ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.125 by root, Sat Nov 17 02:28:43 2007 UTC vs.
Revision 1.492 by root, Sat Jun 22 16:25:53 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 120# if HAVE_LINUX_AIO_ABI_H
65# define EV_USE_PORT 1 121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
66# endif 127# endif
67 128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
68#endif 136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
69 146
70#include <math.h> 147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
71#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
72#include <fcntl.h> 188#include <fcntl.h>
73#include <stddef.h> 189#include <stddef.h>
74 190
75#include <stdio.h> 191#include <stdio.h>
76 192
77#include <assert.h> 193#include <assert.h>
78#include <errno.h> 194#include <errno.h>
79#include <sys/types.h> 195#include <sys/types.h>
80#include <time.h> 196#include <time.h>
197#include <limits.h>
81 198
82#include <signal.h> 199#include <signal.h>
83 200
201#ifdef EV_H
202# include EV_H
203#else
204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
84#ifndef _WIN32 218#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 219# include <sys/time.h>
87# include <sys/wait.h> 220# include <sys/wait.h>
221# include <unistd.h>
88#else 222#else
223# include <io.h>
89# define WIN32_LEAN_AND_MEAN 224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
90# include <windows.h> 226# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 227# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 228# define EV_SELECT_IS_WINSOCKET 1
93# endif 229# endif
230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
94#endif 269# endif
270#endif
95 271
96/**/ 272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
97 280
98#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
99# define EV_USE_MONOTONIC 0 285# define EV_USE_MONOTONIC 0
286# endif
100#endif 287#endif
101 288
102#ifndef EV_USE_REALTIME 289#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
104#endif 299#endif
105 300
106#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
108#endif 303#endif
109 304
110#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
111# ifdef _WIN32 306# ifdef _WIN32
112# define EV_USE_POLL 0 307# define EV_USE_POLL 0
113# else 308# else
114# define EV_USE_POLL 1 309# define EV_USE_POLL EV_FEATURE_BACKENDS
115# endif 310# endif
116#endif 311#endif
117 312
118#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
119# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
120#endif 319#endif
121 320
122#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
124#endif 323#endif
125 324
126#ifndef EV_USE_PORT 325#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 326# define EV_USE_PORT 0
128#endif 327#endif
129 328
130/**/ 329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
131 336
132/* darwin simply cannot be helped */ 337#ifndef EV_USE_INOTIFY
133#ifdef __APPLE__ 338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339# define EV_USE_INOTIFY EV_FEATURE_OS
340# else
341# define EV_USE_INOTIFY 0
342# endif
343#endif
344
345#ifndef EV_PID_HASHSIZE
346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347#endif
348
349#ifndef EV_INOTIFY_HASHSIZE
350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351#endif
352
353#ifndef EV_USE_EVENTFD
354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355# define EV_USE_EVENTFD EV_FEATURE_OS
356# else
357# define EV_USE_EVENTFD 0
358# endif
359#endif
360
361#ifndef EV_USE_SIGNALFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_SIGNALFD EV_FEATURE_OS
364# else
365# define EV_USE_SIGNALFD 0
366# endif
367#endif
368
369#if 0 /* debugging */
370# define EV_VERIFY 3
371# define EV_USE_4HEAP 1
372# define EV_HEAP_CACHE_AT 1
373#endif
374
375#ifndef EV_VERIFY
376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377#endif
378
379#ifndef EV_USE_4HEAP
380# define EV_USE_4HEAP EV_FEATURE_DATA
381#endif
382
383#ifndef EV_HEAP_CACHE_AT
384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 399# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 400# define EV_USE_POLL 0
401#endif
402
403#if EV_USE_LINUXAIO
404# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
405#endif
406
407/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
408/* which makes programs even slower. might work on other unices, too. */
409#if EV_USE_CLOCK_SYSCALL
410# include <sys/syscall.h>
411# ifdef SYS_clock_gettime
412# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
413# undef EV_USE_MONOTONIC
414# define EV_USE_MONOTONIC 1
415# else
416# undef EV_USE_CLOCK_SYSCALL
417# define EV_USE_CLOCK_SYSCALL 0
136#endif 418# endif
419#endif
420
421/* this block fixes any misconfiguration where we know we run into trouble otherwise */
137 422
138#ifndef CLOCK_MONOTONIC 423#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 424# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 425# define EV_USE_MONOTONIC 0
141#endif 426#endif
143#ifndef CLOCK_REALTIME 428#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 429# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 430# define EV_USE_REALTIME 0
146#endif 431#endif
147 432
148#if EV_SELECT_IS_WINSOCKET 433#if !EV_STAT_ENABLE
434# undef EV_USE_INOTIFY
435# define EV_USE_INOTIFY 0
436#endif
437
438#if !EV_USE_NANOSLEEP
439/* hp-ux has it in sys/time.h, which we unconditionally include above */
440# if !defined _WIN32 && !defined __hpux
441# include <sys/select.h>
442# endif
443#endif
444
445#if EV_USE_LINUXAIO
446# include <sys/syscall.h>
447# if !SYS_io_getevents
448# undef EV_USE_LINUXAIO
449# define EV_USE_LINUXAIO 0
450# endif
451#endif
452
453#if EV_USE_INOTIFY
454# include <sys/statfs.h>
455# include <sys/inotify.h>
456/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
457# ifndef IN_DONT_FOLLOW
458# undef EV_USE_INOTIFY
459# define EV_USE_INOTIFY 0
460# endif
461#endif
462
463#if EV_USE_EVENTFD
464/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
149# include <winsock.h> 465# include <stdint.h>
466# ifndef EFD_NONBLOCK
467# define EFD_NONBLOCK O_NONBLOCK
468# endif
469# ifndef EFD_CLOEXEC
470# ifdef O_CLOEXEC
471# define EFD_CLOEXEC O_CLOEXEC
472# else
473# define EFD_CLOEXEC 02000000
474# endif
475# endif
476EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
477#endif
478
479#if EV_USE_SIGNALFD
480/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
481# include <stdint.h>
482# ifndef SFD_NONBLOCK
483# define SFD_NONBLOCK O_NONBLOCK
484# endif
485# ifndef SFD_CLOEXEC
486# ifdef O_CLOEXEC
487# define SFD_CLOEXEC O_CLOEXEC
488# else
489# define SFD_CLOEXEC 02000000
490# endif
491# endif
492EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
493
494struct signalfd_siginfo
495{
496 uint32_t ssi_signo;
497 char pad[128 - sizeof (uint32_t)];
498};
150#endif 499#endif
151 500
152/**/ 501/**/
502
503#if EV_VERIFY >= 3
504# define EV_FREQUENT_CHECK ev_verify (EV_A)
505#else
506# define EV_FREQUENT_CHECK do { } while (0)
507#endif
508
509/*
510 * This is used to work around floating point rounding problems.
511 * This value is good at least till the year 4000.
512 */
513#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
514/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
153 515
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 516#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 517#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
158 518
519#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
520#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
521
522/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
523/* ECB.H BEGIN */
524/*
525 * libecb - http://software.schmorp.de/pkg/libecb
526 *
527 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
528 * Copyright (©) 2011 Emanuele Giaquinta
529 * All rights reserved.
530 *
531 * Redistribution and use in source and binary forms, with or without modifica-
532 * tion, are permitted provided that the following conditions are met:
533 *
534 * 1. Redistributions of source code must retain the above copyright notice,
535 * this list of conditions and the following disclaimer.
536 *
537 * 2. Redistributions in binary form must reproduce the above copyright
538 * notice, this list of conditions and the following disclaimer in the
539 * documentation and/or other materials provided with the distribution.
540 *
541 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
542 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
543 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
544 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
545 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
546 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
547 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
548 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
549 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
550 * OF THE POSSIBILITY OF SUCH DAMAGE.
551 *
552 * Alternatively, the contents of this file may be used under the terms of
553 * the GNU General Public License ("GPL") version 2 or any later version,
554 * in which case the provisions of the GPL are applicable instead of
555 * the above. If you wish to allow the use of your version of this file
556 * only under the terms of the GPL and not to allow others to use your
557 * version of this file under the BSD license, indicate your decision
558 * by deleting the provisions above and replace them with the notice
559 * and other provisions required by the GPL. If you do not delete the
560 * provisions above, a recipient may use your version of this file under
561 * either the BSD or the GPL.
562 */
563
159#ifdef EV_H 564#ifndef ECB_H
160# include EV_H 565#define ECB_H
161#else 566
162# include "ev.h" 567/* 16 bits major, 16 bits minor */
568#define ECB_VERSION 0x00010005
569
570#ifdef _WIN32
571 typedef signed char int8_t;
572 typedef unsigned char uint8_t;
573 typedef signed short int16_t;
574 typedef unsigned short uint16_t;
575 typedef signed int int32_t;
576 typedef unsigned int uint32_t;
577 #if __GNUC__
578 typedef signed long long int64_t;
579 typedef unsigned long long uint64_t;
580 #else /* _MSC_VER || __BORLANDC__ */
581 typedef signed __int64 int64_t;
582 typedef unsigned __int64 uint64_t;
163#endif 583 #endif
584 #ifdef _WIN64
585 #define ECB_PTRSIZE 8
586 typedef uint64_t uintptr_t;
587 typedef int64_t intptr_t;
588 #else
589 #define ECB_PTRSIZE 4
590 typedef uint32_t uintptr_t;
591 typedef int32_t intptr_t;
592 #endif
593#else
594 #include <inttypes.h>
595 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
596 #define ECB_PTRSIZE 8
597 #else
598 #define ECB_PTRSIZE 4
599 #endif
600#endif
164 601
165#if __GNUC__ >= 3 602#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
603#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
604
605/* work around x32 idiocy by defining proper macros */
606#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
607 #if _ILP32
608 #define ECB_AMD64_X32 1
609 #else
610 #define ECB_AMD64 1
611 #endif
612#endif
613
614/* many compilers define _GNUC_ to some versions but then only implement
615 * what their idiot authors think are the "more important" extensions,
616 * causing enormous grief in return for some better fake benchmark numbers.
617 * or so.
618 * we try to detect these and simply assume they are not gcc - if they have
619 * an issue with that they should have done it right in the first place.
620 */
621#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
622 #define ECB_GCC_VERSION(major,minor) 0
623#else
624 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
625#endif
626
627#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
628
629#if __clang__ && defined __has_builtin
630 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
631#else
632 #define ECB_CLANG_BUILTIN(x) 0
633#endif
634
635#if __clang__ && defined __has_extension
636 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
637#else
638 #define ECB_CLANG_EXTENSION(x) 0
639#endif
640
641#define ECB_CPP (__cplusplus+0)
642#define ECB_CPP11 (__cplusplus >= 201103L)
643#define ECB_CPP14 (__cplusplus >= 201402L)
644#define ECB_CPP17 (__cplusplus >= 201703L)
645
646#if ECB_CPP
647 #define ECB_C 0
648 #define ECB_STDC_VERSION 0
649#else
650 #define ECB_C 1
651 #define ECB_STDC_VERSION __STDC_VERSION__
652#endif
653
654#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
655#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
656#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
657
658#if ECB_CPP
659 #define ECB_EXTERN_C extern "C"
660 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
661 #define ECB_EXTERN_C_END }
662#else
663 #define ECB_EXTERN_C extern
664 #define ECB_EXTERN_C_BEG
665 #define ECB_EXTERN_C_END
666#endif
667
668/*****************************************************************************/
669
670/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
671/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
672
673#if ECB_NO_THREADS
674 #define ECB_NO_SMP 1
675#endif
676
677#if ECB_NO_SMP
678 #define ECB_MEMORY_FENCE do { } while (0)
679#endif
680
681/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
682#if __xlC__ && ECB_CPP
683 #include <builtins.h>
684#endif
685
686#if 1400 <= _MSC_VER
687 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
688#endif
689
690#ifndef ECB_MEMORY_FENCE
691 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
692 #if __i386 || __i386__
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
694 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
695 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
696 #elif ECB_GCC_AMD64
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
698 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
699 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
700 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
701 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
702 #elif defined __ARM_ARCH_2__ \
703 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
704 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
705 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
706 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
707 || defined __ARM_ARCH_5TEJ__
708 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
709 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
710 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
711 || defined __ARM_ARCH_6T2__
712 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
713 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
714 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
716 #elif __aarch64__
717 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
718 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
720 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
721 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
722 #elif defined __s390__ || defined __s390x__
723 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
724 #elif defined __mips__
725 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
726 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
727 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
728 #elif defined __alpha__
729 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
730 #elif defined __hppa__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
732 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
733 #elif defined __ia64__
734 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
735 #elif defined __m68k__
736 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
737 #elif defined __m88k__
738 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
739 #elif defined __sh__
740 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
741 #endif
742 #endif
743#endif
744
745#ifndef ECB_MEMORY_FENCE
746 #if ECB_GCC_VERSION(4,7)
747 /* see comment below (stdatomic.h) about the C11 memory model. */
748 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
749 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
750 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
751
752 #elif ECB_CLANG_EXTENSION(c_atomic)
753 /* see comment below (stdatomic.h) about the C11 memory model. */
754 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
755 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
756 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
757
758 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
759 #define ECB_MEMORY_FENCE __sync_synchronize ()
760 #elif _MSC_VER >= 1500 /* VC++ 2008 */
761 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
762 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
763 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
764 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
765 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
766 #elif _MSC_VER >= 1400 /* VC++ 2005 */
767 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
768 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
769 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
770 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
771 #elif defined _WIN32
772 #include <WinNT.h>
773 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
774 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
775 #include <mbarrier.h>
776 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
777 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
778 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
779 #elif __xlC__
780 #define ECB_MEMORY_FENCE __sync ()
781 #endif
782#endif
783
784#ifndef ECB_MEMORY_FENCE
785 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786 /* we assume that these memory fences work on all variables/all memory accesses, */
787 /* not just C11 atomics and atomic accesses */
788 #include <stdatomic.h>
789 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
790 /* any fence other than seq_cst, which isn't very efficient for us. */
791 /* Why that is, we don't know - either the C11 memory model is quite useless */
792 /* for most usages, or gcc and clang have a bug */
793 /* I *currently* lean towards the latter, and inefficiently implement */
794 /* all three of ecb's fences as a seq_cst fence */
795 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
796 /* for all __atomic_thread_fence's except seq_cst */
797 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
798 #endif
799#endif
800
801#ifndef ECB_MEMORY_FENCE
802 #if !ECB_AVOID_PTHREADS
803 /*
804 * if you get undefined symbol references to pthread_mutex_lock,
805 * or failure to find pthread.h, then you should implement
806 * the ECB_MEMORY_FENCE operations for your cpu/compiler
807 * OR provide pthread.h and link against the posix thread library
808 * of your system.
809 */
810 #include <pthread.h>
811 #define ECB_NEEDS_PTHREADS 1
812 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
813
814 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
815 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
816 #endif
817#endif
818
819#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
820 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
821#endif
822
823#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
824 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
825#endif
826
827/*****************************************************************************/
828
829#if ECB_CPP
830 #define ecb_inline static inline
831#elif ECB_GCC_VERSION(2,5)
832 #define ecb_inline static __inline__
833#elif ECB_C99
834 #define ecb_inline static inline
835#else
836 #define ecb_inline static
837#endif
838
839#if ECB_GCC_VERSION(3,3)
840 #define ecb_restrict __restrict__
841#elif ECB_C99
842 #define ecb_restrict restrict
843#else
844 #define ecb_restrict
845#endif
846
847typedef int ecb_bool;
848
849#define ECB_CONCAT_(a, b) a ## b
850#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
851#define ECB_STRINGIFY_(a) # a
852#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
853#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
854
855#define ecb_function_ ecb_inline
856
857#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
858 #define ecb_attribute(attrlist) __attribute__ (attrlist)
859#else
860 #define ecb_attribute(attrlist)
861#endif
862
863#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
864 #define ecb_is_constant(expr) __builtin_constant_p (expr)
865#else
866 /* possible C11 impl for integral types
867 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
868 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
869
870 #define ecb_is_constant(expr) 0
871#endif
872
873#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
166# define expect(expr,value) __builtin_expect ((expr),(value)) 874 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline
168#else 875#else
169# define expect(expr,value) (expr) 876 #define ecb_expect(expr,value) (expr)
170# define inline static
171#endif 877#endif
172 878
879#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
880 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
881#else
882 #define ecb_prefetch(addr,rw,locality)
883#endif
884
885/* no emulation for ecb_decltype */
886#if ECB_CPP11
887 // older implementations might have problems with decltype(x)::type, work around it
888 template<class T> struct ecb_decltype_t { typedef T type; };
889 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
890#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
891 #define ecb_decltype(x) __typeof__ (x)
892#endif
893
894#if _MSC_VER >= 1300
895 #define ecb_deprecated __declspec (deprecated)
896#else
897 #define ecb_deprecated ecb_attribute ((__deprecated__))
898#endif
899
900#if _MSC_VER >= 1500
901 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
902#elif ECB_GCC_VERSION(4,5)
903 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
904#else
905 #define ecb_deprecated_message(msg) ecb_deprecated
906#endif
907
908#if _MSC_VER >= 1400
909 #define ecb_noinline __declspec (noinline)
910#else
911 #define ecb_noinline ecb_attribute ((__noinline__))
912#endif
913
914#define ecb_unused ecb_attribute ((__unused__))
915#define ecb_const ecb_attribute ((__const__))
916#define ecb_pure ecb_attribute ((__pure__))
917
918#if ECB_C11 || __IBMC_NORETURN
919 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
920 #define ecb_noreturn _Noreturn
921#elif ECB_CPP11
922 #define ecb_noreturn [[noreturn]]
923#elif _MSC_VER >= 1200
924 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
925 #define ecb_noreturn __declspec (noreturn)
926#else
927 #define ecb_noreturn ecb_attribute ((__noreturn__))
928#endif
929
930#if ECB_GCC_VERSION(4,3)
931 #define ecb_artificial ecb_attribute ((__artificial__))
932 #define ecb_hot ecb_attribute ((__hot__))
933 #define ecb_cold ecb_attribute ((__cold__))
934#else
935 #define ecb_artificial
936 #define ecb_hot
937 #define ecb_cold
938#endif
939
940/* put around conditional expressions if you are very sure that the */
941/* expression is mostly true or mostly false. note that these return */
942/* booleans, not the expression. */
173#define expect_false(expr) expect ((expr) != 0, 0) 943#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 944#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
945/* for compatibility to the rest of the world */
946#define ecb_likely(expr) ecb_expect_true (expr)
947#define ecb_unlikely(expr) ecb_expect_false (expr)
175 948
949/* count trailing zero bits and count # of one bits */
950#if ECB_GCC_VERSION(3,4) \
951 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
952 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
953 && ECB_CLANG_BUILTIN(__builtin_popcount))
954 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
955 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
956 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
957 #define ecb_ctz32(x) __builtin_ctz (x)
958 #define ecb_ctz64(x) __builtin_ctzll (x)
959 #define ecb_popcount32(x) __builtin_popcount (x)
960 /* no popcountll */
961#else
962 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
963 ecb_function_ ecb_const int
964 ecb_ctz32 (uint32_t x)
965 {
966#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
967 unsigned long r;
968 _BitScanForward (&r, x);
969 return (int)r;
970#else
971 int r = 0;
972
973 x &= ~x + 1; /* this isolates the lowest bit */
974
975#if ECB_branchless_on_i386
976 r += !!(x & 0xaaaaaaaa) << 0;
977 r += !!(x & 0xcccccccc) << 1;
978 r += !!(x & 0xf0f0f0f0) << 2;
979 r += !!(x & 0xff00ff00) << 3;
980 r += !!(x & 0xffff0000) << 4;
981#else
982 if (x & 0xaaaaaaaa) r += 1;
983 if (x & 0xcccccccc) r += 2;
984 if (x & 0xf0f0f0f0) r += 4;
985 if (x & 0xff00ff00) r += 8;
986 if (x & 0xffff0000) r += 16;
987#endif
988
989 return r;
990#endif
991 }
992
993 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
994 ecb_function_ ecb_const int
995 ecb_ctz64 (uint64_t x)
996 {
997#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
998 unsigned long r;
999 _BitScanForward64 (&r, x);
1000 return (int)r;
1001#else
1002 int shift = x & 0xffffffff ? 0 : 32;
1003 return ecb_ctz32 (x >> shift) + shift;
1004#endif
1005 }
1006
1007 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1008 ecb_function_ ecb_const int
1009 ecb_popcount32 (uint32_t x)
1010 {
1011 x -= (x >> 1) & 0x55555555;
1012 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1013 x = ((x >> 4) + x) & 0x0f0f0f0f;
1014 x *= 0x01010101;
1015
1016 return x >> 24;
1017 }
1018
1019 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1020 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1021 {
1022#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1023 unsigned long r;
1024 _BitScanReverse (&r, x);
1025 return (int)r;
1026#else
1027 int r = 0;
1028
1029 if (x >> 16) { x >>= 16; r += 16; }
1030 if (x >> 8) { x >>= 8; r += 8; }
1031 if (x >> 4) { x >>= 4; r += 4; }
1032 if (x >> 2) { x >>= 2; r += 2; }
1033 if (x >> 1) { r += 1; }
1034
1035 return r;
1036#endif
1037 }
1038
1039 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1040 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1041 {
1042#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1043 unsigned long r;
1044 _BitScanReverse64 (&r, x);
1045 return (int)r;
1046#else
1047 int r = 0;
1048
1049 if (x >> 32) { x >>= 32; r += 32; }
1050
1051 return r + ecb_ld32 (x);
1052#endif
1053 }
1054#endif
1055
1056ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1057ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1058ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1059ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1060
1061ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1062ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1063{
1064 return ( (x * 0x0802U & 0x22110U)
1065 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1066}
1067
1068ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1069ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1070{
1071 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1072 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1073 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1074 x = ( x >> 8 ) | ( x << 8);
1075
1076 return x;
1077}
1078
1079ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1080ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1081{
1082 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1083 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1084 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1085 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1086 x = ( x >> 16 ) | ( x << 16);
1087
1088 return x;
1089}
1090
1091/* popcount64 is only available on 64 bit cpus as gcc builtin */
1092/* so for this version we are lazy */
1093ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1094ecb_function_ ecb_const int
1095ecb_popcount64 (uint64_t x)
1096{
1097 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1098}
1099
1100ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1101ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1102ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1103ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1104ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1105ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1106ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1107ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1108
1109ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1110ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1111ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1112ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1113ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1114ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1115ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1116ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1117
1118#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1119 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1120 #define ecb_bswap16(x) __builtin_bswap16 (x)
1121 #else
1122 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1123 #endif
1124 #define ecb_bswap32(x) __builtin_bswap32 (x)
1125 #define ecb_bswap64(x) __builtin_bswap64 (x)
1126#elif _MSC_VER
1127 #include <stdlib.h>
1128 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1129 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1130 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1131#else
1132 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1133 ecb_function_ ecb_const uint16_t
1134 ecb_bswap16 (uint16_t x)
1135 {
1136 return ecb_rotl16 (x, 8);
1137 }
1138
1139 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1140 ecb_function_ ecb_const uint32_t
1141 ecb_bswap32 (uint32_t x)
1142 {
1143 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1144 }
1145
1146 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1147 ecb_function_ ecb_const uint64_t
1148 ecb_bswap64 (uint64_t x)
1149 {
1150 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1151 }
1152#endif
1153
1154#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1155 #define ecb_unreachable() __builtin_unreachable ()
1156#else
1157 /* this seems to work fine, but gcc always emits a warning for it :/ */
1158 ecb_inline ecb_noreturn void ecb_unreachable (void);
1159 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1160#endif
1161
1162/* try to tell the compiler that some condition is definitely true */
1163#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1164
1165ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1166ecb_inline ecb_const uint32_t
1167ecb_byteorder_helper (void)
1168{
1169 /* the union code still generates code under pressure in gcc, */
1170 /* but less than using pointers, and always seems to */
1171 /* successfully return a constant. */
1172 /* the reason why we have this horrible preprocessor mess */
1173 /* is to avoid it in all cases, at least on common architectures */
1174 /* or when using a recent enough gcc version (>= 4.6) */
1175#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1176 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1177 #define ECB_LITTLE_ENDIAN 1
1178 return 0x44332211;
1179#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1180 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1181 #define ECB_BIG_ENDIAN 1
1182 return 0x11223344;
1183#else
1184 union
1185 {
1186 uint8_t c[4];
1187 uint32_t u;
1188 } u = { 0x11, 0x22, 0x33, 0x44 };
1189 return u.u;
1190#endif
1191}
1192
1193ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1194ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1195ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1196ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1197
1198#if ECB_GCC_VERSION(3,0) || ECB_C99
1199 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1200#else
1201 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1202#endif
1203
1204#if ECB_CPP
1205 template<typename T>
1206 static inline T ecb_div_rd (T val, T div)
1207 {
1208 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1209 }
1210 template<typename T>
1211 static inline T ecb_div_ru (T val, T div)
1212 {
1213 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1214 }
1215#else
1216 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1217 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1218#endif
1219
1220#if ecb_cplusplus_does_not_suck
1221 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1222 template<typename T, int N>
1223 static inline int ecb_array_length (const T (&arr)[N])
1224 {
1225 return N;
1226 }
1227#else
1228 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1229#endif
1230
1231ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1232ecb_function_ ecb_const uint32_t
1233ecb_binary16_to_binary32 (uint32_t x)
1234{
1235 unsigned int s = (x & 0x8000) << (31 - 15);
1236 int e = (x >> 10) & 0x001f;
1237 unsigned int m = x & 0x03ff;
1238
1239 if (ecb_expect_false (e == 31))
1240 /* infinity or NaN */
1241 e = 255 - (127 - 15);
1242 else if (ecb_expect_false (!e))
1243 {
1244 if (ecb_expect_true (!m))
1245 /* zero, handled by code below by forcing e to 0 */
1246 e = 0 - (127 - 15);
1247 else
1248 {
1249 /* subnormal, renormalise */
1250 unsigned int s = 10 - ecb_ld32 (m);
1251
1252 m = (m << s) & 0x3ff; /* mask implicit bit */
1253 e -= s - 1;
1254 }
1255 }
1256
1257 /* e and m now are normalised, or zero, (or inf or nan) */
1258 e += 127 - 15;
1259
1260 return s | (e << 23) | (m << (23 - 10));
1261}
1262
1263ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1264ecb_function_ ecb_const uint16_t
1265ecb_binary32_to_binary16 (uint32_t x)
1266{
1267 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1268 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1269 unsigned int m = x & 0x007fffff;
1270
1271 x &= 0x7fffffff;
1272
1273 /* if it's within range of binary16 normals, use fast path */
1274 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1275 {
1276 /* mantissa round-to-even */
1277 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1278
1279 /* handle overflow */
1280 if (ecb_expect_false (m >= 0x00800000))
1281 {
1282 m >>= 1;
1283 e += 1;
1284 }
1285
1286 return s | (e << 10) | (m >> (23 - 10));
1287 }
1288
1289 /* handle large numbers and infinity */
1290 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1291 return s | 0x7c00;
1292
1293 /* handle zero, subnormals and small numbers */
1294 if (ecb_expect_true (x < 0x38800000))
1295 {
1296 /* zero */
1297 if (ecb_expect_true (!x))
1298 return s;
1299
1300 /* handle subnormals */
1301
1302 /* too small, will be zero */
1303 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1304 return s;
1305
1306 m |= 0x00800000; /* make implicit bit explicit */
1307
1308 /* very tricky - we need to round to the nearest e (+10) bit value */
1309 {
1310 unsigned int bits = 14 - e;
1311 unsigned int half = (1 << (bits - 1)) - 1;
1312 unsigned int even = (m >> bits) & 1;
1313
1314 /* if this overflows, we will end up with a normalised number */
1315 m = (m + half + even) >> bits;
1316 }
1317
1318 return s | m;
1319 }
1320
1321 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1322 m >>= 13;
1323
1324 return s | 0x7c00 | m | !m;
1325}
1326
1327/*******************************************************************************/
1328/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1329
1330/* basically, everything uses "ieee pure-endian" floating point numbers */
1331/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1332#if 0 \
1333 || __i386 || __i386__ \
1334 || ECB_GCC_AMD64 \
1335 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1336 || defined __s390__ || defined __s390x__ \
1337 || defined __mips__ \
1338 || defined __alpha__ \
1339 || defined __hppa__ \
1340 || defined __ia64__ \
1341 || defined __m68k__ \
1342 || defined __m88k__ \
1343 || defined __sh__ \
1344 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1345 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1346 || defined __aarch64__
1347 #define ECB_STDFP 1
1348 #include <string.h> /* for memcpy */
1349#else
1350 #define ECB_STDFP 0
1351#endif
1352
1353#ifndef ECB_NO_LIBM
1354
1355 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1356
1357 /* only the oldest of old doesn't have this one. solaris. */
1358 #ifdef INFINITY
1359 #define ECB_INFINITY INFINITY
1360 #else
1361 #define ECB_INFINITY HUGE_VAL
1362 #endif
1363
1364 #ifdef NAN
1365 #define ECB_NAN NAN
1366 #else
1367 #define ECB_NAN ECB_INFINITY
1368 #endif
1369
1370 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1371 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1372 #define ecb_frexpf(x,e) frexpf ((x), (e))
1373 #else
1374 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1375 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1376 #endif
1377
1378 /* convert a float to ieee single/binary32 */
1379 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1380 ecb_function_ ecb_const uint32_t
1381 ecb_float_to_binary32 (float x)
1382 {
1383 uint32_t r;
1384
1385 #if ECB_STDFP
1386 memcpy (&r, &x, 4);
1387 #else
1388 /* slow emulation, works for anything but -0 */
1389 uint32_t m;
1390 int e;
1391
1392 if (x == 0e0f ) return 0x00000000U;
1393 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1394 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1395 if (x != x ) return 0x7fbfffffU;
1396
1397 m = ecb_frexpf (x, &e) * 0x1000000U;
1398
1399 r = m & 0x80000000U;
1400
1401 if (r)
1402 m = -m;
1403
1404 if (e <= -126)
1405 {
1406 m &= 0xffffffU;
1407 m >>= (-125 - e);
1408 e = -126;
1409 }
1410
1411 r |= (e + 126) << 23;
1412 r |= m & 0x7fffffU;
1413 #endif
1414
1415 return r;
1416 }
1417
1418 /* converts an ieee single/binary32 to a float */
1419 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1420 ecb_function_ ecb_const float
1421 ecb_binary32_to_float (uint32_t x)
1422 {
1423 float r;
1424
1425 #if ECB_STDFP
1426 memcpy (&r, &x, 4);
1427 #else
1428 /* emulation, only works for normals and subnormals and +0 */
1429 int neg = x >> 31;
1430 int e = (x >> 23) & 0xffU;
1431
1432 x &= 0x7fffffU;
1433
1434 if (e)
1435 x |= 0x800000U;
1436 else
1437 e = 1;
1438
1439 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1440 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1441
1442 r = neg ? -r : r;
1443 #endif
1444
1445 return r;
1446 }
1447
1448 /* convert a double to ieee double/binary64 */
1449 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1450 ecb_function_ ecb_const uint64_t
1451 ecb_double_to_binary64 (double x)
1452 {
1453 uint64_t r;
1454
1455 #if ECB_STDFP
1456 memcpy (&r, &x, 8);
1457 #else
1458 /* slow emulation, works for anything but -0 */
1459 uint64_t m;
1460 int e;
1461
1462 if (x == 0e0 ) return 0x0000000000000000U;
1463 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1464 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1465 if (x != x ) return 0X7ff7ffffffffffffU;
1466
1467 m = frexp (x, &e) * 0x20000000000000U;
1468
1469 r = m & 0x8000000000000000;;
1470
1471 if (r)
1472 m = -m;
1473
1474 if (e <= -1022)
1475 {
1476 m &= 0x1fffffffffffffU;
1477 m >>= (-1021 - e);
1478 e = -1022;
1479 }
1480
1481 r |= ((uint64_t)(e + 1022)) << 52;
1482 r |= m & 0xfffffffffffffU;
1483 #endif
1484
1485 return r;
1486 }
1487
1488 /* converts an ieee double/binary64 to a double */
1489 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1490 ecb_function_ ecb_const double
1491 ecb_binary64_to_double (uint64_t x)
1492 {
1493 double r;
1494
1495 #if ECB_STDFP
1496 memcpy (&r, &x, 8);
1497 #else
1498 /* emulation, only works for normals and subnormals and +0 */
1499 int neg = x >> 63;
1500 int e = (x >> 52) & 0x7ffU;
1501
1502 x &= 0xfffffffffffffU;
1503
1504 if (e)
1505 x |= 0x10000000000000U;
1506 else
1507 e = 1;
1508
1509 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1510 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1511
1512 r = neg ? -r : r;
1513 #endif
1514
1515 return r;
1516 }
1517
1518 /* convert a float to ieee half/binary16 */
1519 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1520 ecb_function_ ecb_const uint16_t
1521 ecb_float_to_binary16 (float x)
1522 {
1523 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1524 }
1525
1526 /* convert an ieee half/binary16 to float */
1527 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1528 ecb_function_ ecb_const float
1529 ecb_binary16_to_float (uint16_t x)
1530 {
1531 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1532 }
1533
1534#endif
1535
1536#endif
1537
1538/* ECB.H END */
1539
1540#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1541/* if your architecture doesn't need memory fences, e.g. because it is
1542 * single-cpu/core, or if you use libev in a project that doesn't use libev
1543 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1544 * libev, in which cases the memory fences become nops.
1545 * alternatively, you can remove this #error and link against libpthread,
1546 * which will then provide the memory fences.
1547 */
1548# error "memory fences not defined for your architecture, please report"
1549#endif
1550
1551#ifndef ECB_MEMORY_FENCE
1552# define ECB_MEMORY_FENCE do { } while (0)
1553# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1554# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1555#endif
1556
1557#define expect_false(cond) ecb_expect_false (cond)
1558#define expect_true(cond) ecb_expect_true (cond)
1559#define noinline ecb_noinline
1560
1561#define inline_size ecb_inline
1562
1563#if EV_FEATURE_CODE
1564# define inline_speed ecb_inline
1565#else
1566# define inline_speed noinline static
1567#endif
1568
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1569#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1570
1571#if EV_MINPRI == EV_MAXPRI
1572# define ABSPRI(w) (((W)w), 0)
1573#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1574# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1575#endif
178 1576
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1577#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */
181 1578
182typedef struct ev_watcher *W; 1579typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 1580typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 1581typedef ev_watcher_time *WT;
185 1582
1583#define ev_active(w) ((W)(w))->active
1584#define ev_at(w) ((WT)(w))->at
1585
1586#if EV_USE_REALTIME
1587/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1588/* giving it a reasonably high chance of working on typical architectures */
1589static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1590#endif
1591
1592#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1593static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1594#endif
1595
1596#ifndef EV_FD_TO_WIN32_HANDLE
1597# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1598#endif
1599#ifndef EV_WIN32_HANDLE_TO_FD
1600# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1601#endif
1602#ifndef EV_WIN32_CLOSE_FD
1603# define EV_WIN32_CLOSE_FD(fd) close (fd)
1604#endif
187 1605
188#ifdef _WIN32 1606#ifdef _WIN32
189# include "ev_win32.c" 1607# include "ev_win32.c"
190#endif 1608#endif
191 1609
192/*****************************************************************************/ 1610/*****************************************************************************/
193 1611
1612/* define a suitable floor function (only used by periodics atm) */
1613
1614#if EV_USE_FLOOR
1615# include <math.h>
1616# define ev_floor(v) floor (v)
1617#else
1618
1619#include <float.h>
1620
1621/* a floor() replacement function, should be independent of ev_tstamp type */
1622noinline
1623static ev_tstamp
1624ev_floor (ev_tstamp v)
1625{
1626 /* the choice of shift factor is not terribly important */
1627#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1628 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1629#else
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1631#endif
1632
1633 /* argument too large for an unsigned long? */
1634 if (expect_false (v >= shift))
1635 {
1636 ev_tstamp f;
1637
1638 if (v == v - 1.)
1639 return v; /* very large number */
1640
1641 f = shift * ev_floor (v * (1. / shift));
1642 return f + ev_floor (v - f);
1643 }
1644
1645 /* special treatment for negative args? */
1646 if (expect_false (v < 0.))
1647 {
1648 ev_tstamp f = -ev_floor (-v);
1649
1650 return f - (f == v ? 0 : 1);
1651 }
1652
1653 /* fits into an unsigned long */
1654 return (unsigned long)v;
1655}
1656
1657#endif
1658
1659/*****************************************************************************/
1660
1661#ifdef __linux
1662# include <sys/utsname.h>
1663#endif
1664
1665noinline ecb_cold
1666static unsigned int
1667ev_linux_version (void)
1668{
1669#ifdef __linux
1670 unsigned int v = 0;
1671 struct utsname buf;
1672 int i;
1673 char *p = buf.release;
1674
1675 if (uname (&buf))
1676 return 0;
1677
1678 for (i = 3+1; --i; )
1679 {
1680 unsigned int c = 0;
1681
1682 for (;;)
1683 {
1684 if (*p >= '0' && *p <= '9')
1685 c = c * 10 + *p++ - '0';
1686 else
1687 {
1688 p += *p == '.';
1689 break;
1690 }
1691 }
1692
1693 v = (v << 8) | c;
1694 }
1695
1696 return v;
1697#else
1698 return 0;
1699#endif
1700}
1701
1702/*****************************************************************************/
1703
1704#if EV_AVOID_STDIO
1705noinline ecb_cold
1706static void
1707ev_printerr (const char *msg)
1708{
1709 write (STDERR_FILENO, msg, strlen (msg));
1710}
1711#endif
1712
194static void (*syserr_cb)(const char *msg); 1713static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
195 1714
1715ecb_cold
1716void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 1717ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
197{ 1718{
198 syserr_cb = cb; 1719 syserr_cb = cb;
199} 1720}
200 1721
1722noinline ecb_cold
201static void 1723static void
202syserr (const char *msg) 1724ev_syserr (const char *msg)
203{ 1725{
204 if (!msg) 1726 if (!msg)
205 msg = "(libev) system error"; 1727 msg = "(libev) system error";
206 1728
207 if (syserr_cb) 1729 if (syserr_cb)
208 syserr_cb (msg); 1730 syserr_cb (msg);
209 else 1731 else
210 { 1732 {
1733#if EV_AVOID_STDIO
1734 ev_printerr (msg);
1735 ev_printerr (": ");
1736 ev_printerr (strerror (errno));
1737 ev_printerr ("\n");
1738#else
211 perror (msg); 1739 perror (msg);
1740#endif
212 abort (); 1741 abort ();
213 } 1742 }
214} 1743}
215 1744
216static void *(*alloc)(void *ptr, long size); 1745static void *
1746ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1747{
1748 /* some systems, notably openbsd and darwin, fail to properly
1749 * implement realloc (x, 0) (as required by both ansi c-89 and
1750 * the single unix specification, so work around them here.
1751 * recently, also (at least) fedora and debian started breaking it,
1752 * despite documenting it otherwise.
1753 */
217 1754
1755 if (size)
1756 return realloc (ptr, size);
1757
1758 free (ptr);
1759 return 0;
1760}
1761
1762static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1763
1764ecb_cold
1765void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1766ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
219{ 1767{
220 alloc = cb; 1768 alloc = cb;
221} 1769}
222 1770
223static void * 1771inline_speed void *
224ev_realloc (void *ptr, long size) 1772ev_realloc (void *ptr, long size)
225{ 1773{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1774 ptr = alloc (ptr, size);
227 1775
228 if (!ptr && size) 1776 if (!ptr && size)
229 { 1777 {
1778#if EV_AVOID_STDIO
1779 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1780#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1781 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1782#endif
231 abort (); 1783 abort ();
232 } 1784 }
233 1785
234 return ptr; 1786 return ptr;
235} 1787}
237#define ev_malloc(size) ev_realloc (0, (size)) 1789#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 1790#define ev_free(ptr) ev_realloc ((ptr), 0)
239 1791
240/*****************************************************************************/ 1792/*****************************************************************************/
241 1793
1794/* set in reify when reification needed */
1795#define EV_ANFD_REIFY 1
1796
1797/* file descriptor info structure */
242typedef struct 1798typedef struct
243{ 1799{
244 WL head; 1800 WL head;
245 unsigned char events; 1801 unsigned char events; /* the events watched for */
1802 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1803 unsigned char emask; /* some backends store the actual kernel mask in here */
246 unsigned char reify; 1804 unsigned char unused;
1805#if EV_USE_EPOLL
1806 unsigned int egen; /* generation counter to counter epoll bugs */
1807#endif
247#if EV_SELECT_IS_WINSOCKET 1808#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
248 SOCKET handle; 1809 SOCKET handle;
249#endif 1810#endif
1811#if EV_USE_IOCP
1812 OVERLAPPED or, ow;
1813#endif
250} ANFD; 1814} ANFD;
251 1815
1816/* stores the pending event set for a given watcher */
252typedef struct 1817typedef struct
253{ 1818{
254 W w; 1819 W w;
255 int events; 1820 int events; /* the pending event set for the given watcher */
256} ANPENDING; 1821} ANPENDING;
1822
1823#if EV_USE_INOTIFY
1824/* hash table entry per inotify-id */
1825typedef struct
1826{
1827 WL head;
1828} ANFS;
1829#endif
1830
1831/* Heap Entry */
1832#if EV_HEAP_CACHE_AT
1833 /* a heap element */
1834 typedef struct {
1835 ev_tstamp at;
1836 WT w;
1837 } ANHE;
1838
1839 #define ANHE_w(he) (he).w /* access watcher, read-write */
1840 #define ANHE_at(he) (he).at /* access cached at, read-only */
1841 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1842#else
1843 /* a heap element */
1844 typedef WT ANHE;
1845
1846 #define ANHE_w(he) (he)
1847 #define ANHE_at(he) (he)->at
1848 #define ANHE_at_cache(he)
1849#endif
257 1850
258#if EV_MULTIPLICITY 1851#if EV_MULTIPLICITY
259 1852
260 struct ev_loop 1853 struct ev_loop
261 { 1854 {
266 #undef VAR 1859 #undef VAR
267 }; 1860 };
268 #include "ev_wrap.h" 1861 #include "ev_wrap.h"
269 1862
270 static struct ev_loop default_loop_struct; 1863 static struct ev_loop default_loop_struct;
271 struct ev_loop *ev_default_loop_ptr; 1864 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
272 1865
273#else 1866#else
274 1867
275 ev_tstamp ev_rt_now; 1868 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
276 #define VAR(name,decl) static decl; 1869 #define VAR(name,decl) static decl;
277 #include "ev_vars.h" 1870 #include "ev_vars.h"
278 #undef VAR 1871 #undef VAR
279 1872
280 static int ev_default_loop_ptr; 1873 static int ev_default_loop_ptr;
281 1874
282#endif 1875#endif
283 1876
1877#if EV_FEATURE_API
1878# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1879# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1880# define EV_INVOKE_PENDING invoke_cb (EV_A)
1881#else
1882# define EV_RELEASE_CB (void)0
1883# define EV_ACQUIRE_CB (void)0
1884# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1885#endif
1886
1887#define EVBREAK_RECURSE 0x80
1888
284/*****************************************************************************/ 1889/*****************************************************************************/
285 1890
1891#ifndef EV_HAVE_EV_TIME
286ev_tstamp 1892ev_tstamp
287ev_time (void) 1893ev_time (void) EV_NOEXCEPT
288{ 1894{
289#if EV_USE_REALTIME 1895#if EV_USE_REALTIME
1896 if (expect_true (have_realtime))
1897 {
290 struct timespec ts; 1898 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 1899 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 1900 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 1901 }
1902#endif
1903
294 struct timeval tv; 1904 struct timeval tv;
295 gettimeofday (&tv, 0); 1905 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 1906 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 1907}
1908#endif
299 1909
300inline ev_tstamp 1910inline_size ev_tstamp
301get_clock (void) 1911get_clock (void)
302{ 1912{
303#if EV_USE_MONOTONIC 1913#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 1914 if (expect_true (have_monotonic))
305 { 1915 {
312 return ev_time (); 1922 return ev_time ();
313} 1923}
314 1924
315#if EV_MULTIPLICITY 1925#if EV_MULTIPLICITY
316ev_tstamp 1926ev_tstamp
317ev_now (EV_P) 1927ev_now (EV_P) EV_NOEXCEPT
318{ 1928{
319 return ev_rt_now; 1929 return ev_rt_now;
320} 1930}
321#endif 1931#endif
322 1932
323#define array_roundsize(type,n) (((n) | 4) & ~3) 1933void
1934ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1935{
1936 if (delay > 0.)
1937 {
1938#if EV_USE_NANOSLEEP
1939 struct timespec ts;
1940
1941 EV_TS_SET (ts, delay);
1942 nanosleep (&ts, 0);
1943#elif defined _WIN32
1944 /* maybe this should round up, as ms is very low resolution */
1945 /* compared to select (µs) or nanosleep (ns) */
1946 Sleep ((unsigned long)(delay * 1e3));
1947#else
1948 struct timeval tv;
1949
1950 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1951 /* something not guaranteed by newer posix versions, but guaranteed */
1952 /* by older ones */
1953 EV_TV_SET (tv, delay);
1954 select (0, 0, 0, 0, &tv);
1955#endif
1956 }
1957}
1958
1959/*****************************************************************************/
1960
1961#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1962
1963/* find a suitable new size for the given array, */
1964/* hopefully by rounding to a nice-to-malloc size */
1965inline_size int
1966array_nextsize (int elem, int cur, int cnt)
1967{
1968 int ncur = cur + 1;
1969
1970 do
1971 ncur <<= 1;
1972 while (cnt > ncur);
1973
1974 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1975 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1976 {
1977 ncur *= elem;
1978 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1979 ncur = ncur - sizeof (void *) * 4;
1980 ncur /= elem;
1981 }
1982
1983 return ncur;
1984}
1985
1986noinline ecb_cold
1987static void *
1988array_realloc (int elem, void *base, int *cur, int cnt)
1989{
1990 *cur = array_nextsize (elem, *cur, cnt);
1991 return ev_realloc (base, elem * *cur);
1992}
1993
1994#define array_needsize_noinit(base,count)
1995
1996#define array_needsize_zerofill(base,count) \
1997 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 1998
325#define array_needsize(type,base,cur,cnt,init) \ 1999#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 2000 if (expect_false ((cnt) > (cur))) \
327 { \ 2001 { \
328 int newcnt = cur; \ 2002 ecb_unused int ocur_ = (cur); \
329 do \ 2003 (base) = (type *)array_realloc \
330 { \ 2004 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 2005 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 2006 }
339 2007
2008#if 0
340#define array_slim(type,stem) \ 2009#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2010 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 2011 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2012 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2013 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2014 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 2015 }
2016#endif
347 2017
348#define array_free(stem, idx) \ 2018#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2019 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 2020
351/*****************************************************************************/ 2021/*****************************************************************************/
352 2022
2023/* dummy callback for pending events */
2024noinline
353static void 2025static void
354anfds_init (ANFD *base, int count) 2026pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 2027{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 2028}
365 2029
2030noinline
366void 2031void
367ev_feed_event (EV_P_ void *w, int revents) 2032ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
368{ 2033{
369 W w_ = (W)w; 2034 W w_ = (W)w;
2035 int pri = ABSPRI (w_);
370 2036
371 if (expect_false (w_->pending)) 2037 if (expect_false (w_->pending))
2038 pendings [pri][w_->pending - 1].events |= revents;
2039 else
372 { 2040 {
2041 w_->pending = ++pendingcnt [pri];
2042 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2043 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2044 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 2045 }
376 2046
377 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2047 pendingpri = NUMPRI - 1;
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 2048}
382 2049
383static void 2050inline_speed void
2051feed_reverse (EV_P_ W w)
2052{
2053 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2054 rfeeds [rfeedcnt++] = w;
2055}
2056
2057inline_size void
2058feed_reverse_done (EV_P_ int revents)
2059{
2060 do
2061 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2062 while (rfeedcnt);
2063}
2064
2065inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 2066queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 2067{
386 int i; 2068 int i;
387 2069
388 for (i = 0; i < eventcnt; ++i) 2070 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 2071 ev_feed_event (EV_A_ events [i], type);
390} 2072}
391 2073
2074/*****************************************************************************/
2075
392inline void 2076inline_speed void
393fd_event (EV_P_ int fd, int revents) 2077fd_event_nocheck (EV_P_ int fd, int revents)
394{ 2078{
395 ANFD *anfd = anfds + fd; 2079 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 2080 ev_io *w;
397 2081
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2082 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 2083 {
400 int ev = w->events & revents; 2084 int ev = w->events & revents;
401 2085
402 if (ev) 2086 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 2087 ev_feed_event (EV_A_ (W)w, ev);
404 } 2088 }
405} 2089}
406 2090
407void 2091/* do not submit kernel events for fds that have reify set */
2092/* because that means they changed while we were polling for new events */
2093inline_speed void
408ev_feed_fd_event (EV_P_ int fd, int revents) 2094fd_event (EV_P_ int fd, int revents)
409{ 2095{
2096 ANFD *anfd = anfds + fd;
2097
2098 if (expect_true (!anfd->reify))
410 fd_event (EV_A_ fd, revents); 2099 fd_event_nocheck (EV_A_ fd, revents);
411} 2100}
412 2101
413/*****************************************************************************/ 2102void
2103ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2104{
2105 if (fd >= 0 && fd < anfdmax)
2106 fd_event_nocheck (EV_A_ fd, revents);
2107}
414 2108
2109/* make sure the external fd watch events are in-sync */
2110/* with the kernel/libev internal state */
415inline void 2111inline_size void
416fd_reify (EV_P) 2112fd_reify (EV_P)
417{ 2113{
418 int i; 2114 int i;
419 2115
2116#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
420 for (i = 0; i < fdchangecnt; ++i) 2117 for (i = 0; i < fdchangecnt; ++i)
421 { 2118 {
422 int fd = fdchanges [i]; 2119 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 2120 ANFD *anfd = anfds + fd;
424 struct ev_io *w;
425 2121
426 int events = 0; 2122 if (anfd->reify & EV__IOFDSET && anfd->head)
427
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
429 events |= w->events;
430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 { 2123 {
2124 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2125
2126 if (handle != anfd->handle)
2127 {
434 unsigned long argp; 2128 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 2129
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2130 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2131
2132 /* handle changed, but fd didn't - we need to do it in two steps */
2133 backend_modify (EV_A_ fd, anfd->events, 0);
2134 anfd->events = 0;
2135 anfd->handle = handle;
2136 }
437 } 2137 }
2138 }
438#endif 2139#endif
439 2140
2141 for (i = 0; i < fdchangecnt; ++i)
2142 {
2143 int fd = fdchanges [i];
2144 ANFD *anfd = anfds + fd;
2145 ev_io *w;
2146
2147 unsigned char o_events = anfd->events;
2148 unsigned char o_reify = anfd->reify;
2149
440 anfd->reify = 0; 2150 anfd->reify = 0;
441 2151
442 method_modify (EV_A_ fd, anfd->events, events); 2152 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2153 {
443 anfd->events = events; 2154 anfd->events = 0;
2155
2156 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2157 anfd->events |= (unsigned char)w->events;
2158
2159 if (o_events != anfd->events)
2160 o_reify = EV__IOFDSET; /* actually |= */
2161 }
2162
2163 if (o_reify & EV__IOFDSET)
2164 backend_modify (EV_A_ fd, o_events, anfd->events);
444 } 2165 }
445 2166
446 fdchangecnt = 0; 2167 fdchangecnt = 0;
447} 2168}
448 2169
449static void 2170/* something about the given fd changed */
2171inline_size
2172void
450fd_change (EV_P_ int fd) 2173fd_change (EV_P_ int fd, int flags)
451{ 2174{
452 if (expect_false (anfds [fd].reify)) 2175 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 2176 anfds [fd].reify |= flags;
456 2177
2178 if (expect_true (!reify))
2179 {
457 ++fdchangecnt; 2180 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2181 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
459 fdchanges [fdchangecnt - 1] = fd; 2182 fdchanges [fdchangecnt - 1] = fd;
2183 }
460} 2184}
461 2185
462static void 2186/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2187inline_speed ecb_cold void
463fd_kill (EV_P_ int fd) 2188fd_kill (EV_P_ int fd)
464{ 2189{
465 struct ev_io *w; 2190 ev_io *w;
466 2191
467 while ((w = (struct ev_io *)anfds [fd].head)) 2192 while ((w = (ev_io *)anfds [fd].head))
468 { 2193 {
469 ev_io_stop (EV_A_ w); 2194 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2195 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 2196 }
472} 2197}
473 2198
474inline int 2199/* check whether the given fd is actually valid, for error recovery */
2200inline_size ecb_cold int
475fd_valid (int fd) 2201fd_valid (int fd)
476{ 2202{
477#ifdef _WIN32 2203#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 2204 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 2205#else
480 return fcntl (fd, F_GETFD) != -1; 2206 return fcntl (fd, F_GETFD) != -1;
481#endif 2207#endif
482} 2208}
483 2209
484/* called on EBADF to verify fds */ 2210/* called on EBADF to verify fds */
2211noinline ecb_cold
485static void 2212static void
486fd_ebadf (EV_P) 2213fd_ebadf (EV_P)
487{ 2214{
488 int fd; 2215 int fd;
489 2216
490 for (fd = 0; fd < anfdmax; ++fd) 2217 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 2218 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 2219 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 2220 fd_kill (EV_A_ fd);
494} 2221}
495 2222
496/* called on ENOMEM in select/poll to kill some fds and retry */ 2223/* called on ENOMEM in select/poll to kill some fds and retry */
2224noinline ecb_cold
497static void 2225static void
498fd_enomem (EV_P) 2226fd_enomem (EV_P)
499{ 2227{
500 int fd; 2228 int fd;
501 2229
502 for (fd = anfdmax; fd--; ) 2230 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 2231 if (anfds [fd].events)
504 { 2232 {
505 fd_kill (EV_A_ fd); 2233 fd_kill (EV_A_ fd);
506 return; 2234 break;
507 } 2235 }
508} 2236}
509 2237
510/* usually called after fork if method needs to re-arm all fds from scratch */ 2238/* usually called after fork if backend needs to re-arm all fds from scratch */
2239noinline
511static void 2240static void
512fd_rearm_all (EV_P) 2241fd_rearm_all (EV_P)
513{ 2242{
514 int fd; 2243 int fd;
515 2244
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 2245 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 2246 if (anfds [fd].events)
519 { 2247 {
520 anfds [fd].events = 0; 2248 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 2249 anfds [fd].emask = 0;
2250 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 2251 }
523} 2252}
524 2253
2254/* used to prepare libev internal fd's */
2255/* this is not fork-safe */
2256inline_speed void
2257fd_intern (int fd)
2258{
2259#ifdef _WIN32
2260 unsigned long arg = 1;
2261 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2262#else
2263 fcntl (fd, F_SETFD, FD_CLOEXEC);
2264 fcntl (fd, F_SETFL, O_NONBLOCK);
2265#endif
2266}
2267
525/*****************************************************************************/ 2268/*****************************************************************************/
526 2269
2270/*
2271 * the heap functions want a real array index. array index 0 is guaranteed to not
2272 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2273 * the branching factor of the d-tree.
2274 */
2275
2276/*
2277 * at the moment we allow libev the luxury of two heaps,
2278 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2279 * which is more cache-efficient.
2280 * the difference is about 5% with 50000+ watchers.
2281 */
2282#if EV_USE_4HEAP
2283
2284#define DHEAP 4
2285#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2286#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2287#define UPHEAP_DONE(p,k) ((p) == (k))
2288
2289/* away from the root */
2290inline_speed void
2291downheap (ANHE *heap, int N, int k)
2292{
2293 ANHE he = heap [k];
2294 ANHE *E = heap + N + HEAP0;
2295
2296 for (;;)
2297 {
2298 ev_tstamp minat;
2299 ANHE *minpos;
2300 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2301
2302 /* find minimum child */
2303 if (expect_true (pos + DHEAP - 1 < E))
2304 {
2305 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2306 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2307 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2308 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2309 }
2310 else if (pos < E)
2311 {
2312 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2313 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2314 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2315 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2316 }
2317 else
2318 break;
2319
2320 if (ANHE_at (he) <= minat)
2321 break;
2322
2323 heap [k] = *minpos;
2324 ev_active (ANHE_w (*minpos)) = k;
2325
2326 k = minpos - heap;
2327 }
2328
2329 heap [k] = he;
2330 ev_active (ANHE_w (he)) = k;
2331}
2332
2333#else /* 4HEAP */
2334
2335#define HEAP0 1
2336#define HPARENT(k) ((k) >> 1)
2337#define UPHEAP_DONE(p,k) (!(p))
2338
2339/* away from the root */
2340inline_speed void
2341downheap (ANHE *heap, int N, int k)
2342{
2343 ANHE he = heap [k];
2344
2345 for (;;)
2346 {
2347 int c = k << 1;
2348
2349 if (c >= N + HEAP0)
2350 break;
2351
2352 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2353 ? 1 : 0;
2354
2355 if (ANHE_at (he) <= ANHE_at (heap [c]))
2356 break;
2357
2358 heap [k] = heap [c];
2359 ev_active (ANHE_w (heap [k])) = k;
2360
2361 k = c;
2362 }
2363
2364 heap [k] = he;
2365 ev_active (ANHE_w (he)) = k;
2366}
2367#endif
2368
2369/* towards the root */
2370inline_speed void
2371upheap (ANHE *heap, int k)
2372{
2373 ANHE he = heap [k];
2374
2375 for (;;)
2376 {
2377 int p = HPARENT (k);
2378
2379 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2380 break;
2381
2382 heap [k] = heap [p];
2383 ev_active (ANHE_w (heap [k])) = k;
2384 k = p;
2385 }
2386
2387 heap [k] = he;
2388 ev_active (ANHE_w (he)) = k;
2389}
2390
2391/* move an element suitably so it is in a correct place */
2392inline_size void
2393adjustheap (ANHE *heap, int N, int k)
2394{
2395 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2396 upheap (heap, k);
2397 else
2398 downheap (heap, N, k);
2399}
2400
2401/* rebuild the heap: this function is used only once and executed rarely */
2402inline_size void
2403reheap (ANHE *heap, int N)
2404{
2405 int i;
2406
2407 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2408 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2409 for (i = 0; i < N; ++i)
2410 upheap (heap, i + HEAP0);
2411}
2412
2413/*****************************************************************************/
2414
2415/* associate signal watchers to a signal signal */
2416typedef struct
2417{
2418 EV_ATOMIC_T pending;
2419#if EV_MULTIPLICITY
2420 EV_P;
2421#endif
2422 WL head;
2423} ANSIG;
2424
2425static ANSIG signals [EV_NSIG - 1];
2426
2427/*****************************************************************************/
2428
2429#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2430
2431noinline ecb_cold
527static void 2432static void
528upheap (WT *heap, int k) 2433evpipe_init (EV_P)
529{ 2434{
530 WT w = heap [k]; 2435 if (!ev_is_active (&pipe_w))
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 } 2436 {
2437 int fds [2];
538 2438
539 heap [k] = w; 2439# if EV_USE_EVENTFD
540 ((W)heap [k])->active = k + 1; 2440 fds [0] = -1;
2441 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2442 if (fds [1] < 0 && errno == EINVAL)
2443 fds [1] = eventfd (0, 0);
541 2444
542} 2445 if (fds [1] < 0)
2446# endif
2447 {
2448 while (pipe (fds))
2449 ev_syserr ("(libev) error creating signal/async pipe");
543 2450
2451 fd_intern (fds [0]);
2452 }
2453
2454 evpipe [0] = fds [0];
2455
2456 if (evpipe [1] < 0)
2457 evpipe [1] = fds [1]; /* first call, set write fd */
2458 else
2459 {
2460 /* on subsequent calls, do not change evpipe [1] */
2461 /* so that evpipe_write can always rely on its value. */
2462 /* this branch does not do anything sensible on windows, */
2463 /* so must not be executed on windows */
2464
2465 dup2 (fds [1], evpipe [1]);
2466 close (fds [1]);
2467 }
2468
2469 fd_intern (evpipe [1]);
2470
2471 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2472 ev_io_start (EV_A_ &pipe_w);
2473 ev_unref (EV_A); /* watcher should not keep loop alive */
2474 }
2475}
2476
2477inline_speed void
2478evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2479{
2480 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2481
2482 if (expect_true (*flag))
2483 return;
2484
2485 *flag = 1;
2486 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2487
2488 pipe_write_skipped = 1;
2489
2490 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2491
2492 if (pipe_write_wanted)
2493 {
2494 int old_errno;
2495
2496 pipe_write_skipped = 0;
2497 ECB_MEMORY_FENCE_RELEASE;
2498
2499 old_errno = errno; /* save errno because write will clobber it */
2500
2501#if EV_USE_EVENTFD
2502 if (evpipe [0] < 0)
2503 {
2504 uint64_t counter = 1;
2505 write (evpipe [1], &counter, sizeof (uint64_t));
2506 }
2507 else
2508#endif
2509 {
2510#ifdef _WIN32
2511 WSABUF buf;
2512 DWORD sent;
2513 buf.buf = (char *)&buf;
2514 buf.len = 1;
2515 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2516#else
2517 write (evpipe [1], &(evpipe [1]), 1);
2518#endif
2519 }
2520
2521 errno = old_errno;
2522 }
2523}
2524
2525/* called whenever the libev signal pipe */
2526/* got some events (signal, async) */
544static void 2527static void
545downheap (WT *heap, int N, int k) 2528pipecb (EV_P_ ev_io *iow, int revents)
546{ 2529{
547 WT w = heap [k]; 2530 int i;
548 2531
549 while (k < (N >> 1)) 2532 if (revents & EV_READ)
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 } 2533 {
2534#if EV_USE_EVENTFD
2535 if (evpipe [0] < 0)
2536 {
2537 uint64_t counter;
2538 read (evpipe [1], &counter, sizeof (uint64_t));
2539 }
2540 else
2541#endif
2542 {
2543 char dummy[4];
2544#ifdef _WIN32
2545 WSABUF buf;
2546 DWORD recvd;
2547 DWORD flags = 0;
2548 buf.buf = dummy;
2549 buf.len = sizeof (dummy);
2550 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2551#else
2552 read (evpipe [0], &dummy, sizeof (dummy));
2553#endif
2554 }
2555 }
563 2556
564 heap [k] = w; 2557 pipe_write_skipped = 0;
565 ((W)heap [k])->active = k + 1;
566}
567 2558
568inline void 2559 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
569adjustheap (WT *heap, int N, int k) 2560
570{ 2561#if EV_SIGNAL_ENABLE
571 upheap (heap, k); 2562 if (sig_pending)
572 downheap (heap, N, k); 2563 {
2564 sig_pending = 0;
2565
2566 ECB_MEMORY_FENCE;
2567
2568 for (i = EV_NSIG - 1; i--; )
2569 if (expect_false (signals [i].pending))
2570 ev_feed_signal_event (EV_A_ i + 1);
2571 }
2572#endif
2573
2574#if EV_ASYNC_ENABLE
2575 if (async_pending)
2576 {
2577 async_pending = 0;
2578
2579 ECB_MEMORY_FENCE;
2580
2581 for (i = asynccnt; i--; )
2582 if (asyncs [i]->sent)
2583 {
2584 asyncs [i]->sent = 0;
2585 ECB_MEMORY_FENCE_RELEASE;
2586 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2587 }
2588 }
2589#endif
573} 2590}
574 2591
575/*****************************************************************************/ 2592/*****************************************************************************/
576 2593
577typedef struct 2594void
2595ev_feed_signal (int signum) EV_NOEXCEPT
578{ 2596{
579 WL head; 2597#if EV_MULTIPLICITY
580 sig_atomic_t volatile gotsig; 2598 EV_P;
581} ANSIG; 2599 ECB_MEMORY_FENCE_ACQUIRE;
2600 EV_A = signals [signum - 1].loop;
582 2601
583static ANSIG *signals; 2602 if (!EV_A)
584static int signalmax; 2603 return;
2604#endif
585 2605
586static int sigpipe [2]; 2606 signals [signum - 1].pending = 1;
587static sig_atomic_t volatile gotsig; 2607 evpipe_write (EV_A_ &sig_pending);
588static struct ev_io sigev; 2608}
589 2609
590static void 2610static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum) 2611ev_sighandler (int signum)
604{ 2612{
605#if _WIN32 2613#ifdef _WIN32
606 signal (signum, sighandler); 2614 signal (signum, ev_sighandler);
607#endif 2615#endif
608 2616
609 signals [signum - 1].gotsig = 1; 2617 ev_feed_signal (signum);
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618} 2618}
619 2619
2620noinline
620void 2621void
621ev_feed_signal_event (EV_P_ int signum) 2622ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
622{ 2623{
623 WL w; 2624 WL w;
624 2625
2626 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2627 return;
2628
2629 --signum;
2630
625#if EV_MULTIPLICITY 2631#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 2632 /* it is permissible to try to feed a signal to the wrong loop */
627#endif 2633 /* or, likely more useful, feeding a signal nobody is waiting for */
628 2634
629 --signum; 2635 if (expect_false (signals [signum].loop != EV_A))
630
631 if (signum < 0 || signum >= signalmax)
632 return; 2636 return;
2637#endif
633 2638
634 signals [signum].gotsig = 0; 2639 signals [signum].pending = 0;
2640 ECB_MEMORY_FENCE_RELEASE;
635 2641
636 for (w = signals [signum].head; w; w = w->next) 2642 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2643 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638} 2644}
639 2645
2646#if EV_USE_SIGNALFD
640static void 2647static void
641sigcb (EV_P_ struct ev_io *iow, int revents) 2648sigfdcb (EV_P_ ev_io *iow, int revents)
642{ 2649{
643 int signum; 2650 struct signalfd_siginfo si[2], *sip; /* these structs are big */
644 2651
645 read (sigpipe [0], &revents, 1); 2652 for (;;)
646 gotsig = 0; 2653 {
2654 ssize_t res = read (sigfd, si, sizeof (si));
647 2655
648 for (signum = signalmax; signum--; ) 2656 /* not ISO-C, as res might be -1, but works with SuS */
649 if (signals [signum].gotsig) 2657 for (sip = si; (char *)sip < (char *)si + res; ++sip)
650 ev_feed_signal_event (EV_A_ signum + 1); 2658 ev_feed_signal_event (EV_A_ sip->ssi_signo);
651}
652 2659
653static void 2660 if (res < (ssize_t)sizeof (si))
654fd_intern (int fd) 2661 break;
655{ 2662 }
656#ifdef _WIN32
657 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif
663} 2663}
2664#endif
664 2665
665static void 2666#endif
666siginit (EV_P)
667{
668 fd_intern (sigpipe [0]);
669 fd_intern (sigpipe [1]);
670
671 ev_io_set (&sigev, sigpipe [0], EV_READ);
672 ev_io_start (EV_A_ &sigev);
673 ev_unref (EV_A); /* child watcher should not keep loop alive */
674}
675 2667
676/*****************************************************************************/ 2668/*****************************************************************************/
677 2669
678static struct ev_child *childs [PID_HASHSIZE]; 2670#if EV_CHILD_ENABLE
2671static WL childs [EV_PID_HASHSIZE];
679 2672
680#ifndef _WIN32
681
682static struct ev_signal childev; 2673static ev_signal childev;
2674
2675#ifndef WIFCONTINUED
2676# define WIFCONTINUED(status) 0
2677#endif
2678
2679/* handle a single child status event */
2680inline_speed void
2681child_reap (EV_P_ int chain, int pid, int status)
2682{
2683 ev_child *w;
2684 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2685
2686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2687 {
2688 if ((w->pid == pid || !w->pid)
2689 && (!traced || (w->flags & 1)))
2690 {
2691 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2692 w->rpid = pid;
2693 w->rstatus = status;
2694 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2695 }
2696 }
2697}
683 2698
684#ifndef WCONTINUED 2699#ifndef WCONTINUED
685# define WCONTINUED 0 2700# define WCONTINUED 0
686#endif 2701#endif
687 2702
2703/* called on sigchld etc., calls waitpid */
688static void 2704static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 2705childcb (EV_P_ ev_signal *sw, int revents)
705{ 2706{
706 int pid, status; 2707 int pid, status;
707 2708
2709 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2710 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 2711 if (!WCONTINUED
2712 || errno != EINVAL
2713 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2714 return;
2715
710 /* make sure we are called again until all childs have been reaped */ 2716 /* make sure we are called again until all children have been reaped */
2717 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2718 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 2719
713 child_reap (EV_A_ sw, pid, pid, status); 2720 child_reap (EV_A_ pid, pid, status);
2721 if ((EV_PID_HASHSIZE) > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2722 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 2723}
717 2724
718#endif 2725#endif
719 2726
720/*****************************************************************************/ 2727/*****************************************************************************/
721 2728
2729#if EV_USE_IOCP
2730# include "ev_iocp.c"
2731#endif
722#if EV_USE_PORT 2732#if EV_USE_PORT
723# include "ev_port.c" 2733# include "ev_port.c"
724#endif 2734#endif
725#if EV_USE_KQUEUE 2735#if EV_USE_KQUEUE
726# include "ev_kqueue.c" 2736# include "ev_kqueue.c"
727#endif 2737#endif
2738#if EV_USE_LINUXAIO
2739# include "ev_linuxaio.c"
2740#endif
728#if EV_USE_EPOLL 2741#if EV_USE_EPOLL
729# include "ev_epoll.c" 2742# include "ev_epoll.c"
730#endif 2743#endif
731#if EV_USE_POLL 2744#if EV_USE_POLL
732# include "ev_poll.c" 2745# include "ev_poll.c"
733#endif 2746#endif
734#if EV_USE_SELECT 2747#if EV_USE_SELECT
735# include "ev_select.c" 2748# include "ev_select.c"
736#endif 2749#endif
737 2750
738int 2751ecb_cold int
739ev_version_major (void) 2752ev_version_major (void) EV_NOEXCEPT
740{ 2753{
741 return EV_VERSION_MAJOR; 2754 return EV_VERSION_MAJOR;
742} 2755}
743 2756
744int 2757ecb_cold int
745ev_version_minor (void) 2758ev_version_minor (void) EV_NOEXCEPT
746{ 2759{
747 return EV_VERSION_MINOR; 2760 return EV_VERSION_MINOR;
748} 2761}
749 2762
750/* return true if we are running with elevated privileges and should ignore env variables */ 2763/* return true if we are running with elevated privileges and should ignore env variables */
751static int 2764inline_size ecb_cold int
752enable_secure (void) 2765enable_secure (void)
753{ 2766{
754#ifdef _WIN32 2767#ifdef _WIN32
755 return 0; 2768 return 0;
756#else 2769#else
757 return getuid () != geteuid () 2770 return getuid () != geteuid ()
758 || getgid () != getegid (); 2771 || getgid () != getegid ();
759#endif 2772#endif
760} 2773}
761 2774
2775ecb_cold
762unsigned int 2776unsigned int
763ev_method (EV_P) 2777ev_supported_backends (void) EV_NOEXCEPT
764{ 2778{
765 return method; 2779 unsigned int flags = 0;
766}
767 2780
2781 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2782 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2783 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2784 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2785 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2786 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2787
2788 return flags;
2789}
2790
2791ecb_cold
2792unsigned int
2793ev_recommended_backends (void) EV_NOEXCEPT
2794{
2795 unsigned int flags = ev_supported_backends ();
2796
2797#ifndef __NetBSD__
2798 /* kqueue is borked on everything but netbsd apparently */
2799 /* it usually doesn't work correctly on anything but sockets and pipes */
2800 flags &= ~EVBACKEND_KQUEUE;
2801#endif
2802#ifdef __APPLE__
2803 /* only select works correctly on that "unix-certified" platform */
2804 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2805 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2806#endif
2807#ifdef __FreeBSD__
2808 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2809#endif
2810
2811 /* TODO: linuxaio is very experimental */
2812 flags &= ~EVBACKEND_LINUXAIO;
2813
2814 return flags;
2815}
2816
2817ecb_cold
2818unsigned int
2819ev_embeddable_backends (void) EV_NOEXCEPT
2820{
2821 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2822
2823 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2824 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2825 flags &= ~EVBACKEND_EPOLL;
2826
2827 return flags;
2828}
2829
2830unsigned int
2831ev_backend (EV_P) EV_NOEXCEPT
2832{
2833 return backend;
2834}
2835
2836#if EV_FEATURE_API
2837unsigned int
2838ev_iteration (EV_P) EV_NOEXCEPT
2839{
2840 return loop_count;
2841}
2842
2843unsigned int
2844ev_depth (EV_P) EV_NOEXCEPT
2845{
2846 return loop_depth;
2847}
2848
2849void
2850ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2851{
2852 io_blocktime = interval;
2853}
2854
2855void
2856ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2857{
2858 timeout_blocktime = interval;
2859}
2860
2861void
2862ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2863{
2864 userdata = data;
2865}
2866
2867void *
2868ev_userdata (EV_P) EV_NOEXCEPT
2869{
2870 return userdata;
2871}
2872
2873void
2874ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2875{
2876 invoke_cb = invoke_pending_cb;
2877}
2878
2879void
2880ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2881{
2882 release_cb = release;
2883 acquire_cb = acquire;
2884}
2885#endif
2886
2887/* initialise a loop structure, must be zero-initialised */
2888noinline ecb_cold
768static void 2889static void
769loop_init (EV_P_ unsigned int flags) 2890loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
770{ 2891{
771 if (!method) 2892 if (!backend)
772 { 2893 {
2894 origflags = flags;
2895
2896#if EV_USE_REALTIME
2897 if (!have_realtime)
2898 {
2899 struct timespec ts;
2900
2901 if (!clock_gettime (CLOCK_REALTIME, &ts))
2902 have_realtime = 1;
2903 }
2904#endif
2905
773#if EV_USE_MONOTONIC 2906#if EV_USE_MONOTONIC
2907 if (!have_monotonic)
774 { 2908 {
775 struct timespec ts; 2909 struct timespec ts;
2910
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2911 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
777 have_monotonic = 1; 2912 have_monotonic = 1;
778 } 2913 }
779#endif 2914#endif
780 2915
781 ev_rt_now = ev_time (); 2916 /* pid check not overridable via env */
782 mn_now = get_clock (); 2917#ifndef _WIN32
783 now_floor = mn_now; 2918 if (flags & EVFLAG_FORKCHECK)
784 rtmn_diff = ev_rt_now - mn_now; 2919 curpid = getpid ();
2920#endif
785 2921
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2922 if (!(flags & EVFLAG_NOENV)
2923 && !enable_secure ()
2924 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 2925 flags = atoi (getenv ("LIBEV_FLAGS"));
788 2926
789 if (!(flags & 0x0000ffff)) 2927 ev_rt_now = ev_time ();
790 flags |= 0x0000ffff; 2928 mn_now = get_clock ();
2929 now_floor = mn_now;
2930 rtmn_diff = ev_rt_now - mn_now;
2931#if EV_FEATURE_API
2932 invoke_cb = ev_invoke_pending;
2933#endif
791 2934
792 method = 0; 2935 io_blocktime = 0.;
2936 timeout_blocktime = 0.;
2937 backend = 0;
2938 backend_fd = -1;
2939 sig_pending = 0;
2940#if EV_ASYNC_ENABLE
2941 async_pending = 0;
2942#endif
2943 pipe_write_skipped = 0;
2944 pipe_write_wanted = 0;
2945 evpipe [0] = -1;
2946 evpipe [1] = -1;
2947#if EV_USE_INOTIFY
2948 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2949#endif
2950#if EV_USE_SIGNALFD
2951 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2952#endif
2953
2954 if (!(flags & EVBACKEND_MASK))
2955 flags |= ev_recommended_backends ();
2956
2957#if EV_USE_IOCP
2958 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2959#endif
793#if EV_USE_PORT 2960#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 2961 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 2962#endif
796#if EV_USE_KQUEUE 2963#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 2964 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2965#endif
2966#if EV_USE_LINUXAIO
2967 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
798#endif 2968#endif
799#if EV_USE_EPOLL 2969#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 2970 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 2971#endif
802#if EV_USE_POLL 2972#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 2973 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 2974#endif
805#if EV_USE_SELECT 2975#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 2976 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
807#endif 2977#endif
808 2978
2979 ev_prepare_init (&pending_w, pendingcb);
2980
2981#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
809 ev_init (&sigev, sigcb); 2982 ev_init (&pipe_w, pipecb);
810 ev_set_priority (&sigev, EV_MAXPRI); 2983 ev_set_priority (&pipe_w, EV_MAXPRI);
2984#endif
2985 }
2986}
2987
2988/* free up a loop structure */
2989ecb_cold
2990void
2991ev_loop_destroy (EV_P)
2992{
2993 int i;
2994
2995#if EV_MULTIPLICITY
2996 /* mimic free (0) */
2997 if (!EV_A)
2998 return;
2999#endif
3000
3001#if EV_CLEANUP_ENABLE
3002 /* queue cleanup watchers (and execute them) */
3003 if (expect_false (cleanupcnt))
811 } 3004 {
812} 3005 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3006 EV_INVOKE_PENDING;
3007 }
3008#endif
813 3009
3010#if EV_CHILD_ENABLE
3011 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3012 {
3013 ev_ref (EV_A); /* child watcher */
3014 ev_signal_stop (EV_A_ &childev);
3015 }
3016#endif
3017
3018 if (ev_is_active (&pipe_w))
3019 {
3020 /*ev_ref (EV_A);*/
3021 /*ev_io_stop (EV_A_ &pipe_w);*/
3022
3023 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3024 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3025 }
3026
3027#if EV_USE_SIGNALFD
3028 if (ev_is_active (&sigfd_w))
3029 close (sigfd);
3030#endif
3031
3032#if EV_USE_INOTIFY
3033 if (fs_fd >= 0)
3034 close (fs_fd);
3035#endif
3036
3037 if (backend_fd >= 0)
3038 close (backend_fd);
3039
3040#if EV_USE_IOCP
3041 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3042#endif
3043#if EV_USE_PORT
3044 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3045#endif
3046#if EV_USE_KQUEUE
3047 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3048#endif
3049#if EV_USE_LINUXAIO
3050 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3051#endif
3052#if EV_USE_EPOLL
3053 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3054#endif
3055#if EV_USE_POLL
3056 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3057#endif
3058#if EV_USE_SELECT
3059 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3060#endif
3061
3062 for (i = NUMPRI; i--; )
3063 {
3064 array_free (pending, [i]);
3065#if EV_IDLE_ENABLE
3066 array_free (idle, [i]);
3067#endif
3068 }
3069
3070 ev_free (anfds); anfds = 0; anfdmax = 0;
3071
3072 /* have to use the microsoft-never-gets-it-right macro */
3073 array_free (rfeed, EMPTY);
3074 array_free (fdchange, EMPTY);
3075 array_free (timer, EMPTY);
3076#if EV_PERIODIC_ENABLE
3077 array_free (periodic, EMPTY);
3078#endif
3079#if EV_FORK_ENABLE
3080 array_free (fork, EMPTY);
3081#endif
3082#if EV_CLEANUP_ENABLE
3083 array_free (cleanup, EMPTY);
3084#endif
3085 array_free (prepare, EMPTY);
3086 array_free (check, EMPTY);
3087#if EV_ASYNC_ENABLE
3088 array_free (async, EMPTY);
3089#endif
3090
3091 backend = 0;
3092
3093#if EV_MULTIPLICITY
3094 if (ev_is_default_loop (EV_A))
3095#endif
3096 ev_default_loop_ptr = 0;
3097#if EV_MULTIPLICITY
3098 else
3099 ev_free (EV_A);
3100#endif
3101}
3102
3103#if EV_USE_INOTIFY
3104inline_size void infy_fork (EV_P);
3105#endif
3106
3107inline_size void
3108loop_fork (EV_P)
3109{
3110#if EV_USE_PORT
3111 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3112#endif
3113#if EV_USE_KQUEUE
3114 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3115#endif
3116#if EV_USE_LINUXAIO
3117 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3118#endif
3119#if EV_USE_EPOLL
3120 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3121#endif
3122#if EV_USE_INOTIFY
3123 infy_fork (EV_A);
3124#endif
3125
3126#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3127 if (ev_is_active (&pipe_w) && postfork != 2)
3128 {
3129 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3130
3131 ev_ref (EV_A);
3132 ev_io_stop (EV_A_ &pipe_w);
3133
3134 if (evpipe [0] >= 0)
3135 EV_WIN32_CLOSE_FD (evpipe [0]);
3136
3137 evpipe_init (EV_A);
3138 /* iterate over everything, in case we missed something before */
3139 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3140 }
3141#endif
3142
3143 postfork = 0;
3144}
3145
3146#if EV_MULTIPLICITY
3147
3148ecb_cold
3149struct ev_loop *
3150ev_loop_new (unsigned int flags) EV_NOEXCEPT
3151{
3152 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3153
3154 memset (EV_A, 0, sizeof (struct ev_loop));
3155 loop_init (EV_A_ flags);
3156
3157 if (ev_backend (EV_A))
3158 return EV_A;
3159
3160 ev_free (EV_A);
3161 return 0;
3162}
3163
3164#endif /* multiplicity */
3165
3166#if EV_VERIFY
3167noinline ecb_cold
814static void 3168static void
815loop_destroy (EV_P) 3169verify_watcher (EV_P_ W w)
3170{
3171 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3172
3173 if (w->pending)
3174 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3175}
3176
3177noinline ecb_cold
3178static void
3179verify_heap (EV_P_ ANHE *heap, int N)
816{ 3180{
817 int i; 3181 int i;
818 3182
819#if EV_USE_PORT 3183 for (i = HEAP0; i < N + HEAP0; ++i)
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 3184 {
3185 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3186 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3187 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3188
3189 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3190 }
3191}
3192
3193noinline ecb_cold
3194static void
3195array_verify (EV_P_ W *ws, int cnt)
3196{
3197 while (cnt--)
3198 {
3199 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3200 verify_watcher (EV_A_ ws [cnt]);
3201 }
3202}
821#endif 3203#endif
822#if EV_USE_KQUEUE 3204
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 3205#if EV_FEATURE_API
824#endif 3206void ecb_cold
825#if EV_USE_EPOLL 3207ev_verify (EV_P) EV_NOEXCEPT
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 3208{
827#endif 3209#if EV_VERIFY
828#if EV_USE_POLL 3210 int i;
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 3211 WL w, w2;
830#endif 3212
831#if EV_USE_SELECT 3213 assert (activecnt >= -1);
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 3214
3215 assert (fdchangemax >= fdchangecnt);
3216 for (i = 0; i < fdchangecnt; ++i)
3217 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3218
3219 assert (anfdmax >= 0);
3220 for (i = 0; i < anfdmax; ++i)
3221 {
3222 int j = 0;
3223
3224 for (w = w2 = anfds [i].head; w; w = w->next)
3225 {
3226 verify_watcher (EV_A_ (W)w);
3227
3228 if (j++ & 1)
3229 {
3230 assert (("libev: io watcher list contains a loop", w != w2));
3231 w2 = w2->next;
3232 }
3233
3234 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3235 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3236 }
3237 }
3238
3239 assert (timermax >= timercnt);
3240 verify_heap (EV_A_ timers, timercnt);
3241
3242#if EV_PERIODIC_ENABLE
3243 assert (periodicmax >= periodiccnt);
3244 verify_heap (EV_A_ periodics, periodiccnt);
833#endif 3245#endif
834 3246
835 for (i = NUMPRI; i--; ) 3247 for (i = NUMPRI; i--; )
836 array_free (pending, [i]); 3248 {
3249 assert (pendingmax [i] >= pendingcnt [i]);
3250#if EV_IDLE_ENABLE
3251 assert (idleall >= 0);
3252 assert (idlemax [i] >= idlecnt [i]);
3253 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3254#endif
3255 }
837 3256
838 /* have to use the microsoft-never-gets-it-right macro */ 3257#if EV_FORK_ENABLE
839 array_free (fdchange, EMPTY0); 3258 assert (forkmax >= forkcnt);
840 array_free (timer, EMPTY0); 3259 array_verify (EV_A_ (W *)forks, forkcnt);
841#if EV_PERIODICS 3260#endif
842 array_free (periodic, EMPTY0); 3261
3262#if EV_CLEANUP_ENABLE
3263 assert (cleanupmax >= cleanupcnt);
3264 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3265#endif
3266
3267#if EV_ASYNC_ENABLE
3268 assert (asyncmax >= asynccnt);
3269 array_verify (EV_A_ (W *)asyncs, asynccnt);
3270#endif
3271
3272#if EV_PREPARE_ENABLE
3273 assert (preparemax >= preparecnt);
3274 array_verify (EV_A_ (W *)prepares, preparecnt);
3275#endif
3276
3277#if EV_CHECK_ENABLE
3278 assert (checkmax >= checkcnt);
3279 array_verify (EV_A_ (W *)checks, checkcnt);
3280#endif
3281
3282# if 0
3283#if EV_CHILD_ENABLE
3284 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3285 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3286#endif
843#endif 3287# endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif 3288#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 3289}
3290#endif
881 3291
882#if EV_MULTIPLICITY 3292#if EV_MULTIPLICITY
3293ecb_cold
883struct ev_loop * 3294struct ev_loop *
884ev_loop_new (unsigned int flags) 3295#else
885{ 3296int
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif 3297#endif
912 3298ev_default_loop (unsigned int flags) EV_NOEXCEPT
3299{
3300 if (!ev_default_loop_ptr)
3301 {
913#if EV_MULTIPLICITY 3302#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_init (unsigned int flags)
916#else
917int
918ev_default_loop (unsigned int flags)
919#endif
920{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr)
926 {
927#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3303 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 3304#else
930 ev_default_loop_ptr = 1; 3305 ev_default_loop_ptr = 1;
931#endif 3306#endif
932 3307
933 loop_init (EV_A_ flags); 3308 loop_init (EV_A_ flags);
934 3309
935 if (ev_method (EV_A)) 3310 if (ev_backend (EV_A))
936 { 3311 {
937 siginit (EV_A); 3312#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 3313 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 3314 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 3315 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3316 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 3317#endif
949 3322
950 return ev_default_loop_ptr; 3323 return ev_default_loop_ptr;
951} 3324}
952 3325
953void 3326void
954ev_default_destroy (void) 3327ev_loop_fork (EV_P) EV_NOEXCEPT
955{ 3328{
956#if EV_MULTIPLICITY
957 struct ev_loop *loop = ev_default_loop_ptr;
958#endif
959
960#ifndef _WIN32
961 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev);
963#endif
964
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A);
972}
973
974void
975ev_default_fork (void)
976{
977#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr;
979#endif
980
981 if (method)
982 postfork = 1; 3329 postfork = 1;
983} 3330}
984 3331
985/*****************************************************************************/ 3332/*****************************************************************************/
986 3333
987static int 3334void
988any_pending (EV_P) 3335ev_invoke (EV_P_ void *w, int revents)
3336{
3337 EV_CB_INVOKE ((W)w, revents);
3338}
3339
3340unsigned int
3341ev_pending_count (EV_P) EV_NOEXCEPT
989{ 3342{
990 int pri; 3343 int pri;
3344 unsigned int count = 0;
991 3345
992 for (pri = NUMPRI; pri--; ) 3346 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri]) 3347 count += pendingcnt [pri];
994 return 1;
995 3348
996 return 0; 3349 return count;
997} 3350}
998 3351
999inline void 3352noinline
1000call_pending (EV_P) 3353void
3354ev_invoke_pending (EV_P)
1001{ 3355{
1002 int pri; 3356 pendingpri = NUMPRI;
1003 3357
1004 for (pri = NUMPRI; pri--; ) 3358 do
3359 {
3360 --pendingpri;
3361
3362 /* pendingpri possibly gets modified in the inner loop */
1005 while (pendingcnt [pri]) 3363 while (pendingcnt [pendingpri])
1006 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008
1009 if (expect_true (p->w))
1010 { 3364 {
3365 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3366
1011 p->w->pending = 0; 3367 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 3368 EV_CB_INVOKE (p->w, p->events);
3369 EV_FREQUENT_CHECK;
3370 }
3371 }
3372 while (pendingpri);
3373}
3374
3375#if EV_IDLE_ENABLE
3376/* make idle watchers pending. this handles the "call-idle */
3377/* only when higher priorities are idle" logic */
3378inline_size void
3379idle_reify (EV_P)
3380{
3381 if (expect_false (idleall))
3382 {
3383 int pri;
3384
3385 for (pri = NUMPRI; pri--; )
3386 {
3387 if (pendingcnt [pri])
3388 break;
3389
3390 if (idlecnt [pri])
3391 {
3392 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3393 break;
1013 } 3394 }
1014 } 3395 }
3396 }
1015} 3397}
3398#endif
1016 3399
3400/* make timers pending */
1017inline void 3401inline_size void
1018timers_reify (EV_P) 3402timers_reify (EV_P)
1019{ 3403{
3404 EV_FREQUENT_CHECK;
3405
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 3406 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 3407 {
1022 struct ev_timer *w = timers [0]; 3408 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 3409 {
3410 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3411
3412 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3413
3414 /* first reschedule or stop timer */
3415 if (w->repeat)
3416 {
3417 ev_at (w) += w->repeat;
3418 if (ev_at (w) < mn_now)
3419 ev_at (w) = mn_now;
3420
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3421 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 3422
1031 ((WT)w)->at += w->repeat; 3423 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 3424 downheap (timers, timercnt, HEAP0);
3425 }
3426 else
3427 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3428
3429 EV_FREQUENT_CHECK;
3430 feed_reverse (EV_A_ (W)w);
1036 } 3431 }
1037 else 3432 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 3433
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3434 feed_reverse_done (EV_A_ EV_TIMER);
3435 }
3436}
3437
3438#if EV_PERIODIC_ENABLE
3439
3440noinline
3441static void
3442periodic_recalc (EV_P_ ev_periodic *w)
3443{
3444 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3445 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3446
3447 /* the above almost always errs on the low side */
3448 while (at <= ev_rt_now)
1041 } 3449 {
1042} 3450 ev_tstamp nat = at + w->interval;
1043 3451
1044#if EV_PERIODICS 3452 /* when resolution fails us, we use ev_rt_now */
3453 if (expect_false (nat == at))
3454 {
3455 at = ev_rt_now;
3456 break;
3457 }
3458
3459 at = nat;
3460 }
3461
3462 ev_at (w) = at;
3463}
3464
3465/* make periodics pending */
1045inline void 3466inline_size void
1046periodics_reify (EV_P) 3467periodics_reify (EV_P)
1047{ 3468{
3469 EV_FREQUENT_CHECK;
3470
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3471 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 3472 {
1050 struct ev_periodic *w = periodics [0]; 3473 do
1051
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1053
1054 /* first reschedule or stop timer */
1055 if (w->reschedule_cb)
1056 { 3474 {
3475 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3476
3477 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3478
3479 /* first reschedule or stop timer */
3480 if (w->reschedule_cb)
3481 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3482 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3483
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3484 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3485
3486 ANHE_at_cache (periodics [HEAP0]);
1059 downheap ((WT *)periodics, periodiccnt, 0); 3487 downheap (periodics, periodiccnt, HEAP0);
3488 }
3489 else if (w->interval)
3490 {
3491 periodic_recalc (EV_A_ w);
3492 ANHE_at_cache (periodics [HEAP0]);
3493 downheap (periodics, periodiccnt, HEAP0);
3494 }
3495 else
3496 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3497
3498 EV_FREQUENT_CHECK;
3499 feed_reverse (EV_A_ (W)w);
1060 } 3500 }
1061 else if (w->interval) 3501 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 3502
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3503 feed_reverse_done (EV_A_ EV_PERIODIC);
1071 } 3504 }
1072} 3505}
1073 3506
3507/* simply recalculate all periodics */
3508/* TODO: maybe ensure that at least one event happens when jumping forward? */
3509noinline ecb_cold
1074static void 3510static void
1075periodics_reschedule (EV_P) 3511periodics_reschedule (EV_P)
1076{ 3512{
1077 int i; 3513 int i;
1078 3514
1079 /* adjust periodics after time jump */ 3515 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 3516 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1081 { 3517 {
1082 struct ev_periodic *w = periodics [i]; 3518 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1083 3519
1084 if (w->reschedule_cb) 3520 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3521 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 3522 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 3523 periodic_recalc (EV_A_ w);
3524
3525 ANHE_at_cache (periodics [i]);
3526 }
3527
3528 reheap (periodics, periodiccnt);
3529}
3530#endif
3531
3532/* adjust all timers by a given offset */
3533noinline ecb_cold
3534static void
3535timers_reschedule (EV_P_ ev_tstamp adjust)
3536{
3537 int i;
3538
3539 for (i = 0; i < timercnt; ++i)
1088 } 3540 {
1089 3541 ANHE *he = timers + i + HEAP0;
1090 /* now rebuild the heap */ 3542 ANHE_w (*he)->at += adjust;
1091 for (i = periodiccnt >> 1; i--; ) 3543 ANHE_at_cache (*he);
1092 downheap ((WT *)periodics, periodiccnt, i); 3544 }
1093} 3545}
1094#endif
1095 3546
1096inline int 3547/* fetch new monotonic and realtime times from the kernel */
1097time_update_monotonic (EV_P) 3548/* also detect if there was a timejump, and act accordingly */
3549inline_speed void
3550time_update (EV_P_ ev_tstamp max_block)
1098{ 3551{
3552#if EV_USE_MONOTONIC
3553 if (expect_true (have_monotonic))
3554 {
3555 int i;
3556 ev_tstamp odiff = rtmn_diff;
3557
1099 mn_now = get_clock (); 3558 mn_now = get_clock ();
1100 3559
3560 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3561 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3562 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 3563 {
1103 ev_rt_now = rtmn_diff + mn_now; 3564 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 3565 return;
1105 } 3566 }
1106 else 3567
1107 {
1108 now_floor = mn_now; 3568 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 3569 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 3570
1114inline void 3571 /* loop a few times, before making important decisions.
1115time_update (EV_P) 3572 * on the choice of "4": one iteration isn't enough,
1116{ 3573 * in case we get preempted during the calls to
1117 int i; 3574 * ev_time and get_clock. a second call is almost guaranteed
1118 3575 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 3576 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 3577 * in the unlikely event of having been preempted here.
1121 { 3578 */
1122 if (time_update_monotonic (EV_A)) 3579 for (i = 4; --i; )
1123 { 3580 {
1124 ev_tstamp odiff = rtmn_diff; 3581 ev_tstamp diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 3582 rtmn_diff = ev_rt_now - mn_now;
1129 3583
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3584 diff = odiff - rtmn_diff;
3585
3586 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 3587 return; /* all is well */
1132 3588
1133 ev_rt_now = ev_time (); 3589 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 3590 mn_now = get_clock ();
1135 now_floor = mn_now; 3591 now_floor = mn_now;
1136 } 3592 }
1137 3593
3594 /* no timer adjustment, as the monotonic clock doesn't jump */
3595 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 3596# if EV_PERIODIC_ENABLE
3597 periodics_reschedule (EV_A);
3598# endif
3599 }
3600 else
3601#endif
3602 {
3603 ev_rt_now = ev_time ();
3604
3605 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3606 {
3607 /* adjust timers. this is easy, as the offset is the same for all of them */
3608 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3609#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 3610 periodics_reschedule (EV_A);
1140# endif 3611#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 3612 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 3613
1161 mn_now = ev_rt_now; 3614 mn_now = ev_rt_now;
1162 } 3615 }
1163} 3616}
1164 3617
1165void 3618int
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 3619ev_run (EV_P_ int flags)
1181{ 3620{
1182 double block; 3621#if EV_FEATURE_API
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3622 ++loop_depth;
3623#endif
1184 3624
1185 while (activecnt) 3625 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3626
3627 loop_done = EVBREAK_CANCEL;
3628
3629 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3630
3631 do
1186 { 3632 {
3633#if EV_VERIFY >= 2
3634 ev_verify (EV_A);
3635#endif
3636
3637#ifndef _WIN32
3638 if (expect_false (curpid)) /* penalise the forking check even more */
3639 if (expect_false (getpid () != curpid))
3640 {
3641 curpid = getpid ();
3642 postfork = 1;
3643 }
3644#endif
3645
3646#if EV_FORK_ENABLE
3647 /* we might have forked, so queue fork handlers */
3648 if (expect_false (postfork))
3649 if (forkcnt)
3650 {
3651 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3652 EV_INVOKE_PENDING;
3653 }
3654#endif
3655
3656#if EV_PREPARE_ENABLE
1187 /* queue check watchers (and execute them) */ 3657 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 3658 if (expect_false (preparecnt))
1189 { 3659 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3660 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 3661 EV_INVOKE_PENDING;
1192 } 3662 }
3663#endif
3664
3665 if (expect_false (loop_done))
3666 break;
1193 3667
1194 /* we might have forked, so reify kernel state if necessary */ 3668 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 3669 if (expect_false (postfork))
1196 loop_fork (EV_A); 3670 loop_fork (EV_A);
1197 3671
1198 /* update fd-related kernel structures */ 3672 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 3673 fd_reify (EV_A);
1200 3674
1201 /* calculate blocking time */ 3675 /* calculate blocking time */
3676 {
3677 ev_tstamp waittime = 0.;
3678 ev_tstamp sleeptime = 0.;
1202 3679
1203 /* we only need this for !monotonic clock or timers, but as we basically 3680 /* remember old timestamp for io_blocktime calculation */
1204 always have timers, we just calculate it always */ 3681 ev_tstamp prev_mn_now = mn_now;
1205#if EV_USE_MONOTONIC 3682
1206 if (expect_true (have_monotonic)) 3683 /* update time to cancel out callback processing overhead */
1207 time_update_monotonic (EV_A); 3684 time_update (EV_A_ 1e100);
1208 else 3685
1209#endif 3686 /* from now on, we want a pipe-wake-up */
3687 pipe_write_wanted = 1;
3688
3689 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3690
3691 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1210 { 3692 {
1211 ev_rt_now = ev_time ();
1212 mn_now = ev_rt_now;
1213 }
1214
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 3693 waittime = MAX_BLOCKTIME;
1220 3694
1221 if (timercnt) 3695 if (timercnt)
1222 { 3696 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3697 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1224 if (block > to) block = to; 3698 if (waittime > to) waittime = to;
1225 } 3699 }
1226 3700
1227#if EV_PERIODICS 3701#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 3702 if (periodiccnt)
1229 { 3703 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3704 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1231 if (block > to) block = to; 3705 if (waittime > to) waittime = to;
1232 } 3706 }
1233#endif 3707#endif
1234 3708
1235 if (expect_false (block < 0.)) block = 0.; 3709 /* don't let timeouts decrease the waittime below timeout_blocktime */
3710 if (expect_false (waittime < timeout_blocktime))
3711 waittime = timeout_blocktime;
3712
3713 /* at this point, we NEED to wait, so we have to ensure */
3714 /* to pass a minimum nonzero value to the backend */
3715 if (expect_false (waittime < backend_mintime))
3716 waittime = backend_mintime;
3717
3718 /* extra check because io_blocktime is commonly 0 */
3719 if (expect_false (io_blocktime))
3720 {
3721 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3722
3723 if (sleeptime > waittime - backend_mintime)
3724 sleeptime = waittime - backend_mintime;
3725
3726 if (expect_true (sleeptime > 0.))
3727 {
3728 ev_sleep (sleeptime);
3729 waittime -= sleeptime;
3730 }
3731 }
1236 } 3732 }
1237 3733
1238 method_poll (EV_A_ block); 3734#if EV_FEATURE_API
3735 ++loop_count;
3736#endif
3737 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3738 backend_poll (EV_A_ waittime);
3739 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1239 3740
3741 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3742
3743 ECB_MEMORY_FENCE_ACQUIRE;
3744 if (pipe_write_skipped)
3745 {
3746 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3747 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3748 }
3749
3750
1240 /* update ev_rt_now, do magic */ 3751 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 3752 time_update (EV_A_ waittime + sleeptime);
3753 }
1242 3754
1243 /* queue pending timers and reschedule them */ 3755 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 3756 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 3757#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 3758 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 3759#endif
1248 3760
3761#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 3762 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 3763 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3764#endif
1252 3765
3766#if EV_CHECK_ENABLE
1253 /* queue check watchers, to be executed first */ 3767 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 3768 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3769 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3770#endif
1256 3771
1257 call_pending (EV_A); 3772 EV_INVOKE_PENDING;
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 3773 }
3774 while (expect_true (
3775 activecnt
3776 && !loop_done
3777 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3778 ));
1262 3779
1263 if (loop_done != 2) 3780 if (loop_done == EVBREAK_ONE)
1264 loop_done = 0; 3781 loop_done = EVBREAK_CANCEL;
1265}
1266 3782
3783#if EV_FEATURE_API
3784 --loop_depth;
3785#endif
3786
3787 return activecnt;
3788}
3789
1267void 3790void
1268ev_unloop (EV_P_ int how) 3791ev_break (EV_P_ int how) EV_NOEXCEPT
1269{ 3792{
1270 loop_done = how; 3793 loop_done = how;
1271} 3794}
1272 3795
3796void
3797ev_ref (EV_P) EV_NOEXCEPT
3798{
3799 ++activecnt;
3800}
3801
3802void
3803ev_unref (EV_P) EV_NOEXCEPT
3804{
3805 --activecnt;
3806}
3807
3808void
3809ev_now_update (EV_P) EV_NOEXCEPT
3810{
3811 time_update (EV_A_ 1e100);
3812}
3813
3814void
3815ev_suspend (EV_P) EV_NOEXCEPT
3816{
3817 ev_now_update (EV_A);
3818}
3819
3820void
3821ev_resume (EV_P) EV_NOEXCEPT
3822{
3823 ev_tstamp mn_prev = mn_now;
3824
3825 ev_now_update (EV_A);
3826 timers_reschedule (EV_A_ mn_now - mn_prev);
3827#if EV_PERIODIC_ENABLE
3828 /* TODO: really do this? */
3829 periodics_reschedule (EV_A);
3830#endif
3831}
3832
1273/*****************************************************************************/ 3833/*****************************************************************************/
3834/* singly-linked list management, used when the expected list length is short */
1274 3835
1275inline void 3836inline_size void
1276wlist_add (WL *head, WL elem) 3837wlist_add (WL *head, WL elem)
1277{ 3838{
1278 elem->next = *head; 3839 elem->next = *head;
1279 *head = elem; 3840 *head = elem;
1280} 3841}
1281 3842
1282inline void 3843inline_size void
1283wlist_del (WL *head, WL elem) 3844wlist_del (WL *head, WL elem)
1284{ 3845{
1285 while (*head) 3846 while (*head)
1286 { 3847 {
1287 if (*head == elem) 3848 if (expect_true (*head == elem))
1288 { 3849 {
1289 *head = elem->next; 3850 *head = elem->next;
1290 return; 3851 break;
1291 } 3852 }
1292 3853
1293 head = &(*head)->next; 3854 head = &(*head)->next;
1294 } 3855 }
1295} 3856}
1296 3857
3858/* internal, faster, version of ev_clear_pending */
1297inline void 3859inline_speed void
1298ev_clear_pending (EV_P_ W w) 3860clear_pending (EV_P_ W w)
1299{ 3861{
1300 if (w->pending) 3862 if (w->pending)
1301 { 3863 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3864 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 3865 w->pending = 0;
1304 } 3866 }
1305} 3867}
1306 3868
3869int
3870ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3871{
3872 W w_ = (W)w;
3873 int pending = w_->pending;
3874
3875 if (expect_true (pending))
3876 {
3877 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3878 p->w = (W)&pending_w;
3879 w_->pending = 0;
3880 return p->events;
3881 }
3882 else
3883 return 0;
3884}
3885
1307inline void 3886inline_size void
3887pri_adjust (EV_P_ W w)
3888{
3889 int pri = ev_priority (w);
3890 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3891 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3892 ev_set_priority (w, pri);
3893}
3894
3895inline_speed void
1308ev_start (EV_P_ W w, int active) 3896ev_start (EV_P_ W w, int active)
1309{ 3897{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3898 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 3899 w->active = active;
1314 ev_ref (EV_A); 3900 ev_ref (EV_A);
1315} 3901}
1316 3902
1317inline void 3903inline_size void
1318ev_stop (EV_P_ W w) 3904ev_stop (EV_P_ W w)
1319{ 3905{
1320 ev_unref (EV_A); 3906 ev_unref (EV_A);
1321 w->active = 0; 3907 w->active = 0;
1322} 3908}
1323 3909
1324/*****************************************************************************/ 3910/*****************************************************************************/
1325 3911
3912noinline
1326void 3913void
1327ev_io_start (EV_P_ struct ev_io *w) 3914ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1328{ 3915{
1329 int fd = w->fd; 3916 int fd = w->fd;
1330 3917
1331 if (expect_false (ev_is_active (w))) 3918 if (expect_false (ev_is_active (w)))
1332 return; 3919 return;
1333 3920
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 3921 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3922 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3923
3924 EV_FREQUENT_CHECK;
1335 3925
1336 ev_start (EV_A_ (W)w, 1); 3926 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3927 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3928 wlist_add (&anfds[fd].head, (WL)w);
1339 3929
1340 fd_change (EV_A_ fd); 3930 /* common bug, apparently */
1341} 3931 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1342 3932
3933 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3934 w->events &= ~EV__IOFDSET;
3935
3936 EV_FREQUENT_CHECK;
3937}
3938
3939noinline
1343void 3940void
1344ev_io_stop (EV_P_ struct ev_io *w) 3941ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1345{ 3942{
1346 ev_clear_pending (EV_A_ (W)w); 3943 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 3944 if (expect_false (!ev_is_active (w)))
1348 return; 3945 return;
1349 3946
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3947 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 3948
3949 EV_FREQUENT_CHECK;
3950
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3951 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 3952 ev_stop (EV_A_ (W)w);
1354 3953
1355 fd_change (EV_A_ w->fd); 3954 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1356}
1357 3955
3956 EV_FREQUENT_CHECK;
3957}
3958
3959noinline
1358void 3960void
1359ev_timer_start (EV_P_ struct ev_timer *w) 3961ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1360{ 3962{
1361 if (expect_false (ev_is_active (w))) 3963 if (expect_false (ev_is_active (w)))
1362 return; 3964 return;
1363 3965
1364 ((WT)w)->at += mn_now; 3966 ev_at (w) += mn_now;
1365 3967
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3968 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 3969
3970 EV_FREQUENT_CHECK;
3971
3972 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 3973 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3974 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1370 timers [timercnt - 1] = w; 3975 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 3976 ANHE_at_cache (timers [ev_active (w)]);
3977 upheap (timers, ev_active (w));
1372 3978
3979 EV_FREQUENT_CHECK;
3980
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3981 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 3982}
1375 3983
3984noinline
1376void 3985void
1377ev_timer_stop (EV_P_ struct ev_timer *w) 3986ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1378{ 3987{
1379 ev_clear_pending (EV_A_ (W)w); 3988 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 3989 if (expect_false (!ev_is_active (w)))
1381 return; 3990 return;
1382 3991
3992 EV_FREQUENT_CHECK;
3993
3994 {
3995 int active = ev_active (w);
3996
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3997 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 3998
3999 --timercnt;
4000
1385 if (expect_true (((W)w)->active < timercnt--)) 4001 if (expect_true (active < timercnt + HEAP0))
1386 { 4002 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 4003 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4004 adjustheap (timers, timercnt, active);
1389 } 4005 }
4006 }
1390 4007
1391 ((WT)w)->at -= mn_now; 4008 ev_at (w) -= mn_now;
1392 4009
1393 ev_stop (EV_A_ (W)w); 4010 ev_stop (EV_A_ (W)w);
1394}
1395 4011
4012 EV_FREQUENT_CHECK;
4013}
4014
4015noinline
1396void 4016void
1397ev_timer_again (EV_P_ struct ev_timer *w) 4017ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1398{ 4018{
4019 EV_FREQUENT_CHECK;
4020
4021 clear_pending (EV_A_ (W)w);
4022
1399 if (ev_is_active (w)) 4023 if (ev_is_active (w))
1400 { 4024 {
1401 if (w->repeat) 4025 if (w->repeat)
1402 { 4026 {
1403 ((WT)w)->at = mn_now + w->repeat; 4027 ev_at (w) = mn_now + w->repeat;
4028 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4029 adjustheap (timers, timercnt, ev_active (w));
1405 } 4030 }
1406 else 4031 else
1407 ev_timer_stop (EV_A_ w); 4032 ev_timer_stop (EV_A_ w);
1408 } 4033 }
1409 else if (w->repeat) 4034 else if (w->repeat)
1410 { 4035 {
1411 w->at = w->repeat; 4036 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 4037 ev_timer_start (EV_A_ w);
1413 } 4038 }
1414}
1415 4039
4040 EV_FREQUENT_CHECK;
4041}
4042
4043ev_tstamp
4044ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4045{
4046 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4047}
4048
1416#if EV_PERIODICS 4049#if EV_PERIODIC_ENABLE
4050noinline
1417void 4051void
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 4052ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1419{ 4053{
1420 if (expect_false (ev_is_active (w))) 4054 if (expect_false (ev_is_active (w)))
1421 return; 4055 return;
1422 4056
1423 if (w->reschedule_cb) 4057 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4058 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 4059 else if (w->interval)
1426 { 4060 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4061 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 4062 periodic_recalc (EV_A_ w);
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 } 4063 }
4064 else
4065 ev_at (w) = w->offset;
1431 4066
4067 EV_FREQUENT_CHECK;
4068
4069 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 4070 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4071 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1434 periodics [periodiccnt - 1] = w; 4072 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 4073 ANHE_at_cache (periodics [ev_active (w)]);
4074 upheap (periodics, ev_active (w));
1436 4075
4076 EV_FREQUENT_CHECK;
4077
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4078 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 4079}
1439 4080
4081noinline
1440void 4082void
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 4083ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1442{ 4084{
1443 ev_clear_pending (EV_A_ (W)w); 4085 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 4086 if (expect_false (!ev_is_active (w)))
1445 return; 4087 return;
1446 4088
4089 EV_FREQUENT_CHECK;
4090
4091 {
4092 int active = ev_active (w);
4093
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4094 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 4095
4096 --periodiccnt;
4097
1449 if (expect_true (((W)w)->active < periodiccnt--)) 4098 if (expect_true (active < periodiccnt + HEAP0))
1450 { 4099 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4100 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4101 adjustheap (periodics, periodiccnt, active);
1453 } 4102 }
4103 }
1454 4104
1455 ev_stop (EV_A_ (W)w); 4105 ev_stop (EV_A_ (W)w);
1456}
1457 4106
4107 EV_FREQUENT_CHECK;
4108}
4109
4110noinline
1458void 4111void
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 4112ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1460{ 4113{
1461 /* TODO: use adjustheap and recalculation */ 4114 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 4115 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 4116 ev_periodic_start (EV_A_ w);
1464} 4117}
1465#endif 4118#endif
1466 4119
4120#ifndef SA_RESTART
4121# define SA_RESTART 0
4122#endif
4123
4124#if EV_SIGNAL_ENABLE
4125
4126noinline
1467void 4127void
1468ev_idle_start (EV_P_ struct ev_idle *w) 4128ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1469{ 4129{
1470 if (expect_false (ev_is_active (w))) 4130 if (expect_false (ev_is_active (w)))
1471 return; 4131 return;
1472 4132
4133 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4134
4135#if EV_MULTIPLICITY
4136 assert (("libev: a signal must not be attached to two different loops",
4137 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4138
4139 signals [w->signum - 1].loop = EV_A;
4140 ECB_MEMORY_FENCE_RELEASE;
4141#endif
4142
4143 EV_FREQUENT_CHECK;
4144
4145#if EV_USE_SIGNALFD
4146 if (sigfd == -2)
4147 {
4148 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4149 if (sigfd < 0 && errno == EINVAL)
4150 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4151
4152 if (sigfd >= 0)
4153 {
4154 fd_intern (sigfd); /* doing it twice will not hurt */
4155
4156 sigemptyset (&sigfd_set);
4157
4158 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4159 ev_set_priority (&sigfd_w, EV_MAXPRI);
4160 ev_io_start (EV_A_ &sigfd_w);
4161 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4162 }
4163 }
4164
4165 if (sigfd >= 0)
4166 {
4167 /* TODO: check .head */
4168 sigaddset (&sigfd_set, w->signum);
4169 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4170
4171 signalfd (sigfd, &sigfd_set, 0);
4172 }
4173#endif
4174
1473 ev_start (EV_A_ (W)w, ++idlecnt); 4175 ev_start (EV_A_ (W)w, 1);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 4176 wlist_add (&signals [w->signum - 1].head, (WL)w);
1475 idles [idlecnt - 1] = w;
1476}
1477 4177
4178 if (!((WL)w)->next)
4179# if EV_USE_SIGNALFD
4180 if (sigfd < 0) /*TODO*/
4181# endif
4182 {
4183# ifdef _WIN32
4184 evpipe_init (EV_A);
4185
4186 signal (w->signum, ev_sighandler);
4187# else
4188 struct sigaction sa;
4189
4190 evpipe_init (EV_A);
4191
4192 sa.sa_handler = ev_sighandler;
4193 sigfillset (&sa.sa_mask);
4194 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4195 sigaction (w->signum, &sa, 0);
4196
4197 if (origflags & EVFLAG_NOSIGMASK)
4198 {
4199 sigemptyset (&sa.sa_mask);
4200 sigaddset (&sa.sa_mask, w->signum);
4201 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4202 }
4203#endif
4204 }
4205
4206 EV_FREQUENT_CHECK;
4207}
4208
4209noinline
1478void 4210void
1479ev_idle_stop (EV_P_ struct ev_idle *w) 4211ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1480{ 4212{
1481 ev_clear_pending (EV_A_ (W)w); 4213 clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w))) 4214 if (expect_false (!ev_is_active (w)))
1483 return; 4215 return;
1484 4216
1485 idles [((W)w)->active - 1] = idles [--idlecnt]; 4217 EV_FREQUENT_CHECK;
4218
4219 wlist_del (&signals [w->signum - 1].head, (WL)w);
1486 ev_stop (EV_A_ (W)w); 4220 ev_stop (EV_A_ (W)w);
1487}
1488 4221
4222 if (!signals [w->signum - 1].head)
4223 {
4224#if EV_MULTIPLICITY
4225 signals [w->signum - 1].loop = 0; /* unattach from signal */
4226#endif
4227#if EV_USE_SIGNALFD
4228 if (sigfd >= 0)
4229 {
4230 sigset_t ss;
4231
4232 sigemptyset (&ss);
4233 sigaddset (&ss, w->signum);
4234 sigdelset (&sigfd_set, w->signum);
4235
4236 signalfd (sigfd, &sigfd_set, 0);
4237 sigprocmask (SIG_UNBLOCK, &ss, 0);
4238 }
4239 else
4240#endif
4241 signal (w->signum, SIG_DFL);
4242 }
4243
4244 EV_FREQUENT_CHECK;
4245}
4246
4247#endif
4248
4249#if EV_CHILD_ENABLE
4250
1489void 4251void
1490ev_prepare_start (EV_P_ struct ev_prepare *w) 4252ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
1491{ 4253{
4254#if EV_MULTIPLICITY
4255 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4256#endif
1492 if (expect_false (ev_is_active (w))) 4257 if (expect_false (ev_is_active (w)))
1493 return; 4258 return;
1494 4259
4260 EV_FREQUENT_CHECK;
4261
1495 ev_start (EV_A_ (W)w, ++preparecnt); 4262 ev_start (EV_A_ (W)w, 1);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4263 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1497 prepares [preparecnt - 1] = w;
1498}
1499 4264
4265 EV_FREQUENT_CHECK;
4266}
4267
1500void 4268void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w) 4269ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1502{ 4270{
1503 ev_clear_pending (EV_A_ (W)w); 4271 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 4272 if (expect_false (!ev_is_active (w)))
1505 return; 4273 return;
1506 4274
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 4275 EV_FREQUENT_CHECK;
4276
4277 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1508 ev_stop (EV_A_ (W)w); 4278 ev_stop (EV_A_ (W)w);
1509}
1510 4279
4280 EV_FREQUENT_CHECK;
4281}
4282
4283#endif
4284
4285#if EV_STAT_ENABLE
4286
4287# ifdef _WIN32
4288# undef lstat
4289# define lstat(a,b) _stati64 (a,b)
4290# endif
4291
4292#define DEF_STAT_INTERVAL 5.0074891
4293#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4294#define MIN_STAT_INTERVAL 0.1074891
4295
4296noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4297
4298#if EV_USE_INOTIFY
4299
4300/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4301# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4302
4303noinline
4304static void
4305infy_add (EV_P_ ev_stat *w)
4306{
4307 w->wd = inotify_add_watch (fs_fd, w->path,
4308 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4309 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4310 | IN_DONT_FOLLOW | IN_MASK_ADD);
4311
4312 if (w->wd >= 0)
4313 {
4314 struct statfs sfs;
4315
4316 /* now local changes will be tracked by inotify, but remote changes won't */
4317 /* unless the filesystem is known to be local, we therefore still poll */
4318 /* also do poll on <2.6.25, but with normal frequency */
4319
4320 if (!fs_2625)
4321 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4322 else if (!statfs (w->path, &sfs)
4323 && (sfs.f_type == 0x1373 /* devfs */
4324 || sfs.f_type == 0x4006 /* fat */
4325 || sfs.f_type == 0x4d44 /* msdos */
4326 || sfs.f_type == 0xEF53 /* ext2/3 */
4327 || sfs.f_type == 0x72b6 /* jffs2 */
4328 || sfs.f_type == 0x858458f6 /* ramfs */
4329 || sfs.f_type == 0x5346544e /* ntfs */
4330 || sfs.f_type == 0x3153464a /* jfs */
4331 || sfs.f_type == 0x9123683e /* btrfs */
4332 || sfs.f_type == 0x52654973 /* reiser3 */
4333 || sfs.f_type == 0x01021994 /* tmpfs */
4334 || sfs.f_type == 0x58465342 /* xfs */))
4335 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4336 else
4337 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4338 }
4339 else
4340 {
4341 /* can't use inotify, continue to stat */
4342 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4343
4344 /* if path is not there, monitor some parent directory for speedup hints */
4345 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4346 /* but an efficiency issue only */
4347 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4348 {
4349 char path [4096];
4350 strcpy (path, w->path);
4351
4352 do
4353 {
4354 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4355 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4356
4357 char *pend = strrchr (path, '/');
4358
4359 if (!pend || pend == path)
4360 break;
4361
4362 *pend = 0;
4363 w->wd = inotify_add_watch (fs_fd, path, mask);
4364 }
4365 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4366 }
4367 }
4368
4369 if (w->wd >= 0)
4370 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4371
4372 /* now re-arm timer, if required */
4373 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4374 ev_timer_again (EV_A_ &w->timer);
4375 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4376}
4377
4378noinline
4379static void
4380infy_del (EV_P_ ev_stat *w)
4381{
4382 int slot;
4383 int wd = w->wd;
4384
4385 if (wd < 0)
4386 return;
4387
4388 w->wd = -2;
4389 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4390 wlist_del (&fs_hash [slot].head, (WL)w);
4391
4392 /* remove this watcher, if others are watching it, they will rearm */
4393 inotify_rm_watch (fs_fd, wd);
4394}
4395
4396noinline
4397static void
4398infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4399{
4400 if (slot < 0)
4401 /* overflow, need to check for all hash slots */
4402 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4403 infy_wd (EV_A_ slot, wd, ev);
4404 else
4405 {
4406 WL w_;
4407
4408 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4409 {
4410 ev_stat *w = (ev_stat *)w_;
4411 w_ = w_->next; /* lets us remove this watcher and all before it */
4412
4413 if (w->wd == wd || wd == -1)
4414 {
4415 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4416 {
4417 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4418 w->wd = -1;
4419 infy_add (EV_A_ w); /* re-add, no matter what */
4420 }
4421
4422 stat_timer_cb (EV_A_ &w->timer, 0);
4423 }
4424 }
4425 }
4426}
4427
4428static void
4429infy_cb (EV_P_ ev_io *w, int revents)
4430{
4431 char buf [EV_INOTIFY_BUFSIZE];
4432 int ofs;
4433 int len = read (fs_fd, buf, sizeof (buf));
4434
4435 for (ofs = 0; ofs < len; )
4436 {
4437 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4438 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4439 ofs += sizeof (struct inotify_event) + ev->len;
4440 }
4441}
4442
4443inline_size ecb_cold
1511void 4444void
1512ev_check_start (EV_P_ struct ev_check *w) 4445ev_check_2625 (EV_P)
4446{
4447 /* kernels < 2.6.25 are borked
4448 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4449 */
4450 if (ev_linux_version () < 0x020619)
4451 return;
4452
4453 fs_2625 = 1;
4454}
4455
4456inline_size int
4457infy_newfd (void)
4458{
4459#if defined IN_CLOEXEC && defined IN_NONBLOCK
4460 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4461 if (fd >= 0)
4462 return fd;
4463#endif
4464 return inotify_init ();
4465}
4466
4467inline_size void
4468infy_init (EV_P)
4469{
4470 if (fs_fd != -2)
4471 return;
4472
4473 fs_fd = -1;
4474
4475 ev_check_2625 (EV_A);
4476
4477 fs_fd = infy_newfd ();
4478
4479 if (fs_fd >= 0)
4480 {
4481 fd_intern (fs_fd);
4482 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4483 ev_set_priority (&fs_w, EV_MAXPRI);
4484 ev_io_start (EV_A_ &fs_w);
4485 ev_unref (EV_A);
4486 }
4487}
4488
4489inline_size void
4490infy_fork (EV_P)
4491{
4492 int slot;
4493
4494 if (fs_fd < 0)
4495 return;
4496
4497 ev_ref (EV_A);
4498 ev_io_stop (EV_A_ &fs_w);
4499 close (fs_fd);
4500 fs_fd = infy_newfd ();
4501
4502 if (fs_fd >= 0)
4503 {
4504 fd_intern (fs_fd);
4505 ev_io_set (&fs_w, fs_fd, EV_READ);
4506 ev_io_start (EV_A_ &fs_w);
4507 ev_unref (EV_A);
4508 }
4509
4510 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4511 {
4512 WL w_ = fs_hash [slot].head;
4513 fs_hash [slot].head = 0;
4514
4515 while (w_)
4516 {
4517 ev_stat *w = (ev_stat *)w_;
4518 w_ = w_->next; /* lets us add this watcher */
4519
4520 w->wd = -1;
4521
4522 if (fs_fd >= 0)
4523 infy_add (EV_A_ w); /* re-add, no matter what */
4524 else
4525 {
4526 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4527 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4528 ev_timer_again (EV_A_ &w->timer);
4529 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4530 }
4531 }
4532 }
4533}
4534
4535#endif
4536
4537#ifdef _WIN32
4538# define EV_LSTAT(p,b) _stati64 (p, b)
4539#else
4540# define EV_LSTAT(p,b) lstat (p, b)
4541#endif
4542
4543void
4544ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4545{
4546 if (lstat (w->path, &w->attr) < 0)
4547 w->attr.st_nlink = 0;
4548 else if (!w->attr.st_nlink)
4549 w->attr.st_nlink = 1;
4550}
4551
4552noinline
4553static void
4554stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4555{
4556 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4557
4558 ev_statdata prev = w->attr;
4559 ev_stat_stat (EV_A_ w);
4560
4561 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4562 if (
4563 prev.st_dev != w->attr.st_dev
4564 || prev.st_ino != w->attr.st_ino
4565 || prev.st_mode != w->attr.st_mode
4566 || prev.st_nlink != w->attr.st_nlink
4567 || prev.st_uid != w->attr.st_uid
4568 || prev.st_gid != w->attr.st_gid
4569 || prev.st_rdev != w->attr.st_rdev
4570 || prev.st_size != w->attr.st_size
4571 || prev.st_atime != w->attr.st_atime
4572 || prev.st_mtime != w->attr.st_mtime
4573 || prev.st_ctime != w->attr.st_ctime
4574 ) {
4575 /* we only update w->prev on actual differences */
4576 /* in case we test more often than invoke the callback, */
4577 /* to ensure that prev is always different to attr */
4578 w->prev = prev;
4579
4580 #if EV_USE_INOTIFY
4581 if (fs_fd >= 0)
4582 {
4583 infy_del (EV_A_ w);
4584 infy_add (EV_A_ w);
4585 ev_stat_stat (EV_A_ w); /* avoid race... */
4586 }
4587 #endif
4588
4589 ev_feed_event (EV_A_ w, EV_STAT);
4590 }
4591}
4592
4593void
4594ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
1513{ 4595{
1514 if (expect_false (ev_is_active (w))) 4596 if (expect_false (ev_is_active (w)))
1515 return; 4597 return;
1516 4598
4599 ev_stat_stat (EV_A_ w);
4600
4601 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4602 w->interval = MIN_STAT_INTERVAL;
4603
4604 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4605 ev_set_priority (&w->timer, ev_priority (w));
4606
4607#if EV_USE_INOTIFY
4608 infy_init (EV_A);
4609
4610 if (fs_fd >= 0)
4611 infy_add (EV_A_ w);
4612 else
4613#endif
4614 {
4615 ev_timer_again (EV_A_ &w->timer);
4616 ev_unref (EV_A);
4617 }
4618
1517 ev_start (EV_A_ (W)w, ++checkcnt); 4619 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521 4620
4621 EV_FREQUENT_CHECK;
4622}
4623
1522void 4624void
1523ev_check_stop (EV_P_ struct ev_check *w) 4625ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
1524{ 4626{
1525 ev_clear_pending (EV_A_ (W)w); 4627 clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w))) 4628 if (expect_false (!ev_is_active (w)))
1527 return; 4629 return;
1528 4630
1529 checks [((W)w)->active - 1] = checks [--checkcnt]; 4631 EV_FREQUENT_CHECK;
4632
4633#if EV_USE_INOTIFY
4634 infy_del (EV_A_ w);
4635#endif
4636
4637 if (ev_is_active (&w->timer))
4638 {
4639 ev_ref (EV_A);
4640 ev_timer_stop (EV_A_ &w->timer);
4641 }
4642
1530 ev_stop (EV_A_ (W)w); 4643 ev_stop (EV_A_ (W)w);
1531}
1532 4644
1533#ifndef SA_RESTART 4645 EV_FREQUENT_CHECK;
1534# define SA_RESTART 0 4646}
1535#endif 4647#endif
1536 4648
4649#if EV_IDLE_ENABLE
1537void 4650void
1538ev_signal_start (EV_P_ struct ev_signal *w) 4651ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
1539{ 4652{
1540#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif
1543 if (expect_false (ev_is_active (w))) 4653 if (expect_false (ev_is_active (w)))
1544 return; 4654 return;
1545 4655
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4656 pri_adjust (EV_A_ (W)w);
1547 4657
4658 EV_FREQUENT_CHECK;
4659
4660 {
4661 int active = ++idlecnt [ABSPRI (w)];
4662
4663 ++idleall;
1548 ev_start (EV_A_ (W)w, 1); 4664 ev_start (EV_A_ (W)w, active);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 4665
1552 if (!((WL)w)->next) 4666 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
1553 { 4667 idles [ABSPRI (w)][active - 1] = w;
1554#if _WIN32
1555 signal (w->signum, sighandler);
1556#else
1557 struct sigaction sa;
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif
1563 } 4668 }
1564}
1565 4669
4670 EV_FREQUENT_CHECK;
4671}
4672
1566void 4673void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 4674ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
1568{ 4675{
1569 ev_clear_pending (EV_A_ (W)w); 4676 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 4677 if (expect_false (!ev_is_active (w)))
1571 return; 4678 return;
1572 4679
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4680 EV_FREQUENT_CHECK;
4681
4682 {
4683 int active = ev_active (w);
4684
4685 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4686 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4687
1574 ev_stop (EV_A_ (W)w); 4688 ev_stop (EV_A_ (W)w);
4689 --idleall;
4690 }
1575 4691
1576 if (!signals [w->signum - 1].head) 4692 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 4693}
1579
1580void
1581ev_child_start (EV_P_ struct ev_child *w)
1582{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 4694#endif
4695
4696#if EV_PREPARE_ENABLE
4697void
4698ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4699{
1586 if (expect_false (ev_is_active (w))) 4700 if (expect_false (ev_is_active (w)))
1587 return; 4701 return;
1588 4702
4703 EV_FREQUENT_CHECK;
4704
1589 ev_start (EV_A_ (W)w, 1); 4705 ev_start (EV_A_ (W)w, ++preparecnt);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4706 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
1591} 4707 prepares [preparecnt - 1] = w;
1592 4708
4709 EV_FREQUENT_CHECK;
4710}
4711
1593void 4712void
1594ev_child_stop (EV_P_ struct ev_child *w) 4713ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
1595{ 4714{
1596 ev_clear_pending (EV_A_ (W)w); 4715 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 4716 if (expect_false (!ev_is_active (w)))
1598 return; 4717 return;
1599 4718
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4719 EV_FREQUENT_CHECK;
4720
4721 {
4722 int active = ev_active (w);
4723
4724 prepares [active - 1] = prepares [--preparecnt];
4725 ev_active (prepares [active - 1]) = active;
4726 }
4727
1601 ev_stop (EV_A_ (W)w); 4728 ev_stop (EV_A_ (W)w);
4729
4730 EV_FREQUENT_CHECK;
1602} 4731}
4732#endif
4733
4734#if EV_CHECK_ENABLE
4735void
4736ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4737{
4738 if (expect_false (ev_is_active (w)))
4739 return;
4740
4741 EV_FREQUENT_CHECK;
4742
4743 ev_start (EV_A_ (W)w, ++checkcnt);
4744 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4745 checks [checkcnt - 1] = w;
4746
4747 EV_FREQUENT_CHECK;
4748}
4749
4750void
4751ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4752{
4753 clear_pending (EV_A_ (W)w);
4754 if (expect_false (!ev_is_active (w)))
4755 return;
4756
4757 EV_FREQUENT_CHECK;
4758
4759 {
4760 int active = ev_active (w);
4761
4762 checks [active - 1] = checks [--checkcnt];
4763 ev_active (checks [active - 1]) = active;
4764 }
4765
4766 ev_stop (EV_A_ (W)w);
4767
4768 EV_FREQUENT_CHECK;
4769}
4770#endif
4771
4772#if EV_EMBED_ENABLE
4773noinline
4774void
4775ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4776{
4777 ev_run (w->other, EVRUN_NOWAIT);
4778}
4779
4780static void
4781embed_io_cb (EV_P_ ev_io *io, int revents)
4782{
4783 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4784
4785 if (ev_cb (w))
4786 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4787 else
4788 ev_run (w->other, EVRUN_NOWAIT);
4789}
4790
4791static void
4792embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4793{
4794 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4795
4796 {
4797 EV_P = w->other;
4798
4799 while (fdchangecnt)
4800 {
4801 fd_reify (EV_A);
4802 ev_run (EV_A_ EVRUN_NOWAIT);
4803 }
4804 }
4805}
4806
4807static void
4808embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4809{
4810 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4811
4812 ev_embed_stop (EV_A_ w);
4813
4814 {
4815 EV_P = w->other;
4816
4817 ev_loop_fork (EV_A);
4818 ev_run (EV_A_ EVRUN_NOWAIT);
4819 }
4820
4821 ev_embed_start (EV_A_ w);
4822}
4823
4824#if 0
4825static void
4826embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4827{
4828 ev_idle_stop (EV_A_ idle);
4829}
4830#endif
4831
4832void
4833ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4834{
4835 if (expect_false (ev_is_active (w)))
4836 return;
4837
4838 {
4839 EV_P = w->other;
4840 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4841 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4842 }
4843
4844 EV_FREQUENT_CHECK;
4845
4846 ev_set_priority (&w->io, ev_priority (w));
4847 ev_io_start (EV_A_ &w->io);
4848
4849 ev_prepare_init (&w->prepare, embed_prepare_cb);
4850 ev_set_priority (&w->prepare, EV_MINPRI);
4851 ev_prepare_start (EV_A_ &w->prepare);
4852
4853 ev_fork_init (&w->fork, embed_fork_cb);
4854 ev_fork_start (EV_A_ &w->fork);
4855
4856 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4857
4858 ev_start (EV_A_ (W)w, 1);
4859
4860 EV_FREQUENT_CHECK;
4861}
4862
4863void
4864ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4865{
4866 clear_pending (EV_A_ (W)w);
4867 if (expect_false (!ev_is_active (w)))
4868 return;
4869
4870 EV_FREQUENT_CHECK;
4871
4872 ev_io_stop (EV_A_ &w->io);
4873 ev_prepare_stop (EV_A_ &w->prepare);
4874 ev_fork_stop (EV_A_ &w->fork);
4875
4876 ev_stop (EV_A_ (W)w);
4877
4878 EV_FREQUENT_CHECK;
4879}
4880#endif
4881
4882#if EV_FORK_ENABLE
4883void
4884ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4885{
4886 if (expect_false (ev_is_active (w)))
4887 return;
4888
4889 EV_FREQUENT_CHECK;
4890
4891 ev_start (EV_A_ (W)w, ++forkcnt);
4892 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4893 forks [forkcnt - 1] = w;
4894
4895 EV_FREQUENT_CHECK;
4896}
4897
4898void
4899ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4900{
4901 clear_pending (EV_A_ (W)w);
4902 if (expect_false (!ev_is_active (w)))
4903 return;
4904
4905 EV_FREQUENT_CHECK;
4906
4907 {
4908 int active = ev_active (w);
4909
4910 forks [active - 1] = forks [--forkcnt];
4911 ev_active (forks [active - 1]) = active;
4912 }
4913
4914 ev_stop (EV_A_ (W)w);
4915
4916 EV_FREQUENT_CHECK;
4917}
4918#endif
4919
4920#if EV_CLEANUP_ENABLE
4921void
4922ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4923{
4924 if (expect_false (ev_is_active (w)))
4925 return;
4926
4927 EV_FREQUENT_CHECK;
4928
4929 ev_start (EV_A_ (W)w, ++cleanupcnt);
4930 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4931 cleanups [cleanupcnt - 1] = w;
4932
4933 /* cleanup watchers should never keep a refcount on the loop */
4934 ev_unref (EV_A);
4935 EV_FREQUENT_CHECK;
4936}
4937
4938void
4939ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4940{
4941 clear_pending (EV_A_ (W)w);
4942 if (expect_false (!ev_is_active (w)))
4943 return;
4944
4945 EV_FREQUENT_CHECK;
4946 ev_ref (EV_A);
4947
4948 {
4949 int active = ev_active (w);
4950
4951 cleanups [active - 1] = cleanups [--cleanupcnt];
4952 ev_active (cleanups [active - 1]) = active;
4953 }
4954
4955 ev_stop (EV_A_ (W)w);
4956
4957 EV_FREQUENT_CHECK;
4958}
4959#endif
4960
4961#if EV_ASYNC_ENABLE
4962void
4963ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4964{
4965 if (expect_false (ev_is_active (w)))
4966 return;
4967
4968 w->sent = 0;
4969
4970 evpipe_init (EV_A);
4971
4972 EV_FREQUENT_CHECK;
4973
4974 ev_start (EV_A_ (W)w, ++asynccnt);
4975 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4976 asyncs [asynccnt - 1] = w;
4977
4978 EV_FREQUENT_CHECK;
4979}
4980
4981void
4982ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4983{
4984 clear_pending (EV_A_ (W)w);
4985 if (expect_false (!ev_is_active (w)))
4986 return;
4987
4988 EV_FREQUENT_CHECK;
4989
4990 {
4991 int active = ev_active (w);
4992
4993 asyncs [active - 1] = asyncs [--asynccnt];
4994 ev_active (asyncs [active - 1]) = active;
4995 }
4996
4997 ev_stop (EV_A_ (W)w);
4998
4999 EV_FREQUENT_CHECK;
5000}
5001
5002void
5003ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5004{
5005 w->sent = 1;
5006 evpipe_write (EV_A_ &async_pending);
5007}
5008#endif
1603 5009
1604/*****************************************************************************/ 5010/*****************************************************************************/
1605 5011
1606struct ev_once 5012struct ev_once
1607{ 5013{
1608 struct ev_io io; 5014 ev_io io;
1609 struct ev_timer to; 5015 ev_timer to;
1610 void (*cb)(int revents, void *arg); 5016 void (*cb)(int revents, void *arg);
1611 void *arg; 5017 void *arg;
1612}; 5018};
1613 5019
1614static void 5020static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 5021once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 5022{
1617 void (*cb)(int revents, void *arg) = once->cb; 5023 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 5024 void *arg = once->arg;
1619 5025
1620 ev_io_stop (EV_A_ &once->io); 5026 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 5027 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 5028 ev_free (once);
1623 5029
1624 cb (revents, arg); 5030 cb (revents, arg);
1625} 5031}
1626 5032
1627static void 5033static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 5034once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 5035{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5036 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5037
5038 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 5039}
1632 5040
1633static void 5041static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 5042once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 5043{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5044 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1637}
1638 5045
5046 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5047}
5048
1639void 5049void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5050ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1641{ 5051{
1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5052 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1643
1644 if (expect_false (!once))
1645 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 return;
1648 }
1649 5053
1650 once->cb = cb; 5054 once->cb = cb;
1651 once->arg = arg; 5055 once->arg = arg;
1652 5056
1653 ev_init (&once->io, once_cb_io); 5057 ev_init (&once->io, once_cb_io);
1663 ev_timer_set (&once->to, timeout, 0.); 5067 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 5068 ev_timer_start (EV_A_ &once->to);
1665 } 5069 }
1666} 5070}
1667 5071
1668#ifdef __cplusplus 5072/*****************************************************************************/
1669} 5073
5074#if EV_WALK_ENABLE
5075ecb_cold
5076void
5077ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5078{
5079 int i, j;
5080 ev_watcher_list *wl, *wn;
5081
5082 if (types & (EV_IO | EV_EMBED))
5083 for (i = 0; i < anfdmax; ++i)
5084 for (wl = anfds [i].head; wl; )
5085 {
5086 wn = wl->next;
5087
5088#if EV_EMBED_ENABLE
5089 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5090 {
5091 if (types & EV_EMBED)
5092 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5093 }
5094 else
5095#endif
5096#if EV_USE_INOTIFY
5097 if (ev_cb ((ev_io *)wl) == infy_cb)
5098 ;
5099 else
5100#endif
5101 if ((ev_io *)wl != &pipe_w)
5102 if (types & EV_IO)
5103 cb (EV_A_ EV_IO, wl);
5104
5105 wl = wn;
5106 }
5107
5108 if (types & (EV_TIMER | EV_STAT))
5109 for (i = timercnt + HEAP0; i-- > HEAP0; )
5110#if EV_STAT_ENABLE
5111 /*TODO: timer is not always active*/
5112 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5113 {
5114 if (types & EV_STAT)
5115 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5116 }
5117 else
5118#endif
5119 if (types & EV_TIMER)
5120 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5121
5122#if EV_PERIODIC_ENABLE
5123 if (types & EV_PERIODIC)
5124 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5125 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5126#endif
5127
5128#if EV_IDLE_ENABLE
5129 if (types & EV_IDLE)
5130 for (j = NUMPRI; j--; )
5131 for (i = idlecnt [j]; i--; )
5132 cb (EV_A_ EV_IDLE, idles [j][i]);
5133#endif
5134
5135#if EV_FORK_ENABLE
5136 if (types & EV_FORK)
5137 for (i = forkcnt; i--; )
5138 if (ev_cb (forks [i]) != embed_fork_cb)
5139 cb (EV_A_ EV_FORK, forks [i]);
5140#endif
5141
5142#if EV_ASYNC_ENABLE
5143 if (types & EV_ASYNC)
5144 for (i = asynccnt; i--; )
5145 cb (EV_A_ EV_ASYNC, asyncs [i]);
5146#endif
5147
5148#if EV_PREPARE_ENABLE
5149 if (types & EV_PREPARE)
5150 for (i = preparecnt; i--; )
5151# if EV_EMBED_ENABLE
5152 if (ev_cb (prepares [i]) != embed_prepare_cb)
1670#endif 5153# endif
5154 cb (EV_A_ EV_PREPARE, prepares [i]);
5155#endif
1671 5156
5157#if EV_CHECK_ENABLE
5158 if (types & EV_CHECK)
5159 for (i = checkcnt; i--; )
5160 cb (EV_A_ EV_CHECK, checks [i]);
5161#endif
5162
5163#if EV_SIGNAL_ENABLE
5164 if (types & EV_SIGNAL)
5165 for (i = 0; i < EV_NSIG - 1; ++i)
5166 for (wl = signals [i].head; wl; )
5167 {
5168 wn = wl->next;
5169 cb (EV_A_ EV_SIGNAL, wl);
5170 wl = wn;
5171 }
5172#endif
5173
5174#if EV_CHILD_ENABLE
5175 if (types & EV_CHILD)
5176 for (i = (EV_PID_HASHSIZE); i--; )
5177 for (wl = childs [i]; wl; )
5178 {
5179 wn = wl->next;
5180 cb (EV_A_ EV_CHILD, wl);
5181 wl = wn;
5182 }
5183#endif
5184/* EV_STAT 0x00001000 /* stat data changed */
5185/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5186}
5187#endif
5188
5189#if EV_MULTIPLICITY
5190 #include "ev_wrap.h"
5191#endif
5192

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines