ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.371 by root, Mon Feb 7 21:45:32 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
38 61
39# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
42# endif 65# endif
43# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
45# endif 68# endif
46# else 69# else
47# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
49# endif 72# endif
50# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
52# endif 75# endif
53# endif 76# endif
54 77
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 78# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
57# else 82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
58# define EV_USE_SELECT 0 93# define EV_USE_SELECT 0
59# endif 94# endif
60 95
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 96# if HAVE_POLL && HAVE_POLL_H
62# define EV_USE_POLL 1 97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
63# else 100# else
101# undef EV_USE_POLL
64# define EV_USE_POLL 0 102# define EV_USE_POLL 0
65# endif 103# endif
66 104
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
68# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
69# else 109# else
110# undef EV_USE_EPOLL
70# define EV_USE_EPOLL 0 111# define EV_USE_EPOLL 0
71# endif 112# endif
72 113
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
74# define EV_USE_KQUEUE 1 115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
75# else 118# else
119# undef EV_USE_KQUEUE
76# define EV_USE_KQUEUE 0 120# define EV_USE_KQUEUE 0
77# endif 121# endif
78 122
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 123# if HAVE_PORT_H && HAVE_PORT_CREATE
80# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
81# else 127# else
128# undef EV_USE_PORT
82# define EV_USE_PORT 0 129# define EV_USE_PORT 0
83# endif 130# endif
84 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
85#endif 159#endif
86 160
87#include <math.h> 161#include <math.h>
88#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
89#include <fcntl.h> 164#include <fcntl.h>
90#include <stddef.h> 165#include <stddef.h>
91 166
92#include <stdio.h> 167#include <stdio.h>
93 168
94#include <assert.h> 169#include <assert.h>
95#include <errno.h> 170#include <errno.h>
96#include <sys/types.h> 171#include <sys/types.h>
97#include <time.h> 172#include <time.h>
173#include <limits.h>
98 174
99#include <signal.h> 175#include <signal.h>
100 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
101#ifndef _WIN32 185#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 186# include <sys/time.h>
104# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
105#else 189#else
190# include <io.h>
106# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 192# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
110# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
111#endif 242# endif
112 243#endif
113/**/
114 244
115#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
116# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
117#endif 251#endif
118 252
119#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
121#endif 263#endif
122 264
123#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
125#endif 267#endif
126 268
127#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
128# ifdef _WIN32 270# ifdef _WIN32
129# define EV_USE_POLL 0 271# define EV_USE_POLL 0
130# else 272# else
131# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
132# endif 274# endif
133#endif 275#endif
134 276
135#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
136# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
137#endif 283#endif
138 284
139#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
141#endif 287#endif
142 288
143#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 290# define EV_USE_PORT 0
145#endif 291#endif
146 292
147/**/ 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
148 300
149/* darwin simply cannot be helped */ 301#ifndef EV_PID_HASHSIZE
150#ifdef __APPLE__ 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
151# undef EV_USE_POLL 361# undef EV_USE_POLL
152# undef EV_USE_KQUEUE 362# define EV_USE_POLL 0
153#endif 363#endif
154 364
155#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
160#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
163#endif 373#endif
164 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381/* hp-ux has it in sys/time.h, which we unconditionally include above */
382# if !defined(_WIN32) && !defined(__hpux)
383# include <sys/select.h>
384# endif
385#endif
386
387#if EV_USE_INOTIFY
388# include <sys/statfs.h>
389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
395#endif
396
165#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 398# include <winsock.h>
167#endif 399#endif
168 400
401#if EV_USE_EVENTFD
402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437#endif
438
169/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
446
447/*
448 * This is used to avoid floating point rounding problems.
449 * It is added to ev_rt_now when scheduling periodics
450 * to ensure progress, time-wise, even when rounding
451 * errors are against us.
452 * This value is good at least till the year 4000.
453 * Better solutions welcome.
454 */
455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
170 456
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
175 459
176#ifdef EV_H 460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
177# include EV_H 461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
178#else
179# include "ev.h"
180#endif
181 462
182#if __GNUC__ >= 3 463#if __GNUC__ >= 4
183# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
184# define inline static inline 465# define noinline __attribute__ ((noinline))
185#else 466#else
186# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
187# define inline static 468# define noinline
469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
470# define inline
471# endif
188#endif 472#endif
189 473
190#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
476#define inline_size static inline
192 477
478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
481# define inline_speed static noinline
482#endif
483
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
195 491
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
198 494
199typedef struct ev_watcher *W; 495typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
202 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
204 521
205#ifdef _WIN32 522#ifdef _WIN32
206# include "ev_win32.c" 523# include "ev_win32.c"
207#endif 524#endif
208 525
209/*****************************************************************************/ 526/*****************************************************************************/
210 527
528#ifdef __linux
529# include <sys/utsname.h>
530#endif
531
532static unsigned int noinline
533ev_linux_version (void)
534{
535#ifdef __linux
536 unsigned int v = 0;
537 struct utsname buf;
538 int i;
539 char *p = buf.release;
540
541 if (uname (&buf))
542 return 0;
543
544 for (i = 3+1; --i; )
545 {
546 unsigned int c = 0;
547
548 for (;;)
549 {
550 if (*p >= '0' && *p <= '9')
551 c = c * 10 + *p++ - '0';
552 else
553 {
554 p += *p == '.';
555 break;
556 }
557 }
558
559 v = (v << 8) | c;
560 }
561
562 return v;
563#else
564 return 0;
565#endif
566}
567
568/*****************************************************************************/
569
570#if EV_AVOID_STDIO
571static void noinline
572ev_printerr (const char *msg)
573{
574 write (STDERR_FILENO, msg, strlen (msg));
575}
576#endif
577
211static void (*syserr_cb)(const char *msg); 578static void (*syserr_cb)(const char *msg);
212 579
580void
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 581ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 582{
215 syserr_cb = cb; 583 syserr_cb = cb;
216} 584}
217 585
218static void 586static void noinline
219syserr (const char *msg) 587ev_syserr (const char *msg)
220{ 588{
221 if (!msg) 589 if (!msg)
222 msg = "(libev) system error"; 590 msg = "(libev) system error";
223 591
224 if (syserr_cb) 592 if (syserr_cb)
225 syserr_cb (msg); 593 syserr_cb (msg);
226 else 594 else
227 { 595 {
596#if EV_AVOID_STDIO
597 ev_printerr (msg);
598 ev_printerr (": ");
599 ev_printerr (strerror (errno));
600 ev_printerr ("\n");
601#else
228 perror (msg); 602 perror (msg);
603#endif
229 abort (); 604 abort ();
230 } 605 }
231} 606}
232 607
608static void *
609ev_realloc_emul (void *ptr, long size)
610{
611#if __GLIBC__
612 return realloc (ptr, size);
613#else
614 /* some systems, notably openbsd and darwin, fail to properly
615 * implement realloc (x, 0) (as required by both ansi c-89 and
616 * the single unix specification, so work around them here.
617 */
618
619 if (size)
620 return realloc (ptr, size);
621
622 free (ptr);
623 return 0;
624#endif
625}
626
233static void *(*alloc)(void *ptr, long size); 627static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 628
629void
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 630ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 631{
237 alloc = cb; 632 alloc = cb;
238} 633}
239 634
240static void * 635inline_speed void *
241ev_realloc (void *ptr, long size) 636ev_realloc (void *ptr, long size)
242{ 637{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 638 ptr = alloc (ptr, size);
244 639
245 if (!ptr && size) 640 if (!ptr && size)
246 { 641 {
642#if EV_AVOID_STDIO
643 ev_printerr ("(libev) memory allocation failed, aborting.\n");
644#else
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 645 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
646#endif
248 abort (); 647 abort ();
249 } 648 }
250 649
251 return ptr; 650 return ptr;
252} 651}
254#define ev_malloc(size) ev_realloc (0, (size)) 653#define ev_malloc(size) ev_realloc (0, (size))
255#define ev_free(ptr) ev_realloc ((ptr), 0) 654#define ev_free(ptr) ev_realloc ((ptr), 0)
256 655
257/*****************************************************************************/ 656/*****************************************************************************/
258 657
658/* set in reify when reification needed */
659#define EV_ANFD_REIFY 1
660
661/* file descriptor info structure */
259typedef struct 662typedef struct
260{ 663{
261 WL head; 664 WL head;
262 unsigned char events; 665 unsigned char events; /* the events watched for */
666 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
667 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
263 unsigned char reify; 668 unsigned char unused;
669#if EV_USE_EPOLL
670 unsigned int egen; /* generation counter to counter epoll bugs */
671#endif
264#if EV_SELECT_IS_WINSOCKET 672#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
265 SOCKET handle; 673 SOCKET handle;
266#endif 674#endif
675#if EV_USE_IOCP
676 OVERLAPPED or, ow;
677#endif
267} ANFD; 678} ANFD;
268 679
680/* stores the pending event set for a given watcher */
269typedef struct 681typedef struct
270{ 682{
271 W w; 683 W w;
272 int events; 684 int events; /* the pending event set for the given watcher */
273} ANPENDING; 685} ANPENDING;
686
687#if EV_USE_INOTIFY
688/* hash table entry per inotify-id */
689typedef struct
690{
691 WL head;
692} ANFS;
693#endif
694
695/* Heap Entry */
696#if EV_HEAP_CACHE_AT
697 /* a heap element */
698 typedef struct {
699 ev_tstamp at;
700 WT w;
701 } ANHE;
702
703 #define ANHE_w(he) (he).w /* access watcher, read-write */
704 #define ANHE_at(he) (he).at /* access cached at, read-only */
705 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
706#else
707 /* a heap element */
708 typedef WT ANHE;
709
710 #define ANHE_w(he) (he)
711 #define ANHE_at(he) (he)->at
712 #define ANHE_at_cache(he)
713#endif
274 714
275#if EV_MULTIPLICITY 715#if EV_MULTIPLICITY
276 716
277 struct ev_loop 717 struct ev_loop
278 { 718 {
296 736
297 static int ev_default_loop_ptr; 737 static int ev_default_loop_ptr;
298 738
299#endif 739#endif
300 740
741#if EV_FEATURE_API
742# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
743# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
744# define EV_INVOKE_PENDING invoke_cb (EV_A)
745#else
746# define EV_RELEASE_CB (void)0
747# define EV_ACQUIRE_CB (void)0
748# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
749#endif
750
751#define EVBREAK_RECURSE 0x80
752
301/*****************************************************************************/ 753/*****************************************************************************/
302 754
755#ifndef EV_HAVE_EV_TIME
303ev_tstamp 756ev_tstamp
304ev_time (void) 757ev_time (void)
305{ 758{
306#if EV_USE_REALTIME 759#if EV_USE_REALTIME
760 if (expect_true (have_realtime))
761 {
307 struct timespec ts; 762 struct timespec ts;
308 clock_gettime (CLOCK_REALTIME, &ts); 763 clock_gettime (CLOCK_REALTIME, &ts);
309 return ts.tv_sec + ts.tv_nsec * 1e-9; 764 return ts.tv_sec + ts.tv_nsec * 1e-9;
310#else 765 }
766#endif
767
311 struct timeval tv; 768 struct timeval tv;
312 gettimeofday (&tv, 0); 769 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 770 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif
315} 771}
772#endif
316 773
317inline ev_tstamp 774inline_size ev_tstamp
318get_clock (void) 775get_clock (void)
319{ 776{
320#if EV_USE_MONOTONIC 777#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 778 if (expect_true (have_monotonic))
322 { 779 {
335{ 792{
336 return ev_rt_now; 793 return ev_rt_now;
337} 794}
338#endif 795#endif
339 796
340#define array_roundsize(type,n) (((n) | 4) & ~3) 797void
798ev_sleep (ev_tstamp delay)
799{
800 if (delay > 0.)
801 {
802#if EV_USE_NANOSLEEP
803 struct timespec ts;
804
805 EV_TS_SET (ts, delay);
806 nanosleep (&ts, 0);
807#elif defined(_WIN32)
808 Sleep ((unsigned long)(delay * 1e3));
809#else
810 struct timeval tv;
811
812 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
813 /* something not guaranteed by newer posix versions, but guaranteed */
814 /* by older ones */
815 EV_TV_SET (tv, delay);
816 select (0, 0, 0, 0, &tv);
817#endif
818 }
819}
820
821inline_speed int
822ev_timeout_to_ms (ev_tstamp timeout)
823{
824 int ms = timeout * 1000. + .999999;
825
826 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
827}
828
829/*****************************************************************************/
830
831#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
832
833/* find a suitable new size for the given array, */
834/* hopefully by rounding to a nice-to-malloc size */
835inline_size int
836array_nextsize (int elem, int cur, int cnt)
837{
838 int ncur = cur + 1;
839
840 do
841 ncur <<= 1;
842 while (cnt > ncur);
843
844 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
845 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
846 {
847 ncur *= elem;
848 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
849 ncur = ncur - sizeof (void *) * 4;
850 ncur /= elem;
851 }
852
853 return ncur;
854}
855
856static noinline void *
857array_realloc (int elem, void *base, int *cur, int cnt)
858{
859 *cur = array_nextsize (elem, *cur, cnt);
860 return ev_realloc (base, elem * *cur);
861}
862
863#define array_init_zero(base,count) \
864 memset ((void *)(base), 0, sizeof (*(base)) * (count))
341 865
342#define array_needsize(type,base,cur,cnt,init) \ 866#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 867 if (expect_false ((cnt) > (cur))) \
344 { \ 868 { \
345 int newcnt = cur; \ 869 int ocur_ = (cur); \
346 do \ 870 (base) = (type *)array_realloc \
347 { \ 871 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 872 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 873 }
356 874
875#if 0
357#define array_slim(type,stem) \ 876#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 877 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 878 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 879 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 880 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 881 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 882 }
883#endif
364 884
365#define array_free(stem, idx) \ 885#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 886 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
367 887
368/*****************************************************************************/ 888/*****************************************************************************/
369 889
370static void 890/* dummy callback for pending events */
371anfds_init (ANFD *base, int count) 891static void noinline
892pendingcb (EV_P_ ev_prepare *w, int revents)
372{ 893{
373 while (count--)
374 {
375 base->head = 0;
376 base->events = EV_NONE;
377 base->reify = 0;
378
379 ++base;
380 }
381} 894}
382 895
383void 896void noinline
384ev_feed_event (EV_P_ void *w, int revents) 897ev_feed_event (EV_P_ void *w, int revents)
385{ 898{
386 W w_ = (W)w; 899 W w_ = (W)w;
900 int pri = ABSPRI (w_);
387 901
388 if (expect_false (w_->pending)) 902 if (expect_false (w_->pending))
903 pendings [pri][w_->pending - 1].events |= revents;
904 else
389 { 905 {
906 w_->pending = ++pendingcnt [pri];
907 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
908 pendings [pri][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 909 pendings [pri][w_->pending - 1].events = revents;
391 return;
392 } 910 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398} 911}
399 912
400static void 913inline_speed void
914feed_reverse (EV_P_ W w)
915{
916 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
917 rfeeds [rfeedcnt++] = w;
918}
919
920inline_size void
921feed_reverse_done (EV_P_ int revents)
922{
923 do
924 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
925 while (rfeedcnt);
926}
927
928inline_speed void
401queue_events (EV_P_ W *events, int eventcnt, int type) 929queue_events (EV_P_ W *events, int eventcnt, int type)
402{ 930{
403 int i; 931 int i;
404 932
405 for (i = 0; i < eventcnt; ++i) 933 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type); 934 ev_feed_event (EV_A_ events [i], type);
407} 935}
408 936
937/*****************************************************************************/
938
409inline void 939inline_speed void
410fd_event (EV_P_ int fd, int revents) 940fd_event_nocheck (EV_P_ int fd, int revents)
411{ 941{
412 ANFD *anfd = anfds + fd; 942 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 943 ev_io *w;
414 944
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 945 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 946 {
417 int ev = w->events & revents; 947 int ev = w->events & revents;
418 948
419 if (ev) 949 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 950 ev_feed_event (EV_A_ (W)w, ev);
421 } 951 }
422} 952}
423 953
954/* do not submit kernel events for fds that have reify set */
955/* because that means they changed while we were polling for new events */
956inline_speed void
957fd_event (EV_P_ int fd, int revents)
958{
959 ANFD *anfd = anfds + fd;
960
961 if (expect_true (!anfd->reify))
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
424void 965void
425ev_feed_fd_event (EV_P_ int fd, int revents) 966ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 967{
968 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 969 fd_event_nocheck (EV_A_ fd, revents);
428} 970}
429 971
430/*****************************************************************************/ 972/* make sure the external fd watch events are in-sync */
431 973/* with the kernel/libev internal state */
432inline void 974inline_size void
433fd_reify (EV_P) 975fd_reify (EV_P)
434{ 976{
435 int i; 977 int i;
436 978
979#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
437 for (i = 0; i < fdchangecnt; ++i) 980 for (i = 0; i < fdchangecnt; ++i)
438 { 981 {
439 int fd = fdchanges [i]; 982 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 983 ANFD *anfd = anfds + fd;
441 struct ev_io *w;
442 984
443 int events = 0; 985 if (anfd->reify & EV__IOFDSET)
444
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
446 events |= w->events;
447
448#if EV_SELECT_IS_WINSOCKET
449 if (events)
450 { 986 {
987 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
988
989 if (handle != anfd->handle)
990 {
451 unsigned long argp; 991 unsigned long arg;
452 anfd->handle = _get_osfhandle (fd); 992
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 993 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
994
995 /* handle changed, but fd didn't - we need to do it in two steps */
996 backend_modify (EV_A_ fd, anfd->events, 0);
997 anfd->events = 0;
998 anfd->handle = handle;
999 }
454 } 1000 }
1001 }
455#endif 1002#endif
456 1003
1004 for (i = 0; i < fdchangecnt; ++i)
1005 {
1006 int fd = fdchanges [i];
1007 ANFD *anfd = anfds + fd;
1008 ev_io *w;
1009
1010 unsigned char o_events = anfd->events;
1011 unsigned char o_reify = anfd->reify;
1012
457 anfd->reify = 0; 1013 anfd->reify = 0;
458 1014
459 method_modify (EV_A_ fd, anfd->events, events); 1015 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1016 {
460 anfd->events = events; 1017 anfd->events = 0;
1018
1019 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1020 anfd->events |= (unsigned char)w->events;
1021
1022 if (o_events != anfd->events)
1023 o_reify = EV__IOFDSET; /* actually |= */
1024 }
1025
1026 if (o_reify & EV__IOFDSET)
1027 backend_modify (EV_A_ fd, o_events, anfd->events);
461 } 1028 }
462 1029
463 fdchangecnt = 0; 1030 fdchangecnt = 0;
464} 1031}
465 1032
466static void 1033/* something about the given fd changed */
1034inline_size void
467fd_change (EV_P_ int fd) 1035fd_change (EV_P_ int fd, int flags)
468{ 1036{
469 if (expect_false (anfds [fd].reify)) 1037 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 1038 anfds [fd].reify |= flags;
473 1039
1040 if (expect_true (!reify))
1041 {
474 ++fdchangecnt; 1042 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1043 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 1044 fdchanges [fdchangecnt - 1] = fd;
1045 }
477} 1046}
478 1047
479static void 1048/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1049inline_speed void
480fd_kill (EV_P_ int fd) 1050fd_kill (EV_P_ int fd)
481{ 1051{
482 struct ev_io *w; 1052 ev_io *w;
483 1053
484 while ((w = (struct ev_io *)anfds [fd].head)) 1054 while ((w = (ev_io *)anfds [fd].head))
485 { 1055 {
486 ev_io_stop (EV_A_ w); 1056 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1057 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 1058 }
489} 1059}
490 1060
1061/* check whether the given fd is actually valid, for error recovery */
491inline int 1062inline_size int
492fd_valid (int fd) 1063fd_valid (int fd)
493{ 1064{
494#ifdef _WIN32 1065#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 1066 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
496#else 1067#else
497 return fcntl (fd, F_GETFD) != -1; 1068 return fcntl (fd, F_GETFD) != -1;
498#endif 1069#endif
499} 1070}
500 1071
501/* called on EBADF to verify fds */ 1072/* called on EBADF to verify fds */
502static void 1073static void noinline
503fd_ebadf (EV_P) 1074fd_ebadf (EV_P)
504{ 1075{
505 int fd; 1076 int fd;
506 1077
507 for (fd = 0; fd < anfdmax; ++fd) 1078 for (fd = 0; fd < anfdmax; ++fd)
508 if (anfds [fd].events) 1079 if (anfds [fd].events)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 1080 if (!fd_valid (fd) && errno == EBADF)
510 fd_kill (EV_A_ fd); 1081 fd_kill (EV_A_ fd);
511} 1082}
512 1083
513/* called on ENOMEM in select/poll to kill some fds and retry */ 1084/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 1085static void noinline
515fd_enomem (EV_P) 1086fd_enomem (EV_P)
516{ 1087{
517 int fd; 1088 int fd;
518 1089
519 for (fd = anfdmax; fd--; ) 1090 for (fd = anfdmax; fd--; )
520 if (anfds [fd].events) 1091 if (anfds [fd].events)
521 { 1092 {
522 fd_kill (EV_A_ fd); 1093 fd_kill (EV_A_ fd);
523 return; 1094 break;
524 } 1095 }
525} 1096}
526 1097
527/* usually called after fork if method needs to re-arm all fds from scratch */ 1098/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 1099static void noinline
529fd_rearm_all (EV_P) 1100fd_rearm_all (EV_P)
530{ 1101{
531 int fd; 1102 int fd;
532 1103
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 1104 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 1105 if (anfds [fd].events)
536 { 1106 {
537 anfds [fd].events = 0; 1107 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 1108 anfds [fd].emask = 0;
1109 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
539 } 1110 }
540} 1111}
541 1112
542/*****************************************************************************/ 1113/* used to prepare libev internal fd's */
543 1114/* this is not fork-safe */
544static void
545upheap (WT *heap, int k)
546{
547 WT w = heap [k];
548
549 while (k && heap [k >> 1]->at > w->at)
550 {
551 heap [k] = heap [k >> 1];
552 ((W)heap [k])->active = k + 1;
553 k >>= 1;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558
559}
560
561static void
562downheap (WT *heap, int N, int k)
563{
564 WT w = heap [k];
565
566 while (k < (N >> 1))
567 {
568 int j = k << 1;
569
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
571 ++j;
572
573 if (w->at <= heap [j]->at)
574 break;
575
576 heap [k] = heap [j];
577 ((W)heap [k])->active = k + 1;
578 k = j;
579 }
580
581 heap [k] = w;
582 ((W)heap [k])->active = k + 1;
583}
584
585inline void 1115inline_speed void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
592/*****************************************************************************/
593
594typedef struct
595{
596 WL head;
597 sig_atomic_t volatile gotsig;
598} ANSIG;
599
600static ANSIG *signals;
601static int signalmax;
602
603static int sigpipe [2];
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606
607static void
608signals_init (ANSIG *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->gotsig = 0;
614
615 ++base;
616 }
617}
618
619static void
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625
626 signals [signum - 1].gotsig = 1;
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 1116fd_intern (int fd)
672{ 1117{
673#ifdef _WIN32 1118#ifdef _WIN32
674 int arg = 1; 1119 unsigned long arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1120 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
676#else 1121#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 1122 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 1123 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 1124#endif
680} 1125}
681 1126
1127/*****************************************************************************/
1128
1129/*
1130 * the heap functions want a real array index. array index 0 is guaranteed to not
1131 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1132 * the branching factor of the d-tree.
1133 */
1134
1135/*
1136 * at the moment we allow libev the luxury of two heaps,
1137 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1138 * which is more cache-efficient.
1139 * the difference is about 5% with 50000+ watchers.
1140 */
1141#if EV_USE_4HEAP
1142
1143#define DHEAP 4
1144#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1145#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1146#define UPHEAP_DONE(p,k) ((p) == (k))
1147
1148/* away from the root */
1149inline_speed void
1150downheap (ANHE *heap, int N, int k)
1151{
1152 ANHE he = heap [k];
1153 ANHE *E = heap + N + HEAP0;
1154
1155 for (;;)
1156 {
1157 ev_tstamp minat;
1158 ANHE *minpos;
1159 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1160
1161 /* find minimum child */
1162 if (expect_true (pos + DHEAP - 1 < E))
1163 {
1164 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1165 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1166 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1167 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1168 }
1169 else if (pos < E)
1170 {
1171 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1172 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1173 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1174 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1175 }
1176 else
1177 break;
1178
1179 if (ANHE_at (he) <= minat)
1180 break;
1181
1182 heap [k] = *minpos;
1183 ev_active (ANHE_w (*minpos)) = k;
1184
1185 k = minpos - heap;
1186 }
1187
1188 heap [k] = he;
1189 ev_active (ANHE_w (he)) = k;
1190}
1191
1192#else /* 4HEAP */
1193
1194#define HEAP0 1
1195#define HPARENT(k) ((k) >> 1)
1196#define UPHEAP_DONE(p,k) (!(p))
1197
1198/* away from the root */
1199inline_speed void
1200downheap (ANHE *heap, int N, int k)
1201{
1202 ANHE he = heap [k];
1203
1204 for (;;)
1205 {
1206 int c = k << 1;
1207
1208 if (c >= N + HEAP0)
1209 break;
1210
1211 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1212 ? 1 : 0;
1213
1214 if (ANHE_at (he) <= ANHE_at (heap [c]))
1215 break;
1216
1217 heap [k] = heap [c];
1218 ev_active (ANHE_w (heap [k])) = k;
1219
1220 k = c;
1221 }
1222
1223 heap [k] = he;
1224 ev_active (ANHE_w (he)) = k;
1225}
1226#endif
1227
1228/* towards the root */
1229inline_speed void
1230upheap (ANHE *heap, int k)
1231{
1232 ANHE he = heap [k];
1233
1234 for (;;)
1235 {
1236 int p = HPARENT (k);
1237
1238 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1239 break;
1240
1241 heap [k] = heap [p];
1242 ev_active (ANHE_w (heap [k])) = k;
1243 k = p;
1244 }
1245
1246 heap [k] = he;
1247 ev_active (ANHE_w (he)) = k;
1248}
1249
1250/* move an element suitably so it is in a correct place */
1251inline_size void
1252adjustheap (ANHE *heap, int N, int k)
1253{
1254 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1255 upheap (heap, k);
1256 else
1257 downheap (heap, N, k);
1258}
1259
1260/* rebuild the heap: this function is used only once and executed rarely */
1261inline_size void
1262reheap (ANHE *heap, int N)
1263{
1264 int i;
1265
1266 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1267 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1268 for (i = 0; i < N; ++i)
1269 upheap (heap, i + HEAP0);
1270}
1271
1272/*****************************************************************************/
1273
1274/* associate signal watchers to a signal signal */
1275typedef struct
1276{
1277 EV_ATOMIC_T pending;
1278#if EV_MULTIPLICITY
1279 EV_P;
1280#endif
1281 WL head;
1282} ANSIG;
1283
1284static ANSIG signals [EV_NSIG - 1];
1285
1286/*****************************************************************************/
1287
1288#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1289
1290static void noinline
1291evpipe_init (EV_P)
1292{
1293 if (!ev_is_active (&pipe_w))
1294 {
1295# if EV_USE_EVENTFD
1296 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1297 if (evfd < 0 && errno == EINVAL)
1298 evfd = eventfd (0, 0);
1299
1300 if (evfd >= 0)
1301 {
1302 evpipe [0] = -1;
1303 fd_intern (evfd); /* doing it twice doesn't hurt */
1304 ev_io_set (&pipe_w, evfd, EV_READ);
1305 }
1306 else
1307# endif
1308 {
1309 while (pipe (evpipe))
1310 ev_syserr ("(libev) error creating signal/async pipe");
1311
1312 fd_intern (evpipe [0]);
1313 fd_intern (evpipe [1]);
1314 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1315 }
1316
1317 ev_io_start (EV_A_ &pipe_w);
1318 ev_unref (EV_A); /* watcher should not keep loop alive */
1319 }
1320}
1321
1322inline_size void
1323evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1324{
1325 if (!*flag)
1326 {
1327 int old_errno = errno; /* save errno because write might clobber it */
1328 char dummy;
1329
1330 *flag = 1;
1331
1332#if EV_USE_EVENTFD
1333 if (evfd >= 0)
1334 {
1335 uint64_t counter = 1;
1336 write (evfd, &counter, sizeof (uint64_t));
1337 }
1338 else
1339#endif
1340 /* win32 people keep sending patches that change this write() to send() */
1341 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1342 /* so when you think this write should be a send instead, please find out */
1343 /* where your send() is from - it's definitely not the microsoft send, and */
1344 /* tell me. thank you. */
1345 write (evpipe [1], &dummy, 1);
1346
1347 errno = old_errno;
1348 }
1349}
1350
1351/* called whenever the libev signal pipe */
1352/* got some events (signal, async) */
682static void 1353static void
683siginit (EV_P) 1354pipecb (EV_P_ ev_io *iow, int revents)
684{ 1355{
685 fd_intern (sigpipe [0]); 1356 int i;
686 fd_intern (sigpipe [1]);
687 1357
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1358#if EV_USE_EVENTFD
689 ev_io_start (EV_A_ &sigev); 1359 if (evfd >= 0)
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1360 {
1361 uint64_t counter;
1362 read (evfd, &counter, sizeof (uint64_t));
1363 }
1364 else
1365#endif
1366 {
1367 char dummy;
1368 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1369 read (evpipe [0], &dummy, 1);
1370 }
1371
1372#if EV_SIGNAL_ENABLE
1373 if (sig_pending)
1374 {
1375 sig_pending = 0;
1376
1377 for (i = EV_NSIG - 1; i--; )
1378 if (expect_false (signals [i].pending))
1379 ev_feed_signal_event (EV_A_ i + 1);
1380 }
1381#endif
1382
1383#if EV_ASYNC_ENABLE
1384 if (async_pending)
1385 {
1386 async_pending = 0;
1387
1388 for (i = asynccnt; i--; )
1389 if (asyncs [i]->sent)
1390 {
1391 asyncs [i]->sent = 0;
1392 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1393 }
1394 }
1395#endif
691} 1396}
692 1397
693/*****************************************************************************/ 1398/*****************************************************************************/
694 1399
695static struct ev_child *childs [PID_HASHSIZE]; 1400void
1401ev_feed_signal (int signum)
1402{
1403#if EV_MULTIPLICITY
1404 EV_P = signals [signum - 1].loop;
696 1405
1406 if (!EV_A)
1407 return;
1408#endif
1409
1410 signals [signum - 1].pending = 1;
1411 evpipe_write (EV_A_ &sig_pending);
1412}
1413
1414static void
1415ev_sighandler (int signum)
1416{
697#ifndef _WIN32 1417#ifdef _WIN32
1418 signal (signum, ev_sighandler);
1419#endif
698 1420
1421 ev_feed_signal (signum);
1422}
1423
1424void noinline
1425ev_feed_signal_event (EV_P_ int signum)
1426{
1427 WL w;
1428
1429 if (expect_false (signum <= 0 || signum > EV_NSIG))
1430 return;
1431
1432 --signum;
1433
1434#if EV_MULTIPLICITY
1435 /* it is permissible to try to feed a signal to the wrong loop */
1436 /* or, likely more useful, feeding a signal nobody is waiting for */
1437
1438 if (expect_false (signals [signum].loop != EV_A))
1439 return;
1440#endif
1441
1442 signals [signum].pending = 0;
1443
1444 for (w = signals [signum].head; w; w = w->next)
1445 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1446}
1447
1448#if EV_USE_SIGNALFD
1449static void
1450sigfdcb (EV_P_ ev_io *iow, int revents)
1451{
1452 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1453
1454 for (;;)
1455 {
1456 ssize_t res = read (sigfd, si, sizeof (si));
1457
1458 /* not ISO-C, as res might be -1, but works with SuS */
1459 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1460 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1461
1462 if (res < (ssize_t)sizeof (si))
1463 break;
1464 }
1465}
1466#endif
1467
1468#endif
1469
1470/*****************************************************************************/
1471
1472#if EV_CHILD_ENABLE
1473static WL childs [EV_PID_HASHSIZE];
1474
699static struct ev_signal childev; 1475static ev_signal childev;
1476
1477#ifndef WIFCONTINUED
1478# define WIFCONTINUED(status) 0
1479#endif
1480
1481/* handle a single child status event */
1482inline_speed void
1483child_reap (EV_P_ int chain, int pid, int status)
1484{
1485 ev_child *w;
1486 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1487
1488 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1489 {
1490 if ((w->pid == pid || !w->pid)
1491 && (!traced || (w->flags & 1)))
1492 {
1493 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1494 w->rpid = pid;
1495 w->rstatus = status;
1496 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1497 }
1498 }
1499}
700 1500
701#ifndef WCONTINUED 1501#ifndef WCONTINUED
702# define WCONTINUED 0 1502# define WCONTINUED 0
703#endif 1503#endif
704 1504
1505/* called on sigchld etc., calls waitpid */
705static void 1506static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 1507childcb (EV_P_ ev_signal *sw, int revents)
722{ 1508{
723 int pid, status; 1509 int pid, status;
724 1510
1511 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1512 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 1513 if (!WCONTINUED
1514 || errno != EINVAL
1515 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1516 return;
1517
727 /* make sure we are called again until all childs have been reaped */ 1518 /* make sure we are called again until all children have been reaped */
1519 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1520 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 1521
730 child_reap (EV_A_ sw, pid, pid, status); 1522 child_reap (EV_A_ pid, pid, status);
1523 if ((EV_PID_HASHSIZE) > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1524 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 1525}
734 1526
735#endif 1527#endif
736 1528
737/*****************************************************************************/ 1529/*****************************************************************************/
738 1530
1531#if EV_USE_IOCP
1532# include "ev_iocp.c"
1533#endif
739#if EV_USE_PORT 1534#if EV_USE_PORT
740# include "ev_port.c" 1535# include "ev_port.c"
741#endif 1536#endif
742#if EV_USE_KQUEUE 1537#if EV_USE_KQUEUE
743# include "ev_kqueue.c" 1538# include "ev_kqueue.c"
763{ 1558{
764 return EV_VERSION_MINOR; 1559 return EV_VERSION_MINOR;
765} 1560}
766 1561
767/* return true if we are running with elevated privileges and should ignore env variables */ 1562/* return true if we are running with elevated privileges and should ignore env variables */
768static int 1563int inline_size
769enable_secure (void) 1564enable_secure (void)
770{ 1565{
771#ifdef _WIN32 1566#ifdef _WIN32
772 return 0; 1567 return 0;
773#else 1568#else
775 || getgid () != getegid (); 1570 || getgid () != getegid ();
776#endif 1571#endif
777} 1572}
778 1573
779unsigned int 1574unsigned int
1575ev_supported_backends (void)
1576{
1577 unsigned int flags = 0;
1578
1579 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1580 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1581 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1582 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1583 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1584
1585 return flags;
1586}
1587
1588unsigned int
1589ev_recommended_backends (void)
1590{
1591 unsigned int flags = ev_supported_backends ();
1592
1593#ifndef __NetBSD__
1594 /* kqueue is borked on everything but netbsd apparently */
1595 /* it usually doesn't work correctly on anything but sockets and pipes */
1596 flags &= ~EVBACKEND_KQUEUE;
1597#endif
1598#ifdef __APPLE__
1599 /* only select works correctly on that "unix-certified" platform */
1600 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1601 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1602#endif
1603#ifdef __FreeBSD__
1604 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1605#endif
1606
1607 return flags;
1608}
1609
1610unsigned int
1611ev_embeddable_backends (void)
1612{
1613 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1614
1615 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1616 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1617 flags &= ~EVBACKEND_EPOLL;
1618
1619 return flags;
1620}
1621
1622unsigned int
1623ev_backend (EV_P)
1624{
1625 return backend;
1626}
1627
1628#if EV_FEATURE_API
1629unsigned int
1630ev_iteration (EV_P)
1631{
1632 return loop_count;
1633}
1634
1635unsigned int
780ev_method (EV_P) 1636ev_depth (EV_P)
781{ 1637{
782 return method; 1638 return loop_depth;
783} 1639}
784 1640
785static void 1641void
1642ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1643{
1644 io_blocktime = interval;
1645}
1646
1647void
1648ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1649{
1650 timeout_blocktime = interval;
1651}
1652
1653void
1654ev_set_userdata (EV_P_ void *data)
1655{
1656 userdata = data;
1657}
1658
1659void *
1660ev_userdata (EV_P)
1661{
1662 return userdata;
1663}
1664
1665void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1666{
1667 invoke_cb = invoke_pending_cb;
1668}
1669
1670void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1671{
1672 release_cb = release;
1673 acquire_cb = acquire;
1674}
1675#endif
1676
1677/* initialise a loop structure, must be zero-initialised */
1678static void noinline
786loop_init (EV_P_ unsigned int flags) 1679loop_init (EV_P_ unsigned int flags)
787{ 1680{
788 if (!method) 1681 if (!backend)
789 { 1682 {
1683 origflags = flags;
1684
1685#if EV_USE_REALTIME
1686 if (!have_realtime)
1687 {
1688 struct timespec ts;
1689
1690 if (!clock_gettime (CLOCK_REALTIME, &ts))
1691 have_realtime = 1;
1692 }
1693#endif
1694
790#if EV_USE_MONOTONIC 1695#if EV_USE_MONOTONIC
1696 if (!have_monotonic)
1697 {
1698 struct timespec ts;
1699
1700 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1701 have_monotonic = 1;
1702 }
1703#endif
1704
1705 /* pid check not overridable via env */
1706#ifndef _WIN32
1707 if (flags & EVFLAG_FORKCHECK)
1708 curpid = getpid ();
1709#endif
1710
1711 if (!(flags & EVFLAG_NOENV)
1712 && !enable_secure ()
1713 && getenv ("LIBEV_FLAGS"))
1714 flags = atoi (getenv ("LIBEV_FLAGS"));
1715
1716 ev_rt_now = ev_time ();
1717 mn_now = get_clock ();
1718 now_floor = mn_now;
1719 rtmn_diff = ev_rt_now - mn_now;
1720#if EV_FEATURE_API
1721 invoke_cb = ev_invoke_pending;
1722#endif
1723
1724 io_blocktime = 0.;
1725 timeout_blocktime = 0.;
1726 backend = 0;
1727 backend_fd = -1;
1728 sig_pending = 0;
1729#if EV_ASYNC_ENABLE
1730 async_pending = 0;
1731#endif
1732#if EV_USE_INOTIFY
1733 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1734#endif
1735#if EV_USE_SIGNALFD
1736 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1737#endif
1738
1739 if (!(flags & EVBACKEND_MASK))
1740 flags |= ev_recommended_backends ();
1741
1742#if EV_USE_IOCP
1743 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1744#endif
1745#if EV_USE_PORT
1746 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1747#endif
1748#if EV_USE_KQUEUE
1749 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1750#endif
1751#if EV_USE_EPOLL
1752 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1753#endif
1754#if EV_USE_POLL
1755 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1756#endif
1757#if EV_USE_SELECT
1758 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1759#endif
1760
1761 ev_prepare_init (&pending_w, pendingcb);
1762
1763#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1764 ev_init (&pipe_w, pipecb);
1765 ev_set_priority (&pipe_w, EV_MAXPRI);
1766#endif
1767 }
1768}
1769
1770/* free up a loop structure */
1771void
1772ev_loop_destroy (EV_P)
1773{
1774 int i;
1775
1776#if EV_MULTIPLICITY
1777 /* mimic free (0) */
1778 if (!EV_A)
1779 return;
1780#endif
1781
1782#if EV_CLEANUP_ENABLE
1783 /* queue cleanup watchers (and execute them) */
1784 if (expect_false (cleanupcnt))
1785 {
1786 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1787 EV_INVOKE_PENDING;
1788 }
1789#endif
1790
1791#if EV_CHILD_ENABLE
1792 if (ev_is_active (&childev))
1793 {
1794 ev_ref (EV_A); /* child watcher */
1795 ev_signal_stop (EV_A_ &childev);
1796 }
1797#endif
1798
1799 if (ev_is_active (&pipe_w))
1800 {
1801 /*ev_ref (EV_A);*/
1802 /*ev_io_stop (EV_A_ &pipe_w);*/
1803
1804#if EV_USE_EVENTFD
1805 if (evfd >= 0)
1806 close (evfd);
1807#endif
1808
1809 if (evpipe [0] >= 0)
1810 {
1811 EV_WIN32_CLOSE_FD (evpipe [0]);
1812 EV_WIN32_CLOSE_FD (evpipe [1]);
1813 }
1814 }
1815
1816#if EV_USE_SIGNALFD
1817 if (ev_is_active (&sigfd_w))
1818 close (sigfd);
1819#endif
1820
1821#if EV_USE_INOTIFY
1822 if (fs_fd >= 0)
1823 close (fs_fd);
1824#endif
1825
1826 if (backend_fd >= 0)
1827 close (backend_fd);
1828
1829#if EV_USE_IOCP
1830 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1831#endif
1832#if EV_USE_PORT
1833 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1834#endif
1835#if EV_USE_KQUEUE
1836 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1837#endif
1838#if EV_USE_EPOLL
1839 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1840#endif
1841#if EV_USE_POLL
1842 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1843#endif
1844#if EV_USE_SELECT
1845 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1846#endif
1847
1848 for (i = NUMPRI; i--; )
1849 {
1850 array_free (pending, [i]);
1851#if EV_IDLE_ENABLE
1852 array_free (idle, [i]);
1853#endif
1854 }
1855
1856 ev_free (anfds); anfds = 0; anfdmax = 0;
1857
1858 /* have to use the microsoft-never-gets-it-right macro */
1859 array_free (rfeed, EMPTY);
1860 array_free (fdchange, EMPTY);
1861 array_free (timer, EMPTY);
1862#if EV_PERIODIC_ENABLE
1863 array_free (periodic, EMPTY);
1864#endif
1865#if EV_FORK_ENABLE
1866 array_free (fork, EMPTY);
1867#endif
1868#if EV_CLEANUP_ENABLE
1869 array_free (cleanup, EMPTY);
1870#endif
1871 array_free (prepare, EMPTY);
1872 array_free (check, EMPTY);
1873#if EV_ASYNC_ENABLE
1874 array_free (async, EMPTY);
1875#endif
1876
1877 backend = 0;
1878
1879#if EV_MULTIPLICITY
1880 if (ev_is_default_loop (EV_A))
1881#endif
1882 ev_default_loop_ptr = 0;
1883#if EV_MULTIPLICITY
1884 else
1885 ev_free (EV_A);
1886#endif
1887}
1888
1889#if EV_USE_INOTIFY
1890inline_size void infy_fork (EV_P);
1891#endif
1892
1893inline_size void
1894loop_fork (EV_P)
1895{
1896#if EV_USE_PORT
1897 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1898#endif
1899#if EV_USE_KQUEUE
1900 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1901#endif
1902#if EV_USE_EPOLL
1903 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1904#endif
1905#if EV_USE_INOTIFY
1906 infy_fork (EV_A);
1907#endif
1908
1909 if (ev_is_active (&pipe_w))
1910 {
1911 /* this "locks" the handlers against writing to the pipe */
1912 /* while we modify the fd vars */
1913 sig_pending = 1;
1914#if EV_ASYNC_ENABLE
1915 async_pending = 1;
1916#endif
1917
1918 ev_ref (EV_A);
1919 ev_io_stop (EV_A_ &pipe_w);
1920
1921#if EV_USE_EVENTFD
1922 if (evfd >= 0)
1923 close (evfd);
1924#endif
1925
1926 if (evpipe [0] >= 0)
1927 {
1928 EV_WIN32_CLOSE_FD (evpipe [0]);
1929 EV_WIN32_CLOSE_FD (evpipe [1]);
1930 }
1931
1932#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1933 evpipe_init (EV_A);
1934 /* now iterate over everything, in case we missed something */
1935 pipecb (EV_A_ &pipe_w, EV_READ);
1936#endif
1937 }
1938
1939 postfork = 0;
1940}
1941
1942#if EV_MULTIPLICITY
1943
1944struct ev_loop *
1945ev_loop_new (unsigned int flags)
1946{
1947 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1948
1949 memset (EV_A, 0, sizeof (struct ev_loop));
1950 loop_init (EV_A_ flags);
1951
1952 if (ev_backend (EV_A))
1953 return EV_A;
1954
1955 ev_free (EV_A);
1956 return 0;
1957}
1958
1959#endif /* multiplicity */
1960
1961#if EV_VERIFY
1962static void noinline
1963verify_watcher (EV_P_ W w)
1964{
1965 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1966
1967 if (w->pending)
1968 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1969}
1970
1971static void noinline
1972verify_heap (EV_P_ ANHE *heap, int N)
1973{
1974 int i;
1975
1976 for (i = HEAP0; i < N + HEAP0; ++i)
1977 {
1978 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1979 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1980 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1981
1982 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1983 }
1984}
1985
1986static void noinline
1987array_verify (EV_P_ W *ws, int cnt)
1988{
1989 while (cnt--)
1990 {
1991 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1992 verify_watcher (EV_A_ ws [cnt]);
1993 }
1994}
1995#endif
1996
1997#if EV_FEATURE_API
1998void
1999ev_verify (EV_P)
2000{
2001#if EV_VERIFY
2002 int i;
2003 WL w;
2004
2005 assert (activecnt >= -1);
2006
2007 assert (fdchangemax >= fdchangecnt);
2008 for (i = 0; i < fdchangecnt; ++i)
2009 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2010
2011 assert (anfdmax >= 0);
2012 for (i = 0; i < anfdmax; ++i)
2013 for (w = anfds [i].head; w; w = w->next)
791 { 2014 {
792 struct timespec ts; 2015 verify_watcher (EV_A_ (W)w);
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2016 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
794 have_monotonic = 1; 2017 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
795 } 2018 }
796#endif
797 2019
798 ev_rt_now = ev_time (); 2020 assert (timermax >= timercnt);
799 mn_now = get_clock (); 2021 verify_heap (EV_A_ timers, timercnt);
800 now_floor = mn_now;
801 rtmn_diff = ev_rt_now - mn_now;
802 2022
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2023#if EV_PERIODIC_ENABLE
804 flags = atoi (getenv ("LIBEV_FLAGS")); 2024 assert (periodicmax >= periodiccnt);
805 2025 verify_heap (EV_A_ periodics, periodiccnt);
806 if (!(flags & 0x0000ffff))
807 flags |= 0x0000ffff;
808
809 method = 0;
810#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
812#endif
813#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
815#endif
816#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
818#endif
819#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
821#endif
822#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
824#endif
825
826 ev_init (&sigev, sigcb);
827 ev_set_priority (&sigev, EV_MAXPRI);
828 }
829}
830
831static void
832loop_destroy (EV_P)
833{
834 int i;
835
836#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
838#endif
839#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
841#endif
842#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
844#endif
845#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
847#endif
848#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
850#endif 2026#endif
851 2027
852 for (i = NUMPRI; i--; ) 2028 for (i = NUMPRI; i--; )
853 array_free (pending, [i]); 2029 {
2030 assert (pendingmax [i] >= pendingcnt [i]);
2031#if EV_IDLE_ENABLE
2032 assert (idleall >= 0);
2033 assert (idlemax [i] >= idlecnt [i]);
2034 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2035#endif
2036 }
854 2037
855 /* have to use the microsoft-never-gets-it-right macro */ 2038#if EV_FORK_ENABLE
856 array_free (fdchange, EMPTY0); 2039 assert (forkmax >= forkcnt);
857 array_free (timer, EMPTY0); 2040 array_verify (EV_A_ (W *)forks, forkcnt);
858#if EV_PERIODICS 2041#endif
859 array_free (periodic, EMPTY0); 2042
2043#if EV_CLEANUP_ENABLE
2044 assert (cleanupmax >= cleanupcnt);
2045 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2046#endif
2047
2048#if EV_ASYNC_ENABLE
2049 assert (asyncmax >= asynccnt);
2050 array_verify (EV_A_ (W *)asyncs, asynccnt);
2051#endif
2052
2053#if EV_PREPARE_ENABLE
2054 assert (preparemax >= preparecnt);
2055 array_verify (EV_A_ (W *)prepares, preparecnt);
2056#endif
2057
2058#if EV_CHECK_ENABLE
2059 assert (checkmax >= checkcnt);
2060 array_verify (EV_A_ (W *)checks, checkcnt);
2061#endif
2062
2063# if 0
2064#if EV_CHILD_ENABLE
2065 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2066 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2067#endif
860#endif 2068# endif
861 array_free (idle, EMPTY0);
862 array_free (prepare, EMPTY0);
863 array_free (check, EMPTY0);
864
865 method = 0;
866}
867
868static void
869loop_fork (EV_P)
870{
871#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A);
873#endif 2069#endif
874#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
876#endif
877#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
879#endif
880
881 if (ev_is_active (&sigev))
882 {
883 /* default loop */
884
885 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A);
894 }
895
896 postfork = 0;
897} 2070}
2071#endif
898 2072
899#if EV_MULTIPLICITY 2073#if EV_MULTIPLICITY
900struct ev_loop * 2074struct ev_loop *
901ev_loop_new (unsigned int flags)
902{
903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
904
905 memset (loop, 0, sizeof (struct ev_loop));
906
907 loop_init (EV_A_ flags);
908
909 if (ev_method (EV_A))
910 return loop;
911
912 return 0;
913}
914
915void
916ev_loop_destroy (EV_P)
917{
918 loop_destroy (EV_A);
919 ev_free (loop);
920}
921
922void
923ev_loop_fork (EV_P)
924{
925 postfork = 1;
926}
927
928#endif
929
930#if EV_MULTIPLICITY
931struct ev_loop *
932ev_default_loop_init (unsigned int flags)
933#else 2075#else
934int 2076int
2077#endif
935ev_default_loop (unsigned int flags) 2078ev_default_loop (unsigned int flags)
936#endif
937{ 2079{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 2080 if (!ev_default_loop_ptr)
943 { 2081 {
944#if EV_MULTIPLICITY 2082#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2083 EV_P = ev_default_loop_ptr = &default_loop_struct;
946#else 2084#else
947 ev_default_loop_ptr = 1; 2085 ev_default_loop_ptr = 1;
948#endif 2086#endif
949 2087
950 loop_init (EV_A_ flags); 2088 loop_init (EV_A_ flags);
951 2089
952 if (ev_method (EV_A)) 2090 if (ev_backend (EV_A))
953 { 2091 {
954 siginit (EV_A); 2092#if EV_CHILD_ENABLE
955
956#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 2093 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 2094 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 2095 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2096 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#endif 2097#endif
966 2102
967 return ev_default_loop_ptr; 2103 return ev_default_loop_ptr;
968} 2104}
969 2105
970void 2106void
971ev_default_destroy (void) 2107ev_loop_fork (EV_P)
972{ 2108{
973#if EV_MULTIPLICITY 2109 postfork = 1; /* must be in line with ev_default_fork */
974 struct ev_loop *loop = ev_default_loop_ptr;
975#endif
976
977#ifndef _WIN32
978 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev);
980#endif
981
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A);
989}
990
991void
992ev_default_fork (void)
993{
994#if EV_MULTIPLICITY
995 struct ev_loop *loop = ev_default_loop_ptr;
996#endif
997
998 if (method)
999 postfork = 1;
1000} 2110}
1001 2111
1002/*****************************************************************************/ 2112/*****************************************************************************/
1003 2113
1004static int 2114void
1005any_pending (EV_P) 2115ev_invoke (EV_P_ void *w, int revents)
2116{
2117 EV_CB_INVOKE ((W)w, revents);
2118}
2119
2120unsigned int
2121ev_pending_count (EV_P)
1006{ 2122{
1007 int pri; 2123 int pri;
2124 unsigned int count = 0;
1008 2125
1009 for (pri = NUMPRI; pri--; ) 2126 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri]) 2127 count += pendingcnt [pri];
1011 return 1;
1012 2128
1013 return 0; 2129 return count;
1014} 2130}
1015 2131
1016inline void 2132void noinline
1017call_pending (EV_P) 2133ev_invoke_pending (EV_P)
1018{ 2134{
1019 int pri; 2135 int pri;
1020 2136
1021 for (pri = NUMPRI; pri--; ) 2137 for (pri = NUMPRI; pri--; )
1022 while (pendingcnt [pri]) 2138 while (pendingcnt [pri])
1023 { 2139 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2140 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 2141
1026 if (expect_true (p->w))
1027 {
1028 p->w->pending = 0; 2142 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 2143 EV_CB_INVOKE (p->w, p->events);
1030 } 2144 EV_FREQUENT_CHECK;
1031 } 2145 }
1032} 2146}
1033 2147
2148#if EV_IDLE_ENABLE
2149/* make idle watchers pending. this handles the "call-idle */
2150/* only when higher priorities are idle" logic */
1034inline void 2151inline_size void
2152idle_reify (EV_P)
2153{
2154 if (expect_false (idleall))
2155 {
2156 int pri;
2157
2158 for (pri = NUMPRI; pri--; )
2159 {
2160 if (pendingcnt [pri])
2161 break;
2162
2163 if (idlecnt [pri])
2164 {
2165 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2166 break;
2167 }
2168 }
2169 }
2170}
2171#endif
2172
2173/* make timers pending */
2174inline_size void
1035timers_reify (EV_P) 2175timers_reify (EV_P)
1036{ 2176{
2177 EV_FREQUENT_CHECK;
2178
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 2179 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 2180 {
1039 struct ev_timer *w = timers [0]; 2181 do
1040
1041 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1042
1043 /* first reschedule or stop timer */
1044 if (w->repeat)
1045 { 2182 {
2183 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2184
2185 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2186
2187 /* first reschedule or stop timer */
2188 if (w->repeat)
2189 {
2190 ev_at (w) += w->repeat;
2191 if (ev_at (w) < mn_now)
2192 ev_at (w) = mn_now;
2193
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2194 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 2195
1048 ((WT)w)->at += w->repeat; 2196 ANHE_at_cache (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 2197 downheap (timers, timercnt, HEAP0);
2198 }
2199 else
2200 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2201
2202 EV_FREQUENT_CHECK;
2203 feed_reverse (EV_A_ (W)w);
1053 } 2204 }
1054 else 2205 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 2206
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2207 feed_reverse_done (EV_A_ EV_TIMER);
1058 } 2208 }
1059} 2209}
1060 2210
1061#if EV_PERIODICS 2211#if EV_PERIODIC_ENABLE
2212
2213inline_speed void
2214periodic_recalc (EV_P_ ev_periodic *w)
2215{
2216 /* TODO: use slow but potentially more correct incremental algo, */
2217 /* also do not rely on ceil */
2218 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2219}
2220
2221/* make periodics pending */
1062inline void 2222inline_size void
1063periodics_reify (EV_P) 2223periodics_reify (EV_P)
1064{ 2224{
2225 EV_FREQUENT_CHECK;
2226
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2227 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 2228 {
1067 struct ev_periodic *w = periodics [0]; 2229 int feed_count = 0;
1068 2230
2231 do
2232 {
2233 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2234
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2235 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 2236
1071 /* first reschedule or stop timer */ 2237 /* first reschedule or stop timer */
2238 if (w->reschedule_cb)
2239 {
2240 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2241
2242 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2243
2244 ANHE_at_cache (periodics [HEAP0]);
2245 downheap (periodics, periodiccnt, HEAP0);
2246 }
2247 else if (w->interval)
2248 {
2249 periodic_recalc (EV_A_ w);
2250
2251 /* if next trigger time is not sufficiently in the future, put it there */
2252 /* this might happen because of floating point inexactness */
2253 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2254 {
2255 ev_at (w) += w->interval;
2256
2257 /* if interval is unreasonably low we might still have a time in the past */
2258 /* so correct this. this will make the periodic very inexact, but the user */
2259 /* has effectively asked to get triggered more often than possible */
2260 if (ev_at (w) < ev_rt_now)
2261 ev_at (w) = ev_rt_now;
2262 }
2263
2264 ANHE_at_cache (periodics [HEAP0]);
2265 downheap (periodics, periodiccnt, HEAP0);
2266 }
2267 else
2268 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2269
2270 EV_FREQUENT_CHECK;
2271 feed_reverse (EV_A_ (W)w);
2272 }
2273 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2274
2275 feed_reverse_done (EV_A_ EV_PERIODIC);
2276 }
2277}
2278
2279/* simply recalculate all periodics */
2280/* TODO: maybe ensure that at least one event happens when jumping forward? */
2281static void noinline
2282periodics_reschedule (EV_P)
2283{
2284 int i;
2285
2286 /* adjust periodics after time jump */
2287 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2288 {
2289 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2290
1072 if (w->reschedule_cb) 2291 if (w->reschedule_cb)
2292 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2293 else if (w->interval)
2294 periodic_recalc (EV_A_ w);
2295
2296 ANHE_at_cache (periodics [i]);
2297 }
2298
2299 reheap (periodics, periodiccnt);
2300}
2301#endif
2302
2303/* adjust all timers by a given offset */
2304static void noinline
2305timers_reschedule (EV_P_ ev_tstamp adjust)
2306{
2307 int i;
2308
2309 for (i = 0; i < timercnt; ++i)
2310 {
2311 ANHE *he = timers + i + HEAP0;
2312 ANHE_w (*he)->at += adjust;
2313 ANHE_at_cache (*he);
2314 }
2315}
2316
2317/* fetch new monotonic and realtime times from the kernel */
2318/* also detect if there was a timejump, and act accordingly */
2319inline_speed void
2320time_update (EV_P_ ev_tstamp max_block)
2321{
2322#if EV_USE_MONOTONIC
2323 if (expect_true (have_monotonic))
2324 {
2325 int i;
2326 ev_tstamp odiff = rtmn_diff;
2327
2328 mn_now = get_clock ();
2329
2330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2331 /* interpolate in the meantime */
2332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1073 { 2333 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2334 ev_rt_now = rtmn_diff + mn_now;
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2335 return;
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 } 2336 }
1078 else if (w->interval)
1079 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1082 downheap ((WT *)periodics, periodiccnt, 0);
1083 }
1084 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 2337
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 }
1089}
1090
1091static void
1092periodics_reschedule (EV_P)
1093{
1094 int i;
1095
1096 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i)
1098 {
1099 struct ev_periodic *w = periodics [i];
1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock ();
1117
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 {
1120 ev_rt_now = rtmn_diff + mn_now;
1121 return 0;
1122 }
1123 else
1124 {
1125 now_floor = mn_now; 2338 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 2339 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 2340
1131inline void 2341 /* loop a few times, before making important decisions.
1132time_update (EV_P) 2342 * on the choice of "4": one iteration isn't enough,
1133{ 2343 * in case we get preempted during the calls to
1134 int i; 2344 * ev_time and get_clock. a second call is almost guaranteed
1135 2345 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 2346 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 2347 * in the unlikely event of having been preempted here.
1138 { 2348 */
1139 if (time_update_monotonic (EV_A)) 2349 for (i = 4; --i; )
1140 { 2350 {
1141 ev_tstamp odiff = rtmn_diff;
1142
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1144 {
1145 rtmn_diff = ev_rt_now - mn_now; 2351 rtmn_diff = ev_rt_now - mn_now;
1146 2352
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2353 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1148 return; /* all is well */ 2354 return; /* all is well */
1149 2355
1150 ev_rt_now = ev_time (); 2356 ev_rt_now = ev_time ();
1151 mn_now = get_clock (); 2357 mn_now = get_clock ();
1152 now_floor = mn_now; 2358 now_floor = mn_now;
1153 } 2359 }
1154 2360
2361 /* no timer adjustment, as the monotonic clock doesn't jump */
2362 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1155# if EV_PERIODICS 2363# if EV_PERIODIC_ENABLE
2364 periodics_reschedule (EV_A);
2365# endif
2366 }
2367 else
2368#endif
2369 {
2370 ev_rt_now = ev_time ();
2371
2372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2373 {
2374 /* adjust timers. this is easy, as the offset is the same for all of them */
2375 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2376#if EV_PERIODIC_ENABLE
1156 periodics_reschedule (EV_A); 2377 periodics_reschedule (EV_A);
1157# endif 2378#endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 2379 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 2380
1178 mn_now = ev_rt_now; 2381 mn_now = ev_rt_now;
1179 } 2382 }
1180} 2383}
1181 2384
1182void 2385void
1183ev_ref (EV_P)
1184{
1185 ++activecnt;
1186}
1187
1188void
1189ev_unref (EV_P)
1190{
1191 --activecnt;
1192}
1193
1194static int loop_done;
1195
1196void
1197ev_loop (EV_P_ int flags) 2386ev_run (EV_P_ int flags)
1198{ 2387{
1199 double block; 2388#if EV_FEATURE_API
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2389 ++loop_depth;
2390#endif
1201 2391
1202 while (activecnt) 2392 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2393
2394 loop_done = EVBREAK_CANCEL;
2395
2396 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2397
2398 do
1203 { 2399 {
2400#if EV_VERIFY >= 2
2401 ev_verify (EV_A);
2402#endif
2403
2404#ifndef _WIN32
2405 if (expect_false (curpid)) /* penalise the forking check even more */
2406 if (expect_false (getpid () != curpid))
2407 {
2408 curpid = getpid ();
2409 postfork = 1;
2410 }
2411#endif
2412
2413#if EV_FORK_ENABLE
2414 /* we might have forked, so queue fork handlers */
2415 if (expect_false (postfork))
2416 if (forkcnt)
2417 {
2418 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2419 EV_INVOKE_PENDING;
2420 }
2421#endif
2422
2423#if EV_PREPARE_ENABLE
1204 /* queue check watchers (and execute them) */ 2424 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 2425 if (expect_false (preparecnt))
1206 { 2426 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2427 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 2428 EV_INVOKE_PENDING;
1209 } 2429 }
2430#endif
2431
2432 if (expect_false (loop_done))
2433 break;
1210 2434
1211 /* we might have forked, so reify kernel state if necessary */ 2435 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 2436 if (expect_false (postfork))
1213 loop_fork (EV_A); 2437 loop_fork (EV_A);
1214 2438
1215 /* update fd-related kernel structures */ 2439 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 2440 fd_reify (EV_A);
1217 2441
1218 /* calculate blocking time */ 2442 /* calculate blocking time */
2443 {
2444 ev_tstamp waittime = 0.;
2445 ev_tstamp sleeptime = 0.;
1219 2446
1220 /* we only need this for !monotonic clock or timers, but as we basically 2447 /* remember old timestamp for io_blocktime calculation */
1221 always have timers, we just calculate it always */ 2448 ev_tstamp prev_mn_now = mn_now;
1222#if EV_USE_MONOTONIC 2449
1223 if (expect_true (have_monotonic)) 2450 /* update time to cancel out callback processing overhead */
1224 time_update_monotonic (EV_A); 2451 time_update (EV_A_ 1e100);
1225 else 2452
1226#endif 2453 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1227 { 2454 {
1228 ev_rt_now = ev_time ();
1229 mn_now = ev_rt_now;
1230 }
1231
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 2455 waittime = MAX_BLOCKTIME;
1237 2456
1238 if (timercnt) 2457 if (timercnt)
1239 { 2458 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2459 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1241 if (block > to) block = to; 2460 if (waittime > to) waittime = to;
1242 } 2461 }
1243 2462
1244#if EV_PERIODICS 2463#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 2464 if (periodiccnt)
1246 { 2465 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2466 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1248 if (block > to) block = to; 2467 if (waittime > to) waittime = to;
1249 } 2468 }
1250#endif 2469#endif
1251 2470
1252 if (expect_false (block < 0.)) block = 0.; 2471 /* don't let timeouts decrease the waittime below timeout_blocktime */
2472 if (expect_false (waittime < timeout_blocktime))
2473 waittime = timeout_blocktime;
2474
2475 /* extra check because io_blocktime is commonly 0 */
2476 if (expect_false (io_blocktime))
2477 {
2478 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2479
2480 if (sleeptime > waittime - backend_fudge)
2481 sleeptime = waittime - backend_fudge;
2482
2483 if (expect_true (sleeptime > 0.))
2484 {
2485 ev_sleep (sleeptime);
2486 waittime -= sleeptime;
2487 }
2488 }
1253 } 2489 }
1254 2490
1255 method_poll (EV_A_ block); 2491#if EV_FEATURE_API
2492 ++loop_count;
2493#endif
2494 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2495 backend_poll (EV_A_ waittime);
2496 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1256 2497
1257 /* update ev_rt_now, do magic */ 2498 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 2499 time_update (EV_A_ waittime + sleeptime);
2500 }
1259 2501
1260 /* queue pending timers and reschedule them */ 2502 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 2503 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 2504#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 2505 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 2506#endif
1265 2507
2508#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 2509 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 2510 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2511#endif
1269 2512
2513#if EV_CHECK_ENABLE
1270 /* queue check watchers, to be executed first */ 2514 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 2515 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2516 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2517#endif
1273 2518
1274 call_pending (EV_A); 2519 EV_INVOKE_PENDING;
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 2520 }
2521 while (expect_true (
2522 activecnt
2523 && !loop_done
2524 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2525 ));
1279 2526
1280 if (loop_done != 2) 2527 if (loop_done == EVBREAK_ONE)
1281 loop_done = 0; 2528 loop_done = EVBREAK_CANCEL;
1282}
1283 2529
2530#if EV_FEATURE_API
2531 --loop_depth;
2532#endif
2533}
2534
1284void 2535void
1285ev_unloop (EV_P_ int how) 2536ev_break (EV_P_ int how)
1286{ 2537{
1287 loop_done = how; 2538 loop_done = how;
1288} 2539}
1289 2540
2541void
2542ev_ref (EV_P)
2543{
2544 ++activecnt;
2545}
2546
2547void
2548ev_unref (EV_P)
2549{
2550 --activecnt;
2551}
2552
2553void
2554ev_now_update (EV_P)
2555{
2556 time_update (EV_A_ 1e100);
2557}
2558
2559void
2560ev_suspend (EV_P)
2561{
2562 ev_now_update (EV_A);
2563}
2564
2565void
2566ev_resume (EV_P)
2567{
2568 ev_tstamp mn_prev = mn_now;
2569
2570 ev_now_update (EV_A);
2571 timers_reschedule (EV_A_ mn_now - mn_prev);
2572#if EV_PERIODIC_ENABLE
2573 /* TODO: really do this? */
2574 periodics_reschedule (EV_A);
2575#endif
2576}
2577
1290/*****************************************************************************/ 2578/*****************************************************************************/
2579/* singly-linked list management, used when the expected list length is short */
1291 2580
1292inline void 2581inline_size void
1293wlist_add (WL *head, WL elem) 2582wlist_add (WL *head, WL elem)
1294{ 2583{
1295 elem->next = *head; 2584 elem->next = *head;
1296 *head = elem; 2585 *head = elem;
1297} 2586}
1298 2587
1299inline void 2588inline_size void
1300wlist_del (WL *head, WL elem) 2589wlist_del (WL *head, WL elem)
1301{ 2590{
1302 while (*head) 2591 while (*head)
1303 { 2592 {
1304 if (*head == elem) 2593 if (expect_true (*head == elem))
1305 { 2594 {
1306 *head = elem->next; 2595 *head = elem->next;
1307 return; 2596 break;
1308 } 2597 }
1309 2598
1310 head = &(*head)->next; 2599 head = &(*head)->next;
1311 } 2600 }
1312} 2601}
1313 2602
2603/* internal, faster, version of ev_clear_pending */
1314inline void 2604inline_speed void
1315ev_clear_pending (EV_P_ W w) 2605clear_pending (EV_P_ W w)
1316{ 2606{
1317 if (w->pending) 2607 if (w->pending)
1318 { 2608 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2609 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1320 w->pending = 0; 2610 w->pending = 0;
1321 } 2611 }
1322} 2612}
1323 2613
2614int
2615ev_clear_pending (EV_P_ void *w)
2616{
2617 W w_ = (W)w;
2618 int pending = w_->pending;
2619
2620 if (expect_true (pending))
2621 {
2622 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2623 p->w = (W)&pending_w;
2624 w_->pending = 0;
2625 return p->events;
2626 }
2627 else
2628 return 0;
2629}
2630
1324inline void 2631inline_size void
2632pri_adjust (EV_P_ W w)
2633{
2634 int pri = ev_priority (w);
2635 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2636 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2637 ev_set_priority (w, pri);
2638}
2639
2640inline_speed void
1325ev_start (EV_P_ W w, int active) 2641ev_start (EV_P_ W w, int active)
1326{ 2642{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2643 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 2644 w->active = active;
1331 ev_ref (EV_A); 2645 ev_ref (EV_A);
1332} 2646}
1333 2647
1334inline void 2648inline_size void
1335ev_stop (EV_P_ W w) 2649ev_stop (EV_P_ W w)
1336{ 2650{
1337 ev_unref (EV_A); 2651 ev_unref (EV_A);
1338 w->active = 0; 2652 w->active = 0;
1339} 2653}
1340 2654
1341/*****************************************************************************/ 2655/*****************************************************************************/
1342 2656
1343void 2657void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 2658ev_io_start (EV_P_ ev_io *w)
1345{ 2659{
1346 int fd = w->fd; 2660 int fd = w->fd;
1347 2661
1348 if (expect_false (ev_is_active (w))) 2662 if (expect_false (ev_is_active (w)))
1349 return; 2663 return;
1350 2664
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 2665 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2666 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2667
2668 EV_FREQUENT_CHECK;
1352 2669
1353 ev_start (EV_A_ (W)w, 1); 2670 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2671 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2672 wlist_add (&anfds[fd].head, (WL)w);
1356 2673
1357 fd_change (EV_A_ fd); 2674 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1358} 2675 w->events &= ~EV__IOFDSET;
1359 2676
1360void 2677 EV_FREQUENT_CHECK;
2678}
2679
2680void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 2681ev_io_stop (EV_P_ ev_io *w)
1362{ 2682{
1363 ev_clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
1365 return; 2685 return;
1366 2686
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2687 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 2688
2689 EV_FREQUENT_CHECK;
2690
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2691 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 2692 ev_stop (EV_A_ (W)w);
1371 2693
1372 fd_change (EV_A_ w->fd); 2694 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1373}
1374 2695
1375void 2696 EV_FREQUENT_CHECK;
2697}
2698
2699void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 2700ev_timer_start (EV_P_ ev_timer *w)
1377{ 2701{
1378 if (expect_false (ev_is_active (w))) 2702 if (expect_false (ev_is_active (w)))
1379 return; 2703 return;
1380 2704
1381 ((WT)w)->at += mn_now; 2705 ev_at (w) += mn_now;
1382 2706
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2707 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 2708
2709 EV_FREQUENT_CHECK;
2710
2711 ++timercnt;
1385 ev_start (EV_A_ (W)w, ++timercnt); 2712 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2713 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 2714 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 2715 ANHE_at_cache (timers [ev_active (w)]);
2716 upheap (timers, ev_active (w));
1389 2717
2718 EV_FREQUENT_CHECK;
2719
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2720 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 2721}
1392 2722
1393void 2723void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 2724ev_timer_stop (EV_P_ ev_timer *w)
1395{ 2725{
1396 ev_clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
1398 return; 2728 return;
1399 2729
2730 EV_FREQUENT_CHECK;
2731
2732 {
2733 int active = ev_active (w);
2734
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2735 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 2736
2737 --timercnt;
2738
1402 if (expect_true (((W)w)->active < timercnt--)) 2739 if (expect_true (active < timercnt + HEAP0))
1403 { 2740 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 2741 timers [active] = timers [timercnt + HEAP0];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2742 adjustheap (timers, timercnt, active);
1406 } 2743 }
2744 }
1407 2745
1408 ((WT)w)->at -= mn_now; 2746 ev_at (w) -= mn_now;
1409 2747
1410 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
1411}
1412 2749
1413void 2750 EV_FREQUENT_CHECK;
2751}
2752
2753void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 2754ev_timer_again (EV_P_ ev_timer *w)
1415{ 2755{
2756 EV_FREQUENT_CHECK;
2757
1416 if (ev_is_active (w)) 2758 if (ev_is_active (w))
1417 { 2759 {
1418 if (w->repeat) 2760 if (w->repeat)
1419 { 2761 {
1420 ((WT)w)->at = mn_now + w->repeat; 2762 ev_at (w) = mn_now + w->repeat;
2763 ANHE_at_cache (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2764 adjustheap (timers, timercnt, ev_active (w));
1422 } 2765 }
1423 else 2766 else
1424 ev_timer_stop (EV_A_ w); 2767 ev_timer_stop (EV_A_ w);
1425 } 2768 }
1426 else if (w->repeat) 2769 else if (w->repeat)
1427 { 2770 {
1428 w->at = w->repeat; 2771 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 2772 ev_timer_start (EV_A_ w);
1430 } 2773 }
1431}
1432 2774
2775 EV_FREQUENT_CHECK;
2776}
2777
2778ev_tstamp
2779ev_timer_remaining (EV_P_ ev_timer *w)
2780{
2781 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2782}
2783
1433#if EV_PERIODICS 2784#if EV_PERIODIC_ENABLE
1434void 2785void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 2786ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 2787{
1437 if (expect_false (ev_is_active (w))) 2788 if (expect_false (ev_is_active (w)))
1438 return; 2789 return;
1439 2790
1440 if (w->reschedule_cb) 2791 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2792 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 2793 else if (w->interval)
1443 { 2794 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2795 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 2796 periodic_recalc (EV_A_ w);
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1447 } 2797 }
2798 else
2799 ev_at (w) = w->offset;
1448 2800
2801 EV_FREQUENT_CHECK;
2802
2803 ++periodiccnt;
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 2804 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2805 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 2806 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 2807 ANHE_at_cache (periodics [ev_active (w)]);
2808 upheap (periodics, ev_active (w));
1453 2809
2810 EV_FREQUENT_CHECK;
2811
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2812 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 2813}
1456 2814
1457void 2815void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 2816ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 2817{
1460 ev_clear_pending (EV_A_ (W)w); 2818 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2819 if (expect_false (!ev_is_active (w)))
1462 return; 2820 return;
1463 2821
2822 EV_FREQUENT_CHECK;
2823
2824 {
2825 int active = ev_active (w);
2826
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2827 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 2828
2829 --periodiccnt;
2830
1466 if (expect_true (((W)w)->active < periodiccnt--)) 2831 if (expect_true (active < periodiccnt + HEAP0))
1467 { 2832 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2833 periodics [active] = periodics [periodiccnt + HEAP0];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2834 adjustheap (periodics, periodiccnt, active);
1470 } 2835 }
2836 }
1471 2837
1472 ev_stop (EV_A_ (W)w); 2838 ev_stop (EV_A_ (W)w);
1473}
1474 2839
1475void 2840 EV_FREQUENT_CHECK;
2841}
2842
2843void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 2844ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 2845{
1478 /* TODO: use adjustheap and recalculation */ 2846 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 2847 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 2848 ev_periodic_start (EV_A_ w);
1481} 2849}
1482#endif 2850#endif
1483 2851
1484void 2852#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 2853# define SA_RESTART 0
2854#endif
2855
2856#if EV_SIGNAL_ENABLE
2857
2858void noinline
2859ev_signal_start (EV_P_ ev_signal *w)
1486{ 2860{
1487 if (expect_false (ev_is_active (w))) 2861 if (expect_false (ev_is_active (w)))
1488 return; 2862 return;
1489 2863
2864 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2865
2866#if EV_MULTIPLICITY
2867 assert (("libev: a signal must not be attached to two different loops",
2868 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2869
2870 signals [w->signum - 1].loop = EV_A;
2871#endif
2872
2873 EV_FREQUENT_CHECK;
2874
2875#if EV_USE_SIGNALFD
2876 if (sigfd == -2)
2877 {
2878 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2879 if (sigfd < 0 && errno == EINVAL)
2880 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2881
2882 if (sigfd >= 0)
2883 {
2884 fd_intern (sigfd); /* doing it twice will not hurt */
2885
2886 sigemptyset (&sigfd_set);
2887
2888 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2889 ev_set_priority (&sigfd_w, EV_MAXPRI);
2890 ev_io_start (EV_A_ &sigfd_w);
2891 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2892 }
2893 }
2894
2895 if (sigfd >= 0)
2896 {
2897 /* TODO: check .head */
2898 sigaddset (&sigfd_set, w->signum);
2899 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 }
2903#endif
2904
1490 ev_start (EV_A_ (W)w, ++idlecnt); 2905 ev_start (EV_A_ (W)w, 1);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2906 wlist_add (&signals [w->signum - 1].head, (WL)w);
1492 idles [idlecnt - 1] = w;
1493}
1494 2907
1495void 2908 if (!((WL)w)->next)
1496ev_idle_stop (EV_P_ struct ev_idle *w) 2909# if EV_USE_SIGNALFD
2910 if (sigfd < 0) /*TODO*/
2911# endif
2912 {
2913# ifdef _WIN32
2914 evpipe_init (EV_A);
2915
2916 signal (w->signum, ev_sighandler);
2917# else
2918 struct sigaction sa;
2919
2920 evpipe_init (EV_A);
2921
2922 sa.sa_handler = ev_sighandler;
2923 sigfillset (&sa.sa_mask);
2924 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2925 sigaction (w->signum, &sa, 0);
2926
2927 if (origflags & EVFLAG_NOSIGMASK)
2928 {
2929 sigemptyset (&sa.sa_mask);
2930 sigaddset (&sa.sa_mask, w->signum);
2931 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2932 }
2933#endif
2934 }
2935
2936 EV_FREQUENT_CHECK;
2937}
2938
2939void noinline
2940ev_signal_stop (EV_P_ ev_signal *w)
1497{ 2941{
1498 ev_clear_pending (EV_A_ (W)w); 2942 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 2943 if (expect_false (!ev_is_active (w)))
1500 return; 2944 return;
1501 2945
1502 idles [((W)w)->active - 1] = idles [--idlecnt]; 2946 EV_FREQUENT_CHECK;
2947
2948 wlist_del (&signals [w->signum - 1].head, (WL)w);
1503 ev_stop (EV_A_ (W)w); 2949 ev_stop (EV_A_ (W)w);
1504}
1505 2950
2951 if (!signals [w->signum - 1].head)
2952 {
2953#if EV_MULTIPLICITY
2954 signals [w->signum - 1].loop = 0; /* unattach from signal */
2955#endif
2956#if EV_USE_SIGNALFD
2957 if (sigfd >= 0)
2958 {
2959 sigset_t ss;
2960
2961 sigemptyset (&ss);
2962 sigaddset (&ss, w->signum);
2963 sigdelset (&sigfd_set, w->signum);
2964
2965 signalfd (sigfd, &sigfd_set, 0);
2966 sigprocmask (SIG_UNBLOCK, &ss, 0);
2967 }
2968 else
2969#endif
2970 signal (w->signum, SIG_DFL);
2971 }
2972
2973 EV_FREQUENT_CHECK;
2974}
2975
2976#endif
2977
2978#if EV_CHILD_ENABLE
2979
1506void 2980void
1507ev_prepare_start (EV_P_ struct ev_prepare *w) 2981ev_child_start (EV_P_ ev_child *w)
1508{ 2982{
2983#if EV_MULTIPLICITY
2984 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2985#endif
1509 if (expect_false (ev_is_active (w))) 2986 if (expect_false (ev_is_active (w)))
1510 return; 2987 return;
1511 2988
2989 EV_FREQUENT_CHECK;
2990
1512 ev_start (EV_A_ (W)w, ++preparecnt); 2991 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2992 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1514 prepares [preparecnt - 1] = w;
1515}
1516 2993
2994 EV_FREQUENT_CHECK;
2995}
2996
1517void 2997void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w) 2998ev_child_stop (EV_P_ ev_child *w)
1519{ 2999{
1520 ev_clear_pending (EV_A_ (W)w); 3000 clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w))) 3001 if (expect_false (!ev_is_active (w)))
1522 return; 3002 return;
1523 3003
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3004 EV_FREQUENT_CHECK;
3005
3006 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1525 ev_stop (EV_A_ (W)w); 3007 ev_stop (EV_A_ (W)w);
1526}
1527 3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012#endif
3013
3014#if EV_STAT_ENABLE
3015
3016# ifdef _WIN32
3017# undef lstat
3018# define lstat(a,b) _stati64 (a,b)
3019# endif
3020
3021#define DEF_STAT_INTERVAL 5.0074891
3022#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3023#define MIN_STAT_INTERVAL 0.1074891
3024
3025static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3026
3027#if EV_USE_INOTIFY
3028
3029/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3030# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3031
3032static void noinline
3033infy_add (EV_P_ ev_stat *w)
3034{
3035 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3036
3037 if (w->wd >= 0)
3038 {
3039 struct statfs sfs;
3040
3041 /* now local changes will be tracked by inotify, but remote changes won't */
3042 /* unless the filesystem is known to be local, we therefore still poll */
3043 /* also do poll on <2.6.25, but with normal frequency */
3044
3045 if (!fs_2625)
3046 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3047 else if (!statfs (w->path, &sfs)
3048 && (sfs.f_type == 0x1373 /* devfs */
3049 || sfs.f_type == 0xEF53 /* ext2/3 */
3050 || sfs.f_type == 0x3153464a /* jfs */
3051 || sfs.f_type == 0x52654973 /* reiser3 */
3052 || sfs.f_type == 0x01021994 /* tempfs */
3053 || sfs.f_type == 0x58465342 /* xfs */))
3054 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3055 else
3056 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3057 }
3058 else
3059 {
3060 /* can't use inotify, continue to stat */
3061 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3062
3063 /* if path is not there, monitor some parent directory for speedup hints */
3064 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3065 /* but an efficiency issue only */
3066 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3067 {
3068 char path [4096];
3069 strcpy (path, w->path);
3070
3071 do
3072 {
3073 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3074 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3075
3076 char *pend = strrchr (path, '/');
3077
3078 if (!pend || pend == path)
3079 break;
3080
3081 *pend = 0;
3082 w->wd = inotify_add_watch (fs_fd, path, mask);
3083 }
3084 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3085 }
3086 }
3087
3088 if (w->wd >= 0)
3089 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3090
3091 /* now re-arm timer, if required */
3092 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3093 ev_timer_again (EV_A_ &w->timer);
3094 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3095}
3096
3097static void noinline
3098infy_del (EV_P_ ev_stat *w)
3099{
3100 int slot;
3101 int wd = w->wd;
3102
3103 if (wd < 0)
3104 return;
3105
3106 w->wd = -2;
3107 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3108 wlist_del (&fs_hash [slot].head, (WL)w);
3109
3110 /* remove this watcher, if others are watching it, they will rearm */
3111 inotify_rm_watch (fs_fd, wd);
3112}
3113
3114static void noinline
3115infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3116{
3117 if (slot < 0)
3118 /* overflow, need to check for all hash slots */
3119 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3120 infy_wd (EV_A_ slot, wd, ev);
3121 else
3122 {
3123 WL w_;
3124
3125 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3126 {
3127 ev_stat *w = (ev_stat *)w_;
3128 w_ = w_->next; /* lets us remove this watcher and all before it */
3129
3130 if (w->wd == wd || wd == -1)
3131 {
3132 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3133 {
3134 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3135 w->wd = -1;
3136 infy_add (EV_A_ w); /* re-add, no matter what */
3137 }
3138
3139 stat_timer_cb (EV_A_ &w->timer, 0);
3140 }
3141 }
3142 }
3143}
3144
3145static void
3146infy_cb (EV_P_ ev_io *w, int revents)
3147{
3148 char buf [EV_INOTIFY_BUFSIZE];
3149 int ofs;
3150 int len = read (fs_fd, buf, sizeof (buf));
3151
3152 for (ofs = 0; ofs < len; )
3153 {
3154 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3155 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3156 ofs += sizeof (struct inotify_event) + ev->len;
3157 }
3158}
3159
3160inline_size void
3161ev_check_2625 (EV_P)
3162{
3163 /* kernels < 2.6.25 are borked
3164 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3165 */
3166 if (ev_linux_version () < 0x020619)
3167 return;
3168
3169 fs_2625 = 1;
3170}
3171
3172inline_size int
3173infy_newfd (void)
3174{
3175#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3176 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3177 if (fd >= 0)
3178 return fd;
3179#endif
3180 return inotify_init ();
3181}
3182
3183inline_size void
3184infy_init (EV_P)
3185{
3186 if (fs_fd != -2)
3187 return;
3188
3189 fs_fd = -1;
3190
3191 ev_check_2625 (EV_A);
3192
3193 fs_fd = infy_newfd ();
3194
3195 if (fs_fd >= 0)
3196 {
3197 fd_intern (fs_fd);
3198 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3199 ev_set_priority (&fs_w, EV_MAXPRI);
3200 ev_io_start (EV_A_ &fs_w);
3201 ev_unref (EV_A);
3202 }
3203}
3204
3205inline_size void
3206infy_fork (EV_P)
3207{
3208 int slot;
3209
3210 if (fs_fd < 0)
3211 return;
3212
3213 ev_ref (EV_A);
3214 ev_io_stop (EV_A_ &fs_w);
3215 close (fs_fd);
3216 fs_fd = infy_newfd ();
3217
3218 if (fs_fd >= 0)
3219 {
3220 fd_intern (fs_fd);
3221 ev_io_set (&fs_w, fs_fd, EV_READ);
3222 ev_io_start (EV_A_ &fs_w);
3223 ev_unref (EV_A);
3224 }
3225
3226 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3227 {
3228 WL w_ = fs_hash [slot].head;
3229 fs_hash [slot].head = 0;
3230
3231 while (w_)
3232 {
3233 ev_stat *w = (ev_stat *)w_;
3234 w_ = w_->next; /* lets us add this watcher */
3235
3236 w->wd = -1;
3237
3238 if (fs_fd >= 0)
3239 infy_add (EV_A_ w); /* re-add, no matter what */
3240 else
3241 {
3242 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3243 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3244 ev_timer_again (EV_A_ &w->timer);
3245 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3246 }
3247 }
3248 }
3249}
3250
3251#endif
3252
3253#ifdef _WIN32
3254# define EV_LSTAT(p,b) _stati64 (p, b)
3255#else
3256# define EV_LSTAT(p,b) lstat (p, b)
3257#endif
3258
1528void 3259void
1529ev_check_start (EV_P_ struct ev_check *w) 3260ev_stat_stat (EV_P_ ev_stat *w)
3261{
3262 if (lstat (w->path, &w->attr) < 0)
3263 w->attr.st_nlink = 0;
3264 else if (!w->attr.st_nlink)
3265 w->attr.st_nlink = 1;
3266}
3267
3268static void noinline
3269stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3270{
3271 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3272
3273 ev_statdata prev = w->attr;
3274 ev_stat_stat (EV_A_ w);
3275
3276 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3277 if (
3278 prev.st_dev != w->attr.st_dev
3279 || prev.st_ino != w->attr.st_ino
3280 || prev.st_mode != w->attr.st_mode
3281 || prev.st_nlink != w->attr.st_nlink
3282 || prev.st_uid != w->attr.st_uid
3283 || prev.st_gid != w->attr.st_gid
3284 || prev.st_rdev != w->attr.st_rdev
3285 || prev.st_size != w->attr.st_size
3286 || prev.st_atime != w->attr.st_atime
3287 || prev.st_mtime != w->attr.st_mtime
3288 || prev.st_ctime != w->attr.st_ctime
3289 ) {
3290 /* we only update w->prev on actual differences */
3291 /* in case we test more often than invoke the callback, */
3292 /* to ensure that prev is always different to attr */
3293 w->prev = prev;
3294
3295 #if EV_USE_INOTIFY
3296 if (fs_fd >= 0)
3297 {
3298 infy_del (EV_A_ w);
3299 infy_add (EV_A_ w);
3300 ev_stat_stat (EV_A_ w); /* avoid race... */
3301 }
3302 #endif
3303
3304 ev_feed_event (EV_A_ w, EV_STAT);
3305 }
3306}
3307
3308void
3309ev_stat_start (EV_P_ ev_stat *w)
1530{ 3310{
1531 if (expect_false (ev_is_active (w))) 3311 if (expect_false (ev_is_active (w)))
1532 return; 3312 return;
1533 3313
3314 ev_stat_stat (EV_A_ w);
3315
3316 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3317 w->interval = MIN_STAT_INTERVAL;
3318
3319 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3320 ev_set_priority (&w->timer, ev_priority (w));
3321
3322#if EV_USE_INOTIFY
3323 infy_init (EV_A);
3324
3325 if (fs_fd >= 0)
3326 infy_add (EV_A_ w);
3327 else
3328#endif
3329 {
3330 ev_timer_again (EV_A_ &w->timer);
3331 ev_unref (EV_A);
3332 }
3333
1534 ev_start (EV_A_ (W)w, ++checkcnt); 3334 ev_start (EV_A_ (W)w, 1);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1536 checks [checkcnt - 1] = w;
1537}
1538 3335
3336 EV_FREQUENT_CHECK;
3337}
3338
1539void 3339void
1540ev_check_stop (EV_P_ struct ev_check *w) 3340ev_stat_stop (EV_P_ ev_stat *w)
1541{ 3341{
1542 ev_clear_pending (EV_A_ (W)w); 3342 clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w))) 3343 if (expect_false (!ev_is_active (w)))
1544 return; 3344 return;
1545 3345
1546 checks [((W)w)->active - 1] = checks [--checkcnt]; 3346 EV_FREQUENT_CHECK;
3347
3348#if EV_USE_INOTIFY
3349 infy_del (EV_A_ w);
3350#endif
3351
3352 if (ev_is_active (&w->timer))
3353 {
3354 ev_ref (EV_A);
3355 ev_timer_stop (EV_A_ &w->timer);
3356 }
3357
1547 ev_stop (EV_A_ (W)w); 3358 ev_stop (EV_A_ (W)w);
1548}
1549 3359
1550#ifndef SA_RESTART 3360 EV_FREQUENT_CHECK;
1551# define SA_RESTART 0 3361}
1552#endif 3362#endif
1553 3363
3364#if EV_IDLE_ENABLE
1554void 3365void
1555ev_signal_start (EV_P_ struct ev_signal *w) 3366ev_idle_start (EV_P_ ev_idle *w)
1556{ 3367{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w))) 3368 if (expect_false (ev_is_active (w)))
1561 return; 3369 return;
1562 3370
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3371 pri_adjust (EV_A_ (W)w);
1564 3372
3373 EV_FREQUENT_CHECK;
3374
3375 {
3376 int active = ++idlecnt [ABSPRI (w)];
3377
3378 ++idleall;
1565 ev_start (EV_A_ (W)w, 1); 3379 ev_start (EV_A_ (W)w, active);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1568 3380
1569 if (!((WL)w)->next) 3381 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1570 { 3382 idles [ABSPRI (w)][active - 1] = w;
1571#if _WIN32
1572 signal (w->signum, sighandler);
1573#else
1574 struct sigaction sa;
1575 sa.sa_handler = sighandler;
1576 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0);
1579#endif
1580 } 3383 }
1581}
1582 3384
3385 EV_FREQUENT_CHECK;
3386}
3387
1583void 3388void
1584ev_signal_stop (EV_P_ struct ev_signal *w) 3389ev_idle_stop (EV_P_ ev_idle *w)
1585{ 3390{
1586 ev_clear_pending (EV_A_ (W)w); 3391 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 3392 if (expect_false (!ev_is_active (w)))
1588 return; 3393 return;
1589 3394
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3395 EV_FREQUENT_CHECK;
3396
3397 {
3398 int active = ev_active (w);
3399
3400 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3401 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3402
1591 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
3404 --idleall;
3405 }
1592 3406
1593 if (!signals [w->signum - 1].head) 3407 EV_FREQUENT_CHECK;
1594 signal (w->signum, SIG_DFL);
1595} 3408}
1596
1597void
1598ev_child_start (EV_P_ struct ev_child *w)
1599{
1600#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 3409#endif
3410
3411#if EV_PREPARE_ENABLE
3412void
3413ev_prepare_start (EV_P_ ev_prepare *w)
3414{
1603 if (expect_false (ev_is_active (w))) 3415 if (expect_false (ev_is_active (w)))
1604 return; 3416 return;
1605 3417
3418 EV_FREQUENT_CHECK;
3419
1606 ev_start (EV_A_ (W)w, 1); 3420 ev_start (EV_A_ (W)w, ++preparecnt);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3421 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1608} 3422 prepares [preparecnt - 1] = w;
1609 3423
3424 EV_FREQUENT_CHECK;
3425}
3426
1610void 3427void
1611ev_child_stop (EV_P_ struct ev_child *w) 3428ev_prepare_stop (EV_P_ ev_prepare *w)
1612{ 3429{
1613 ev_clear_pending (EV_A_ (W)w); 3430 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 3431 if (expect_false (!ev_is_active (w)))
1615 return; 3432 return;
1616 3433
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3434 EV_FREQUENT_CHECK;
3435
3436 {
3437 int active = ev_active (w);
3438
3439 prepares [active - 1] = prepares [--preparecnt];
3440 ev_active (prepares [active - 1]) = active;
3441 }
3442
1618 ev_stop (EV_A_ (W)w); 3443 ev_stop (EV_A_ (W)w);
3444
3445 EV_FREQUENT_CHECK;
1619} 3446}
3447#endif
3448
3449#if EV_CHECK_ENABLE
3450void
3451ev_check_start (EV_P_ ev_check *w)
3452{
3453 if (expect_false (ev_is_active (w)))
3454 return;
3455
3456 EV_FREQUENT_CHECK;
3457
3458 ev_start (EV_A_ (W)w, ++checkcnt);
3459 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3460 checks [checkcnt - 1] = w;
3461
3462 EV_FREQUENT_CHECK;
3463}
3464
3465void
3466ev_check_stop (EV_P_ ev_check *w)
3467{
3468 clear_pending (EV_A_ (W)w);
3469 if (expect_false (!ev_is_active (w)))
3470 return;
3471
3472 EV_FREQUENT_CHECK;
3473
3474 {
3475 int active = ev_active (w);
3476
3477 checks [active - 1] = checks [--checkcnt];
3478 ev_active (checks [active - 1]) = active;
3479 }
3480
3481 ev_stop (EV_A_ (W)w);
3482
3483 EV_FREQUENT_CHECK;
3484}
3485#endif
3486
3487#if EV_EMBED_ENABLE
3488void noinline
3489ev_embed_sweep (EV_P_ ev_embed *w)
3490{
3491 ev_run (w->other, EVRUN_NOWAIT);
3492}
3493
3494static void
3495embed_io_cb (EV_P_ ev_io *io, int revents)
3496{
3497 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3498
3499 if (ev_cb (w))
3500 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3501 else
3502 ev_run (w->other, EVRUN_NOWAIT);
3503}
3504
3505static void
3506embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3507{
3508 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3509
3510 {
3511 EV_P = w->other;
3512
3513 while (fdchangecnt)
3514 {
3515 fd_reify (EV_A);
3516 ev_run (EV_A_ EVRUN_NOWAIT);
3517 }
3518 }
3519}
3520
3521static void
3522embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3523{
3524 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3525
3526 ev_embed_stop (EV_A_ w);
3527
3528 {
3529 EV_P = w->other;
3530
3531 ev_loop_fork (EV_A);
3532 ev_run (EV_A_ EVRUN_NOWAIT);
3533 }
3534
3535 ev_embed_start (EV_A_ w);
3536}
3537
3538#if 0
3539static void
3540embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3541{
3542 ev_idle_stop (EV_A_ idle);
3543}
3544#endif
3545
3546void
3547ev_embed_start (EV_P_ ev_embed *w)
3548{
3549 if (expect_false (ev_is_active (w)))
3550 return;
3551
3552 {
3553 EV_P = w->other;
3554 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3555 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3556 }
3557
3558 EV_FREQUENT_CHECK;
3559
3560 ev_set_priority (&w->io, ev_priority (w));
3561 ev_io_start (EV_A_ &w->io);
3562
3563 ev_prepare_init (&w->prepare, embed_prepare_cb);
3564 ev_set_priority (&w->prepare, EV_MINPRI);
3565 ev_prepare_start (EV_A_ &w->prepare);
3566
3567 ev_fork_init (&w->fork, embed_fork_cb);
3568 ev_fork_start (EV_A_ &w->fork);
3569
3570 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3571
3572 ev_start (EV_A_ (W)w, 1);
3573
3574 EV_FREQUENT_CHECK;
3575}
3576
3577void
3578ev_embed_stop (EV_P_ ev_embed *w)
3579{
3580 clear_pending (EV_A_ (W)w);
3581 if (expect_false (!ev_is_active (w)))
3582 return;
3583
3584 EV_FREQUENT_CHECK;
3585
3586 ev_io_stop (EV_A_ &w->io);
3587 ev_prepare_stop (EV_A_ &w->prepare);
3588 ev_fork_stop (EV_A_ &w->fork);
3589
3590 ev_stop (EV_A_ (W)w);
3591
3592 EV_FREQUENT_CHECK;
3593}
3594#endif
3595
3596#if EV_FORK_ENABLE
3597void
3598ev_fork_start (EV_P_ ev_fork *w)
3599{
3600 if (expect_false (ev_is_active (w)))
3601 return;
3602
3603 EV_FREQUENT_CHECK;
3604
3605 ev_start (EV_A_ (W)w, ++forkcnt);
3606 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3607 forks [forkcnt - 1] = w;
3608
3609 EV_FREQUENT_CHECK;
3610}
3611
3612void
3613ev_fork_stop (EV_P_ ev_fork *w)
3614{
3615 clear_pending (EV_A_ (W)w);
3616 if (expect_false (!ev_is_active (w)))
3617 return;
3618
3619 EV_FREQUENT_CHECK;
3620
3621 {
3622 int active = ev_active (w);
3623
3624 forks [active - 1] = forks [--forkcnt];
3625 ev_active (forks [active - 1]) = active;
3626 }
3627
3628 ev_stop (EV_A_ (W)w);
3629
3630 EV_FREQUENT_CHECK;
3631}
3632#endif
3633
3634#if EV_CLEANUP_ENABLE
3635void
3636ev_cleanup_start (EV_P_ ev_cleanup *w)
3637{
3638 if (expect_false (ev_is_active (w)))
3639 return;
3640
3641 EV_FREQUENT_CHECK;
3642
3643 ev_start (EV_A_ (W)w, ++cleanupcnt);
3644 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3645 cleanups [cleanupcnt - 1] = w;
3646
3647 /* cleanup watchers should never keep a refcount on the loop */
3648 ev_unref (EV_A);
3649 EV_FREQUENT_CHECK;
3650}
3651
3652void
3653ev_cleanup_stop (EV_P_ ev_cleanup *w)
3654{
3655 clear_pending (EV_A_ (W)w);
3656 if (expect_false (!ev_is_active (w)))
3657 return;
3658
3659 EV_FREQUENT_CHECK;
3660 ev_ref (EV_A);
3661
3662 {
3663 int active = ev_active (w);
3664
3665 cleanups [active - 1] = cleanups [--cleanupcnt];
3666 ev_active (cleanups [active - 1]) = active;
3667 }
3668
3669 ev_stop (EV_A_ (W)w);
3670
3671 EV_FREQUENT_CHECK;
3672}
3673#endif
3674
3675#if EV_ASYNC_ENABLE
3676void
3677ev_async_start (EV_P_ ev_async *w)
3678{
3679 if (expect_false (ev_is_active (w)))
3680 return;
3681
3682 w->sent = 0;
3683
3684 evpipe_init (EV_A);
3685
3686 EV_FREQUENT_CHECK;
3687
3688 ev_start (EV_A_ (W)w, ++asynccnt);
3689 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3690 asyncs [asynccnt - 1] = w;
3691
3692 EV_FREQUENT_CHECK;
3693}
3694
3695void
3696ev_async_stop (EV_P_ ev_async *w)
3697{
3698 clear_pending (EV_A_ (W)w);
3699 if (expect_false (!ev_is_active (w)))
3700 return;
3701
3702 EV_FREQUENT_CHECK;
3703
3704 {
3705 int active = ev_active (w);
3706
3707 asyncs [active - 1] = asyncs [--asynccnt];
3708 ev_active (asyncs [active - 1]) = active;
3709 }
3710
3711 ev_stop (EV_A_ (W)w);
3712
3713 EV_FREQUENT_CHECK;
3714}
3715
3716void
3717ev_async_send (EV_P_ ev_async *w)
3718{
3719 w->sent = 1;
3720 evpipe_write (EV_A_ &async_pending);
3721}
3722#endif
1620 3723
1621/*****************************************************************************/ 3724/*****************************************************************************/
1622 3725
1623struct ev_once 3726struct ev_once
1624{ 3727{
1625 struct ev_io io; 3728 ev_io io;
1626 struct ev_timer to; 3729 ev_timer to;
1627 void (*cb)(int revents, void *arg); 3730 void (*cb)(int revents, void *arg);
1628 void *arg; 3731 void *arg;
1629}; 3732};
1630 3733
1631static void 3734static void
1632once_cb (EV_P_ struct ev_once *once, int revents) 3735once_cb (EV_P_ struct ev_once *once, int revents)
1633{ 3736{
1634 void (*cb)(int revents, void *arg) = once->cb; 3737 void (*cb)(int revents, void *arg) = once->cb;
1635 void *arg = once->arg; 3738 void *arg = once->arg;
1636 3739
1637 ev_io_stop (EV_A_ &once->io); 3740 ev_io_stop (EV_A_ &once->io);
1638 ev_timer_stop (EV_A_ &once->to); 3741 ev_timer_stop (EV_A_ &once->to);
1639 ev_free (once); 3742 ev_free (once);
1640 3743
1641 cb (revents, arg); 3744 cb (revents, arg);
1642} 3745}
1643 3746
1644static void 3747static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 3748once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 3749{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3750 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3751
3752 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1648} 3753}
1649 3754
1650static void 3755static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 3756once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 3757{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3758 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3759
3760 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1654} 3761}
1655 3762
1656void 3763void
1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3764ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1658{ 3765{
1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3766 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1660 3767
1661 if (expect_false (!once)) 3768 if (expect_false (!once))
1662 { 3769 {
1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3770 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1664 return; 3771 return;
1665 } 3772 }
1666 3773
1667 once->cb = cb; 3774 once->cb = cb;
1668 once->arg = arg; 3775 once->arg = arg;
1680 ev_timer_set (&once->to, timeout, 0.); 3787 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 3788 ev_timer_start (EV_A_ &once->to);
1682 } 3789 }
1683} 3790}
1684 3791
1685#ifdef __cplusplus 3792/*****************************************************************************/
1686} 3793
3794#if EV_WALK_ENABLE
3795void
3796ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3797{
3798 int i, j;
3799 ev_watcher_list *wl, *wn;
3800
3801 if (types & (EV_IO | EV_EMBED))
3802 for (i = 0; i < anfdmax; ++i)
3803 for (wl = anfds [i].head; wl; )
3804 {
3805 wn = wl->next;
3806
3807#if EV_EMBED_ENABLE
3808 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3809 {
3810 if (types & EV_EMBED)
3811 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3812 }
3813 else
3814#endif
3815#if EV_USE_INOTIFY
3816 if (ev_cb ((ev_io *)wl) == infy_cb)
3817 ;
3818 else
3819#endif
3820 if ((ev_io *)wl != &pipe_w)
3821 if (types & EV_IO)
3822 cb (EV_A_ EV_IO, wl);
3823
3824 wl = wn;
3825 }
3826
3827 if (types & (EV_TIMER | EV_STAT))
3828 for (i = timercnt + HEAP0; i-- > HEAP0; )
3829#if EV_STAT_ENABLE
3830 /*TODO: timer is not always active*/
3831 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3832 {
3833 if (types & EV_STAT)
3834 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3835 }
3836 else
3837#endif
3838 if (types & EV_TIMER)
3839 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3840
3841#if EV_PERIODIC_ENABLE
3842 if (types & EV_PERIODIC)
3843 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3844 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3845#endif
3846
3847#if EV_IDLE_ENABLE
3848 if (types & EV_IDLE)
3849 for (j = NUMPRI; i--; )
3850 for (i = idlecnt [j]; i--; )
3851 cb (EV_A_ EV_IDLE, idles [j][i]);
3852#endif
3853
3854#if EV_FORK_ENABLE
3855 if (types & EV_FORK)
3856 for (i = forkcnt; i--; )
3857 if (ev_cb (forks [i]) != embed_fork_cb)
3858 cb (EV_A_ EV_FORK, forks [i]);
3859#endif
3860
3861#if EV_ASYNC_ENABLE
3862 if (types & EV_ASYNC)
3863 for (i = asynccnt; i--; )
3864 cb (EV_A_ EV_ASYNC, asyncs [i]);
3865#endif
3866
3867#if EV_PREPARE_ENABLE
3868 if (types & EV_PREPARE)
3869 for (i = preparecnt; i--; )
3870# if EV_EMBED_ENABLE
3871 if (ev_cb (prepares [i]) != embed_prepare_cb)
1687#endif 3872# endif
3873 cb (EV_A_ EV_PREPARE, prepares [i]);
3874#endif
1688 3875
3876#if EV_CHECK_ENABLE
3877 if (types & EV_CHECK)
3878 for (i = checkcnt; i--; )
3879 cb (EV_A_ EV_CHECK, checks [i]);
3880#endif
3881
3882#if EV_SIGNAL_ENABLE
3883 if (types & EV_SIGNAL)
3884 for (i = 0; i < EV_NSIG - 1; ++i)
3885 for (wl = signals [i].head; wl; )
3886 {
3887 wn = wl->next;
3888 cb (EV_A_ EV_SIGNAL, wl);
3889 wl = wn;
3890 }
3891#endif
3892
3893#if EV_CHILD_ENABLE
3894 if (types & EV_CHILD)
3895 for (i = (EV_PID_HASHSIZE); i--; )
3896 for (wl = childs [i]; wl; )
3897 {
3898 wn = wl->next;
3899 cb (EV_A_ EV_CHILD, wl);
3900 wl = wn;
3901 }
3902#endif
3903/* EV_STAT 0x00001000 /* stat data changed */
3904/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3905}
3906#endif
3907
3908#if EV_MULTIPLICITY
3909 #include "ev_wrap.h"
3910#endif
3911
3912EV_CPP(})
3913

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines