ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.124 by root, Sat Nov 17 02:26:24 2007 UTC vs.
Revision 1.536 by root, Wed Aug 10 16:50:05 2022 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2020 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#pragma clang diagnostic ignored "-Wunused-value"
33extern "C" { 41#pragma clang diagnostic ignored "-Wcomment"
34#endif 42#pragma clang diagnostic ignored "-Wextern-initializer"
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_FLOOR
53# ifndef EV_USE_FLOOR
54# define EV_USE_FLOOR 1
55# endif
56# endif
57
58# if HAVE_CLOCK_SYSCALL
59# ifndef EV_USE_CLOCK_SYSCALL
60# define EV_USE_CLOCK_SYSCALL 1
61# ifndef EV_USE_REALTIME
62# define EV_USE_REALTIME 0
63# endif
64# ifndef EV_USE_MONOTONIC
65# define EV_USE_MONOTONIC 1
66# endif
67# endif
68# elif !defined EV_USE_CLOCK_SYSCALL
69# define EV_USE_CLOCK_SYSCALL 0
70# endif
38 71
39# if HAVE_CLOCK_GETTIME 72# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 73# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 74# define EV_USE_MONOTONIC 1
42# endif 75# endif
43# ifndef EV_USE_REALTIME 76# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 77# define EV_USE_REALTIME 0
78# endif
79# else
80# ifndef EV_USE_MONOTONIC
81# define EV_USE_MONOTONIC 0
82# endif
83# ifndef EV_USE_REALTIME
84# define EV_USE_REALTIME 0
45# endif 85# endif
46# endif 86# endif
47 87
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 88# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 89# ifndef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP EV_FEATURE_OS
91# endif
92# else
93# undef EV_USE_NANOSLEEP
94# define EV_USE_NANOSLEEP 0
50# endif 95# endif
51 96
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 97# if HAVE_SELECT && HAVE_SYS_SELECT_H
98# ifndef EV_USE_SELECT
99# define EV_USE_SELECT EV_FEATURE_BACKENDS
100# endif
101# else
102# undef EV_USE_SELECT
53# define EV_USE_POLL 1 103# define EV_USE_SELECT 0
54# endif 104# endif
55 105
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 106# if HAVE_POLL && HAVE_POLL_H
107# ifndef EV_USE_POLL
108# define EV_USE_POLL EV_FEATURE_BACKENDS
109# endif
110# else
111# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 112# define EV_USE_POLL 0
58# endif 113# endif
59 114
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 115# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 116# ifndef EV_USE_EPOLL
117# define EV_USE_EPOLL EV_FEATURE_BACKENDS
118# endif
119# else
120# undef EV_USE_EPOLL
121# define EV_USE_EPOLL 0
62# endif 122# endif
63 123
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 124# if HAVE_LINUX_AIO_ABI_H
65# define EV_USE_PORT 1 125# ifndef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
127# endif
128# else
129# undef EV_USE_LINUXAIO
130# define EV_USE_LINUXAIO 0
66# endif 131# endif
67 132
133# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
134# ifndef EV_USE_IOURING
135# define EV_USE_IOURING EV_FEATURE_BACKENDS
136# endif
137# else
138# undef EV_USE_IOURING
139# define EV_USE_IOURING 0
68#endif 140# endif
141
142# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
143# ifndef EV_USE_KQUEUE
144# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
145# endif
146# else
147# undef EV_USE_KQUEUE
148# define EV_USE_KQUEUE 0
149# endif
150
151# if HAVE_PORT_H && HAVE_PORT_CREATE
152# ifndef EV_USE_PORT
153# define EV_USE_PORT EV_FEATURE_BACKENDS
154# endif
155# else
156# undef EV_USE_PORT
157# define EV_USE_PORT 0
158# endif
69 159
70#include <math.h> 160# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
161# ifndef EV_USE_INOTIFY
162# define EV_USE_INOTIFY EV_FEATURE_OS
163# endif
164# else
165# undef EV_USE_INOTIFY
166# define EV_USE_INOTIFY 0
167# endif
168
169# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
170# ifndef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD EV_FEATURE_OS
172# endif
173# else
174# undef EV_USE_SIGNALFD
175# define EV_USE_SIGNALFD 0
176# endif
177
178# if HAVE_EVENTFD
179# ifndef EV_USE_EVENTFD
180# define EV_USE_EVENTFD EV_FEATURE_OS
181# endif
182# else
183# undef EV_USE_EVENTFD
184# define EV_USE_EVENTFD 0
185# endif
186
187# if HAVE_SYS_TIMERFD_H
188# ifndef EV_USE_TIMERFD
189# define EV_USE_TIMERFD EV_FEATURE_OS
190# endif
191# else
192# undef EV_USE_TIMERFD
193# define EV_USE_TIMERFD 0
194# endif
195
196#endif
197
198/* OS X, in its infinite idiocy, actually HARDCODES
199 * a limit of 1024 into their select. Where people have brains,
200 * OS X engineers apparently have a vacuum. Or maybe they were
201 * ordered to have a vacuum, or they do anything for money.
202 * This might help. Or not.
203 * Note that this must be defined early, as other include files
204 * will rely on this define as well.
205 */
206#define _DARWIN_UNLIMITED_SELECT 1
207
71#include <stdlib.h> 208#include <stdlib.h>
209#include <string.h>
72#include <fcntl.h> 210#include <fcntl.h>
73#include <stddef.h> 211#include <stddef.h>
74 212
75#include <stdio.h> 213#include <stdio.h>
76 214
77#include <assert.h> 215#include <assert.h>
78#include <errno.h> 216#include <errno.h>
79#include <sys/types.h> 217#include <sys/types.h>
80#include <time.h> 218#include <time.h>
219#include <limits.h>
81 220
82#include <signal.h> 221#include <signal.h>
83 222
223#ifdef EV_H
224# include EV_H
225#else
226# include "ev.h"
227#endif
228
229#if EV_NO_THREADS
230# undef EV_NO_SMP
231# define EV_NO_SMP 1
232# undef ECB_NO_THREADS
233# define ECB_NO_THREADS 1
234#endif
235#if EV_NO_SMP
236# undef EV_NO_SMP
237# define ECB_NO_SMP 1
238#endif
239
84#ifndef _WIN32 240#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 241# include <sys/time.h>
87# include <sys/wait.h> 242# include <sys/wait.h>
243# include <unistd.h>
88#else 244#else
245# include <io.h>
89# define WIN32_LEAN_AND_MEAN 246# define WIN32_LEAN_AND_MEAN
247# include <winsock2.h>
90# include <windows.h> 248# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 249# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 250# define EV_SELECT_IS_WINSOCKET 1
93# endif 251# endif
252# undef EV_AVOID_STDIO
253#endif
254
255/* this block tries to deduce configuration from header-defined symbols and defaults */
256
257/* try to deduce the maximum number of signals on this platform */
258#if defined EV_NSIG
259/* use what's provided */
260#elif defined NSIG
261# define EV_NSIG (NSIG)
262#elif defined _NSIG
263# define EV_NSIG (_NSIG)
264#elif defined SIGMAX
265# define EV_NSIG (SIGMAX+1)
266#elif defined SIG_MAX
267# define EV_NSIG (SIG_MAX+1)
268#elif defined _SIG_MAX
269# define EV_NSIG (_SIG_MAX+1)
270#elif defined MAXSIG
271# define EV_NSIG (MAXSIG+1)
272#elif defined MAX_SIG
273# define EV_NSIG (MAX_SIG+1)
274#elif defined SIGARRAYSIZE
275# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
276#elif defined _sys_nsig
277# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
278#else
279# define EV_NSIG (8 * sizeof (sigset_t) + 1)
280#endif
281
282#ifndef EV_USE_FLOOR
283# define EV_USE_FLOOR 0
284#endif
285
286#ifndef EV_USE_CLOCK_SYSCALL
287# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
288# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
289# else
290# define EV_USE_CLOCK_SYSCALL 0
94#endif 291# endif
292#endif
95 293
96/**/ 294#if !(_POSIX_TIMERS > 0)
295# ifndef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 0
297# endif
298# ifndef EV_USE_REALTIME
299# define EV_USE_REALTIME 0
300# endif
301#endif
97 302
98#ifndef EV_USE_MONOTONIC 303#ifndef EV_USE_MONOTONIC
304# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
305# define EV_USE_MONOTONIC EV_FEATURE_OS
306# else
99# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
308# endif
100#endif 309#endif
101 310
102#ifndef EV_USE_REALTIME 311#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
313#endif
314
315#ifndef EV_USE_NANOSLEEP
316# if _POSIX_C_SOURCE >= 199309L
317# define EV_USE_NANOSLEEP EV_FEATURE_OS
318# else
319# define EV_USE_NANOSLEEP 0
320# endif
104#endif 321#endif
105 322
106#ifndef EV_USE_SELECT 323#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 324# define EV_USE_SELECT EV_FEATURE_BACKENDS
108#endif 325#endif
109 326
110#ifndef EV_USE_POLL 327#ifndef EV_USE_POLL
111# ifdef _WIN32 328# ifdef _WIN32
112# define EV_USE_POLL 0 329# define EV_USE_POLL 0
113# else 330# else
114# define EV_USE_POLL 1 331# define EV_USE_POLL EV_FEATURE_BACKENDS
115# endif 332# endif
116#endif 333#endif
117 334
118#ifndef EV_USE_EPOLL 335#ifndef EV_USE_EPOLL
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
337# define EV_USE_EPOLL EV_FEATURE_BACKENDS
338# else
119# define EV_USE_EPOLL 0 339# define EV_USE_EPOLL 0
340# endif
120#endif 341#endif
121 342
122#ifndef EV_USE_KQUEUE 343#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 344# define EV_USE_KQUEUE 0
124#endif 345#endif
125 346
126#ifndef EV_USE_PORT 347#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 348# define EV_USE_PORT 0
128#endif 349#endif
129 350
130/**/ 351#ifndef EV_USE_LINUXAIO
352# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
353# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
354# else
355# define EV_USE_LINUXAIO 0
356# endif
357#endif
131 358
132/* darwin simply cannot be helped */ 359#ifndef EV_USE_IOURING
133#ifdef __APPLE__ 360# if __linux /* later checks might disable again */
361# define EV_USE_IOURING 1
362# else
363# define EV_USE_IOURING 0
364# endif
365#endif
366
367#ifndef EV_USE_INOTIFY
368# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
369# define EV_USE_INOTIFY EV_FEATURE_OS
370# else
371# define EV_USE_INOTIFY 0
372# endif
373#endif
374
375#ifndef EV_PID_HASHSIZE
376# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377#endif
378
379#ifndef EV_INOTIFY_HASHSIZE
380# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
381#endif
382
383#ifndef EV_USE_EVENTFD
384# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
385# define EV_USE_EVENTFD EV_FEATURE_OS
386# else
387# define EV_USE_EVENTFD 0
388# endif
389#endif
390
391#ifndef EV_USE_SIGNALFD
392# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
393# define EV_USE_SIGNALFD EV_FEATURE_OS
394# else
395# define EV_USE_SIGNALFD 0
396# endif
397#endif
398
399#ifndef EV_USE_TIMERFD
400# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
401# define EV_USE_TIMERFD EV_FEATURE_OS
402# else
403# define EV_USE_TIMERFD 0
404# endif
405#endif
406
407#if 0 /* debugging */
408# define EV_VERIFY 3
409# define EV_USE_4HEAP 1
410# define EV_HEAP_CACHE_AT 1
411#endif
412
413#ifndef EV_VERIFY
414# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
415#endif
416
417#ifndef EV_USE_4HEAP
418# define EV_USE_4HEAP EV_FEATURE_DATA
419#endif
420
421#ifndef EV_HEAP_CACHE_AT
422# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
423#endif
424
425#ifdef __ANDROID__
426/* supposedly, android doesn't typedef fd_mask */
427# undef EV_USE_SELECT
428# define EV_USE_SELECT 0
429/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
430# undef EV_USE_CLOCK_SYSCALL
431# define EV_USE_CLOCK_SYSCALL 0
432#endif
433
434/* aix's poll.h seems to cause lots of trouble */
435#ifdef _AIX
436/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 437# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 438# define EV_USE_POLL 0
439#endif
440
441/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
442/* which makes programs even slower. might work on other unices, too. */
443#if EV_USE_CLOCK_SYSCALL
444# include <sys/syscall.h>
445# ifdef SYS_clock_gettime
446# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
447# undef EV_USE_MONOTONIC
448# define EV_USE_MONOTONIC 1
449# define EV_NEED_SYSCALL 1
450# else
451# undef EV_USE_CLOCK_SYSCALL
452# define EV_USE_CLOCK_SYSCALL 0
136#endif 453# endif
454#endif
455
456/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 457
138#ifndef CLOCK_MONOTONIC 458#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 459# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 460# define EV_USE_MONOTONIC 0
141#endif 461#endif
143#ifndef CLOCK_REALTIME 463#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 464# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 465# define EV_USE_REALTIME 0
146#endif 466#endif
147 467
148#if EV_SELECT_IS_WINSOCKET 468#if !EV_STAT_ENABLE
469# undef EV_USE_INOTIFY
470# define EV_USE_INOTIFY 0
471#endif
472
473#if __linux && EV_USE_IOURING
149# include <winsock.h> 474# include <linux/version.h>
475# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
476# undef EV_USE_IOURING
477# define EV_USE_IOURING 0
150#endif 478# endif
479#endif
151 480
152/**/ 481#if !EV_USE_NANOSLEEP
482/* hp-ux has it in sys/time.h, which we unconditionally include above */
483# if !defined _WIN32 && !defined __hpux
484# include <sys/select.h>
485# endif
486#endif
153 487
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 488#if EV_USE_LINUXAIO
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 489# include <sys/syscall.h>
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 490# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 491# define EV_NEED_SYSCALL 1
492# else
493# undef EV_USE_LINUXAIO
494# define EV_USE_LINUXAIO 0
495# endif
496#endif
158 497
159#ifdef EV_H 498#if EV_USE_IOURING
160# include EV_H 499# include <sys/syscall.h>
500# if !SYS_io_uring_register && __linux && !__alpha
501# define SYS_io_uring_setup 425
502# define SYS_io_uring_enter 426
503# define SYS_io_uring_register 427
504# endif
505# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
506# define EV_NEED_SYSCALL 1
507# else
508# undef EV_USE_IOURING
509# define EV_USE_IOURING 0
510# endif
511#endif
512
513#if EV_USE_INOTIFY
514# include <sys/statfs.h>
515# include <sys/inotify.h>
516/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
517# ifndef IN_DONT_FOLLOW
518# undef EV_USE_INOTIFY
519# define EV_USE_INOTIFY 0
520# endif
521#endif
522
523#if EV_USE_EVENTFD
524/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
525# include <stdint.h>
526# ifndef EFD_NONBLOCK
527# define EFD_NONBLOCK O_NONBLOCK
528# endif
529# ifndef EFD_CLOEXEC
530# ifdef O_CLOEXEC
531# define EFD_CLOEXEC O_CLOEXEC
532# else
533# define EFD_CLOEXEC 02000000
534# endif
535# endif
536EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
537#endif
538
539#if EV_USE_SIGNALFD
540/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
541# include <stdint.h>
542# ifndef SFD_NONBLOCK
543# define SFD_NONBLOCK O_NONBLOCK
544# endif
545# ifndef SFD_CLOEXEC
546# ifdef O_CLOEXEC
547# define SFD_CLOEXEC O_CLOEXEC
548# else
549# define SFD_CLOEXEC 02000000
550# endif
551# endif
552EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
553
554struct signalfd_siginfo
555{
556 uint32_t ssi_signo;
557 char pad[128 - sizeof (uint32_t)];
558};
559#endif
560
561/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
562#if EV_USE_TIMERFD
563# include <sys/timerfd.h>
564/* timerfd is only used for periodics */
565# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
566# undef EV_USE_TIMERFD
567# define EV_USE_TIMERFD 0
568# endif
569#endif
570
571/*****************************************************************************/
572
573#if EV_VERIFY >= 3
574# define EV_FREQUENT_CHECK ev_verify (EV_A)
161#else 575#else
162# include "ev.h" 576# define EV_FREQUENT_CHECK do { } while (0)
577#endif
578
579/*
580 * This is used to work around floating point rounding problems.
581 * This value is good at least till the year 4000.
582 */
583#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
584/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
585
586#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
587#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
588#define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
589
590/* find a portable timestamp that is "always" in the future but fits into time_t.
591 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
592 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
593#define EV_TSTAMP_HUGE \
594 (sizeof (time_t) >= 8 ? 10000000000000. \
595 : 0 < (time_t)4294967295 ? 4294967295. \
596 : 2147483647.) \
597
598#ifndef EV_TS_CONST
599# define EV_TS_CONST(nv) nv
600# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
601# define EV_TS_FROM_USEC(us) us * 1e-6
602# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
603# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
604# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
605# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
606#endif
607
608/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
609/* ECB.H BEGIN */
610/*
611 * libecb - http://software.schmorp.de/pkg/libecb
612 *
613 * Copyright (©) 2009-2015,2018-2020 Marc Alexander Lehmann <libecb@schmorp.de>
614 * Copyright (©) 2011 Emanuele Giaquinta
615 * All rights reserved.
616 *
617 * Redistribution and use in source and binary forms, with or without modifica-
618 * tion, are permitted provided that the following conditions are met:
619 *
620 * 1. Redistributions of source code must retain the above copyright notice,
621 * this list of conditions and the following disclaimer.
622 *
623 * 2. Redistributions in binary form must reproduce the above copyright
624 * notice, this list of conditions and the following disclaimer in the
625 * documentation and/or other materials provided with the distribution.
626 *
627 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
628 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
629 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
630 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
631 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
632 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
633 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
634 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
635 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
636 * OF THE POSSIBILITY OF SUCH DAMAGE.
637 *
638 * Alternatively, the contents of this file may be used under the terms of
639 * the GNU General Public License ("GPL") version 2 or any later version,
640 * in which case the provisions of the GPL are applicable instead of
641 * the above. If you wish to allow the use of your version of this file
642 * only under the terms of the GPL and not to allow others to use your
643 * version of this file under the BSD license, indicate your decision
644 * by deleting the provisions above and replace them with the notice
645 * and other provisions required by the GPL. If you do not delete the
646 * provisions above, a recipient may use your version of this file under
647 * either the BSD or the GPL.
648 */
649
650#ifndef ECB_H
651#define ECB_H
652
653/* 16 bits major, 16 bits minor */
654#define ECB_VERSION 0x00010008
655
656#include <string.h> /* for memcpy */
657
658#if defined (_WIN32) && !defined (__MINGW32__)
659 typedef signed char int8_t;
660 typedef unsigned char uint8_t;
661 typedef signed char int_fast8_t;
662 typedef unsigned char uint_fast8_t;
663 typedef signed short int16_t;
664 typedef unsigned short uint16_t;
665 typedef signed int int_fast16_t;
666 typedef unsigned int uint_fast16_t;
667 typedef signed int int32_t;
668 typedef unsigned int uint32_t;
669 typedef signed int int_fast32_t;
670 typedef unsigned int uint_fast32_t;
671 #if __GNUC__
672 typedef signed long long int64_t;
673 typedef unsigned long long uint64_t;
674 #else /* _MSC_VER || __BORLANDC__ */
675 typedef signed __int64 int64_t;
676 typedef unsigned __int64 uint64_t;
163#endif 677 #endif
164 678 typedef int64_t int_fast64_t;
165#if __GNUC__ >= 3 679 typedef uint64_t uint_fast64_t;
166# define expect(expr,value) __builtin_expect ((expr),(value)) 680 #ifdef _WIN64
167# define inline static inline 681 #define ECB_PTRSIZE 8
682 typedef uint64_t uintptr_t;
683 typedef int64_t intptr_t;
684 #else
685 #define ECB_PTRSIZE 4
686 typedef uint32_t uintptr_t;
687 typedef int32_t intptr_t;
688 #endif
168#else 689#else
690 #include <inttypes.h>
691 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
692 #define ECB_PTRSIZE 8
693 #else
694 #define ECB_PTRSIZE 4
695 #endif
696#endif
697
698#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
699#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
700
701#ifndef ECB_OPTIMIZE_SIZE
702 #if __OPTIMIZE_SIZE__
703 #define ECB_OPTIMIZE_SIZE 1
704 #else
705 #define ECB_OPTIMIZE_SIZE 0
706 #endif
707#endif
708
709/* work around x32 idiocy by defining proper macros */
710#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
711 #if _ILP32
712 #define ECB_AMD64_X32 1
713 #else
714 #define ECB_AMD64 1
715 #endif
716#endif
717
718/* many compilers define _GNUC_ to some versions but then only implement
719 * what their idiot authors think are the "more important" extensions,
720 * causing enormous grief in return for some better fake benchmark numbers.
721 * or so.
722 * we try to detect these and simply assume they are not gcc - if they have
723 * an issue with that they should have done it right in the first place.
724 */
725#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
726 #define ECB_GCC_VERSION(major,minor) 0
727#else
728 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
729#endif
730
731#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
732
733#if __clang__ && defined __has_builtin
734 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
735#else
736 #define ECB_CLANG_BUILTIN(x) 0
737#endif
738
739#if __clang__ && defined __has_extension
740 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
741#else
742 #define ECB_CLANG_EXTENSION(x) 0
743#endif
744
745#define ECB_CPP (__cplusplus+0)
746#define ECB_CPP11 (__cplusplus >= 201103L)
747#define ECB_CPP14 (__cplusplus >= 201402L)
748#define ECB_CPP17 (__cplusplus >= 201703L)
749
750#if ECB_CPP
751 #define ECB_C 0
752 #define ECB_STDC_VERSION 0
753#else
754 #define ECB_C 1
755 #define ECB_STDC_VERSION __STDC_VERSION__
756#endif
757
758#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
759#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
760#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
761
762#if ECB_CPP
763 #define ECB_EXTERN_C extern "C"
764 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
765 #define ECB_EXTERN_C_END }
766#else
767 #define ECB_EXTERN_C extern
768 #define ECB_EXTERN_C_BEG
769 #define ECB_EXTERN_C_END
770#endif
771
772/*****************************************************************************/
773
774/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
775/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
776
777#if ECB_NO_THREADS
778 #define ECB_NO_SMP 1
779#endif
780
781#if ECB_NO_SMP
782 #define ECB_MEMORY_FENCE do { } while (0)
783#endif
784
785/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
786#if __xlC__ && ECB_CPP
787 #include <builtins.h>
788#endif
789
790#if 1400 <= _MSC_VER
791 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
792#endif
793
794#ifndef ECB_MEMORY_FENCE
795 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
796 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
797 #if __i386 || __i386__
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif ECB_GCC_AMD64
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
803 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
804 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
805 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
806 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
807 #elif defined __ARM_ARCH_2__ \
808 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
809 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
810 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
811 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
812 || defined __ARM_ARCH_5TEJ__
813 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
814 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
815 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
816 || defined __ARM_ARCH_6T2__
817 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
818 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
819 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
821 #elif __aarch64__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
823 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
825 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
826 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
827 #elif defined __s390__ || defined __s390x__
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
829 #elif defined __mips__
830 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
831 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
833 #elif defined __alpha__
834 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
835 #elif defined __hppa__
836 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
837 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
838 #elif defined __ia64__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
840 #elif defined __m68k__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #elif defined __m88k__
843 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
844 #elif defined __sh__
845 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
846 #endif
847 #endif
848#endif
849
850#ifndef ECB_MEMORY_FENCE
851 #if ECB_GCC_VERSION(4,7)
852 /* see comment below (stdatomic.h) about the C11 memory model. */
853 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
854 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
855 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
856 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
857
858 #elif ECB_CLANG_EXTENSION(c_atomic)
859 /* see comment below (stdatomic.h) about the C11 memory model. */
860 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
861 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
862 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
863 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
864
865 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
866 #define ECB_MEMORY_FENCE __sync_synchronize ()
867 #elif _MSC_VER >= 1500 /* VC++ 2008 */
868 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
869 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
870 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
871 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
872 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
873 #elif _MSC_VER >= 1400 /* VC++ 2005 */
874 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
875 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
876 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
877 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
878 #elif defined _WIN32
879 #include <WinNT.h>
880 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
881 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
882 #include <mbarrier.h>
883 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
884 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
885 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
886 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
887 #elif __xlC__
888 #define ECB_MEMORY_FENCE __sync ()
889 #endif
890#endif
891
892#ifndef ECB_MEMORY_FENCE
893 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
894 /* we assume that these memory fences work on all variables/all memory accesses, */
895 /* not just C11 atomics and atomic accesses */
896 #include <stdatomic.h>
897 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
898 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
899 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
900 #endif
901#endif
902
903#ifndef ECB_MEMORY_FENCE
904 #if !ECB_AVOID_PTHREADS
905 /*
906 * if you get undefined symbol references to pthread_mutex_lock,
907 * or failure to find pthread.h, then you should implement
908 * the ECB_MEMORY_FENCE operations for your cpu/compiler
909 * OR provide pthread.h and link against the posix thread library
910 * of your system.
911 */
912 #include <pthread.h>
913 #define ECB_NEEDS_PTHREADS 1
914 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
915
916 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
917 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
918 #endif
919#endif
920
921#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
923#endif
924
925#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
927#endif
928
929#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
930 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
931#endif
932
933/*****************************************************************************/
934
935#if ECB_CPP
936 #define ecb_inline static inline
937#elif ECB_GCC_VERSION(2,5)
938 #define ecb_inline static __inline__
939#elif ECB_C99
940 #define ecb_inline static inline
941#else
942 #define ecb_inline static
943#endif
944
945#if ECB_GCC_VERSION(3,3)
946 #define ecb_restrict __restrict__
947#elif ECB_C99
948 #define ecb_restrict restrict
949#else
950 #define ecb_restrict
951#endif
952
953typedef int ecb_bool;
954
955#define ECB_CONCAT_(a, b) a ## b
956#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
957#define ECB_STRINGIFY_(a) # a
958#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
959#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
960
961#define ecb_function_ ecb_inline
962
963#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
964 #define ecb_attribute(attrlist) __attribute__ (attrlist)
965#else
966 #define ecb_attribute(attrlist)
967#endif
968
969#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
970 #define ecb_is_constant(expr) __builtin_constant_p (expr)
971#else
972 /* possible C11 impl for integral types
973 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
974 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
975
976 #define ecb_is_constant(expr) 0
977#endif
978
979#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
980 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
981#else
169# define expect(expr,value) (expr) 982 #define ecb_expect(expr,value) (expr)
170# define inline static
171#endif 983#endif
172 984
985#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
986 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
987#else
988 #define ecb_prefetch(addr,rw,locality)
989#endif
990
991/* no emulation for ecb_decltype */
992#if ECB_CPP11
993 // older implementations might have problems with decltype(x)::type, work around it
994 template<class T> struct ecb_decltype_t { typedef T type; };
995 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
996#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
997 #define ecb_decltype(x) __typeof__ (x)
998#endif
999
1000#if _MSC_VER >= 1300
1001 #define ecb_deprecated __declspec (deprecated)
1002#else
1003 #define ecb_deprecated ecb_attribute ((__deprecated__))
1004#endif
1005
1006#if _MSC_VER >= 1500
1007 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1008#elif ECB_GCC_VERSION(4,5)
1009 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1010#else
1011 #define ecb_deprecated_message(msg) ecb_deprecated
1012#endif
1013
1014#if _MSC_VER >= 1400
1015 #define ecb_noinline __declspec (noinline)
1016#else
1017 #define ecb_noinline ecb_attribute ((__noinline__))
1018#endif
1019
1020#define ecb_unused ecb_attribute ((__unused__))
1021#define ecb_const ecb_attribute ((__const__))
1022#define ecb_pure ecb_attribute ((__pure__))
1023
1024#if ECB_C11 || __IBMC_NORETURN
1025 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1026 #define ecb_noreturn _Noreturn
1027#elif ECB_CPP11
1028 #define ecb_noreturn [[noreturn]]
1029#elif _MSC_VER >= 1200
1030 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1031 #define ecb_noreturn __declspec (noreturn)
1032#else
1033 #define ecb_noreturn ecb_attribute ((__noreturn__))
1034#endif
1035
1036#if ECB_GCC_VERSION(4,3)
1037 #define ecb_artificial ecb_attribute ((__artificial__))
1038 #define ecb_hot ecb_attribute ((__hot__))
1039 #define ecb_cold ecb_attribute ((__cold__))
1040#else
1041 #define ecb_artificial
1042 #define ecb_hot
1043 #define ecb_cold
1044#endif
1045
1046/* put around conditional expressions if you are very sure that the */
1047/* expression is mostly true or mostly false. note that these return */
1048/* booleans, not the expression. */
173#define expect_false(expr) expect ((expr) != 0, 0) 1049#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 1050#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1051/* for compatibility to the rest of the world */
1052#define ecb_likely(expr) ecb_expect_true (expr)
1053#define ecb_unlikely(expr) ecb_expect_false (expr)
175 1054
1055/* count trailing zero bits and count # of one bits */
1056#if ECB_GCC_VERSION(3,4) \
1057 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1058 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1059 && ECB_CLANG_BUILTIN(__builtin_popcount))
1060 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1061 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1062 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1063 #define ecb_ctz32(x) __builtin_ctz (x)
1064 #define ecb_ctz64(x) __builtin_ctzll (x)
1065 #define ecb_popcount32(x) __builtin_popcount (x)
1066 /* no popcountll */
1067#else
1068 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1069 ecb_function_ ecb_const int
1070 ecb_ctz32 (uint32_t x)
1071 {
1072#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1073 unsigned long r;
1074 _BitScanForward (&r, x);
1075 return (int)r;
1076#else
1077 int r = 0;
1078
1079 x &= ~x + 1; /* this isolates the lowest bit */
1080
1081#if ECB_branchless_on_i386
1082 r += !!(x & 0xaaaaaaaa) << 0;
1083 r += !!(x & 0xcccccccc) << 1;
1084 r += !!(x & 0xf0f0f0f0) << 2;
1085 r += !!(x & 0xff00ff00) << 3;
1086 r += !!(x & 0xffff0000) << 4;
1087#else
1088 if (x & 0xaaaaaaaa) r += 1;
1089 if (x & 0xcccccccc) r += 2;
1090 if (x & 0xf0f0f0f0) r += 4;
1091 if (x & 0xff00ff00) r += 8;
1092 if (x & 0xffff0000) r += 16;
1093#endif
1094
1095 return r;
1096#endif
1097 }
1098
1099 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1100 ecb_function_ ecb_const int
1101 ecb_ctz64 (uint64_t x)
1102 {
1103#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1104 unsigned long r;
1105 _BitScanForward64 (&r, x);
1106 return (int)r;
1107#else
1108 int shift = x & 0xffffffff ? 0 : 32;
1109 return ecb_ctz32 (x >> shift) + shift;
1110#endif
1111 }
1112
1113 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1114 ecb_function_ ecb_const int
1115 ecb_popcount32 (uint32_t x)
1116 {
1117 x -= (x >> 1) & 0x55555555;
1118 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1119 x = ((x >> 4) + x) & 0x0f0f0f0f;
1120 x *= 0x01010101;
1121
1122 return x >> 24;
1123 }
1124
1125 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1126 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1127 {
1128#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1129 unsigned long r;
1130 _BitScanReverse (&r, x);
1131 return (int)r;
1132#else
1133 int r = 0;
1134
1135 if (x >> 16) { x >>= 16; r += 16; }
1136 if (x >> 8) { x >>= 8; r += 8; }
1137 if (x >> 4) { x >>= 4; r += 4; }
1138 if (x >> 2) { x >>= 2; r += 2; }
1139 if (x >> 1) { r += 1; }
1140
1141 return r;
1142#endif
1143 }
1144
1145 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1146 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1147 {
1148#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1149 unsigned long r;
1150 _BitScanReverse64 (&r, x);
1151 return (int)r;
1152#else
1153 int r = 0;
1154
1155 if (x >> 32) { x >>= 32; r += 32; }
1156
1157 return r + ecb_ld32 (x);
1158#endif
1159 }
1160#endif
1161
1162ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1163ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1164ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1165ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1166
1167ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1168ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1169{
1170 return ( (x * 0x0802U & 0x22110U)
1171 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1172}
1173
1174ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1175ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1176{
1177 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1178 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1179 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1180 x = ( x >> 8 ) | ( x << 8);
1181
1182 return x;
1183}
1184
1185ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1186ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1187{
1188 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1189 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1190 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1191 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1192 x = ( x >> 16 ) | ( x << 16);
1193
1194 return x;
1195}
1196
1197/* popcount64 is only available on 64 bit cpus as gcc builtin */
1198/* so for this version we are lazy */
1199ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1200ecb_function_ ecb_const int
1201ecb_popcount64 (uint64_t x)
1202{
1203 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1204}
1205
1206ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1207ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1208ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1209ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1210ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1211ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1212ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1213ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1214
1215ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1216ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1217ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1218ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1219ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1220ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1221ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1222ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1223
1224#if ECB_CPP
1225
1226inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1227inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1228inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1229inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1230
1231inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1232inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1233inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1234inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1235
1236inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1237inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1238inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1239inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1240
1241inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1242inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1243inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1244inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1245
1246inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1247inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1248inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1249
1250inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1251inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1252inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1253inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1254
1255inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1256inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1257inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1258inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1259
1260#endif
1261
1262#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1263 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1264 #define ecb_bswap16(x) __builtin_bswap16 (x)
1265 #else
1266 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1267 #endif
1268 #define ecb_bswap32(x) __builtin_bswap32 (x)
1269 #define ecb_bswap64(x) __builtin_bswap64 (x)
1270#elif _MSC_VER
1271 #include <stdlib.h>
1272 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1273 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1274 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1275#else
1276 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1277 ecb_function_ ecb_const uint16_t
1278 ecb_bswap16 (uint16_t x)
1279 {
1280 return ecb_rotl16 (x, 8);
1281 }
1282
1283 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1284 ecb_function_ ecb_const uint32_t
1285 ecb_bswap32 (uint32_t x)
1286 {
1287 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1288 }
1289
1290 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1291 ecb_function_ ecb_const uint64_t
1292 ecb_bswap64 (uint64_t x)
1293 {
1294 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1295 }
1296#endif
1297
1298#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1299 #define ecb_unreachable() __builtin_unreachable ()
1300#else
1301 /* this seems to work fine, but gcc always emits a warning for it :/ */
1302 ecb_inline ecb_noreturn void ecb_unreachable (void);
1303 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1304#endif
1305
1306/* try to tell the compiler that some condition is definitely true */
1307#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1308
1309ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1310ecb_inline ecb_const uint32_t
1311ecb_byteorder_helper (void)
1312{
1313 /* the union code still generates code under pressure in gcc, */
1314 /* but less than using pointers, and always seems to */
1315 /* successfully return a constant. */
1316 /* the reason why we have this horrible preprocessor mess */
1317 /* is to avoid it in all cases, at least on common architectures */
1318 /* or when using a recent enough gcc version (>= 4.6) */
1319#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1320 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1321 #define ECB_LITTLE_ENDIAN 1
1322 return 0x44332211;
1323#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1324 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1325 #define ECB_BIG_ENDIAN 1
1326 return 0x11223344;
1327#else
1328 union
1329 {
1330 uint8_t c[4];
1331 uint32_t u;
1332 } u = { 0x11, 0x22, 0x33, 0x44 };
1333 return u.u;
1334#endif
1335}
1336
1337ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1338ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1339ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1340ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1341
1342/*****************************************************************************/
1343/* unaligned load/store */
1344
1345ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1346ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1347ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1348
1349ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1350ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1351ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1352
1353ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1354ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1355ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1356
1357ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1358ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1359ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1362ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1363ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1364
1365ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1366ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1367ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1368
1369ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1370ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1371ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1372
1373ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1374ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1375ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1376
1377ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1378ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1379ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1380
1381ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1382ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1383ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1384
1385#if ECB_CPP
1386
1387inline uint8_t ecb_bswap (uint8_t v) { return v; }
1388inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1389inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1390inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1391
1392template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1393template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1394template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1395template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1396template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1397template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1398template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1399template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1400
1401template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1402template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1403template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1404template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1405template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1406template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1407template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1408template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1409
1410#endif
1411
1412/*****************************************************************************/
1413
1414#if ECB_GCC_VERSION(3,0) || ECB_C99
1415 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1416#else
1417 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1418#endif
1419
1420#if ECB_CPP
1421 template<typename T>
1422 static inline T ecb_div_rd (T val, T div)
1423 {
1424 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1425 }
1426 template<typename T>
1427 static inline T ecb_div_ru (T val, T div)
1428 {
1429 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1430 }
1431#else
1432 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1433 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1434#endif
1435
1436#if ecb_cplusplus_does_not_suck
1437 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1438 template<typename T, int N>
1439 static inline int ecb_array_length (const T (&arr)[N])
1440 {
1441 return N;
1442 }
1443#else
1444 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1445#endif
1446
1447/*****************************************************************************/
1448
1449ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1450ecb_function_ ecb_const uint32_t
1451ecb_binary16_to_binary32 (uint32_t x)
1452{
1453 unsigned int s = (x & 0x8000) << (31 - 15);
1454 int e = (x >> 10) & 0x001f;
1455 unsigned int m = x & 0x03ff;
1456
1457 if (ecb_expect_false (e == 31))
1458 /* infinity or NaN */
1459 e = 255 - (127 - 15);
1460 else if (ecb_expect_false (!e))
1461 {
1462 if (ecb_expect_true (!m))
1463 /* zero, handled by code below by forcing e to 0 */
1464 e = 0 - (127 - 15);
1465 else
1466 {
1467 /* subnormal, renormalise */
1468 unsigned int s = 10 - ecb_ld32 (m);
1469
1470 m = (m << s) & 0x3ff; /* mask implicit bit */
1471 e -= s - 1;
1472 }
1473 }
1474
1475 /* e and m now are normalised, or zero, (or inf or nan) */
1476 e += 127 - 15;
1477
1478 return s | (e << 23) | (m << (23 - 10));
1479}
1480
1481ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1482ecb_function_ ecb_const uint16_t
1483ecb_binary32_to_binary16 (uint32_t x)
1484{
1485 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1486 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1487 unsigned int m = x & 0x007fffff;
1488
1489 x &= 0x7fffffff;
1490
1491 /* if it's within range of binary16 normals, use fast path */
1492 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1493 {
1494 /* mantissa round-to-even */
1495 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1496
1497 /* handle overflow */
1498 if (ecb_expect_false (m >= 0x00800000))
1499 {
1500 m >>= 1;
1501 e += 1;
1502 }
1503
1504 return s | (e << 10) | (m >> (23 - 10));
1505 }
1506
1507 /* handle large numbers and infinity */
1508 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1509 return s | 0x7c00;
1510
1511 /* handle zero, subnormals and small numbers */
1512 if (ecb_expect_true (x < 0x38800000))
1513 {
1514 /* zero */
1515 if (ecb_expect_true (!x))
1516 return s;
1517
1518 /* handle subnormals */
1519
1520 /* too small, will be zero */
1521 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1522 return s;
1523
1524 m |= 0x00800000; /* make implicit bit explicit */
1525
1526 /* very tricky - we need to round to the nearest e (+10) bit value */
1527 {
1528 unsigned int bits = 14 - e;
1529 unsigned int half = (1 << (bits - 1)) - 1;
1530 unsigned int even = (m >> bits) & 1;
1531
1532 /* if this overflows, we will end up with a normalised number */
1533 m = (m + half + even) >> bits;
1534 }
1535
1536 return s | m;
1537 }
1538
1539 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1540 m >>= 13;
1541
1542 return s | 0x7c00 | m | !m;
1543}
1544
1545/*******************************************************************************/
1546/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1547
1548/* basically, everything uses "ieee pure-endian" floating point numbers */
1549/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1550#if 0 \
1551 || __i386 || __i386__ \
1552 || ECB_GCC_AMD64 \
1553 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1554 || defined __s390__ || defined __s390x__ \
1555 || defined __mips__ \
1556 || defined __alpha__ \
1557 || defined __hppa__ \
1558 || defined __ia64__ \
1559 || defined __m68k__ \
1560 || defined __m88k__ \
1561 || defined __sh__ \
1562 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1563 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1564 || defined __aarch64__
1565 #define ECB_STDFP 1
1566#else
1567 #define ECB_STDFP 0
1568#endif
1569
1570#ifndef ECB_NO_LIBM
1571
1572 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1573
1574 /* only the oldest of old doesn't have this one. solaris. */
1575 #ifdef INFINITY
1576 #define ECB_INFINITY INFINITY
1577 #else
1578 #define ECB_INFINITY HUGE_VAL
1579 #endif
1580
1581 #ifdef NAN
1582 #define ECB_NAN NAN
1583 #else
1584 #define ECB_NAN ECB_INFINITY
1585 #endif
1586
1587 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1588 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1589 #define ecb_frexpf(x,e) frexpf ((x), (e))
1590 #else
1591 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1592 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1593 #endif
1594
1595 /* convert a float to ieee single/binary32 */
1596 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1597 ecb_function_ ecb_const uint32_t
1598 ecb_float_to_binary32 (float x)
1599 {
1600 uint32_t r;
1601
1602 #if ECB_STDFP
1603 memcpy (&r, &x, 4);
1604 #else
1605 /* slow emulation, works for anything but -0 */
1606 uint32_t m;
1607 int e;
1608
1609 if (x == 0e0f ) return 0x00000000U;
1610 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1611 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1612 if (x != x ) return 0x7fbfffffU;
1613
1614 m = ecb_frexpf (x, &e) * 0x1000000U;
1615
1616 r = m & 0x80000000U;
1617
1618 if (r)
1619 m = -m;
1620
1621 if (e <= -126)
1622 {
1623 m &= 0xffffffU;
1624 m >>= (-125 - e);
1625 e = -126;
1626 }
1627
1628 r |= (e + 126) << 23;
1629 r |= m & 0x7fffffU;
1630 #endif
1631
1632 return r;
1633 }
1634
1635 /* converts an ieee single/binary32 to a float */
1636 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1637 ecb_function_ ecb_const float
1638 ecb_binary32_to_float (uint32_t x)
1639 {
1640 float r;
1641
1642 #if ECB_STDFP
1643 memcpy (&r, &x, 4);
1644 #else
1645 /* emulation, only works for normals and subnormals and +0 */
1646 int neg = x >> 31;
1647 int e = (x >> 23) & 0xffU;
1648
1649 x &= 0x7fffffU;
1650
1651 if (e)
1652 x |= 0x800000U;
1653 else
1654 e = 1;
1655
1656 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1657 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1658
1659 r = neg ? -r : r;
1660 #endif
1661
1662 return r;
1663 }
1664
1665 /* convert a double to ieee double/binary64 */
1666 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1667 ecb_function_ ecb_const uint64_t
1668 ecb_double_to_binary64 (double x)
1669 {
1670 uint64_t r;
1671
1672 #if ECB_STDFP
1673 memcpy (&r, &x, 8);
1674 #else
1675 /* slow emulation, works for anything but -0 */
1676 uint64_t m;
1677 int e;
1678
1679 if (x == 0e0 ) return 0x0000000000000000U;
1680 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1681 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1682 if (x != x ) return 0X7ff7ffffffffffffU;
1683
1684 m = frexp (x, &e) * 0x20000000000000U;
1685
1686 r = m & 0x8000000000000000;;
1687
1688 if (r)
1689 m = -m;
1690
1691 if (e <= -1022)
1692 {
1693 m &= 0x1fffffffffffffU;
1694 m >>= (-1021 - e);
1695 e = -1022;
1696 }
1697
1698 r |= ((uint64_t)(e + 1022)) << 52;
1699 r |= m & 0xfffffffffffffU;
1700 #endif
1701
1702 return r;
1703 }
1704
1705 /* converts an ieee double/binary64 to a double */
1706 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1707 ecb_function_ ecb_const double
1708 ecb_binary64_to_double (uint64_t x)
1709 {
1710 double r;
1711
1712 #if ECB_STDFP
1713 memcpy (&r, &x, 8);
1714 #else
1715 /* emulation, only works for normals and subnormals and +0 */
1716 int neg = x >> 63;
1717 int e = (x >> 52) & 0x7ffU;
1718
1719 x &= 0xfffffffffffffU;
1720
1721 if (e)
1722 x |= 0x10000000000000U;
1723 else
1724 e = 1;
1725
1726 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1727 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1728
1729 r = neg ? -r : r;
1730 #endif
1731
1732 return r;
1733 }
1734
1735 /* convert a float to ieee half/binary16 */
1736 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1737 ecb_function_ ecb_const uint16_t
1738 ecb_float_to_binary16 (float x)
1739 {
1740 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1741 }
1742
1743 /* convert an ieee half/binary16 to float */
1744 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1745 ecb_function_ ecb_const float
1746 ecb_binary16_to_float (uint16_t x)
1747 {
1748 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1749 }
1750
1751#endif
1752
1753#endif
1754
1755/* ECB.H END */
1756
1757#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1758/* if your architecture doesn't need memory fences, e.g. because it is
1759 * single-cpu/core, or if you use libev in a project that doesn't use libev
1760 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1761 * libev, in which cases the memory fences become nops.
1762 * alternatively, you can remove this #error and link against libpthread,
1763 * which will then provide the memory fences.
1764 */
1765# error "memory fences not defined for your architecture, please report"
1766#endif
1767
1768#ifndef ECB_MEMORY_FENCE
1769# define ECB_MEMORY_FENCE do { } while (0)
1770# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1771# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1772#endif
1773
1774#define inline_size ecb_inline
1775
1776#if EV_FEATURE_CODE
1777# define inline_speed ecb_inline
1778#else
1779# define inline_speed ecb_noinline static
1780#endif
1781
1782/*****************************************************************************/
1783/* raw syscall wrappers */
1784
1785#if EV_NEED_SYSCALL
1786
1787#include <sys/syscall.h>
1788
1789/*
1790 * define some syscall wrappers for common architectures
1791 * this is mostly for nice looks during debugging, not performance.
1792 * our syscalls return < 0, not == -1, on error. which is good
1793 * enough for linux aio.
1794 * TODO: arm is also common nowadays, maybe even mips and x86
1795 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1796 */
1797#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1798 /* the costly errno access probably kills this for size optimisation */
1799
1800 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1801 ({ \
1802 long res; \
1803 register unsigned long r6 __asm__ ("r9" ); \
1804 register unsigned long r5 __asm__ ("r8" ); \
1805 register unsigned long r4 __asm__ ("r10"); \
1806 register unsigned long r3 __asm__ ("rdx"); \
1807 register unsigned long r2 __asm__ ("rsi"); \
1808 register unsigned long r1 __asm__ ("rdi"); \
1809 if (narg >= 6) r6 = (unsigned long)(arg6); \
1810 if (narg >= 5) r5 = (unsigned long)(arg5); \
1811 if (narg >= 4) r4 = (unsigned long)(arg4); \
1812 if (narg >= 3) r3 = (unsigned long)(arg3); \
1813 if (narg >= 2) r2 = (unsigned long)(arg2); \
1814 if (narg >= 1) r1 = (unsigned long)(arg1); \
1815 __asm__ __volatile__ ( \
1816 "syscall\n\t" \
1817 : "=a" (res) \
1818 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1819 : "cc", "r11", "cx", "memory"); \
1820 errno = -res; \
1821 res; \
1822 })
1823
1824#endif
1825
1826#ifdef ev_syscall
1827 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1828 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1829 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1830 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1831 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1832 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1833 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1834#else
1835 #define ev_syscall0(nr) syscall (nr)
1836 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1837 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1838 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1839 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1840 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1841 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1842#endif
1843
1844#endif
1845
1846/*****************************************************************************/
1847
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1848#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1849
1850#if EV_MINPRI == EV_MAXPRI
1851# define ABSPRI(w) (((W)w), 0)
1852#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1853# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1854#endif
178 1855
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1856#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */
181 1857
182typedef struct ev_watcher *W; 1858typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 1859typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 1860typedef ev_watcher_time *WT;
185 1861
1862#define ev_active(w) ((W)(w))->active
1863#define ev_at(w) ((WT)(w))->at
1864
1865#if EV_USE_REALTIME
1866/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1867/* giving it a reasonably high chance of working on typical architectures */
1868static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1869#endif
1870
1871#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1872static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1873#endif
1874
1875#ifndef EV_FD_TO_WIN32_HANDLE
1876# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1877#endif
1878#ifndef EV_WIN32_HANDLE_TO_FD
1879# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1880#endif
1881#ifndef EV_WIN32_CLOSE_FD
1882# define EV_WIN32_CLOSE_FD(fd) close (fd)
1883#endif
187 1884
188#ifdef _WIN32 1885#ifdef _WIN32
189# include "ev_win32.c" 1886# include "ev_win32.c"
190#endif 1887#endif
191 1888
192/*****************************************************************************/ 1889/*****************************************************************************/
193 1890
1891#if EV_USE_LINUXAIO
1892# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1893#endif
1894
1895/* define a suitable floor function (only used by periodics atm) */
1896
1897#if EV_USE_FLOOR
1898# include <math.h>
1899# define ev_floor(v) floor (v)
1900#else
1901
1902#include <float.h>
1903
1904/* a floor() replacement function, should be independent of ev_tstamp type */
1905ecb_noinline
1906static ev_tstamp
1907ev_floor (ev_tstamp v)
1908{
1909 /* the choice of shift factor is not terribly important */
1910#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1911 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1912#else
1913 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1914#endif
1915
1916 /* special treatment for negative arguments */
1917 if (ecb_expect_false (v < 0.))
1918 {
1919 ev_tstamp f = -ev_floor (-v);
1920
1921 return f - (f == v ? 0 : 1);
1922 }
1923
1924 /* argument too large for an unsigned long? then reduce it */
1925 if (ecb_expect_false (v >= shift))
1926 {
1927 ev_tstamp f;
1928
1929 if (v == v - 1.)
1930 return v; /* very large numbers are assumed to be integer */
1931
1932 f = shift * ev_floor (v * (1. / shift));
1933 return f + ev_floor (v - f);
1934 }
1935
1936 /* fits into an unsigned long */
1937 return (unsigned long)v;
1938}
1939
1940#endif
1941
1942/*****************************************************************************/
1943
1944#ifdef __linux
1945# include <sys/utsname.h>
1946#endif
1947
1948ecb_noinline ecb_cold
1949static unsigned int
1950ev_linux_version (void)
1951{
1952#ifdef __linux
1953 unsigned int v = 0;
1954 struct utsname buf;
1955 int i;
1956 char *p = buf.release;
1957
1958 if (uname (&buf))
1959 return 0;
1960
1961 for (i = 3+1; --i; )
1962 {
1963 unsigned int c = 0;
1964
1965 for (;;)
1966 {
1967 if (*p >= '0' && *p <= '9')
1968 c = c * 10 + *p++ - '0';
1969 else
1970 {
1971 p += *p == '.';
1972 break;
1973 }
1974 }
1975
1976 v = (v << 8) | c;
1977 }
1978
1979 return v;
1980#else
1981 return 0;
1982#endif
1983}
1984
1985/*****************************************************************************/
1986
1987#if EV_AVOID_STDIO
1988ecb_noinline ecb_cold
1989static void
1990ev_printerr (const char *msg)
1991{
1992 write (STDERR_FILENO, msg, strlen (msg));
1993}
1994#endif
1995
194static void (*syserr_cb)(const char *msg); 1996static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
195 1997
1998ecb_cold
1999void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 2000ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
197{ 2001{
198 syserr_cb = cb; 2002 syserr_cb = cb;
199} 2003}
200 2004
2005ecb_noinline ecb_cold
201static void 2006static void
202syserr (const char *msg) 2007ev_syserr (const char *msg)
203{ 2008{
204 if (!msg) 2009 if (!msg)
205 msg = "(libev) system error"; 2010 msg = "(libev) system error";
206 2011
207 if (syserr_cb) 2012 if (syserr_cb)
208 syserr_cb (msg); 2013 syserr_cb (msg);
209 else 2014 else
210 { 2015 {
2016#if EV_AVOID_STDIO
2017 ev_printerr (msg);
2018 ev_printerr (": ");
2019 ev_printerr (strerror (errno));
2020 ev_printerr ("\n");
2021#else
211 perror (msg); 2022 perror (msg);
2023#endif
212 abort (); 2024 abort ();
213 } 2025 }
214} 2026}
215 2027
216static void *(*alloc)(void *ptr, long size); 2028static void *
2029ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
2030{
2031 /* some systems, notably openbsd and darwin, fail to properly
2032 * implement realloc (x, 0) (as required by both ansi c-89 and
2033 * the single unix specification, so work around them here.
2034 * recently, also (at least) fedora and debian started breaking it,
2035 * despite documenting it otherwise.
2036 */
217 2037
2038 if (size)
2039 return realloc (ptr, size);
2040
2041 free (ptr);
2042 return 0;
2043}
2044
2045static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
2046
2047ecb_cold
2048void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 2049ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
219{ 2050{
220 alloc = cb; 2051 alloc = cb;
221} 2052}
222 2053
223static void * 2054inline_speed void *
224ev_realloc (void *ptr, long size) 2055ev_realloc (void *ptr, long size)
225{ 2056{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 2057 ptr = alloc (ptr, size);
227 2058
228 if (!ptr && size) 2059 if (!ptr && size)
229 { 2060 {
2061#if EV_AVOID_STDIO
2062 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2063#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 2064 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2065#endif
231 abort (); 2066 abort ();
232 } 2067 }
233 2068
234 return ptr; 2069 return ptr;
235} 2070}
237#define ev_malloc(size) ev_realloc (0, (size)) 2072#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 2073#define ev_free(ptr) ev_realloc ((ptr), 0)
239 2074
240/*****************************************************************************/ 2075/*****************************************************************************/
241 2076
2077/* set in reify when reification needed */
2078#define EV_ANFD_REIFY 1
2079
2080/* file descriptor info structure */
242typedef struct 2081typedef struct
243{ 2082{
244 WL head; 2083 WL head;
245 unsigned char events; 2084 unsigned char events; /* the events watched for */
246 unsigned char reify; 2085 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2086 unsigned char emask; /* some backends store the actual kernel mask in here */
2087 unsigned char eflags; /* flags field for use by backends */
2088#if EV_USE_EPOLL
2089 unsigned int egen; /* generation counter to counter epoll bugs */
2090#endif
247#if EV_SELECT_IS_WINSOCKET 2091#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
248 SOCKET handle; 2092 SOCKET handle;
249#endif 2093#endif
2094#if EV_USE_IOCP
2095 OVERLAPPED or, ow;
2096#endif
250} ANFD; 2097} ANFD;
251 2098
2099/* stores the pending event set for a given watcher */
252typedef struct 2100typedef struct
253{ 2101{
254 W w; 2102 W w;
255 int events; 2103 int events; /* the pending event set for the given watcher */
256} ANPENDING; 2104} ANPENDING;
2105
2106#if EV_USE_INOTIFY
2107/* hash table entry per inotify-id */
2108typedef struct
2109{
2110 WL head;
2111} ANFS;
2112#endif
2113
2114/* Heap Entry */
2115#if EV_HEAP_CACHE_AT
2116 /* a heap element */
2117 typedef struct {
2118 ev_tstamp at;
2119 WT w;
2120 } ANHE;
2121
2122 #define ANHE_w(he) (he).w /* access watcher, read-write */
2123 #define ANHE_at(he) (he).at /* access cached at, read-only */
2124 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
2125#else
2126 /* a heap element */
2127 typedef WT ANHE;
2128
2129 #define ANHE_w(he) (he)
2130 #define ANHE_at(he) (he)->at
2131 #define ANHE_at_cache(he)
2132#endif
257 2133
258#if EV_MULTIPLICITY 2134#if EV_MULTIPLICITY
259 2135
260 struct ev_loop 2136 struct ev_loop
261 { 2137 {
266 #undef VAR 2142 #undef VAR
267 }; 2143 };
268 #include "ev_wrap.h" 2144 #include "ev_wrap.h"
269 2145
270 static struct ev_loop default_loop_struct; 2146 static struct ev_loop default_loop_struct;
271 struct ev_loop *ev_default_loop_ptr; 2147 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
272 2148
273#else 2149#else
274 2150
275 ev_tstamp ev_rt_now; 2151 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
276 #define VAR(name,decl) static decl; 2152 #define VAR(name,decl) static decl;
277 #include "ev_vars.h" 2153 #include "ev_vars.h"
278 #undef VAR 2154 #undef VAR
279 2155
280 static int ev_default_loop_ptr; 2156 static int ev_default_loop_ptr;
281 2157
282#endif 2158#endif
283 2159
2160#if EV_FEATURE_API
2161# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2162# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2163# define EV_INVOKE_PENDING invoke_cb (EV_A)
2164#else
2165# define EV_RELEASE_CB (void)0
2166# define EV_ACQUIRE_CB (void)0
2167# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2168#endif
2169
2170#define EVBREAK_RECURSE 0x80
2171
284/*****************************************************************************/ 2172/*****************************************************************************/
285 2173
2174#ifndef EV_HAVE_EV_TIME
286ev_tstamp 2175ev_tstamp
287ev_time (void) 2176ev_time (void) EV_NOEXCEPT
288{ 2177{
289#if EV_USE_REALTIME 2178#if EV_USE_REALTIME
2179 if (ecb_expect_true (have_realtime))
2180 {
290 struct timespec ts; 2181 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 2182 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 2183 return EV_TS_GET (ts);
293#else 2184 }
2185#endif
2186
2187 {
294 struct timeval tv; 2188 struct timeval tv;
295 gettimeofday (&tv, 0); 2189 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 2190 return EV_TV_GET (tv);
297#endif 2191 }
298} 2192}
2193#endif
299 2194
300inline ev_tstamp 2195inline_size ev_tstamp
301get_clock (void) 2196get_clock (void)
302{ 2197{
303#if EV_USE_MONOTONIC 2198#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 2199 if (ecb_expect_true (have_monotonic))
305 { 2200 {
306 struct timespec ts; 2201 struct timespec ts;
307 clock_gettime (CLOCK_MONOTONIC, &ts); 2202 clock_gettime (CLOCK_MONOTONIC, &ts);
308 return ts.tv_sec + ts.tv_nsec * 1e-9; 2203 return EV_TS_GET (ts);
309 } 2204 }
310#endif 2205#endif
311 2206
312 return ev_time (); 2207 return ev_time ();
313} 2208}
314 2209
315#if EV_MULTIPLICITY 2210#if EV_MULTIPLICITY
316ev_tstamp 2211ev_tstamp
317ev_now (EV_P) 2212ev_now (EV_P) EV_NOEXCEPT
318{ 2213{
319 return ev_rt_now; 2214 return ev_rt_now;
320} 2215}
321#endif 2216#endif
322 2217
323#define array_roundsize(type,n) (((n) | 4) & ~3) 2218void
2219ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2220{
2221 if (delay > EV_TS_CONST (0.))
2222 {
2223#if EV_USE_NANOSLEEP
2224 struct timespec ts;
2225
2226 EV_TS_SET (ts, delay);
2227 nanosleep (&ts, 0);
2228#elif defined _WIN32
2229 /* maybe this should round up, as ms is very low resolution */
2230 /* compared to select (µs) or nanosleep (ns) */
2231 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2232#else
2233 struct timeval tv;
2234
2235 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2236 /* something not guaranteed by newer posix versions, but guaranteed */
2237 /* by older ones */
2238 EV_TV_SET (tv, delay);
2239 select (0, 0, 0, 0, &tv);
2240#endif
2241 }
2242}
2243
2244/*****************************************************************************/
2245
2246#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2247
2248/* find a suitable new size for the given array, */
2249/* hopefully by rounding to a nice-to-malloc size */
2250inline_size int
2251array_nextsize (int elem, int cur, int cnt)
2252{
2253 int ncur = cur + 1;
2254
2255 do
2256 ncur <<= 1;
2257 while (cnt > ncur);
2258
2259 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2260 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2261 {
2262 ncur *= elem;
2263 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2264 ncur = ncur - sizeof (void *) * 4;
2265 ncur /= elem;
2266 }
2267
2268 return ncur;
2269}
2270
2271ecb_noinline ecb_cold
2272static void *
2273array_realloc (int elem, void *base, int *cur, int cnt)
2274{
2275 *cur = array_nextsize (elem, *cur, cnt);
2276 return ev_realloc (base, elem * *cur);
2277}
2278
2279#define array_needsize_noinit(base,offset,count)
2280
2281#define array_needsize_zerofill(base,offset,count) \
2282 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
324 2283
325#define array_needsize(type,base,cur,cnt,init) \ 2284#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 2285 if (ecb_expect_false ((cnt) > (cur))) \
327 { \ 2286 { \
328 int newcnt = cur; \ 2287 ecb_unused int ocur_ = (cur); \
329 do \ 2288 (base) = (type *)array_realloc \
330 { \ 2289 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 2290 init ((base), ocur_, ((cur) - ocur_)); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 2291 }
339 2292
2293#if 0
340#define array_slim(type,stem) \ 2294#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2295 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 2296 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2297 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2298 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2299 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 2300 }
2301#endif
347 2302
348#define array_free(stem, idx) \ 2303#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 2305
351/*****************************************************************************/ 2306/*****************************************************************************/
352 2307
2308/* dummy callback for pending events */
2309ecb_noinline
353static void 2310static void
354anfds_init (ANFD *base, int count) 2311pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 2312{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 2313}
365 2314
2315ecb_noinline
366void 2316void
367ev_feed_event (EV_P_ void *w, int revents) 2317ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
368{ 2318{
369 W w_ = (W)w; 2319 W w_ = (W)w;
2320 int pri = ABSPRI (w_);
370 2321
371 if (expect_false (w_->pending)) 2322 if (ecb_expect_false (w_->pending))
2323 pendings [pri][w_->pending - 1].events |= revents;
2324 else
372 { 2325 {
2326 w_->pending = ++pendingcnt [pri];
2327 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2328 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2329 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 2330 }
376 2331
377 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2332 pendingpri = NUMPRI - 1;
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 2333}
382 2334
383static void 2335inline_speed void
2336feed_reverse (EV_P_ W w)
2337{
2338 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2339 rfeeds [rfeedcnt++] = w;
2340}
2341
2342inline_size void
2343feed_reverse_done (EV_P_ int revents)
2344{
2345 do
2346 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2347 while (rfeedcnt);
2348}
2349
2350inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 2351queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 2352{
386 int i; 2353 int i;
387 2354
388 for (i = 0; i < eventcnt; ++i) 2355 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 2356 ev_feed_event (EV_A_ events [i], type);
390} 2357}
391 2358
2359/*****************************************************************************/
2360
392inline void 2361inline_speed void
393fd_event (EV_P_ int fd, int revents) 2362fd_event_nocheck (EV_P_ int fd, int revents)
394{ 2363{
395 ANFD *anfd = anfds + fd; 2364 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 2365 ev_io *w;
397 2366
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2367 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 2368 {
400 int ev = w->events & revents; 2369 int ev = w->events & revents;
401 2370
402 if (ev) 2371 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 2372 ev_feed_event (EV_A_ (W)w, ev);
404 } 2373 }
405} 2374}
406 2375
2376/* do not submit kernel events for fds that have reify set */
2377/* because that means they changed while we were polling for new events */
2378inline_speed void
2379fd_event (EV_P_ int fd, int revents)
2380{
2381 ANFD *anfd = anfds + fd;
2382
2383 if (ecb_expect_true (!anfd->reify))
2384 fd_event_nocheck (EV_A_ fd, revents);
2385}
2386
407void 2387void
408ev_feed_fd_event (EV_P_ int fd, int revents) 2388ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
409{ 2389{
2390 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 2391 fd_event_nocheck (EV_A_ fd, revents);
411} 2392}
412 2393
413/*****************************************************************************/ 2394/* make sure the external fd watch events are in-sync */
414 2395/* with the kernel/libev internal state */
415inline void 2396inline_size void
416fd_reify (EV_P) 2397fd_reify (EV_P)
417{ 2398{
418 int i; 2399 int i;
419 2400
2401 /* most backends do not modify the fdchanges list in backend_modfiy.
2402 * except io_uring, which has fixed-size buffers which might force us
2403 * to handle events in backend_modify, causing fdchanges to be amended,
2404 * which could result in an endless loop.
2405 * to avoid this, we do not dynamically handle fds that were added
2406 * during fd_reify. that means that for those backends, fdchangecnt
2407 * might be non-zero during poll, which must cause them to not block.
2408 * to not put too much of a burden on other backends, this detail
2409 * needs to be handled in the backend.
2410 */
2411 int changecnt = fdchangecnt;
2412
2413#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
420 for (i = 0; i < fdchangecnt; ++i) 2414 for (i = 0; i < changecnt; ++i)
421 { 2415 {
422 int fd = fdchanges [i]; 2416 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 2417 ANFD *anfd = anfds + fd;
424 struct ev_io *w;
425 2418
426 int events = 0; 2419 if (anfd->reify & EV__IOFDSET && anfd->head)
427
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
429 events |= w->events;
430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 { 2420 {
2421 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2422
2423 if (handle != anfd->handle)
2424 {
434 unsigned long argp; 2425 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 2426
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2427 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2428
2429 /* handle changed, but fd didn't - we need to do it in two steps */
2430 backend_modify (EV_A_ fd, anfd->events, 0);
2431 anfd->events = 0;
2432 anfd->handle = handle;
2433 }
437 } 2434 }
2435 }
438#endif 2436#endif
2437
2438 for (i = 0; i < changecnt; ++i)
2439 {
2440 int fd = fdchanges [i];
2441 ANFD *anfd = anfds + fd;
2442 ev_io *w;
2443
2444 unsigned char o_events = anfd->events;
2445 unsigned char o_reify = anfd->reify;
439 2446
440 anfd->reify = 0; 2447 anfd->reify = 0;
441 2448
442 method_modify (EV_A_ fd, anfd->events, events); 2449 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2450 {
443 anfd->events = events; 2451 anfd->events = 0;
444 }
445 2452
2453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2454 anfd->events |= (unsigned char)w->events;
2455
2456 if (o_events != anfd->events)
2457 o_reify = EV__IOFDSET; /* actually |= */
2458 }
2459
2460 if (o_reify & EV__IOFDSET)
2461 backend_modify (EV_A_ fd, o_events, anfd->events);
2462 }
2463
2464 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2465 * this is a rare case (see beginning comment in this function), so we copy them to the
2466 * front and hope the backend handles this case.
2467 */
2468 if (ecb_expect_false (fdchangecnt != changecnt))
2469 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2470
446 fdchangecnt = 0; 2471 fdchangecnt -= changecnt;
447} 2472}
448 2473
449static void 2474/* something about the given fd changed */
2475inline_size
2476void
450fd_change (EV_P_ int fd) 2477fd_change (EV_P_ int fd, int flags)
451{ 2478{
452 if (expect_false (anfds [fd].reify)) 2479 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 2480 anfds [fd].reify = reify | flags;
456 2481
2482 if (ecb_expect_true (!reify))
2483 {
457 ++fdchangecnt; 2484 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
459 fdchanges [fdchangecnt - 1] = fd; 2486 fdchanges [fdchangecnt - 1] = fd;
2487 }
460} 2488}
461 2489
462static void 2490/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2491inline_speed ecb_cold void
463fd_kill (EV_P_ int fd) 2492fd_kill (EV_P_ int fd)
464{ 2493{
465 struct ev_io *w; 2494 ev_io *w;
466 2495
467 while ((w = (struct ev_io *)anfds [fd].head)) 2496 while ((w = (ev_io *)anfds [fd].head))
468 { 2497 {
469 ev_io_stop (EV_A_ w); 2498 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2499 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 2500 }
472} 2501}
473 2502
474inline int 2503/* check whether the given fd is actually valid, for error recovery */
2504inline_size ecb_cold int
475fd_valid (int fd) 2505fd_valid (int fd)
476{ 2506{
477#ifdef _WIN32 2507#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 2508 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 2509#else
480 return fcntl (fd, F_GETFD) != -1; 2510 return fcntl (fd, F_GETFD) != -1;
481#endif 2511#endif
482} 2512}
483 2513
484/* called on EBADF to verify fds */ 2514/* called on EBADF to verify fds */
2515ecb_noinline ecb_cold
485static void 2516static void
486fd_ebadf (EV_P) 2517fd_ebadf (EV_P)
487{ 2518{
488 int fd; 2519 int fd;
489 2520
490 for (fd = 0; fd < anfdmax; ++fd) 2521 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 2522 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 2523 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 2524 fd_kill (EV_A_ fd);
494} 2525}
495 2526
496/* called on ENOMEM in select/poll to kill some fds and retry */ 2527/* called on ENOMEM in select/poll to kill some fds and retry */
2528ecb_noinline ecb_cold
497static void 2529static void
498fd_enomem (EV_P) 2530fd_enomem (EV_P)
499{ 2531{
500 int fd; 2532 int fd;
501 2533
502 for (fd = anfdmax; fd--; ) 2534 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 2535 if (anfds [fd].events)
504 { 2536 {
505 fd_kill (EV_A_ fd); 2537 fd_kill (EV_A_ fd);
506 return; 2538 break;
507 } 2539 }
508} 2540}
509 2541
510/* usually called after fork if method needs to re-arm all fds from scratch */ 2542/* usually called after fork if backend needs to re-arm all fds from scratch */
2543ecb_noinline
511static void 2544static void
512fd_rearm_all (EV_P) 2545fd_rearm_all (EV_P)
513{ 2546{
514 int fd; 2547 int fd;
515 2548
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 2549 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 2550 if (anfds [fd].events)
519 { 2551 {
520 anfds [fd].events = 0; 2552 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 2553 anfds [fd].emask = 0;
2554 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 2555 }
523} 2556}
524 2557
525/*****************************************************************************/ 2558/* used to prepare libev internal fd's */
526 2559/* this is not fork-safe */
527static void
528upheap (WT *heap, int k)
529{
530 WT w = heap [k];
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 }
538
539 heap [k] = w;
540 ((W)heap [k])->active = k + 1;
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566}
567
568inline void 2560inline_speed void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574
575/*****************************************************************************/
576
577typedef struct
578{
579 WL head;
580 sig_atomic_t volatile gotsig;
581} ANSIG;
582
583static ANSIG *signals;
584static int signalmax;
585
586static int sigpipe [2];
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589
590static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 2561fd_intern (int fd)
655{ 2562{
656#ifdef _WIN32 2563#ifdef _WIN32
657 int arg = 1; 2564 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2565 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
659#else 2566#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 2567 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 2568 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 2569#endif
663} 2570}
664 2571
2572/*****************************************************************************/
2573
2574/*
2575 * the heap functions want a real array index. array index 0 is guaranteed to not
2576 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2577 * the branching factor of the d-tree.
2578 */
2579
2580/*
2581 * at the moment we allow libev the luxury of two heaps,
2582 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2583 * which is more cache-efficient.
2584 * the difference is about 5% with 50000+ watchers.
2585 */
2586#if EV_USE_4HEAP
2587
2588#define DHEAP 4
2589#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2590#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2591#define UPHEAP_DONE(p,k) ((p) == (k))
2592
2593/* away from the root */
2594inline_speed void
2595downheap (ANHE *heap, int N, int k)
2596{
2597 ANHE he = heap [k];
2598 ANHE *E = heap + N + HEAP0;
2599
2600 for (;;)
2601 {
2602 ev_tstamp minat;
2603 ANHE *minpos;
2604 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2605
2606 /* find minimum child */
2607 if (ecb_expect_true (pos + DHEAP - 1 < E))
2608 {
2609 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2610 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2611 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2612 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2613 }
2614 else if (pos < E)
2615 {
2616 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2617 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2618 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2619 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2620 }
2621 else
2622 break;
2623
2624 if (ANHE_at (he) <= minat)
2625 break;
2626
2627 heap [k] = *minpos;
2628 ev_active (ANHE_w (*minpos)) = k;
2629
2630 k = minpos - heap;
2631 }
2632
2633 heap [k] = he;
2634 ev_active (ANHE_w (he)) = k;
2635}
2636
2637#else /* not 4HEAP */
2638
2639#define HEAP0 1
2640#define HPARENT(k) ((k) >> 1)
2641#define UPHEAP_DONE(p,k) (!(p))
2642
2643/* away from the root */
2644inline_speed void
2645downheap (ANHE *heap, int N, int k)
2646{
2647 ANHE he = heap [k];
2648
2649 for (;;)
2650 {
2651 int c = k << 1;
2652
2653 if (c >= N + HEAP0)
2654 break;
2655
2656 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2657 ? 1 : 0;
2658
2659 if (ANHE_at (he) <= ANHE_at (heap [c]))
2660 break;
2661
2662 heap [k] = heap [c];
2663 ev_active (ANHE_w (heap [k])) = k;
2664
2665 k = c;
2666 }
2667
2668 heap [k] = he;
2669 ev_active (ANHE_w (he)) = k;
2670}
2671#endif
2672
2673/* towards the root */
2674inline_speed void
2675upheap (ANHE *heap, int k)
2676{
2677 ANHE he = heap [k];
2678
2679 for (;;)
2680 {
2681 int p = HPARENT (k);
2682
2683 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2684 break;
2685
2686 heap [k] = heap [p];
2687 ev_active (ANHE_w (heap [k])) = k;
2688 k = p;
2689 }
2690
2691 heap [k] = he;
2692 ev_active (ANHE_w (he)) = k;
2693}
2694
2695/* move an element suitably so it is in a correct place */
2696inline_size void
2697adjustheap (ANHE *heap, int N, int k)
2698{
2699 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2700 upheap (heap, k);
2701 else
2702 downheap (heap, N, k);
2703}
2704
2705/* rebuild the heap: this function is used only once and executed rarely */
2706inline_size void
2707reheap (ANHE *heap, int N)
2708{
2709 int i;
2710
2711 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2712 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2713 for (i = 0; i < N; ++i)
2714 upheap (heap, i + HEAP0);
2715}
2716
2717/*****************************************************************************/
2718
2719/* associate signal watchers to a signal */
2720typedef struct
2721{
2722 EV_ATOMIC_T pending;
2723#if EV_MULTIPLICITY
2724 EV_P;
2725#endif
2726 WL head;
2727} ANSIG;
2728
2729static ANSIG signals [EV_NSIG - 1];
2730
2731/*****************************************************************************/
2732
2733#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2734
2735ecb_noinline ecb_cold
665static void 2736static void
666siginit (EV_P) 2737evpipe_init (EV_P)
667{ 2738{
668 fd_intern (sigpipe [0]); 2739 if (!ev_is_active (&pipe_w))
2740 {
2741 int fds [2];
2742
2743# if EV_USE_EVENTFD
2744 fds [0] = -1;
2745 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2746 if (fds [1] < 0 && errno == EINVAL)
2747 fds [1] = eventfd (0, 0);
2748
2749 if (fds [1] < 0)
2750# endif
2751 {
2752 while (pipe (fds))
2753 ev_syserr ("(libev) error creating signal/async pipe");
2754
2755 fd_intern (fds [0]);
2756 }
2757
2758 evpipe [0] = fds [0];
2759
2760 if (evpipe [1] < 0)
2761 evpipe [1] = fds [1]; /* first call, set write fd */
2762 else
2763 {
2764 /* on subsequent calls, do not change evpipe [1] */
2765 /* so that evpipe_write can always rely on its value. */
2766 /* this branch does not do anything sensible on windows, */
2767 /* so must not be executed on windows */
2768
2769 dup2 (fds [1], evpipe [1]);
2770 close (fds [1]);
2771 }
2772
669 fd_intern (sigpipe [1]); 2773 fd_intern (evpipe [1]);
670 2774
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 2775 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
672 ev_io_start (EV_A_ &sigev); 2776 ev_io_start (EV_A_ &pipe_w);
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2777 ev_unref (EV_A); /* watcher should not keep loop alive */
2778 }
2779}
2780
2781inline_speed void
2782evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2783{
2784 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2785
2786 if (ecb_expect_true (*flag))
2787 return;
2788
2789 *flag = 1;
2790 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2791
2792 pipe_write_skipped = 1;
2793
2794 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2795
2796 if (pipe_write_wanted)
2797 {
2798 int old_errno;
2799
2800 pipe_write_skipped = 0;
2801 ECB_MEMORY_FENCE_RELEASE;
2802
2803 old_errno = errno; /* save errno because write will clobber it */
2804
2805#if EV_USE_EVENTFD
2806 if (evpipe [0] < 0)
2807 {
2808 uint64_t counter = 1;
2809 write (evpipe [1], &counter, sizeof (uint64_t));
2810 }
2811 else
2812#endif
2813 {
2814#ifdef _WIN32
2815 WSABUF buf;
2816 DWORD sent;
2817 buf.buf = (char *)&buf;
2818 buf.len = 1;
2819 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2820#else
2821 write (evpipe [1], &(evpipe [1]), 1);
2822#endif
2823 }
2824
2825 errno = old_errno;
2826 }
2827}
2828
2829/* called whenever the libev signal pipe */
2830/* got some events (signal, async) */
2831static void
2832pipecb (EV_P_ ev_io *iow, int revents)
2833{
2834 int i;
2835
2836 if (revents & EV_READ)
2837 {
2838#if EV_USE_EVENTFD
2839 if (evpipe [0] < 0)
2840 {
2841 uint64_t counter;
2842 read (evpipe [1], &counter, sizeof (uint64_t));
2843 }
2844 else
2845#endif
2846 {
2847 char dummy[4];
2848#ifdef _WIN32
2849 WSABUF buf;
2850 DWORD recvd;
2851 DWORD flags = 0;
2852 buf.buf = dummy;
2853 buf.len = sizeof (dummy);
2854 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2855#else
2856 read (evpipe [0], &dummy, sizeof (dummy));
2857#endif
2858 }
2859 }
2860
2861 pipe_write_skipped = 0;
2862
2863 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2864
2865#if EV_SIGNAL_ENABLE
2866 if (sig_pending)
2867 {
2868 sig_pending = 0;
2869
2870 ECB_MEMORY_FENCE;
2871
2872 for (i = EV_NSIG - 1; i--; )
2873 if (ecb_expect_false (signals [i].pending))
2874 ev_feed_signal_event (EV_A_ i + 1);
2875 }
2876#endif
2877
2878#if EV_ASYNC_ENABLE
2879 if (async_pending)
2880 {
2881 async_pending = 0;
2882
2883 ECB_MEMORY_FENCE;
2884
2885 for (i = asynccnt; i--; )
2886 if (asyncs [i]->sent)
2887 {
2888 asyncs [i]->sent = 0;
2889 ECB_MEMORY_FENCE_RELEASE;
2890 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2891 }
2892 }
2893#endif
674} 2894}
675 2895
676/*****************************************************************************/ 2896/*****************************************************************************/
677 2897
678static struct ev_child *childs [PID_HASHSIZE]; 2898void
2899ev_feed_signal (int signum) EV_NOEXCEPT
2900{
2901#if EV_MULTIPLICITY
2902 EV_P;
2903 ECB_MEMORY_FENCE_ACQUIRE;
2904 EV_A = signals [signum - 1].loop;
679 2905
2906 if (!EV_A)
2907 return;
2908#endif
2909
2910 signals [signum - 1].pending = 1;
2911 evpipe_write (EV_A_ &sig_pending);
2912}
2913
2914static void
2915ev_sighandler (int signum)
2916{
680#ifndef _WIN32 2917#ifdef _WIN32
2918 signal (signum, ev_sighandler);
2919#endif
681 2920
2921 ev_feed_signal (signum);
2922}
2923
2924ecb_noinline
2925void
2926ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2927{
2928 WL w;
2929
2930 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2931 return;
2932
2933 --signum;
2934
2935#if EV_MULTIPLICITY
2936 /* it is permissible to try to feed a signal to the wrong loop */
2937 /* or, likely more useful, feeding a signal nobody is waiting for */
2938
2939 if (ecb_expect_false (signals [signum].loop != EV_A))
2940 return;
2941#endif
2942
2943 signals [signum].pending = 0;
2944 ECB_MEMORY_FENCE_RELEASE;
2945
2946 for (w = signals [signum].head; w; w = w->next)
2947 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2948}
2949
2950#if EV_USE_SIGNALFD
2951static void
2952sigfdcb (EV_P_ ev_io *iow, int revents)
2953{
2954 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2955
2956 for (;;)
2957 {
2958 ssize_t res = read (sigfd, si, sizeof (si));
2959
2960 /* not ISO-C, as res might be -1, but works with SuS */
2961 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2962 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2963
2964 if (res < (ssize_t)sizeof (si))
2965 break;
2966 }
2967}
2968#endif
2969
2970#endif
2971
2972/*****************************************************************************/
2973
2974#if EV_CHILD_ENABLE
2975static WL childs [EV_PID_HASHSIZE];
2976
682static struct ev_signal childev; 2977static ev_signal childev;
2978
2979#ifndef WIFCONTINUED
2980# define WIFCONTINUED(status) 0
2981#endif
2982
2983/* handle a single child status event */
2984inline_speed void
2985child_reap (EV_P_ int chain, int pid, int status)
2986{
2987 ev_child *w;
2988 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2989
2990 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2991 {
2992 if ((w->pid == pid || !w->pid)
2993 && (!traced || (w->flags & 1)))
2994 {
2995 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2996 w->rpid = pid;
2997 w->rstatus = status;
2998 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2999 }
3000 }
3001}
683 3002
684#ifndef WCONTINUED 3003#ifndef WCONTINUED
685# define WCONTINUED 0 3004# define WCONTINUED 0
686#endif 3005#endif
687 3006
3007/* called on sigchld etc., calls waitpid */
688static void 3008static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 3009childcb (EV_P_ ev_signal *sw, int revents)
690{ 3010{
691 struct ev_child *w; 3011 int pid, status;
692 3012
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 3013 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (w->pid == pid || !w->pid) 3014 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 3015 if (!WCONTINUED
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 3016 || errno != EINVAL
697 w->rpid = pid; 3017 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
698 w->rstatus = status; 3018 return;
3019
3020 /* make sure we are called again until all children have been reaped */
3021 /* we need to do it this way so that the callback gets called before we continue */
699 ev_feed_event (EV_A_ (W)w, EV_CHILD); 3022 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
700 } 3023
3024 child_reap (EV_A_ pid, pid, status);
3025 if ((EV_PID_HASHSIZE) > 1)
3026 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701} 3027}
3028
3029#endif
3030
3031/*****************************************************************************/
3032
3033#if EV_USE_TIMERFD
3034
3035static void periodics_reschedule (EV_P);
702 3036
703static void 3037static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 3038timerfdcb (EV_P_ ev_io *iow, int revents)
705{ 3039{
706 int pid, status; 3040 struct itimerspec its = { 0 };
707 3041
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 3042 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
709 { 3043 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
710 /* make sure we are called again until all childs have been reaped */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 3044
713 child_reap (EV_A_ sw, pid, pid, status); 3045 ev_rt_now = ev_time ();
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 3046 /* periodics_reschedule only needs ev_rt_now */
3047 /* but maybe in the future we want the full treatment. */
3048 /*
3049 now_floor = EV_TS_CONST (0.);
3050 time_update (EV_A_ EV_TSTAMP_HUGE);
3051 */
3052#if EV_PERIODIC_ENABLE
3053 periodics_reschedule (EV_A);
3054#endif
3055}
3056
3057ecb_noinline ecb_cold
3058static void
3059evtimerfd_init (EV_P)
3060{
3061 if (!ev_is_active (&timerfd_w))
3062 {
3063 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3064
3065 if (timerfd >= 0)
3066 {
3067 fd_intern (timerfd); /* just to be sure */
3068
3069 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3070 ev_set_priority (&timerfd_w, EV_MINPRI);
3071 ev_io_start (EV_A_ &timerfd_w);
3072 ev_unref (EV_A); /* watcher should not keep loop alive */
3073
3074 /* (re-) arm timer */
3075 timerfdcb (EV_A_ 0, 0);
3076 }
715 } 3077 }
716} 3078}
717 3079
718#endif 3080#endif
719 3081
720/*****************************************************************************/ 3082/*****************************************************************************/
721 3083
3084#if EV_USE_IOCP
3085# include "ev_iocp.c"
3086#endif
722#if EV_USE_PORT 3087#if EV_USE_PORT
723# include "ev_port.c" 3088# include "ev_port.c"
724#endif 3089#endif
725#if EV_USE_KQUEUE 3090#if EV_USE_KQUEUE
726# include "ev_kqueue.c" 3091# include "ev_kqueue.c"
727#endif 3092#endif
728#if EV_USE_EPOLL 3093#if EV_USE_EPOLL
729# include "ev_epoll.c" 3094# include "ev_epoll.c"
730#endif 3095#endif
3096#if EV_USE_LINUXAIO
3097# include "ev_linuxaio.c"
3098#endif
3099#if EV_USE_IOURING
3100# include "ev_iouring.c"
3101#endif
731#if EV_USE_POLL 3102#if EV_USE_POLL
732# include "ev_poll.c" 3103# include "ev_poll.c"
733#endif 3104#endif
734#if EV_USE_SELECT 3105#if EV_USE_SELECT
735# include "ev_select.c" 3106# include "ev_select.c"
736#endif 3107#endif
737 3108
738int 3109ecb_cold int
739ev_version_major (void) 3110ev_version_major (void) EV_NOEXCEPT
740{ 3111{
741 return EV_VERSION_MAJOR; 3112 return EV_VERSION_MAJOR;
742} 3113}
743 3114
744int 3115ecb_cold int
745ev_version_minor (void) 3116ev_version_minor (void) EV_NOEXCEPT
746{ 3117{
747 return EV_VERSION_MINOR; 3118 return EV_VERSION_MINOR;
748} 3119}
749 3120
750/* return true if we are running with elevated privileges and should ignore env variables */ 3121/* return true if we are running with elevated privileges and should ignore env variables */
751static int 3122inline_size ecb_cold int
752enable_secure (void) 3123enable_secure (void)
753{ 3124{
754#ifdef _WIN32 3125#ifdef _WIN32
755 return 0; 3126 return 0;
756#else 3127#else
757 return getuid () != geteuid () 3128 return getuid () != geteuid ()
758 || getgid () != getegid (); 3129 || getgid () != getegid ();
759#endif 3130#endif
760} 3131}
761 3132
3133ecb_cold
762unsigned int 3134unsigned int
763ev_method (EV_P) 3135ev_supported_backends (void) EV_NOEXCEPT
764{ 3136{
765 return method; 3137 unsigned int flags = 0;
766}
767 3138
3139 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
3140 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
3141 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
3142 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
3143 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
3144 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3145 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3146
3147 return flags;
3148}
3149
3150ecb_cold
3151unsigned int
3152ev_recommended_backends (void) EV_NOEXCEPT
3153{
3154 unsigned int flags = ev_supported_backends ();
3155
3156#ifndef __NetBSD__
3157 /* kqueue is borked on everything but netbsd apparently */
3158 /* it usually doesn't work correctly on anything but sockets and pipes */
3159 flags &= ~EVBACKEND_KQUEUE;
3160#endif
3161#ifdef __APPLE__
3162 /* only select works correctly on that "unix-certified" platform */
3163 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3164 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3165#endif
3166#ifdef __FreeBSD__
3167 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3168#endif
3169
3170 /* TODO: linuxaio is very experimental */
3171#if !EV_RECOMMEND_LINUXAIO
3172 flags &= ~EVBACKEND_LINUXAIO;
3173#endif
3174 /* TODO: iouring is super experimental */
3175#if !EV_RECOMMEND_IOURING
3176 flags &= ~EVBACKEND_IOURING;
3177#endif
3178
3179 return flags;
3180}
3181
3182ecb_cold
3183unsigned int
3184ev_embeddable_backends (void) EV_NOEXCEPT
3185{
3186 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
3187
3188 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3189 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3190 flags &= ~EVBACKEND_EPOLL;
3191
3192 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3193
3194 return flags;
3195}
3196
3197unsigned int
3198ev_backend (EV_P) EV_NOEXCEPT
3199{
3200 return backend;
3201}
3202
3203#if EV_FEATURE_API
3204unsigned int
3205ev_iteration (EV_P) EV_NOEXCEPT
3206{
3207 return loop_count;
3208}
3209
3210unsigned int
3211ev_depth (EV_P) EV_NOEXCEPT
3212{
3213 return loop_depth;
3214}
3215
3216void
3217ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3218{
3219 io_blocktime = interval;
3220}
3221
3222void
3223ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3224{
3225 timeout_blocktime = interval;
3226}
3227
3228void
3229ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3230{
3231 userdata = data;
3232}
3233
3234void *
3235ev_userdata (EV_P) EV_NOEXCEPT
3236{
3237 return userdata;
3238}
3239
3240void
3241ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3242{
3243 invoke_cb = invoke_pending_cb;
3244}
3245
3246void
3247ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3248{
3249 release_cb = release;
3250 acquire_cb = acquire;
3251}
3252#endif
3253
3254/* initialise a loop structure, must be zero-initialised */
3255ecb_noinline ecb_cold
768static void 3256static void
769loop_init (EV_P_ unsigned int flags) 3257loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
770{ 3258{
771 if (!method) 3259 if (!backend)
772 { 3260 {
3261 origflags = flags;
3262
3263#if EV_USE_REALTIME
3264 if (!have_realtime)
3265 {
3266 struct timespec ts;
3267
3268 if (!clock_gettime (CLOCK_REALTIME, &ts))
3269 have_realtime = 1;
3270 }
3271#endif
3272
773#if EV_USE_MONOTONIC 3273#if EV_USE_MONOTONIC
3274 if (!have_monotonic)
774 { 3275 {
775 struct timespec ts; 3276 struct timespec ts;
3277
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3278 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 3279 have_monotonic = 1;
778 } 3280 }
779#endif 3281#endif
780 3282
781 ev_rt_now = ev_time (); 3283 /* pid check not overridable via env */
782 mn_now = get_clock (); 3284#ifndef _WIN32
783 now_floor = mn_now; 3285 if (flags & EVFLAG_FORKCHECK)
784 rtmn_diff = ev_rt_now - mn_now; 3286 curpid = getpid ();
3287#endif
785 3288
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 3289 if (!(flags & EVFLAG_NOENV)
3290 && !enable_secure ()
3291 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 3292 flags = atoi (getenv ("LIBEV_FLAGS"));
788 3293
789 if (!(flags & 0x0000ffff)) 3294 ev_rt_now = ev_time ();
790 flags |= 0x0000ffff; 3295 mn_now = get_clock ();
3296 now_floor = mn_now;
3297 rtmn_diff = ev_rt_now - mn_now;
3298#if EV_FEATURE_API
3299 invoke_cb = ev_invoke_pending;
3300#endif
791 3301
792 method = 0; 3302 io_blocktime = 0.;
3303 timeout_blocktime = 0.;
3304 backend = 0;
3305 backend_fd = -1;
3306 sig_pending = 0;
3307#if EV_ASYNC_ENABLE
3308 async_pending = 0;
3309#endif
3310 pipe_write_skipped = 0;
3311 pipe_write_wanted = 0;
3312 evpipe [0] = -1;
3313 evpipe [1] = -1;
3314#if EV_USE_INOTIFY
3315 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3316#endif
3317#if EV_USE_SIGNALFD
3318 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3319#endif
3320#if EV_USE_TIMERFD
3321 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3322#endif
3323
3324 if (!(flags & EVBACKEND_MASK))
3325 flags |= ev_recommended_backends ();
3326
3327#if EV_USE_IOCP
3328 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3329#endif
793#if EV_USE_PORT 3330#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 3331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 3332#endif
796#if EV_USE_KQUEUE 3333#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 3334 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3335#endif
3336#if EV_USE_IOURING
3337 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3338#endif
3339#if EV_USE_LINUXAIO
3340 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
798#endif 3341#endif
799#if EV_USE_EPOLL 3342#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 3343 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 3344#endif
802#if EV_USE_POLL 3345#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 3346 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 3347#endif
805#if EV_USE_SELECT 3348#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 3349 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
807#endif 3350#endif
808 3351
3352 ev_prepare_init (&pending_w, pendingcb);
3353
3354#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
809 ev_init (&sigev, sigcb); 3355 ev_init (&pipe_w, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 3356 ev_set_priority (&pipe_w, EV_MAXPRI);
811 }
812}
813
814static void
815loop_destroy (EV_P)
816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif 3357#endif
822#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
824#endif
825#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
827#endif
828#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
830#endif
831#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
833#endif
834
835 for (i = NUMPRI; i--; )
836 array_free (pending, [i]);
837
838 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0);
840 array_free (timer, EMPTY0);
841#if EV_PERIODICS
842 array_free (periodic, EMPTY0);
843#endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 { 3358 }
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 3359}
881 3360
882#if EV_MULTIPLICITY 3361/* free up a loop structure */
883struct ev_loop * 3362ecb_cold
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void 3363void
899ev_loop_destroy (EV_P) 3364ev_loop_destroy (EV_P)
900{ 3365{
901 loop_destroy (EV_A); 3366 int i;
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912 3367
913#if EV_MULTIPLICITY 3368#if EV_MULTIPLICITY
3369 /* mimic free (0) */
3370 if (!EV_A)
3371 return;
3372#endif
3373
3374#if EV_CLEANUP_ENABLE
3375 /* queue cleanup watchers (and execute them) */
3376 if (ecb_expect_false (cleanupcnt))
3377 {
3378 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3379 EV_INVOKE_PENDING;
3380 }
3381#endif
3382
3383#if EV_CHILD_ENABLE
3384 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3385 {
3386 ev_ref (EV_A); /* child watcher */
3387 ev_signal_stop (EV_A_ &childev);
3388 }
3389#endif
3390
3391 if (ev_is_active (&pipe_w))
3392 {
3393 /*ev_ref (EV_A);*/
3394 /*ev_io_stop (EV_A_ &pipe_w);*/
3395
3396 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3397 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3398 }
3399
3400#if EV_USE_SIGNALFD
3401 if (ev_is_active (&sigfd_w))
3402 close (sigfd);
3403#endif
3404
3405#if EV_USE_TIMERFD
3406 if (ev_is_active (&timerfd_w))
3407 close (timerfd);
3408#endif
3409
3410#if EV_USE_INOTIFY
3411 if (fs_fd >= 0)
3412 close (fs_fd);
3413#endif
3414
3415 if (backend_fd >= 0)
3416 close (backend_fd);
3417
3418#if EV_USE_IOCP
3419 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3420#endif
3421#if EV_USE_PORT
3422 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3423#endif
3424#if EV_USE_KQUEUE
3425 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3426#endif
3427#if EV_USE_IOURING
3428 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3429#endif
3430#if EV_USE_LINUXAIO
3431 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3432#endif
3433#if EV_USE_EPOLL
3434 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3435#endif
3436#if EV_USE_POLL
3437 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3438#endif
3439#if EV_USE_SELECT
3440 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3441#endif
3442
3443 for (i = NUMPRI; i--; )
3444 {
3445 array_free (pending, [i]);
3446#if EV_IDLE_ENABLE
3447 array_free (idle, [i]);
3448#endif
3449 }
3450
3451 ev_free (anfds); anfds = 0; anfdmax = 0;
3452
3453 /* have to use the microsoft-never-gets-it-right macro */
3454 array_free (rfeed, EMPTY);
3455 array_free (fdchange, EMPTY);
3456 array_free (timer, EMPTY);
3457#if EV_PERIODIC_ENABLE
3458 array_free (periodic, EMPTY);
3459#endif
3460#if EV_FORK_ENABLE
3461 array_free (fork, EMPTY);
3462#endif
3463#if EV_CLEANUP_ENABLE
3464 array_free (cleanup, EMPTY);
3465#endif
3466 array_free (prepare, EMPTY);
3467 array_free (check, EMPTY);
3468#if EV_ASYNC_ENABLE
3469 array_free (async, EMPTY);
3470#endif
3471
3472 backend = 0;
3473
3474#if EV_MULTIPLICITY
3475 if (ev_is_default_loop (EV_A))
3476#endif
3477 ev_default_loop_ptr = 0;
3478#if EV_MULTIPLICITY
3479 else
3480 ev_free (EV_A);
3481#endif
3482}
3483
3484#if EV_USE_INOTIFY
3485inline_size void infy_fork (EV_P);
3486#endif
3487
3488inline_size void
3489loop_fork (EV_P)
3490{
3491#if EV_USE_PORT
3492 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3493#endif
3494#if EV_USE_KQUEUE
3495 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3496#endif
3497#if EV_USE_IOURING
3498 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3499#endif
3500#if EV_USE_LINUXAIO
3501 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3502#endif
3503#if EV_USE_EPOLL
3504 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3505#endif
3506#if EV_USE_INOTIFY
3507 infy_fork (EV_A);
3508#endif
3509
3510 if (postfork != 2)
3511 {
3512 #if EV_USE_SIGNALFD
3513 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3514 #endif
3515
3516 #if EV_USE_TIMERFD
3517 if (ev_is_active (&timerfd_w))
3518 {
3519 ev_ref (EV_A);
3520 ev_io_stop (EV_A_ &timerfd_w);
3521
3522 close (timerfd);
3523 timerfd = -2;
3524
3525 evtimerfd_init (EV_A);
3526 /* reschedule periodics, in case we missed something */
3527 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3528 }
3529 #endif
3530
3531 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3532 if (ev_is_active (&pipe_w))
3533 {
3534 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3535
3536 ev_ref (EV_A);
3537 ev_io_stop (EV_A_ &pipe_w);
3538
3539 if (evpipe [0] >= 0)
3540 EV_WIN32_CLOSE_FD (evpipe [0]);
3541
3542 evpipe_init (EV_A);
3543 /* iterate over everything, in case we missed something before */
3544 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3545 }
3546 #endif
3547 }
3548
3549 postfork = 0;
3550}
3551
3552#if EV_MULTIPLICITY
3553
3554ecb_cold
914struct ev_loop * 3555struct ev_loop *
915ev_default_loop_ (unsigned int flags) 3556ev_loop_new (unsigned int flags) EV_NOEXCEPT
3557{
3558 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3559
3560 memset (EV_A, 0, sizeof (struct ev_loop));
3561 loop_init (EV_A_ flags);
3562
3563 if (ev_backend (EV_A))
3564 return EV_A;
3565
3566 ev_free (EV_A);
3567 return 0;
3568}
3569
3570#endif /* multiplicity */
3571
3572#if EV_VERIFY
3573ecb_noinline ecb_cold
3574static void
3575verify_watcher (EV_P_ W w)
3576{
3577 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3578
3579 if (w->pending)
3580 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3581}
3582
3583ecb_noinline ecb_cold
3584static void
3585verify_heap (EV_P_ ANHE *heap, int N)
3586{
3587 int i;
3588
3589 for (i = HEAP0; i < N + HEAP0; ++i)
3590 {
3591 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3592 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3593 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3594
3595 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3596 }
3597}
3598
3599ecb_noinline ecb_cold
3600static void
3601array_verify (EV_P_ W *ws, int cnt)
3602{
3603 while (cnt--)
3604 {
3605 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3606 verify_watcher (EV_A_ ws [cnt]);
3607 }
3608}
3609#endif
3610
3611#if EV_FEATURE_API
3612void ecb_cold
3613ev_verify (EV_P) EV_NOEXCEPT
3614{
3615#if EV_VERIFY
3616 int i;
3617 WL w, w2;
3618
3619 assert (activecnt >= -1);
3620
3621 assert (fdchangemax >= fdchangecnt);
3622 for (i = 0; i < fdchangecnt; ++i)
3623 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3624
3625 assert (anfdmax >= 0);
3626 for (i = 0; i < anfdmax; ++i)
3627 {
3628 int j = 0;
3629
3630 for (w = w2 = anfds [i].head; w; w = w->next)
3631 {
3632 verify_watcher (EV_A_ (W)w);
3633
3634 if (j++ & 1)
3635 {
3636 assert (("libev: io watcher list contains a loop", w != w2));
3637 w2 = w2->next;
3638 }
3639
3640 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3641 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3642 }
3643 }
3644
3645 assert (timermax >= timercnt);
3646 verify_heap (EV_A_ timers, timercnt);
3647
3648#if EV_PERIODIC_ENABLE
3649 assert (periodicmax >= periodiccnt);
3650 verify_heap (EV_A_ periodics, periodiccnt);
3651#endif
3652
3653 for (i = NUMPRI; i--; )
3654 {
3655 assert (pendingmax [i] >= pendingcnt [i]);
3656#if EV_IDLE_ENABLE
3657 assert (idleall >= 0);
3658 assert (idlemax [i] >= idlecnt [i]);
3659 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3660#endif
3661 }
3662
3663#if EV_FORK_ENABLE
3664 assert (forkmax >= forkcnt);
3665 array_verify (EV_A_ (W *)forks, forkcnt);
3666#endif
3667
3668#if EV_CLEANUP_ENABLE
3669 assert (cleanupmax >= cleanupcnt);
3670 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3671#endif
3672
3673#if EV_ASYNC_ENABLE
3674 assert (asyncmax >= asynccnt);
3675 array_verify (EV_A_ (W *)asyncs, asynccnt);
3676#endif
3677
3678#if EV_PREPARE_ENABLE
3679 assert (preparemax >= preparecnt);
3680 array_verify (EV_A_ (W *)prepares, preparecnt);
3681#endif
3682
3683#if EV_CHECK_ENABLE
3684 assert (checkmax >= checkcnt);
3685 array_verify (EV_A_ (W *)checks, checkcnt);
3686#endif
3687
3688# if 0
3689#if EV_CHILD_ENABLE
3690 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3691 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3692#endif
3693# endif
3694#endif
3695}
3696#endif
3697
3698#if EV_MULTIPLICITY
3699ecb_cold
3700struct ev_loop *
916#else 3701#else
917int 3702int
3703#endif
918ev_default_loop (unsigned int flags) 3704ev_default_loop (unsigned int flags) EV_NOEXCEPT
919#endif
920{ 3705{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 3706 if (!ev_default_loop_ptr)
926 { 3707 {
927#if EV_MULTIPLICITY 3708#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3709 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 3710#else
930 ev_default_loop_ptr = 1; 3711 ev_default_loop_ptr = 1;
931#endif 3712#endif
932 3713
933 loop_init (EV_A_ flags); 3714 loop_init (EV_A_ flags);
934 3715
935 if (ev_method (EV_A)) 3716 if (ev_backend (EV_A))
936 { 3717 {
937 siginit (EV_A); 3718#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 3719 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 3720 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 3721 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3722 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 3723#endif
949 3728
950 return ev_default_loop_ptr; 3729 return ev_default_loop_ptr;
951} 3730}
952 3731
953void 3732void
954ev_default_destroy (void) 3733ev_loop_fork (EV_P) EV_NOEXCEPT
955{ 3734{
956#if EV_MULTIPLICITY 3735 postfork = 1;
957 struct ev_loop *loop = ev_default_loop_ptr; 3736}
3737
3738/*****************************************************************************/
3739
3740void
3741ev_invoke (EV_P_ void *w, int revents)
3742{
3743 EV_CB_INVOKE ((W)w, revents);
3744}
3745
3746unsigned int
3747ev_pending_count (EV_P) EV_NOEXCEPT
3748{
3749 int pri;
3750 unsigned int count = 0;
3751
3752 for (pri = NUMPRI; pri--; )
3753 count += pendingcnt [pri];
3754
3755 return count;
3756}
3757
3758ecb_noinline
3759void
3760ev_invoke_pending (EV_P)
3761{
3762 pendingpri = NUMPRI;
3763
3764 do
3765 {
3766 --pendingpri;
3767
3768 /* pendingpri possibly gets modified in the inner loop */
3769 while (pendingcnt [pendingpri])
3770 {
3771 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3772
3773 p->w->pending = 0;
3774 EV_CB_INVOKE (p->w, p->events);
3775 EV_FREQUENT_CHECK;
3776 }
3777 }
3778 while (pendingpri);
3779}
3780
3781#if EV_IDLE_ENABLE
3782/* make idle watchers pending. this handles the "call-idle */
3783/* only when higher priorities are idle" logic */
3784inline_size void
3785idle_reify (EV_P)
3786{
3787 if (ecb_expect_false (idleall))
3788 {
3789 int pri;
3790
3791 for (pri = NUMPRI; pri--; )
3792 {
3793 if (pendingcnt [pri])
3794 break;
3795
3796 if (idlecnt [pri])
3797 {
3798 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3799 break;
3800 }
3801 }
3802 }
3803}
3804#endif
3805
3806/* make timers pending */
3807inline_size void
3808timers_reify (EV_P)
3809{
3810 EV_FREQUENT_CHECK;
3811
3812 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3813 {
3814 do
3815 {
3816 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3817
3818 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3819
3820 /* first reschedule or stop timer */
3821 if (w->repeat)
3822 {
3823 ev_at (w) += w->repeat;
3824 if (ev_at (w) < mn_now)
3825 ev_at (w) = mn_now;
3826
3827 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3828
3829 ANHE_at_cache (timers [HEAP0]);
3830 downheap (timers, timercnt, HEAP0);
3831 }
3832 else
3833 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3834
3835 EV_FREQUENT_CHECK;
3836 feed_reverse (EV_A_ (W)w);
3837 }
3838 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3839
3840 feed_reverse_done (EV_A_ EV_TIMER);
3841 }
3842}
3843
3844#if EV_PERIODIC_ENABLE
3845
3846ecb_noinline
3847static void
3848periodic_recalc (EV_P_ ev_periodic *w)
3849{
3850 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3851 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3852
3853 /* the above almost always errs on the low side */
3854 while (at <= ev_rt_now)
3855 {
3856 ev_tstamp nat = at + w->interval;
3857
3858 /* when resolution fails us, we use ev_rt_now */
3859 if (ecb_expect_false (nat == at))
3860 {
3861 at = ev_rt_now;
3862 break;
3863 }
3864
3865 at = nat;
3866 }
3867
3868 ev_at (w) = at;
3869}
3870
3871/* make periodics pending */
3872inline_size void
3873periodics_reify (EV_P)
3874{
3875 EV_FREQUENT_CHECK;
3876
3877 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3878 {
3879 do
3880 {
3881 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3882
3883 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3884
3885 /* first reschedule or stop timer */
3886 if (w->reschedule_cb)
3887 {
3888 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3889
3890 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3891
3892 ANHE_at_cache (periodics [HEAP0]);
3893 downheap (periodics, periodiccnt, HEAP0);
3894 }
3895 else if (w->interval)
3896 {
3897 periodic_recalc (EV_A_ w);
3898 ANHE_at_cache (periodics [HEAP0]);
3899 downheap (periodics, periodiccnt, HEAP0);
3900 }
3901 else
3902 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3903
3904 EV_FREQUENT_CHECK;
3905 feed_reverse (EV_A_ (W)w);
3906 }
3907 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3908
3909 feed_reverse_done (EV_A_ EV_PERIODIC);
3910 }
3911}
3912
3913/* simply recalculate all periodics */
3914/* TODO: maybe ensure that at least one event happens when jumping forward? */
3915ecb_noinline ecb_cold
3916static void
3917periodics_reschedule (EV_P)
3918{
3919 int i;
3920
3921 /* adjust periodics after time jump */
3922 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3923 {
3924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3925
3926 if (w->reschedule_cb)
3927 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3928 else if (w->interval)
3929 periodic_recalc (EV_A_ w);
3930
3931 ANHE_at_cache (periodics [i]);
3932 }
3933
3934 reheap (periodics, periodiccnt);
3935}
3936#endif
3937
3938/* adjust all timers by a given offset */
3939ecb_noinline ecb_cold
3940static void
3941timers_reschedule (EV_P_ ev_tstamp adjust)
3942{
3943 int i;
3944
3945 for (i = 0; i < timercnt; ++i)
3946 {
3947 ANHE *he = timers + i + HEAP0;
3948 ANHE_w (*he)->at += adjust;
3949 ANHE_at_cache (*he);
3950 }
3951}
3952
3953/* fetch new monotonic and realtime times from the kernel */
3954/* also detect if there was a timejump, and act accordingly */
3955inline_speed void
3956time_update (EV_P_ ev_tstamp max_block)
3957{
3958#if EV_USE_MONOTONIC
3959 if (ecb_expect_true (have_monotonic))
3960 {
3961 int i;
3962 ev_tstamp odiff = rtmn_diff;
3963
3964 mn_now = get_clock ();
3965
3966 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3967 /* interpolate in the meantime */
3968 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3969 {
3970 ev_rt_now = rtmn_diff + mn_now;
3971 return;
3972 }
3973
3974 now_floor = mn_now;
3975 ev_rt_now = ev_time ();
3976
3977 /* loop a few times, before making important decisions.
3978 * on the choice of "4": one iteration isn't enough,
3979 * in case we get preempted during the calls to
3980 * ev_time and get_clock. a second call is almost guaranteed
3981 * to succeed in that case, though. and looping a few more times
3982 * doesn't hurt either as we only do this on time-jumps or
3983 * in the unlikely event of having been preempted here.
3984 */
3985 for (i = 4; --i; )
3986 {
3987 ev_tstamp diff;
3988 rtmn_diff = ev_rt_now - mn_now;
3989
3990 diff = odiff - rtmn_diff;
3991
3992 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3993 return; /* all is well */
3994
3995 ev_rt_now = ev_time ();
3996 mn_now = get_clock ();
3997 now_floor = mn_now;
3998 }
3999
4000 /* no timer adjustment, as the monotonic clock doesn't jump */
4001 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
4002# if EV_PERIODIC_ENABLE
4003 periodics_reschedule (EV_A);
4004# endif
4005 }
4006 else
4007#endif
4008 {
4009 ev_rt_now = ev_time ();
4010
4011 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
4012 {
4013 /* adjust timers. this is easy, as the offset is the same for all of them */
4014 timers_reschedule (EV_A_ ev_rt_now - mn_now);
4015#if EV_PERIODIC_ENABLE
4016 periodics_reschedule (EV_A);
4017#endif
4018 }
4019
4020 mn_now = ev_rt_now;
4021 }
4022}
4023
4024int
4025ev_run (EV_P_ int flags)
4026{
4027#if EV_FEATURE_API
4028 ++loop_depth;
4029#endif
4030
4031 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4032
4033 loop_done = EVBREAK_CANCEL;
4034
4035 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
4036
4037 do
4038 {
4039#if EV_VERIFY >= 2
4040 ev_verify (EV_A);
958#endif 4041#endif
959 4042
960#ifndef _WIN32 4043#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */ 4044 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
962 ev_signal_stop (EV_A_ &childev); 4045 if (ecb_expect_false (getpid () != curpid))
4046 {
4047 curpid = getpid ();
4048 postfork = 1;
4049 }
963#endif 4050#endif
964 4051
965 ev_ref (EV_A); /* signal watcher */ 4052#if EV_FORK_ENABLE
966 ev_io_stop (EV_A_ &sigev); 4053 /* we might have forked, so queue fork handlers */
4054 if (ecb_expect_false (postfork))
4055 if (forkcnt)
4056 {
4057 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
4058 EV_INVOKE_PENDING;
4059 }
4060#endif
967 4061
968 close (sigpipe [0]); sigpipe [0] = 0; 4062#if EV_PREPARE_ENABLE
969 close (sigpipe [1]); sigpipe [1] = 0; 4063 /* queue prepare watchers (and execute them) */
4064 if (ecb_expect_false (preparecnt))
4065 {
4066 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
4067 EV_INVOKE_PENDING;
4068 }
4069#endif
970 4070
971 loop_destroy (EV_A); 4071 if (ecb_expect_false (loop_done))
4072 break;
4073
4074 /* we might have forked, so reify kernel state if necessary */
4075 if (ecb_expect_false (postfork))
4076 loop_fork (EV_A);
4077
4078 /* update fd-related kernel structures */
4079 fd_reify (EV_A);
4080
4081 /* calculate blocking time */
4082 {
4083 ev_tstamp waittime = 0.;
4084 ev_tstamp sleeptime = 0.;
4085
4086 /* remember old timestamp for io_blocktime calculation */
4087 ev_tstamp prev_mn_now = mn_now;
4088
4089 /* update time to cancel out callback processing overhead */
4090 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4091
4092 /* from now on, we want a pipe-wake-up */
4093 pipe_write_wanted = 1;
4094
4095 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4096
4097 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
4098 {
4099 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4100
4101#if EV_USE_MONOTONIC
4102 if (ecb_expect_true (have_monotonic))
4103 {
4104#if EV_USE_TIMERFD
4105 /* sleep a lot longer when we can reliably detect timejumps */
4106 if (ecb_expect_true (timerfd != -1))
4107 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4108#endif
4109#if !EV_PERIODIC_ENABLE
4110 /* without periodics but with monotonic clock there is no need */
4111 /* for any time jump detection, so sleep longer */
4112 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4113#endif
4114 }
4115#endif
4116
4117 if (timercnt)
4118 {
4119 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
4120 if (waittime > to) waittime = to;
4121 }
4122
4123#if EV_PERIODIC_ENABLE
4124 if (periodiccnt)
4125 {
4126 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
4127 if (waittime > to) waittime = to;
4128 }
4129#endif
4130
4131 /* don't let timeouts decrease the waittime below timeout_blocktime */
4132 if (ecb_expect_false (waittime < timeout_blocktime))
4133 waittime = timeout_blocktime;
4134
4135 /* now there are two more special cases left, either we have
4136 * already-expired timers, so we should not sleep, or we have timers
4137 * that expire very soon, in which case we need to wait for a minimum
4138 * amount of time for some event loop backends.
4139 */
4140 if (ecb_expect_false (waittime < backend_mintime))
4141 waittime = waittime <= EV_TS_CONST (0.)
4142 ? EV_TS_CONST (0.)
4143 : backend_mintime;
4144
4145 /* extra check because io_blocktime is commonly 0 */
4146 if (ecb_expect_false (io_blocktime))
4147 {
4148 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4149
4150 if (sleeptime > waittime - backend_mintime)
4151 sleeptime = waittime - backend_mintime;
4152
4153 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4154 {
4155 ev_sleep (sleeptime);
4156 waittime -= sleeptime;
4157 }
4158 }
4159 }
4160
4161#if EV_FEATURE_API
4162 ++loop_count;
4163#endif
4164 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
4165 backend_poll (EV_A_ waittime);
4166 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4167
4168 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4169
4170 ECB_MEMORY_FENCE_ACQUIRE;
4171 if (pipe_write_skipped)
4172 {
4173 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4174 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4175 }
4176
4177 /* update ev_rt_now, do magic */
4178 time_update (EV_A_ waittime + sleeptime);
4179 }
4180
4181 /* queue pending timers and reschedule them */
4182 timers_reify (EV_A); /* relative timers called last */
4183#if EV_PERIODIC_ENABLE
4184 periodics_reify (EV_A); /* absolute timers called first */
4185#endif
4186
4187#if EV_IDLE_ENABLE
4188 /* queue idle watchers unless other events are pending */
4189 idle_reify (EV_A);
4190#endif
4191
4192#if EV_CHECK_ENABLE
4193 /* queue check watchers, to be executed first */
4194 if (ecb_expect_false (checkcnt))
4195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4196#endif
4197
4198 EV_INVOKE_PENDING;
4199 }
4200 while (ecb_expect_true (
4201 activecnt
4202 && !loop_done
4203 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4204 ));
4205
4206 if (loop_done == EVBREAK_ONE)
4207 loop_done = EVBREAK_CANCEL;
4208
4209#if EV_FEATURE_API
4210 --loop_depth;
4211#endif
4212
4213 return activecnt;
972} 4214}
973 4215
974void 4216void
975ev_default_fork (void) 4217ev_break (EV_P_ int how) EV_NOEXCEPT
976{ 4218{
977#if EV_MULTIPLICITY 4219 loop_done = how;
978 struct ev_loop *loop = ev_default_loop_ptr; 4220}
979#endif
980 4221
981 if (method) 4222void
982 postfork = 1; 4223ev_ref (EV_P) EV_NOEXCEPT
4224{
4225 ++activecnt;
4226}
4227
4228void
4229ev_unref (EV_P) EV_NOEXCEPT
4230{
4231 --activecnt;
4232}
4233
4234void
4235ev_now_update (EV_P) EV_NOEXCEPT
4236{
4237 time_update (EV_A_ EV_TSTAMP_HUGE);
4238}
4239
4240void
4241ev_suspend (EV_P) EV_NOEXCEPT
4242{
4243 ev_now_update (EV_A);
4244}
4245
4246void
4247ev_resume (EV_P) EV_NOEXCEPT
4248{
4249 ev_tstamp mn_prev = mn_now;
4250
4251 ev_now_update (EV_A);
4252 timers_reschedule (EV_A_ mn_now - mn_prev);
4253#if EV_PERIODIC_ENABLE
4254 /* TODO: really do this? */
4255 periodics_reschedule (EV_A);
4256#endif
983} 4257}
984 4258
985/*****************************************************************************/ 4259/*****************************************************************************/
4260/* singly-linked list management, used when the expected list length is short */
986 4261
987static int 4262inline_size void
988any_pending (EV_P) 4263wlist_add (WL *head, WL elem)
989{ 4264{
990 int pri; 4265 elem->next = *head;
4266 *head = elem;
4267}
991 4268
992 for (pri = NUMPRI; pri--; ) 4269inline_size void
993 if (pendingcnt [pri]) 4270wlist_del (WL *head, WL elem)
994 return 1; 4271{
4272 while (*head)
4273 {
4274 if (ecb_expect_true (*head == elem))
4275 {
4276 *head = elem->next;
4277 break;
4278 }
995 4279
4280 head = &(*head)->next;
4281 }
4282}
4283
4284/* internal, faster, version of ev_clear_pending */
4285inline_speed void
4286clear_pending (EV_P_ W w)
4287{
4288 if (w->pending)
4289 {
4290 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4291 w->pending = 0;
4292 }
4293}
4294
4295int
4296ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4297{
4298 W w_ = (W)w;
4299 int pending = w_->pending;
4300
4301 if (ecb_expect_true (pending))
4302 {
4303 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4304 p->w = (W)&pending_w;
4305 w_->pending = 0;
4306 return p->events;
4307 }
4308 else
996 return 0; 4309 return 0;
997} 4310}
998 4311
999inline void 4312inline_size void
1000call_pending (EV_P) 4313pri_adjust (EV_P_ W w)
1001{ 4314{
1002 int pri; 4315 int pri = ev_priority (w);
4316 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4317 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4318 ev_set_priority (w, pri);
4319}
1003 4320
1004 for (pri = NUMPRI; pri--; ) 4321inline_speed void
1005 while (pendingcnt [pri]) 4322ev_start (EV_P_ W w, int active)
4323{
4324 pri_adjust (EV_A_ w);
4325 w->active = active;
4326 ev_ref (EV_A);
4327}
4328
4329inline_size void
4330ev_stop (EV_P_ W w)
4331{
4332 ev_unref (EV_A);
4333 w->active = 0;
4334}
4335
4336/*****************************************************************************/
4337
4338ecb_noinline
4339void
4340ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4341{
4342 int fd = w->fd;
4343
4344 if (ecb_expect_false (ev_is_active (w)))
4345 return;
4346
4347 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4348 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4349
4350#if EV_VERIFY >= 2
4351 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4352#endif
4353 EV_FREQUENT_CHECK;
4354
4355 ev_start (EV_A_ (W)w, 1);
4356 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4357 wlist_add (&anfds[fd].head, (WL)w);
4358
4359 /* common bug, apparently */
4360 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4361
4362 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4363 w->events &= ~EV__IOFDSET;
4364
4365 EV_FREQUENT_CHECK;
4366}
4367
4368ecb_noinline
4369void
4370ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4371{
4372 clear_pending (EV_A_ (W)w);
4373 if (ecb_expect_false (!ev_is_active (w)))
4374 return;
4375
4376 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4377
4378#if EV_VERIFY >= 2
4379 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4380#endif
4381 EV_FREQUENT_CHECK;
4382
4383 wlist_del (&anfds[w->fd].head, (WL)w);
4384 ev_stop (EV_A_ (W)w);
4385
4386 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4387
4388 EV_FREQUENT_CHECK;
4389}
4390
4391ecb_noinline
4392void
4393ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4394{
4395 if (ecb_expect_false (ev_is_active (w)))
4396 return;
4397
4398 ev_at (w) += mn_now;
4399
4400 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4401
4402 EV_FREQUENT_CHECK;
4403
4404 ++timercnt;
4405 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4406 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4407 ANHE_w (timers [ev_active (w)]) = (WT)w;
4408 ANHE_at_cache (timers [ev_active (w)]);
4409 upheap (timers, ev_active (w));
4410
4411 EV_FREQUENT_CHECK;
4412
4413 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4414}
4415
4416ecb_noinline
4417void
4418ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4419{
4420 clear_pending (EV_A_ (W)w);
4421 if (ecb_expect_false (!ev_is_active (w)))
4422 return;
4423
4424 EV_FREQUENT_CHECK;
4425
4426 {
4427 int active = ev_active (w);
4428
4429 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4430
4431 --timercnt;
4432
4433 if (ecb_expect_true (active < timercnt + HEAP0))
1006 { 4434 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 4435 timers [active] = timers [timercnt + HEAP0];
1008 4436 adjustheap (timers, timercnt, active);
1009 if (expect_true (p->w))
1010 {
1011 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events);
1013 }
1014 } 4437 }
1015} 4438 }
1016 4439
1017inline void 4440 ev_at (w) -= mn_now;
1018timers_reify (EV_P)
1019{
1020 while (timercnt && ((WT)timers [0])->at <= mn_now)
1021 {
1022 struct ev_timer *w = timers [0];
1023 4441
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 4442 ev_stop (EV_A_ (W)w);
1025 4443
1026 /* first reschedule or stop timer */ 4444 EV_FREQUENT_CHECK;
4445}
4446
4447ecb_noinline
4448void
4449ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4450{
4451 EV_FREQUENT_CHECK;
4452
4453 clear_pending (EV_A_ (W)w);
4454
4455 if (ev_is_active (w))
4456 {
1027 if (w->repeat) 4457 if (w->repeat)
1028 { 4458 {
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030
1031 ((WT)w)->at += w->repeat;
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0);
1036 }
1037 else
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 }
1042}
1043
1044#if EV_PERIODICS
1045inline void
1046periodics_reify (EV_P)
1047{
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1049 {
1050 struct ev_periodic *w = periodics [0];
1051
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1053
1054 /* first reschedule or stop timer */
1055 if (w->reschedule_cb)
1056 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now;
1109 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113
1114inline void
1115time_update (EV_P)
1116{
1117 int i;
1118
1119#if EV_USE_MONOTONIC
1120 if (expect_true (have_monotonic))
1121 {
1122 if (time_update_monotonic (EV_A))
1123 {
1124 ev_tstamp odiff = rtmn_diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now;
1129
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1131 return; /* all is well */
1132
1133 ev_rt_now = ev_time ();
1134 mn_now = get_clock ();
1135 now_floor = mn_now;
1136 }
1137
1138# if EV_PERIODICS
1139 periodics_reschedule (EV_A);
1140# endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160
1161 mn_now = ev_rt_now;
1162 }
1163}
1164
1165void
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags)
1181{
1182 double block;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1184
1185 while (activecnt)
1186 {
1187 /* queue check watchers (and execute them) */
1188 if (expect_false (preparecnt))
1189 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A);
1192 }
1193
1194 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork))
1196 loop_fork (EV_A);
1197
1198 /* update fd-related kernel structures */
1199 fd_reify (EV_A);
1200
1201 /* calculate blocking time */
1202
1203 /* we only need this for !monotonic clock or timers, but as we basically
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 {
1211 ev_rt_now = ev_time ();
1212 mn_now = ev_rt_now;
1213 }
1214
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME;
1220
1221 if (timercnt)
1222 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1224 if (block > to) block = to;
1225 }
1226
1227#if EV_PERIODICS
1228 if (periodiccnt)
1229 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1231 if (block > to) block = to;
1232 }
1233#endif
1234
1235 if (expect_false (block < 0.)) block = 0.;
1236 }
1237
1238 method_poll (EV_A_ block);
1239
1240 /* update ev_rt_now, do magic */
1241 time_update (EV_A);
1242
1243 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS
1246 periodics_reify (EV_A); /* absolute timers called first */
1247#endif
1248
1249 /* queue idle watchers unless io or timers are pending */
1250 if (idlecnt && !any_pending (EV_A))
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1252
1253 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256
1257 call_pending (EV_A);
1258
1259 if (expect_false (loop_done))
1260 break;
1261 }
1262
1263 if (loop_done != 2)
1264 loop_done = 0;
1265}
1266
1267void
1268ev_unloop (EV_P_ int how)
1269{
1270 loop_done = how;
1271}
1272
1273/*****************************************************************************/
1274
1275inline void
1276wlist_add (WL *head, WL elem)
1277{
1278 elem->next = *head;
1279 *head = elem;
1280}
1281
1282inline void
1283wlist_del (WL *head, WL elem)
1284{
1285 while (*head)
1286 {
1287 if (*head == elem)
1288 {
1289 *head = elem->next;
1290 return;
1291 }
1292
1293 head = &(*head)->next;
1294 }
1295}
1296
1297inline void
1298ev_clear_pending (EV_P_ W w)
1299{
1300 if (w->pending)
1301 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0;
1304 }
1305}
1306
1307inline void
1308ev_start (EV_P_ W w, int active)
1309{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active;
1314 ev_ref (EV_A);
1315}
1316
1317inline void
1318ev_stop (EV_P_ W w)
1319{
1320 ev_unref (EV_A);
1321 w->active = 0;
1322}
1323
1324/*****************************************************************************/
1325
1326void
1327ev_io_start (EV_P_ struct ev_io *w)
1328{
1329 int fd = w->fd;
1330
1331 if (expect_false (ev_is_active (w)))
1332 return;
1333
1334 assert (("ev_io_start called with negative fd", fd >= 0));
1335
1336 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1339
1340 fd_change (EV_A_ fd);
1341}
1342
1343void
1344ev_io_stop (EV_P_ struct ev_io *w)
1345{
1346 ev_clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w)))
1348 return;
1349
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w);
1354
1355 fd_change (EV_A_ w->fd);
1356}
1357
1358void
1359ev_timer_start (EV_P_ struct ev_timer *w)
1360{
1361 if (expect_false (ev_is_active (w)))
1362 return;
1363
1364 ((WT)w)->at += mn_now;
1365
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367
1368 ev_start (EV_A_ (W)w, ++timercnt);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1370 timers [timercnt - 1] = w;
1371 upheap ((WT *)timers, timercnt - 1);
1372
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1374}
1375
1376void
1377ev_timer_stop (EV_P_ struct ev_timer *w)
1378{
1379 ev_clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w)))
1381 return;
1382
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1384
1385 if (expect_true (((W)w)->active < timercnt--))
1386 {
1387 timers [((W)w)->active - 1] = timers [timercnt];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1389 }
1390
1391 ((WT)w)->at -= mn_now;
1392
1393 ev_stop (EV_A_ (W)w);
1394}
1395
1396void
1397ev_timer_again (EV_P_ struct ev_timer *w)
1398{
1399 if (ev_is_active (w))
1400 {
1401 if (w->repeat)
1402 {
1403 ((WT)w)->at = mn_now + w->repeat; 4459 ev_at (w) = mn_now + w->repeat;
4460 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4461 adjustheap (timers, timercnt, ev_active (w));
1405 } 4462 }
1406 else 4463 else
1407 ev_timer_stop (EV_A_ w); 4464 ev_timer_stop (EV_A_ w);
1408 } 4465 }
1409 else if (w->repeat) 4466 else if (w->repeat)
1410 { 4467 {
1411 w->at = w->repeat; 4468 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 4469 ev_timer_start (EV_A_ w);
1413 } 4470 }
1414}
1415 4471
4472 EV_FREQUENT_CHECK;
4473}
4474
4475ev_tstamp
4476ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4477{
4478 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4479}
4480
1416#if EV_PERIODICS 4481#if EV_PERIODIC_ENABLE
4482ecb_noinline
1417void 4483void
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 4484ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1419{ 4485{
1420 if (expect_false (ev_is_active (w))) 4486 if (ecb_expect_false (ev_is_active (w)))
1421 return; 4487 return;
1422 4488
4489#if EV_USE_TIMERFD
4490 if (timerfd == -2)
4491 evtimerfd_init (EV_A);
4492#endif
4493
1423 if (w->reschedule_cb) 4494 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4495 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 4496 else if (w->interval)
1426 { 4497 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4498 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 4499 periodic_recalc (EV_A_ w);
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 } 4500 }
4501 else
4502 ev_at (w) = w->offset;
1431 4503
4504 EV_FREQUENT_CHECK;
4505
4506 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 4507 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4508 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1434 periodics [periodiccnt - 1] = w; 4509 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 4510 ANHE_at_cache (periodics [ev_active (w)]);
4511 upheap (periodics, ev_active (w));
1436 4512
4513 EV_FREQUENT_CHECK;
4514
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4515 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 4516}
1439 4517
4518ecb_noinline
1440void 4519void
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 4520ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1442{ 4521{
1443 ev_clear_pending (EV_A_ (W)w); 4522 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 4523 if (ecb_expect_false (!ev_is_active (w)))
1445 return; 4524 return;
1446 4525
4526 EV_FREQUENT_CHECK;
4527
4528 {
4529 int active = ev_active (w);
4530
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4531 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 4532
4533 --periodiccnt;
4534
1449 if (expect_true (((W)w)->active < periodiccnt--)) 4535 if (ecb_expect_true (active < periodiccnt + HEAP0))
1450 { 4536 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4537 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4538 adjustheap (periodics, periodiccnt, active);
1453 } 4539 }
4540 }
1454 4541
1455 ev_stop (EV_A_ (W)w); 4542 ev_stop (EV_A_ (W)w);
1456}
1457 4543
4544 EV_FREQUENT_CHECK;
4545}
4546
4547ecb_noinline
1458void 4548void
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 4549ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1460{ 4550{
1461 /* TODO: use adjustheap and recalculation */ 4551 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 4552 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 4553 ev_periodic_start (EV_A_ w);
1464} 4554}
1465#endif 4555#endif
1466 4556
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (expect_false (ev_is_active (w)))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w)))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (expect_false (ev_is_active (w)))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w)))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (expect_false (ev_is_active (w)))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w)))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 4557#ifndef SA_RESTART
1534# define SA_RESTART 0 4558# define SA_RESTART 0
1535#endif 4559#endif
1536 4560
4561#if EV_SIGNAL_ENABLE
4562
4563ecb_noinline
1537void 4564void
1538ev_signal_start (EV_P_ struct ev_signal *w) 4565ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1539{ 4566{
4567 if (ecb_expect_false (ev_is_active (w)))
4568 return;
4569
4570 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4571
1540#if EV_MULTIPLICITY 4572#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4573 assert (("libev: a signal must not be attached to two different loops",
4574 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4575
4576 signals [w->signum - 1].loop = EV_A;
4577 ECB_MEMORY_FENCE_RELEASE;
4578#endif
4579
4580 EV_FREQUENT_CHECK;
4581
4582#if EV_USE_SIGNALFD
4583 if (sigfd == -2)
4584 {
4585 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4586 if (sigfd < 0 && errno == EINVAL)
4587 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4588
4589 if (sigfd >= 0)
4590 {
4591 fd_intern (sigfd); /* doing it twice will not hurt */
4592
4593 sigemptyset (&sigfd_set);
4594
4595 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4596 ev_set_priority (&sigfd_w, EV_MAXPRI);
4597 ev_io_start (EV_A_ &sigfd_w);
4598 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4599 }
4600 }
4601
4602 if (sigfd >= 0)
4603 {
4604 /* TODO: check .head */
4605 sigaddset (&sigfd_set, w->signum);
4606 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4607
4608 signalfd (sigfd, &sigfd_set, 0);
4609 }
4610#endif
4611
4612 ev_start (EV_A_ (W)w, 1);
4613 wlist_add (&signals [w->signum - 1].head, (WL)w);
4614
4615 if (!((WL)w)->next)
4616# if EV_USE_SIGNALFD
4617 if (sigfd < 0) /*TODO*/
1542#endif 4618# endif
4619 {
4620# ifdef _WIN32
4621 evpipe_init (EV_A);
4622
4623 signal (w->signum, ev_sighandler);
4624# else
4625 struct sigaction sa;
4626
4627 evpipe_init (EV_A);
4628
4629 sa.sa_handler = ev_sighandler;
4630 sigfillset (&sa.sa_mask);
4631 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4632 sigaction (w->signum, &sa, 0);
4633
4634 if (origflags & EVFLAG_NOSIGMASK)
4635 {
4636 sigemptyset (&sa.sa_mask);
4637 sigaddset (&sa.sa_mask, w->signum);
4638 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4639 }
4640#endif
4641 }
4642
4643 EV_FREQUENT_CHECK;
4644}
4645
4646ecb_noinline
4647void
4648ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4649{
4650 clear_pending (EV_A_ (W)w);
1543 if (expect_false (ev_is_active (w))) 4651 if (ecb_expect_false (!ev_is_active (w)))
1544 return; 4652 return;
1545 4653
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4654 EV_FREQUENT_CHECK;
4655
4656 wlist_del (&signals [w->signum - 1].head, (WL)w);
4657 ev_stop (EV_A_ (W)w);
4658
4659 if (!signals [w->signum - 1].head)
4660 {
4661#if EV_MULTIPLICITY
4662 signals [w->signum - 1].loop = 0; /* unattach from signal */
4663#endif
4664#if EV_USE_SIGNALFD
4665 if (sigfd >= 0)
4666 {
4667 sigset_t ss;
4668
4669 sigemptyset (&ss);
4670 sigaddset (&ss, w->signum);
4671 sigdelset (&sigfd_set, w->signum);
4672
4673 signalfd (sigfd, &sigfd_set, 0);
4674 sigprocmask (SIG_UNBLOCK, &ss, 0);
4675 }
4676 else
4677#endif
4678 signal (w->signum, SIG_DFL);
4679 }
4680
4681 EV_FREQUENT_CHECK;
4682}
4683
4684#endif
4685
4686#if EV_CHILD_ENABLE
4687
4688void
4689ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4690{
4691#if EV_MULTIPLICITY
4692 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4693#endif
4694 if (ecb_expect_false (ev_is_active (w)))
4695 return;
4696
4697 EV_FREQUENT_CHECK;
1547 4698
1548 ev_start (EV_A_ (W)w, 1); 4699 ev_start (EV_A_ (W)w, 1);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4700 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 4701
1552 if (!((WL)w)->next) 4702 EV_FREQUENT_CHECK;
4703}
4704
4705void
4706ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4707{
4708 clear_pending (EV_A_ (W)w);
4709 if (ecb_expect_false (!ev_is_active (w)))
4710 return;
4711
4712 EV_FREQUENT_CHECK;
4713
4714 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4715 ev_stop (EV_A_ (W)w);
4716
4717 EV_FREQUENT_CHECK;
4718}
4719
4720#endif
4721
4722#if EV_STAT_ENABLE
4723
4724# ifdef _WIN32
4725# undef lstat
4726# define lstat(a,b) _stati64 (a,b)
4727# endif
4728
4729#define DEF_STAT_INTERVAL 5.0074891
4730#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4731#define MIN_STAT_INTERVAL 0.1074891
4732
4733ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4734
4735#if EV_USE_INOTIFY
4736
4737/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4738# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4739
4740ecb_noinline
4741static void
4742infy_add (EV_P_ ev_stat *w)
4743{
4744 w->wd = inotify_add_watch (fs_fd, w->path,
4745 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4746 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4747 | IN_DONT_FOLLOW | IN_MASK_ADD);
4748
4749 if (w->wd >= 0)
4750 {
4751 struct statfs sfs;
4752
4753 /* now local changes will be tracked by inotify, but remote changes won't */
4754 /* unless the filesystem is known to be local, we therefore still poll */
4755 /* also do poll on <2.6.25, but with normal frequency */
4756
4757 if (!fs_2625)
4758 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4759 else if (!statfs (w->path, &sfs)
4760 && (sfs.f_type == 0x1373 /* devfs */
4761 || sfs.f_type == 0x4006 /* fat */
4762 || sfs.f_type == 0x4d44 /* msdos */
4763 || sfs.f_type == 0xEF53 /* ext2/3 */
4764 || sfs.f_type == 0x72b6 /* jffs2 */
4765 || sfs.f_type == 0x858458f6 /* ramfs */
4766 || sfs.f_type == 0x5346544e /* ntfs */
4767 || sfs.f_type == 0x3153464a /* jfs */
4768 || sfs.f_type == 0x9123683e /* btrfs */
4769 || sfs.f_type == 0x52654973 /* reiser3 */
4770 || sfs.f_type == 0x01021994 /* tmpfs */
4771 || sfs.f_type == 0x58465342 /* xfs */))
4772 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4773 else
4774 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1553 { 4775 }
4776 else
4777 {
4778 /* can't use inotify, continue to stat */
4779 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4780
4781 /* if path is not there, monitor some parent directory for speedup hints */
4782 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4783 /* but an efficiency issue only */
4784 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4785 {
4786 char path [4096];
4787 strcpy (path, w->path);
4788
4789 do
4790 {
4791 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4792 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4793
4794 char *pend = strrchr (path, '/');
4795
4796 if (!pend || pend == path)
4797 break;
4798
4799 *pend = 0;
4800 w->wd = inotify_add_watch (fs_fd, path, mask);
4801 }
4802 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4803 }
4804 }
4805
4806 if (w->wd >= 0)
4807 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4808
4809 /* now re-arm timer, if required */
4810 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4811 ev_timer_again (EV_A_ &w->timer);
4812 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4813}
4814
4815ecb_noinline
4816static void
4817infy_del (EV_P_ ev_stat *w)
4818{
4819 int slot;
4820 int wd = w->wd;
4821
4822 if (wd < 0)
4823 return;
4824
4825 w->wd = -2;
4826 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4827 wlist_del (&fs_hash [slot].head, (WL)w);
4828
4829 /* remove this watcher, if others are watching it, they will rearm */
4830 inotify_rm_watch (fs_fd, wd);
4831}
4832
4833ecb_noinline
4834static void
4835infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4836{
4837 if (slot < 0)
4838 /* overflow, need to check for all hash slots */
4839 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4840 infy_wd (EV_A_ slot, wd, ev);
4841 else
4842 {
4843 WL w_;
4844
4845 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4846 {
4847 ev_stat *w = (ev_stat *)w_;
4848 w_ = w_->next; /* lets us remove this watcher and all before it */
4849
4850 if (w->wd == wd || wd == -1)
4851 {
4852 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4853 {
4854 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4855 w->wd = -1;
4856 infy_add (EV_A_ w); /* re-add, no matter what */
4857 }
4858
4859 stat_timer_cb (EV_A_ &w->timer, 0);
4860 }
4861 }
4862 }
4863}
4864
4865static void
4866infy_cb (EV_P_ ev_io *w, int revents)
4867{
4868 char buf [EV_INOTIFY_BUFSIZE];
4869 int ofs;
4870 int len = read (fs_fd, buf, sizeof (buf));
4871
4872 for (ofs = 0; ofs < len; )
4873 {
4874 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4875 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4876 ofs += sizeof (struct inotify_event) + ev->len;
4877 }
4878}
4879
4880inline_size ecb_cold
4881void
4882ev_check_2625 (EV_P)
4883{
4884 /* kernels < 2.6.25 are borked
4885 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4886 */
4887 if (ev_linux_version () < 0x020619)
4888 return;
4889
4890 fs_2625 = 1;
4891}
4892
4893inline_size int
4894infy_newfd (void)
4895{
4896#if defined IN_CLOEXEC && defined IN_NONBLOCK
4897 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4898 if (fd >= 0)
4899 return fd;
4900#endif
4901 return inotify_init ();
4902}
4903
4904inline_size void
4905infy_init (EV_P)
4906{
4907 if (fs_fd != -2)
4908 return;
4909
4910 fs_fd = -1;
4911
4912 ev_check_2625 (EV_A);
4913
4914 fs_fd = infy_newfd ();
4915
4916 if (fs_fd >= 0)
4917 {
4918 fd_intern (fs_fd);
4919 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4920 ev_set_priority (&fs_w, EV_MAXPRI);
4921 ev_io_start (EV_A_ &fs_w);
4922 ev_unref (EV_A);
4923 }
4924}
4925
4926inline_size void
4927infy_fork (EV_P)
4928{
4929 int slot;
4930
4931 if (fs_fd < 0)
4932 return;
4933
4934 ev_ref (EV_A);
4935 ev_io_stop (EV_A_ &fs_w);
4936 close (fs_fd);
4937 fs_fd = infy_newfd ();
4938
4939 if (fs_fd >= 0)
4940 {
4941 fd_intern (fs_fd);
4942 ev_io_set (&fs_w, fs_fd, EV_READ);
4943 ev_io_start (EV_A_ &fs_w);
4944 ev_unref (EV_A);
4945 }
4946
4947 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4948 {
4949 WL w_ = fs_hash [slot].head;
4950 fs_hash [slot].head = 0;
4951
4952 while (w_)
4953 {
4954 ev_stat *w = (ev_stat *)w_;
4955 w_ = w_->next; /* lets us add this watcher */
4956
4957 w->wd = -1;
4958
4959 if (fs_fd >= 0)
4960 infy_add (EV_A_ w); /* re-add, no matter what */
4961 else
4962 {
4963 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4964 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4965 ev_timer_again (EV_A_ &w->timer);
4966 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4967 }
4968 }
4969 }
4970}
4971
4972#endif
4973
1554#if _WIN32 4974#ifdef _WIN32
1555 signal (w->signum, sighandler); 4975# define EV_LSTAT(p,b) _stati64 (p, b)
1556#else 4976#else
1557 struct sigaction sa; 4977# define EV_LSTAT(p,b) lstat (p, b)
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif 4978#endif
1563 }
1564}
1565 4979
1566void 4980void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 4981ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1568{ 4982{
1569 ev_clear_pending (EV_A_ (W)w); 4983 if (lstat (w->path, &w->attr) < 0)
4984 w->attr.st_nlink = 0;
4985 else if (!w->attr.st_nlink)
4986 w->attr.st_nlink = 1;
4987}
4988
4989ecb_noinline
4990static void
4991stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4992{
4993 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4994
4995 ev_statdata prev = w->attr;
4996 ev_stat_stat (EV_A_ w);
4997
4998 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4999 if (
5000 prev.st_dev != w->attr.st_dev
5001 || prev.st_ino != w->attr.st_ino
5002 || prev.st_mode != w->attr.st_mode
5003 || prev.st_nlink != w->attr.st_nlink
5004 || prev.st_uid != w->attr.st_uid
5005 || prev.st_gid != w->attr.st_gid
5006 || prev.st_rdev != w->attr.st_rdev
5007 || prev.st_size != w->attr.st_size
5008 || prev.st_atime != w->attr.st_atime
5009 || prev.st_mtime != w->attr.st_mtime
5010 || prev.st_ctime != w->attr.st_ctime
5011 ) {
5012 /* we only update w->prev on actual differences */
5013 /* in case we test more often than invoke the callback, */
5014 /* to ensure that prev is always different to attr */
5015 w->prev = prev;
5016
5017 #if EV_USE_INOTIFY
5018 if (fs_fd >= 0)
5019 {
5020 infy_del (EV_A_ w);
5021 infy_add (EV_A_ w);
5022 ev_stat_stat (EV_A_ w); /* avoid race... */
5023 }
5024 #endif
5025
5026 ev_feed_event (EV_A_ w, EV_STAT);
5027 }
5028}
5029
5030void
5031ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
5032{
1570 if (expect_false (!ev_is_active (w))) 5033 if (ecb_expect_false (ev_is_active (w)))
1571 return; 5034 return;
1572 5035
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 5036 ev_stat_stat (EV_A_ w);
5037
5038 if (w->interval < MIN_STAT_INTERVAL && w->interval)
5039 w->interval = MIN_STAT_INTERVAL;
5040
5041 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
5042 ev_set_priority (&w->timer, ev_priority (w));
5043
5044#if EV_USE_INOTIFY
5045 infy_init (EV_A);
5046
5047 if (fs_fd >= 0)
5048 infy_add (EV_A_ w);
5049 else
5050#endif
5051 {
5052 ev_timer_again (EV_A_ &w->timer);
5053 ev_unref (EV_A);
5054 }
5055
5056 ev_start (EV_A_ (W)w, 1);
5057
5058 EV_FREQUENT_CHECK;
5059}
5060
5061void
5062ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
5063{
5064 clear_pending (EV_A_ (W)w);
5065 if (ecb_expect_false (!ev_is_active (w)))
5066 return;
5067
5068 EV_FREQUENT_CHECK;
5069
5070#if EV_USE_INOTIFY
5071 infy_del (EV_A_ w);
5072#endif
5073
5074 if (ev_is_active (&w->timer))
5075 {
5076 ev_ref (EV_A);
5077 ev_timer_stop (EV_A_ &w->timer);
5078 }
5079
1574 ev_stop (EV_A_ (W)w); 5080 ev_stop (EV_A_ (W)w);
1575 5081
1576 if (!signals [w->signum - 1].head) 5082 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 5083}
5084#endif
1579 5085
5086#if EV_IDLE_ENABLE
1580void 5087void
1581ev_child_start (EV_P_ struct ev_child *w) 5088ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
1582{ 5089{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif
1586 if (expect_false (ev_is_active (w))) 5090 if (ecb_expect_false (ev_is_active (w)))
1587 return; 5091 return;
1588 5092
5093 pri_adjust (EV_A_ (W)w);
5094
5095 EV_FREQUENT_CHECK;
5096
5097 {
5098 int active = ++idlecnt [ABSPRI (w)];
5099
5100 ++idleall;
5101 ev_start (EV_A_ (W)w, active);
5102
5103 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
5104 idles [ABSPRI (w)][active - 1] = w;
5105 }
5106
5107 EV_FREQUENT_CHECK;
5108}
5109
5110void
5111ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
5112{
5113 clear_pending (EV_A_ (W)w);
5114 if (ecb_expect_false (!ev_is_active (w)))
5115 return;
5116
5117 EV_FREQUENT_CHECK;
5118
5119 {
5120 int active = ev_active (w);
5121
5122 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
5123 ev_active (idles [ABSPRI (w)][active - 1]) = active;
5124
5125 ev_stop (EV_A_ (W)w);
5126 --idleall;
5127 }
5128
5129 EV_FREQUENT_CHECK;
5130}
5131#endif
5132
5133#if EV_PREPARE_ENABLE
5134void
5135ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
5136{
5137 if (ecb_expect_false (ev_is_active (w)))
5138 return;
5139
5140 EV_FREQUENT_CHECK;
5141
5142 ev_start (EV_A_ (W)w, ++preparecnt);
5143 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
5144 prepares [preparecnt - 1] = w;
5145
5146 EV_FREQUENT_CHECK;
5147}
5148
5149void
5150ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
5151{
5152 clear_pending (EV_A_ (W)w);
5153 if (ecb_expect_false (!ev_is_active (w)))
5154 return;
5155
5156 EV_FREQUENT_CHECK;
5157
5158 {
5159 int active = ev_active (w);
5160
5161 prepares [active - 1] = prepares [--preparecnt];
5162 ev_active (prepares [active - 1]) = active;
5163 }
5164
5165 ev_stop (EV_A_ (W)w);
5166
5167 EV_FREQUENT_CHECK;
5168}
5169#endif
5170
5171#if EV_CHECK_ENABLE
5172void
5173ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
5174{
5175 if (ecb_expect_false (ev_is_active (w)))
5176 return;
5177
5178 EV_FREQUENT_CHECK;
5179
5180 ev_start (EV_A_ (W)w, ++checkcnt);
5181 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
5182 checks [checkcnt - 1] = w;
5183
5184 EV_FREQUENT_CHECK;
5185}
5186
5187void
5188ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
5189{
5190 clear_pending (EV_A_ (W)w);
5191 if (ecb_expect_false (!ev_is_active (w)))
5192 return;
5193
5194 EV_FREQUENT_CHECK;
5195
5196 {
5197 int active = ev_active (w);
5198
5199 checks [active - 1] = checks [--checkcnt];
5200 ev_active (checks [active - 1]) = active;
5201 }
5202
5203 ev_stop (EV_A_ (W)w);
5204
5205 EV_FREQUENT_CHECK;
5206}
5207#endif
5208
5209#if EV_EMBED_ENABLE
5210ecb_noinline
5211void
5212ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
5213{
5214 ev_run (w->other, EVRUN_NOWAIT);
5215}
5216
5217static void
5218embed_io_cb (EV_P_ ev_io *io, int revents)
5219{
5220 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
5221
5222 if (ev_cb (w))
5223 ev_feed_event (EV_A_ (W)w, EV_EMBED);
5224 else
5225 ev_run (w->other, EVRUN_NOWAIT);
5226}
5227
5228static void
5229embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5230{
5231 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5232
5233 {
5234 EV_P = w->other;
5235
5236 while (fdchangecnt)
5237 {
5238 fd_reify (EV_A);
5239 ev_run (EV_A_ EVRUN_NOWAIT);
5240 }
5241 }
5242}
5243
5244#if EV_FORK_ENABLE
5245static void
5246embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5247{
5248 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5249
5250 ev_embed_stop (EV_A_ w);
5251
5252 {
5253 EV_P = w->other;
5254
5255 ev_loop_fork (EV_A);
5256 ev_run (EV_A_ EVRUN_NOWAIT);
5257 }
5258
5259 ev_embed_start (EV_A_ w);
5260}
5261#endif
5262
5263#if 0
5264static void
5265embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5266{
5267 ev_idle_stop (EV_A_ idle);
5268}
5269#endif
5270
5271void
5272ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
5273{
5274 if (ecb_expect_false (ev_is_active (w)))
5275 return;
5276
5277 {
5278 EV_P = w->other;
5279 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
5280 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
5281 }
5282
5283 EV_FREQUENT_CHECK;
5284
5285 ev_set_priority (&w->io, ev_priority (w));
5286 ev_io_start (EV_A_ &w->io);
5287
5288 ev_prepare_init (&w->prepare, embed_prepare_cb);
5289 ev_set_priority (&w->prepare, EV_MINPRI);
5290 ev_prepare_start (EV_A_ &w->prepare);
5291
5292#if EV_FORK_ENABLE
5293 ev_fork_init (&w->fork, embed_fork_cb);
5294 ev_fork_start (EV_A_ &w->fork);
5295#endif
5296
5297 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5298
1589 ev_start (EV_A_ (W)w, 1); 5299 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 5300
5301 EV_FREQUENT_CHECK;
1591} 5302}
1592 5303
1593void 5304void
1594ev_child_stop (EV_P_ struct ev_child *w) 5305ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
1595{ 5306{
1596 ev_clear_pending (EV_A_ (W)w); 5307 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 5308 if (ecb_expect_false (!ev_is_active (w)))
1598 return; 5309 return;
1599 5310
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 5311 EV_FREQUENT_CHECK;
5312
5313 ev_io_stop (EV_A_ &w->io);
5314 ev_prepare_stop (EV_A_ &w->prepare);
5315#if EV_FORK_ENABLE
5316 ev_fork_stop (EV_A_ &w->fork);
5317#endif
5318
1601 ev_stop (EV_A_ (W)w); 5319 ev_stop (EV_A_ (W)w);
5320
5321 EV_FREQUENT_CHECK;
1602} 5322}
5323#endif
5324
5325#if EV_FORK_ENABLE
5326void
5327ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5328{
5329 if (ecb_expect_false (ev_is_active (w)))
5330 return;
5331
5332 EV_FREQUENT_CHECK;
5333
5334 ev_start (EV_A_ (W)w, ++forkcnt);
5335 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5336 forks [forkcnt - 1] = w;
5337
5338 EV_FREQUENT_CHECK;
5339}
5340
5341void
5342ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5343{
5344 clear_pending (EV_A_ (W)w);
5345 if (ecb_expect_false (!ev_is_active (w)))
5346 return;
5347
5348 EV_FREQUENT_CHECK;
5349
5350 {
5351 int active = ev_active (w);
5352
5353 forks [active - 1] = forks [--forkcnt];
5354 ev_active (forks [active - 1]) = active;
5355 }
5356
5357 ev_stop (EV_A_ (W)w);
5358
5359 EV_FREQUENT_CHECK;
5360}
5361#endif
5362
5363#if EV_CLEANUP_ENABLE
5364void
5365ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5366{
5367 if (ecb_expect_false (ev_is_active (w)))
5368 return;
5369
5370 EV_FREQUENT_CHECK;
5371
5372 ev_start (EV_A_ (W)w, ++cleanupcnt);
5373 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5374 cleanups [cleanupcnt - 1] = w;
5375
5376 /* cleanup watchers should never keep a refcount on the loop */
5377 ev_unref (EV_A);
5378 EV_FREQUENT_CHECK;
5379}
5380
5381void
5382ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5383{
5384 clear_pending (EV_A_ (W)w);
5385 if (ecb_expect_false (!ev_is_active (w)))
5386 return;
5387
5388 EV_FREQUENT_CHECK;
5389 ev_ref (EV_A);
5390
5391 {
5392 int active = ev_active (w);
5393
5394 cleanups [active - 1] = cleanups [--cleanupcnt];
5395 ev_active (cleanups [active - 1]) = active;
5396 }
5397
5398 ev_stop (EV_A_ (W)w);
5399
5400 EV_FREQUENT_CHECK;
5401}
5402#endif
5403
5404#if EV_ASYNC_ENABLE
5405void
5406ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5407{
5408 if (ecb_expect_false (ev_is_active (w)))
5409 return;
5410
5411 w->sent = 0;
5412
5413 evpipe_init (EV_A);
5414
5415 EV_FREQUENT_CHECK;
5416
5417 ev_start (EV_A_ (W)w, ++asynccnt);
5418 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5419 asyncs [asynccnt - 1] = w;
5420
5421 EV_FREQUENT_CHECK;
5422}
5423
5424void
5425ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5426{
5427 clear_pending (EV_A_ (W)w);
5428 if (ecb_expect_false (!ev_is_active (w)))
5429 return;
5430
5431 EV_FREQUENT_CHECK;
5432
5433 {
5434 int active = ev_active (w);
5435
5436 asyncs [active - 1] = asyncs [--asynccnt];
5437 ev_active (asyncs [active - 1]) = active;
5438 }
5439
5440 ev_stop (EV_A_ (W)w);
5441
5442 EV_FREQUENT_CHECK;
5443}
5444
5445void
5446ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5447{
5448 w->sent = 1;
5449 evpipe_write (EV_A_ &async_pending);
5450}
5451#endif
1603 5452
1604/*****************************************************************************/ 5453/*****************************************************************************/
1605 5454
1606struct ev_once 5455struct ev_once
1607{ 5456{
1608 struct ev_io io; 5457 ev_io io;
1609 struct ev_timer to; 5458 ev_timer to;
1610 void (*cb)(int revents, void *arg); 5459 void (*cb)(int revents, void *arg);
1611 void *arg; 5460 void *arg;
1612}; 5461};
1613 5462
1614static void 5463static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 5464once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 5465{
1617 void (*cb)(int revents, void *arg) = once->cb; 5466 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 5467 void *arg = once->arg;
1619 5468
1620 ev_io_stop (EV_A_ &once->io); 5469 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 5470 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 5471 ev_free (once);
1623 5472
1624 cb (revents, arg); 5473 cb (revents, arg);
1625} 5474}
1626 5475
1627static void 5476static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 5477once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 5478{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5479 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5480
5481 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 5482}
1632 5483
1633static void 5484static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 5485once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 5486{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5487 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5488
5489 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 5490}
1638 5491
1639void 5492void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5493ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1641{ 5494{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5495 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643
1644 if (expect_false (!once))
1645 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 return;
1648 }
1649 5496
1650 once->cb = cb; 5497 once->cb = cb;
1651 once->arg = arg; 5498 once->arg = arg;
1652 5499
1653 ev_init (&once->io, once_cb_io); 5500 ev_init (&once->io, once_cb_io);
1663 ev_timer_set (&once->to, timeout, 0.); 5510 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 5511 ev_timer_start (EV_A_ &once->to);
1665 } 5512 }
1666} 5513}
1667 5514
1668#ifdef __cplusplus 5515/*****************************************************************************/
1669} 5516
5517#if EV_WALK_ENABLE
5518ecb_cold
5519void
5520ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5521{
5522 int i, j;
5523 ev_watcher_list *wl, *wn;
5524
5525 if (types & (EV_IO | EV_EMBED))
5526 for (i = 0; i < anfdmax; ++i)
5527 for (wl = anfds [i].head; wl; )
5528 {
5529 wn = wl->next;
5530
5531#if EV_EMBED_ENABLE
5532 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5533 {
5534 if (types & EV_EMBED)
5535 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5536 }
5537 else
5538#endif
5539#if EV_USE_INOTIFY
5540 if (ev_cb ((ev_io *)wl) == infy_cb)
5541 ;
5542 else
5543#endif
5544 if ((ev_io *)wl != &pipe_w)
5545 if (types & EV_IO)
5546 cb (EV_A_ EV_IO, wl);
5547
5548 wl = wn;
5549 }
5550
5551 if (types & (EV_TIMER | EV_STAT))
5552 for (i = timercnt + HEAP0; i-- > HEAP0; )
5553#if EV_STAT_ENABLE
5554 /*TODO: timer is not always active*/
5555 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5556 {
5557 if (types & EV_STAT)
5558 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5559 }
5560 else
5561#endif
5562 if (types & EV_TIMER)
5563 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5564
5565#if EV_PERIODIC_ENABLE
5566 if (types & EV_PERIODIC)
5567 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5568 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5569#endif
5570
5571#if EV_IDLE_ENABLE
5572 if (types & EV_IDLE)
5573 for (j = NUMPRI; j--; )
5574 for (i = idlecnt [j]; i--; )
5575 cb (EV_A_ EV_IDLE, idles [j][i]);
5576#endif
5577
5578#if EV_FORK_ENABLE
5579 if (types & EV_FORK)
5580 for (i = forkcnt; i--; )
5581 if (ev_cb (forks [i]) != embed_fork_cb)
5582 cb (EV_A_ EV_FORK, forks [i]);
5583#endif
5584
5585#if EV_ASYNC_ENABLE
5586 if (types & EV_ASYNC)
5587 for (i = asynccnt; i--; )
5588 cb (EV_A_ EV_ASYNC, asyncs [i]);
5589#endif
5590
5591#if EV_PREPARE_ENABLE
5592 if (types & EV_PREPARE)
5593 for (i = preparecnt; i--; )
5594# if EV_EMBED_ENABLE
5595 if (ev_cb (prepares [i]) != embed_prepare_cb)
1670#endif 5596# endif
5597 cb (EV_A_ EV_PREPARE, prepares [i]);
5598#endif
1671 5599
5600#if EV_CHECK_ENABLE
5601 if (types & EV_CHECK)
5602 for (i = checkcnt; i--; )
5603 cb (EV_A_ EV_CHECK, checks [i]);
5604#endif
5605
5606#if EV_SIGNAL_ENABLE
5607 if (types & EV_SIGNAL)
5608 for (i = 0; i < EV_NSIG - 1; ++i)
5609 for (wl = signals [i].head; wl; )
5610 {
5611 wn = wl->next;
5612 cb (EV_A_ EV_SIGNAL, wl);
5613 wl = wn;
5614 }
5615#endif
5616
5617#if EV_CHILD_ENABLE
5618 if (types & EV_CHILD)
5619 for (i = (EV_PID_HASHSIZE); i--; )
5620 for (wl = childs [i]; wl; )
5621 {
5622 wn = wl->next;
5623 cb (EV_A_ EV_CHILD, wl);
5624 wl = wn;
5625 }
5626#endif
5627/* EV_STAT 0x00001000 /* stat data changed */
5628/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5629}
5630#endif
5631
5632#if EV_MULTIPLICITY
5633 #include "ev_wrap.h"
5634#endif
5635

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines