ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
52# endif 65# endif
53# endif 66# endif
54 67
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
57# else 71# else
58# define EV_USE_SELECT 0 72# define EV_USE_NANOSLEEP 0
73# endif
59# endif 74# endif
60 75
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
62# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
63# else 79# else
64# define EV_USE_POLL 0 80# define EV_USE_SELECT 0
81# endif
65# endif 82# endif
66 83
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
68# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
69# else 87# else
70# define EV_USE_EPOLL 0 88# define EV_USE_POLL 0
89# endif
71# endif 90# endif
72 91
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
74# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
75# else 95# else
76# define EV_USE_KQUEUE 0 96# define EV_USE_EPOLL 0
97# endif
77# endif 98# endif
78 99
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
80# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
81# else 103# else
82# define EV_USE_PORT 0 104# define EV_USE_KQUEUE 0
105# endif
83# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
84 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
85#endif 132#endif
86 133
87#include <math.h> 134#include <math.h>
88#include <stdlib.h> 135#include <stdlib.h>
89#include <fcntl.h> 136#include <fcntl.h>
96#include <sys/types.h> 143#include <sys/types.h>
97#include <time.h> 144#include <time.h>
98 145
99#include <signal.h> 146#include <signal.h>
100 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
101#ifndef _WIN32 154#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 155# include <sys/time.h>
104# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
105#else 158#else
106# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 160# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
110# endif 163# endif
111#endif 164#endif
112 165
113/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
114 167
115#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
117#endif 170#endif
118 171
119#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
121#endif 178#endif
122 179
123#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
125#endif 182#endif
131# define EV_USE_POLL 1 188# define EV_USE_POLL 1
132# endif 189# endif
133#endif 190#endif
134 191
135#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
136# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
137#endif 198#endif
138 199
139#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
141#endif 202#endif
142 203
143#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 205# define EV_USE_PORT 0
145#endif 206#endif
146 207
147/**/ 208#ifndef EV_USE_INOTIFY
148 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
149/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
150#ifdef __APPLE__ 211# else
151# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
152# undef EV_USE_KQUEUE
153#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
154 249
155#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
158#endif 253#endif
160#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
163#endif 258#endif
164 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
165#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 276# include <winsock.h>
167#endif 277#endif
168 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
169/**/ 291/**/
292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
170 302
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
175 306
176#ifdef EV_H
177# include EV_H
178#else
179# include "ev.h"
180#endif
181
182#if __GNUC__ >= 3 307#if __GNUC__ >= 4
183# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
184# define inline static inline 309# define noinline __attribute__ ((noinline))
185#else 310#else
186# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
187# define inline static 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
188#endif 316#endif
189 317
190#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
192 327
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
195 330
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 332#define EMPTY2(a,b) /* used to suppress some warnings */
198 333
199typedef struct ev_watcher *W; 334typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
202 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
204 346
205#ifdef _WIN32 347#ifdef _WIN32
206# include "ev_win32.c" 348# include "ev_win32.c"
207#endif 349#endif
208 350
209/*****************************************************************************/ 351/*****************************************************************************/
210 352
211static void (*syserr_cb)(const char *msg); 353static void (*syserr_cb)(const char *msg);
212 354
355void
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 356ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 357{
215 syserr_cb = cb; 358 syserr_cb = cb;
216} 359}
217 360
218static void 361static void noinline
219syserr (const char *msg) 362syserr (const char *msg)
220{ 363{
221 if (!msg) 364 if (!msg)
222 msg = "(libev) system error"; 365 msg = "(libev) system error";
223 366
228 perror (msg); 371 perror (msg);
229 abort (); 372 abort ();
230 } 373 }
231} 374}
232 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
233static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 392
393void
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 395{
237 alloc = cb; 396 alloc = cb;
238} 397}
239 398
240static void * 399inline_speed void *
241ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
242{ 401{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
244 403
245 if (!ptr && size) 404 if (!ptr && size)
246 { 405 {
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
248 abort (); 407 abort ();
269typedef struct 428typedef struct
270{ 429{
271 W w; 430 W w;
272 int events; 431 int events;
273} ANPENDING; 432} ANPENDING;
433
434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
436typedef struct
437{
438 WL head;
439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458#endif
274 459
275#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
276 461
277 struct ev_loop 462 struct ev_loop
278 { 463 {
312 gettimeofday (&tv, 0); 497 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 498 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif 499#endif
315} 500}
316 501
317inline ev_tstamp 502ev_tstamp inline_size
318get_clock (void) 503get_clock (void)
319{ 504{
320#if EV_USE_MONOTONIC 505#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 506 if (expect_true (have_monotonic))
322 { 507 {
335{ 520{
336 return ev_rt_now; 521 return ev_rt_now;
337} 522}
338#endif 523#endif
339 524
340#define array_roundsize(type,n) (((n) | 4) & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
341 581
342#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
344 { \ 584 { \
345 int newcnt = cur; \ 585 int ocur_ = (cur); \
346 do \ 586 (base) = (type *)array_realloc \
347 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 589 }
356 590
591#if 0
357#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 594 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 598 }
599#endif
364 600
365#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
367 603
368/*****************************************************************************/ 604/*****************************************************************************/
369 605
370static void 606void noinline
607ev_feed_event (EV_P_ void *w, int revents)
608{
609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
611
612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents;
620 }
621}
622
623void inline_speed
624queue_events (EV_P_ W *events, int eventcnt, int type)
625{
626 int i;
627
628 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type);
630}
631
632/*****************************************************************************/
633
634void inline_size
371anfds_init (ANFD *base, int count) 635anfds_init (ANFD *base, int count)
372{ 636{
373 while (count--) 637 while (count--)
374 { 638 {
375 base->head = 0; 639 base->head = 0;
378 642
379 ++base; 643 ++base;
380 } 644 }
381} 645}
382 646
383void 647void inline_speed
384ev_feed_event (EV_P_ void *w, int revents)
385{
386 W w_ = (W)w;
387
388 if (expect_false (w_->pending))
389 {
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
391 return;
392 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398}
399
400static void
401queue_events (EV_P_ W *events, int eventcnt, int type)
402{
403 int i;
404
405 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type);
407}
408
409inline void
410fd_event (EV_P_ int fd, int revents) 648fd_event (EV_P_ int fd, int revents)
411{ 649{
412 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 651 ev_io *w;
414 652
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 654 {
417 int ev = w->events & revents; 655 int ev = w->events & revents;
418 656
419 if (ev) 657 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 658 ev_feed_event (EV_A_ (W)w, ev);
422} 660}
423 661
424void 662void
425ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 664{
665 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
428} 667}
429 668
430/*****************************************************************************/ 669void inline_size
431
432inline void
433fd_reify (EV_P) 670fd_reify (EV_P)
434{ 671{
435 int i; 672 int i;
436 673
437 for (i = 0; i < fdchangecnt; ++i) 674 for (i = 0; i < fdchangecnt; ++i)
438 { 675 {
439 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
441 struct ev_io *w; 678 ev_io *w;
442 679
443 int events = 0; 680 unsigned char events = 0;
444 681
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
446 events |= w->events; 683 events |= (unsigned char)w->events;
447 684
448#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
449 if (events) 686 if (events)
450 { 687 {
451 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
452 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
454 } 695 }
455#endif 696#endif
456 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
457 anfd->reify = 0; 702 anfd->reify = 0;
458
459 method_modify (EV_A_ fd, anfd->events, events);
460 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
461 } 708 }
462 709
463 fdchangecnt = 0; 710 fdchangecnt = 0;
464} 711}
465 712
466static void 713void inline_size
467fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
468{ 715{
469 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
473 718
719 if (expect_true (!reify))
720 {
474 ++fdchangecnt; 721 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
477} 725}
478 726
479static void 727void inline_speed
480fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
481{ 729{
482 struct ev_io *w; 730 ev_io *w;
483 731
484 while ((w = (struct ev_io *)anfds [fd].head)) 732 while ((w = (ev_io *)anfds [fd].head))
485 { 733 {
486 ev_io_stop (EV_A_ w); 734 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 736 }
489} 737}
490 738
491inline int 739int inline_size
492fd_valid (int fd) 740fd_valid (int fd)
493{ 741{
494#ifdef _WIN32 742#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 743 return _get_osfhandle (fd) != -1;
496#else 744#else
497 return fcntl (fd, F_GETFD) != -1; 745 return fcntl (fd, F_GETFD) != -1;
498#endif 746#endif
499} 747}
500 748
501/* called on EBADF to verify fds */ 749/* called on EBADF to verify fds */
502static void 750static void noinline
503fd_ebadf (EV_P) 751fd_ebadf (EV_P)
504{ 752{
505 int fd; 753 int fd;
506 754
507 for (fd = 0; fd < anfdmax; ++fd) 755 for (fd = 0; fd < anfdmax; ++fd)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 757 if (!fd_valid (fd) == -1 && errno == EBADF)
510 fd_kill (EV_A_ fd); 758 fd_kill (EV_A_ fd);
511} 759}
512 760
513/* called on ENOMEM in select/poll to kill some fds and retry */ 761/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 762static void noinline
515fd_enomem (EV_P) 763fd_enomem (EV_P)
516{ 764{
517 int fd; 765 int fd;
518 766
519 for (fd = anfdmax; fd--; ) 767 for (fd = anfdmax; fd--; )
522 fd_kill (EV_A_ fd); 770 fd_kill (EV_A_ fd);
523 return; 771 return;
524 } 772 }
525} 773}
526 774
527/* usually called after fork if method needs to re-arm all fds from scratch */ 775/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 776static void noinline
529fd_rearm_all (EV_P) 777fd_rearm_all (EV_P)
530{ 778{
531 int fd; 779 int fd;
532 780
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 782 if (anfds [fd].events)
536 { 783 {
537 anfds [fd].events = 0; 784 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
539 } 786 }
540} 787}
541 788
542/*****************************************************************************/ 789/*****************************************************************************/
543 790
544static void 791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
809void inline_speed
545upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
546{ 811{
547 WT w = heap [k]; 812 ANHE he = heap [k];
548 813
549 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
550 {
551 heap [k] = heap [k >> 1];
552 ((W)heap [k])->active = k + 1;
553 k >>= 1;
554 } 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
555 817
556 heap [k] = w; 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
557 ((W)heap [k])->active = k + 1;
558
559}
560
561static void
562downheap (WT *heap, int N, int k)
563{
564 WT w = heap [k];
565
566 while (k < (N >> 1))
567 {
568 int j = k << 1;
569
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
571 ++j;
572
573 if (w->at <= heap [j]->at)
574 break; 819 break;
575 820
576 heap [k] = heap [j]; 821 heap [k] = heap [p];
577 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
578 k = j; 823 k = p;
579 } 824 }
580 825
826 ev_active (ANHE_w (he)) = k;
581 heap [k] = w; 827 heap [k] = he;
582 ((W)heap [k])->active = k + 1;
583} 828}
584 829
585inline void 830/* away from the root */
831void inline_speed
832downheap (ANHE *heap, int N, int k)
833{
834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
836
837 for (;;)
838 {
839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
842
843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
845 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
859 break;
860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
930
931void inline_size
586adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
587{ 933{
588 upheap (heap, k); 934 upheap (heap, k);
589 downheap (heap, N, k); 935 downheap (heap, N, k);
590} 936}
591 937
592/*****************************************************************************/ 938/*****************************************************************************/
593 939
594typedef struct 940typedef struct
595{ 941{
596 WL head; 942 WL head;
597 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
598} ANSIG; 944} ANSIG;
599 945
600static ANSIG *signals; 946static ANSIG *signals;
601static int signalmax; 947static int signalmax;
602 948
603static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606 950
607static void 951void inline_size
608signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
609{ 953{
610 while (count--) 954 while (count--)
611 { 955 {
612 base->head = 0; 956 base->head = 0;
614 958
615 ++base; 959 ++base;
616 } 960 }
617} 961}
618 962
619static void 963/*****************************************************************************/
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625 964
626 signals [signum - 1].gotsig = 1; 965void inline_speed
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 966fd_intern (int fd)
672{ 967{
673#ifdef _WIN32 968#ifdef _WIN32
674 int arg = 1; 969 int arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 972 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 973 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 974#endif
680} 975}
681 976
977static void noinline
978evpipe_init (EV_P)
979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
995 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
999
1000 ev_io_start (EV_A_ &pipeev);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
682static void 1028static void
683siginit (EV_P) 1029pipecb (EV_P_ ev_io *iow, int revents)
684{ 1030{
685 fd_intern (sigpipe [0]); 1031#if EV_USE_EVENTFD
686 fd_intern (sigpipe [1]); 1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
687 1043
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1044 if (gotsig && ev_is_default_loop (EV_A))
689 ev_io_start (EV_A_ &sigev); 1045 {
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
691} 1068}
692 1069
693/*****************************************************************************/ 1070/*****************************************************************************/
694 1071
695static struct ev_child *childs [PID_HASHSIZE]; 1072static void
1073ev_sighandler (int signum)
1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105}
1106
1107/*****************************************************************************/
1108
1109static WL childs [EV_PID_HASHSIZE];
696 1110
697#ifndef _WIN32 1111#ifndef _WIN32
698 1112
699static struct ev_signal childev; 1113static ev_signal childev;
1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
1119void inline_speed
1120child_reap (EV_P_ int chain, int pid, int status)
1121{
1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
1129 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 w->rpid = pid;
1132 w->rstatus = status;
1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1134 }
1135 }
1136}
700 1137
701#ifndef WCONTINUED 1138#ifndef WCONTINUED
702# define WCONTINUED 0 1139# define WCONTINUED 0
703#endif 1140#endif
704 1141
705static void 1142static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 1143childcb (EV_P_ ev_signal *sw, int revents)
722{ 1144{
723 int pid, status; 1145 int pid, status;
724 1146
1147 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1148 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 1149 if (!WCONTINUED
1150 || errno != EINVAL
1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1152 return;
1153
727 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 1157
730 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 1161}
734 1162
735#endif 1163#endif
736 1164
737/*****************************************************************************/ 1165/*****************************************************************************/
763{ 1191{
764 return EV_VERSION_MINOR; 1192 return EV_VERSION_MINOR;
765} 1193}
766 1194
767/* return true if we are running with elevated privileges and should ignore env variables */ 1195/* return true if we are running with elevated privileges and should ignore env variables */
768static int 1196int inline_size
769enable_secure (void) 1197enable_secure (void)
770{ 1198{
771#ifdef _WIN32 1199#ifdef _WIN32
772 return 0; 1200 return 0;
773#else 1201#else
775 || getgid () != getegid (); 1203 || getgid () != getegid ();
776#endif 1204#endif
777} 1205}
778 1206
779unsigned int 1207unsigned int
780ev_method (EV_P) 1208ev_supported_backends (void)
781{ 1209{
782 return method; 1210 unsigned int flags = 0;
783}
784 1211
785static void 1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1214 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1215 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217
1218 return flags;
1219}
1220
1221unsigned int
1222ev_recommended_backends (void)
1223{
1224 unsigned int flags = ev_supported_backends ();
1225
1226#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE;
1230#endif
1231#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation
1233 flags &= ~EVBACKEND_POLL;
1234#endif
1235
1236 return flags;
1237}
1238
1239unsigned int
1240ev_embeddable_backends (void)
1241{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
1249}
1250
1251unsigned int
1252ev_backend (EV_P)
1253{
1254 return backend;
1255}
1256
1257unsigned int
1258ev_loop_count (EV_P)
1259{
1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
1273}
1274
1275static void noinline
786loop_init (EV_P_ unsigned int flags) 1276loop_init (EV_P_ unsigned int flags)
787{ 1277{
788 if (!method) 1278 if (!backend)
789 { 1279 {
790#if EV_USE_MONOTONIC 1280#if EV_USE_MONOTONIC
791 { 1281 {
792 struct timespec ts; 1282 struct timespec ts;
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
794 have_monotonic = 1; 1284 have_monotonic = 1;
795 } 1285 }
796#endif 1286#endif
797 1287
798 ev_rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
799 mn_now = get_clock (); 1289 mn_now = get_clock ();
800 now_floor = mn_now; 1290 now_floor = mn_now;
801 rtmn_diff = ev_rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
802 1292
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
1301
1302 /* pid check not overridable via env */
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
804 flags = atoi (getenv ("LIBEV_FLAGS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
805 1312
806 if (!(flags & 0x0000ffff)) 1313 if (!(flags & 0x0000ffffU))
807 flags |= 0x0000ffff; 1314 flags |= ev_recommended_backends ();
808 1315
809 method = 0;
810#if EV_USE_PORT 1316#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
812#endif 1318#endif
813#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
815#endif 1321#endif
816#if EV_USE_EPOLL 1322#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1323 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
818#endif 1324#endif
819#if EV_USE_POLL 1325#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1326 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
821#endif 1327#endif
822#if EV_USE_SELECT 1328#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
824#endif 1330#endif
825 1331
826 ev_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
827 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
828 } 1334 }
829} 1335}
830 1336
831static void 1337static void noinline
832loop_destroy (EV_P) 1338loop_destroy (EV_P)
833{ 1339{
834 int i; 1340 int i;
835 1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358
1359#if EV_USE_INOTIFY
1360 if (fs_fd >= 0)
1361 close (fs_fd);
1362#endif
1363
1364 if (backend_fd >= 0)
1365 close (backend_fd);
1366
836#if EV_USE_PORT 1367#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
838#endif 1369#endif
839#if EV_USE_KQUEUE 1370#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
841#endif 1372#endif
842#if EV_USE_EPOLL 1373#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1374 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
844#endif 1375#endif
845#if EV_USE_POLL 1376#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1377 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
847#endif 1378#endif
848#if EV_USE_SELECT 1379#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
850#endif 1381#endif
851 1382
852 for (i = NUMPRI; i--; ) 1383 for (i = NUMPRI; i--; )
1384 {
853 array_free (pending, [i]); 1385 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388#endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
854 1392
855 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
856 array_free (fdchange, EMPTY0); 1394 array_free (fdchange, EMPTY);
857 array_free (timer, EMPTY0); 1395 array_free (timer, EMPTY);
858#if EV_PERIODICS 1396#if EV_PERIODIC_ENABLE
859 array_free (periodic, EMPTY0); 1397 array_free (periodic, EMPTY);
860#endif 1398#endif
1399#if EV_FORK_ENABLE
861 array_free (idle, EMPTY0); 1400 array_free (fork, EMPTY);
1401#endif
862 array_free (prepare, EMPTY0); 1402 array_free (prepare, EMPTY);
863 array_free (check, EMPTY0); 1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
864 1407
865 method = 0; 1408 backend = 0;
866} 1409}
867 1410
868static void 1411#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P);
1413#endif
1414
1415void inline_size
869loop_fork (EV_P) 1416loop_fork (EV_P)
870{ 1417{
871#if EV_USE_PORT 1418#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
873#endif 1420#endif
874#if EV_USE_KQUEUE 1421#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1422 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
876#endif 1423#endif
877#if EV_USE_EPOLL 1424#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1425 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
879#endif 1426#endif
1427#if EV_USE_INOTIFY
1428 infy_fork (EV_A);
1429#endif
880 1430
881 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
882 { 1432 {
883 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
884 1439
885 ev_ref (EV_A); 1440 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
887 close (sigpipe [0]); 1450 close (evpipe [0]);
888 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
889 1453
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
894 } 1457 }
895 1458
896 postfork = 0; 1459 postfork = 0;
897} 1460}
898 1461
904 1467
905 memset (loop, 0, sizeof (struct ev_loop)); 1468 memset (loop, 0, sizeof (struct ev_loop));
906 1469
907 loop_init (EV_A_ flags); 1470 loop_init (EV_A_ flags);
908 1471
909 if (ev_method (EV_A)) 1472 if (ev_backend (EV_A))
910 return loop; 1473 return loop;
911 1474
912 return 0; 1475 return 0;
913} 1476}
914 1477
920} 1483}
921 1484
922void 1485void
923ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
924{ 1487{
925 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
926} 1489}
927
928#endif 1490#endif
929 1491
930#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
931struct ev_loop * 1493struct ev_loop *
932ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
933#else 1495#else
934int 1496int
935ev_default_loop (unsigned int flags) 1497ev_default_loop (unsigned int flags)
936#endif 1498#endif
937{ 1499{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 1500 if (!ev_default_loop_ptr)
943 { 1501 {
944#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
946#else 1504#else
947 ev_default_loop_ptr = 1; 1505 ev_default_loop_ptr = 1;
948#endif 1506#endif
949 1507
950 loop_init (EV_A_ flags); 1508 loop_init (EV_A_ flags);
951 1509
952 if (ev_method (EV_A)) 1510 if (ev_backend (EV_A))
953 { 1511 {
954 siginit (EV_A);
955
956#ifndef _WIN32 1512#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
977#ifndef _WIN32 1533#ifndef _WIN32
978 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
980#endif 1536#endif
981 1537
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
989} 1539}
990 1540
991void 1541void
992ev_default_fork (void) 1542ev_default_fork (void)
993{ 1543{
994#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
995 struct ev_loop *loop = ev_default_loop_ptr; 1545 struct ev_loop *loop = ev_default_loop_ptr;
996#endif 1546#endif
997 1547
998 if (method) 1548 if (backend)
999 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
1000} 1550}
1001 1551
1002/*****************************************************************************/ 1552/*****************************************************************************/
1003 1553
1004static int 1554void
1005any_pending (EV_P) 1555ev_invoke (EV_P_ void *w, int revents)
1006{ 1556{
1007 int pri; 1557 EV_CB_INVOKE ((W)w, revents);
1008
1009 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri])
1011 return 1;
1012
1013 return 0;
1014} 1558}
1015 1559
1016inline void 1560void inline_speed
1017call_pending (EV_P) 1561call_pending (EV_P)
1018{ 1562{
1019 int pri; 1563 int pri;
1020 1564
1021 for (pri = NUMPRI; pri--; ) 1565 for (pri = NUMPRI; pri--; )
1023 { 1567 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 1569
1026 if (expect_true (p->w)) 1570 if (expect_true (p->w))
1027 { 1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573
1028 p->w->pending = 0; 1574 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1030 } 1576 }
1031 } 1577 }
1032} 1578}
1033 1579
1034inline void 1580#if EV_IDLE_ENABLE
1581void inline_size
1582idle_reify (EV_P)
1583{
1584 if (expect_false (idleall))
1585 {
1586 int pri;
1587
1588 for (pri = NUMPRI; pri--; )
1589 {
1590 if (pendingcnt [pri])
1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
1598 }
1599 }
1600}
1601#endif
1602
1603void inline_size
1035timers_reify (EV_P) 1604timers_reify (EV_P)
1036{ 1605{
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 1607 {
1039 struct ev_timer *w = timers [0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1040 1609
1041 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1042 1611
1043 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
1044 if (w->repeat) 1613 if (w->repeat)
1045 { 1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 1620
1048 ((WT)w)->at += w->repeat; 1621 ANHE_at_set (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 1622 downheap (timers, timercnt, HEAP0);
1053 } 1623 }
1054 else 1624 else
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 1626
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1058 } 1628 }
1059} 1629}
1060 1630
1061#if EV_PERIODICS 1631#if EV_PERIODIC_ENABLE
1062inline void 1632void inline_size
1063periodics_reify (EV_P) 1633periodics_reify (EV_P)
1064{ 1634{
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 1636 {
1067 struct ev_periodic *w = periodics [0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1068 1638
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 1640
1071 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
1072 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1073 { 1643 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1076 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1077 } 1650 }
1078 else if (w->interval) 1651 else if (w->interval)
1079 { 1652 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1082 downheap ((WT *)periodics, periodiccnt, 0); 1668 downheap (periodics, periodiccnt, HEAP0);
1083 } 1669 }
1084 else 1670 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 1672
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 } 1674 }
1089} 1675}
1090 1676
1091static void 1677static void noinline
1092periodics_reschedule (EV_P) 1678periodics_reschedule (EV_P)
1093{ 1679{
1094 int i; 1680 int i;
1095 1681
1096 /* adjust periodics after time jump */ 1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1097 for (i = 0; i < periodiccnt; ++i) 1697 for (i = 0; i < periodiccnt; ++i)
1098 { 1698 upheap (periodics, i + HEAP0);
1099 struct ev_periodic *w = periodics [i]; 1699}
1700#endif
1100 1701
1101 if (w->reschedule_cb) 1702void inline_speed
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1703time_update (EV_P_ ev_tstamp max_block)
1103 else if (w->interval) 1704{
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 int i;
1706
1707#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic))
1105 } 1709 {
1710 ev_tstamp odiff = rtmn_diff;
1106 1711
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock (); 1712 mn_now = get_clock ();
1117 1713
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1715 /* interpolate in the meantime */
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1716 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 { 1717 {
1120 ev_rt_now = rtmn_diff + mn_now; 1718 ev_rt_now = rtmn_diff + mn_now;
1121 return 0; 1719 return;
1122 } 1720 }
1123 else 1721
1124 {
1125 now_floor = mn_now; 1722 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 1723 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 1724
1131inline void 1725 /* loop a few times, before making important decisions.
1132time_update (EV_P) 1726 * on the choice of "4": one iteration isn't enough,
1133{ 1727 * in case we get preempted during the calls to
1134 int i; 1728 * ev_time and get_clock. a second call is almost guaranteed
1135 1729 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 1730 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 1731 * in the unlikely event of having been preempted here.
1138 { 1732 */
1139 if (time_update_monotonic (EV_A)) 1733 for (i = 4; --i; )
1140 { 1734 {
1141 ev_tstamp odiff = rtmn_diff; 1735 rtmn_diff = ev_rt_now - mn_now;
1142 1736
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1738 return; /* all is well */
1739
1740 ev_rt_now = ev_time ();
1741 mn_now = get_clock ();
1742 now_floor = mn_now;
1743 }
1744
1745# if EV_PERIODIC_ENABLE
1746 periodics_reschedule (EV_A);
1747# endif
1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1750 }
1751 else
1752#endif
1753 {
1754 ev_rt_now = ev_time ();
1755
1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1757 {
1758#if EV_PERIODIC_ENABLE
1759 periodics_reschedule (EV_A);
1760#endif
1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i)
1144 { 1763 {
1145 rtmn_diff = ev_rt_now - mn_now; 1764 ANHE *he = timers + i + HEAP0;
1146 1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1766 ANHE_at_set (*he);
1148 return; /* all is well */
1149
1150 ev_rt_now = ev_time ();
1151 mn_now = get_clock ();
1152 now_floor = mn_now;
1153 } 1767 }
1154
1155# if EV_PERIODICS
1156 periodics_reschedule (EV_A);
1157# endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 1768 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 1769
1178 mn_now = ev_rt_now; 1770 mn_now = ev_rt_now;
1179 } 1771 }
1180} 1772}
1181 1773
1194static int loop_done; 1786static int loop_done;
1195 1787
1196void 1788void
1197ev_loop (EV_P_ int flags) 1789ev_loop (EV_P_ int flags)
1198{ 1790{
1199 double block; 1791 loop_done = EVUNLOOP_CANCEL;
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1201 1792
1202 while (activecnt) 1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1794
1795 do
1203 { 1796 {
1797#ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid))
1800 {
1801 curpid = getpid ();
1802 postfork = 1;
1803 }
1804#endif
1805
1806#if EV_FORK_ENABLE
1807 /* we might have forked, so queue fork handlers */
1808 if (expect_false (postfork))
1809 if (forkcnt)
1810 {
1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1812 call_pending (EV_A);
1813 }
1814#endif
1815
1204 /* queue check watchers (and execute them) */ 1816 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 1817 if (expect_false (preparecnt))
1206 { 1818 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 1820 call_pending (EV_A);
1209 } 1821 }
1210 1822
1823 if (expect_false (!activecnt))
1824 break;
1825
1211 /* we might have forked, so reify kernel state if necessary */ 1826 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 1827 if (expect_false (postfork))
1213 loop_fork (EV_A); 1828 loop_fork (EV_A);
1214 1829
1215 /* update fd-related kernel structures */ 1830 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 1831 fd_reify (EV_A);
1217 1832
1218 /* calculate blocking time */ 1833 /* calculate blocking time */
1834 {
1835 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.;
1219 1837
1220 /* we only need this for !monotonic clock or timers, but as we basically 1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1221 always have timers, we just calculate it always */
1222#if EV_USE_MONOTONIC
1223 if (expect_true (have_monotonic))
1224 time_update_monotonic (EV_A);
1225 else
1226#endif
1227 { 1839 {
1228 ev_rt_now = ev_time (); 1840 /* update time to cancel out callback processing overhead */
1229 mn_now = ev_rt_now; 1841 time_update (EV_A_ 1e100);
1230 }
1231 1842
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1237 1844
1238 if (timercnt) 1845 if (timercnt)
1239 { 1846 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1241 if (block > to) block = to; 1848 if (waittime > to) waittime = to;
1242 } 1849 }
1243 1850
1244#if EV_PERIODICS 1851#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 1852 if (periodiccnt)
1246 { 1853 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1248 if (block > to) block = to; 1855 if (waittime > to) waittime = to;
1249 } 1856 }
1250#endif 1857#endif
1251 1858
1252 if (expect_false (block < 0.)) block = 0.; 1859 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime;
1861
1862 sleeptime = waittime - backend_fudge;
1863
1864 if (expect_true (sleeptime > io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 {
1869 ev_sleep (sleeptime);
1870 waittime -= sleeptime;
1871 }
1253 } 1872 }
1254 1873
1255 method_poll (EV_A_ block); 1874 ++loop_count;
1875 backend_poll (EV_A_ waittime);
1256 1876
1257 /* update ev_rt_now, do magic */ 1877 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 1878 time_update (EV_A_ waittime + sleeptime);
1879 }
1259 1880
1260 /* queue pending timers and reschedule them */ 1881 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 1882 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 1883#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 1884 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 1885#endif
1265 1886
1887#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 1888 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 1889 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1890#endif
1269 1891
1270 /* queue check watchers, to be executed first */ 1892 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 1893 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1273 1895
1274 call_pending (EV_A); 1896 call_pending (EV_A);
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 1897 }
1898 while (expect_true (
1899 activecnt
1900 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1902 ));
1279 1903
1280 if (loop_done != 2) 1904 if (loop_done == EVUNLOOP_ONE)
1281 loop_done = 0; 1905 loop_done = EVUNLOOP_CANCEL;
1282} 1906}
1283 1907
1284void 1908void
1285ev_unloop (EV_P_ int how) 1909ev_unloop (EV_P_ int how)
1286{ 1910{
1287 loop_done = how; 1911 loop_done = how;
1288} 1912}
1289 1913
1290/*****************************************************************************/ 1914/*****************************************************************************/
1291 1915
1292inline void 1916void inline_size
1293wlist_add (WL *head, WL elem) 1917wlist_add (WL *head, WL elem)
1294{ 1918{
1295 elem->next = *head; 1919 elem->next = *head;
1296 *head = elem; 1920 *head = elem;
1297} 1921}
1298 1922
1299inline void 1923void inline_size
1300wlist_del (WL *head, WL elem) 1924wlist_del (WL *head, WL elem)
1301{ 1925{
1302 while (*head) 1926 while (*head)
1303 { 1927 {
1304 if (*head == elem) 1928 if (*head == elem)
1309 1933
1310 head = &(*head)->next; 1934 head = &(*head)->next;
1311 } 1935 }
1312} 1936}
1313 1937
1314inline void 1938void inline_speed
1315ev_clear_pending (EV_P_ W w) 1939clear_pending (EV_P_ W w)
1316{ 1940{
1317 if (w->pending) 1941 if (w->pending)
1318 { 1942 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1943 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1320 w->pending = 0; 1944 w->pending = 0;
1321 } 1945 }
1322} 1946}
1323 1947
1324inline void 1948int
1949ev_clear_pending (EV_P_ void *w)
1950{
1951 W w_ = (W)w;
1952 int pending = w_->pending;
1953
1954 if (expect_true (pending))
1955 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1957 w_->pending = 0;
1958 p->w = 0;
1959 return p->events;
1960 }
1961 else
1962 return 0;
1963}
1964
1965void inline_size
1966pri_adjust (EV_P_ W w)
1967{
1968 int pri = w->priority;
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri;
1972}
1973
1974void inline_speed
1325ev_start (EV_P_ W w, int active) 1975ev_start (EV_P_ W w, int active)
1326{ 1976{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1977 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 1978 w->active = active;
1331 ev_ref (EV_A); 1979 ev_ref (EV_A);
1332} 1980}
1333 1981
1334inline void 1982void inline_size
1335ev_stop (EV_P_ W w) 1983ev_stop (EV_P_ W w)
1336{ 1984{
1337 ev_unref (EV_A); 1985 ev_unref (EV_A);
1338 w->active = 0; 1986 w->active = 0;
1339} 1987}
1340 1988
1341/*****************************************************************************/ 1989/*****************************************************************************/
1342 1990
1343void 1991void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 1992ev_io_start (EV_P_ ev_io *w)
1345{ 1993{
1346 int fd = w->fd; 1994 int fd = w->fd;
1347 1995
1348 if (expect_false (ev_is_active (w))) 1996 if (expect_false (ev_is_active (w)))
1349 return; 1997 return;
1350 1998
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 1999 assert (("ev_io_start called with negative fd", fd >= 0));
1352 2000
1353 ev_start (EV_A_ (W)w, 1); 2001 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2003 wlist_add (&anfds[fd].head, (WL)w);
1356 2004
1357 fd_change (EV_A_ fd); 2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2006 w->events &= ~EV_IOFDSET;
1358} 2007}
1359 2008
1360void 2009void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 2010ev_io_stop (EV_P_ ev_io *w)
1362{ 2011{
1363 ev_clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 2013 if (expect_false (!ev_is_active (w)))
1365 return; 2014 return;
1366 2015
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 2017
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1371 2020
1372 fd_change (EV_A_ w->fd); 2021 fd_change (EV_A_ w->fd, 1);
1373} 2022}
1374 2023
1375void 2024void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 2025ev_timer_start (EV_P_ ev_timer *w)
1377{ 2026{
1378 if (expect_false (ev_is_active (w))) 2027 if (expect_false (ev_is_active (w)))
1379 return; 2028 return;
1380 2029
1381 ((WT)w)->at += mn_now; 2030 ev_at (w) += mn_now;
1382 2031
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 2033
1385 ev_start (EV_A_ (W)w, ++timercnt); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 2037 ANHE_at_set (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w));
1389 2039
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 2041}
1392 2042
1393void 2043void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1395{ 2045{
1396 ev_clear_pending (EV_A_ (W)w); 2046 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 2047 if (expect_false (!ev_is_active (w)))
1398 return; 2048 return;
1399 2049
2050 {
2051 int active = ev_active (w);
2052
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 2054
1402 if (expect_true (((W)w)->active < timercnt--)) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
1403 { 2056 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2058 adjustheap (timers, timercnt, active);
1406 } 2059 }
1407 2060
1408 ((WT)w)->at -= mn_now; 2061 --timercnt;
2062 }
2063
2064 ev_at (w) -= mn_now;
1409 2065
1410 ev_stop (EV_A_ (W)w); 2066 ev_stop (EV_A_ (W)w);
1411} 2067}
1412 2068
1413void 2069void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 2070ev_timer_again (EV_P_ ev_timer *w)
1415{ 2071{
1416 if (ev_is_active (w)) 2072 if (ev_is_active (w))
1417 { 2073 {
1418 if (w->repeat) 2074 if (w->repeat)
1419 { 2075 {
1420 ((WT)w)->at = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2078 adjustheap (timers, timercnt, ev_active (w));
1422 } 2079 }
1423 else 2080 else
1424 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
1425 } 2082 }
1426 else if (w->repeat) 2083 else if (w->repeat)
1427 { 2084 {
1428 w->at = w->repeat; 2085 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 2086 ev_timer_start (EV_A_ w);
1430 } 2087 }
1431} 2088}
1432 2089
1433#if EV_PERIODICS 2090#if EV_PERIODIC_ENABLE
1434void 2091void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 2092ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 2093{
1437 if (expect_false (ev_is_active (w))) 2094 if (expect_false (ev_is_active (w)))
1438 return; 2095 return;
1439 2096
1440 if (w->reschedule_cb) 2097 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 2099 else if (w->interval)
1443 { 2100 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 2102 /* this formula differs from the one in periodic_reify because we do not always round up */
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1447 } 2104 }
2105 else
2106 ev_at (w) = w->offset;
1448 2107
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 2111 ANHE_at_set (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w));
1453 2113
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 2115}
1456 2116
1457void 2117void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 2119{
1460 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1462 return; 2122 return;
1463 2123
2124 {
2125 int active = ev_active (w);
2126
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 2128
1466 if (expect_true (((W)w)->active < periodiccnt--)) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
1467 { 2130 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2132 adjustheap (periodics, periodiccnt, active);
1470 } 2133 }
2134
2135 --periodiccnt;
2136 }
1471 2137
1472 ev_stop (EV_A_ (W)w); 2138 ev_stop (EV_A_ (W)w);
1473} 2139}
1474 2140
1475void 2141void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 2142ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 2143{
1478 /* TODO: use adjustheap and recalculation */ 2144 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 2145 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 2146 ev_periodic_start (EV_A_ w);
1481} 2147}
1482#endif 2148#endif
1483 2149
1484void 2150#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 2151# define SA_RESTART 0
2152#endif
2153
2154void noinline
2155ev_signal_start (EV_P_ ev_signal *w)
1486{ 2156{
2157#if EV_MULTIPLICITY
2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif
1487 if (expect_false (ev_is_active (w))) 2160 if (expect_false (ev_is_active (w)))
1488 return; 2161 return;
1489 2162
1490 ev_start (EV_A_ (W)w, ++idlecnt);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1492 idles [idlecnt - 1] = w;
1493}
1494
1495void
1496ev_idle_stop (EV_P_ struct ev_idle *w)
1497{
1498 ev_clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w)))
1500 return;
1501
1502 idles [((W)w)->active - 1] = idles [--idlecnt];
1503 ev_stop (EV_A_ (W)w);
1504}
1505
1506void
1507ev_prepare_start (EV_P_ struct ev_prepare *w)
1508{
1509 if (expect_false (ev_is_active (w)))
1510 return;
1511
1512 ev_start (EV_A_ (W)w, ++preparecnt);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1514 prepares [preparecnt - 1] = w;
1515}
1516
1517void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w)
1519{
1520 ev_clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w)))
1522 return;
1523
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1525 ev_stop (EV_A_ (W)w);
1526}
1527
1528void
1529ev_check_start (EV_P_ struct ev_check *w)
1530{
1531 if (expect_false (ev_is_active (w)))
1532 return;
1533
1534 ev_start (EV_A_ (W)w, ++checkcnt);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1536 checks [checkcnt - 1] = w;
1537}
1538
1539void
1540ev_check_stop (EV_P_ struct ev_check *w)
1541{
1542 ev_clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w)))
1544 return;
1545
1546 checks [((W)w)->active - 1] = checks [--checkcnt];
1547 ev_stop (EV_A_ (W)w);
1548}
1549
1550#ifndef SA_RESTART
1551# define SA_RESTART 0
1552#endif
1553
1554void
1555ev_signal_start (EV_P_ struct ev_signal *w)
1556{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w)))
1561 return;
1562
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1564 2164
2165 evpipe_init (EV_A);
2166
2167 {
2168#ifndef _WIN32
2169 sigset_t full, prev;
2170 sigfillset (&full);
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2175
2176#ifndef _WIN32
2177 sigprocmask (SIG_SETMASK, &prev, 0);
2178#endif
2179 }
2180
1565 ev_start (EV_A_ (W)w, 1); 2181 ev_start (EV_A_ (W)w, 1);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2182 wlist_add (&signals [w->signum - 1].head, (WL)w);
1568 2183
1569 if (!((WL)w)->next) 2184 if (!((WL)w)->next)
1570 { 2185 {
1571#if _WIN32 2186#if _WIN32
1572 signal (w->signum, sighandler); 2187 signal (w->signum, ev_sighandler);
1573#else 2188#else
1574 struct sigaction sa; 2189 struct sigaction sa;
1575 sa.sa_handler = sighandler; 2190 sa.sa_handler = ev_sighandler;
1576 sigfillset (&sa.sa_mask); 2191 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0); 2193 sigaction (w->signum, &sa, 0);
1579#endif 2194#endif
1580 } 2195 }
1581} 2196}
1582 2197
1583void 2198void noinline
1584ev_signal_stop (EV_P_ struct ev_signal *w) 2199ev_signal_stop (EV_P_ ev_signal *w)
1585{ 2200{
1586 ev_clear_pending (EV_A_ (W)w); 2201 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 2202 if (expect_false (!ev_is_active (w)))
1588 return; 2203 return;
1589 2204
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2205 wlist_del (&signals [w->signum - 1].head, (WL)w);
1591 ev_stop (EV_A_ (W)w); 2206 ev_stop (EV_A_ (W)w);
1592 2207
1593 if (!signals [w->signum - 1].head) 2208 if (!signals [w->signum - 1].head)
1594 signal (w->signum, SIG_DFL); 2209 signal (w->signum, SIG_DFL);
1595} 2210}
1596 2211
1597void 2212void
1598ev_child_start (EV_P_ struct ev_child *w) 2213ev_child_start (EV_P_ ev_child *w)
1599{ 2214{
1600#if EV_MULTIPLICITY 2215#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 2217#endif
1603 if (expect_false (ev_is_active (w))) 2218 if (expect_false (ev_is_active (w)))
1604 return; 2219 return;
1605 2220
1606 ev_start (EV_A_ (W)w, 1); 2221 ev_start (EV_A_ (W)w, 1);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1608} 2223}
1609 2224
1610void 2225void
1611ev_child_stop (EV_P_ struct ev_child *w) 2226ev_child_stop (EV_P_ ev_child *w)
1612{ 2227{
1613 ev_clear_pending (EV_A_ (W)w); 2228 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 2229 if (expect_false (!ev_is_active (w)))
1615 return; 2230 return;
1616 2231
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618 ev_stop (EV_A_ (W)w); 2233 ev_stop (EV_A_ (W)w);
1619} 2234}
1620 2235
2236#if EV_STAT_ENABLE
2237
2238# ifdef _WIN32
2239# undef lstat
2240# define lstat(a,b) _stati64 (a,b)
2241# endif
2242
2243#define DEF_STAT_INTERVAL 5.0074891
2244#define MIN_STAT_INTERVAL 0.1074891
2245
2246static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2247
2248#if EV_USE_INOTIFY
2249# define EV_INOTIFY_BUFSIZE 8192
2250
2251static void noinline
2252infy_add (EV_P_ ev_stat *w)
2253{
2254 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2255
2256 if (w->wd < 0)
2257 {
2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2259
2260 /* monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */
2262 /* but an efficiency issue only */
2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2264 {
2265 char path [4096];
2266 strcpy (path, w->path);
2267
2268 do
2269 {
2270 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2271 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2272
2273 char *pend = strrchr (path, '/');
2274
2275 if (!pend)
2276 break; /* whoops, no '/', complain to your admin */
2277
2278 *pend = 0;
2279 w->wd = inotify_add_watch (fs_fd, path, mask);
2280 }
2281 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2282 }
2283 }
2284 else
2285 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2286
2287 if (w->wd >= 0)
2288 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2289}
2290
2291static void noinline
2292infy_del (EV_P_ ev_stat *w)
2293{
2294 int slot;
2295 int wd = w->wd;
2296
2297 if (wd < 0)
2298 return;
2299
2300 w->wd = -2;
2301 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2302 wlist_del (&fs_hash [slot].head, (WL)w);
2303
2304 /* remove this watcher, if others are watching it, they will rearm */
2305 inotify_rm_watch (fs_fd, wd);
2306}
2307
2308static void noinline
2309infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2310{
2311 if (slot < 0)
2312 /* overflow, need to check for all hahs slots */
2313 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2314 infy_wd (EV_A_ slot, wd, ev);
2315 else
2316 {
2317 WL w_;
2318
2319 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2320 {
2321 ev_stat *w = (ev_stat *)w_;
2322 w_ = w_->next; /* lets us remove this watcher and all before it */
2323
2324 if (w->wd == wd || wd == -1)
2325 {
2326 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2327 {
2328 w->wd = -1;
2329 infy_add (EV_A_ w); /* re-add, no matter what */
2330 }
2331
2332 stat_timer_cb (EV_A_ &w->timer, 0);
2333 }
2334 }
2335 }
2336}
2337
2338static void
2339infy_cb (EV_P_ ev_io *w, int revents)
2340{
2341 char buf [EV_INOTIFY_BUFSIZE];
2342 struct inotify_event *ev = (struct inotify_event *)buf;
2343 int ofs;
2344 int len = read (fs_fd, buf, sizeof (buf));
2345
2346 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2347 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2348}
2349
2350void inline_size
2351infy_init (EV_P)
2352{
2353 if (fs_fd != -2)
2354 return;
2355
2356 fs_fd = inotify_init ();
2357
2358 if (fs_fd >= 0)
2359 {
2360 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2361 ev_set_priority (&fs_w, EV_MAXPRI);
2362 ev_io_start (EV_A_ &fs_w);
2363 }
2364}
2365
2366void inline_size
2367infy_fork (EV_P)
2368{
2369 int slot;
2370
2371 if (fs_fd < 0)
2372 return;
2373
2374 close (fs_fd);
2375 fs_fd = inotify_init ();
2376
2377 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2378 {
2379 WL w_ = fs_hash [slot].head;
2380 fs_hash [slot].head = 0;
2381
2382 while (w_)
2383 {
2384 ev_stat *w = (ev_stat *)w_;
2385 w_ = w_->next; /* lets us add this watcher */
2386
2387 w->wd = -1;
2388
2389 if (fs_fd >= 0)
2390 infy_add (EV_A_ w); /* re-add, no matter what */
2391 else
2392 ev_timer_start (EV_A_ &w->timer);
2393 }
2394
2395 }
2396}
2397
2398#endif
2399
2400void
2401ev_stat_stat (EV_P_ ev_stat *w)
2402{
2403 if (lstat (w->path, &w->attr) < 0)
2404 w->attr.st_nlink = 0;
2405 else if (!w->attr.st_nlink)
2406 w->attr.st_nlink = 1;
2407}
2408
2409static void noinline
2410stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2411{
2412 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2413
2414 /* we copy this here each the time so that */
2415 /* prev has the old value when the callback gets invoked */
2416 w->prev = w->attr;
2417 ev_stat_stat (EV_A_ w);
2418
2419 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2420 if (
2421 w->prev.st_dev != w->attr.st_dev
2422 || w->prev.st_ino != w->attr.st_ino
2423 || w->prev.st_mode != w->attr.st_mode
2424 || w->prev.st_nlink != w->attr.st_nlink
2425 || w->prev.st_uid != w->attr.st_uid
2426 || w->prev.st_gid != w->attr.st_gid
2427 || w->prev.st_rdev != w->attr.st_rdev
2428 || w->prev.st_size != w->attr.st_size
2429 || w->prev.st_atime != w->attr.st_atime
2430 || w->prev.st_mtime != w->attr.st_mtime
2431 || w->prev.st_ctime != w->attr.st_ctime
2432 ) {
2433 #if EV_USE_INOTIFY
2434 infy_del (EV_A_ w);
2435 infy_add (EV_A_ w);
2436 ev_stat_stat (EV_A_ w); /* avoid race... */
2437 #endif
2438
2439 ev_feed_event (EV_A_ w, EV_STAT);
2440 }
2441}
2442
2443void
2444ev_stat_start (EV_P_ ev_stat *w)
2445{
2446 if (expect_false (ev_is_active (w)))
2447 return;
2448
2449 /* since we use memcmp, we need to clear any padding data etc. */
2450 memset (&w->prev, 0, sizeof (ev_statdata));
2451 memset (&w->attr, 0, sizeof (ev_statdata));
2452
2453 ev_stat_stat (EV_A_ w);
2454
2455 if (w->interval < MIN_STAT_INTERVAL)
2456 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2457
2458 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2459 ev_set_priority (&w->timer, ev_priority (w));
2460
2461#if EV_USE_INOTIFY
2462 infy_init (EV_A);
2463
2464 if (fs_fd >= 0)
2465 infy_add (EV_A_ w);
2466 else
2467#endif
2468 ev_timer_start (EV_A_ &w->timer);
2469
2470 ev_start (EV_A_ (W)w, 1);
2471}
2472
2473void
2474ev_stat_stop (EV_P_ ev_stat *w)
2475{
2476 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w)))
2478 return;
2479
2480#if EV_USE_INOTIFY
2481 infy_del (EV_A_ w);
2482#endif
2483 ev_timer_stop (EV_A_ &w->timer);
2484
2485 ev_stop (EV_A_ (W)w);
2486}
2487#endif
2488
2489#if EV_IDLE_ENABLE
2490void
2491ev_idle_start (EV_P_ ev_idle *w)
2492{
2493 if (expect_false (ev_is_active (w)))
2494 return;
2495
2496 pri_adjust (EV_A_ (W)w);
2497
2498 {
2499 int active = ++idlecnt [ABSPRI (w)];
2500
2501 ++idleall;
2502 ev_start (EV_A_ (W)w, active);
2503
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2505 idles [ABSPRI (w)][active - 1] = w;
2506 }
2507}
2508
2509void
2510ev_idle_stop (EV_P_ ev_idle *w)
2511{
2512 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w)))
2514 return;
2515
2516 {
2517 int active = ev_active (w);
2518
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521
2522 ev_stop (EV_A_ (W)w);
2523 --idleall;
2524 }
2525}
2526#endif
2527
2528void
2529ev_prepare_start (EV_P_ ev_prepare *w)
2530{
2531 if (expect_false (ev_is_active (w)))
2532 return;
2533
2534 ev_start (EV_A_ (W)w, ++preparecnt);
2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2536 prepares [preparecnt - 1] = w;
2537}
2538
2539void
2540ev_prepare_stop (EV_P_ ev_prepare *w)
2541{
2542 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w)))
2544 return;
2545
2546 {
2547 int active = ev_active (w);
2548
2549 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active;
2551 }
2552
2553 ev_stop (EV_A_ (W)w);
2554}
2555
2556void
2557ev_check_start (EV_P_ ev_check *w)
2558{
2559 if (expect_false (ev_is_active (w)))
2560 return;
2561
2562 ev_start (EV_A_ (W)w, ++checkcnt);
2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2564 checks [checkcnt - 1] = w;
2565}
2566
2567void
2568ev_check_stop (EV_P_ ev_check *w)
2569{
2570 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w)))
2572 return;
2573
2574 {
2575 int active = ev_active (w);
2576
2577 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active;
2579 }
2580
2581 ev_stop (EV_A_ (W)w);
2582}
2583
2584#if EV_EMBED_ENABLE
2585void noinline
2586ev_embed_sweep (EV_P_ ev_embed *w)
2587{
2588 ev_loop (w->other, EVLOOP_NONBLOCK);
2589}
2590
2591static void
2592embed_io_cb (EV_P_ ev_io *io, int revents)
2593{
2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2595
2596 if (ev_cb (w))
2597 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2598 else
2599 ev_loop (w->other, EVLOOP_NONBLOCK);
2600}
2601
2602static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606
2607 {
2608 struct ev_loop *loop = w->other;
2609
2610 while (fdchangecnt)
2611 {
2612 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2614 }
2615 }
2616}
2617
2618#if 0
2619static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2621{
2622 ev_idle_stop (EV_A_ idle);
2623}
2624#endif
2625
2626void
2627ev_embed_start (EV_P_ ev_embed *w)
2628{
2629 if (expect_false (ev_is_active (w)))
2630 return;
2631
2632 {
2633 struct ev_loop *loop = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 }
2637
2638 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io);
2640
2641 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare);
2644
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646
2647 ev_start (EV_A_ (W)w, 1);
2648}
2649
2650void
2651ev_embed_stop (EV_P_ ev_embed *w)
2652{
2653 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w)))
2655 return;
2656
2657 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare);
2659
2660 ev_stop (EV_A_ (W)w);
2661}
2662#endif
2663
2664#if EV_FORK_ENABLE
2665void
2666ev_fork_start (EV_P_ ev_fork *w)
2667{
2668 if (expect_false (ev_is_active (w)))
2669 return;
2670
2671 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2673 forks [forkcnt - 1] = w;
2674}
2675
2676void
2677ev_fork_stop (EV_P_ ev_fork *w)
2678{
2679 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w)))
2681 return;
2682
2683 {
2684 int active = ev_active (w);
2685
2686 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active;
2688 }
2689
2690 ev_stop (EV_A_ (W)w);
2691}
2692#endif
2693
2694#if EV_ASYNC_ENABLE
2695void
2696ev_async_start (EV_P_ ev_async *w)
2697{
2698 if (expect_false (ev_is_active (w)))
2699 return;
2700
2701 evpipe_init (EV_A);
2702
2703 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w;
2706}
2707
2708void
2709ev_async_stop (EV_P_ ev_async *w)
2710{
2711 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w)))
2713 return;
2714
2715 {
2716 int active = ev_active (w);
2717
2718 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active;
2720 }
2721
2722 ev_stop (EV_A_ (W)w);
2723}
2724
2725void
2726ev_async_send (EV_P_ ev_async *w)
2727{
2728 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync);
2730}
2731#endif
2732
1621/*****************************************************************************/ 2733/*****************************************************************************/
1622 2734
1623struct ev_once 2735struct ev_once
1624{ 2736{
1625 struct ev_io io; 2737 ev_io io;
1626 struct ev_timer to; 2738 ev_timer to;
1627 void (*cb)(int revents, void *arg); 2739 void (*cb)(int revents, void *arg);
1628 void *arg; 2740 void *arg;
1629}; 2741};
1630 2742
1631static void 2743static void
1640 2752
1641 cb (revents, arg); 2753 cb (revents, arg);
1642} 2754}
1643 2755
1644static void 2756static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 2757once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 2758{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2759 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1648} 2760}
1649 2761
1650static void 2762static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 2763once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 2764{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2765 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1654} 2766}
1655 2767
1656void 2768void
1680 ev_timer_set (&once->to, timeout, 0.); 2792 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 2793 ev_timer_start (EV_A_ &once->to);
1682 } 2794 }
1683} 2795}
1684 2796
2797#if EV_MULTIPLICITY
2798 #include "ev_wrap.h"
2799#endif
2800
1685#ifdef __cplusplus 2801#ifdef __cplusplus
1686} 2802}
1687#endif 2803#endif
1688 2804

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines