ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
52# endif 65# endif
53# endif 66# endif
54 67
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
57# else 71# else
58# define EV_USE_SELECT 0 72# define EV_USE_NANOSLEEP 0
73# endif
59# endif 74# endif
60 75
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
62# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
63# else 79# else
64# define EV_USE_POLL 0 80# define EV_USE_SELECT 0
81# endif
65# endif 82# endif
66 83
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
68# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
69# else 87# else
70# define EV_USE_EPOLL 0 88# define EV_USE_POLL 0
89# endif
71# endif 90# endif
72 91
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
74# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
75# else 95# else
76# define EV_USE_KQUEUE 0 96# define EV_USE_EPOLL 0
97# endif
77# endif 98# endif
78 99
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
80# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
81# else 103# else
82# define EV_USE_PORT 0 104# define EV_USE_KQUEUE 0
105# endif
83# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
84 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
85#endif 132#endif
86 133
87#include <math.h> 134#include <math.h>
88#include <stdlib.h> 135#include <stdlib.h>
89#include <fcntl.h> 136#include <fcntl.h>
96#include <sys/types.h> 143#include <sys/types.h>
97#include <time.h> 144#include <time.h>
98 145
99#include <signal.h> 146#include <signal.h>
100 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
101#ifndef _WIN32 154#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 155# include <sys/time.h>
104# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
105#else 158#else
106# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 160# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
110# endif 163# endif
111#endif 164#endif
112 165
113/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
114 167
115#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
117#endif 170#endif
118 171
119#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
121#endif 178#endif
122 179
123#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
125#endif 182#endif
131# define EV_USE_POLL 1 188# define EV_USE_POLL 1
132# endif 189# endif
133#endif 190#endif
134 191
135#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
136# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
137#endif 198#endif
138 199
139#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
141#endif 202#endif
142 203
143#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 205# define EV_USE_PORT 0
145#endif 206#endif
146 207
147/**/ 208#ifndef EV_USE_INOTIFY
148 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
149/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
150#ifdef __APPLE__ 211# else
151# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
152# undef EV_USE_KQUEUE
153#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
154 241
155#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
158#endif 245#endif
160#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
163#endif 250#endif
164 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
165#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 268# include <winsock.h>
167#endif 269#endif
168 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
169/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
170 294
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
175 298
176#ifdef EV_H
177# include EV_H
178#else
179# include "ev.h"
180#endif
181
182#if __GNUC__ >= 3 299#if __GNUC__ >= 4
183# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
184# define inline static inline 301# define noinline __attribute__ ((noinline))
185#else 302#else
186# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
187# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
188#endif 308#endif
189 309
190#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
192 319
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
195 322
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
198 325
199typedef struct ev_watcher *W; 326typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
202 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
204 335
205#ifdef _WIN32 336#ifdef _WIN32
206# include "ev_win32.c" 337# include "ev_win32.c"
207#endif 338#endif
208 339
209/*****************************************************************************/ 340/*****************************************************************************/
210 341
211static void (*syserr_cb)(const char *msg); 342static void (*syserr_cb)(const char *msg);
212 343
344void
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 345ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 346{
215 syserr_cb = cb; 347 syserr_cb = cb;
216} 348}
217 349
218static void 350static void noinline
219syserr (const char *msg) 351syserr (const char *msg)
220{ 352{
221 if (!msg) 353 if (!msg)
222 msg = "(libev) system error"; 354 msg = "(libev) system error";
223 355
228 perror (msg); 360 perror (msg);
229 abort (); 361 abort ();
230 } 362 }
231} 363}
232 364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
233static void *(*alloc)(void *ptr, long size); 380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 381
382void
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 383ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 384{
237 alloc = cb; 385 alloc = cb;
238} 386}
239 387
240static void * 388inline_speed void *
241ev_realloc (void *ptr, long size) 389ev_realloc (void *ptr, long size)
242{ 390{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 391 ptr = alloc (ptr, size);
244 392
245 if (!ptr && size) 393 if (!ptr && size)
246 { 394 {
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
248 abort (); 396 abort ();
269typedef struct 417typedef struct
270{ 418{
271 W w; 419 W w;
272 int events; 420 int events;
273} ANPENDING; 421} ANPENDING;
422
423#if EV_USE_INOTIFY
424typedef struct
425{
426 WL head;
427} ANFS;
428#endif
274 429
275#if EV_MULTIPLICITY 430#if EV_MULTIPLICITY
276 431
277 struct ev_loop 432 struct ev_loop
278 { 433 {
312 gettimeofday (&tv, 0); 467 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 468 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif 469#endif
315} 470}
316 471
317inline ev_tstamp 472ev_tstamp inline_size
318get_clock (void) 473get_clock (void)
319{ 474{
320#if EV_USE_MONOTONIC 475#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 476 if (expect_true (have_monotonic))
322 { 477 {
335{ 490{
336 return ev_rt_now; 491 return ev_rt_now;
337} 492}
338#endif 493#endif
339 494
340#define array_roundsize(type,n) (((n) | 4) & ~3) 495void
496ev_sleep (ev_tstamp delay)
497{
498 if (delay > 0.)
499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
519
520/*****************************************************************************/
521
522int inline_size
523array_nextsize (int elem, int cur, int cnt)
524{
525 int ncur = cur + 1;
526
527 do
528 ncur <<= 1;
529 while (cnt > ncur);
530
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096)
533 {
534 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
536 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem;
538 }
539
540 return ncur;
541}
542
543static noinline void *
544array_realloc (int elem, void *base, int *cur, int cnt)
545{
546 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur);
548}
341 549
342#define array_needsize(type,base,cur,cnt,init) \ 550#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 551 if (expect_false ((cnt) > (cur))) \
344 { \ 552 { \
345 int newcnt = cur; \ 553 int ocur_ = (cur); \
346 do \ 554 (base) = (type *)array_realloc \
347 { \ 555 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 556 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 557 }
356 558
559#if 0
357#define array_slim(type,stem) \ 560#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 561 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 562 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 563 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 564 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 566 }
567#endif
364 568
365#define array_free(stem, idx) \ 569#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
367 571
368/*****************************************************************************/ 572/*****************************************************************************/
369 573
370static void 574void noinline
575ev_feed_event (EV_P_ void *w, int revents)
576{
577 W w_ = (W)w;
578 int pri = ABSPRI (w_);
579
580 if (expect_false (w_->pending))
581 pendings [pri][w_->pending - 1].events |= revents;
582 else
583 {
584 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents;
588 }
589}
590
591void inline_speed
592queue_events (EV_P_ W *events, int eventcnt, int type)
593{
594 int i;
595
596 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type);
598}
599
600/*****************************************************************************/
601
602void inline_size
371anfds_init (ANFD *base, int count) 603anfds_init (ANFD *base, int count)
372{ 604{
373 while (count--) 605 while (count--)
374 { 606 {
375 base->head = 0; 607 base->head = 0;
378 610
379 ++base; 611 ++base;
380 } 612 }
381} 613}
382 614
383void 615void inline_speed
384ev_feed_event (EV_P_ void *w, int revents)
385{
386 W w_ = (W)w;
387
388 if (expect_false (w_->pending))
389 {
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
391 return;
392 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398}
399
400static void
401queue_events (EV_P_ W *events, int eventcnt, int type)
402{
403 int i;
404
405 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type);
407}
408
409inline void
410fd_event (EV_P_ int fd, int revents) 616fd_event (EV_P_ int fd, int revents)
411{ 617{
412 ANFD *anfd = anfds + fd; 618 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 619 ev_io *w;
414 620
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 622 {
417 int ev = w->events & revents; 623 int ev = w->events & revents;
418 624
419 if (ev) 625 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 626 ev_feed_event (EV_A_ (W)w, ev);
422} 628}
423 629
424void 630void
425ev_feed_fd_event (EV_P_ int fd, int revents) 631ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 632{
633 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 634 fd_event (EV_A_ fd, revents);
428} 635}
429 636
430/*****************************************************************************/ 637void inline_size
431
432inline void
433fd_reify (EV_P) 638fd_reify (EV_P)
434{ 639{
435 int i; 640 int i;
436 641
437 for (i = 0; i < fdchangecnt; ++i) 642 for (i = 0; i < fdchangecnt; ++i)
438 { 643 {
439 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
441 struct ev_io *w; 646 ev_io *w;
442 647
443 int events = 0; 648 unsigned char events = 0;
444 649
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
446 events |= w->events; 651 events |= (unsigned char)w->events;
447 652
448#if EV_SELECT_IS_WINSOCKET 653#if EV_SELECT_IS_WINSOCKET
449 if (events) 654 if (events)
450 { 655 {
451 unsigned long argp; 656 unsigned long argp;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
452 anfd->handle = _get_osfhandle (fd); 660 anfd->handle = _get_osfhandle (fd);
661 #endif
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
454 } 663 }
455#endif 664#endif
456 665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
457 anfd->reify = 0; 670 anfd->reify = 0;
458
459 method_modify (EV_A_ fd, anfd->events, events);
460 anfd->events = events; 671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
461 } 676 }
462 677
463 fdchangecnt = 0; 678 fdchangecnt = 0;
464} 679}
465 680
466static void 681void inline_size
467fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
468{ 683{
469 if (expect_false (anfds [fd].reify)) 684 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
473 686
687 if (expect_true (!reify))
688 {
474 ++fdchangecnt; 689 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
477} 693}
478 694
479static void 695void inline_speed
480fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
481{ 697{
482 struct ev_io *w; 698 ev_io *w;
483 699
484 while ((w = (struct ev_io *)anfds [fd].head)) 700 while ((w = (ev_io *)anfds [fd].head))
485 { 701 {
486 ev_io_stop (EV_A_ w); 702 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 704 }
489} 705}
490 706
491inline int 707int inline_size
492fd_valid (int fd) 708fd_valid (int fd)
493{ 709{
494#ifdef _WIN32 710#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 711 return _get_osfhandle (fd) != -1;
496#else 712#else
497 return fcntl (fd, F_GETFD) != -1; 713 return fcntl (fd, F_GETFD) != -1;
498#endif 714#endif
499} 715}
500 716
501/* called on EBADF to verify fds */ 717/* called on EBADF to verify fds */
502static void 718static void noinline
503fd_ebadf (EV_P) 719fd_ebadf (EV_P)
504{ 720{
505 int fd; 721 int fd;
506 722
507 for (fd = 0; fd < anfdmax; ++fd) 723 for (fd = 0; fd < anfdmax; ++fd)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 725 if (!fd_valid (fd) == -1 && errno == EBADF)
510 fd_kill (EV_A_ fd); 726 fd_kill (EV_A_ fd);
511} 727}
512 728
513/* called on ENOMEM in select/poll to kill some fds and retry */ 729/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 730static void noinline
515fd_enomem (EV_P) 731fd_enomem (EV_P)
516{ 732{
517 int fd; 733 int fd;
518 734
519 for (fd = anfdmax; fd--; ) 735 for (fd = anfdmax; fd--; )
522 fd_kill (EV_A_ fd); 738 fd_kill (EV_A_ fd);
523 return; 739 return;
524 } 740 }
525} 741}
526 742
527/* usually called after fork if method needs to re-arm all fds from scratch */ 743/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 744static void noinline
529fd_rearm_all (EV_P) 745fd_rearm_all (EV_P)
530{ 746{
531 int fd; 747 int fd;
532 748
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 750 if (anfds [fd].events)
536 { 751 {
537 anfds [fd].events = 0; 752 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
539 } 754 }
540} 755}
541 756
542/*****************************************************************************/ 757/*****************************************************************************/
543 758
544static void 759void inline_speed
545upheap (WT *heap, int k) 760upheap (WT *heap, int k)
546{ 761{
547 WT w = heap [k]; 762 WT w = heap [k];
548 763
549 while (k && heap [k >> 1]->at > w->at) 764 while (k)
550 { 765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
551 heap [k] = heap [k >> 1]; 771 heap [k] = heap [p];
552 ((W)heap [k])->active = k + 1; 772 ((W)heap [k])->active = k + 1;
553 k >>= 1; 773 k = p;
554 } 774 }
555 775
556 heap [k] = w; 776 heap [k] = w;
557 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
558
559} 778}
560 779
561static void 780void inline_speed
562downheap (WT *heap, int N, int k) 781downheap (WT *heap, int N, int k)
563{ 782{
564 WT w = heap [k]; 783 WT w = heap [k];
565 784
566 while (k < (N >> 1)) 785 for (;;)
567 { 786 {
568 int j = k << 1; 787 int c = (k << 1) + 1;
569 788
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 789 if (c >= N)
571 ++j;
572
573 if (w->at <= heap [j]->at)
574 break; 790 break;
575 791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
576 heap [k] = heap [j]; 798 heap [k] = heap [c];
577 ((W)heap [k])->active = k + 1; 799 ((W)heap [k])->active = k + 1;
800
578 k = j; 801 k = c;
579 } 802 }
580 803
581 heap [k] = w; 804 heap [k] = w;
582 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k + 1;
583} 806}
584 807
585inline void 808void inline_size
586adjustheap (WT *heap, int N, int k) 809adjustheap (WT *heap, int N, int k)
587{ 810{
588 upheap (heap, k); 811 upheap (heap, k);
589 downheap (heap, N, k); 812 downheap (heap, N, k);
590} 813}
592/*****************************************************************************/ 815/*****************************************************************************/
593 816
594typedef struct 817typedef struct
595{ 818{
596 WL head; 819 WL head;
597 sig_atomic_t volatile gotsig; 820 EV_ATOMIC_T gotsig;
598} ANSIG; 821} ANSIG;
599 822
600static ANSIG *signals; 823static ANSIG *signals;
601static int signalmax; 824static int signalmax;
602 825
603static int sigpipe [2]; 826static EV_ATOMIC_T gotsig;
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606 827
607static void 828void inline_size
608signals_init (ANSIG *base, int count) 829signals_init (ANSIG *base, int count)
609{ 830{
610 while (count--) 831 while (count--)
611 { 832 {
612 base->head = 0; 833 base->head = 0;
614 835
615 ++base; 836 ++base;
616 } 837 }
617} 838}
618 839
619static void 840/*****************************************************************************/
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625 841
626 signals [signum - 1].gotsig = 1; 842void inline_speed
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 843fd_intern (int fd)
672{ 844{
673#ifdef _WIN32 845#ifdef _WIN32
674 int arg = 1; 846 int arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 849 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 850 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 851#endif
680} 852}
681 853
854static void noinline
855evpipe_init (EV_P)
856{
857 if (!ev_is_active (&pipeev))
858 {
859#if EV_USE_EVENTFD
860 if ((evfd = eventfd (0, 0)) >= 0)
861 {
862 evpipe [0] = -1;
863 fd_intern (evfd);
864 ev_io_set (&pipeev, evfd, EV_READ);
865 }
866 else
867#endif
868 {
869 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe");
871
872 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ);
875 }
876
877 ev_io_start (EV_A_ &pipeev);
878 ev_unref (EV_A); /* watcher should not keep loop alive */
879 }
880}
881
882void inline_size
883evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{
885 if (!*flag)
886 {
887 int old_errno = errno; /* save errno because write might clobber it */
888
889 *flag = 1;
890
891#if EV_USE_EVENTFD
892 if (evfd >= 0)
893 {
894 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t));
896 }
897 else
898#endif
899 write (evpipe [1], &old_errno, 1);
900
901 errno = old_errno;
902 }
903}
904
682static void 905static void
683siginit (EV_P) 906pipecb (EV_P_ ev_io *iow, int revents)
684{ 907{
685 fd_intern (sigpipe [0]); 908#if EV_USE_EVENTFD
686 fd_intern (sigpipe [1]); 909 if (evfd >= 0)
910 {
911 uint64_t counter = 1;
912 read (evfd, &counter, sizeof (uint64_t));
913 }
914 else
915#endif
916 {
917 char dummy;
918 read (evpipe [0], &dummy, 1);
919 }
687 920
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 921 if (gotsig && ev_is_default_loop (EV_A))
689 ev_io_start (EV_A_ &sigev); 922 {
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 923 int signum;
924 gotsig = 0;
925
926 for (signum = signalmax; signum--; )
927 if (signals [signum].gotsig)
928 ev_feed_signal_event (EV_A_ signum + 1);
929 }
930
931#if EV_ASYNC_ENABLE
932 if (gotasync)
933 {
934 int i;
935 gotasync = 0;
936
937 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent)
939 {
940 asyncs [i]->sent = 0;
941 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
942 }
943 }
944#endif
691} 945}
692 946
693/*****************************************************************************/ 947/*****************************************************************************/
694 948
695static struct ev_child *childs [PID_HASHSIZE]; 949static void
950ev_sighandler (int signum)
951{
952#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct;
954#endif
955
956#if _WIN32
957 signal (signum, ev_sighandler);
958#endif
959
960 signals [signum - 1].gotsig = 1;
961 evpipe_write (EV_A_ &gotsig);
962}
963
964void noinline
965ev_feed_signal_event (EV_P_ int signum)
966{
967 WL w;
968
969#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif
972
973 --signum;
974
975 if (signum < 0 || signum >= signalmax)
976 return;
977
978 signals [signum].gotsig = 0;
979
980 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982}
983
984/*****************************************************************************/
985
986static WL childs [EV_PID_HASHSIZE];
696 987
697#ifndef _WIN32 988#ifndef _WIN32
698 989
699static struct ev_signal childev; 990static ev_signal childev;
991
992#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0
994#endif
995
996void inline_speed
997child_reap (EV_P_ int chain, int pid, int status)
998{
999 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001
1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 {
1004 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1)))
1006 {
1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1008 w->rpid = pid;
1009 w->rstatus = status;
1010 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1011 }
1012 }
1013}
700 1014
701#ifndef WCONTINUED 1015#ifndef WCONTINUED
702# define WCONTINUED 0 1016# define WCONTINUED 0
703#endif 1017#endif
704 1018
705static void 1019static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 1020childcb (EV_P_ ev_signal *sw, int revents)
722{ 1021{
723 int pid, status; 1022 int pid, status;
724 1023
1024 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1025 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 1026 if (!WCONTINUED
1027 || errno != EINVAL
1028 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1029 return;
1030
727 /* make sure we are called again until all childs have been reaped */ 1031 /* make sure we are called again until all children have been reaped */
1032 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 1034
730 child_reap (EV_A_ sw, pid, pid, status); 1035 child_reap (EV_A_ pid, pid, status);
1036 if (EV_PID_HASHSIZE > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 1038}
734 1039
735#endif 1040#endif
736 1041
737/*****************************************************************************/ 1042/*****************************************************************************/
763{ 1068{
764 return EV_VERSION_MINOR; 1069 return EV_VERSION_MINOR;
765} 1070}
766 1071
767/* return true if we are running with elevated privileges and should ignore env variables */ 1072/* return true if we are running with elevated privileges and should ignore env variables */
768static int 1073int inline_size
769enable_secure (void) 1074enable_secure (void)
770{ 1075{
771#ifdef _WIN32 1076#ifdef _WIN32
772 return 0; 1077 return 0;
773#else 1078#else
775 || getgid () != getegid (); 1080 || getgid () != getegid ();
776#endif 1081#endif
777} 1082}
778 1083
779unsigned int 1084unsigned int
780ev_method (EV_P) 1085ev_supported_backends (void)
781{ 1086{
782 return method; 1087 unsigned int flags = 0;
783}
784 1088
785static void 1089 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1090 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1091 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1092 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1093 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1094
1095 return flags;
1096}
1097
1098unsigned int
1099ev_recommended_backends (void)
1100{
1101 unsigned int flags = ev_supported_backends ();
1102
1103#ifndef __NetBSD__
1104 /* kqueue is borked on everything but netbsd apparently */
1105 /* it usually doesn't work correctly on anything but sockets and pipes */
1106 flags &= ~EVBACKEND_KQUEUE;
1107#endif
1108#ifdef __APPLE__
1109 // flags &= ~EVBACKEND_KQUEUE; for documentation
1110 flags &= ~EVBACKEND_POLL;
1111#endif
1112
1113 return flags;
1114}
1115
1116unsigned int
1117ev_embeddable_backends (void)
1118{
1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1120
1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */
1123 flags &= ~EVBACKEND_EPOLL;
1124
1125 return flags;
1126}
1127
1128unsigned int
1129ev_backend (EV_P)
1130{
1131 return backend;
1132}
1133
1134unsigned int
1135ev_loop_count (EV_P)
1136{
1137 return loop_count;
1138}
1139
1140void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{
1143 io_blocktime = interval;
1144}
1145
1146void
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 timeout_blocktime = interval;
1150}
1151
1152static void noinline
786loop_init (EV_P_ unsigned int flags) 1153loop_init (EV_P_ unsigned int flags)
787{ 1154{
788 if (!method) 1155 if (!backend)
789 { 1156 {
790#if EV_USE_MONOTONIC 1157#if EV_USE_MONOTONIC
791 { 1158 {
792 struct timespec ts; 1159 struct timespec ts;
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
794 have_monotonic = 1; 1161 have_monotonic = 1;
795 } 1162 }
796#endif 1163#endif
797 1164
798 ev_rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
799 mn_now = get_clock (); 1166 mn_now = get_clock ();
800 now_floor = mn_now; 1167 now_floor = mn_now;
801 rtmn_diff = ev_rt_now - mn_now; 1168 rtmn_diff = ev_rt_now - mn_now;
802 1169
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1170 io_blocktime = 0.;
1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif
1178
1179 /* pid check not overridable via env */
1180#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK)
1182 curpid = getpid ();
1183#endif
1184
1185 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS"))
804 flags = atoi (getenv ("LIBEV_FLAGS")); 1188 flags = atoi (getenv ("LIBEV_FLAGS"));
805 1189
806 if (!(flags & 0x0000ffff)) 1190 if (!(flags & 0x0000ffffU))
807 flags |= 0x0000ffff; 1191 flags |= ev_recommended_backends ();
808 1192
809 method = 0;
810#if EV_USE_PORT 1193#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
812#endif 1195#endif
813#if EV_USE_KQUEUE 1196#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1197 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
815#endif 1198#endif
816#if EV_USE_EPOLL 1199#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1200 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
818#endif 1201#endif
819#if EV_USE_POLL 1202#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1203 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
821#endif 1204#endif
822#if EV_USE_SELECT 1205#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
824#endif 1207#endif
825 1208
826 ev_init (&sigev, sigcb); 1209 ev_init (&pipeev, pipecb);
827 ev_set_priority (&sigev, EV_MAXPRI); 1210 ev_set_priority (&pipeev, EV_MAXPRI);
828 } 1211 }
829} 1212}
830 1213
831static void 1214static void noinline
832loop_destroy (EV_P) 1215loop_destroy (EV_P)
833{ 1216{
834 int i; 1217 int i;
835 1218
1219 if (ev_is_active (&pipeev))
1220 {
1221 ev_ref (EV_A); /* signal watcher */
1222 ev_io_stop (EV_A_ &pipeev);
1223
1224#if EV_USE_EVENTFD
1225 if (evfd >= 0)
1226 close (evfd);
1227#endif
1228
1229 if (evpipe [0] >= 0)
1230 {
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233 }
1234 }
1235
1236#if EV_USE_INOTIFY
1237 if (fs_fd >= 0)
1238 close (fs_fd);
1239#endif
1240
1241 if (backend_fd >= 0)
1242 close (backend_fd);
1243
836#if EV_USE_PORT 1244#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1245 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
838#endif 1246#endif
839#if EV_USE_KQUEUE 1247#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1248 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
841#endif 1249#endif
842#if EV_USE_EPOLL 1250#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1251 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
844#endif 1252#endif
845#if EV_USE_POLL 1253#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1254 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
847#endif 1255#endif
848#if EV_USE_SELECT 1256#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1257 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
850#endif 1258#endif
851 1259
852 for (i = NUMPRI; i--; ) 1260 for (i = NUMPRI; i--; )
1261 {
853 array_free (pending, [i]); 1262 array_free (pending, [i]);
1263#if EV_IDLE_ENABLE
1264 array_free (idle, [i]);
1265#endif
1266 }
1267
1268 ev_free (anfds); anfdmax = 0;
854 1269
855 /* have to use the microsoft-never-gets-it-right macro */ 1270 /* have to use the microsoft-never-gets-it-right macro */
856 array_free (fdchange, EMPTY0); 1271 array_free (fdchange, EMPTY);
857 array_free (timer, EMPTY0); 1272 array_free (timer, EMPTY);
858#if EV_PERIODICS 1273#if EV_PERIODIC_ENABLE
859 array_free (periodic, EMPTY0); 1274 array_free (periodic, EMPTY);
860#endif 1275#endif
1276#if EV_FORK_ENABLE
861 array_free (idle, EMPTY0); 1277 array_free (fork, EMPTY);
1278#endif
862 array_free (prepare, EMPTY0); 1279 array_free (prepare, EMPTY);
863 array_free (check, EMPTY0); 1280 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY);
1283#endif
864 1284
865 method = 0; 1285 backend = 0;
866} 1286}
867 1287
868static void 1288#if EV_USE_INOTIFY
1289void inline_size infy_fork (EV_P);
1290#endif
1291
1292void inline_size
869loop_fork (EV_P) 1293loop_fork (EV_P)
870{ 1294{
871#if EV_USE_PORT 1295#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1296 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
873#endif 1297#endif
874#if EV_USE_KQUEUE 1298#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1299 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
876#endif 1300#endif
877#if EV_USE_EPOLL 1301#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1302 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
879#endif 1303#endif
1304#if EV_USE_INOTIFY
1305 infy_fork (EV_A);
1306#endif
880 1307
881 if (ev_is_active (&sigev)) 1308 if (ev_is_active (&pipeev))
882 { 1309 {
883 /* default loop */ 1310 /* this "locks" the handlers against writing to the pipe */
1311 /* while we modify the fd vars */
1312 gotsig = 1;
1313#if EV_ASYNC_ENABLE
1314 gotasync = 1;
1315#endif
884 1316
885 ev_ref (EV_A); 1317 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev); 1318 ev_io_stop (EV_A_ &pipeev);
1319
1320#if EV_USE_EVENTFD
1321 if (evfd >= 0)
1322 close (evfd);
1323#endif
1324
1325 if (evpipe [0] >= 0)
1326 {
887 close (sigpipe [0]); 1327 close (evpipe [0]);
888 close (sigpipe [1]); 1328 close (evpipe [1]);
1329 }
889 1330
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A); 1331 evpipe_init (EV_A);
1332 /* now iterate over everything, in case we missed something */
1333 pipecb (EV_A_ &pipeev, EV_READ);
894 } 1334 }
895 1335
896 postfork = 0; 1336 postfork = 0;
897} 1337}
898 1338
904 1344
905 memset (loop, 0, sizeof (struct ev_loop)); 1345 memset (loop, 0, sizeof (struct ev_loop));
906 1346
907 loop_init (EV_A_ flags); 1347 loop_init (EV_A_ flags);
908 1348
909 if (ev_method (EV_A)) 1349 if (ev_backend (EV_A))
910 return loop; 1350 return loop;
911 1351
912 return 0; 1352 return 0;
913} 1353}
914 1354
920} 1360}
921 1361
922void 1362void
923ev_loop_fork (EV_P) 1363ev_loop_fork (EV_P)
924{ 1364{
925 postfork = 1; 1365 postfork = 1; /* must be in line with ev_default_fork */
926} 1366}
927 1367
928#endif 1368#endif
929 1369
930#if EV_MULTIPLICITY 1370#if EV_MULTIPLICITY
933#else 1373#else
934int 1374int
935ev_default_loop (unsigned int flags) 1375ev_default_loop (unsigned int flags)
936#endif 1376#endif
937{ 1377{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 1378 if (!ev_default_loop_ptr)
943 { 1379 {
944#if EV_MULTIPLICITY 1380#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1381 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
946#else 1382#else
947 ev_default_loop_ptr = 1; 1383 ev_default_loop_ptr = 1;
948#endif 1384#endif
949 1385
950 loop_init (EV_A_ flags); 1386 loop_init (EV_A_ flags);
951 1387
952 if (ev_method (EV_A)) 1388 if (ev_backend (EV_A))
953 { 1389 {
954 siginit (EV_A);
955
956#ifndef _WIN32 1390#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 1391 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 1392 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 1393 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1394 ev_unref (EV_A); /* child watcher should not keep loop alive */
977#ifndef _WIN32 1411#ifndef _WIN32
978 ev_ref (EV_A); /* child watcher */ 1412 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev); 1413 ev_signal_stop (EV_A_ &childev);
980#endif 1414#endif
981 1415
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A); 1416 loop_destroy (EV_A);
989} 1417}
990 1418
991void 1419void
992ev_default_fork (void) 1420ev_default_fork (void)
993{ 1421{
994#if EV_MULTIPLICITY 1422#if EV_MULTIPLICITY
995 struct ev_loop *loop = ev_default_loop_ptr; 1423 struct ev_loop *loop = ev_default_loop_ptr;
996#endif 1424#endif
997 1425
998 if (method) 1426 if (backend)
999 postfork = 1; 1427 postfork = 1; /* must be in line with ev_loop_fork */
1000} 1428}
1001 1429
1002/*****************************************************************************/ 1430/*****************************************************************************/
1003 1431
1004static int 1432void
1005any_pending (EV_P) 1433ev_invoke (EV_P_ void *w, int revents)
1006{ 1434{
1007 int pri; 1435 EV_CB_INVOKE ((W)w, revents);
1008
1009 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri])
1011 return 1;
1012
1013 return 0;
1014} 1436}
1015 1437
1016inline void 1438void inline_speed
1017call_pending (EV_P) 1439call_pending (EV_P)
1018{ 1440{
1019 int pri; 1441 int pri;
1020 1442
1021 for (pri = NUMPRI; pri--; ) 1443 for (pri = NUMPRI; pri--; )
1023 { 1445 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1446 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 1447
1026 if (expect_true (p->w)) 1448 if (expect_true (p->w))
1027 { 1449 {
1450 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1451
1028 p->w->pending = 0; 1452 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 1453 EV_CB_INVOKE (p->w, p->events);
1030 } 1454 }
1031 } 1455 }
1032} 1456}
1033 1457
1034inline void 1458void inline_size
1035timers_reify (EV_P) 1459timers_reify (EV_P)
1036{ 1460{
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1038 { 1462 {
1039 struct ev_timer *w = timers [0]; 1463 ev_timer *w = (ev_timer *)timers [0];
1040 1464
1041 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1042 1466
1043 /* first reschedule or stop timer */ 1467 /* first reschedule or stop timer */
1044 if (w->repeat) 1468 if (w->repeat)
1045 { 1469 {
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 1471
1048 ((WT)w)->at += w->repeat; 1472 ((WT)w)->at += w->repeat;
1049 if (((WT)w)->at < mn_now) 1473 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now; 1474 ((WT)w)->at = mn_now;
1051 1475
1052 downheap ((WT *)timers, timercnt, 0); 1476 downheap (timers, timercnt, 0);
1053 } 1477 }
1054 else 1478 else
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 1480
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1058 } 1482 }
1059} 1483}
1060 1484
1061#if EV_PERIODICS 1485#if EV_PERIODIC_ENABLE
1062inline void 1486void inline_size
1063periodics_reify (EV_P) 1487periodics_reify (EV_P)
1064{ 1488{
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1066 { 1490 {
1067 struct ev_periodic *w = periodics [0]; 1491 ev_periodic *w = (ev_periodic *)periodics [0];
1068 1492
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 1494
1071 /* first reschedule or stop timer */ 1495 /* first reschedule or stop timer */
1072 if (w->reschedule_cb) 1496 if (w->reschedule_cb)
1073 { 1497 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1076 downheap ((WT *)periodics, periodiccnt, 0); 1500 downheap (periodics, periodiccnt, 0);
1077 } 1501 }
1078 else if (w->interval) 1502 else if (w->interval)
1079 { 1503 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1082 downheap ((WT *)periodics, periodiccnt, 0); 1507 downheap (periodics, periodiccnt, 0);
1083 } 1508 }
1084 else 1509 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 1511
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 } 1513 }
1089} 1514}
1090 1515
1091static void 1516static void noinline
1092periodics_reschedule (EV_P) 1517periodics_reschedule (EV_P)
1093{ 1518{
1094 int i; 1519 int i;
1095 1520
1096 /* adjust periodics after time jump */ 1521 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i) 1522 for (i = 0; i < periodiccnt; ++i)
1098 { 1523 {
1099 struct ev_periodic *w = periodics [i]; 1524 ev_periodic *w = (ev_periodic *)periodics [i];
1100 1525
1101 if (w->reschedule_cb) 1526 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval) 1528 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1105 } 1530 }
1106 1531
1107 /* now rebuild the heap */ 1532 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; ) 1533 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i); 1534 downheap (periodics, periodiccnt, i);
1110} 1535}
1111#endif 1536#endif
1112 1537
1113inline int 1538#if EV_IDLE_ENABLE
1114time_update_monotonic (EV_P) 1539void inline_size
1540idle_reify (EV_P)
1115{ 1541{
1542 if (expect_false (idleall))
1543 {
1544 int pri;
1545
1546 for (pri = NUMPRI; pri--; )
1547 {
1548 if (pendingcnt [pri])
1549 break;
1550
1551 if (idlecnt [pri])
1552 {
1553 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1554 break;
1555 }
1556 }
1557 }
1558}
1559#endif
1560
1561void inline_speed
1562time_update (EV_P_ ev_tstamp max_block)
1563{
1564 int i;
1565
1566#if EV_USE_MONOTONIC
1567 if (expect_true (have_monotonic))
1568 {
1569 ev_tstamp odiff = rtmn_diff;
1570
1116 mn_now = get_clock (); 1571 mn_now = get_clock ();
1117 1572
1573 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1574 /* interpolate in the meantime */
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1575 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 { 1576 {
1120 ev_rt_now = rtmn_diff + mn_now; 1577 ev_rt_now = rtmn_diff + mn_now;
1121 return 0; 1578 return;
1122 } 1579 }
1123 else 1580
1124 {
1125 now_floor = mn_now; 1581 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 1582 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 1583
1131inline void 1584 /* loop a few times, before making important decisions.
1132time_update (EV_P) 1585 * on the choice of "4": one iteration isn't enough,
1133{ 1586 * in case we get preempted during the calls to
1134 int i; 1587 * ev_time and get_clock. a second call is almost guaranteed
1135 1588 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 1589 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 1590 * in the unlikely event of having been preempted here.
1138 { 1591 */
1139 if (time_update_monotonic (EV_A)) 1592 for (i = 4; --i; )
1140 { 1593 {
1141 ev_tstamp odiff = rtmn_diff;
1142
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1144 {
1145 rtmn_diff = ev_rt_now - mn_now; 1594 rtmn_diff = ev_rt_now - mn_now;
1146 1595
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1148 return; /* all is well */ 1597 return; /* all is well */
1149 1598
1150 ev_rt_now = ev_time (); 1599 ev_rt_now = ev_time ();
1151 mn_now = get_clock (); 1600 mn_now = get_clock ();
1152 now_floor = mn_now; 1601 now_floor = mn_now;
1153 } 1602 }
1154 1603
1155# if EV_PERIODICS 1604# if EV_PERIODIC_ENABLE
1605 periodics_reschedule (EV_A);
1606# endif
1607 /* no timer adjustment, as the monotonic clock doesn't jump */
1608 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609 }
1610 else
1611#endif
1612 {
1613 ev_rt_now = ev_time ();
1614
1615 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1616 {
1617#if EV_PERIODIC_ENABLE
1156 periodics_reschedule (EV_A); 1618 periodics_reschedule (EV_A);
1157# endif 1619#endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */ 1620 /* adjust timers. this is easy, as the offset is the same for all of them */
1174 for (i = 0; i < timercnt; ++i) 1621 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now; 1622 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 } 1623 }
1177 1624
1178 mn_now = ev_rt_now; 1625 mn_now = ev_rt_now;
1194static int loop_done; 1641static int loop_done;
1195 1642
1196void 1643void
1197ev_loop (EV_P_ int flags) 1644ev_loop (EV_P_ int flags)
1198{ 1645{
1199 double block; 1646 loop_done = EVUNLOOP_CANCEL;
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1201 1647
1202 while (activecnt) 1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1649
1650 do
1203 { 1651 {
1652#ifndef _WIN32
1653 if (expect_false (curpid)) /* penalise the forking check even more */
1654 if (expect_false (getpid () != curpid))
1655 {
1656 curpid = getpid ();
1657 postfork = 1;
1658 }
1659#endif
1660
1661#if EV_FORK_ENABLE
1662 /* we might have forked, so queue fork handlers */
1663 if (expect_false (postfork))
1664 if (forkcnt)
1665 {
1666 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1667 call_pending (EV_A);
1668 }
1669#endif
1670
1204 /* queue check watchers (and execute them) */ 1671 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 1672 if (expect_false (preparecnt))
1206 { 1673 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1674 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 1675 call_pending (EV_A);
1209 } 1676 }
1210 1677
1678 if (expect_false (!activecnt))
1679 break;
1680
1211 /* we might have forked, so reify kernel state if necessary */ 1681 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 1682 if (expect_false (postfork))
1213 loop_fork (EV_A); 1683 loop_fork (EV_A);
1214 1684
1215 /* update fd-related kernel structures */ 1685 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 1686 fd_reify (EV_A);
1217 1687
1218 /* calculate blocking time */ 1688 /* calculate blocking time */
1689 {
1690 ev_tstamp waittime = 0.;
1691 ev_tstamp sleeptime = 0.;
1219 1692
1220 /* we only need this for !monotonic clock or timers, but as we basically 1693 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1221 always have timers, we just calculate it always */
1222#if EV_USE_MONOTONIC
1223 if (expect_true (have_monotonic))
1224 time_update_monotonic (EV_A);
1225 else
1226#endif
1227 { 1694 {
1228 ev_rt_now = ev_time (); 1695 /* update time to cancel out callback processing overhead */
1229 mn_now = ev_rt_now; 1696 time_update (EV_A_ 1e100);
1230 }
1231 1697
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 1698 waittime = MAX_BLOCKTIME;
1237 1699
1238 if (timercnt) 1700 if (timercnt)
1239 { 1701 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1241 if (block > to) block = to; 1703 if (waittime > to) waittime = to;
1242 } 1704 }
1243 1705
1244#if EV_PERIODICS 1706#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 1707 if (periodiccnt)
1246 { 1708 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1248 if (block > to) block = to; 1710 if (waittime > to) waittime = to;
1249 } 1711 }
1250#endif 1712#endif
1251 1713
1252 if (expect_false (block < 0.)) block = 0.; 1714 if (expect_false (waittime < timeout_blocktime))
1715 waittime = timeout_blocktime;
1716
1717 sleeptime = waittime - backend_fudge;
1718
1719 if (expect_true (sleeptime > io_blocktime))
1720 sleeptime = io_blocktime;
1721
1722 if (sleeptime)
1723 {
1724 ev_sleep (sleeptime);
1725 waittime -= sleeptime;
1726 }
1253 } 1727 }
1254 1728
1255 method_poll (EV_A_ block); 1729 ++loop_count;
1730 backend_poll (EV_A_ waittime);
1256 1731
1257 /* update ev_rt_now, do magic */ 1732 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 1733 time_update (EV_A_ waittime + sleeptime);
1734 }
1259 1735
1260 /* queue pending timers and reschedule them */ 1736 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 1737 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 1738#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 1739 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 1740#endif
1265 1741
1742#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 1743 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 1744 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1745#endif
1269 1746
1270 /* queue check watchers, to be executed first */ 1747 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 1748 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1749 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1273 1750
1274 call_pending (EV_A); 1751 call_pending (EV_A);
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 1752 }
1753 while (expect_true (
1754 activecnt
1755 && !loop_done
1756 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1757 ));
1279 1758
1280 if (loop_done != 2) 1759 if (loop_done == EVUNLOOP_ONE)
1281 loop_done = 0; 1760 loop_done = EVUNLOOP_CANCEL;
1282} 1761}
1283 1762
1284void 1763void
1285ev_unloop (EV_P_ int how) 1764ev_unloop (EV_P_ int how)
1286{ 1765{
1287 loop_done = how; 1766 loop_done = how;
1288} 1767}
1289 1768
1290/*****************************************************************************/ 1769/*****************************************************************************/
1291 1770
1292inline void 1771void inline_size
1293wlist_add (WL *head, WL elem) 1772wlist_add (WL *head, WL elem)
1294{ 1773{
1295 elem->next = *head; 1774 elem->next = *head;
1296 *head = elem; 1775 *head = elem;
1297} 1776}
1298 1777
1299inline void 1778void inline_size
1300wlist_del (WL *head, WL elem) 1779wlist_del (WL *head, WL elem)
1301{ 1780{
1302 while (*head) 1781 while (*head)
1303 { 1782 {
1304 if (*head == elem) 1783 if (*head == elem)
1309 1788
1310 head = &(*head)->next; 1789 head = &(*head)->next;
1311 } 1790 }
1312} 1791}
1313 1792
1314inline void 1793void inline_speed
1315ev_clear_pending (EV_P_ W w) 1794clear_pending (EV_P_ W w)
1316{ 1795{
1317 if (w->pending) 1796 if (w->pending)
1318 { 1797 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1798 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1320 w->pending = 0; 1799 w->pending = 0;
1321 } 1800 }
1322} 1801}
1323 1802
1324inline void 1803int
1804ev_clear_pending (EV_P_ void *w)
1805{
1806 W w_ = (W)w;
1807 int pending = w_->pending;
1808
1809 if (expect_true (pending))
1810 {
1811 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1812 w_->pending = 0;
1813 p->w = 0;
1814 return p->events;
1815 }
1816 else
1817 return 0;
1818}
1819
1820void inline_size
1821pri_adjust (EV_P_ W w)
1822{
1823 int pri = w->priority;
1824 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1825 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1826 w->priority = pri;
1827}
1828
1829void inline_speed
1325ev_start (EV_P_ W w, int active) 1830ev_start (EV_P_ W w, int active)
1326{ 1831{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1832 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 1833 w->active = active;
1331 ev_ref (EV_A); 1834 ev_ref (EV_A);
1332} 1835}
1333 1836
1334inline void 1837void inline_size
1335ev_stop (EV_P_ W w) 1838ev_stop (EV_P_ W w)
1336{ 1839{
1337 ev_unref (EV_A); 1840 ev_unref (EV_A);
1338 w->active = 0; 1841 w->active = 0;
1339} 1842}
1340 1843
1341/*****************************************************************************/ 1844/*****************************************************************************/
1342 1845
1343void 1846void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 1847ev_io_start (EV_P_ ev_io *w)
1345{ 1848{
1346 int fd = w->fd; 1849 int fd = w->fd;
1347 1850
1348 if (expect_false (ev_is_active (w))) 1851 if (expect_false (ev_is_active (w)))
1349 return; 1852 return;
1350 1853
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 1854 assert (("ev_io_start called with negative fd", fd >= 0));
1352 1855
1353 ev_start (EV_A_ (W)w, 1); 1856 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1858 wlist_add (&anfds[fd].head, (WL)w);
1356 1859
1357 fd_change (EV_A_ fd); 1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1861 w->events &= ~EV_IOFDSET;
1358} 1862}
1359 1863
1360void 1864void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 1865ev_io_stop (EV_P_ ev_io *w)
1362{ 1866{
1363 ev_clear_pending (EV_A_ (W)w); 1867 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 1868 if (expect_false (!ev_is_active (w)))
1365 return; 1869 return;
1366 1870
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 1872
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1873 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 1874 ev_stop (EV_A_ (W)w);
1371 1875
1372 fd_change (EV_A_ w->fd); 1876 fd_change (EV_A_ w->fd, 1);
1373} 1877}
1374 1878
1375void 1879void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 1880ev_timer_start (EV_P_ ev_timer *w)
1377{ 1881{
1378 if (expect_false (ev_is_active (w))) 1882 if (expect_false (ev_is_active (w)))
1379 return; 1883 return;
1380 1884
1381 ((WT)w)->at += mn_now; 1885 ((WT)w)->at += mn_now;
1382 1886
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 1888
1385 ev_start (EV_A_ (W)w, ++timercnt); 1889 ev_start (EV_A_ (W)w, ++timercnt);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1387 timers [timercnt - 1] = w; 1891 timers [timercnt - 1] = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 1892 upheap (timers, timercnt - 1);
1389 1893
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1391} 1895}
1392 1896
1393void 1897void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 1898ev_timer_stop (EV_P_ ev_timer *w)
1395{ 1899{
1396 ev_clear_pending (EV_A_ (W)w); 1900 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 1901 if (expect_false (!ev_is_active (w)))
1398 return; 1902 return;
1399 1903
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1401 1905
1906 {
1907 int active = ((W)w)->active;
1908
1402 if (expect_true (((W)w)->active < timercnt--)) 1909 if (expect_true (--active < --timercnt))
1403 { 1910 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 1911 timers [active] = timers [timercnt];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1912 adjustheap (timers, timercnt, active);
1406 } 1913 }
1914 }
1407 1915
1408 ((WT)w)->at -= mn_now; 1916 ((WT)w)->at -= mn_now;
1409 1917
1410 ev_stop (EV_A_ (W)w); 1918 ev_stop (EV_A_ (W)w);
1411} 1919}
1412 1920
1413void 1921void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 1922ev_timer_again (EV_P_ ev_timer *w)
1415{ 1923{
1416 if (ev_is_active (w)) 1924 if (ev_is_active (w))
1417 { 1925 {
1418 if (w->repeat) 1926 if (w->repeat)
1419 { 1927 {
1420 ((WT)w)->at = mn_now + w->repeat; 1928 ((WT)w)->at = mn_now + w->repeat;
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1929 adjustheap (timers, timercnt, ((W)w)->active - 1);
1422 } 1930 }
1423 else 1931 else
1424 ev_timer_stop (EV_A_ w); 1932 ev_timer_stop (EV_A_ w);
1425 } 1933 }
1426 else if (w->repeat) 1934 else if (w->repeat)
1428 w->at = w->repeat; 1936 w->at = w->repeat;
1429 ev_timer_start (EV_A_ w); 1937 ev_timer_start (EV_A_ w);
1430 } 1938 }
1431} 1939}
1432 1940
1433#if EV_PERIODICS 1941#if EV_PERIODIC_ENABLE
1434void 1942void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 1943ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 1944{
1437 if (expect_false (ev_is_active (w))) 1945 if (expect_false (ev_is_active (w)))
1438 return; 1946 return;
1439 1947
1440 if (w->reschedule_cb) 1948 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 1950 else if (w->interval)
1443 { 1951 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 1953 /* this formula differs from the one in periodic_reify because we do not always round up */
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1447 } 1955 }
1956 else
1957 ((WT)w)->at = w->offset;
1448 1958
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 1959 ev_start (EV_A_ (W)w, ++periodiccnt);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 1961 periodics [periodiccnt - 1] = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 1962 upheap (periodics, periodiccnt - 1);
1453 1963
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1455} 1965}
1456 1966
1457void 1967void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 1968ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 1969{
1460 ev_clear_pending (EV_A_ (W)w); 1970 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 1971 if (expect_false (!ev_is_active (w)))
1462 return; 1972 return;
1463 1973
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1465 1975
1976 {
1977 int active = ((W)w)->active;
1978
1466 if (expect_true (((W)w)->active < periodiccnt--)) 1979 if (expect_true (--active < --periodiccnt))
1467 { 1980 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1981 periodics [active] = periodics [periodiccnt];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1982 adjustheap (periodics, periodiccnt, active);
1470 } 1983 }
1984 }
1471 1985
1472 ev_stop (EV_A_ (W)w); 1986 ev_stop (EV_A_ (W)w);
1473} 1987}
1474 1988
1475void 1989void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 1990ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 1991{
1478 /* TODO: use adjustheap and recalculation */ 1992 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 1993 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 1994 ev_periodic_start (EV_A_ w);
1481} 1995}
1482#endif 1996#endif
1483 1997
1484void
1485ev_idle_start (EV_P_ struct ev_idle *w)
1486{
1487 if (expect_false (ev_is_active (w)))
1488 return;
1489
1490 ev_start (EV_A_ (W)w, ++idlecnt);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1492 idles [idlecnt - 1] = w;
1493}
1494
1495void
1496ev_idle_stop (EV_P_ struct ev_idle *w)
1497{
1498 ev_clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w)))
1500 return;
1501
1502 idles [((W)w)->active - 1] = idles [--idlecnt];
1503 ev_stop (EV_A_ (W)w);
1504}
1505
1506void
1507ev_prepare_start (EV_P_ struct ev_prepare *w)
1508{
1509 if (expect_false (ev_is_active (w)))
1510 return;
1511
1512 ev_start (EV_A_ (W)w, ++preparecnt);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1514 prepares [preparecnt - 1] = w;
1515}
1516
1517void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w)
1519{
1520 ev_clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w)))
1522 return;
1523
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1525 ev_stop (EV_A_ (W)w);
1526}
1527
1528void
1529ev_check_start (EV_P_ struct ev_check *w)
1530{
1531 if (expect_false (ev_is_active (w)))
1532 return;
1533
1534 ev_start (EV_A_ (W)w, ++checkcnt);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1536 checks [checkcnt - 1] = w;
1537}
1538
1539void
1540ev_check_stop (EV_P_ struct ev_check *w)
1541{
1542 ev_clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w)))
1544 return;
1545
1546 checks [((W)w)->active - 1] = checks [--checkcnt];
1547 ev_stop (EV_A_ (W)w);
1548}
1549
1550#ifndef SA_RESTART 1998#ifndef SA_RESTART
1551# define SA_RESTART 0 1999# define SA_RESTART 0
1552#endif 2000#endif
1553 2001
1554void 2002void noinline
1555ev_signal_start (EV_P_ struct ev_signal *w) 2003ev_signal_start (EV_P_ ev_signal *w)
1556{ 2004{
1557#if EV_MULTIPLICITY 2005#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2006 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif 2007#endif
1560 if (expect_false (ev_is_active (w))) 2008 if (expect_false (ev_is_active (w)))
1561 return; 2009 return;
1562 2010
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1564 2012
2013 evpipe_init (EV_A);
2014
2015 {
2016#ifndef _WIN32
2017 sigset_t full, prev;
2018 sigfillset (&full);
2019 sigprocmask (SIG_SETMASK, &full, &prev);
2020#endif
2021
2022 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2023
2024#ifndef _WIN32
2025 sigprocmask (SIG_SETMASK, &prev, 0);
2026#endif
2027 }
2028
1565 ev_start (EV_A_ (W)w, 1); 2029 ev_start (EV_A_ (W)w, 1);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2030 wlist_add (&signals [w->signum - 1].head, (WL)w);
1568 2031
1569 if (!((WL)w)->next) 2032 if (!((WL)w)->next)
1570 { 2033 {
1571#if _WIN32 2034#if _WIN32
1572 signal (w->signum, sighandler); 2035 signal (w->signum, ev_sighandler);
1573#else 2036#else
1574 struct sigaction sa; 2037 struct sigaction sa;
1575 sa.sa_handler = sighandler; 2038 sa.sa_handler = ev_sighandler;
1576 sigfillset (&sa.sa_mask); 2039 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0); 2041 sigaction (w->signum, &sa, 0);
1579#endif 2042#endif
1580 } 2043 }
1581} 2044}
1582 2045
1583void 2046void noinline
1584ev_signal_stop (EV_P_ struct ev_signal *w) 2047ev_signal_stop (EV_P_ ev_signal *w)
1585{ 2048{
1586 ev_clear_pending (EV_A_ (W)w); 2049 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 2050 if (expect_false (!ev_is_active (w)))
1588 return; 2051 return;
1589 2052
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2053 wlist_del (&signals [w->signum - 1].head, (WL)w);
1591 ev_stop (EV_A_ (W)w); 2054 ev_stop (EV_A_ (W)w);
1592 2055
1593 if (!signals [w->signum - 1].head) 2056 if (!signals [w->signum - 1].head)
1594 signal (w->signum, SIG_DFL); 2057 signal (w->signum, SIG_DFL);
1595} 2058}
1596 2059
1597void 2060void
1598ev_child_start (EV_P_ struct ev_child *w) 2061ev_child_start (EV_P_ ev_child *w)
1599{ 2062{
1600#if EV_MULTIPLICITY 2063#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2064 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 2065#endif
1603 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1604 return; 2067 return;
1605 2068
1606 ev_start (EV_A_ (W)w, 1); 2069 ev_start (EV_A_ (W)w, 1);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1608} 2071}
1609 2072
1610void 2073void
1611ev_child_stop (EV_P_ struct ev_child *w) 2074ev_child_stop (EV_P_ ev_child *w)
1612{ 2075{
1613 ev_clear_pending (EV_A_ (W)w); 2076 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 2077 if (expect_false (!ev_is_active (w)))
1615 return; 2078 return;
1616 2079
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1619} 2082}
1620 2083
2084#if EV_STAT_ENABLE
2085
2086# ifdef _WIN32
2087# undef lstat
2088# define lstat(a,b) _stati64 (a,b)
2089# endif
2090
2091#define DEF_STAT_INTERVAL 5.0074891
2092#define MIN_STAT_INTERVAL 0.1074891
2093
2094static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2095
2096#if EV_USE_INOTIFY
2097# define EV_INOTIFY_BUFSIZE 8192
2098
2099static void noinline
2100infy_add (EV_P_ ev_stat *w)
2101{
2102 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2103
2104 if (w->wd < 0)
2105 {
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2107
2108 /* monitor some parent directory for speedup hints */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 {
2111 char path [4096];
2112 strcpy (path, w->path);
2113
2114 do
2115 {
2116 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2117 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2118
2119 char *pend = strrchr (path, '/');
2120
2121 if (!pend)
2122 break; /* whoops, no '/', complain to your admin */
2123
2124 *pend = 0;
2125 w->wd = inotify_add_watch (fs_fd, path, mask);
2126 }
2127 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2128 }
2129 }
2130 else
2131 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2132
2133 if (w->wd >= 0)
2134 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2135}
2136
2137static void noinline
2138infy_del (EV_P_ ev_stat *w)
2139{
2140 int slot;
2141 int wd = w->wd;
2142
2143 if (wd < 0)
2144 return;
2145
2146 w->wd = -2;
2147 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2148 wlist_del (&fs_hash [slot].head, (WL)w);
2149
2150 /* remove this watcher, if others are watching it, they will rearm */
2151 inotify_rm_watch (fs_fd, wd);
2152}
2153
2154static void noinline
2155infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2156{
2157 if (slot < 0)
2158 /* overflow, need to check for all hahs slots */
2159 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2160 infy_wd (EV_A_ slot, wd, ev);
2161 else
2162 {
2163 WL w_;
2164
2165 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2166 {
2167 ev_stat *w = (ev_stat *)w_;
2168 w_ = w_->next; /* lets us remove this watcher and all before it */
2169
2170 if (w->wd == wd || wd == -1)
2171 {
2172 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2173 {
2174 w->wd = -1;
2175 infy_add (EV_A_ w); /* re-add, no matter what */
2176 }
2177
2178 stat_timer_cb (EV_A_ &w->timer, 0);
2179 }
2180 }
2181 }
2182}
2183
2184static void
2185infy_cb (EV_P_ ev_io *w, int revents)
2186{
2187 char buf [EV_INOTIFY_BUFSIZE];
2188 struct inotify_event *ev = (struct inotify_event *)buf;
2189 int ofs;
2190 int len = read (fs_fd, buf, sizeof (buf));
2191
2192 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2193 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2194}
2195
2196void inline_size
2197infy_init (EV_P)
2198{
2199 if (fs_fd != -2)
2200 return;
2201
2202 fs_fd = inotify_init ();
2203
2204 if (fs_fd >= 0)
2205 {
2206 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2207 ev_set_priority (&fs_w, EV_MAXPRI);
2208 ev_io_start (EV_A_ &fs_w);
2209 }
2210}
2211
2212void inline_size
2213infy_fork (EV_P)
2214{
2215 int slot;
2216
2217 if (fs_fd < 0)
2218 return;
2219
2220 close (fs_fd);
2221 fs_fd = inotify_init ();
2222
2223 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2224 {
2225 WL w_ = fs_hash [slot].head;
2226 fs_hash [slot].head = 0;
2227
2228 while (w_)
2229 {
2230 ev_stat *w = (ev_stat *)w_;
2231 w_ = w_->next; /* lets us add this watcher */
2232
2233 w->wd = -1;
2234
2235 if (fs_fd >= 0)
2236 infy_add (EV_A_ w); /* re-add, no matter what */
2237 else
2238 ev_timer_start (EV_A_ &w->timer);
2239 }
2240
2241 }
2242}
2243
2244#endif
2245
2246void
2247ev_stat_stat (EV_P_ ev_stat *w)
2248{
2249 if (lstat (w->path, &w->attr) < 0)
2250 w->attr.st_nlink = 0;
2251 else if (!w->attr.st_nlink)
2252 w->attr.st_nlink = 1;
2253}
2254
2255static void noinline
2256stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2257{
2258 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2259
2260 /* we copy this here each the time so that */
2261 /* prev has the old value when the callback gets invoked */
2262 w->prev = w->attr;
2263 ev_stat_stat (EV_A_ w);
2264
2265 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2266 if (
2267 w->prev.st_dev != w->attr.st_dev
2268 || w->prev.st_ino != w->attr.st_ino
2269 || w->prev.st_mode != w->attr.st_mode
2270 || w->prev.st_nlink != w->attr.st_nlink
2271 || w->prev.st_uid != w->attr.st_uid
2272 || w->prev.st_gid != w->attr.st_gid
2273 || w->prev.st_rdev != w->attr.st_rdev
2274 || w->prev.st_size != w->attr.st_size
2275 || w->prev.st_atime != w->attr.st_atime
2276 || w->prev.st_mtime != w->attr.st_mtime
2277 || w->prev.st_ctime != w->attr.st_ctime
2278 ) {
2279 #if EV_USE_INOTIFY
2280 infy_del (EV_A_ w);
2281 infy_add (EV_A_ w);
2282 ev_stat_stat (EV_A_ w); /* avoid race... */
2283 #endif
2284
2285 ev_feed_event (EV_A_ w, EV_STAT);
2286 }
2287}
2288
2289void
2290ev_stat_start (EV_P_ ev_stat *w)
2291{
2292 if (expect_false (ev_is_active (w)))
2293 return;
2294
2295 /* since we use memcmp, we need to clear any padding data etc. */
2296 memset (&w->prev, 0, sizeof (ev_statdata));
2297 memset (&w->attr, 0, sizeof (ev_statdata));
2298
2299 ev_stat_stat (EV_A_ w);
2300
2301 if (w->interval < MIN_STAT_INTERVAL)
2302 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2303
2304 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2305 ev_set_priority (&w->timer, ev_priority (w));
2306
2307#if EV_USE_INOTIFY
2308 infy_init (EV_A);
2309
2310 if (fs_fd >= 0)
2311 infy_add (EV_A_ w);
2312 else
2313#endif
2314 ev_timer_start (EV_A_ &w->timer);
2315
2316 ev_start (EV_A_ (W)w, 1);
2317}
2318
2319void
2320ev_stat_stop (EV_P_ ev_stat *w)
2321{
2322 clear_pending (EV_A_ (W)w);
2323 if (expect_false (!ev_is_active (w)))
2324 return;
2325
2326#if EV_USE_INOTIFY
2327 infy_del (EV_A_ w);
2328#endif
2329 ev_timer_stop (EV_A_ &w->timer);
2330
2331 ev_stop (EV_A_ (W)w);
2332}
2333#endif
2334
2335#if EV_IDLE_ENABLE
2336void
2337ev_idle_start (EV_P_ ev_idle *w)
2338{
2339 if (expect_false (ev_is_active (w)))
2340 return;
2341
2342 pri_adjust (EV_A_ (W)w);
2343
2344 {
2345 int active = ++idlecnt [ABSPRI (w)];
2346
2347 ++idleall;
2348 ev_start (EV_A_ (W)w, active);
2349
2350 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2351 idles [ABSPRI (w)][active - 1] = w;
2352 }
2353}
2354
2355void
2356ev_idle_stop (EV_P_ ev_idle *w)
2357{
2358 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w)))
2360 return;
2361
2362 {
2363 int active = ((W)w)->active;
2364
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2367
2368 ev_stop (EV_A_ (W)w);
2369 --idleall;
2370 }
2371}
2372#endif
2373
2374void
2375ev_prepare_start (EV_P_ ev_prepare *w)
2376{
2377 if (expect_false (ev_is_active (w)))
2378 return;
2379
2380 ev_start (EV_A_ (W)w, ++preparecnt);
2381 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2382 prepares [preparecnt - 1] = w;
2383}
2384
2385void
2386ev_prepare_stop (EV_P_ ev_prepare *w)
2387{
2388 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w)))
2390 return;
2391
2392 {
2393 int active = ((W)w)->active;
2394 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active;
2396 }
2397
2398 ev_stop (EV_A_ (W)w);
2399}
2400
2401void
2402ev_check_start (EV_P_ ev_check *w)
2403{
2404 if (expect_false (ev_is_active (w)))
2405 return;
2406
2407 ev_start (EV_A_ (W)w, ++checkcnt);
2408 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2409 checks [checkcnt - 1] = w;
2410}
2411
2412void
2413ev_check_stop (EV_P_ ev_check *w)
2414{
2415 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w)))
2417 return;
2418
2419 {
2420 int active = ((W)w)->active;
2421 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active;
2423 }
2424
2425 ev_stop (EV_A_ (W)w);
2426}
2427
2428#if EV_EMBED_ENABLE
2429void noinline
2430ev_embed_sweep (EV_P_ ev_embed *w)
2431{
2432 ev_loop (w->other, EVLOOP_NONBLOCK);
2433}
2434
2435static void
2436embed_io_cb (EV_P_ ev_io *io, int revents)
2437{
2438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2439
2440 if (ev_cb (w))
2441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2442 else
2443 ev_loop (w->other, EVLOOP_NONBLOCK);
2444}
2445
2446static void
2447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2448{
2449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2450
2451 {
2452 struct ev_loop *loop = w->other;
2453
2454 while (fdchangecnt)
2455 {
2456 fd_reify (EV_A);
2457 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2458 }
2459 }
2460}
2461
2462#if 0
2463static void
2464embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2465{
2466 ev_idle_stop (EV_A_ idle);
2467}
2468#endif
2469
2470void
2471ev_embed_start (EV_P_ ev_embed *w)
2472{
2473 if (expect_false (ev_is_active (w)))
2474 return;
2475
2476 {
2477 struct ev_loop *loop = w->other;
2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2480 }
2481
2482 ev_set_priority (&w->io, ev_priority (w));
2483 ev_io_start (EV_A_ &w->io);
2484
2485 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare);
2488
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490
2491 ev_start (EV_A_ (W)w, 1);
2492}
2493
2494void
2495ev_embed_stop (EV_P_ ev_embed *w)
2496{
2497 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w)))
2499 return;
2500
2501 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare);
2503
2504 ev_stop (EV_A_ (W)w);
2505}
2506#endif
2507
2508#if EV_FORK_ENABLE
2509void
2510ev_fork_start (EV_P_ ev_fork *w)
2511{
2512 if (expect_false (ev_is_active (w)))
2513 return;
2514
2515 ev_start (EV_A_ (W)w, ++forkcnt);
2516 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2517 forks [forkcnt - 1] = w;
2518}
2519
2520void
2521ev_fork_stop (EV_P_ ev_fork *w)
2522{
2523 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w)))
2525 return;
2526
2527 {
2528 int active = ((W)w)->active;
2529 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active;
2531 }
2532
2533 ev_stop (EV_A_ (W)w);
2534}
2535#endif
2536
2537#if EV_ASYNC_ENABLE
2538void
2539ev_async_start (EV_P_ ev_async *w)
2540{
2541 if (expect_false (ev_is_active (w)))
2542 return;
2543
2544 evpipe_init (EV_A);
2545
2546 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w;
2549}
2550
2551void
2552ev_async_stop (EV_P_ ev_async *w)
2553{
2554 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w)))
2556 return;
2557
2558 {
2559 int active = ((W)w)->active;
2560 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active;
2562 }
2563
2564 ev_stop (EV_A_ (W)w);
2565}
2566
2567void
2568ev_async_send (EV_P_ ev_async *w)
2569{
2570 w->sent = 1;
2571 evpipe_write (EV_A_ &gotasync);
2572}
2573#endif
2574
1621/*****************************************************************************/ 2575/*****************************************************************************/
1622 2576
1623struct ev_once 2577struct ev_once
1624{ 2578{
1625 struct ev_io io; 2579 ev_io io;
1626 struct ev_timer to; 2580 ev_timer to;
1627 void (*cb)(int revents, void *arg); 2581 void (*cb)(int revents, void *arg);
1628 void *arg; 2582 void *arg;
1629}; 2583};
1630 2584
1631static void 2585static void
1640 2594
1641 cb (revents, arg); 2595 cb (revents, arg);
1642} 2596}
1643 2597
1644static void 2598static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 2599once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 2600{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2601 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1648} 2602}
1649 2603
1650static void 2604static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 2605once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 2606{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2607 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1654} 2608}
1655 2609
1656void 2610void
1680 ev_timer_set (&once->to, timeout, 0.); 2634 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 2635 ev_timer_start (EV_A_ &once->to);
1682 } 2636 }
1683} 2637}
1684 2638
2639#if EV_MULTIPLICITY
2640 #include "ev_wrap.h"
2641#endif
2642
1685#ifdef __cplusplus 2643#ifdef __cplusplus
1686} 2644}
1687#endif 2645#endif
1688 2646

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines