ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.253 by root, Sat May 31 03:13:27 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
52# endif 65# endif
53# endif 66# endif
54 67
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
57# else 71# else
58# define EV_USE_SELECT 0 72# define EV_USE_NANOSLEEP 0
73# endif
59# endif 74# endif
60 75
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
62# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
63# else 79# else
64# define EV_USE_POLL 0 80# define EV_USE_SELECT 0
81# endif
65# endif 82# endif
66 83
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
68# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
69# else 87# else
70# define EV_USE_EPOLL 0 88# define EV_USE_POLL 0
89# endif
71# endif 90# endif
72 91
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
74# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
75# else 95# else
76# define EV_USE_KQUEUE 0 96# define EV_USE_EPOLL 0
97# endif
77# endif 98# endif
78 99
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
80# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
81# else 103# else
82# define EV_USE_PORT 0 104# define EV_USE_KQUEUE 0
105# endif
83# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
84 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
85#endif 132#endif
86 133
87#include <math.h> 134#include <math.h>
88#include <stdlib.h> 135#include <stdlib.h>
89#include <fcntl.h> 136#include <fcntl.h>
96#include <sys/types.h> 143#include <sys/types.h>
97#include <time.h> 144#include <time.h>
98 145
99#include <signal.h> 146#include <signal.h>
100 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
101#ifndef _WIN32 154#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 155# include <sys/time.h>
104# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
105#else 158#else
106# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 160# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
110# endif 163# endif
111#endif 164#endif
112 165
113/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
114 167
115#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
116# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
117#endif 174#endif
118 175
119#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
178#endif
179
180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
184# define EV_USE_NANOSLEEP 0
185# endif
121#endif 186#endif
122 187
123#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
125#endif 190#endif
131# define EV_USE_POLL 1 196# define EV_USE_POLL 1
132# endif 197# endif
133#endif 198#endif
134 199
135#ifndef EV_USE_EPOLL 200#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1
203# else
136# define EV_USE_EPOLL 0 204# define EV_USE_EPOLL 0
205# endif
137#endif 206#endif
138 207
139#ifndef EV_USE_KQUEUE 208#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 209# define EV_USE_KQUEUE 0
141#endif 210#endif
142 211
143#ifndef EV_USE_PORT 212#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 213# define EV_USE_PORT 0
145#endif 214#endif
146 215
147/**/ 216#ifndef EV_USE_INOTIFY
148 217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
149/* darwin simply cannot be helped */ 218# define EV_USE_INOTIFY 1
150#ifdef __APPLE__ 219# else
151# undef EV_USE_POLL 220# define EV_USE_INOTIFY 0
152# undef EV_USE_KQUEUE
153#endif 221# endif
222#endif
223
224#ifndef EV_PID_HASHSIZE
225# if EV_MINIMAL
226# define EV_PID_HASHSIZE 1
227# else
228# define EV_PID_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_INOTIFY_HASHSIZE
233# if EV_MINIMAL
234# define EV_INOTIFY_HASHSIZE 1
235# else
236# define EV_INOTIFY_HASHSIZE 16
237# endif
238#endif
239
240#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1
243# else
244# define EV_USE_EVENTFD 0
245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
154 267
155#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 269# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 270# define EV_USE_MONOTONIC 0
158#endif 271#endif
160#ifndef CLOCK_REALTIME 273#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 274# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 275# define EV_USE_REALTIME 0
163#endif 276#endif
164 277
278#if !EV_STAT_ENABLE
279# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0
281#endif
282
283#if !EV_USE_NANOSLEEP
284# ifndef _WIN32
285# include <sys/select.h>
286# endif
287#endif
288
289#if EV_USE_INOTIFY
290# include <sys/inotify.h>
291#endif
292
165#if EV_SELECT_IS_WINSOCKET 293#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 294# include <winsock.h>
167#endif 295#endif
168 296
297#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
302# endif
303int eventfd (unsigned int initval, int flags);
304# ifdef __cplusplus
305}
306# endif
307#endif
308
169/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
316
317/*
318 * This is used to avoid floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
170 326
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
175 330
176#ifdef EV_H
177# include EV_H
178#else
179# include "ev.h"
180#endif
181
182#if __GNUC__ >= 3 331#if __GNUC__ >= 4
183# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
184# define inline static inline 333# define noinline __attribute__ ((noinline))
185#else 334#else
186# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
187# define inline static 336# define noinline
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
338# define inline
339# endif
188#endif 340#endif
189 341
190#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 343#define expect_true(expr) expect ((expr) != 0, 1)
344#define inline_size static inline
345
346#if EV_MINIMAL
347# define inline_speed static noinline
348#else
349# define inline_speed static inline
350#endif
192 351
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
195 354
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 355#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 356#define EMPTY2(a,b) /* used to suppress some warnings */
198 357
199typedef struct ev_watcher *W; 358typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
202 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
365#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
369#endif
204 370
205#ifdef _WIN32 371#ifdef _WIN32
206# include "ev_win32.c" 372# include "ev_win32.c"
207#endif 373#endif
208 374
209/*****************************************************************************/ 375/*****************************************************************************/
210 376
211static void (*syserr_cb)(const char *msg); 377static void (*syserr_cb)(const char *msg);
212 378
379void
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 380ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 381{
215 syserr_cb = cb; 382 syserr_cb = cb;
216} 383}
217 384
218static void 385static void noinline
219syserr (const char *msg) 386syserr (const char *msg)
220{ 387{
221 if (!msg) 388 if (!msg)
222 msg = "(libev) system error"; 389 msg = "(libev) system error";
223 390
228 perror (msg); 395 perror (msg);
229 abort (); 396 abort ();
230 } 397 }
231} 398}
232 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
233static void *(*alloc)(void *ptr, long size); 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 416
417void
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 419{
237 alloc = cb; 420 alloc = cb;
238} 421}
239 422
240static void * 423inline_speed void *
241ev_realloc (void *ptr, long size) 424ev_realloc (void *ptr, long size)
242{ 425{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 426 ptr = alloc (ptr, size);
244 427
245 if (!ptr && size) 428 if (!ptr && size)
246 { 429 {
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
248 abort (); 431 abort ();
269typedef struct 452typedef struct
270{ 453{
271 W w; 454 W w;
272 int events; 455 int events;
273} ANPENDING; 456} ANPENDING;
457
458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
460typedef struct
461{
462 WL head;
463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
482#endif
274 483
275#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
276 485
277 struct ev_loop 486 struct ev_loop
278 { 487 {
312 gettimeofday (&tv, 0); 521 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 522 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif 523#endif
315} 524}
316 525
317inline ev_tstamp 526ev_tstamp inline_size
318get_clock (void) 527get_clock (void)
319{ 528{
320#if EV_USE_MONOTONIC 529#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 530 if (expect_true (have_monotonic))
322 { 531 {
335{ 544{
336 return ev_rt_now; 545 return ev_rt_now;
337} 546}
338#endif 547#endif
339 548
340#define array_roundsize(type,n) (((n) | 4) & ~3) 549void
550ev_sleep (ev_tstamp delay)
551{
552 if (delay > 0.)
553 {
554#if EV_USE_NANOSLEEP
555 struct timespec ts;
556
557 ts.tv_sec = (time_t)delay;
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0);
561#elif defined(_WIN32)
562 Sleep ((unsigned long)(delay * 1e3));
563#else
564 struct timeval tv;
565
566 tv.tv_sec = (time_t)delay;
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
568
569 select (0, 0, 0, 0, &tv);
570#endif
571 }
572}
573
574/*****************************************************************************/
575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
578int inline_size
579array_nextsize (int elem, int cur, int cnt)
580{
581 int ncur = cur + 1;
582
583 do
584 ncur <<= 1;
585 while (cnt > ncur);
586
587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
589 {
590 ncur *= elem;
591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
592 ncur = ncur - sizeof (void *) * 4;
593 ncur /= elem;
594 }
595
596 return ncur;
597}
598
599static noinline void *
600array_realloc (int elem, void *base, int *cur, int cnt)
601{
602 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur);
604}
341 605
342#define array_needsize(type,base,cur,cnt,init) \ 606#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 607 if (expect_false ((cnt) > (cur))) \
344 { \ 608 { \
345 int newcnt = cur; \ 609 int ocur_ = (cur); \
346 do \ 610 (base) = (type *)array_realloc \
347 { \ 611 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 612 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 613 }
356 614
615#if 0
357#define array_slim(type,stem) \ 616#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 617 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 618 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 619 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 620 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 622 }
623#endif
364 624
365#define array_free(stem, idx) \ 625#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
367 627
368/*****************************************************************************/ 628/*****************************************************************************/
369 629
370static void 630void noinline
631ev_feed_event (EV_P_ void *w, int revents)
632{
633 W w_ = (W)w;
634 int pri = ABSPRI (w_);
635
636 if (expect_false (w_->pending))
637 pendings [pri][w_->pending - 1].events |= revents;
638 else
639 {
640 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents;
644 }
645}
646
647void inline_speed
648queue_events (EV_P_ W *events, int eventcnt, int type)
649{
650 int i;
651
652 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type);
654}
655
656/*****************************************************************************/
657
658void inline_size
371anfds_init (ANFD *base, int count) 659anfds_init (ANFD *base, int count)
372{ 660{
373 while (count--) 661 while (count--)
374 { 662 {
375 base->head = 0; 663 base->head = 0;
378 666
379 ++base; 667 ++base;
380 } 668 }
381} 669}
382 670
383void 671void inline_speed
384ev_feed_event (EV_P_ void *w, int revents)
385{
386 W w_ = (W)w;
387
388 if (expect_false (w_->pending))
389 {
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
391 return;
392 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398}
399
400static void
401queue_events (EV_P_ W *events, int eventcnt, int type)
402{
403 int i;
404
405 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type);
407}
408
409inline void
410fd_event (EV_P_ int fd, int revents) 672fd_event (EV_P_ int fd, int revents)
411{ 673{
412 ANFD *anfd = anfds + fd; 674 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 675 ev_io *w;
414 676
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 677 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 678 {
417 int ev = w->events & revents; 679 int ev = w->events & revents;
418 680
419 if (ev) 681 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 682 ev_feed_event (EV_A_ (W)w, ev);
422} 684}
423 685
424void 686void
425ev_feed_fd_event (EV_P_ int fd, int revents) 687ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 688{
689 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 690 fd_event (EV_A_ fd, revents);
428} 691}
429 692
430/*****************************************************************************/ 693void inline_size
431
432inline void
433fd_reify (EV_P) 694fd_reify (EV_P)
434{ 695{
435 int i; 696 int i;
436 697
437 for (i = 0; i < fdchangecnt; ++i) 698 for (i = 0; i < fdchangecnt; ++i)
438 { 699 {
439 int fd = fdchanges [i]; 700 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 701 ANFD *anfd = anfds + fd;
441 struct ev_io *w; 702 ev_io *w;
442 703
443 int events = 0; 704 unsigned char events = 0;
444 705
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
446 events |= w->events; 707 events |= (unsigned char)w->events;
447 708
448#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
449 if (events) 710 if (events)
450 { 711 {
451 unsigned long argp; 712 unsigned long argp;
713 #ifdef EV_FD_TO_WIN32_HANDLE
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
715 #else
452 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
717 #endif
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
454 } 719 }
455#endif 720#endif
456 721
722 {
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
457 anfd->reify = 0; 726 anfd->reify = 0;
458
459 method_modify (EV_A_ fd, anfd->events, events);
460 anfd->events = events; 727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events);
731 }
461 } 732 }
462 733
463 fdchangecnt = 0; 734 fdchangecnt = 0;
464} 735}
465 736
466static void 737void inline_size
467fd_change (EV_P_ int fd) 738fd_change (EV_P_ int fd, int flags)
468{ 739{
469 if (expect_false (anfds [fd].reify)) 740 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 741 anfds [fd].reify |= flags;
473 742
743 if (expect_true (!reify))
744 {
474 ++fdchangecnt; 745 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 747 fdchanges [fdchangecnt - 1] = fd;
748 }
477} 749}
478 750
479static void 751void inline_speed
480fd_kill (EV_P_ int fd) 752fd_kill (EV_P_ int fd)
481{ 753{
482 struct ev_io *w; 754 ev_io *w;
483 755
484 while ((w = (struct ev_io *)anfds [fd].head)) 756 while ((w = (ev_io *)anfds [fd].head))
485 { 757 {
486 ev_io_stop (EV_A_ w); 758 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 760 }
489} 761}
490 762
491inline int 763int inline_size
492fd_valid (int fd) 764fd_valid (int fd)
493{ 765{
494#ifdef _WIN32 766#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 767 return _get_osfhandle (fd) != -1;
496#else 768#else
497 return fcntl (fd, F_GETFD) != -1; 769 return fcntl (fd, F_GETFD) != -1;
498#endif 770#endif
499} 771}
500 772
501/* called on EBADF to verify fds */ 773/* called on EBADF to verify fds */
502static void 774static void noinline
503fd_ebadf (EV_P) 775fd_ebadf (EV_P)
504{ 776{
505 int fd; 777 int fd;
506 778
507 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) == -1 && errno == EBADF)
510 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
511} 783}
512 784
513/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 786static void noinline
515fd_enomem (EV_P) 787fd_enomem (EV_P)
516{ 788{
517 int fd; 789 int fd;
518 790
519 for (fd = anfdmax; fd--; ) 791 for (fd = anfdmax; fd--; )
522 fd_kill (EV_A_ fd); 794 fd_kill (EV_A_ fd);
523 return; 795 return;
524 } 796 }
525} 797}
526 798
527/* usually called after fork if method needs to re-arm all fds from scratch */ 799/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 800static void noinline
529fd_rearm_all (EV_P) 801fd_rearm_all (EV_P)
530{ 802{
531 int fd; 803 int fd;
532 804
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 805 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 806 if (anfds [fd].events)
536 { 807 {
537 anfds [fd].events = 0; 808 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 809 fd_change (EV_A_ fd, EV_IOFDSET | 1);
539 } 810 }
540} 811}
541 812
542/*****************************************************************************/ 813/*****************************************************************************/
543 814
544static void 815/*
545upheap (WT *heap, int k) 816 * the heap functions want a real array index. array index 0 uis guaranteed to not
546{ 817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
547 WT w = heap [k]; 818 * the branching factor of the d-tree.
819 */
548 820
549 while (k && heap [k >> 1]->at > w->at) 821/*
550 { 822 * at the moment we allow libev the luxury of two heaps,
551 heap [k] = heap [k >> 1]; 823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
552 ((W)heap [k])->active = k + 1; 824 * which is more cache-efficient.
553 k >>= 1; 825 * the difference is about 5% with 50000+ watchers.
554 } 826 */
827#if EV_USE_4HEAP
555 828
556 heap [k] = w; 829#define DHEAP 4
557 ((W)heap [k])->active = k + 1; 830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
558 833
559} 834/* away from the root */
560 835void inline_speed
561static void
562downheap (WT *heap, int N, int k) 836downheap (ANHE *heap, int N, int k)
563{ 837{
564 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
565 840
566 while (k < (N >> 1)) 841 for (;;)
567 { 842 {
568 int j = k << 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
569 846
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
571 ++j; 849 {
572 850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
573 if (w->at <= heap [j]->at) 851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
574 break; 863 break;
575 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
576 heap [k] = heap [j]; 903 heap [k] = heap [c];
577 ((W)heap [k])->active = k + 1; 904 ev_active (ANHE_w (heap [k])) = k;
905
578 k = j; 906 k = c;
579 } 907 }
580 908
581 heap [k] = w; 909 heap [k] = he;
582 ((W)heap [k])->active = k + 1; 910 ev_active (ANHE_w (he)) = k;
583} 911}
912#endif
584 913
585inline void 914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
927 heap [k] = heap [p];
928 ev_active (ANHE_w (heap [k])) = k;
929 k = p;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936void inline_size
586adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
587{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
588 upheap (heap, k); 940 upheap (heap, k);
941 else
589 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
590} 955}
591 956
592/*****************************************************************************/ 957/*****************************************************************************/
593 958
594typedef struct 959typedef struct
595{ 960{
596 WL head; 961 WL head;
597 sig_atomic_t volatile gotsig; 962 EV_ATOMIC_T gotsig;
598} ANSIG; 963} ANSIG;
599 964
600static ANSIG *signals; 965static ANSIG *signals;
601static int signalmax; 966static int signalmax;
602 967
603static int sigpipe [2]; 968static EV_ATOMIC_T gotsig;
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606 969
607static void 970void inline_size
608signals_init (ANSIG *base, int count) 971signals_init (ANSIG *base, int count)
609{ 972{
610 while (count--) 973 while (count--)
611 { 974 {
612 base->head = 0; 975 base->head = 0;
614 977
615 ++base; 978 ++base;
616 } 979 }
617} 980}
618 981
619static void 982/*****************************************************************************/
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625 983
626 signals [signum - 1].gotsig = 1; 984void inline_speed
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 985fd_intern (int fd)
672{ 986{
673#ifdef _WIN32 987#ifdef _WIN32
674 int arg = 1; 988 int arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 993#endif
680} 994}
681 995
996static void noinline
997evpipe_init (EV_P)
998{
999 if (!ev_is_active (&pipeev))
1000 {
1001#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0)
1003 {
1004 evpipe [0] = -1;
1005 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 }
1008 else
1009#endif
1010 {
1011 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe");
1013
1014 fd_intern (evpipe [0]);
1015 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ);
1017 }
1018
1019 ev_io_start (EV_A_ &pipeev);
1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 {
1029 int old_errno = errno; /* save errno because write might clobber it */
1030
1031 *flag = 1;
1032
1033#if EV_USE_EVENTFD
1034 if (evfd >= 0)
1035 {
1036 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t));
1038 }
1039 else
1040#endif
1041 write (evpipe [1], &old_errno, 1);
1042
1043 errno = old_errno;
1044 }
1045}
1046
682static void 1047static void
683siginit (EV_P) 1048pipecb (EV_P_ ev_io *iow, int revents)
684{ 1049{
685 fd_intern (sigpipe [0]); 1050#if EV_USE_EVENTFD
686 fd_intern (sigpipe [1]); 1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy;
1060 read (evpipe [0], &dummy, 1);
1061 }
687 1062
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1063 if (gotsig && ev_is_default_loop (EV_A))
689 ev_io_start (EV_A_ &sigev); 1064 {
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1065 int signum;
1066 gotsig = 0;
1067
1068 for (signum = signalmax; signum--; )
1069 if (signals [signum].gotsig)
1070 ev_feed_signal_event (EV_A_ signum + 1);
1071 }
1072
1073#if EV_ASYNC_ENABLE
1074 if (gotasync)
1075 {
1076 int i;
1077 gotasync = 0;
1078
1079 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent)
1081 {
1082 asyncs [i]->sent = 0;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 }
1085 }
1086#endif
691} 1087}
692 1088
693/*****************************************************************************/ 1089/*****************************************************************************/
694 1090
695static struct ev_child *childs [PID_HASHSIZE]; 1091static void
1092ev_sighandler (int signum)
1093{
1094#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct;
1096#endif
1097
1098#if _WIN32
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return;
1119
1120 signals [signum].gotsig = 0;
1121
1122 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124}
1125
1126/*****************************************************************************/
1127
1128static WL childs [EV_PID_HASHSIZE];
696 1129
697#ifndef _WIN32 1130#ifndef _WIN32
698 1131
699static struct ev_signal childev; 1132static ev_signal childev;
1133
1134#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0
1136#endif
1137
1138void inline_speed
1139child_reap (EV_P_ int chain, int pid, int status)
1140{
1141 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143
1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 {
1146 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1)))
1148 {
1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1150 w->rpid = pid;
1151 w->rstatus = status;
1152 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1153 }
1154 }
1155}
700 1156
701#ifndef WCONTINUED 1157#ifndef WCONTINUED
702# define WCONTINUED 0 1158# define WCONTINUED 0
703#endif 1159#endif
704 1160
705static void 1161static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 1162childcb (EV_P_ ev_signal *sw, int revents)
722{ 1163{
723 int pid, status; 1164 int pid, status;
724 1165
1166 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1167 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 1168 if (!WCONTINUED
1169 || errno != EINVAL
1170 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1171 return;
1172
727 /* make sure we are called again until all childs have been reaped */ 1173 /* make sure we are called again until all children have been reaped */
1174 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 1176
730 child_reap (EV_A_ sw, pid, pid, status); 1177 child_reap (EV_A_ pid, pid, status);
1178 if (EV_PID_HASHSIZE > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 1180}
734 1181
735#endif 1182#endif
736 1183
737/*****************************************************************************/ 1184/*****************************************************************************/
763{ 1210{
764 return EV_VERSION_MINOR; 1211 return EV_VERSION_MINOR;
765} 1212}
766 1213
767/* return true if we are running with elevated privileges and should ignore env variables */ 1214/* return true if we are running with elevated privileges and should ignore env variables */
768static int 1215int inline_size
769enable_secure (void) 1216enable_secure (void)
770{ 1217{
771#ifdef _WIN32 1218#ifdef _WIN32
772 return 0; 1219 return 0;
773#else 1220#else
775 || getgid () != getegid (); 1222 || getgid () != getegid ();
776#endif 1223#endif
777} 1224}
778 1225
779unsigned int 1226unsigned int
780ev_method (EV_P) 1227ev_supported_backends (void)
781{ 1228{
782 return method; 1229 unsigned int flags = 0;
783}
784 1230
785static void 1231 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1232 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1233 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1234 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1235 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1236
1237 return flags;
1238}
1239
1240unsigned int
1241ev_recommended_backends (void)
1242{
1243 unsigned int flags = ev_supported_backends ();
1244
1245#ifndef __NetBSD__
1246 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE;
1249#endif
1250#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation
1252 flags &= ~EVBACKEND_POLL;
1253#endif
1254
1255 return flags;
1256}
1257
1258unsigned int
1259ev_embeddable_backends (void)
1260{
1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1262
1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
1268}
1269
1270unsigned int
1271ev_backend (EV_P)
1272{
1273 return backend;
1274}
1275
1276unsigned int
1277ev_loop_count (EV_P)
1278{
1279 return loop_count;
1280}
1281
1282void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1284{
1285 io_blocktime = interval;
1286}
1287
1288void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 timeout_blocktime = interval;
1292}
1293
1294static void noinline
786loop_init (EV_P_ unsigned int flags) 1295loop_init (EV_P_ unsigned int flags)
787{ 1296{
788 if (!method) 1297 if (!backend)
789 { 1298 {
790#if EV_USE_MONOTONIC 1299#if EV_USE_MONOTONIC
791 { 1300 {
792 struct timespec ts; 1301 struct timespec ts;
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
794 have_monotonic = 1; 1303 have_monotonic = 1;
795 } 1304 }
796#endif 1305#endif
797 1306
798 ev_rt_now = ev_time (); 1307 ev_rt_now = ev_time ();
799 mn_now = get_clock (); 1308 mn_now = get_clock ();
800 now_floor = mn_now; 1309 now_floor = mn_now;
801 rtmn_diff = ev_rt_now - mn_now; 1310 rtmn_diff = ev_rt_now - mn_now;
802 1311
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1312 io_blocktime = 0.;
1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif
1320
1321 /* pid check not overridable via env */
1322#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK)
1324 curpid = getpid ();
1325#endif
1326
1327 if (!(flags & EVFLAG_NOENV)
1328 && !enable_secure ()
1329 && getenv ("LIBEV_FLAGS"))
804 flags = atoi (getenv ("LIBEV_FLAGS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
805 1331
806 if (!(flags & 0x0000ffff)) 1332 if (!(flags & 0x0000ffffU))
807 flags |= 0x0000ffff; 1333 flags |= ev_recommended_backends ();
808 1334
809 method = 0;
810#if EV_USE_PORT 1335#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
812#endif 1337#endif
813#if EV_USE_KQUEUE 1338#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1339 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
815#endif 1340#endif
816#if EV_USE_EPOLL 1341#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
818#endif 1343#endif
819#if EV_USE_POLL 1344#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1345 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
821#endif 1346#endif
822#if EV_USE_SELECT 1347#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
824#endif 1349#endif
825 1350
826 ev_init (&sigev, sigcb); 1351 ev_init (&pipeev, pipecb);
827 ev_set_priority (&sigev, EV_MAXPRI); 1352 ev_set_priority (&pipeev, EV_MAXPRI);
828 } 1353 }
829} 1354}
830 1355
831static void 1356static void noinline
832loop_destroy (EV_P) 1357loop_destroy (EV_P)
833{ 1358{
834 int i; 1359 int i;
835 1360
1361 if (ev_is_active (&pipeev))
1362 {
1363 ev_ref (EV_A); /* signal watcher */
1364 ev_io_stop (EV_A_ &pipeev);
1365
1366#if EV_USE_EVENTFD
1367 if (evfd >= 0)
1368 close (evfd);
1369#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
1377
1378#if EV_USE_INOTIFY
1379 if (fs_fd >= 0)
1380 close (fs_fd);
1381#endif
1382
1383 if (backend_fd >= 0)
1384 close (backend_fd);
1385
836#if EV_USE_PORT 1386#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1387 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
838#endif 1388#endif
839#if EV_USE_KQUEUE 1389#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1390 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
841#endif 1391#endif
842#if EV_USE_EPOLL 1392#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1393 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
844#endif 1394#endif
845#if EV_USE_POLL 1395#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1396 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
847#endif 1397#endif
848#if EV_USE_SELECT 1398#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1399 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
850#endif 1400#endif
851 1401
852 for (i = NUMPRI; i--; ) 1402 for (i = NUMPRI; i--; )
1403 {
853 array_free (pending, [i]); 1404 array_free (pending, [i]);
1405#if EV_IDLE_ENABLE
1406 array_free (idle, [i]);
1407#endif
1408 }
1409
1410 ev_free (anfds); anfdmax = 0;
854 1411
855 /* have to use the microsoft-never-gets-it-right macro */ 1412 /* have to use the microsoft-never-gets-it-right macro */
856 array_free (fdchange, EMPTY0); 1413 array_free (fdchange, EMPTY);
857 array_free (timer, EMPTY0); 1414 array_free (timer, EMPTY);
858#if EV_PERIODICS 1415#if EV_PERIODIC_ENABLE
859 array_free (periodic, EMPTY0); 1416 array_free (periodic, EMPTY);
860#endif 1417#endif
1418#if EV_FORK_ENABLE
861 array_free (idle, EMPTY0); 1419 array_free (fork, EMPTY);
1420#endif
862 array_free (prepare, EMPTY0); 1421 array_free (prepare, EMPTY);
863 array_free (check, EMPTY0); 1422 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY);
1425#endif
864 1426
865 method = 0; 1427 backend = 0;
866} 1428}
867 1429
868static void 1430#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P);
1432#endif
1433
1434void inline_size
869loop_fork (EV_P) 1435loop_fork (EV_P)
870{ 1436{
871#if EV_USE_PORT 1437#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
873#endif 1439#endif
874#if EV_USE_KQUEUE 1440#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1441 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
876#endif 1442#endif
877#if EV_USE_EPOLL 1443#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1444 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
879#endif 1445#endif
1446#if EV_USE_INOTIFY
1447 infy_fork (EV_A);
1448#endif
880 1449
881 if (ev_is_active (&sigev)) 1450 if (ev_is_active (&pipeev))
882 { 1451 {
883 /* default loop */ 1452 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
884 1458
885 ev_ref (EV_A); 1459 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev); 1460 ev_io_stop (EV_A_ &pipeev);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466
1467 if (evpipe [0] >= 0)
1468 {
887 close (sigpipe [0]); 1469 close (evpipe [0]);
888 close (sigpipe [1]); 1470 close (evpipe [1]);
1471 }
889 1472
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A); 1473 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ);
894 } 1476 }
895 1477
896 postfork = 0; 1478 postfork = 0;
897} 1479}
898 1480
899#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
900struct ev_loop * 1483struct ev_loop *
901ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
902{ 1485{
903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
904 1487
905 memset (loop, 0, sizeof (struct ev_loop)); 1488 memset (loop, 0, sizeof (struct ev_loop));
906 1489
907 loop_init (EV_A_ flags); 1490 loop_init (EV_A_ flags);
908 1491
909 if (ev_method (EV_A)) 1492 if (ev_backend (EV_A))
910 return loop; 1493 return loop;
911 1494
912 return 0; 1495 return 0;
913} 1496}
914 1497
920} 1503}
921 1504
922void 1505void
923ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
924{ 1507{
925 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
926} 1509}
927 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
928#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
929 1611
930#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
931struct ev_loop * 1613struct ev_loop *
932ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
933#else 1615#else
934int 1616int
935ev_default_loop (unsigned int flags) 1617ev_default_loop (unsigned int flags)
936#endif 1618#endif
937{ 1619{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 1620 if (!ev_default_loop_ptr)
943 { 1621 {
944#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
946#else 1624#else
947 ev_default_loop_ptr = 1; 1625 ev_default_loop_ptr = 1;
948#endif 1626#endif
949 1627
950 loop_init (EV_A_ flags); 1628 loop_init (EV_A_ flags);
951 1629
952 if (ev_method (EV_A)) 1630 if (ev_backend (EV_A))
953 { 1631 {
954 siginit (EV_A);
955
956#ifndef _WIN32 1632#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 1633 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 1634 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 1635 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1636 ev_unref (EV_A); /* child watcher should not keep loop alive */
977#ifndef _WIN32 1653#ifndef _WIN32
978 ev_ref (EV_A); /* child watcher */ 1654 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev); 1655 ev_signal_stop (EV_A_ &childev);
980#endif 1656#endif
981 1657
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A); 1658 loop_destroy (EV_A);
989} 1659}
990 1660
991void 1661void
992ev_default_fork (void) 1662ev_default_fork (void)
993{ 1663{
994#if EV_MULTIPLICITY 1664#if EV_MULTIPLICITY
995 struct ev_loop *loop = ev_default_loop_ptr; 1665 struct ev_loop *loop = ev_default_loop_ptr;
996#endif 1666#endif
997 1667
998 if (method) 1668 if (backend)
999 postfork = 1; 1669 postfork = 1; /* must be in line with ev_loop_fork */
1000} 1670}
1001 1671
1002/*****************************************************************************/ 1672/*****************************************************************************/
1003 1673
1004static int 1674void
1005any_pending (EV_P) 1675ev_invoke (EV_P_ void *w, int revents)
1006{ 1676{
1007 int pri; 1677 EV_CB_INVOKE ((W)w, revents);
1008
1009 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri])
1011 return 1;
1012
1013 return 0;
1014} 1678}
1015 1679
1016inline void 1680void inline_speed
1017call_pending (EV_P) 1681call_pending (EV_P)
1018{ 1682{
1019 int pri; 1683 int pri;
1020 1684
1021 for (pri = NUMPRI; pri--; ) 1685 for (pri = NUMPRI; pri--; )
1023 { 1687 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 1689
1026 if (expect_true (p->w)) 1690 if (expect_true (p->w))
1027 { 1691 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1693
1028 p->w->pending = 0; 1694 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1030 } 1697 }
1031 } 1698 }
1032} 1699}
1033 1700
1034inline void 1701#if EV_IDLE_ENABLE
1702void inline_size
1703idle_reify (EV_P)
1704{
1705 if (expect_false (idleall))
1706 {
1707 int pri;
1708
1709 for (pri = NUMPRI; pri--; )
1710 {
1711 if (pendingcnt [pri])
1712 break;
1713
1714 if (idlecnt [pri])
1715 {
1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1717 break;
1718 }
1719 }
1720 }
1721}
1722#endif
1723
1724void inline_size
1035timers_reify (EV_P) 1725timers_reify (EV_P)
1036{ 1726{
1727 EV_FREQUENT_CHECK;
1728
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 1730 {
1039 struct ev_timer *w = timers [0]; 1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1040 1732
1041 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1042 1734
1043 /* first reschedule or stop timer */ 1735 /* first reschedule or stop timer */
1044 if (w->repeat) 1736 if (w->repeat)
1045 { 1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 1743
1048 ((WT)w)->at += w->repeat; 1744 ANHE_at_cache (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 1745 downheap (timers, timercnt, HEAP0);
1053 } 1746 }
1054 else 1747 else
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 1749
1750 EV_FREQUENT_CHECK;
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1058 } 1752 }
1059} 1753}
1060 1754
1061#if EV_PERIODICS 1755#if EV_PERIODIC_ENABLE
1062inline void 1756void inline_size
1063periodics_reify (EV_P) 1757periodics_reify (EV_P)
1064{ 1758{
1759 EV_FREQUENT_CHECK;
1760
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 1762 {
1067 struct ev_periodic *w = periodics [0]; 1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1068 1764
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 1766
1071 /* first reschedule or stop timer */ 1767 /* first reschedule or stop timer */
1072 if (w->reschedule_cb) 1768 if (w->reschedule_cb)
1073 { 1769 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1076 downheap ((WT *)periodics, periodiccnt, 0); 1775 downheap (periodics, periodiccnt, HEAP0);
1077 } 1776 }
1078 else if (w->interval) 1777 else if (w->interval)
1079 { 1778 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1082 downheap ((WT *)periodics, periodiccnt, 0); 1794 downheap (periodics, periodiccnt, HEAP0);
1083 } 1795 }
1084 else 1796 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 1798
1799 EV_FREQUENT_CHECK;
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 } 1801 }
1089} 1802}
1090 1803
1091static void 1804static void noinline
1092periodics_reschedule (EV_P) 1805periodics_reschedule (EV_P)
1093{ 1806{
1094 int i; 1807 int i;
1095 1808
1096 /* adjust periodics after time jump */ 1809 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i) 1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1098 { 1811 {
1099 struct ev_periodic *w = periodics [i]; 1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1100 1813
1101 if (w->reschedule_cb) 1814 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval) 1816 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1823}
1824#endif
1825
1826void inline_speed
1827time_update (EV_P_ ev_tstamp max_block)
1828{
1829 int i;
1830
1831#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic))
1105 } 1833 {
1834 ev_tstamp odiff = rtmn_diff;
1106 1835
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock (); 1836 mn_now = get_clock ();
1117 1837
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1839 /* interpolate in the meantime */
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1840 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 { 1841 {
1120 ev_rt_now = rtmn_diff + mn_now; 1842 ev_rt_now = rtmn_diff + mn_now;
1121 return 0; 1843 return;
1122 } 1844 }
1123 else 1845
1124 {
1125 now_floor = mn_now; 1846 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 1847 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 1848
1131inline void 1849 /* loop a few times, before making important decisions.
1132time_update (EV_P) 1850 * on the choice of "4": one iteration isn't enough,
1133{ 1851 * in case we get preempted during the calls to
1134 int i; 1852 * ev_time and get_clock. a second call is almost guaranteed
1135 1853 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 1854 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 1855 * in the unlikely event of having been preempted here.
1138 { 1856 */
1139 if (time_update_monotonic (EV_A)) 1857 for (i = 4; --i; )
1140 { 1858 {
1141 ev_tstamp odiff = rtmn_diff; 1859 rtmn_diff = ev_rt_now - mn_now;
1142 1860
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1862 return; /* all is well */
1863
1864 ev_rt_now = ev_time ();
1865 mn_now = get_clock ();
1866 now_floor = mn_now;
1867 }
1868
1869# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A);
1871# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 }
1875 else
1876#endif
1877 {
1878 ev_rt_now = ev_time ();
1879
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 {
1882#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A);
1884#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
1144 { 1887 {
1145 rtmn_diff = ev_rt_now - mn_now; 1888 ANHE *he = timers + i + HEAP0;
1146 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1890 ANHE_at_cache (*he);
1148 return; /* all is well */
1149
1150 ev_rt_now = ev_time ();
1151 mn_now = get_clock ();
1152 now_floor = mn_now;
1153 } 1891 }
1154
1155# if EV_PERIODICS
1156 periodics_reschedule (EV_A);
1157# endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 1892 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 1893
1178 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1179 } 1895 }
1180} 1896}
1181 1897
1194static int loop_done; 1910static int loop_done;
1195 1911
1196void 1912void
1197ev_loop (EV_P_ int flags) 1913ev_loop (EV_P_ int flags)
1198{ 1914{
1199 double block; 1915 loop_done = EVUNLOOP_CANCEL;
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1201 1916
1202 while (activecnt) 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1918
1919 do
1203 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1925#ifndef _WIN32
1926 if (expect_false (curpid)) /* penalise the forking check even more */
1927 if (expect_false (getpid () != curpid))
1928 {
1929 curpid = getpid ();
1930 postfork = 1;
1931 }
1932#endif
1933
1934#if EV_FORK_ENABLE
1935 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork))
1937 if (forkcnt)
1938 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A);
1941 }
1942#endif
1943
1204 /* queue check watchers (and execute them) */ 1944 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 1945 if (expect_false (preparecnt))
1206 { 1946 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 1948 call_pending (EV_A);
1209 } 1949 }
1210 1950
1951 if (expect_false (!activecnt))
1952 break;
1953
1211 /* we might have forked, so reify kernel state if necessary */ 1954 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 1955 if (expect_false (postfork))
1213 loop_fork (EV_A); 1956 loop_fork (EV_A);
1214 1957
1215 /* update fd-related kernel structures */ 1958 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 1959 fd_reify (EV_A);
1217 1960
1218 /* calculate blocking time */ 1961 /* calculate blocking time */
1962 {
1963 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.;
1219 1965
1220 /* we only need this for !monotonic clock or timers, but as we basically 1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1221 always have timers, we just calculate it always */
1222#if EV_USE_MONOTONIC
1223 if (expect_true (have_monotonic))
1224 time_update_monotonic (EV_A);
1225 else
1226#endif
1227 { 1967 {
1228 ev_rt_now = ev_time (); 1968 /* update time to cancel out callback processing overhead */
1229 mn_now = ev_rt_now; 1969 time_update (EV_A_ 1e100);
1230 }
1231 1970
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1237 1972
1238 if (timercnt) 1973 if (timercnt)
1239 { 1974 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1241 if (block > to) block = to; 1976 if (waittime > to) waittime = to;
1242 } 1977 }
1243 1978
1244#if EV_PERIODICS 1979#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 1980 if (periodiccnt)
1246 { 1981 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1248 if (block > to) block = to; 1983 if (waittime > to) waittime = to;
1249 } 1984 }
1250#endif 1985#endif
1251 1986
1252 if (expect_false (block < 0.)) block = 0.; 1987 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime;
1989
1990 sleeptime = waittime - backend_fudge;
1991
1992 if (expect_true (sleeptime > io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 {
1997 ev_sleep (sleeptime);
1998 waittime -= sleeptime;
1999 }
1253 } 2000 }
1254 2001
1255 method_poll (EV_A_ block); 2002 ++loop_count;
2003 backend_poll (EV_A_ waittime);
1256 2004
1257 /* update ev_rt_now, do magic */ 2005 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 2006 time_update (EV_A_ waittime + sleeptime);
2007 }
1259 2008
1260 /* queue pending timers and reschedule them */ 2009 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 2010 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 2011#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 2012 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 2013#endif
1265 2014
2015#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 2016 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 2017 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2018#endif
1269 2019
1270 /* queue check watchers, to be executed first */ 2020 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 2021 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1273 2023
1274 call_pending (EV_A); 2024 call_pending (EV_A);
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 2025 }
2026 while (expect_true (
2027 activecnt
2028 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 ));
1279 2031
1280 if (loop_done != 2) 2032 if (loop_done == EVUNLOOP_ONE)
1281 loop_done = 0; 2033 loop_done = EVUNLOOP_CANCEL;
1282} 2034}
1283 2035
1284void 2036void
1285ev_unloop (EV_P_ int how) 2037ev_unloop (EV_P_ int how)
1286{ 2038{
1287 loop_done = how; 2039 loop_done = how;
1288} 2040}
1289 2041
1290/*****************************************************************************/ 2042/*****************************************************************************/
1291 2043
1292inline void 2044void inline_size
1293wlist_add (WL *head, WL elem) 2045wlist_add (WL *head, WL elem)
1294{ 2046{
1295 elem->next = *head; 2047 elem->next = *head;
1296 *head = elem; 2048 *head = elem;
1297} 2049}
1298 2050
1299inline void 2051void inline_size
1300wlist_del (WL *head, WL elem) 2052wlist_del (WL *head, WL elem)
1301{ 2053{
1302 while (*head) 2054 while (*head)
1303 { 2055 {
1304 if (*head == elem) 2056 if (*head == elem)
1309 2061
1310 head = &(*head)->next; 2062 head = &(*head)->next;
1311 } 2063 }
1312} 2064}
1313 2065
1314inline void 2066void inline_speed
1315ev_clear_pending (EV_P_ W w) 2067clear_pending (EV_P_ W w)
1316{ 2068{
1317 if (w->pending) 2069 if (w->pending)
1318 { 2070 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2071 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1320 w->pending = 0; 2072 w->pending = 0;
1321 } 2073 }
1322} 2074}
1323 2075
1324inline void 2076int
2077ev_clear_pending (EV_P_ void *w)
2078{
2079 W w_ = (W)w;
2080 int pending = w_->pending;
2081
2082 if (expect_true (pending))
2083 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2085 w_->pending = 0;
2086 p->w = 0;
2087 return p->events;
2088 }
2089 else
2090 return 0;
2091}
2092
2093void inline_size
2094pri_adjust (EV_P_ W w)
2095{
2096 int pri = w->priority;
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri;
2100}
2101
2102void inline_speed
1325ev_start (EV_P_ W w, int active) 2103ev_start (EV_P_ W w, int active)
1326{ 2104{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2105 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 2106 w->active = active;
1331 ev_ref (EV_A); 2107 ev_ref (EV_A);
1332} 2108}
1333 2109
1334inline void 2110void inline_size
1335ev_stop (EV_P_ W w) 2111ev_stop (EV_P_ W w)
1336{ 2112{
1337 ev_unref (EV_A); 2113 ev_unref (EV_A);
1338 w->active = 0; 2114 w->active = 0;
1339} 2115}
1340 2116
1341/*****************************************************************************/ 2117/*****************************************************************************/
1342 2118
1343void 2119void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 2120ev_io_start (EV_P_ ev_io *w)
1345{ 2121{
1346 int fd = w->fd; 2122 int fd = w->fd;
1347 2123
1348 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1349 return; 2125 return;
1350 2126
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1352 2128
2129 EV_FREQUENT_CHECK;
2130
1353 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1356 2134
1357 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1358} 2136 w->events &= ~EV_IOFDSET;
1359 2137
1360void 2138 EV_FREQUENT_CHECK;
2139}
2140
2141void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1362{ 2143{
1363 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1365 return; 2146 return;
1366 2147
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 2149
2150 EV_FREQUENT_CHECK;
2151
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1371 2154
1372 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
1373}
1374 2156
1375void 2157 EV_FREQUENT_CHECK;
2158}
2159
2160void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1377{ 2162{
1378 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1379 return; 2164 return;
1380 2165
1381 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1382 2167
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1385 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1389 2178
2179 EV_FREQUENT_CHECK;
2180
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 2182}
1392 2183
1393void 2184void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1395{ 2186{
1396 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1398 return; 2189 return;
1399 2190
2191 EV_FREQUENT_CHECK;
2192
2193 {
2194 int active = ev_active (w);
2195
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 2197
2198 --timercnt;
2199
1402 if (expect_true (((W)w)->active < timercnt--)) 2200 if (expect_true (active < timercnt + HEAP0))
1403 { 2201 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2203 adjustheap (timers, timercnt, active);
1406 } 2204 }
2205 }
1407 2206
1408 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1409 2210
1410 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1411} 2212}
1412 2213
1413void 2214void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1415{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1416 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1417 { 2220 {
1418 if (w->repeat) 2221 if (w->repeat)
1419 { 2222 {
1420 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1422 } 2226 }
1423 else 2227 else
1424 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1425 } 2229 }
1426 else if (w->repeat) 2230 else if (w->repeat)
1427 { 2231 {
1428 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1430 } 2234 }
1431}
1432 2235
2236 EV_FREQUENT_CHECK;
2237}
2238
1433#if EV_PERIODICS 2239#if EV_PERIODIC_ENABLE
1434void 2240void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 2242{
1437 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1438 return; 2244 return;
1439 2245
1440 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 2248 else if (w->interval)
1443 { 2249 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1447 } 2253 }
2254 else
2255 ev_at (w) = w->offset;
1448 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1453 2265
2266 EV_FREQUENT_CHECK;
2267
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 2269}
1456 2270
1457void 2271void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 2273{
1460 ev_clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1462 return; 2276 return;
1463 2277
2278 EV_FREQUENT_CHECK;
2279
2280 {
2281 int active = ev_active (w);
2282
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 2284
2285 --periodiccnt;
2286
1466 if (expect_true (((W)w)->active < periodiccnt--)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1467 { 2288 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2290 adjustheap (periodics, periodiccnt, active);
1470 } 2291 }
2292 }
2293
2294 EV_FREQUENT_CHECK;
1471 2295
1472 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1473} 2297}
1474 2298
1475void 2299void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 2301{
1478 /* TODO: use adjustheap and recalculation */ 2302 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 2303 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 2304 ev_periodic_start (EV_A_ w);
1481} 2305}
1482#endif 2306#endif
1483 2307
1484void 2308#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 2309# define SA_RESTART 0
2310#endif
2311
2312void noinline
2313ev_signal_start (EV_P_ ev_signal *w)
1486{ 2314{
2315#if EV_MULTIPLICITY
2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2317#endif
1487 if (expect_false (ev_is_active (w))) 2318 if (expect_false (ev_is_active (w)))
1488 return; 2319 return;
1489 2320
1490 ev_start (EV_A_ (W)w, ++idlecnt);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1492 idles [idlecnt - 1] = w;
1493}
1494
1495void
1496ev_idle_stop (EV_P_ struct ev_idle *w)
1497{
1498 ev_clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w)))
1500 return;
1501
1502 idles [((W)w)->active - 1] = idles [--idlecnt];
1503 ev_stop (EV_A_ (W)w);
1504}
1505
1506void
1507ev_prepare_start (EV_P_ struct ev_prepare *w)
1508{
1509 if (expect_false (ev_is_active (w)))
1510 return;
1511
1512 ev_start (EV_A_ (W)w, ++preparecnt);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1514 prepares [preparecnt - 1] = w;
1515}
1516
1517void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w)
1519{
1520 ev_clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w)))
1522 return;
1523
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1525 ev_stop (EV_A_ (W)w);
1526}
1527
1528void
1529ev_check_start (EV_P_ struct ev_check *w)
1530{
1531 if (expect_false (ev_is_active (w)))
1532 return;
1533
1534 ev_start (EV_A_ (W)w, ++checkcnt);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1536 checks [checkcnt - 1] = w;
1537}
1538
1539void
1540ev_check_stop (EV_P_ struct ev_check *w)
1541{
1542 ev_clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w)))
1544 return;
1545
1546 checks [((W)w)->active - 1] = checks [--checkcnt];
1547 ev_stop (EV_A_ (W)w);
1548}
1549
1550#ifndef SA_RESTART
1551# define SA_RESTART 0
1552#endif
1553
1554void
1555ev_signal_start (EV_P_ struct ev_signal *w)
1556{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w)))
1561 return;
1562
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1564 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1565 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1568 2343
1569 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1570 { 2345 {
1571#if _WIN32 2346#if _WIN32
1572 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1573#else 2348#else
1574 struct sigaction sa; 2349 struct sigaction sa;
1575 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1576 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1579#endif 2354#endif
1580 } 2355 }
1581}
1582 2356
1583void 2357 EV_FREQUENT_CHECK;
2358}
2359
2360void noinline
1584ev_signal_stop (EV_P_ struct ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1585{ 2362{
1586 ev_clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1588 return; 2365 return;
1589 2366
2367 EV_FREQUENT_CHECK;
2368
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1591 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1592 2371
1593 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1594 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
1595}
1596 2374
2375 EV_FREQUENT_CHECK;
2376}
2377
1597void 2378void
1598ev_child_start (EV_P_ struct ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1599{ 2380{
1600#if EV_MULTIPLICITY 2381#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 2383#endif
1603 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1604 return; 2385 return;
1605 2386
2387 EV_FREQUENT_CHECK;
2388
1606 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1608}
1609 2391
2392 EV_FREQUENT_CHECK;
2393}
2394
1610void 2395void
1611ev_child_stop (EV_P_ struct ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1612{ 2397{
1613 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1615 return; 2400 return;
1616 2401
2402 EV_FREQUENT_CHECK;
2403
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1619} 2408}
2409
2410#if EV_STAT_ENABLE
2411
2412# ifdef _WIN32
2413# undef lstat
2414# define lstat(a,b) _stati64 (a,b)
2415# endif
2416
2417#define DEF_STAT_INTERVAL 5.0074891
2418#define MIN_STAT_INTERVAL 0.1074891
2419
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421
2422#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192
2424
2425static void noinline
2426infy_add (EV_P_ ev_stat *w)
2427{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429
2430 if (w->wd < 0)
2431 {
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2433
2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 {
2439 char path [4096];
2440 strcpy (path, w->path);
2441
2442 do
2443 {
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446
2447 char *pend = strrchr (path, '/');
2448
2449 if (!pend)
2450 break; /* whoops, no '/', complain to your admin */
2451
2452 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 }
2457 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460
2461 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2463}
2464
2465static void noinline
2466infy_del (EV_P_ ev_stat *w)
2467{
2468 int slot;
2469 int wd = w->wd;
2470
2471 if (wd < 0)
2472 return;
2473
2474 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w);
2477
2478 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd);
2480}
2481
2482static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{
2485 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2488 infy_wd (EV_A_ slot, wd, ev);
2489 else
2490 {
2491 WL w_;
2492
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2494 {
2495 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */
2497
2498 if (w->wd == wd || wd == -1)
2499 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 {
2502 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */
2504 }
2505
2506 stat_timer_cb (EV_A_ &w->timer, 0);
2507 }
2508 }
2509 }
2510}
2511
2512static void
2513infy_cb (EV_P_ ev_io *w, int revents)
2514{
2515 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf));
2519
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2522}
2523
2524void inline_size
2525infy_init (EV_P)
2526{
2527 if (fs_fd != -2)
2528 return;
2529
2530 fs_fd = inotify_init ();
2531
2532 if (fs_fd >= 0)
2533 {
2534 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2535 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w);
2537 }
2538}
2539
2540void inline_size
2541infy_fork (EV_P)
2542{
2543 int slot;
2544
2545 if (fs_fd < 0)
2546 return;
2547
2548 close (fs_fd);
2549 fs_fd = inotify_init ();
2550
2551 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2552 {
2553 WL w_ = fs_hash [slot].head;
2554 fs_hash [slot].head = 0;
2555
2556 while (w_)
2557 {
2558 ev_stat *w = (ev_stat *)w_;
2559 w_ = w_->next; /* lets us add this watcher */
2560
2561 w->wd = -1;
2562
2563 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else
2566 ev_timer_start (EV_A_ &w->timer);
2567 }
2568
2569 }
2570}
2571
2572#endif
2573
2574void
2575ev_stat_stat (EV_P_ ev_stat *w)
2576{
2577 if (lstat (w->path, &w->attr) < 0)
2578 w->attr.st_nlink = 0;
2579 else if (!w->attr.st_nlink)
2580 w->attr.st_nlink = 1;
2581}
2582
2583static void noinline
2584stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2585{
2586 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2587
2588 /* we copy this here each the time so that */
2589 /* prev has the old value when the callback gets invoked */
2590 w->prev = w->attr;
2591 ev_stat_stat (EV_A_ w);
2592
2593 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2594 if (
2595 w->prev.st_dev != w->attr.st_dev
2596 || w->prev.st_ino != w->attr.st_ino
2597 || w->prev.st_mode != w->attr.st_mode
2598 || w->prev.st_nlink != w->attr.st_nlink
2599 || w->prev.st_uid != w->attr.st_uid
2600 || w->prev.st_gid != w->attr.st_gid
2601 || w->prev.st_rdev != w->attr.st_rdev
2602 || w->prev.st_size != w->attr.st_size
2603 || w->prev.st_atime != w->attr.st_atime
2604 || w->prev.st_mtime != w->attr.st_mtime
2605 || w->prev.st_ctime != w->attr.st_ctime
2606 ) {
2607 #if EV_USE_INOTIFY
2608 infy_del (EV_A_ w);
2609 infy_add (EV_A_ w);
2610 ev_stat_stat (EV_A_ w); /* avoid race... */
2611 #endif
2612
2613 ev_feed_event (EV_A_ w, EV_STAT);
2614 }
2615}
2616
2617void
2618ev_stat_start (EV_P_ ev_stat *w)
2619{
2620 if (expect_false (ev_is_active (w)))
2621 return;
2622
2623 /* since we use memcmp, we need to clear any padding data etc. */
2624 memset (&w->prev, 0, sizeof (ev_statdata));
2625 memset (&w->attr, 0, sizeof (ev_statdata));
2626
2627 ev_stat_stat (EV_A_ w);
2628
2629 if (w->interval < MIN_STAT_INTERVAL)
2630 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2631
2632 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2633 ev_set_priority (&w->timer, ev_priority (w));
2634
2635#if EV_USE_INOTIFY
2636 infy_init (EV_A);
2637
2638 if (fs_fd >= 0)
2639 infy_add (EV_A_ w);
2640 else
2641#endif
2642 ev_timer_start (EV_A_ &w->timer);
2643
2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2647}
2648
2649void
2650ev_stat_stop (EV_P_ ev_stat *w)
2651{
2652 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w)))
2654 return;
2655
2656 EV_FREQUENT_CHECK;
2657
2658#if EV_USE_INOTIFY
2659 infy_del (EV_A_ w);
2660#endif
2661 ev_timer_stop (EV_A_ &w->timer);
2662
2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2666}
2667#endif
2668
2669#if EV_IDLE_ENABLE
2670void
2671ev_idle_start (EV_P_ ev_idle *w)
2672{
2673 if (expect_false (ev_is_active (w)))
2674 return;
2675
2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2679
2680 {
2681 int active = ++idlecnt [ABSPRI (w)];
2682
2683 ++idleall;
2684 ev_start (EV_A_ (W)w, active);
2685
2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2687 idles [ABSPRI (w)][active - 1] = w;
2688 }
2689
2690 EV_FREQUENT_CHECK;
2691}
2692
2693void
2694ev_idle_stop (EV_P_ ev_idle *w)
2695{
2696 clear_pending (EV_A_ (W)w);
2697 if (expect_false (!ev_is_active (w)))
2698 return;
2699
2700 EV_FREQUENT_CHECK;
2701
2702 {
2703 int active = ev_active (w);
2704
2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2707
2708 ev_stop (EV_A_ (W)w);
2709 --idleall;
2710 }
2711
2712 EV_FREQUENT_CHECK;
2713}
2714#endif
2715
2716void
2717ev_prepare_start (EV_P_ ev_prepare *w)
2718{
2719 if (expect_false (ev_is_active (w)))
2720 return;
2721
2722 EV_FREQUENT_CHECK;
2723
2724 ev_start (EV_A_ (W)w, ++preparecnt);
2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2729}
2730
2731void
2732ev_prepare_stop (EV_P_ ev_prepare *w)
2733{
2734 clear_pending (EV_A_ (W)w);
2735 if (expect_false (!ev_is_active (w)))
2736 return;
2737
2738 EV_FREQUENT_CHECK;
2739
2740 {
2741 int active = ev_active (w);
2742
2743 prepares [active - 1] = prepares [--preparecnt];
2744 ev_active (prepares [active - 1]) = active;
2745 }
2746
2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2750}
2751
2752void
2753ev_check_start (EV_P_ ev_check *w)
2754{
2755 if (expect_false (ev_is_active (w)))
2756 return;
2757
2758 EV_FREQUENT_CHECK;
2759
2760 ev_start (EV_A_ (W)w, ++checkcnt);
2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2765}
2766
2767void
2768ev_check_stop (EV_P_ ev_check *w)
2769{
2770 clear_pending (EV_A_ (W)w);
2771 if (expect_false (!ev_is_active (w)))
2772 return;
2773
2774 EV_FREQUENT_CHECK;
2775
2776 {
2777 int active = ev_active (w);
2778
2779 checks [active - 1] = checks [--checkcnt];
2780 ev_active (checks [active - 1]) = active;
2781 }
2782
2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2786}
2787
2788#if EV_EMBED_ENABLE
2789void noinline
2790ev_embed_sweep (EV_P_ ev_embed *w)
2791{
2792 ev_loop (w->other, EVLOOP_NONBLOCK);
2793}
2794
2795static void
2796embed_io_cb (EV_P_ ev_io *io, int revents)
2797{
2798 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2799
2800 if (ev_cb (w))
2801 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2802 else
2803 ev_loop (w->other, EVLOOP_NONBLOCK);
2804}
2805
2806static void
2807embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2808{
2809 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2810
2811 {
2812 struct ev_loop *loop = w->other;
2813
2814 while (fdchangecnt)
2815 {
2816 fd_reify (EV_A);
2817 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2818 }
2819 }
2820}
2821
2822#if 0
2823static void
2824embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2825{
2826 ev_idle_stop (EV_A_ idle);
2827}
2828#endif
2829
2830void
2831ev_embed_start (EV_P_ ev_embed *w)
2832{
2833 if (expect_false (ev_is_active (w)))
2834 return;
2835
2836 {
2837 struct ev_loop *loop = w->other;
2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2840 }
2841
2842 EV_FREQUENT_CHECK;
2843
2844 ev_set_priority (&w->io, ev_priority (w));
2845 ev_io_start (EV_A_ &w->io);
2846
2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2848 ev_set_priority (&w->prepare, EV_MINPRI);
2849 ev_prepare_start (EV_A_ &w->prepare);
2850
2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2852
2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2856}
2857
2858void
2859ev_embed_stop (EV_P_ ev_embed *w)
2860{
2861 clear_pending (EV_A_ (W)w);
2862 if (expect_false (!ev_is_active (w)))
2863 return;
2864
2865 EV_FREQUENT_CHECK;
2866
2867 ev_io_stop (EV_A_ &w->io);
2868 ev_prepare_stop (EV_A_ &w->prepare);
2869
2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2873}
2874#endif
2875
2876#if EV_FORK_ENABLE
2877void
2878ev_fork_start (EV_P_ ev_fork *w)
2879{
2880 if (expect_false (ev_is_active (w)))
2881 return;
2882
2883 EV_FREQUENT_CHECK;
2884
2885 ev_start (EV_A_ (W)w, ++forkcnt);
2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2890}
2891
2892void
2893ev_fork_stop (EV_P_ ev_fork *w)
2894{
2895 clear_pending (EV_A_ (W)w);
2896 if (expect_false (!ev_is_active (w)))
2897 return;
2898
2899 EV_FREQUENT_CHECK;
2900
2901 {
2902 int active = ev_active (w);
2903
2904 forks [active - 1] = forks [--forkcnt];
2905 ev_active (forks [active - 1]) = active;
2906 }
2907
2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2911}
2912#endif
2913
2914#if EV_ASYNC_ENABLE
2915void
2916ev_async_start (EV_P_ ev_async *w)
2917{
2918 if (expect_false (ev_is_active (w)))
2919 return;
2920
2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2924
2925 ev_start (EV_A_ (W)w, ++asynccnt);
2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2930}
2931
2932void
2933ev_async_stop (EV_P_ ev_async *w)
2934{
2935 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w)))
2937 return;
2938
2939 EV_FREQUENT_CHECK;
2940
2941 {
2942 int active = ev_active (w);
2943
2944 asyncs [active - 1] = asyncs [--asynccnt];
2945 ev_active (asyncs [active - 1]) = active;
2946 }
2947
2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952
2953void
2954ev_async_send (EV_P_ ev_async *w)
2955{
2956 w->sent = 1;
2957 evpipe_write (EV_A_ &gotasync);
2958}
2959#endif
1620 2960
1621/*****************************************************************************/ 2961/*****************************************************************************/
1622 2962
1623struct ev_once 2963struct ev_once
1624{ 2964{
1625 struct ev_io io; 2965 ev_io io;
1626 struct ev_timer to; 2966 ev_timer to;
1627 void (*cb)(int revents, void *arg); 2967 void (*cb)(int revents, void *arg);
1628 void *arg; 2968 void *arg;
1629}; 2969};
1630 2970
1631static void 2971static void
1640 2980
1641 cb (revents, arg); 2981 cb (revents, arg);
1642} 2982}
1643 2983
1644static void 2984static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 2985once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 2986{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2987 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1648} 2988}
1649 2989
1650static void 2990static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 2991once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 2992{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1654} 2994}
1655 2995
1656void 2996void
1680 ev_timer_set (&once->to, timeout, 0.); 3020 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 3021 ev_timer_start (EV_A_ &once->to);
1682 } 3022 }
1683} 3023}
1684 3024
3025#if EV_MULTIPLICITY
3026 #include "ev_wrap.h"
3027#endif
3028
1685#ifdef __cplusplus 3029#ifdef __cplusplus
1686} 3030}
1687#endif 3031#endif
1688 3032

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines