ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.348 by root, Fri Oct 15 22:48:25 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
46# else 73# else
47# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
49# endif 76# endif
50# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
52# endif 79# endif
53# endif 80# endif
54 81
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 83# ifndef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
57# else 86# else
87# undef EV_USE_NANOSLEEP
88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
94# endif
95# else
96# undef EV_USE_SELECT
58# define EV_USE_SELECT 0 97# define EV_USE_SELECT 0
59# endif 98# endif
60 99
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 100# if HAVE_POLL && HAVE_POLL_H
62# define EV_USE_POLL 1 101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
63# else 104# else
105# undef EV_USE_POLL
64# define EV_USE_POLL 0 106# define EV_USE_POLL 0
65# endif 107# endif
66 108
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
68# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
112# endif
69# else 113# else
114# undef EV_USE_EPOLL
70# define EV_USE_EPOLL 0 115# define EV_USE_EPOLL 0
71# endif 116# endif
72 117
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
74# define EV_USE_KQUEUE 1 119# ifndef EV_USE_KQUEUE
120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
121# endif
75# else 122# else
123# undef EV_USE_KQUEUE
76# define EV_USE_KQUEUE 0 124# define EV_USE_KQUEUE 0
77# endif 125# endif
78 126
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 127# if HAVE_PORT_H && HAVE_PORT_CREATE
80# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
129# define EV_USE_PORT EV_FEATURE_BACKENDS
130# endif
81# else 131# else
132# undef EV_USE_PORT
82# define EV_USE_PORT 0 133# define EV_USE_PORT 0
83# endif 134# endif
84 135
136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137# ifndef EV_USE_INOTIFY
138# define EV_USE_INOTIFY EV_FEATURE_OS
139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
143# endif
144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
85#endif 163#endif
86 164
87#include <math.h> 165#include <math.h>
88#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
89#include <fcntl.h> 168#include <fcntl.h>
90#include <stddef.h> 169#include <stddef.h>
91 170
92#include <stdio.h> 171#include <stdio.h>
93 172
94#include <assert.h> 173#include <assert.h>
95#include <errno.h> 174#include <errno.h>
96#include <sys/types.h> 175#include <sys/types.h>
97#include <time.h> 176#include <time.h>
177#include <limits.h>
98 178
99#include <signal.h> 179#include <signal.h>
100 180
181#ifdef EV_H
182# include EV_H
183#else
184# include "ev.h"
185#endif
186
101#ifndef _WIN32 187#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 188# include <sys/time.h>
104# include <sys/wait.h> 189# include <sys/wait.h>
190# include <unistd.h>
105#else 191#else
192# include <io.h>
106# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 194# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
110# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
111#endif 244# endif
112 245#endif
113/**/
114 246
115#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
116# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
117#endif 253#endif
118 254
119#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257#endif
258
259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
263# define EV_USE_NANOSLEEP 0
264# endif
121#endif 265#endif
122 266
123#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
125#endif 269#endif
126 270
127#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
128# ifdef _WIN32 272# ifdef _WIN32
129# define EV_USE_POLL 0 273# define EV_USE_POLL 0
130# else 274# else
131# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
132# endif 276# endif
133#endif 277#endif
134 278
135#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
136# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
137#endif 285#endif
138 286
139#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
141#endif 289#endif
142 290
143#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 292# define EV_USE_PORT 0
145#endif 293#endif
146 294
147/**/ 295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
299# define EV_USE_INOTIFY 0
300# endif
301#endif
148 302
149/* darwin simply cannot be helped */ 303#ifndef EV_PID_HASHSIZE
150#ifdef __APPLE__ 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
314# else
315# define EV_USE_EVENTFD 0
316# endif
317#endif
318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
151# undef EV_USE_POLL 363# undef EV_USE_POLL
152# undef EV_USE_KQUEUE 364# define EV_USE_POLL 0
153#endif 365#endif
154 366
155#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
160#ifndef CLOCK_REALTIME 372#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 373# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 374# define EV_USE_REALTIME 0
163#endif 375#endif
164 376
377#if !EV_STAT_ENABLE
378# undef EV_USE_INOTIFY
379# define EV_USE_INOTIFY 0
380#endif
381
382#if !EV_USE_NANOSLEEP
383# ifndef _WIN32
384# include <sys/select.h>
385# endif
386#endif
387
388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
397#endif
398
165#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 400# include <winsock.h>
167#endif 401#endif
168 402
403#if EV_USE_EVENTFD
404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
169/**/ 453/**/
454
455#if EV_VERIFY >= 3
456# define EV_FREQUENT_CHECK ev_verify (EV_A)
457#else
458# define EV_FREQUENT_CHECK do { } while (0)
459#endif
460
461/*
462 * This is used to avoid floating point rounding problems.
463 * It is added to ev_rt_now when scheduling periodics
464 * to ensure progress, time-wise, even when rounding
465 * errors are against us.
466 * This value is good at least till the year 4000.
467 * Better solutions welcome.
468 */
469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
170 470
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
175 473
176#ifdef EV_H 474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
177# include EV_H 475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
178#else
179# include "ev.h"
180#endif
181 476
182#if __GNUC__ >= 3 477#if __GNUC__ >= 4
183# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
184# define inline static inline 479# define noinline __attribute__ ((noinline))
185#else 480#else
186# define expect(expr,value) (expr) 481# define expect(expr,value) (expr)
187# define inline static 482# define noinline
483# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
484# define inline
485# endif
188#endif 486#endif
189 487
190#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
490#define inline_size static inline
192 491
492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
495# define inline_speed static noinline
496#endif
497
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
502#else
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
195 505
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
198 508
199typedef struct ev_watcher *W; 509typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 510typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
202 512
513#define ev_active(w) ((W)(w))->active
514#define ev_at(w) ((WT)(w))->at
515
516#if EV_USE_REALTIME
517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520#endif
521
522#if EV_USE_MONOTONIC
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524#endif
525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
534#endif
204 535
205#ifdef _WIN32 536#ifdef _WIN32
206# include "ev_win32.c" 537# include "ev_win32.c"
207#endif 538#endif
208 539
209/*****************************************************************************/ 540/*****************************************************************************/
210 541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
211static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
212 551
552void
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 554{
215 syserr_cb = cb; 555 syserr_cb = cb;
216} 556}
217 557
218static void 558static void noinline
219syserr (const char *msg) 559ev_syserr (const char *msg)
220{ 560{
221 if (!msg) 561 if (!msg)
222 msg = "(libev) system error"; 562 msg = "(libev) system error";
223 563
224 if (syserr_cb) 564 if (syserr_cb)
225 syserr_cb (msg); 565 syserr_cb (msg);
226 else 566 else
227 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
228 perror (msg); 576 perror (msg);
577#endif
229 abort (); 578 abort ();
230 } 579 }
231} 580}
232 581
582static void *
583ev_realloc_emul (void *ptr, long size)
584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
588 /* some systems, notably openbsd and darwin, fail to properly
589 * implement realloc (x, 0) (as required by both ansi c-89 and
590 * the single unix specification, so work around them here.
591 */
592
593 if (size)
594 return realloc (ptr, size);
595
596 free (ptr);
597 return 0;
598#endif
599}
600
233static void *(*alloc)(void *ptr, long size); 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 602
603void
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 604ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 605{
237 alloc = cb; 606 alloc = cb;
238} 607}
239 608
240static void * 609inline_speed void *
241ev_realloc (void *ptr, long size) 610ev_realloc (void *ptr, long size)
242{ 611{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 612 ptr = alloc (ptr, size);
244 613
245 if (!ptr && size) 614 if (!ptr && size)
246 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
248 abort (); 621 abort ();
249 } 622 }
250 623
251 return ptr; 624 return ptr;
252} 625}
254#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
255#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
256 629
257/*****************************************************************************/ 630/*****************************************************************************/
258 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
259typedef struct 636typedef struct
260{ 637{
261 WL head; 638 WL head;
262 unsigned char events; 639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
263 unsigned char reify; 642 unsigned char unused;
643#if EV_USE_EPOLL
644 unsigned int egen; /* generation counter to counter epoll bugs */
645#endif
264#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
265 SOCKET handle; 647 SOCKET handle;
266#endif 648#endif
267} ANFD; 649} ANFD;
268 650
651/* stores the pending event set for a given watcher */
269typedef struct 652typedef struct
270{ 653{
271 W w; 654 W w;
272 int events; 655 int events; /* the pending event set for the given watcher */
273} ANPENDING; 656} ANPENDING;
657
658#if EV_USE_INOTIFY
659/* hash table entry per inotify-id */
660typedef struct
661{
662 WL head;
663} ANFS;
664#endif
665
666/* Heap Entry */
667#if EV_HEAP_CACHE_AT
668 /* a heap element */
669 typedef struct {
670 ev_tstamp at;
671 WT w;
672 } ANHE;
673
674 #define ANHE_w(he) (he).w /* access watcher, read-write */
675 #define ANHE_at(he) (he).at /* access cached at, read-only */
676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
677#else
678 /* a heap element */
679 typedef WT ANHE;
680
681 #define ANHE_w(he) (he)
682 #define ANHE_at(he) (he)->at
683 #define ANHE_at_cache(he)
684#endif
274 685
275#if EV_MULTIPLICITY 686#if EV_MULTIPLICITY
276 687
277 struct ev_loop 688 struct ev_loop
278 { 689 {
296 707
297 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
298 709
299#endif 710#endif
300 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVUNLOOP_RECURSE 0x80
723
301/*****************************************************************************/ 724/*****************************************************************************/
302 725
726#ifndef EV_HAVE_EV_TIME
303ev_tstamp 727ev_tstamp
304ev_time (void) 728ev_time (void)
305{ 729{
306#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
307 struct timespec ts; 733 struct timespec ts;
308 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
309 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
310#else 736 }
737#endif
738
311 struct timeval tv; 739 struct timeval tv;
312 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif
315} 742}
743#endif
316 744
317inline ev_tstamp 745inline_size ev_tstamp
318get_clock (void) 746get_clock (void)
319{ 747{
320#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
322 { 750 {
335{ 763{
336 return ev_rt_now; 764 return ev_rt_now;
337} 765}
338#endif 766#endif
339 767
340#define array_roundsize(type,n) (((n) | 4) & ~3) 768void
769ev_sleep (ev_tstamp delay)
770{
771 if (delay > 0.)
772 {
773#if EV_USE_NANOSLEEP
774 struct timespec ts;
775
776 EV_TS_SET (ts, delay);
777 nanosleep (&ts, 0);
778#elif defined(_WIN32)
779 Sleep ((unsigned long)(delay * 1e3));
780#else
781 struct timeval tv;
782
783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
784 /* something not guaranteed by newer posix versions, but guaranteed */
785 /* by older ones */
786 EV_TS_SET (tv, delay);
787 select (0, 0, 0, 0, &tv);
788#endif
789 }
790}
791
792/*****************************************************************************/
793
794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
795
796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
799array_nextsize (int elem, int cur, int cnt)
800{
801 int ncur = cur + 1;
802
803 do
804 ncur <<= 1;
805 while (cnt > ncur);
806
807 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
808 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
809 {
810 ncur *= elem;
811 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
812 ncur = ncur - sizeof (void *) * 4;
813 ncur /= elem;
814 }
815
816 return ncur;
817}
818
819static noinline void *
820array_realloc (int elem, void *base, int *cur, int cnt)
821{
822 *cur = array_nextsize (elem, *cur, cnt);
823 return ev_realloc (base, elem * *cur);
824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
341 828
342#define array_needsize(type,base,cur,cnt,init) \ 829#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 830 if (expect_false ((cnt) > (cur))) \
344 { \ 831 { \
345 int newcnt = cur; \ 832 int ocur_ = (cur); \
346 do \ 833 (base) = (type *)array_realloc \
347 { \ 834 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 835 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 836 }
356 837
838#if 0
357#define array_slim(type,stem) \ 839#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 840 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 841 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 842 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 843 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 845 }
846#endif
364 847
365#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
367 850
368/*****************************************************************************/ 851/*****************************************************************************/
369 852
370static void 853/* dummy callback for pending events */
371anfds_init (ANFD *base, int count) 854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
372{ 856{
373 while (count--)
374 {
375 base->head = 0;
376 base->events = EV_NONE;
377 base->reify = 0;
378
379 ++base;
380 }
381} 857}
382 858
383void 859void noinline
384ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
385{ 861{
386 W w_ = (W)w; 862 W w_ = (W)w;
863 int pri = ABSPRI (w_);
387 864
388 if (expect_false (w_->pending)) 865 if (expect_false (w_->pending))
866 pendings [pri][w_->pending - 1].events |= revents;
867 else
389 { 868 {
869 w_->pending = ++pendingcnt [pri];
870 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
871 pendings [pri][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 872 pendings [pri][w_->pending - 1].events = revents;
391 return;
392 } 873 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398} 874}
399 875
400static void 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
401queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
402{ 893{
403 int i; 894 int i;
404 895
405 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
407} 898}
408 899
900/*****************************************************************************/
901
409inline void 902inline_speed void
410fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
411{ 904{
412 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 906 ev_io *w;
414 907
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 909 {
417 int ev = w->events & revents; 910 int ev = w->events & revents;
418 911
419 if (ev) 912 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
421 } 914 }
422} 915}
423 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
424void 928void
425ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 930{
931 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
428} 933}
429 934
430/*****************************************************************************/ 935/* make sure the external fd watch events are in-sync */
431 936/* with the kernel/libev internal state */
432inline void 937inline_size void
433fd_reify (EV_P) 938fd_reify (EV_P)
434{ 939{
435 int i; 940 int i;
436 941
437 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
438 { 943 {
439 int fd = fdchanges [i]; 944 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 945 ANFD *anfd = anfds + fd;
441 struct ev_io *w; 946 ev_io *w;
442 947
443 int events = 0; 948 unsigned char events = 0;
444 949
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 950 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
446 events |= w->events; 951 events |= (unsigned char)w->events;
447 952
448#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
449 if (events) 954 if (events)
450 { 955 {
451 unsigned long argp; 956 unsigned long arg;
452 anfd->handle = _get_osfhandle (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
454 } 959 }
455#endif 960#endif
456 961
962 {
963 unsigned char o_events = anfd->events;
964 unsigned char o_reify = anfd->reify;
965
457 anfd->reify = 0; 966 anfd->reify = 0;
458
459 method_modify (EV_A_ fd, anfd->events, events);
460 anfd->events = events; 967 anfd->events = events;
968
969 if (o_events != events || o_reify & EV__IOFDSET)
970 backend_modify (EV_A_ fd, o_events, events);
971 }
461 } 972 }
462 973
463 fdchangecnt = 0; 974 fdchangecnt = 0;
464} 975}
465 976
466static void 977/* something about the given fd changed */
978inline_size void
467fd_change (EV_P_ int fd) 979fd_change (EV_P_ int fd, int flags)
468{ 980{
469 if (expect_false (anfds [fd].reify)) 981 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 982 anfds [fd].reify |= flags;
473 983
984 if (expect_true (!reify))
985 {
474 ++fdchangecnt; 986 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 987 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 988 fdchanges [fdchangecnt - 1] = fd;
989 }
477} 990}
478 991
479static void 992/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
993inline_speed void
480fd_kill (EV_P_ int fd) 994fd_kill (EV_P_ int fd)
481{ 995{
482 struct ev_io *w; 996 ev_io *w;
483 997
484 while ((w = (struct ev_io *)anfds [fd].head)) 998 while ((w = (ev_io *)anfds [fd].head))
485 { 999 {
486 ev_io_stop (EV_A_ w); 1000 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1001 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 1002 }
489} 1003}
490 1004
1005/* check whether the given fd is actually valid, for error recovery */
491inline int 1006inline_size int
492fd_valid (int fd) 1007fd_valid (int fd)
493{ 1008{
494#ifdef _WIN32 1009#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 1010 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
496#else 1011#else
497 return fcntl (fd, F_GETFD) != -1; 1012 return fcntl (fd, F_GETFD) != -1;
498#endif 1013#endif
499} 1014}
500 1015
501/* called on EBADF to verify fds */ 1016/* called on EBADF to verify fds */
502static void 1017static void noinline
503fd_ebadf (EV_P) 1018fd_ebadf (EV_P)
504{ 1019{
505 int fd; 1020 int fd;
506 1021
507 for (fd = 0; fd < anfdmax; ++fd) 1022 for (fd = 0; fd < anfdmax; ++fd)
508 if (anfds [fd].events) 1023 if (anfds [fd].events)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 1024 if (!fd_valid (fd) && errno == EBADF)
510 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
511} 1026}
512 1027
513/* called on ENOMEM in select/poll to kill some fds and retry */ 1028/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 1029static void noinline
515fd_enomem (EV_P) 1030fd_enomem (EV_P)
516{ 1031{
517 int fd; 1032 int fd;
518 1033
519 for (fd = anfdmax; fd--; ) 1034 for (fd = anfdmax; fd--; )
520 if (anfds [fd].events) 1035 if (anfds [fd].events)
521 { 1036 {
522 fd_kill (EV_A_ fd); 1037 fd_kill (EV_A_ fd);
523 return; 1038 break;
524 } 1039 }
525} 1040}
526 1041
527/* usually called after fork if method needs to re-arm all fds from scratch */ 1042/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 1043static void noinline
529fd_rearm_all (EV_P) 1044fd_rearm_all (EV_P)
530{ 1045{
531 int fd; 1046 int fd;
532 1047
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 1048 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 1049 if (anfds [fd].events)
536 { 1050 {
537 anfds [fd].events = 0; 1051 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 1052 anfds [fd].emask = 0;
1053 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
539 } 1054 }
540} 1055}
541 1056
542/*****************************************************************************/ 1057/* used to prepare libev internal fd's */
543 1058/* this is not fork-safe */
544static void
545upheap (WT *heap, int k)
546{
547 WT w = heap [k];
548
549 while (k && heap [k >> 1]->at > w->at)
550 {
551 heap [k] = heap [k >> 1];
552 ((W)heap [k])->active = k + 1;
553 k >>= 1;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558
559}
560
561static void
562downheap (WT *heap, int N, int k)
563{
564 WT w = heap [k];
565
566 while (k < (N >> 1))
567 {
568 int j = k << 1;
569
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
571 ++j;
572
573 if (w->at <= heap [j]->at)
574 break;
575
576 heap [k] = heap [j];
577 ((W)heap [k])->active = k + 1;
578 k = j;
579 }
580
581 heap [k] = w;
582 ((W)heap [k])->active = k + 1;
583}
584
585inline void 1059inline_speed void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
592/*****************************************************************************/
593
594typedef struct
595{
596 WL head;
597 sig_atomic_t volatile gotsig;
598} ANSIG;
599
600static ANSIG *signals;
601static int signalmax;
602
603static int sigpipe [2];
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606
607static void
608signals_init (ANSIG *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->gotsig = 0;
614
615 ++base;
616 }
617}
618
619static void
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625
626 signals [signum - 1].gotsig = 1;
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 1060fd_intern (int fd)
672{ 1061{
673#ifdef _WIN32 1062#ifdef _WIN32
674 int arg = 1; 1063 unsigned long arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1064 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
676#else 1065#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 1066 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 1067 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 1068#endif
680} 1069}
681 1070
1071/*****************************************************************************/
1072
1073/*
1074 * the heap functions want a real array index. array index 0 is guaranteed to not
1075 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1076 * the branching factor of the d-tree.
1077 */
1078
1079/*
1080 * at the moment we allow libev the luxury of two heaps,
1081 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1082 * which is more cache-efficient.
1083 * the difference is about 5% with 50000+ watchers.
1084 */
1085#if EV_USE_4HEAP
1086
1087#define DHEAP 4
1088#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1089#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1090#define UPHEAP_DONE(p,k) ((p) == (k))
1091
1092/* away from the root */
1093inline_speed void
1094downheap (ANHE *heap, int N, int k)
1095{
1096 ANHE he = heap [k];
1097 ANHE *E = heap + N + HEAP0;
1098
1099 for (;;)
1100 {
1101 ev_tstamp minat;
1102 ANHE *minpos;
1103 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1104
1105 /* find minimum child */
1106 if (expect_true (pos + DHEAP - 1 < E))
1107 {
1108 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else if (pos < E)
1114 {
1115 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1116 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1117 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1118 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1119 }
1120 else
1121 break;
1122
1123 if (ANHE_at (he) <= minat)
1124 break;
1125
1126 heap [k] = *minpos;
1127 ev_active (ANHE_w (*minpos)) = k;
1128
1129 k = minpos - heap;
1130 }
1131
1132 heap [k] = he;
1133 ev_active (ANHE_w (he)) = k;
1134}
1135
1136#else /* 4HEAP */
1137
1138#define HEAP0 1
1139#define HPARENT(k) ((k) >> 1)
1140#define UPHEAP_DONE(p,k) (!(p))
1141
1142/* away from the root */
1143inline_speed void
1144downheap (ANHE *heap, int N, int k)
1145{
1146 ANHE he = heap [k];
1147
1148 for (;;)
1149 {
1150 int c = k << 1;
1151
1152 if (c >= N + HEAP0)
1153 break;
1154
1155 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1156 ? 1 : 0;
1157
1158 if (ANHE_at (he) <= ANHE_at (heap [c]))
1159 break;
1160
1161 heap [k] = heap [c];
1162 ev_active (ANHE_w (heap [k])) = k;
1163
1164 k = c;
1165 }
1166
1167 heap [k] = he;
1168 ev_active (ANHE_w (he)) = k;
1169}
1170#endif
1171
1172/* towards the root */
1173inline_speed void
1174upheap (ANHE *heap, int k)
1175{
1176 ANHE he = heap [k];
1177
1178 for (;;)
1179 {
1180 int p = HPARENT (k);
1181
1182 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1183 break;
1184
1185 heap [k] = heap [p];
1186 ev_active (ANHE_w (heap [k])) = k;
1187 k = p;
1188 }
1189
1190 heap [k] = he;
1191 ev_active (ANHE_w (he)) = k;
1192}
1193
1194/* move an element suitably so it is in a correct place */
1195inline_size void
1196adjustheap (ANHE *heap, int N, int k)
1197{
1198 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1199 upheap (heap, k);
1200 else
1201 downheap (heap, N, k);
1202}
1203
1204/* rebuild the heap: this function is used only once and executed rarely */
1205inline_size void
1206reheap (ANHE *heap, int N)
1207{
1208 int i;
1209
1210 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1211 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1212 for (i = 0; i < N; ++i)
1213 upheap (heap, i + HEAP0);
1214}
1215
1216/*****************************************************************************/
1217
1218/* associate signal watchers to a signal signal */
1219typedef struct
1220{
1221 EV_ATOMIC_T pending;
1222#if EV_MULTIPLICITY
1223 EV_P;
1224#endif
1225 WL head;
1226} ANSIG;
1227
1228static ANSIG signals [EV_NSIG - 1];
1229
1230/*****************************************************************************/
1231
1232#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1233
1234static void noinline
1235evpipe_init (EV_P)
1236{
1237 if (!ev_is_active (&pipe_w))
1238 {
1239# if EV_USE_EVENTFD
1240 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1241 if (evfd < 0 && errno == EINVAL)
1242 evfd = eventfd (0, 0);
1243
1244 if (evfd >= 0)
1245 {
1246 evpipe [0] = -1;
1247 fd_intern (evfd); /* doing it twice doesn't hurt */
1248 ev_io_set (&pipe_w, evfd, EV_READ);
1249 }
1250 else
1251# endif
1252 {
1253 while (pipe (evpipe))
1254 ev_syserr ("(libev) error creating signal/async pipe");
1255
1256 fd_intern (evpipe [0]);
1257 fd_intern (evpipe [1]);
1258 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1259 }
1260
1261 ev_io_start (EV_A_ &pipe_w);
1262 ev_unref (EV_A); /* watcher should not keep loop alive */
1263 }
1264}
1265
1266inline_size void
1267evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1268{
1269 if (!*flag)
1270 {
1271 int old_errno = errno; /* save errno because write might clobber it */
1272 char dummy;
1273
1274 *flag = 1;
1275
1276#if EV_USE_EVENTFD
1277 if (evfd >= 0)
1278 {
1279 uint64_t counter = 1;
1280 write (evfd, &counter, sizeof (uint64_t));
1281 }
1282 else
1283#endif
1284 /* win32 people keep sending patches that change this write() to send() */
1285 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1286 /* so when you think this write should be a send instead, please find out */
1287 /* where your send() is from - it's definitely not the microsoft send, and */
1288 /* tell me. thank you. */
1289 write (evpipe [1], &dummy, 1);
1290
1291 errno = old_errno;
1292 }
1293}
1294
1295/* called whenever the libev signal pipe */
1296/* got some events (signal, async) */
682static void 1297static void
683siginit (EV_P) 1298pipecb (EV_P_ ev_io *iow, int revents)
684{ 1299{
685 fd_intern (sigpipe [0]); 1300 int i;
686 fd_intern (sigpipe [1]);
687 1301
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1302#if EV_USE_EVENTFD
689 ev_io_start (EV_A_ &sigev); 1303 if (evfd >= 0)
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1304 {
1305 uint64_t counter;
1306 read (evfd, &counter, sizeof (uint64_t));
1307 }
1308 else
1309#endif
1310 {
1311 char dummy;
1312 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1313 read (evpipe [0], &dummy, 1);
1314 }
1315
1316 if (sig_pending)
1317 {
1318 sig_pending = 0;
1319
1320 for (i = EV_NSIG - 1; i--; )
1321 if (expect_false (signals [i].pending))
1322 ev_feed_signal_event (EV_A_ i + 1);
1323 }
1324
1325#if EV_ASYNC_ENABLE
1326 if (async_pending)
1327 {
1328 async_pending = 0;
1329
1330 for (i = asynccnt; i--; )
1331 if (asyncs [i]->sent)
1332 {
1333 asyncs [i]->sent = 0;
1334 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1335 }
1336 }
1337#endif
691} 1338}
692 1339
693/*****************************************************************************/ 1340/*****************************************************************************/
694 1341
695static struct ev_child *childs [PID_HASHSIZE]; 1342static void
1343ev_sighandler (int signum)
1344{
1345#if EV_MULTIPLICITY
1346 EV_P = signals [signum - 1].loop;
1347#endif
696 1348
697#ifndef _WIN32 1349#ifdef _WIN32
1350 signal (signum, ev_sighandler);
1351#endif
698 1352
1353 signals [signum - 1].pending = 1;
1354 evpipe_write (EV_A_ &sig_pending);
1355}
1356
1357void noinline
1358ev_feed_signal_event (EV_P_ int signum)
1359{
1360 WL w;
1361
1362 if (expect_false (signum <= 0 || signum > EV_NSIG))
1363 return;
1364
1365 --signum;
1366
1367#if EV_MULTIPLICITY
1368 /* it is permissible to try to feed a signal to the wrong loop */
1369 /* or, likely more useful, feeding a signal nobody is waiting for */
1370
1371 if (expect_false (signals [signum].loop != EV_A))
1372 return;
1373#endif
1374
1375 signals [signum].pending = 0;
1376
1377 for (w = signals [signum].head; w; w = w->next)
1378 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1379}
1380
1381#if EV_USE_SIGNALFD
1382static void
1383sigfdcb (EV_P_ ev_io *iow, int revents)
1384{
1385 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1386
1387 for (;;)
1388 {
1389 ssize_t res = read (sigfd, si, sizeof (si));
1390
1391 /* not ISO-C, as res might be -1, but works with SuS */
1392 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1393 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1394
1395 if (res < (ssize_t)sizeof (si))
1396 break;
1397 }
1398}
1399#endif
1400
1401#endif
1402
1403/*****************************************************************************/
1404
1405#if EV_CHILD_ENABLE
1406static WL childs [EV_PID_HASHSIZE];
1407
699static struct ev_signal childev; 1408static ev_signal childev;
1409
1410#ifndef WIFCONTINUED
1411# define WIFCONTINUED(status) 0
1412#endif
1413
1414/* handle a single child status event */
1415inline_speed void
1416child_reap (EV_P_ int chain, int pid, int status)
1417{
1418 ev_child *w;
1419 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1420
1421 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1422 {
1423 if ((w->pid == pid || !w->pid)
1424 && (!traced || (w->flags & 1)))
1425 {
1426 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1427 w->rpid = pid;
1428 w->rstatus = status;
1429 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1430 }
1431 }
1432}
700 1433
701#ifndef WCONTINUED 1434#ifndef WCONTINUED
702# define WCONTINUED 0 1435# define WCONTINUED 0
703#endif 1436#endif
704 1437
1438/* called on sigchld etc., calls waitpid */
705static void 1439static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 1440childcb (EV_P_ ev_signal *sw, int revents)
722{ 1441{
723 int pid, status; 1442 int pid, status;
724 1443
1444 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1445 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 1446 if (!WCONTINUED
1447 || errno != EINVAL
1448 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1449 return;
1450
727 /* make sure we are called again until all childs have been reaped */ 1451 /* make sure we are called again until all children have been reaped */
1452 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1453 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 1454
730 child_reap (EV_A_ sw, pid, pid, status); 1455 child_reap (EV_A_ pid, pid, status);
1456 if ((EV_PID_HASHSIZE) > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1457 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 1458}
734 1459
735#endif 1460#endif
736 1461
737/*****************************************************************************/ 1462/*****************************************************************************/
763{ 1488{
764 return EV_VERSION_MINOR; 1489 return EV_VERSION_MINOR;
765} 1490}
766 1491
767/* return true if we are running with elevated privileges and should ignore env variables */ 1492/* return true if we are running with elevated privileges and should ignore env variables */
768static int 1493int inline_size
769enable_secure (void) 1494enable_secure (void)
770{ 1495{
771#ifdef _WIN32 1496#ifdef _WIN32
772 return 0; 1497 return 0;
773#else 1498#else
775 || getgid () != getegid (); 1500 || getgid () != getegid ();
776#endif 1501#endif
777} 1502}
778 1503
779unsigned int 1504unsigned int
1505ev_supported_backends (void)
1506{
1507 unsigned int flags = 0;
1508
1509 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1510 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1511 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1512 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1513 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1514
1515 return flags;
1516}
1517
1518unsigned int
1519ev_recommended_backends (void)
1520{
1521 unsigned int flags = ev_supported_backends ();
1522
1523#ifndef __NetBSD__
1524 /* kqueue is borked on everything but netbsd apparently */
1525 /* it usually doesn't work correctly on anything but sockets and pipes */
1526 flags &= ~EVBACKEND_KQUEUE;
1527#endif
1528#ifdef __APPLE__
1529 /* only select works correctly on that "unix-certified" platform */
1530 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1531 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1532#endif
1533#ifdef __FreeBSD__
1534 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1535#endif
1536
1537 return flags;
1538}
1539
1540unsigned int
1541ev_embeddable_backends (void)
1542{
1543 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1544
1545 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1546 /* please fix it and tell me how to detect the fix */
1547 flags &= ~EVBACKEND_EPOLL;
1548
1549 return flags;
1550}
1551
1552unsigned int
1553ev_backend (EV_P)
1554{
1555 return backend;
1556}
1557
1558#if EV_FEATURE_API
1559unsigned int
1560ev_iteration (EV_P)
1561{
1562 return loop_count;
1563}
1564
1565unsigned int
780ev_method (EV_P) 1566ev_depth (EV_P)
781{ 1567{
782 return method; 1568 return loop_depth;
783} 1569}
784 1570
785static void 1571void
1572ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1573{
1574 io_blocktime = interval;
1575}
1576
1577void
1578ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1579{
1580 timeout_blocktime = interval;
1581}
1582
1583void
1584ev_set_userdata (EV_P_ void *data)
1585{
1586 userdata = data;
1587}
1588
1589void *
1590ev_userdata (EV_P)
1591{
1592 return userdata;
1593}
1594
1595void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1596{
1597 invoke_cb = invoke_pending_cb;
1598}
1599
1600void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1601{
1602 release_cb = release;
1603 acquire_cb = acquire;
1604}
1605#endif
1606
1607/* initialise a loop structure, must be zero-initialised */
1608static void noinline
786loop_init (EV_P_ unsigned int flags) 1609loop_init (EV_P_ unsigned int flags)
787{ 1610{
788 if (!method) 1611 if (!backend)
789 { 1612 {
1613#if EV_USE_REALTIME
1614 if (!have_realtime)
1615 {
1616 struct timespec ts;
1617
1618 if (!clock_gettime (CLOCK_REALTIME, &ts))
1619 have_realtime = 1;
1620 }
1621#endif
1622
790#if EV_USE_MONOTONIC 1623#if EV_USE_MONOTONIC
1624 if (!have_monotonic)
791 { 1625 {
792 struct timespec ts; 1626 struct timespec ts;
1627
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1628 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
794 have_monotonic = 1; 1629 have_monotonic = 1;
795 } 1630 }
796#endif 1631#endif
797 1632
798 ev_rt_now = ev_time (); 1633 /* pid check not overridable via env */
799 mn_now = get_clock (); 1634#ifndef _WIN32
800 now_floor = mn_now; 1635 if (flags & EVFLAG_FORKCHECK)
801 rtmn_diff = ev_rt_now - mn_now; 1636 curpid = getpid ();
1637#endif
802 1638
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1639 if (!(flags & EVFLAG_NOENV)
1640 && !enable_secure ()
1641 && getenv ("LIBEV_FLAGS"))
804 flags = atoi (getenv ("LIBEV_FLAGS")); 1642 flags = atoi (getenv ("LIBEV_FLAGS"));
805 1643
1644 ev_rt_now = ev_time ();
1645 mn_now = get_clock ();
1646 now_floor = mn_now;
1647 rtmn_diff = ev_rt_now - mn_now;
1648#if EV_FEATURE_API
1649 invoke_cb = ev_invoke_pending;
1650#endif
1651
1652 io_blocktime = 0.;
1653 timeout_blocktime = 0.;
1654 backend = 0;
1655 backend_fd = -1;
1656 sig_pending = 0;
1657#if EV_ASYNC_ENABLE
1658 async_pending = 0;
1659#endif
1660#if EV_USE_INOTIFY
1661 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1662#endif
1663#if EV_USE_SIGNALFD
1664 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1665#endif
1666
806 if (!(flags & 0x0000ffff)) 1667 if (!(flags & 0x0000ffffU))
807 flags |= 0x0000ffff; 1668 flags |= ev_recommended_backends ();
808 1669
809 method = 0;
810#if EV_USE_PORT 1670#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1671 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
812#endif 1672#endif
813#if EV_USE_KQUEUE 1673#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1674 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
815#endif 1675#endif
816#if EV_USE_EPOLL 1676#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1677 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
818#endif 1678#endif
819#if EV_USE_POLL 1679#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1680 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
821#endif 1681#endif
822#if EV_USE_SELECT 1682#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1683 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
824#endif 1684#endif
825 1685
1686 ev_prepare_init (&pending_w, pendingcb);
1687
1688#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
826 ev_init (&sigev, sigcb); 1689 ev_init (&pipe_w, pipecb);
827 ev_set_priority (&sigev, EV_MAXPRI); 1690 ev_set_priority (&pipe_w, EV_MAXPRI);
1691#endif
828 } 1692 }
829} 1693}
830 1694
831static void 1695/* free up a loop structure */
1696static void noinline
832loop_destroy (EV_P) 1697loop_destroy (EV_P)
833{ 1698{
834 int i; 1699 int i;
835 1700
1701 if (ev_is_active (&pipe_w))
1702 {
1703 /*ev_ref (EV_A);*/
1704 /*ev_io_stop (EV_A_ &pipe_w);*/
1705
1706#if EV_USE_EVENTFD
1707 if (evfd >= 0)
1708 close (evfd);
1709#endif
1710
1711 if (evpipe [0] >= 0)
1712 {
1713 EV_WIN32_CLOSE_FD (evpipe [0]);
1714 EV_WIN32_CLOSE_FD (evpipe [1]);
1715 }
1716 }
1717
1718#if EV_USE_SIGNALFD
1719 if (ev_is_active (&sigfd_w))
1720 close (sigfd);
1721#endif
1722
1723#if EV_USE_INOTIFY
1724 if (fs_fd >= 0)
1725 close (fs_fd);
1726#endif
1727
1728 if (backend_fd >= 0)
1729 close (backend_fd);
1730
836#if EV_USE_PORT 1731#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1732 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
838#endif 1733#endif
839#if EV_USE_KQUEUE 1734#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1735 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
841#endif 1736#endif
842#if EV_USE_EPOLL 1737#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1738 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
844#endif 1739#endif
845#if EV_USE_POLL 1740#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1741 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
847#endif 1742#endif
848#if EV_USE_SELECT 1743#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1744 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
850#endif 1745#endif
851 1746
852 for (i = NUMPRI; i--; ) 1747 for (i = NUMPRI; i--; )
1748 {
853 array_free (pending, [i]); 1749 array_free (pending, [i]);
1750#if EV_IDLE_ENABLE
1751 array_free (idle, [i]);
1752#endif
1753 }
1754
1755 ev_free (anfds); anfds = 0; anfdmax = 0;
854 1756
855 /* have to use the microsoft-never-gets-it-right macro */ 1757 /* have to use the microsoft-never-gets-it-right macro */
1758 array_free (rfeed, EMPTY);
856 array_free (fdchange, EMPTY0); 1759 array_free (fdchange, EMPTY);
857 array_free (timer, EMPTY0); 1760 array_free (timer, EMPTY);
858#if EV_PERIODICS 1761#if EV_PERIODIC_ENABLE
859 array_free (periodic, EMPTY0); 1762 array_free (periodic, EMPTY);
860#endif 1763#endif
1764#if EV_FORK_ENABLE
861 array_free (idle, EMPTY0); 1765 array_free (fork, EMPTY);
1766#endif
862 array_free (prepare, EMPTY0); 1767 array_free (prepare, EMPTY);
863 array_free (check, EMPTY0); 1768 array_free (check, EMPTY);
1769#if EV_ASYNC_ENABLE
1770 array_free (async, EMPTY);
1771#endif
864 1772
865 method = 0; 1773 backend = 0;
866} 1774}
867 1775
868static void 1776#if EV_USE_INOTIFY
1777inline_size void infy_fork (EV_P);
1778#endif
1779
1780inline_size void
869loop_fork (EV_P) 1781loop_fork (EV_P)
870{ 1782{
871#if EV_USE_PORT 1783#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1784 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
873#endif 1785#endif
874#if EV_USE_KQUEUE 1786#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1787 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
876#endif 1788#endif
877#if EV_USE_EPOLL 1789#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1790 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
879#endif 1791#endif
1792#if EV_USE_INOTIFY
1793 infy_fork (EV_A);
1794#endif
880 1795
881 if (ev_is_active (&sigev)) 1796 if (ev_is_active (&pipe_w))
882 { 1797 {
883 /* default loop */ 1798 /* this "locks" the handlers against writing to the pipe */
1799 /* while we modify the fd vars */
1800 sig_pending = 1;
1801#if EV_ASYNC_ENABLE
1802 async_pending = 1;
1803#endif
884 1804
885 ev_ref (EV_A); 1805 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev); 1806 ev_io_stop (EV_A_ &pipe_w);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889 1807
890 while (pipe (sigpipe)) 1808#if EV_USE_EVENTFD
891 syserr ("(libev) error creating pipe"); 1809 if (evfd >= 0)
1810 close (evfd);
1811#endif
892 1812
1813 if (evpipe [0] >= 0)
1814 {
1815 EV_WIN32_CLOSE_FD (evpipe [0]);
1816 EV_WIN32_CLOSE_FD (evpipe [1]);
1817 }
1818
1819#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
893 siginit (EV_A); 1820 evpipe_init (EV_A);
1821 /* now iterate over everything, in case we missed something */
1822 pipecb (EV_A_ &pipe_w, EV_READ);
1823#endif
894 } 1824 }
895 1825
896 postfork = 0; 1826 postfork = 0;
897} 1827}
898 1828
899#if EV_MULTIPLICITY 1829#if EV_MULTIPLICITY
1830
900struct ev_loop * 1831struct ev_loop *
901ev_loop_new (unsigned int flags) 1832ev_loop_new (unsigned int flags)
902{ 1833{
903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1834 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
904 1835
905 memset (loop, 0, sizeof (struct ev_loop)); 1836 memset (EV_A, 0, sizeof (struct ev_loop));
906
907 loop_init (EV_A_ flags); 1837 loop_init (EV_A_ flags);
908 1838
909 if (ev_method (EV_A)) 1839 if (ev_backend (EV_A))
910 return loop; 1840 return EV_A;
911 1841
912 return 0; 1842 return 0;
913} 1843}
914 1844
915void 1845void
920} 1850}
921 1851
922void 1852void
923ev_loop_fork (EV_P) 1853ev_loop_fork (EV_P)
924{ 1854{
925 postfork = 1; 1855 postfork = 1; /* must be in line with ev_default_fork */
926} 1856}
1857#endif /* multiplicity */
927 1858
1859#if EV_VERIFY
1860static void noinline
1861verify_watcher (EV_P_ W w)
1862{
1863 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1864
1865 if (w->pending)
1866 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1867}
1868
1869static void noinline
1870verify_heap (EV_P_ ANHE *heap, int N)
1871{
1872 int i;
1873
1874 for (i = HEAP0; i < N + HEAP0; ++i)
1875 {
1876 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1877 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1878 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1879
1880 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1881 }
1882}
1883
1884static void noinline
1885array_verify (EV_P_ W *ws, int cnt)
1886{
1887 while (cnt--)
1888 {
1889 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1890 verify_watcher (EV_A_ ws [cnt]);
1891 }
1892}
1893#endif
1894
1895#if EV_FEATURE_API
1896void
1897ev_verify (EV_P)
1898{
1899#if EV_VERIFY
1900 int i;
1901 WL w;
1902
1903 assert (activecnt >= -1);
1904
1905 assert (fdchangemax >= fdchangecnt);
1906 for (i = 0; i < fdchangecnt; ++i)
1907 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1908
1909 assert (anfdmax >= 0);
1910 for (i = 0; i < anfdmax; ++i)
1911 for (w = anfds [i].head; w; w = w->next)
1912 {
1913 verify_watcher (EV_A_ (W)w);
1914 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1915 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1916 }
1917
1918 assert (timermax >= timercnt);
1919 verify_heap (EV_A_ timers, timercnt);
1920
1921#if EV_PERIODIC_ENABLE
1922 assert (periodicmax >= periodiccnt);
1923 verify_heap (EV_A_ periodics, periodiccnt);
1924#endif
1925
1926 for (i = NUMPRI; i--; )
1927 {
1928 assert (pendingmax [i] >= pendingcnt [i]);
1929#if EV_IDLE_ENABLE
1930 assert (idleall >= 0);
1931 assert (idlemax [i] >= idlecnt [i]);
1932 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1933#endif
1934 }
1935
1936#if EV_FORK_ENABLE
1937 assert (forkmax >= forkcnt);
1938 array_verify (EV_A_ (W *)forks, forkcnt);
1939#endif
1940
1941#if EV_ASYNC_ENABLE
1942 assert (asyncmax >= asynccnt);
1943 array_verify (EV_A_ (W *)asyncs, asynccnt);
1944#endif
1945
1946#if EV_PREPARE_ENABLE
1947 assert (preparemax >= preparecnt);
1948 array_verify (EV_A_ (W *)prepares, preparecnt);
1949#endif
1950
1951#if EV_CHECK_ENABLE
1952 assert (checkmax >= checkcnt);
1953 array_verify (EV_A_ (W *)checks, checkcnt);
1954#endif
1955
1956# if 0
1957#if EV_CHILD_ENABLE
1958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1959 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1960#endif
1961# endif
1962#endif
1963}
928#endif 1964#endif
929 1965
930#if EV_MULTIPLICITY 1966#if EV_MULTIPLICITY
931struct ev_loop * 1967struct ev_loop *
932ev_default_loop_init (unsigned int flags) 1968ev_default_loop_init (unsigned int flags)
933#else 1969#else
934int 1970int
935ev_default_loop (unsigned int flags) 1971ev_default_loop (unsigned int flags)
936#endif 1972#endif
937{ 1973{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 1974 if (!ev_default_loop_ptr)
943 { 1975 {
944#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1977 EV_P = ev_default_loop_ptr = &default_loop_struct;
946#else 1978#else
947 ev_default_loop_ptr = 1; 1979 ev_default_loop_ptr = 1;
948#endif 1980#endif
949 1981
950 loop_init (EV_A_ flags); 1982 loop_init (EV_A_ flags);
951 1983
952 if (ev_method (EV_A)) 1984 if (ev_backend (EV_A))
953 { 1985 {
954 siginit (EV_A); 1986#if EV_CHILD_ENABLE
955
956#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 1987 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 1988 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 1989 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1990 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#endif 1991#endif
969 1999
970void 2000void
971ev_default_destroy (void) 2001ev_default_destroy (void)
972{ 2002{
973#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
974 struct ev_loop *loop = ev_default_loop_ptr; 2004 EV_P = ev_default_loop_ptr;
975#endif 2005#endif
976 2006
977#ifndef _WIN32 2007 ev_default_loop_ptr = 0;
2008
2009#if EV_CHILD_ENABLE
978 ev_ref (EV_A); /* child watcher */ 2010 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev); 2011 ev_signal_stop (EV_A_ &childev);
980#endif 2012#endif
981 2013
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A); 2014 loop_destroy (EV_A);
989} 2015}
990 2016
991void 2017void
992ev_default_fork (void) 2018ev_default_fork (void)
993{ 2019{
994#if EV_MULTIPLICITY 2020#if EV_MULTIPLICITY
995 struct ev_loop *loop = ev_default_loop_ptr; 2021 EV_P = ev_default_loop_ptr;
996#endif 2022#endif
997 2023
998 if (method) 2024 postfork = 1; /* must be in line with ev_loop_fork */
999 postfork = 1;
1000} 2025}
1001 2026
1002/*****************************************************************************/ 2027/*****************************************************************************/
1003 2028
1004static int 2029void
1005any_pending (EV_P) 2030ev_invoke (EV_P_ void *w, int revents)
2031{
2032 EV_CB_INVOKE ((W)w, revents);
2033}
2034
2035unsigned int
2036ev_pending_count (EV_P)
1006{ 2037{
1007 int pri; 2038 int pri;
2039 unsigned int count = 0;
1008 2040
1009 for (pri = NUMPRI; pri--; ) 2041 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri]) 2042 count += pendingcnt [pri];
1011 return 1;
1012 2043
1013 return 0; 2044 return count;
1014} 2045}
1015 2046
1016inline void 2047void noinline
1017call_pending (EV_P) 2048ev_invoke_pending (EV_P)
1018{ 2049{
1019 int pri; 2050 int pri;
1020 2051
1021 for (pri = NUMPRI; pri--; ) 2052 for (pri = NUMPRI; pri--; )
1022 while (pendingcnt [pri]) 2053 while (pendingcnt [pri])
1023 { 2054 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2055 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 2056
1026 if (expect_true (p->w)) 2057 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1027 { 2058 /* ^ this is no longer true, as pending_w could be here */
2059
1028 p->w->pending = 0; 2060 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 2061 EV_CB_INVOKE (p->w, p->events);
1030 } 2062 EV_FREQUENT_CHECK;
1031 } 2063 }
1032} 2064}
1033 2065
2066#if EV_IDLE_ENABLE
2067/* make idle watchers pending. this handles the "call-idle */
2068/* only when higher priorities are idle" logic */
1034inline void 2069inline_size void
2070idle_reify (EV_P)
2071{
2072 if (expect_false (idleall))
2073 {
2074 int pri;
2075
2076 for (pri = NUMPRI; pri--; )
2077 {
2078 if (pendingcnt [pri])
2079 break;
2080
2081 if (idlecnt [pri])
2082 {
2083 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2084 break;
2085 }
2086 }
2087 }
2088}
2089#endif
2090
2091/* make timers pending */
2092inline_size void
1035timers_reify (EV_P) 2093timers_reify (EV_P)
1036{ 2094{
2095 EV_FREQUENT_CHECK;
2096
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 2097 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 2098 {
1039 struct ev_timer *w = timers [0]; 2099 do
1040
1041 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1042
1043 /* first reschedule or stop timer */
1044 if (w->repeat)
1045 { 2100 {
2101 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2102
2103 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2104
2105 /* first reschedule or stop timer */
2106 if (w->repeat)
2107 {
2108 ev_at (w) += w->repeat;
2109 if (ev_at (w) < mn_now)
2110 ev_at (w) = mn_now;
2111
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2112 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 2113
1048 ((WT)w)->at += w->repeat; 2114 ANHE_at_cache (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 2115 downheap (timers, timercnt, HEAP0);
2116 }
2117 else
2118 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
1053 } 2122 }
1054 else 2123 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 2124
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2125 feed_reverse_done (EV_A_ EV_TIMER);
1058 } 2126 }
1059} 2127}
1060 2128
1061#if EV_PERIODICS 2129#if EV_PERIODIC_ENABLE
2130/* make periodics pending */
1062inline void 2131inline_size void
1063periodics_reify (EV_P) 2132periodics_reify (EV_P)
1064{ 2133{
2134 EV_FREQUENT_CHECK;
2135
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2136 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 2137 {
1067 struct ev_periodic *w = periodics [0]; 2138 int feed_count = 0;
1068 2139
2140 do
2141 {
2142 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2143
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2144 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 2145
1071 /* first reschedule or stop timer */ 2146 /* first reschedule or stop timer */
2147 if (w->reschedule_cb)
2148 {
2149 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2150
2151 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2152
2153 ANHE_at_cache (periodics [HEAP0]);
2154 downheap (periodics, periodiccnt, HEAP0);
2155 }
2156 else if (w->interval)
2157 {
2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2159 /* if next trigger time is not sufficiently in the future, put it there */
2160 /* this might happen because of floating point inexactness */
2161 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2162 {
2163 ev_at (w) += w->interval;
2164
2165 /* if interval is unreasonably low we might still have a time in the past */
2166 /* so correct this. this will make the periodic very inexact, but the user */
2167 /* has effectively asked to get triggered more often than possible */
2168 if (ev_at (w) < ev_rt_now)
2169 ev_at (w) = ev_rt_now;
2170 }
2171
2172 ANHE_at_cache (periodics [HEAP0]);
2173 downheap (periodics, periodiccnt, HEAP0);
2174 }
2175 else
2176 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2177
2178 EV_FREQUENT_CHECK;
2179 feed_reverse (EV_A_ (W)w);
2180 }
2181 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2182
2183 feed_reverse_done (EV_A_ EV_PERIODIC);
2184 }
2185}
2186
2187/* simply recalculate all periodics */
2188/* TODO: maybe ensure that at least one event happens when jumping forward? */
2189static void noinline
2190periodics_reschedule (EV_P)
2191{
2192 int i;
2193
2194 /* adjust periodics after time jump */
2195 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2196 {
2197 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2198
1072 if (w->reschedule_cb) 2199 if (w->reschedule_cb)
2200 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2201 else if (w->interval)
2202 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2203
2204 ANHE_at_cache (periodics [i]);
2205 }
2206
2207 reheap (periodics, periodiccnt);
2208}
2209#endif
2210
2211/* adjust all timers by a given offset */
2212static void noinline
2213timers_reschedule (EV_P_ ev_tstamp adjust)
2214{
2215 int i;
2216
2217 for (i = 0; i < timercnt; ++i)
2218 {
2219 ANHE *he = timers + i + HEAP0;
2220 ANHE_w (*he)->at += adjust;
2221 ANHE_at_cache (*he);
2222 }
2223}
2224
2225/* fetch new monotonic and realtime times from the kernel */
2226/* also detect if there was a timejump, and act accordingly */
2227inline_speed void
2228time_update (EV_P_ ev_tstamp max_block)
2229{
2230#if EV_USE_MONOTONIC
2231 if (expect_true (have_monotonic))
2232 {
2233 int i;
2234 ev_tstamp odiff = rtmn_diff;
2235
2236 mn_now = get_clock ();
2237
2238 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2239 /* interpolate in the meantime */
2240 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1073 { 2241 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2242 ev_rt_now = rtmn_diff + mn_now;
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2243 return;
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 } 2244 }
1078 else if (w->interval)
1079 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1082 downheap ((WT *)periodics, periodiccnt, 0);
1083 }
1084 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 2245
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 }
1089}
1090
1091static void
1092periodics_reschedule (EV_P)
1093{
1094 int i;
1095
1096 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i)
1098 {
1099 struct ev_periodic *w = periodics [i];
1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock ();
1117
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 {
1120 ev_rt_now = rtmn_diff + mn_now;
1121 return 0;
1122 }
1123 else
1124 {
1125 now_floor = mn_now; 2246 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 2247 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 2248
1131inline void 2249 /* loop a few times, before making important decisions.
1132time_update (EV_P) 2250 * on the choice of "4": one iteration isn't enough,
1133{ 2251 * in case we get preempted during the calls to
1134 int i; 2252 * ev_time and get_clock. a second call is almost guaranteed
1135 2253 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 2254 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 2255 * in the unlikely event of having been preempted here.
1138 { 2256 */
1139 if (time_update_monotonic (EV_A)) 2257 for (i = 4; --i; )
1140 { 2258 {
1141 ev_tstamp odiff = rtmn_diff;
1142
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1144 {
1145 rtmn_diff = ev_rt_now - mn_now; 2259 rtmn_diff = ev_rt_now - mn_now;
1146 2260
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2261 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1148 return; /* all is well */ 2262 return; /* all is well */
1149 2263
1150 ev_rt_now = ev_time (); 2264 ev_rt_now = ev_time ();
1151 mn_now = get_clock (); 2265 mn_now = get_clock ();
1152 now_floor = mn_now; 2266 now_floor = mn_now;
1153 } 2267 }
1154 2268
2269 /* no timer adjustment, as the monotonic clock doesn't jump */
2270 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1155# if EV_PERIODICS 2271# if EV_PERIODIC_ENABLE
2272 periodics_reschedule (EV_A);
2273# endif
2274 }
2275 else
2276#endif
2277 {
2278 ev_rt_now = ev_time ();
2279
2280 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2281 {
2282 /* adjust timers. this is easy, as the offset is the same for all of them */
2283 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2284#if EV_PERIODIC_ENABLE
1156 periodics_reschedule (EV_A); 2285 periodics_reschedule (EV_A);
1157# endif 2286#endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 2287 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 2288
1178 mn_now = ev_rt_now; 2289 mn_now = ev_rt_now;
1179 } 2290 }
1180} 2291}
1181 2292
1182void 2293void
1183ev_ref (EV_P)
1184{
1185 ++activecnt;
1186}
1187
1188void
1189ev_unref (EV_P)
1190{
1191 --activecnt;
1192}
1193
1194static int loop_done;
1195
1196void
1197ev_loop (EV_P_ int flags) 2294ev_loop (EV_P_ int flags)
1198{ 2295{
1199 double block; 2296#if EV_FEATURE_API
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2297 ++loop_depth;
2298#endif
1201 2299
1202 while (activecnt) 2300 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2301
2302 loop_done = EVUNLOOP_CANCEL;
2303
2304 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2305
2306 do
1203 { 2307 {
2308#if EV_VERIFY >= 2
2309 ev_verify (EV_A);
2310#endif
2311
2312#ifndef _WIN32
2313 if (expect_false (curpid)) /* penalise the forking check even more */
2314 if (expect_false (getpid () != curpid))
2315 {
2316 curpid = getpid ();
2317 postfork = 1;
2318 }
2319#endif
2320
2321#if EV_FORK_ENABLE
2322 /* we might have forked, so queue fork handlers */
2323 if (expect_false (postfork))
2324 if (forkcnt)
2325 {
2326 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2327 EV_INVOKE_PENDING;
2328 }
2329#endif
2330
2331#if EV_PREPARE_ENABLE
1204 /* queue check watchers (and execute them) */ 2332 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 2333 if (expect_false (preparecnt))
1206 { 2334 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2335 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 2336 EV_INVOKE_PENDING;
1209 } 2337 }
2338#endif
2339
2340 if (expect_false (loop_done))
2341 break;
1210 2342
1211 /* we might have forked, so reify kernel state if necessary */ 2343 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 2344 if (expect_false (postfork))
1213 loop_fork (EV_A); 2345 loop_fork (EV_A);
1214 2346
1215 /* update fd-related kernel structures */ 2347 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 2348 fd_reify (EV_A);
1217 2349
1218 /* calculate blocking time */ 2350 /* calculate blocking time */
2351 {
2352 ev_tstamp waittime = 0.;
2353 ev_tstamp sleeptime = 0.;
1219 2354
1220 /* we only need this for !monotonic clock or timers, but as we basically 2355 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1221 always have timers, we just calculate it always */
1222#if EV_USE_MONOTONIC
1223 if (expect_true (have_monotonic))
1224 time_update_monotonic (EV_A);
1225 else
1226#endif
1227 { 2356 {
1228 ev_rt_now = ev_time (); 2357 /* remember old timestamp for io_blocktime calculation */
1229 mn_now = ev_rt_now; 2358 ev_tstamp prev_mn_now = mn_now;
1230 }
1231 2359
1232 if (flags & EVLOOP_NONBLOCK || idlecnt) 2360 /* update time to cancel out callback processing overhead */
1233 block = 0.; 2361 time_update (EV_A_ 1e100);
1234 else 2362
1235 {
1236 block = MAX_BLOCKTIME; 2363 waittime = MAX_BLOCKTIME;
1237 2364
1238 if (timercnt) 2365 if (timercnt)
1239 { 2366 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2367 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1241 if (block > to) block = to; 2368 if (waittime > to) waittime = to;
1242 } 2369 }
1243 2370
1244#if EV_PERIODICS 2371#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 2372 if (periodiccnt)
1246 { 2373 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2374 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1248 if (block > to) block = to; 2375 if (waittime > to) waittime = to;
1249 } 2376 }
1250#endif 2377#endif
1251 2378
1252 if (expect_false (block < 0.)) block = 0.; 2379 /* don't let timeouts decrease the waittime below timeout_blocktime */
2380 if (expect_false (waittime < timeout_blocktime))
2381 waittime = timeout_blocktime;
2382
2383 /* extra check because io_blocktime is commonly 0 */
2384 if (expect_false (io_blocktime))
2385 {
2386 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2387
2388 if (sleeptime > waittime - backend_fudge)
2389 sleeptime = waittime - backend_fudge;
2390
2391 if (expect_true (sleeptime > 0.))
2392 {
2393 ev_sleep (sleeptime);
2394 waittime -= sleeptime;
2395 }
2396 }
1253 } 2397 }
1254 2398
1255 method_poll (EV_A_ block); 2399#if EV_FEATURE_API
2400 ++loop_count;
2401#endif
2402 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2403 backend_poll (EV_A_ waittime);
2404 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1256 2405
1257 /* update ev_rt_now, do magic */ 2406 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 2407 time_update (EV_A_ waittime + sleeptime);
2408 }
1259 2409
1260 /* queue pending timers and reschedule them */ 2410 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 2411 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 2412#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 2413 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 2414#endif
1265 2415
2416#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 2417 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 2418 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2419#endif
1269 2420
2421#if EV_CHECK_ENABLE
1270 /* queue check watchers, to be executed first */ 2422 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 2423 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2424 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2425#endif
1273 2426
1274 call_pending (EV_A); 2427 EV_INVOKE_PENDING;
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 2428 }
2429 while (expect_true (
2430 activecnt
2431 && !loop_done
2432 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2433 ));
1279 2434
1280 if (loop_done != 2) 2435 if (loop_done == EVUNLOOP_ONE)
1281 loop_done = 0; 2436 loop_done = EVUNLOOP_CANCEL;
2437
2438#if EV_FEATURE_API
2439 --loop_depth;
2440#endif
1282} 2441}
1283 2442
1284void 2443void
1285ev_unloop (EV_P_ int how) 2444ev_unloop (EV_P_ int how)
1286{ 2445{
1287 loop_done = how; 2446 loop_done = how;
1288} 2447}
1289 2448
2449void
2450ev_ref (EV_P)
2451{
2452 ++activecnt;
2453}
2454
2455void
2456ev_unref (EV_P)
2457{
2458 --activecnt;
2459}
2460
2461void
2462ev_now_update (EV_P)
2463{
2464 time_update (EV_A_ 1e100);
2465}
2466
2467void
2468ev_suspend (EV_P)
2469{
2470 ev_now_update (EV_A);
2471}
2472
2473void
2474ev_resume (EV_P)
2475{
2476 ev_tstamp mn_prev = mn_now;
2477
2478 ev_now_update (EV_A);
2479 timers_reschedule (EV_A_ mn_now - mn_prev);
2480#if EV_PERIODIC_ENABLE
2481 /* TODO: really do this? */
2482 periodics_reschedule (EV_A);
2483#endif
2484}
2485
1290/*****************************************************************************/ 2486/*****************************************************************************/
2487/* singly-linked list management, used when the expected list length is short */
1291 2488
1292inline void 2489inline_size void
1293wlist_add (WL *head, WL elem) 2490wlist_add (WL *head, WL elem)
1294{ 2491{
1295 elem->next = *head; 2492 elem->next = *head;
1296 *head = elem; 2493 *head = elem;
1297} 2494}
1298 2495
1299inline void 2496inline_size void
1300wlist_del (WL *head, WL elem) 2497wlist_del (WL *head, WL elem)
1301{ 2498{
1302 while (*head) 2499 while (*head)
1303 { 2500 {
1304 if (*head == elem) 2501 if (expect_true (*head == elem))
1305 { 2502 {
1306 *head = elem->next; 2503 *head = elem->next;
1307 return; 2504 break;
1308 } 2505 }
1309 2506
1310 head = &(*head)->next; 2507 head = &(*head)->next;
1311 } 2508 }
1312} 2509}
1313 2510
2511/* internal, faster, version of ev_clear_pending */
1314inline void 2512inline_speed void
1315ev_clear_pending (EV_P_ W w) 2513clear_pending (EV_P_ W w)
1316{ 2514{
1317 if (w->pending) 2515 if (w->pending)
1318 { 2516 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2517 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1320 w->pending = 0; 2518 w->pending = 0;
1321 } 2519 }
1322} 2520}
1323 2521
2522int
2523ev_clear_pending (EV_P_ void *w)
2524{
2525 W w_ = (W)w;
2526 int pending = w_->pending;
2527
2528 if (expect_true (pending))
2529 {
2530 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2531 p->w = (W)&pending_w;
2532 w_->pending = 0;
2533 return p->events;
2534 }
2535 else
2536 return 0;
2537}
2538
1324inline void 2539inline_size void
2540pri_adjust (EV_P_ W w)
2541{
2542 int pri = ev_priority (w);
2543 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2544 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2545 ev_set_priority (w, pri);
2546}
2547
2548inline_speed void
1325ev_start (EV_P_ W w, int active) 2549ev_start (EV_P_ W w, int active)
1326{ 2550{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2551 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 2552 w->active = active;
1331 ev_ref (EV_A); 2553 ev_ref (EV_A);
1332} 2554}
1333 2555
1334inline void 2556inline_size void
1335ev_stop (EV_P_ W w) 2557ev_stop (EV_P_ W w)
1336{ 2558{
1337 ev_unref (EV_A); 2559 ev_unref (EV_A);
1338 w->active = 0; 2560 w->active = 0;
1339} 2561}
1340 2562
1341/*****************************************************************************/ 2563/*****************************************************************************/
1342 2564
1343void 2565void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 2566ev_io_start (EV_P_ ev_io *w)
1345{ 2567{
1346 int fd = w->fd; 2568 int fd = w->fd;
1347 2569
1348 if (expect_false (ev_is_active (w))) 2570 if (expect_false (ev_is_active (w)))
1349 return; 2571 return;
1350 2572
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 2573 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2574 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2575
2576 EV_FREQUENT_CHECK;
1352 2577
1353 ev_start (EV_A_ (W)w, 1); 2578 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2579 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2580 wlist_add (&anfds[fd].head, (WL)w);
1356 2581
1357 fd_change (EV_A_ fd); 2582 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1358} 2583 w->events &= ~EV__IOFDSET;
1359 2584
1360void 2585 EV_FREQUENT_CHECK;
2586}
2587
2588void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 2589ev_io_stop (EV_P_ ev_io *w)
1362{ 2590{
1363 ev_clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
1365 return; 2593 return;
1366 2594
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2595 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 2596
2597 EV_FREQUENT_CHECK;
2598
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2599 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 2600 ev_stop (EV_A_ (W)w);
1371 2601
1372 fd_change (EV_A_ w->fd); 2602 fd_change (EV_A_ w->fd, 1);
1373}
1374 2603
1375void 2604 EV_FREQUENT_CHECK;
2605}
2606
2607void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 2608ev_timer_start (EV_P_ ev_timer *w)
1377{ 2609{
1378 if (expect_false (ev_is_active (w))) 2610 if (expect_false (ev_is_active (w)))
1379 return; 2611 return;
1380 2612
1381 ((WT)w)->at += mn_now; 2613 ev_at (w) += mn_now;
1382 2614
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2615 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 2616
2617 EV_FREQUENT_CHECK;
2618
2619 ++timercnt;
1385 ev_start (EV_A_ (W)w, ++timercnt); 2620 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2621 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 2622 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 2623 ANHE_at_cache (timers [ev_active (w)]);
2624 upheap (timers, ev_active (w));
1389 2625
2626 EV_FREQUENT_CHECK;
2627
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2628 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 2629}
1392 2630
1393void 2631void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 2632ev_timer_stop (EV_P_ ev_timer *w)
1395{ 2633{
1396 ev_clear_pending (EV_A_ (W)w); 2634 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 2635 if (expect_false (!ev_is_active (w)))
1398 return; 2636 return;
1399 2637
2638 EV_FREQUENT_CHECK;
2639
2640 {
2641 int active = ev_active (w);
2642
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2643 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 2644
2645 --timercnt;
2646
1402 if (expect_true (((W)w)->active < timercnt--)) 2647 if (expect_true (active < timercnt + HEAP0))
1403 { 2648 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 2649 timers [active] = timers [timercnt + HEAP0];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2650 adjustheap (timers, timercnt, active);
1406 } 2651 }
2652 }
1407 2653
1408 ((WT)w)->at -= mn_now; 2654 ev_at (w) -= mn_now;
1409 2655
1410 ev_stop (EV_A_ (W)w); 2656 ev_stop (EV_A_ (W)w);
1411}
1412 2657
1413void 2658 EV_FREQUENT_CHECK;
2659}
2660
2661void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 2662ev_timer_again (EV_P_ ev_timer *w)
1415{ 2663{
2664 EV_FREQUENT_CHECK;
2665
1416 if (ev_is_active (w)) 2666 if (ev_is_active (w))
1417 { 2667 {
1418 if (w->repeat) 2668 if (w->repeat)
1419 { 2669 {
1420 ((WT)w)->at = mn_now + w->repeat; 2670 ev_at (w) = mn_now + w->repeat;
2671 ANHE_at_cache (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2672 adjustheap (timers, timercnt, ev_active (w));
1422 } 2673 }
1423 else 2674 else
1424 ev_timer_stop (EV_A_ w); 2675 ev_timer_stop (EV_A_ w);
1425 } 2676 }
1426 else if (w->repeat) 2677 else if (w->repeat)
1427 { 2678 {
1428 w->at = w->repeat; 2679 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 2680 ev_timer_start (EV_A_ w);
1430 } 2681 }
1431}
1432 2682
2683 EV_FREQUENT_CHECK;
2684}
2685
2686ev_tstamp
2687ev_timer_remaining (EV_P_ ev_timer *w)
2688{
2689 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2690}
2691
1433#if EV_PERIODICS 2692#if EV_PERIODIC_ENABLE
1434void 2693void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 2694ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 2695{
1437 if (expect_false (ev_is_active (w))) 2696 if (expect_false (ev_is_active (w)))
1438 return; 2697 return;
1439 2698
1440 if (w->reschedule_cb) 2699 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2700 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 2701 else if (w->interval)
1443 { 2702 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2703 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 2704 /* this formula differs from the one in periodic_reify because we do not always round up */
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2705 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1447 } 2706 }
2707 else
2708 ev_at (w) = w->offset;
1448 2709
2710 EV_FREQUENT_CHECK;
2711
2712 ++periodiccnt;
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 2713 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2714 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 2715 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 2716 ANHE_at_cache (periodics [ev_active (w)]);
2717 upheap (periodics, ev_active (w));
1453 2718
2719 EV_FREQUENT_CHECK;
2720
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2721 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 2722}
1456 2723
1457void 2724void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 2725ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 2726{
1460 ev_clear_pending (EV_A_ (W)w); 2727 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2728 if (expect_false (!ev_is_active (w)))
1462 return; 2729 return;
1463 2730
2731 EV_FREQUENT_CHECK;
2732
2733 {
2734 int active = ev_active (w);
2735
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2736 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 2737
2738 --periodiccnt;
2739
1466 if (expect_true (((W)w)->active < periodiccnt--)) 2740 if (expect_true (active < periodiccnt + HEAP0))
1467 { 2741 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2742 periodics [active] = periodics [periodiccnt + HEAP0];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2743 adjustheap (periodics, periodiccnt, active);
1470 } 2744 }
2745 }
1471 2746
1472 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
1473}
1474 2748
1475void 2749 EV_FREQUENT_CHECK;
2750}
2751
2752void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 2753ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 2754{
1478 /* TODO: use adjustheap and recalculation */ 2755 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 2756 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 2757 ev_periodic_start (EV_A_ w);
1481} 2758}
1482#endif 2759#endif
1483 2760
1484void 2761#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 2762# define SA_RESTART 0
2763#endif
2764
2765#if EV_SIGNAL_ENABLE
2766
2767void noinline
2768ev_signal_start (EV_P_ ev_signal *w)
1486{ 2769{
1487 if (expect_false (ev_is_active (w))) 2770 if (expect_false (ev_is_active (w)))
1488 return; 2771 return;
1489 2772
2773 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2774
2775#if EV_MULTIPLICITY
2776 assert (("libev: a signal must not be attached to two different loops",
2777 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2778
2779 signals [w->signum - 1].loop = EV_A;
2780#endif
2781
2782 EV_FREQUENT_CHECK;
2783
2784#if EV_USE_SIGNALFD
2785 if (sigfd == -2)
2786 {
2787 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2788 if (sigfd < 0 && errno == EINVAL)
2789 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2790
2791 if (sigfd >= 0)
2792 {
2793 fd_intern (sigfd); /* doing it twice will not hurt */
2794
2795 sigemptyset (&sigfd_set);
2796
2797 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2798 ev_set_priority (&sigfd_w, EV_MAXPRI);
2799 ev_io_start (EV_A_ &sigfd_w);
2800 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2801 }
2802 }
2803
2804 if (sigfd >= 0)
2805 {
2806 /* TODO: check .head */
2807 sigaddset (&sigfd_set, w->signum);
2808 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2809
2810 signalfd (sigfd, &sigfd_set, 0);
2811 }
2812#endif
2813
1490 ev_start (EV_A_ (W)w, ++idlecnt); 2814 ev_start (EV_A_ (W)w, 1);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2815 wlist_add (&signals [w->signum - 1].head, (WL)w);
1492 idles [idlecnt - 1] = w;
1493}
1494 2816
1495void 2817 if (!((WL)w)->next)
1496ev_idle_stop (EV_P_ struct ev_idle *w) 2818# if EV_USE_SIGNALFD
2819 if (sigfd < 0) /*TODO*/
2820# endif
2821 {
2822# ifdef _WIN32
2823 evpipe_init (EV_A);
2824
2825 signal (w->signum, ev_sighandler);
2826# else
2827 struct sigaction sa;
2828
2829 evpipe_init (EV_A);
2830
2831 sa.sa_handler = ev_sighandler;
2832 sigfillset (&sa.sa_mask);
2833 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2834 sigaction (w->signum, &sa, 0);
2835
2836 sigemptyset (&sa.sa_mask);
2837 sigaddset (&sa.sa_mask, w->signum);
2838 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2839#endif
2840 }
2841
2842 EV_FREQUENT_CHECK;
2843}
2844
2845void noinline
2846ev_signal_stop (EV_P_ ev_signal *w)
1497{ 2847{
1498 ev_clear_pending (EV_A_ (W)w); 2848 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 2849 if (expect_false (!ev_is_active (w)))
1500 return; 2850 return;
1501 2851
1502 idles [((W)w)->active - 1] = idles [--idlecnt]; 2852 EV_FREQUENT_CHECK;
2853
2854 wlist_del (&signals [w->signum - 1].head, (WL)w);
1503 ev_stop (EV_A_ (W)w); 2855 ev_stop (EV_A_ (W)w);
1504}
1505 2856
2857 if (!signals [w->signum - 1].head)
2858 {
2859#if EV_MULTIPLICITY
2860 signals [w->signum - 1].loop = 0; /* unattach from signal */
2861#endif
2862#if EV_USE_SIGNALFD
2863 if (sigfd >= 0)
2864 {
2865 sigset_t ss;
2866
2867 sigemptyset (&ss);
2868 sigaddset (&ss, w->signum);
2869 sigdelset (&sigfd_set, w->signum);
2870
2871 signalfd (sigfd, &sigfd_set, 0);
2872 sigprocmask (SIG_UNBLOCK, &ss, 0);
2873 }
2874 else
2875#endif
2876 signal (w->signum, SIG_DFL);
2877 }
2878
2879 EV_FREQUENT_CHECK;
2880}
2881
2882#endif
2883
2884#if EV_CHILD_ENABLE
2885
1506void 2886void
1507ev_prepare_start (EV_P_ struct ev_prepare *w) 2887ev_child_start (EV_P_ ev_child *w)
1508{ 2888{
2889#if EV_MULTIPLICITY
2890 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2891#endif
1509 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
1510 return; 2893 return;
1511 2894
2895 EV_FREQUENT_CHECK;
2896
1512 ev_start (EV_A_ (W)w, ++preparecnt); 2897 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2898 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1514 prepares [preparecnt - 1] = w;
1515}
1516 2899
2900 EV_FREQUENT_CHECK;
2901}
2902
1517void 2903void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w) 2904ev_child_stop (EV_P_ ev_child *w)
1519{ 2905{
1520 ev_clear_pending (EV_A_ (W)w); 2906 clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w))) 2907 if (expect_false (!ev_is_active (w)))
1522 return; 2908 return;
1523 2909
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2910 EV_FREQUENT_CHECK;
2911
2912 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1525 ev_stop (EV_A_ (W)w); 2913 ev_stop (EV_A_ (W)w);
1526}
1527 2914
2915 EV_FREQUENT_CHECK;
2916}
2917
2918#endif
2919
2920#if EV_STAT_ENABLE
2921
2922# ifdef _WIN32
2923# undef lstat
2924# define lstat(a,b) _stati64 (a,b)
2925# endif
2926
2927#define DEF_STAT_INTERVAL 5.0074891
2928#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2929#define MIN_STAT_INTERVAL 0.1074891
2930
2931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2932
2933#if EV_USE_INOTIFY
2934
2935/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2936# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2937
2938static void noinline
2939infy_add (EV_P_ ev_stat *w)
2940{
2941 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2942
2943 if (w->wd >= 0)
2944 {
2945 struct statfs sfs;
2946
2947 /* now local changes will be tracked by inotify, but remote changes won't */
2948 /* unless the filesystem is known to be local, we therefore still poll */
2949 /* also do poll on <2.6.25, but with normal frequency */
2950
2951 if (!fs_2625)
2952 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2953 else if (!statfs (w->path, &sfs)
2954 && (sfs.f_type == 0x1373 /* devfs */
2955 || sfs.f_type == 0xEF53 /* ext2/3 */
2956 || sfs.f_type == 0x3153464a /* jfs */
2957 || sfs.f_type == 0x52654973 /* reiser3 */
2958 || sfs.f_type == 0x01021994 /* tempfs */
2959 || sfs.f_type == 0x58465342 /* xfs */))
2960 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2961 else
2962 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2963 }
2964 else
2965 {
2966 /* can't use inotify, continue to stat */
2967 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2968
2969 /* if path is not there, monitor some parent directory for speedup hints */
2970 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2971 /* but an efficiency issue only */
2972 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2973 {
2974 char path [4096];
2975 strcpy (path, w->path);
2976
2977 do
2978 {
2979 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2980 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2981
2982 char *pend = strrchr (path, '/');
2983
2984 if (!pend || pend == path)
2985 break;
2986
2987 *pend = 0;
2988 w->wd = inotify_add_watch (fs_fd, path, mask);
2989 }
2990 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2991 }
2992 }
2993
2994 if (w->wd >= 0)
2995 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2996
2997 /* now re-arm timer, if required */
2998 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2999 ev_timer_again (EV_A_ &w->timer);
3000 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3001}
3002
3003static void noinline
3004infy_del (EV_P_ ev_stat *w)
3005{
3006 int slot;
3007 int wd = w->wd;
3008
3009 if (wd < 0)
3010 return;
3011
3012 w->wd = -2;
3013 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3014 wlist_del (&fs_hash [slot].head, (WL)w);
3015
3016 /* remove this watcher, if others are watching it, they will rearm */
3017 inotify_rm_watch (fs_fd, wd);
3018}
3019
3020static void noinline
3021infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3022{
3023 if (slot < 0)
3024 /* overflow, need to check for all hash slots */
3025 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3026 infy_wd (EV_A_ slot, wd, ev);
3027 else
3028 {
3029 WL w_;
3030
3031 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3032 {
3033 ev_stat *w = (ev_stat *)w_;
3034 w_ = w_->next; /* lets us remove this watcher and all before it */
3035
3036 if (w->wd == wd || wd == -1)
3037 {
3038 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3039 {
3040 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3041 w->wd = -1;
3042 infy_add (EV_A_ w); /* re-add, no matter what */
3043 }
3044
3045 stat_timer_cb (EV_A_ &w->timer, 0);
3046 }
3047 }
3048 }
3049}
3050
3051static void
3052infy_cb (EV_P_ ev_io *w, int revents)
3053{
3054 char buf [EV_INOTIFY_BUFSIZE];
3055 int ofs;
3056 int len = read (fs_fd, buf, sizeof (buf));
3057
3058 for (ofs = 0; ofs < len; )
3059 {
3060 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3061 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3062 ofs += sizeof (struct inotify_event) + ev->len;
3063 }
3064}
3065
3066inline_size unsigned int
3067ev_linux_version (void)
3068{
3069 struct utsname buf;
3070 unsigned int v;
3071 int i;
3072 char *p = buf.release;
3073
3074 if (uname (&buf))
3075 return 0;
3076
3077 for (i = 3+1; --i; )
3078 {
3079 unsigned int c = 0;
3080
3081 for (;;)
3082 {
3083 if (*p >= '0' && *p <= '9')
3084 c = c * 10 + *p++ - '0';
3085 else
3086 {
3087 p += *p == '.';
3088 break;
3089 }
3090 }
3091
3092 v = (v << 8) | c;
3093 }
3094
3095 return v;
3096}
3097
3098inline_size void
3099ev_check_2625 (EV_P)
3100{
3101 /* kernels < 2.6.25 are borked
3102 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3103 */
3104 if (ev_linux_version () < 0x020619)
3105 return;
3106
3107 fs_2625 = 1;
3108}
3109
3110inline_size int
3111infy_newfd (void)
3112{
3113#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3114 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3115 if (fd >= 0)
3116 return fd;
3117#endif
3118 return inotify_init ();
3119}
3120
3121inline_size void
3122infy_init (EV_P)
3123{
3124 if (fs_fd != -2)
3125 return;
3126
3127 fs_fd = -1;
3128
3129 ev_check_2625 (EV_A);
3130
3131 fs_fd = infy_newfd ();
3132
3133 if (fs_fd >= 0)
3134 {
3135 fd_intern (fs_fd);
3136 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3137 ev_set_priority (&fs_w, EV_MAXPRI);
3138 ev_io_start (EV_A_ &fs_w);
3139 ev_unref (EV_A);
3140 }
3141}
3142
3143inline_size void
3144infy_fork (EV_P)
3145{
3146 int slot;
3147
3148 if (fs_fd < 0)
3149 return;
3150
3151 ev_ref (EV_A);
3152 ev_io_stop (EV_A_ &fs_w);
3153 close (fs_fd);
3154 fs_fd = infy_newfd ();
3155
3156 if (fs_fd >= 0)
3157 {
3158 fd_intern (fs_fd);
3159 ev_io_set (&fs_w, fs_fd, EV_READ);
3160 ev_io_start (EV_A_ &fs_w);
3161 ev_unref (EV_A);
3162 }
3163
3164 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3165 {
3166 WL w_ = fs_hash [slot].head;
3167 fs_hash [slot].head = 0;
3168
3169 while (w_)
3170 {
3171 ev_stat *w = (ev_stat *)w_;
3172 w_ = w_->next; /* lets us add this watcher */
3173
3174 w->wd = -1;
3175
3176 if (fs_fd >= 0)
3177 infy_add (EV_A_ w); /* re-add, no matter what */
3178 else
3179 {
3180 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3181 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3182 ev_timer_again (EV_A_ &w->timer);
3183 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3184 }
3185 }
3186 }
3187}
3188
3189#endif
3190
3191#ifdef _WIN32
3192# define EV_LSTAT(p,b) _stati64 (p, b)
3193#else
3194# define EV_LSTAT(p,b) lstat (p, b)
3195#endif
3196
1528void 3197void
1529ev_check_start (EV_P_ struct ev_check *w) 3198ev_stat_stat (EV_P_ ev_stat *w)
3199{
3200 if (lstat (w->path, &w->attr) < 0)
3201 w->attr.st_nlink = 0;
3202 else if (!w->attr.st_nlink)
3203 w->attr.st_nlink = 1;
3204}
3205
3206static void noinline
3207stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3208{
3209 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3210
3211 ev_statdata prev = w->attr;
3212 ev_stat_stat (EV_A_ w);
3213
3214 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3215 if (
3216 prev.st_dev != w->attr.st_dev
3217 || prev.st_ino != w->attr.st_ino
3218 || prev.st_mode != w->attr.st_mode
3219 || prev.st_nlink != w->attr.st_nlink
3220 || prev.st_uid != w->attr.st_uid
3221 || prev.st_gid != w->attr.st_gid
3222 || prev.st_rdev != w->attr.st_rdev
3223 || prev.st_size != w->attr.st_size
3224 || prev.st_atime != w->attr.st_atime
3225 || prev.st_mtime != w->attr.st_mtime
3226 || prev.st_ctime != w->attr.st_ctime
3227 ) {
3228 /* we only update w->prev on actual differences */
3229 /* in case we test more often than invoke the callback, */
3230 /* to ensure that prev is always different to attr */
3231 w->prev = prev;
3232
3233 #if EV_USE_INOTIFY
3234 if (fs_fd >= 0)
3235 {
3236 infy_del (EV_A_ w);
3237 infy_add (EV_A_ w);
3238 ev_stat_stat (EV_A_ w); /* avoid race... */
3239 }
3240 #endif
3241
3242 ev_feed_event (EV_A_ w, EV_STAT);
3243 }
3244}
3245
3246void
3247ev_stat_start (EV_P_ ev_stat *w)
1530{ 3248{
1531 if (expect_false (ev_is_active (w))) 3249 if (expect_false (ev_is_active (w)))
1532 return; 3250 return;
1533 3251
3252 ev_stat_stat (EV_A_ w);
3253
3254 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3255 w->interval = MIN_STAT_INTERVAL;
3256
3257 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3258 ev_set_priority (&w->timer, ev_priority (w));
3259
3260#if EV_USE_INOTIFY
3261 infy_init (EV_A);
3262
3263 if (fs_fd >= 0)
3264 infy_add (EV_A_ w);
3265 else
3266#endif
3267 {
3268 ev_timer_again (EV_A_ &w->timer);
3269 ev_unref (EV_A);
3270 }
3271
1534 ev_start (EV_A_ (W)w, ++checkcnt); 3272 ev_start (EV_A_ (W)w, 1);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1536 checks [checkcnt - 1] = w;
1537}
1538 3273
3274 EV_FREQUENT_CHECK;
3275}
3276
1539void 3277void
1540ev_check_stop (EV_P_ struct ev_check *w) 3278ev_stat_stop (EV_P_ ev_stat *w)
1541{ 3279{
1542 ev_clear_pending (EV_A_ (W)w); 3280 clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w))) 3281 if (expect_false (!ev_is_active (w)))
1544 return; 3282 return;
1545 3283
1546 checks [((W)w)->active - 1] = checks [--checkcnt]; 3284 EV_FREQUENT_CHECK;
3285
3286#if EV_USE_INOTIFY
3287 infy_del (EV_A_ w);
3288#endif
3289
3290 if (ev_is_active (&w->timer))
3291 {
3292 ev_ref (EV_A);
3293 ev_timer_stop (EV_A_ &w->timer);
3294 }
3295
1547 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
1548}
1549 3297
1550#ifndef SA_RESTART 3298 EV_FREQUENT_CHECK;
1551# define SA_RESTART 0 3299}
1552#endif 3300#endif
1553 3301
3302#if EV_IDLE_ENABLE
1554void 3303void
1555ev_signal_start (EV_P_ struct ev_signal *w) 3304ev_idle_start (EV_P_ ev_idle *w)
1556{ 3305{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w))) 3306 if (expect_false (ev_is_active (w)))
1561 return; 3307 return;
1562 3308
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3309 pri_adjust (EV_A_ (W)w);
1564 3310
3311 EV_FREQUENT_CHECK;
3312
3313 {
3314 int active = ++idlecnt [ABSPRI (w)];
3315
3316 ++idleall;
1565 ev_start (EV_A_ (W)w, 1); 3317 ev_start (EV_A_ (W)w, active);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1568 3318
1569 if (!((WL)w)->next) 3319 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1570 { 3320 idles [ABSPRI (w)][active - 1] = w;
1571#if _WIN32
1572 signal (w->signum, sighandler);
1573#else
1574 struct sigaction sa;
1575 sa.sa_handler = sighandler;
1576 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0);
1579#endif
1580 } 3321 }
1581}
1582 3322
3323 EV_FREQUENT_CHECK;
3324}
3325
1583void 3326void
1584ev_signal_stop (EV_P_ struct ev_signal *w) 3327ev_idle_stop (EV_P_ ev_idle *w)
1585{ 3328{
1586 ev_clear_pending (EV_A_ (W)w); 3329 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 3330 if (expect_false (!ev_is_active (w)))
1588 return; 3331 return;
1589 3332
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3333 EV_FREQUENT_CHECK;
3334
3335 {
3336 int active = ev_active (w);
3337
3338 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3339 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3340
1591 ev_stop (EV_A_ (W)w); 3341 ev_stop (EV_A_ (W)w);
3342 --idleall;
3343 }
1592 3344
1593 if (!signals [w->signum - 1].head) 3345 EV_FREQUENT_CHECK;
1594 signal (w->signum, SIG_DFL);
1595} 3346}
1596
1597void
1598ev_child_start (EV_P_ struct ev_child *w)
1599{
1600#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 3347#endif
3348
3349#if EV_PREPARE_ENABLE
3350void
3351ev_prepare_start (EV_P_ ev_prepare *w)
3352{
1603 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
1604 return; 3354 return;
1605 3355
3356 EV_FREQUENT_CHECK;
3357
1606 ev_start (EV_A_ (W)w, 1); 3358 ev_start (EV_A_ (W)w, ++preparecnt);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3359 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1608} 3360 prepares [preparecnt - 1] = w;
1609 3361
3362 EV_FREQUENT_CHECK;
3363}
3364
1610void 3365void
1611ev_child_stop (EV_P_ struct ev_child *w) 3366ev_prepare_stop (EV_P_ ev_prepare *w)
1612{ 3367{
1613 ev_clear_pending (EV_A_ (W)w); 3368 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 3369 if (expect_false (!ev_is_active (w)))
1615 return; 3370 return;
1616 3371
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3372 EV_FREQUENT_CHECK;
3373
3374 {
3375 int active = ev_active (w);
3376
3377 prepares [active - 1] = prepares [--preparecnt];
3378 ev_active (prepares [active - 1]) = active;
3379 }
3380
1618 ev_stop (EV_A_ (W)w); 3381 ev_stop (EV_A_ (W)w);
3382
3383 EV_FREQUENT_CHECK;
1619} 3384}
3385#endif
3386
3387#if EV_CHECK_ENABLE
3388void
3389ev_check_start (EV_P_ ev_check *w)
3390{
3391 if (expect_false (ev_is_active (w)))
3392 return;
3393
3394 EV_FREQUENT_CHECK;
3395
3396 ev_start (EV_A_ (W)w, ++checkcnt);
3397 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3398 checks [checkcnt - 1] = w;
3399
3400 EV_FREQUENT_CHECK;
3401}
3402
3403void
3404ev_check_stop (EV_P_ ev_check *w)
3405{
3406 clear_pending (EV_A_ (W)w);
3407 if (expect_false (!ev_is_active (w)))
3408 return;
3409
3410 EV_FREQUENT_CHECK;
3411
3412 {
3413 int active = ev_active (w);
3414
3415 checks [active - 1] = checks [--checkcnt];
3416 ev_active (checks [active - 1]) = active;
3417 }
3418
3419 ev_stop (EV_A_ (W)w);
3420
3421 EV_FREQUENT_CHECK;
3422}
3423#endif
3424
3425#if EV_EMBED_ENABLE
3426void noinline
3427ev_embed_sweep (EV_P_ ev_embed *w)
3428{
3429 ev_loop (w->other, EVLOOP_NONBLOCK);
3430}
3431
3432static void
3433embed_io_cb (EV_P_ ev_io *io, int revents)
3434{
3435 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3436
3437 if (ev_cb (w))
3438 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3439 else
3440 ev_loop (w->other, EVLOOP_NONBLOCK);
3441}
3442
3443static void
3444embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3445{
3446 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3447
3448 {
3449 EV_P = w->other;
3450
3451 while (fdchangecnt)
3452 {
3453 fd_reify (EV_A);
3454 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3455 }
3456 }
3457}
3458
3459static void
3460embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3461{
3462 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3463
3464 ev_embed_stop (EV_A_ w);
3465
3466 {
3467 EV_P = w->other;
3468
3469 ev_loop_fork (EV_A);
3470 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3471 }
3472
3473 ev_embed_start (EV_A_ w);
3474}
3475
3476#if 0
3477static void
3478embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3479{
3480 ev_idle_stop (EV_A_ idle);
3481}
3482#endif
3483
3484void
3485ev_embed_start (EV_P_ ev_embed *w)
3486{
3487 if (expect_false (ev_is_active (w)))
3488 return;
3489
3490 {
3491 EV_P = w->other;
3492 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3493 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3494 }
3495
3496 EV_FREQUENT_CHECK;
3497
3498 ev_set_priority (&w->io, ev_priority (w));
3499 ev_io_start (EV_A_ &w->io);
3500
3501 ev_prepare_init (&w->prepare, embed_prepare_cb);
3502 ev_set_priority (&w->prepare, EV_MINPRI);
3503 ev_prepare_start (EV_A_ &w->prepare);
3504
3505 ev_fork_init (&w->fork, embed_fork_cb);
3506 ev_fork_start (EV_A_ &w->fork);
3507
3508 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3509
3510 ev_start (EV_A_ (W)w, 1);
3511
3512 EV_FREQUENT_CHECK;
3513}
3514
3515void
3516ev_embed_stop (EV_P_ ev_embed *w)
3517{
3518 clear_pending (EV_A_ (W)w);
3519 if (expect_false (!ev_is_active (w)))
3520 return;
3521
3522 EV_FREQUENT_CHECK;
3523
3524 ev_io_stop (EV_A_ &w->io);
3525 ev_prepare_stop (EV_A_ &w->prepare);
3526 ev_fork_stop (EV_A_ &w->fork);
3527
3528 ev_stop (EV_A_ (W)w);
3529
3530 EV_FREQUENT_CHECK;
3531}
3532#endif
3533
3534#if EV_FORK_ENABLE
3535void
3536ev_fork_start (EV_P_ ev_fork *w)
3537{
3538 if (expect_false (ev_is_active (w)))
3539 return;
3540
3541 EV_FREQUENT_CHECK;
3542
3543 ev_start (EV_A_ (W)w, ++forkcnt);
3544 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3545 forks [forkcnt - 1] = w;
3546
3547 EV_FREQUENT_CHECK;
3548}
3549
3550void
3551ev_fork_stop (EV_P_ ev_fork *w)
3552{
3553 clear_pending (EV_A_ (W)w);
3554 if (expect_false (!ev_is_active (w)))
3555 return;
3556
3557 EV_FREQUENT_CHECK;
3558
3559 {
3560 int active = ev_active (w);
3561
3562 forks [active - 1] = forks [--forkcnt];
3563 ev_active (forks [active - 1]) = active;
3564 }
3565
3566 ev_stop (EV_A_ (W)w);
3567
3568 EV_FREQUENT_CHECK;
3569}
3570#endif
3571
3572#if EV_ASYNC_ENABLE
3573void
3574ev_async_start (EV_P_ ev_async *w)
3575{
3576 if (expect_false (ev_is_active (w)))
3577 return;
3578
3579 evpipe_init (EV_A);
3580
3581 EV_FREQUENT_CHECK;
3582
3583 ev_start (EV_A_ (W)w, ++asynccnt);
3584 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3585 asyncs [asynccnt - 1] = w;
3586
3587 EV_FREQUENT_CHECK;
3588}
3589
3590void
3591ev_async_stop (EV_P_ ev_async *w)
3592{
3593 clear_pending (EV_A_ (W)w);
3594 if (expect_false (!ev_is_active (w)))
3595 return;
3596
3597 EV_FREQUENT_CHECK;
3598
3599 {
3600 int active = ev_active (w);
3601
3602 asyncs [active - 1] = asyncs [--asynccnt];
3603 ev_active (asyncs [active - 1]) = active;
3604 }
3605
3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
3609}
3610
3611void
3612ev_async_send (EV_P_ ev_async *w)
3613{
3614 w->sent = 1;
3615 evpipe_write (EV_A_ &async_pending);
3616}
3617#endif
1620 3618
1621/*****************************************************************************/ 3619/*****************************************************************************/
1622 3620
1623struct ev_once 3621struct ev_once
1624{ 3622{
1625 struct ev_io io; 3623 ev_io io;
1626 struct ev_timer to; 3624 ev_timer to;
1627 void (*cb)(int revents, void *arg); 3625 void (*cb)(int revents, void *arg);
1628 void *arg; 3626 void *arg;
1629}; 3627};
1630 3628
1631static void 3629static void
1632once_cb (EV_P_ struct ev_once *once, int revents) 3630once_cb (EV_P_ struct ev_once *once, int revents)
1633{ 3631{
1634 void (*cb)(int revents, void *arg) = once->cb; 3632 void (*cb)(int revents, void *arg) = once->cb;
1635 void *arg = once->arg; 3633 void *arg = once->arg;
1636 3634
1637 ev_io_stop (EV_A_ &once->io); 3635 ev_io_stop (EV_A_ &once->io);
1638 ev_timer_stop (EV_A_ &once->to); 3636 ev_timer_stop (EV_A_ &once->to);
1639 ev_free (once); 3637 ev_free (once);
1640 3638
1641 cb (revents, arg); 3639 cb (revents, arg);
1642} 3640}
1643 3641
1644static void 3642static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 3643once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 3644{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3645 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3646
3647 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1648} 3648}
1649 3649
1650static void 3650static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 3651once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 3652{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3654
3655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1654} 3656}
1655 3657
1656void 3658void
1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3659ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1658{ 3660{
1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1660 3662
1661 if (expect_false (!once)) 3663 if (expect_false (!once))
1662 { 3664 {
1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1664 return; 3666 return;
1665 } 3667 }
1666 3668
1667 once->cb = cb; 3669 once->cb = cb;
1668 once->arg = arg; 3670 once->arg = arg;
1680 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
1682 } 3684 }
1683} 3685}
1684 3686
3687/*****************************************************************************/
3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
3803#if EV_MULTIPLICITY
3804 #include "ev_wrap.h"
3805#endif
3806
1685#ifdef __cplusplus 3807#ifdef __cplusplus
1686} 3808}
1687#endif 3809#endif
1688 3810

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines