustheap (timers, timercnt, active);
1389 } 2640 }
2641 }
1390 2642
1391 ((WT)w)->at -= mn_now; 2643 ev_at (w) -= mn_now;
1392 2644
1393 ev_stop (EV_A_ (W)w); 2645 ev_stop (EV_A_ (W)w);
1394}
1395 2646
1396void 2647 EV_FREQUENT_CHECK;
2648}
2649
2650void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2651ev_timer_again (EV_P_ ev_timer *w)
1398{ 2652{
2653 EV_FREQUENT_CHECK;
2654
1399 if (ev_is_active (w)) 2655 if (ev_is_active (w))
1400 { 2656 {
1401 if (w->repeat) 2657 if (w->repeat)
1402 { 2658 {
1403 ((WT)w)->at = mn_now + w->repeat; 2659 ev_at (w) = mn_now + w->repeat;
2660 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2661 adjustheap (timers, timercnt, ev_active (w));
1405 } 2662 }
1406 else 2663 else
1407 ev_timer_stop (EV_A_ w); 2664 ev_timer_stop (EV_A_ w);
1408 } 2665 }
1409 else if (w->repeat) 2666 else if (w->repeat)
1410 { 2667 {
1411 w->at = w->repeat; 2668 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2669 ev_timer_start (EV_A_ w);
1413 } 2670 }
1414}
1415 2671
2672 EV_FREQUENT_CHECK;
2673}
2674
2675ev_tstamp
2676ev_timer_remaining (EV_P_ ev_timer *w)
2677{
2678 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2679}
2680
1416#if EV_PERIODICS 2681#if EV_PERIODIC_ENABLE
1417void 2682void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2683ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2684{
1420 if (expect_false (ev_is_active (w))) 2685 if (expect_false (ev_is_active (w)))
1421 return; 2686 return;
1422 2687
1423 if (w->reschedule_cb) 2688 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2689 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2690 else if (w->interval)
1426 { 2691 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2692 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2693 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2695 }
2696 else
2697 ev_at (w) = w->offset;
1431 2698
2699 EV_FREQUENT_CHECK;
2700
2701 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2702 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2703 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2704 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2705 ANHE_at_cache (periodics [ev_active (w)]);
2706 upheap (periodics, ev_active (w));
1436 2707
2708 EV_FREQUENT_CHECK;
2709
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2710 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2711}
1439 2712
1440void 2713void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2714ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2715{
1443 ev_clear_pending (EV_A_ (W)w); 2716 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 2717 if (expect_false (!ev_is_active (w)))
1445 return; 2718 return;
1446 2719
2720 EV_FREQUENT_CHECK;
2721
2722 {
2723 int active = ev_active (w);
2724
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2725 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2726
2727 --periodiccnt;
2728
1449 if (expect_true (((W)w)->active < periodiccnt--)) 2729 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2730 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2731 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2732 adjustheap (periodics, periodiccnt, active);
1453 } 2733 }
2734 }
1454 2735
1455 ev_stop (EV_A_ (W)w); 2736 ev_stop (EV_A_ (W)w);
1456}
1457 2737
1458void 2738 EV_FREQUENT_CHECK;
2739}
2740
2741void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2742ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2743{
1461 /* TODO: use adjustheap and recalculation */ 2744 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2745 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2746 ev_periodic_start (EV_A_ w);
1464} 2747}
1465#endif 2748#endif
1466 2749
1467void 2750#ifndef SA_RESTART
1468ev_idle_start (EV_P_ struct ev_idle *w) 2751# define SA_RESTART 0
2752#endif
2753
2754#if EV_SIGNAL_ENABLE
2755
2756void noinline
2757ev_signal_start (EV_P_ ev_signal *w)
1469{ 2758{
1470 if (expect_false (ev_is_active (w))) 2759 if (expect_false (ev_is_active (w)))
1471 return; 2760 return;
1472 2761
2762 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2763
2764#if EV_MULTIPLICITY
2765 assert (("libev: a signal must not be attached to two different loops",
2766 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2767
2768 signals [w->signum - 1].loop = EV_A;
2769#endif
2770
2771 EV_FREQUENT_CHECK;
2772
2773#if EV_USE_SIGNALFD
2774 if (sigfd == -2)
2775 {
2776 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2777 if (sigfd < 0 && errno == EINVAL)
2778 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2779
2780 if (sigfd >= 0)
2781 {
2782 fd_intern (sigfd); /* doing it twice will not hurt */
2783
2784 sigemptyset (&sigfd_set);
2785
2786 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2787 ev_set_priority (&sigfd_w, EV_MAXPRI);
2788 ev_io_start (EV_A_ &sigfd_w);
2789 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2790 }
2791 }
2792
2793 if (sigfd >= 0)
2794 {
2795 /* TODO: check .head */
2796 sigaddset (&sigfd_set, w->signum);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2798
2799 signalfd (sigfd, &sigfd_set, 0);
2800 }
2801#endif
2802
1473 ev_start (EV_A_ (W)w, ++idlecnt); 2803 ev_start (EV_A_ (W)w, 1);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2804 wlist_add (&signals [w->signum - 1].head, (WL)w);
1475 idles [idlecnt - 1] = w;
1476}
1477 2805
1478void 2806 if (!((WL)w)->next)
1479ev_idle_stop (EV_P_ struct ev_idle *w) 2807# if EV_USE_SIGNALFD
2808 if (sigfd < 0) /*TODO*/
2809# endif
2810 {
2811# ifdef _WIN32
2812 evpipe_init (EV_A);
2813
2814 signal (w->signum, ev_sighandler);
2815# else
2816 struct sigaction sa;
2817
2818 evpipe_init (EV_A);
2819
2820 sa.sa_handler = ev_sighandler;
2821 sigfillset (&sa.sa_mask);
2822 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2823 sigaction (w->signum, &sa, 0);
2824
2825 sigemptyset (&sa.sa_mask);
2826 sigaddset (&sa.sa_mask, w->signum);
2827 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2828#endif
2829 }
2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834void noinline
2835ev_signal_stop (EV_P_ ev_signal *w)
1480{ 2836{
1481 ev_clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
1483 return; 2839 return;
1484 2840
1485 idles [((W)w)->active - 1] = idles [--idlecnt]; 2841 EV_FREQUENT_CHECK;
2842
2843 wlist_del (&signals [w->signum - 1].head, (WL)w);
1486 ev_stop (EV_A_ (W)w); 2844 ev_stop (EV_A_ (W)w);
1487}
1488 2845
2846 if (!signals [w->signum - 1].head)
2847 {
2848#if EV_MULTIPLICITY
2849 signals [w->signum - 1].loop = 0; /* unattach from signal */
2850#endif
2851#if EV_USE_SIGNALFD
2852 if (sigfd >= 0)
2853 {
2854 sigset_t ss;
2855
2856 sigemptyset (&ss);
2857 sigaddset (&ss, w->signum);
2858 sigdelset (&sigfd_set, w->signum);
2859
2860 signalfd (sigfd, &sigfd_set, 0);
2861 sigprocmask (SIG_UNBLOCK, &ss, 0);
2862 }
2863 else
2864#endif
2865 signal (w->signum, SIG_DFL);
2866 }
2867
2868 EV_FREQUENT_CHECK;
2869}
2870
2871#endif
2872
2873#if EV_CHILD_ENABLE
2874
1489void 2875void
1490ev_prepare_start (EV_P_ struct ev_prepare *w) 2876ev_child_start (EV_P_ ev_child *w)
1491{ 2877{
2878#if EV_MULTIPLICITY
2879 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2880#endif
1492 if (expect_false (ev_is_active (w))) 2881 if (expect_false (ev_is_active (w)))
1493 return; 2882 return;
1494 2883
2884 EV_FREQUENT_CHECK;
2885
1495 ev_start (EV_A_ (W)w, ++preparecnt); 2886 ev_start (EV_A_ (W)w, 1);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2887 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1497 prepares [preparecnt - 1] = w;
1498}
1499 2888
2889 EV_FREQUENT_CHECK;
2890}
2891
1500void 2892void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w) 2893ev_child_stop (EV_P_ ev_child *w)
1502{ 2894{
1503 ev_clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
1505 return; 2897 return;
1506 2898
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2899 EV_FREQUENT_CHECK;
2900
2901 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1508 ev_stop (EV_A_ (W)w); 2902 ev_stop (EV_A_ (W)w);
1509}
1510 2903
2904 EV_FREQUENT_CHECK;
2905}
2906
2907#endif
2908
2909#if EV_STAT_ENABLE
2910
2911# ifdef _WIN32
2912# undef lstat
2913# define lstat(a,b) _stati64 (a,b)
2914# endif
2915
2916#define DEF_STAT_INTERVAL 5.0074891
2917#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2918#define MIN_STAT_INTERVAL 0.1074891
2919
2920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2921
2922#if EV_USE_INOTIFY
2923
2924/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2925# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2926
2927static void noinline
2928infy_add (EV_P_ ev_stat *w)
2929{
2930 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2931
2932 if (w->wd >= 0)
2933 {
2934 struct statfs sfs;
2935
2936 /* now local changes will be tracked by inotify, but remote changes won't */
2937 /* unless the filesystem is known to be local, we therefore still poll */
2938 /* also do poll on <2.6.25, but with normal frequency */
2939
2940 if (!fs_2625)
2941 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2942 else if (!statfs (w->path, &sfs)
2943 && (sfs.f_type == 0x1373 /* devfs */
2944 || sfs.f_type == 0xEF53 /* ext2/3 */
2945 || sfs.f_type == 0x3153464a /* jfs */
2946 || sfs.f_type == 0x52654973 /* reiser3 */
2947 || sfs.f_type == 0x01021994 /* tempfs */
2948 || sfs.f_type == 0x58465342 /* xfs */))
2949 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2950 else
2951 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2952 }
2953 else
2954 {
2955 /* can't use inotify, continue to stat */
2956 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2957
2958 /* if path is not there, monitor some parent directory for speedup hints */
2959 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2960 /* but an efficiency issue only */
2961 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2962 {
2963 char path [4096];
2964 strcpy (path, w->path);
2965
2966 do
2967 {
2968 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2969 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2970
2971 char *pend = strrchr (path, '/');
2972
2973 if (!pend || pend == path)
2974 break;
2975
2976 *pend = 0;
2977 w->wd = inotify_add_watch (fs_fd, path, mask);
2978 }
2979 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2980 }
2981 }
2982
2983 if (w->wd >= 0)
2984 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2985
2986 /* now re-arm timer, if required */
2987 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2988 ev_timer_again (EV_A_ &w->timer);
2989 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2990}
2991
2992static void noinline
2993infy_del (EV_P_ ev_stat *w)
2994{
2995 int slot;
2996 int wd = w->wd;
2997
2998 if (wd < 0)
2999 return;
3000
3001 w->wd = -2;
3002 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3003 wlist_del (&fs_hash [slot].head, (WL)w);
3004
3005 /* remove this watcher, if others are watching it, they will rearm */
3006 inotify_rm_watch (fs_fd, wd);
3007}
3008
3009static void noinline
3010infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3011{
3012 if (slot < 0)
3013 /* overflow, need to check for all hash slots */
3014 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3015 infy_wd (EV_A_ slot, wd, ev);
3016 else
3017 {
3018 WL w_;
3019
3020 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3021 {
3022 ev_stat *w = (ev_stat *)w_;
3023 w_ = w_->next; /* lets us remove this watcher and all before it */
3024
3025 if (w->wd == wd || wd == -1)
3026 {
3027 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3028 {
3029 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3030 w->wd = -1;
3031 infy_add (EV_A_ w); /* re-add, no matter what */
3032 }
3033
3034 stat_timer_cb (EV_A_ &w->timer, 0);
3035 }
3036 }
3037 }
3038}
3039
3040static void
3041infy_cb (EV_P_ ev_io *w, int revents)
3042{
3043 char buf [EV_INOTIFY_BUFSIZE];
3044 int ofs;
3045 int len = read (fs_fd, buf, sizeof (buf));
3046
3047 for (ofs = 0; ofs < len; )
3048 {
3049 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3050 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3051 ofs += sizeof (struct inotify_event) + ev->len;
3052 }
3053}
3054
3055inline_size unsigned int
3056ev_linux_version (void)
3057{
3058 struct utsname buf;
3059 unsigned int v;
3060 int i;
3061 char *p = buf.release;
3062
3063 if (uname (&buf))
3064 return 0;
3065
3066 for (i = 3+1; --i; )
3067 {
3068 unsigned int c = 0;
3069
3070 for (;;)
3071 {
3072 if (*p >= '0' && *p <= '9')
3073 c = c * 10 + *p++ - '0';
3074 else
3075 {
3076 p += *p == '.';
3077 break;
3078 }
3079 }
3080
3081 v = (v << 8) | c;
3082 }
3083
3084 return v;
3085}
3086
3087inline_size void
3088ev_check_2625 (EV_P)
3089{
3090 /* kernels < 2.6.25 are borked
3091 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3092 */
3093 if (ev_linux_version () < 0x020619)
3094 return;
3095
3096 fs_2625 = 1;
3097}
3098
3099inline_size int
3100infy_newfd (void)
3101{
3102#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3103 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3104 if (fd >= 0)
3105 return fd;
3106#endif
3107 return inotify_init ();
3108}
3109
3110inline_size void
3111infy_init (EV_P)
3112{
3113 if (fs_fd != -2)
3114 return;
3115
3116 fs_fd = -1;
3117
3118 ev_check_2625 (EV_A);
3119
3120 fs_fd = infy_newfd ();
3121
3122 if (fs_fd >= 0)
3123 {
3124 fd_intern (fs_fd);
3125 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3126 ev_set_priority (&fs_w, EV_MAXPRI);
3127 ev_io_start (EV_A_ &fs_w);
3128 ev_unref (EV_A);
3129 }
3130}
3131
3132inline_size void
3133infy_fork (EV_P)
3134{
3135 int slot;
3136
3137 if (fs_fd < 0)
3138 return;
3139
3140 ev_ref (EV_A);
3141 ev_io_stop (EV_A_ &fs_w);
3142 close (fs_fd);
3143 fs_fd = infy_newfd ();
3144
3145 if (fs_fd >= 0)
3146 {
3147 fd_intern (fs_fd);
3148 ev_io_set (&fs_w, fs_fd, EV_READ);
3149 ev_io_start (EV_A_ &fs_w);
3150 ev_unref (EV_A);
3151 }
3152
3153 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3154 {
3155 WL w_ = fs_hash [slot].head;
3156 fs_hash [slot].head = 0;
3157
3158 while (w_)
3159 {
3160 ev_stat *w = (ev_stat *)w_;
3161 w_ = w_->next; /* lets us add this watcher */
3162
3163 w->wd = -1;
3164
3165 if (fs_fd >= 0)
3166 infy_add (EV_A_ w); /* re-add, no matter what */
3167 else
3168 {
3169 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3170 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3171 ev_timer_again (EV_A_ &w->timer);
3172 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3173 }
3174 }
3175 }
3176}
3177
3178#endif
3179
3180#ifdef _WIN32
3181# define EV_LSTAT(p,b) _stati64 (p, b)
3182#else
3183# define EV_LSTAT(p,b) lstat (p, b)
3184#endif
3185
1511void 3186void
1512ev_check_start (EV_P_ struct ev_check *w) 3187ev_stat_stat (EV_P_ ev_stat *w)
3188{
3189 if (lstat (w->path, &w->attr) < 0)
3190 w->attr.st_nlink = 0;
3191 else if (!w->attr.st_nlink)
3192 w->attr.st_nlink = 1;
3193}
3194
3195static void noinline
3196stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3197{
3198 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3199
3200 ev_statdata prev = w->attr;
3201 ev_stat_stat (EV_A_ w);
3202
3203 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3204 if (
3205 prev.st_dev != w->attr.st_dev
3206 || prev.st_ino != w->attr.st_ino
3207 || prev.st_mode != w->attr.st_mode
3208 || prev.st_nlink != w->attr.st_nlink
3209 || prev.st_uid != w->attr.st_uid
3210 || prev.st_gid != w->attr.st_gid
3211 || prev.st_rdev != w->attr.st_rdev
3212 || prev.st_size != w->attr.st_size
3213 || prev.st_atime != w->attr.st_atime
3214 || prev.st_mtime != w->attr.st_mtime
3215 || prev.st_ctime != w->attr.st_ctime
3216 ) {
3217 /* we only update w->prev on actual differences */
3218 /* in case we test more often than invoke the callback, */
3219 /* to ensure that prev is always different to attr */
3220 w->prev = prev;
3221
3222 #if EV_USE_INOTIFY
3223 if (fs_fd >= 0)
3224 {
3225 infy_del (EV_A_ w);
3226 infy_add (EV_A_ w);
3227 ev_stat_stat (EV_A_ w); /* avoid race... */
3228 }
3229 #endif
3230
3231 ev_feed_event (EV_A_ w, EV_STAT);
3232 }
3233}
3234
3235void
3236ev_stat_start (EV_P_ ev_stat *w)
1513{ 3237{
1514 if (expect_false (ev_is_active (w))) 3238 if (expect_false (ev_is_active (w)))
1515 return; 3239 return;
1516 3240
3241 ev_stat_stat (EV_A_ w);
3242
3243 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3244 w->interval = MIN_STAT_INTERVAL;
3245
3246 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3247 ev_set_priority (&w->timer, ev_priority (w));
3248
3249#if EV_USE_INOTIFY
3250 infy_init (EV_A);
3251
3252 if (fs_fd >= 0)
3253 infy_add (EV_A_ w);
3254 else
3255#endif
3256 {
3257 ev_timer_again (EV_A_ &w->timer);
3258 ev_unref (EV_A);
3259 }
3260
1517 ev_start (EV_A_ (W)w, ++checkcnt); 3261 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521 3262
3263 EV_FREQUENT_CHECK;
3264}
3265
1522void 3266void
1523ev_check_stop (EV_P_ struct ev_check *w) 3267ev_stat_stop (EV_P_ ev_stat *w)
1524{ 3268{
1525 ev_clear_pending (EV_A_ (W)w); 3269 clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w))) 3270 if (expect_false (!ev_is_active (w)))
1527 return; 3271 return;
1528 3272
1529 checks [((W)w)->active - 1] = checks [--checkcnt]; 3273 EV_FREQUENT_CHECK;
3274
3275#if EV_USE_INOTIFY
3276 infy_del (EV_A_ w);
3277#endif
3278
3279 if (ev_is_active (&w->timer))
3280 {
3281 ev_ref (EV_A);
3282 ev_timer_stop (EV_A_ &w->timer);
3283 }
3284
1530 ev_stop (EV_A_ (W)w); 3285 ev_stop (EV_A_ (W)w);
1531}
1532 3286
1533#ifndef SA_RESTART 3287 EV_FREQUENT_CHECK;
1534# define SA_RESTART 0 3288}
1535#endif 3289#endif
1536 3290
3291#if EV_IDLE_ENABLE
1537void 3292void
1538ev_signal_start (EV_P_ struct ev_signal *w) 3293ev_idle_start (EV_P_ ev_idle *w)
1539{ 3294{
1540#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif
1543 if (expect_false (ev_is_active (w))) 3295 if (expect_false (ev_is_active (w)))
1544 return; 3296 return;
1545 3297
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3298 pri_adjust (EV_A_ (W)w);
1547 3299
3300 EV_FREQUENT_CHECK;
3301
3302 {
3303 int active = ++idlecnt [ABSPRI (w)];
3304
3305 ++idleall;
1548 ev_start (EV_A_ (W)w, 1); 3306 ev_start (EV_A_ (W)w, active);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 3307
1552 if (!((WL)w)->next) 3308 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1553 { 3309 idles [ABSPRI (w)][active - 1] = w;
1554#if _WIN32
1555 signal (w->signum, sighandler);
1556#else
1557 struct sigaction sa;
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif
1563 } 3310 }
1564}
1565 3311
3312 EV_FREQUENT_CHECK;
3313}
3314
1566void 3315void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 3316ev_idle_stop (EV_P_ ev_idle *w)
1568{ 3317{
1569 ev_clear_pending (EV_A_ (W)w); 3318 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 3319 if (expect_false (!ev_is_active (w)))
1571 return; 3320 return;
1572 3321
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3322 EV_FREQUENT_CHECK;
3323
3324 {
3325 int active = ev_active (w);
3326
3327 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3328 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3329
1574 ev_stop (EV_A_ (W)w); 3330 ev_stop (EV_A_ (W)w);
3331 --idleall;
3332 }
1575 3333
1576 if (!signals [w->signum - 1].head) 3334 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 3335}
1579
1580void
1581ev_child_start (EV_P_ struct ev_child *w)
1582{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 3336#endif
3337
3338#if EV_PREPARE_ENABLE
3339void
3340ev_prepare_start (EV_P_ ev_prepare *w)
3341{
1586 if (expect_false (ev_is_active (w))) 3342 if (expect_false (ev_is_active (w)))
1587 return; 3343 return;
1588 3344
3345 EV_FREQUENT_CHECK;
3346
1589 ev_start (EV_A_ (W)w, 1); 3347 ev_start (EV_A_ (W)w, ++preparecnt);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3348 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1591} 3349 prepares [preparecnt - 1] = w;
1592 3350
3351 EV_FREQUENT_CHECK;
3352}
3353
1593void 3354void
1594ev_child_stop (EV_P_ struct ev_child *w) 3355ev_prepare_stop (EV_P_ ev_prepare *w)
1595{ 3356{
1596 ev_clear_pending (EV_A_ (W)w); 3357 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3358 if (expect_false (!ev_is_active (w)))
1598 return; 3359 return;
1599 3360
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3361 EV_FREQUENT_CHECK;
3362
3363 {
3364 int active = ev_active (w);
3365
3366 prepares [active - 1] = prepares [--preparecnt];
3367 ev_active (prepares [active - 1]) = active;
3368 }
3369
1601 ev_stop (EV_A_ (W)w); 3370 ev_stop (EV_A_ (W)w);
3371
3372 EV_FREQUENT_CHECK;
1602} 3373}
3374#endif
3375
3376#if EV_CHECK_ENABLE
3377void
3378ev_check_start (EV_P_ ev_check *w)
3379{
3380 if (expect_false (ev_is_active (w)))
3381 return;
3382
3383 EV_FREQUENT_CHECK;
3384
3385 ev_start (EV_A_ (W)w, ++checkcnt);
3386 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3387 checks [checkcnt - 1] = w;
3388
3389 EV_FREQUENT_CHECK;
3390}
3391
3392void
3393ev_check_stop (EV_P_ ev_check *w)
3394{
3395 clear_pending (EV_A_ (W)w);
3396 if (expect_false (!ev_is_active (w)))
3397 return;
3398
3399 EV_FREQUENT_CHECK;
3400
3401 {
3402 int active = ev_active (w);
3403
3404 checks [active - 1] = checks [--checkcnt];
3405 ev_active (checks [active - 1]) = active;
3406 }
3407
3408 ev_stop (EV_A_ (W)w);
3409
3410 EV_FREQUENT_CHECK;
3411}
3412#endif
3413
3414#if EV_EMBED_ENABLE
3415void noinline
3416ev_embed_sweep (EV_P_ ev_embed *w)
3417{
3418 ev_run (w->other, EVRUN_NOWAIT);
3419}
3420
3421static void
3422embed_io_cb (EV_P_ ev_io *io, int revents)
3423{
3424 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3425
3426 if (ev_cb (w))
3427 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3428 else
3429 ev_run (w->other, EVRUN_NOWAIT);
3430}
3431
3432static void
3433embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3434{
3435 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3436
3437 {
3438 EV_P = w->other;
3439
3440 while (fdchangecnt)
3441 {
3442 fd_reify (EV_A);
3443 ev_run (EV_A_ EVRUN_NOWAIT);
3444 }
3445 }
3446}
3447
3448static void
3449embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3450{
3451 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3452
3453 ev_embed_stop (EV_A_ w);
3454
3455 {
3456 EV_P = w->other;
3457
3458 ev_loop_fork (EV_A);
3459 ev_run (EV_A_ EVRUN_NOWAIT);
3460 }
3461
3462 ev_embed_start (EV_A_ w);
3463}
3464
3465#if 0
3466static void
3467embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3468{
3469 ev_idle_stop (EV_A_ idle);
3470}
3471#endif
3472
3473void
3474ev_embed_start (EV_P_ ev_embed *w)
3475{
3476 if (expect_false (ev_is_active (w)))
3477 return;
3478
3479 {
3480 EV_P = w->other;
3481 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3482 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3483 }
3484
3485 EV_FREQUENT_CHECK;
3486
3487 ev_set_priority (&w->io, ev_priority (w));
3488 ev_io_start (EV_A_ &w->io);
3489
3490 ev_prepare_init (&w->prepare, embed_prepare_cb);
3491 ev_set_priority (&w->prepare, EV_MINPRI);
3492 ev_prepare_start (EV_A_ &w->prepare);
3493
3494 ev_fork_init (&w->fork, embed_fork_cb);
3495 ev_fork_start (EV_A_ &w->fork);
3496
3497 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3498
3499 ev_start (EV_A_ (W)w, 1);
3500
3501 EV_FREQUENT_CHECK;
3502}
3503
3504void
3505ev_embed_stop (EV_P_ ev_embed *w)
3506{
3507 clear_pending (EV_A_ (W)w);
3508 if (expect_false (!ev_is_active (w)))
3509 return;
3510
3511 EV_FREQUENT_CHECK;
3512
3513 ev_io_stop (EV_A_ &w->io);
3514 ev_prepare_stop (EV_A_ &w->prepare);
3515 ev_fork_stop (EV_A_ &w->fork);
3516
3517 ev_stop (EV_A_ (W)w);
3518
3519 EV_FREQUENT_CHECK;
3520}
3521#endif
3522
3523#if EV_FORK_ENABLE
3524void
3525ev_fork_start (EV_P_ ev_fork *w)
3526{
3527 if (expect_false (ev_is_active (w)))
3528 return;
3529
3530 EV_FREQUENT_CHECK;
3531
3532 ev_start (EV_A_ (W)w, ++forkcnt);
3533 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3534 forks [forkcnt - 1] = w;
3535
3536 EV_FREQUENT_CHECK;
3537}
3538
3539void
3540ev_fork_stop (EV_P_ ev_fork *w)
3541{
3542 clear_pending (EV_A_ (W)w);
3543 if (expect_false (!ev_is_active (w)))
3544 return;
3545
3546 EV_FREQUENT_CHECK;
3547
3548 {
3549 int active = ev_active (w);
3550
3551 forks [active - 1] = forks [--forkcnt];
3552 ev_active (forks [active - 1]) = active;
3553 }
3554
3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
3558}
3559#endif
3560
3561#if EV_ASYNC_ENABLE
3562void
3563ev_async_start (EV_P_ ev_async *w)
3564{
3565 if (expect_false (ev_is_active (w)))
3566 return;
3567
3568 w->sent = 0;
3569
3570 evpipe_init (EV_A);
3571
3572 EV_FREQUENT_CHECK;
3573
3574 ev_start (EV_A_ (W)w, ++asynccnt);
3575 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3576 asyncs [asynccnt - 1] = w;
3577
3578 EV_FREQUENT_CHECK;
3579}
3580
3581void
3582ev_async_stop (EV_P_ ev_async *w)
3583{
3584 clear_pending (EV_A_ (W)w);
3585 if (expect_false (!ev_is_active (w)))
3586 return;
3587
3588 EV_FREQUENT_CHECK;
3589
3590 {
3591 int active = ev_active (w);
3592
3593 asyncs [active - 1] = asyncs [--asynccnt];
3594 ev_active (asyncs [active - 1]) = active;
3595 }
3596
3597 ev_stop (EV_A_ (W)w);
3598
3599 EV_FREQUENT_CHECK;
3600}
3601
3602void
3603ev_async_send (EV_P_ ev_async *w)
3604{
3605 w->sent = 1;
3606 evpipe_write (EV_A_ &async_pending);
3607}
3608#endif
1603 3609
1604/*****************************************************************************/ 3610/*****************************************************************************/
1605 3611
1606struct ev_once 3612struct ev_once
1607{ 3613{
1608 struct ev_io io; 3614 ev_io io;
1609 struct ev_timer to; 3615 ev_timer to;
1610 void (*cb)(int revents, void *arg); 3616 void (*cb)(int revents, void *arg);
1611 void *arg; 3617 void *arg;
1612}; 3618};
1613 3619
1614static void 3620static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 3621once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 3622{
1617 void (*cb)(int revents, void *arg) = once->cb; 3623 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 3624 void *arg = once->arg;
1619 3625
1620 ev_io_stop (EV_A_ &once->io); 3626 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 3627 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 3628 ev_free (once);
1623 3629
1624 cb (revents, arg); 3630 cb (revents, arg);
1625} 3631}
1626 3632
1627static void 3633static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 3634once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 3635{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3636 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3637
3638 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 3639}
1632 3640
1633static void 3641static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 3642once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 3643{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3644 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3645
3646 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 3647}
1638 3648
1639void 3649void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3650ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 3651{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3652 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643 3653
1644 if (expect_false (!once)) 3654 if (expect_false (!once))
1645 { 3655 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3656 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1647 return; 3657 return;
1648 } 3658 }
1649 3659
1650 once->cb = cb; 3660 once->cb = cb;
1651 once->arg = arg; 3661 once->arg = arg;
1663 ev_timer_set (&once->to, timeout, 0.); 3673 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 3674 ev_timer_start (EV_A_ &once->to);
1665 } 3675 }
1666} 3676}
1667 3677
1668#ifdef __cplusplus 3678/*****************************************************************************/
1669} 3679
3680#if EV_WALK_ENABLE
3681void
3682ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3683{
3684 int i, j;
3685 ev_watcher_list *wl, *wn;
3686
3687 if (types & (EV_IO | EV_EMBED))
3688 for (i = 0; i < anfdmax; ++i)
3689 for (wl = anfds [i].head; wl; )
3690 {
3691 wn = wl->next;
3692
3693#if EV_EMBED_ENABLE
3694 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3695 {
3696 if (types & EV_EMBED)
3697 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3698 }
3699 else
3700#endif
3701#if EV_USE_INOTIFY
3702 if (ev_cb ((ev_io *)wl) == infy_cb)
3703 ;
3704 else
3705#endif
3706 if ((ev_io *)wl != &pipe_w)
3707 if (types & EV_IO)
3708 cb (EV_A_ EV_IO, wl);
3709
3710 wl = wn;
3711 }
3712
3713 if (types & (EV_TIMER | EV_STAT))
3714 for (i = timercnt + HEAP0; i-- > HEAP0; )
3715#if EV_STAT_ENABLE
3716 /*TODO: timer is not always active*/
3717 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3718 {
3719 if (types & EV_STAT)
3720 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3721 }
3722 else
3723#endif
3724 if (types & EV_TIMER)
3725 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3726
3727#if EV_PERIODIC_ENABLE
3728 if (types & EV_PERIODIC)
3729 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3730 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3731#endif
3732
3733#if EV_IDLE_ENABLE
3734 if (types & EV_IDLE)
3735 for (j = NUMPRI; i--; )
3736 for (i = idlecnt [j]; i--; )
3737 cb (EV_A_ EV_IDLE, idles [j][i]);
3738#endif
3739
3740#if EV_FORK_ENABLE
3741 if (types & EV_FORK)
3742 for (i = forkcnt; i--; )
3743 if (ev_cb (forks [i]) != embed_fork_cb)
3744 cb (EV_A_ EV_FORK, forks [i]);
3745#endif
3746
3747#if EV_ASYNC_ENABLE
3748 if (types & EV_ASYNC)
3749 for (i = asynccnt; i--; )
3750 cb (EV_A_ EV_ASYNC, asyncs [i]);
3751#endif
3752
3753#if EV_PREPARE_ENABLE
3754 if (types & EV_PREPARE)
3755 for (i = preparecnt; i--; )
3756# if EV_EMBED_ENABLE
3757 if (ev_cb (prepares [i]) != embed_prepare_cb)
1670#endif 3758# endif
3759 cb (EV_A_ EV_PREPARE, prepares [i]);
3760#endif
1671 3761
3762#if EV_CHECK_ENABLE
3763 if (types & EV_CHECK)
3764 for (i = checkcnt; i--; )
3765 cb (EV_A_ EV_CHECK, checks [i]);
3766#endif
3767
3768#if EV_SIGNAL_ENABLE
3769 if (types & EV_SIGNAL)
3770 for (i = 0; i < EV_NSIG - 1; ++i)
3771 for (wl = signals [i].head; wl; )
3772 {
3773 wn = wl->next;
3774 cb (EV_A_ EV_SIGNAL, wl);
3775 wl = wn;
3776 }
3777#endif
3778
3779#if EV_CHILD_ENABLE
3780 if (types & EV_CHILD)
3781 for (i = (EV_PID_HASHSIZE); i--; )
3782 for (wl = childs [i]; wl; )
3783 {
3784 wn = wl->next;
3785 cb (EV_A_ EV_CHILD, wl);
3786 wl = wn;
3787 }
3788#endif
3789/* EV_STAT 0x00001000 /* stat data changed */
3790/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3791}
3792#endif
3793
3794#if EV_MULTIPLICITY
3795 #include "ev_wrap.h"
3796#endif
3797
3798EV_CPP(})
3799

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines