ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.124 by root, Sat Nov 17 02:26:24 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
62# endif
63
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT)
65# define EV_USE_PORT 1
53# endif 66# endif
54 67
55#endif 68#endif
56 69
57#include <math.h> 70#include <math.h>
66#include <sys/types.h> 79#include <sys/types.h>
67#include <time.h> 80#include <time.h>
68 81
69#include <signal.h> 82#include <signal.h>
70 83
71#ifndef WIN32 84#ifndef _WIN32
72# include <unistd.h> 85# include <unistd.h>
73# include <sys/time.h> 86# include <sys/time.h>
74# include <sys/wait.h> 87# include <sys/wait.h>
88#else
89# define WIN32_LEAN_AND_MEAN
90# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1
75#endif 93# endif
94#endif
95
76/**/ 96/**/
77 97
78#ifndef EV_USE_MONOTONIC 98#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 99# define EV_USE_MONOTONIC 0
100#endif
101
102#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0
80#endif 104#endif
81 105
82#ifndef EV_USE_SELECT 106#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 107# define EV_USE_SELECT 1
84#endif 108#endif
85 109
86#ifndef EV_USE_POLL 110#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 111# ifdef _WIN32
112# define EV_USE_POLL 0
113# else
114# define EV_USE_POLL 1
115# endif
88#endif 116#endif
89 117
90#ifndef EV_USE_EPOLL 118#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 119# define EV_USE_EPOLL 0
92#endif 120#endif
93 121
94#ifndef EV_USE_KQUEUE 122#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 123# define EV_USE_KQUEUE 0
96#endif 124#endif
97 125
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 126#ifndef EV_USE_PORT
109# define EV_USE_REALTIME 1 127# define EV_USE_PORT 0
110#endif 128#endif
111 129
112/**/ 130/**/
131
132/* darwin simply cannot be helped */
133#ifdef __APPLE__
134# undef EV_USE_POLL
135# undef EV_USE_KQUEUE
136#endif
113 137
114#ifndef CLOCK_MONOTONIC 138#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 139# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 140# define EV_USE_MONOTONIC 0
117#endif 141#endif
119#ifndef CLOCK_REALTIME 143#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 144# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 145# define EV_USE_REALTIME 0
122#endif 146#endif
123 147
148#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h>
150#endif
151
124/**/ 152/**/
125 153
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
130 158
159#ifdef EV_H
160# include EV_H
161#else
131#include "ev.h" 162# include "ev.h"
163#endif
132 164
133#if __GNUC__ >= 3 165#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 166# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 167# define inline static inline
136#else 168#else
137# define expect(expr,value) (expr) 169# define expect(expr,value) (expr)
138# define inline static 170# define inline static
139#endif 171#endif
140 172
142#define expect_true(expr) expect ((expr) != 0, 1) 174#define expect_true(expr) expect ((expr) != 0, 1)
143 175
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 177#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146 178
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */
181
147typedef struct ev_watcher *W; 182typedef struct ev_watcher *W;
148typedef struct ev_watcher_list *WL; 183typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 184typedef struct ev_watcher_time *WT;
150 185
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 187
153#if WIN32 188#ifdef _WIN32
154/* note: the comment below could not be substantiated, but what would I care */ 189# include "ev_win32.c"
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 190#endif
211 191
212/*****************************************************************************/ 192/*****************************************************************************/
213 193
214static void (*syserr_cb)(const char *msg); 194static void (*syserr_cb)(const char *msg);
262typedef struct 242typedef struct
263{ 243{
264 WL head; 244 WL head;
265 unsigned char events; 245 unsigned char events;
266 unsigned char reify; 246 unsigned char reify;
247#if EV_SELECT_IS_WINSOCKET
248 SOCKET handle;
249#endif
267} ANFD; 250} ANFD;
268 251
269typedef struct 252typedef struct
270{ 253{
271 W w; 254 W w;
272 int events; 255 int events;
273} ANPENDING; 256} ANPENDING;
274 257
275#if EV_MULTIPLICITY 258#if EV_MULTIPLICITY
276 259
277struct ev_loop 260 struct ev_loop
278{ 261 {
262 ev_tstamp ev_rt_now;
263 #define ev_rt_now ((loop)->ev_rt_now)
279# define VAR(name,decl) decl; 264 #define VAR(name,decl) decl;
280# include "ev_vars.h" 265 #include "ev_vars.h"
281};
282# undef VAR 266 #undef VAR
267 };
283# include "ev_wrap.h" 268 #include "ev_wrap.h"
269
270 static struct ev_loop default_loop_struct;
271 struct ev_loop *ev_default_loop_ptr;
284 272
285#else 273#else
286 274
275 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 276 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 277 #include "ev_vars.h"
289# undef VAR 278 #undef VAR
279
280 static int ev_default_loop_ptr;
290 281
291#endif 282#endif
292 283
293/*****************************************************************************/ 284/*****************************************************************************/
294 285
295inline ev_tstamp 286ev_tstamp
296ev_time (void) 287ev_time (void)
297{ 288{
298#if EV_USE_REALTIME 289#if EV_USE_REALTIME
299 struct timespec ts; 290 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 291 clock_gettime (CLOCK_REALTIME, &ts);
319#endif 310#endif
320 311
321 return ev_time (); 312 return ev_time ();
322} 313}
323 314
315#if EV_MULTIPLICITY
324ev_tstamp 316ev_tstamp
325ev_now (EV_P) 317ev_now (EV_P)
326{ 318{
327 return rt_now; 319 return ev_rt_now;
328} 320}
321#endif
329 322
330#define array_roundsize(base,n) ((n) | 4 & ~3) 323#define array_roundsize(type,n) (((n) | 4) & ~3)
331 324
332#define array_needsize(base,cur,cnt,init) \ 325#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 326 if (expect_false ((cnt) > cur)) \
334 { \ 327 { \
335 int newcnt = cur; \ 328 int newcnt = cur; \
336 do \ 329 do \
337 { \ 330 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 331 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 332 } \
340 while ((cnt) > newcnt); \ 333 while ((cnt) > newcnt); \
341 \ 334 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 336 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 337 cur = newcnt; \
345 } 338 }
346 339
347#define array_slim(stem) \ 340#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 342 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 343 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 346 }
354
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359 347
360#define array_free(stem, idx) \ 348#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
362 350
363/*****************************************************************************/ 351/*****************************************************************************/
373 361
374 ++base; 362 ++base;
375 } 363 }
376} 364}
377 365
378static void 366void
379event (EV_P_ W w, int events) 367ev_feed_event (EV_P_ void *w, int revents)
380{ 368{
381 if (w->pending) 369 W w_ = (W)w;
370
371 if (expect_false (w_->pending))
382 { 372 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
384 return; 374 return;
385 } 375 }
386 376
387 w->pending = ++pendingcnt [ABSPRI (w)]; 377 w_->pending = ++pendingcnt [ABSPRI (w_)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
389 pendings [ABSPRI (w)][w->pending - 1].w = w; 379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w)][w->pending - 1].events = events; 380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
391} 381}
392 382
393static void 383static void
394queue_events (EV_P_ W *events, int eventcnt, int type) 384queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 385{
396 int i; 386 int i;
397 387
398 for (i = 0; i < eventcnt; ++i) 388 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 389 ev_feed_event (EV_A_ events [i], type);
400} 390}
401 391
402static void 392inline void
403fd_event (EV_P_ int fd, int events) 393fd_event (EV_P_ int fd, int revents)
404{ 394{
405 ANFD *anfd = anfds + fd; 395 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 396 struct ev_io *w;
407 397
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 { 399 {
410 int ev = w->events & events; 400 int ev = w->events & revents;
411 401
412 if (ev) 402 if (ev)
413 event (EV_A_ (W)w, ev); 403 ev_feed_event (EV_A_ (W)w, ev);
414 } 404 }
405}
406
407void
408ev_feed_fd_event (EV_P_ int fd, int revents)
409{
410 fd_event (EV_A_ fd, revents);
415} 411}
416 412
417/*****************************************************************************/ 413/*****************************************************************************/
418 414
419static void 415inline void
420fd_reify (EV_P) 416fd_reify (EV_P)
421{ 417{
422 int i; 418 int i;
423 419
424 for (i = 0; i < fdchangecnt; ++i) 420 for (i = 0; i < fdchangecnt; ++i)
430 int events = 0; 426 int events = 0;
431 427
432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
433 events |= w->events; 429 events |= w->events;
434 430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 {
434 unsigned long argp;
435 anfd->handle = _get_osfhandle (fd);
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
437 }
438#endif
439
435 anfd->reify = 0; 440 anfd->reify = 0;
436 441
437 method_modify (EV_A_ fd, anfd->events, events); 442 method_modify (EV_A_ fd, anfd->events, events);
438 anfd->events = events; 443 anfd->events = events;
439 } 444 }
442} 447}
443 448
444static void 449static void
445fd_change (EV_P_ int fd) 450fd_change (EV_P_ int fd)
446{ 451{
447 if (anfds [fd].reify) 452 if (expect_false (anfds [fd].reify))
448 return; 453 return;
449 454
450 anfds [fd].reify = 1; 455 anfds [fd].reify = 1;
451 456
452 ++fdchangecnt; 457 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
454 fdchanges [fdchangecnt - 1] = fd; 459 fdchanges [fdchangecnt - 1] = fd;
455} 460}
456 461
457static void 462static void
458fd_kill (EV_P_ int fd) 463fd_kill (EV_P_ int fd)
460 struct ev_io *w; 465 struct ev_io *w;
461 466
462 while ((w = (struct ev_io *)anfds [fd].head)) 467 while ((w = (struct ev_io *)anfds [fd].head))
463 { 468 {
464 ev_io_stop (EV_A_ w); 469 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 471 }
467} 472}
468 473
469static int 474inline int
470fd_valid (int fd) 475fd_valid (int fd)
471{ 476{
472#ifdef WIN32 477#ifdef _WIN32
473 return !!win32_get_osfhandle (fd); 478 return _get_osfhandle (fd) != -1;
474#else 479#else
475 return fcntl (fd, F_GETFD) != -1; 480 return fcntl (fd, F_GETFD) != -1;
476#endif 481#endif
477} 482}
478 483
558 563
559 heap [k] = w; 564 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 565 ((W)heap [k])->active = k + 1;
561} 566}
562 567
568inline void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574
563/*****************************************************************************/ 575/*****************************************************************************/
564 576
565typedef struct 577typedef struct
566{ 578{
567 WL head; 579 WL head;
588} 600}
589 601
590static void 602static void
591sighandler (int signum) 603sighandler (int signum)
592{ 604{
593#if WIN32 605#if _WIN32
594 signal (signum, sighandler); 606 signal (signum, sighandler);
595#endif 607#endif
596 608
597 signals [signum - 1].gotsig = 1; 609 signals [signum - 1].gotsig = 1;
598 610
603 write (sigpipe [1], &signum, 1); 615 write (sigpipe [1], &signum, 1);
604 errno = old_errno; 616 errno = old_errno;
605 } 617 }
606} 618}
607 619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
608static void 640static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 641sigcb (EV_P_ struct ev_io *iow, int revents)
610{ 642{
611 WL w;
612 int signum; 643 int signum;
613 644
614 read (sigpipe [0], &revents, 1); 645 read (sigpipe [0], &revents, 1);
615 gotsig = 0; 646 gotsig = 0;
616 647
617 for (signum = signalmax; signum--; ) 648 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 649 if (signals [signum].gotsig)
619 { 650 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0; 651}
621 652
622 for (w = signals [signum].head; w; w = w->next) 653static void
623 event (EV_A_ (W)w, EV_SIGNAL); 654fd_intern (int fd)
624 } 655{
656#ifdef _WIN32
657 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif
625} 663}
626 664
627static void 665static void
628siginit (EV_P) 666siginit (EV_P)
629{ 667{
630#ifndef WIN32 668 fd_intern (sigpipe [0]);
631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 669 fd_intern (sigpipe [1]);
632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
633
634 /* rather than sort out wether we really need nb, set it */
635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
638 670
639 ev_io_set (&sigev, sigpipe [0], EV_READ); 671 ev_io_set (&sigev, sigpipe [0], EV_READ);
640 ev_io_start (EV_A_ &sigev); 672 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */ 673 ev_unref (EV_A); /* child watcher should not keep loop alive */
642} 674}
643 675
644/*****************************************************************************/ 676/*****************************************************************************/
645 677
646static struct ev_child *childs [PID_HASHSIZE]; 678static struct ev_child *childs [PID_HASHSIZE];
647 679
648#ifndef WIN32 680#ifndef _WIN32
649 681
650static struct ev_signal childev; 682static struct ev_signal childev;
651 683
652#ifndef WCONTINUED 684#ifndef WCONTINUED
653# define WCONTINUED 0 685# define WCONTINUED 0
662 if (w->pid == pid || !w->pid) 694 if (w->pid == pid || !w->pid)
663 { 695 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 697 w->rpid = pid;
666 w->rstatus = status; 698 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 700 }
669} 701}
670 702
671static void 703static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 704childcb (EV_P_ struct ev_signal *sw, int revents)
674 int pid, status; 706 int pid, status;
675 707
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 709 {
678 /* make sure we are called again until all childs have been reaped */ 710 /* make sure we are called again until all childs have been reaped */
679 event (EV_A_ (W)sw, EV_SIGNAL); 711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 712
681 child_reap (EV_A_ sw, pid, pid, status); 713 child_reap (EV_A_ sw, pid, pid, status);
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
683 } 715 }
684} 716}
685 717
686#endif 718#endif
687 719
688/*****************************************************************************/ 720/*****************************************************************************/
689 721
722#if EV_USE_PORT
723# include "ev_port.c"
724#endif
690#if EV_USE_KQUEUE 725#if EV_USE_KQUEUE
691# include "ev_kqueue.c" 726# include "ev_kqueue.c"
692#endif 727#endif
693#if EV_USE_EPOLL 728#if EV_USE_EPOLL
694# include "ev_epoll.c" 729# include "ev_epoll.c"
714 749
715/* return true if we are running with elevated privileges and should ignore env variables */ 750/* return true if we are running with elevated privileges and should ignore env variables */
716static int 751static int
717enable_secure (void) 752enable_secure (void)
718{ 753{
719#ifdef WIN32 754#ifdef _WIN32
720 return 0; 755 return 0;
721#else 756#else
722 return getuid () != geteuid () 757 return getuid () != geteuid ()
723 || getgid () != getegid (); 758 || getgid () != getegid ();
724#endif 759#endif
725} 760}
726 761
727int 762unsigned int
728ev_method (EV_P) 763ev_method (EV_P)
729{ 764{
730 return method; 765 return method;
731} 766}
732 767
733static void 768static void
734loop_init (EV_P_ int methods) 769loop_init (EV_P_ unsigned int flags)
735{ 770{
736 if (!method) 771 if (!method)
737 { 772 {
738#if EV_USE_MONOTONIC 773#if EV_USE_MONOTONIC
739 { 774 {
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 776 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 777 have_monotonic = 1;
743 } 778 }
744#endif 779#endif
745 780
746 rt_now = ev_time (); 781 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 782 mn_now = get_clock ();
748 now_floor = mn_now; 783 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 784 rtmn_diff = ev_rt_now - mn_now;
750 785
751 if (methods == EVMETHOD_AUTO) 786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
752 if (!enable_secure () && getenv ("LIBEV_METHODS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 787 flags = atoi (getenv ("LIBEV_FLAGS"));
754 else 788
755 methods = EVMETHOD_ANY; 789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
756 791
757 method = 0; 792 method = 0;
758#if EV_USE_WIN32 793#if EV_USE_PORT
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
760#endif 795#endif
761#if EV_USE_KQUEUE 796#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
763#endif 798#endif
764#if EV_USE_EPOLL 799#if EV_USE_EPOLL
765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
766#endif 801#endif
767#if EV_USE_POLL 802#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
769#endif 804#endif
770#if EV_USE_SELECT 805#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
772#endif 807#endif
773 808
774 ev_watcher_init (&sigev, sigcb); 809 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 810 ev_set_priority (&sigev, EV_MAXPRI);
776 } 811 }
777} 812}
778 813
779void 814static void
780loop_destroy (EV_P) 815loop_destroy (EV_P)
781{ 816{
782 int i; 817 int i;
783 818
784#if EV_USE_WIN32 819#if EV_USE_PORT
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
786#endif 821#endif
787#if EV_USE_KQUEUE 822#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
789#endif 824#endif
790#if EV_USE_EPOLL 825#if EV_USE_EPOLL
799 834
800 for (i = NUMPRI; i--; ) 835 for (i = NUMPRI; i--; )
801 array_free (pending, [i]); 836 array_free (pending, [i]);
802 837
803 /* have to use the microsoft-never-gets-it-right macro */ 838 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 839 array_free (fdchange, EMPTY0);
805 array_free_microshit (timer); 840 array_free (timer, EMPTY0);
806 array_free_microshit (periodic); 841#if EV_PERIODICS
807 array_free_microshit (idle); 842 array_free (periodic, EMPTY0);
808 array_free_microshit (prepare); 843#endif
809 array_free_microshit (check); 844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
810 847
811 method = 0; 848 method = 0;
812} 849}
813 850
814static void 851static void
815loop_fork (EV_P) 852loop_fork (EV_P)
816{ 853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
817#if EV_USE_EPOLL 860#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
819#endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif 862#endif
823 863
824 if (ev_is_active (&sigev)) 864 if (ev_is_active (&sigev))
825 { 865 {
826 /* default loop */ 866 /* default loop */
828 ev_ref (EV_A); 868 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 869 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 870 close (sigpipe [0]);
831 close (sigpipe [1]); 871 close (sigpipe [1]);
832 872
833 while (ev_pipe (sigpipe)) 873 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 874 syserr ("(libev) error creating pipe");
835 875
836 siginit (EV_A); 876 siginit (EV_A);
837 } 877 }
838 878
839 postfork = 0; 879 postfork = 0;
840} 880}
841 881
842#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
843struct ev_loop * 883struct ev_loop *
844ev_loop_new (int methods) 884ev_loop_new (unsigned int flags)
845{ 885{
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847 887
848 memset (loop, 0, sizeof (struct ev_loop)); 888 memset (loop, 0, sizeof (struct ev_loop));
849 889
850 loop_init (EV_A_ methods); 890 loop_init (EV_A_ flags);
851 891
852 if (ev_method (EV_A)) 892 if (ev_method (EV_A))
853 return loop; 893 return loop;
854 894
855 return 0; 895 return 0;
869} 909}
870 910
871#endif 911#endif
872 912
873#if EV_MULTIPLICITY 913#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 914struct ev_loop *
915ev_default_loop_ (unsigned int flags)
878#else 916#else
879static int default_loop;
880
881int 917int
918ev_default_loop (unsigned int flags)
882#endif 919#endif
883ev_default_loop (int methods)
884{ 920{
885 if (sigpipe [0] == sigpipe [1]) 921 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 922 if (pipe (sigpipe))
887 return 0; 923 return 0;
888 924
889 if (!default_loop) 925 if (!ev_default_loop_ptr)
890 { 926 {
891#if EV_MULTIPLICITY 927#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct; 928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
893#else 929#else
894 default_loop = 1; 930 ev_default_loop_ptr = 1;
895#endif 931#endif
896 932
897 loop_init (EV_A_ methods); 933 loop_init (EV_A_ flags);
898 934
899 if (ev_method (EV_A)) 935 if (ev_method (EV_A))
900 { 936 {
901 siginit (EV_A); 937 siginit (EV_A);
902 938
903#ifndef WIN32 939#ifndef _WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 940 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 941 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 942 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 943 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 944#endif
909 } 945 }
910 else 946 else
911 default_loop = 0; 947 ev_default_loop_ptr = 0;
912 } 948 }
913 949
914 return default_loop; 950 return ev_default_loop_ptr;
915} 951}
916 952
917void 953void
918ev_default_destroy (void) 954ev_default_destroy (void)
919{ 955{
920#if EV_MULTIPLICITY 956#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 957 struct ev_loop *loop = ev_default_loop_ptr;
922#endif 958#endif
923 959
924#ifndef WIN32 960#ifndef _WIN32
925 ev_ref (EV_A); /* child watcher */ 961 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 962 ev_signal_stop (EV_A_ &childev);
927#endif 963#endif
928 964
929 ev_ref (EV_A); /* signal watcher */ 965 ev_ref (EV_A); /* signal watcher */
937 973
938void 974void
939ev_default_fork (void) 975ev_default_fork (void)
940{ 976{
941#if EV_MULTIPLICITY 977#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 978 struct ev_loop *loop = ev_default_loop_ptr;
943#endif 979#endif
944 980
945 if (method) 981 if (method)
946 postfork = 1; 982 postfork = 1;
947} 983}
948 984
949/*****************************************************************************/ 985/*****************************************************************************/
950 986
951static void 987static int
988any_pending (EV_P)
989{
990 int pri;
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997}
998
999inline void
952call_pending (EV_P) 1000call_pending (EV_P)
953{ 1001{
954 int pri; 1002 int pri;
955 1003
956 for (pri = NUMPRI; pri--; ) 1004 for (pri = NUMPRI; pri--; )
957 while (pendingcnt [pri]) 1005 while (pendingcnt [pri])
958 { 1006 {
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 1008
961 if (p->w) 1009 if (expect_true (p->w))
962 { 1010 {
963 p->w->pending = 0; 1011 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 1012 EV_CB_INVOKE (p->w, p->events);
965 } 1013 }
966 } 1014 }
967} 1015}
968 1016
969static void 1017inline void
970timers_reify (EV_P) 1018timers_reify (EV_P)
971{ 1019{
972 while (timercnt && ((WT)timers [0])->at <= mn_now) 1020 while (timercnt && ((WT)timers [0])->at <= mn_now)
973 { 1021 {
974 struct ev_timer *w = timers [0]; 1022 struct ev_timer *w = timers [0];
977 1025
978 /* first reschedule or stop timer */ 1026 /* first reschedule or stop timer */
979 if (w->repeat) 1027 if (w->repeat)
980 { 1028 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030
982 ((WT)w)->at = mn_now + w->repeat; 1031 ((WT)w)->at += w->repeat;
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
983 downheap ((WT *)timers, timercnt, 0); 1035 downheap ((WT *)timers, timercnt, 0);
984 } 1036 }
985 else 1037 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1039
988 event (EV_A_ (W)w, EV_TIMEOUT); 1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1041 }
990} 1042}
991 1043
992static void 1044#if EV_PERIODICS
1045inline void
993periodics_reify (EV_P) 1046periodics_reify (EV_P)
994{ 1047{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1049 {
997 struct ev_periodic *w = periodics [0]; 1050 struct ev_periodic *w = periodics [0];
998 1051
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1052 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1053
1001 /* first reschedule or stop timer */ 1054 /* first reschedule or stop timer */
1002 if (w->interval) 1055 if (w->reschedule_cb)
1003 { 1056 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 }
1061 else if (w->interval)
1062 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1065 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1066 }
1008 else 1067 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1069
1011 event (EV_A_ (W)w, EV_PERIODIC); 1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1071 }
1013} 1072}
1014 1073
1015static void 1074static void
1016periodics_reschedule (EV_P) 1075periodics_reschedule (EV_P)
1020 /* adjust periodics after time jump */ 1079 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1080 for (i = 0; i < periodiccnt; ++i)
1022 { 1081 {
1023 struct ev_periodic *w = periodics [i]; 1082 struct ev_periodic *w = periodics [i];
1024 1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1086 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1038} 1093}
1094#endif
1039 1095
1040inline int 1096inline int
1041time_update_monotonic (EV_P) 1097time_update_monotonic (EV_P)
1042{ 1098{
1043 mn_now = get_clock (); 1099 mn_now = get_clock ();
1044 1100
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1102 {
1047 rt_now = rtmn_diff + mn_now; 1103 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1104 return 0;
1049 } 1105 }
1050 else 1106 else
1051 { 1107 {
1052 now_floor = mn_now; 1108 now_floor = mn_now;
1053 rt_now = ev_time (); 1109 ev_rt_now = ev_time ();
1054 return 1; 1110 return 1;
1055 } 1111 }
1056} 1112}
1057 1113
1058static void 1114inline void
1059time_update (EV_P) 1115time_update (EV_P)
1060{ 1116{
1061 int i; 1117 int i;
1062 1118
1063#if EV_USE_MONOTONIC 1119#if EV_USE_MONOTONIC
1067 { 1123 {
1068 ev_tstamp odiff = rtmn_diff; 1124 ev_tstamp odiff = rtmn_diff;
1069 1125
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 { 1127 {
1072 rtmn_diff = rt_now - mn_now; 1128 rtmn_diff = ev_rt_now - mn_now;
1073 1129
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1131 return; /* all is well */
1076 1132
1077 rt_now = ev_time (); 1133 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1134 mn_now = get_clock ();
1079 now_floor = mn_now; 1135 now_floor = mn_now;
1080 } 1136 }
1081 1137
1138# if EV_PERIODICS
1082 periodics_reschedule (EV_A); 1139 periodics_reschedule (EV_A);
1140# endif
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 1143 }
1086 } 1144 }
1087 else 1145 else
1088#endif 1146#endif
1089 { 1147 {
1090 rt_now = ev_time (); 1148 ev_rt_now = ev_time ();
1091 1149
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1151 {
1152#if EV_PERIODICS
1094 periodics_reschedule (EV_A); 1153 periodics_reschedule (EV_A);
1154#endif
1095 1155
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1156 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1157 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1159 }
1100 1160
1101 mn_now = rt_now; 1161 mn_now = ev_rt_now;
1102 } 1162 }
1103} 1163}
1104 1164
1105void 1165void
1106ev_ref (EV_P) 1166ev_ref (EV_P)
1120ev_loop (EV_P_ int flags) 1180ev_loop (EV_P_ int flags)
1121{ 1181{
1122 double block; 1182 double block;
1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1124 1184
1125 do 1185 while (activecnt)
1126 { 1186 {
1127 /* queue check watchers (and execute them) */ 1187 /* queue check watchers (and execute them) */
1128 if (expect_false (preparecnt)) 1188 if (expect_false (preparecnt))
1129 { 1189 {
1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1138 /* update fd-related kernel structures */ 1198 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1199 fd_reify (EV_A);
1140 1200
1141 /* calculate blocking time */ 1201 /* calculate blocking time */
1142 1202
1143 /* we only need this for !monotonic clockor timers, but as we basically 1203 /* we only need this for !monotonic clock or timers, but as we basically
1144 always have timers, we just calculate it always */ 1204 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC 1205#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1206 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1207 time_update_monotonic (EV_A);
1148 else 1208 else
1149#endif 1209#endif
1150 { 1210 {
1151 rt_now = ev_time (); 1211 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1212 mn_now = ev_rt_now;
1153 } 1213 }
1154 1214
1155 if (flags & EVLOOP_NONBLOCK || idlecnt) 1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.; 1216 block = 0.;
1157 else 1217 else
1162 { 1222 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1164 if (block > to) block = to; 1224 if (block > to) block = to;
1165 } 1225 }
1166 1226
1227#if EV_PERIODICS
1167 if (periodiccnt) 1228 if (periodiccnt)
1168 { 1229 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1170 if (block > to) block = to; 1231 if (block > to) block = to;
1171 } 1232 }
1233#endif
1172 1234
1173 if (block < 0.) block = 0.; 1235 if (expect_false (block < 0.)) block = 0.;
1174 } 1236 }
1175 1237
1176 method_poll (EV_A_ block); 1238 method_poll (EV_A_ block);
1177 1239
1178 /* update rt_now, do magic */ 1240 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1241 time_update (EV_A);
1180 1242
1181 /* queue pending timers and reschedule them */ 1243 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1244 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS
1183 periodics_reify (EV_A); /* absolute timers called first */ 1246 periodics_reify (EV_A); /* absolute timers called first */
1247#endif
1184 1248
1185 /* queue idle watchers unless io or timers are pending */ 1249 /* queue idle watchers unless io or timers are pending */
1186 if (!pendingcnt) 1250 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1252
1189 /* queue check watchers, to be executed first */ 1253 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1254 if (expect_false (checkcnt))
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1192 1256
1193 call_pending (EV_A); 1257 call_pending (EV_A);
1258
1259 if (expect_false (loop_done))
1260 break;
1194 } 1261 }
1195 while (activecnt && !loop_done);
1196 1262
1197 if (loop_done != 2) 1263 if (loop_done != 2)
1198 loop_done = 0; 1264 loop_done = 0;
1199} 1265}
1200 1266
1260void 1326void
1261ev_io_start (EV_P_ struct ev_io *w) 1327ev_io_start (EV_P_ struct ev_io *w)
1262{ 1328{
1263 int fd = w->fd; 1329 int fd = w->fd;
1264 1330
1265 if (ev_is_active (w)) 1331 if (expect_false (ev_is_active (w)))
1266 return; 1332 return;
1267 1333
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1334 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1335
1270 ev_start (EV_A_ (W)w, 1); 1336 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1338 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1339
1274 fd_change (EV_A_ fd); 1340 fd_change (EV_A_ fd);
1275} 1341}
1276 1342
1277void 1343void
1278ev_io_stop (EV_P_ struct ev_io *w) 1344ev_io_stop (EV_P_ struct ev_io *w)
1279{ 1345{
1280 ev_clear_pending (EV_A_ (W)w); 1346 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1347 if (expect_false (!ev_is_active (w)))
1282 return; 1348 return;
1349
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1283 1351
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1353 ev_stop (EV_A_ (W)w);
1286 1354
1287 fd_change (EV_A_ w->fd); 1355 fd_change (EV_A_ w->fd);
1288} 1356}
1289 1357
1290void 1358void
1291ev_timer_start (EV_P_ struct ev_timer *w) 1359ev_timer_start (EV_P_ struct ev_timer *w)
1292{ 1360{
1293 if (ev_is_active (w)) 1361 if (expect_false (ev_is_active (w)))
1294 return; 1362 return;
1295 1363
1296 ((WT)w)->at += mn_now; 1364 ((WT)w)->at += mn_now;
1297 1365
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1367
1300 ev_start (EV_A_ (W)w, ++timercnt); 1368 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1302 timers [timercnt - 1] = w; 1370 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1371 upheap ((WT *)timers, timercnt - 1);
1304 1372
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1374}
1307 1375
1308void 1376void
1309ev_timer_stop (EV_P_ struct ev_timer *w) 1377ev_timer_stop (EV_P_ struct ev_timer *w)
1310{ 1378{
1311 ev_clear_pending (EV_A_ (W)w); 1379 ev_clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 1380 if (expect_false (!ev_is_active (w)))
1313 return; 1381 return;
1314 1382
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316 1384
1317 if (((W)w)->active < timercnt--) 1385 if (expect_true (((W)w)->active < timercnt--))
1318 { 1386 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 1387 timers [((W)w)->active - 1] = timers [timercnt];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 } 1389 }
1322 1390
1323 ((WT)w)->at = w->repeat; 1391 ((WT)w)->at -= mn_now;
1324 1392
1325 ev_stop (EV_A_ (W)w); 1393 ev_stop (EV_A_ (W)w);
1326} 1394}
1327 1395
1328void 1396void
1331 if (ev_is_active (w)) 1399 if (ev_is_active (w))
1332 { 1400 {
1333 if (w->repeat) 1401 if (w->repeat)
1334 { 1402 {
1335 ((WT)w)->at = mn_now + w->repeat; 1403 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1337 } 1405 }
1338 else 1406 else
1339 ev_timer_stop (EV_A_ w); 1407 ev_timer_stop (EV_A_ w);
1340 } 1408 }
1341 else if (w->repeat) 1409 else if (w->repeat)
1410 {
1411 w->at = w->repeat;
1342 ev_timer_start (EV_A_ w); 1412 ev_timer_start (EV_A_ w);
1413 }
1343} 1414}
1344 1415
1416#if EV_PERIODICS
1345void 1417void
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1418ev_periodic_start (EV_P_ struct ev_periodic *w)
1347{ 1419{
1348 if (ev_is_active (w)) 1420 if (expect_false (ev_is_active (w)))
1349 return; 1421 return;
1350 1422
1423 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval)
1426 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1428 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 }
1356 1431
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1432 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1359 periodics [periodiccnt - 1] = w; 1434 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1435 upheap ((WT *)periodics, periodiccnt - 1);
1361 1436
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1438}
1364 1439
1365void 1440void
1366ev_periodic_stop (EV_P_ struct ev_periodic *w) 1441ev_periodic_stop (EV_P_ struct ev_periodic *w)
1367{ 1442{
1368 ev_clear_pending (EV_A_ (W)w); 1443 ev_clear_pending (EV_A_ (W)w);
1369 if (!ev_is_active (w)) 1444 if (expect_false (!ev_is_active (w)))
1370 return; 1445 return;
1371 1446
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373 1448
1374 if (((W)w)->active < periodiccnt--) 1449 if (expect_true (((W)w)->active < periodiccnt--))
1375 { 1450 {
1376 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1451 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1378 } 1453 }
1379 1454
1380 ev_stop (EV_A_ (W)w); 1455 ev_stop (EV_A_ (W)w);
1381} 1456}
1382 1457
1383void 1458void
1459ev_periodic_again (EV_P_ struct ev_periodic *w)
1460{
1461 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w);
1464}
1465#endif
1466
1467void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1468ev_idle_start (EV_P_ struct ev_idle *w)
1385{ 1469{
1386 if (ev_is_active (w)) 1470 if (expect_false (ev_is_active (w)))
1387 return; 1471 return;
1388 1472
1389 ev_start (EV_A_ (W)w, ++idlecnt); 1473 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void)); 1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1391 idles [idlecnt - 1] = w; 1475 idles [idlecnt - 1] = w;
1392} 1476}
1393 1477
1394void 1478void
1395ev_idle_stop (EV_P_ struct ev_idle *w) 1479ev_idle_stop (EV_P_ struct ev_idle *w)
1396{ 1480{
1397 ev_clear_pending (EV_A_ (W)w); 1481 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w)) 1482 if (expect_false (!ev_is_active (w)))
1399 return; 1483 return;
1400 1484
1401 idles [((W)w)->active - 1] = idles [--idlecnt]; 1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w); 1486 ev_stop (EV_A_ (W)w);
1403} 1487}
1404 1488
1405void 1489void
1406ev_prepare_start (EV_P_ struct ev_prepare *w) 1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{ 1491{
1408 if (ev_is_active (w)) 1492 if (expect_false (ev_is_active (w)))
1409 return; 1493 return;
1410 1494
1411 ev_start (EV_A_ (W)w, ++preparecnt); 1495 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void)); 1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1413 prepares [preparecnt - 1] = w; 1497 prepares [preparecnt - 1] = w;
1414} 1498}
1415 1499
1416void 1500void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w) 1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{ 1502{
1419 ev_clear_pending (EV_A_ (W)w); 1503 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w)) 1504 if (expect_false (!ev_is_active (w)))
1421 return; 1505 return;
1422 1506
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w); 1508 ev_stop (EV_A_ (W)w);
1425} 1509}
1426 1510
1427void 1511void
1428ev_check_start (EV_P_ struct ev_check *w) 1512ev_check_start (EV_P_ struct ev_check *w)
1429{ 1513{
1430 if (ev_is_active (w)) 1514 if (expect_false (ev_is_active (w)))
1431 return; 1515 return;
1432 1516
1433 ev_start (EV_A_ (W)w, ++checkcnt); 1517 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void)); 1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1435 checks [checkcnt - 1] = w; 1519 checks [checkcnt - 1] = w;
1436} 1520}
1437 1521
1438void 1522void
1439ev_check_stop (EV_P_ struct ev_check *w) 1523ev_check_stop (EV_P_ struct ev_check *w)
1440{ 1524{
1441 ev_clear_pending (EV_A_ (W)w); 1525 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w)) 1526 if (expect_false (!ev_is_active (w)))
1443 return; 1527 return;
1444 1528
1445 checks [((W)w)->active - 1] = checks [--checkcnt]; 1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w); 1530 ev_stop (EV_A_ (W)w);
1447} 1531}
1452 1536
1453void 1537void
1454ev_signal_start (EV_P_ struct ev_signal *w) 1538ev_signal_start (EV_P_ struct ev_signal *w)
1455{ 1539{
1456#if EV_MULTIPLICITY 1540#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1458#endif 1542#endif
1459 if (ev_is_active (w)) 1543 if (expect_false (ev_is_active (w)))
1460 return; 1544 return;
1461 1545
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1547
1464 ev_start (EV_A_ (W)w, 1); 1548 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1551
1468 if (!((WL)w)->next) 1552 if (!((WL)w)->next)
1469 { 1553 {
1470#if WIN32 1554#if _WIN32
1471 signal (w->signum, sighandler); 1555 signal (w->signum, sighandler);
1472#else 1556#else
1473 struct sigaction sa; 1557 struct sigaction sa;
1474 sa.sa_handler = sighandler; 1558 sa.sa_handler = sighandler;
1475 sigfillset (&sa.sa_mask); 1559 sigfillset (&sa.sa_mask);
1481 1565
1482void 1566void
1483ev_signal_stop (EV_P_ struct ev_signal *w) 1567ev_signal_stop (EV_P_ struct ev_signal *w)
1484{ 1568{
1485 ev_clear_pending (EV_A_ (W)w); 1569 ev_clear_pending (EV_A_ (W)w);
1486 if (!ev_is_active (w)) 1570 if (expect_false (!ev_is_active (w)))
1487 return; 1571 return;
1488 1572
1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1490 ev_stop (EV_A_ (W)w); 1574 ev_stop (EV_A_ (W)w);
1491 1575
1495 1579
1496void 1580void
1497ev_child_start (EV_P_ struct ev_child *w) 1581ev_child_start (EV_P_ struct ev_child *w)
1498{ 1582{
1499#if EV_MULTIPLICITY 1583#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1501#endif 1585#endif
1502 if (ev_is_active (w)) 1586 if (expect_false (ev_is_active (w)))
1503 return; 1587 return;
1504 1588
1505 ev_start (EV_A_ (W)w, 1); 1589 ev_start (EV_A_ (W)w, 1);
1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1507} 1591}
1508 1592
1509void 1593void
1510ev_child_stop (EV_P_ struct ev_child *w) 1594ev_child_stop (EV_P_ struct ev_child *w)
1511{ 1595{
1512 ev_clear_pending (EV_A_ (W)w); 1596 ev_clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 1597 if (expect_false (!ev_is_active (w)))
1514 return; 1598 return;
1515 1599
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 1601 ev_stop (EV_A_ (W)w);
1518} 1602}
1553} 1637}
1554 1638
1555void 1639void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1641{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1643
1560 if (!once) 1644 if (expect_false (!once))
1645 {
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1647 return;
1563 { 1648 }
1649
1564 once->cb = cb; 1650 once->cb = cb;
1565 once->arg = arg; 1651 once->arg = arg;
1566 1652
1567 ev_watcher_init (&once->io, once_cb_io); 1653 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1654 if (fd >= 0)
1569 { 1655 {
1570 ev_io_set (&once->io, fd, events); 1656 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1657 ev_io_start (EV_A_ &once->io);
1572 } 1658 }
1573 1659
1574 ev_watcher_init (&once->to, once_cb_to); 1660 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1661 if (timeout >= 0.)
1576 { 1662 {
1577 ev_timer_set (&once->to, timeout, 0.); 1663 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1664 ev_timer_start (EV_A_ &once->to);
1579 }
1580 } 1665 }
1581} 1666}
1582 1667
1668#ifdef __cplusplus
1669}
1670#endif
1671

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines