ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.382 by sf-exg, Thu Jun 30 13:13:59 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
57# else 88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
58# define EV_USE_SELECT 0 99# define EV_USE_SELECT 0
59# endif 100# endif
60 101
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 102# if HAVE_POLL && HAVE_POLL_H
62# define EV_USE_POLL 1 103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
63# else 106# else
107# undef EV_USE_POLL
64# define EV_USE_POLL 0 108# define EV_USE_POLL 0
65# endif 109# endif
66 110
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
68# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
69# else 115# else
116# undef EV_USE_EPOLL
70# define EV_USE_EPOLL 0 117# define EV_USE_EPOLL 0
71# endif 118# endif
72 119
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
74# define EV_USE_KQUEUE 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
75# else 124# else
125# undef EV_USE_KQUEUE
76# define EV_USE_KQUEUE 0 126# define EV_USE_KQUEUE 0
77# endif 127# endif
78 128
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 129# if HAVE_PORT_H && HAVE_PORT_CREATE
80# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
81# else 133# else
134# undef EV_USE_PORT
82# define EV_USE_PORT 0 135# define EV_USE_PORT 0
83# endif 136# endif
84 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
85#endif 145# endif
86 146
87#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
88#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
89#include <fcntl.h> 169#include <fcntl.h>
90#include <stddef.h> 170#include <stddef.h>
91 171
92#include <stdio.h> 172#include <stdio.h>
93 173
94#include <assert.h> 174#include <assert.h>
95#include <errno.h> 175#include <errno.h>
96#include <sys/types.h> 176#include <sys/types.h>
97#include <time.h> 177#include <time.h>
178#include <limits.h>
98 179
99#include <signal.h> 180#include <signal.h>
100 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
101#ifndef _WIN32 190#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 191# include <sys/time.h>
104# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
105#else 194#else
195# include <io.h>
106# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 197# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
110# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
111#endif 251# endif
112 252#endif
113/**/
114 253
115#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
116# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
117#endif 260#endif
118 261
119#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
121#endif 272#endif
122 273
123#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
125#endif 276#endif
126 277
127#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
128# ifdef _WIN32 279# ifdef _WIN32
129# define EV_USE_POLL 0 280# define EV_USE_POLL 0
130# else 281# else
131# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
132# endif 283# endif
133#endif 284#endif
134 285
135#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
136# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
137#endif 292#endif
138 293
139#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
141#endif 296#endif
142 297
143#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 299# define EV_USE_PORT 0
145#endif 300#endif
146 301
147/**/ 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
148 309
149/* darwin simply cannot be helped */ 310#ifndef EV_PID_HASHSIZE
150#ifdef __APPLE__ 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
151# undef EV_USE_POLL 370# undef EV_USE_POLL
152# undef EV_USE_KQUEUE 371# define EV_USE_POLL 0
153#endif 372#endif
154 373
155#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
160#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
163#endif 382#endif
164 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
165#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 407# include <winsock.h>
167#endif 408#endif
168 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
169/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
170 462
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
175 465
176#ifdef EV_H 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
177# include EV_H 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following are taken from libecb */
470/* ecb.h start */
471
472/* many compilers define _GNUC_ to some versions but then only implement
473 * what their idiot authors think are the "more important" extensions,
474 * causing enourmous grief in return for some better fake benchmark numbers.
475 * or so.
476 * we try to detect these and simply assume they are not gcc - if they have
477 * an issue with that they should have done it right in the first place.
478 */
479#ifndef ECB_GCC_VERSION
480 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481 #define ECB_GCC_VERSION(major,minor) 0
482 #else
483 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
484 #endif
485#endif
486
487#if __cplusplus
488 #define ecb_inline static inline
489#elif ECB_GCC_VERSION(2,5)
490 #define ecb_inline static __inline__
491#elif ECB_C99
492 #define ecb_inline static inline
178#else 493#else
179# include "ev.h" 494 #define ecb_inline static
180#endif 495#endif
181 496
182#if __GNUC__ >= 3 497#if ECB_GCC_VERSION(3,1)
498 #define ecb_attribute(attrlist) __attribute__(attrlist)
499 #define ecb_is_constant(expr) __builtin_constant_p (expr)
183# define expect(expr,value) __builtin_expect ((expr),(value)) 500 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
184# define inline static inline 501 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
185#else 502#else
503 #define ecb_attribute(attrlist)
504 #define ecb_is_constant(expr) 0
186# define expect(expr,value) (expr) 505 #define ecb_expect(expr,value) (expr)
187# define inline static 506 #define ecb_prefetch(addr,rw,locality)
188#endif 507#endif
189 508
509#define ecb_noinline ecb_attribute ((__noinline__))
510#define ecb_noreturn ecb_attribute ((__noreturn__))
511#define ecb_unused ecb_attribute ((__unused__))
512#define ecb_const ecb_attribute ((__const__))
513#define ecb_pure ecb_attribute ((__pure__))
514
515#if ECB_GCC_VERSION(4,3)
516 #define ecb_artificial ecb_attribute ((__artificial__))
517 #define ecb_hot ecb_attribute ((__hot__))
518 #define ecb_cold ecb_attribute ((__cold__))
519#else
520 #define ecb_artificial
521 #define ecb_hot
522 #define ecb_cold
523#endif
524
525/* put around conditional expressions if you are very sure that the */
526/* expression is mostly true or mostly false. note that these return */
527/* booleans, not the expression. */
190#define expect_false(expr) expect ((expr) != 0, 0) 528#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 529#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
530/* ecb.h end */
192 531
532#define expect_false(cond) ecb_expect_false (cond)
533#define expect_true(cond) ecb_expect_true (cond)
534#define noinline ecb_noinline
535
536#define inline_size ecb_inline
537
538#if EV_FEATURE_CODE
539# define inline_speed ecb_inline
540#else
541# define inline_speed static noinline
542#endif
543
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 544#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
545
546#if EV_MINPRI == EV_MAXPRI
547# define ABSPRI(w) (((W)w), 0)
548#else
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 549# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
550#endif
195 551
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 552#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 553#define EMPTY2(a,b) /* used to suppress some warnings */
198 554
199typedef struct ev_watcher *W; 555typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 556typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 557typedef ev_watcher_time *WT;
202 558
559#define ev_active(w) ((W)(w))->active
560#define ev_at(w) ((WT)(w))->at
561
562#if EV_USE_REALTIME
563/* sig_atomic_t is used to avoid per-thread variables or locking but still */
564/* giving it a reasonably high chance of working on typical architectures */
565static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
566#endif
567
568#if EV_USE_MONOTONIC
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 569static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
570#endif
571
572#ifndef EV_FD_TO_WIN32_HANDLE
573# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
574#endif
575#ifndef EV_WIN32_HANDLE_TO_FD
576# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
577#endif
578#ifndef EV_WIN32_CLOSE_FD
579# define EV_WIN32_CLOSE_FD(fd) close (fd)
580#endif
204 581
205#ifdef _WIN32 582#ifdef _WIN32
206# include "ev_win32.c" 583# include "ev_win32.c"
207#endif 584#endif
208 585
209/*****************************************************************************/ 586/*****************************************************************************/
210 587
588/* define a suitable floor function (only used by periodics atm) */
589
590#if EV_USE_FLOOR
591# include <math.h>
592# define ev_floor(v) floor (v)
593#else
594
595#include <float.h>
596
597/* a floor() replacement function, should be independent of ev_tstamp type */
598static ev_tstamp noinline
599ev_floor (ev_tstamp v)
600{
601 /* the choice of shift factor is not terribly important */
602#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
603 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
604#else
605 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
606#endif
607
608 /* argument too large for an unsigned long? */
609 if (expect_false (v >= shift))
610 {
611 ev_tstamp f;
612
613 if (v == v - 1.)
614 return v; /* very large number */
615
616 f = shift * ev_floor (v * (1. / shift));
617 return f + ev_floor (v - f);
618 }
619
620 /* special treatment for negative args? */
621 if (expect_false (v < 0.))
622 {
623 ev_tstamp f = -ev_floor (-v);
624
625 return f - (f == v ? 0 : 1);
626 }
627
628 /* fits into an unsigned long */
629 return (unsigned long)v;
630}
631
632#endif
633
634/*****************************************************************************/
635
636#ifdef __linux
637# include <sys/utsname.h>
638#endif
639
640static unsigned int noinline ecb_cold
641ev_linux_version (void)
642{
643#ifdef __linux
644 unsigned int v = 0;
645 struct utsname buf;
646 int i;
647 char *p = buf.release;
648
649 if (uname (&buf))
650 return 0;
651
652 for (i = 3+1; --i; )
653 {
654 unsigned int c = 0;
655
656 for (;;)
657 {
658 if (*p >= '0' && *p <= '9')
659 c = c * 10 + *p++ - '0';
660 else
661 {
662 p += *p == '.';
663 break;
664 }
665 }
666
667 v = (v << 8) | c;
668 }
669
670 return v;
671#else
672 return 0;
673#endif
674}
675
676/*****************************************************************************/
677
678#if EV_AVOID_STDIO
679static void noinline ecb_cold
680ev_printerr (const char *msg)
681{
682 write (STDERR_FILENO, msg, strlen (msg));
683}
684#endif
685
211static void (*syserr_cb)(const char *msg); 686static void (*syserr_cb)(const char *msg);
212 687
688void ecb_cold
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 689ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 690{
215 syserr_cb = cb; 691 syserr_cb = cb;
216} 692}
217 693
218static void 694static void noinline ecb_cold
219syserr (const char *msg) 695ev_syserr (const char *msg)
220{ 696{
221 if (!msg) 697 if (!msg)
222 msg = "(libev) system error"; 698 msg = "(libev) system error";
223 699
224 if (syserr_cb) 700 if (syserr_cb)
225 syserr_cb (msg); 701 syserr_cb (msg);
226 else 702 else
227 { 703 {
704#if EV_AVOID_STDIO
705 ev_printerr (msg);
706 ev_printerr (": ");
707 ev_printerr (strerror (errno));
708 ev_printerr ("\n");
709#else
228 perror (msg); 710 perror (msg);
711#endif
229 abort (); 712 abort ();
230 } 713 }
231} 714}
232 715
716static void *
717ev_realloc_emul (void *ptr, long size)
718{
719#if __GLIBC__
720 return realloc (ptr, size);
721#else
722 /* some systems, notably openbsd and darwin, fail to properly
723 * implement realloc (x, 0) (as required by both ansi c-89 and
724 * the single unix specification, so work around them here.
725 */
726
727 if (size)
728 return realloc (ptr, size);
729
730 free (ptr);
731 return 0;
732#endif
733}
734
233static void *(*alloc)(void *ptr, long size); 735static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 736
737void ecb_cold
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 738ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 739{
237 alloc = cb; 740 alloc = cb;
238} 741}
239 742
240static void * 743inline_speed void *
241ev_realloc (void *ptr, long size) 744ev_realloc (void *ptr, long size)
242{ 745{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 746 ptr = alloc (ptr, size);
244 747
245 if (!ptr && size) 748 if (!ptr && size)
246 { 749 {
750#if EV_AVOID_STDIO
751 ev_printerr ("(libev) memory allocation failed, aborting.\n");
752#else
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 753 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
754#endif
248 abort (); 755 abort ();
249 } 756 }
250 757
251 return ptr; 758 return ptr;
252} 759}
254#define ev_malloc(size) ev_realloc (0, (size)) 761#define ev_malloc(size) ev_realloc (0, (size))
255#define ev_free(ptr) ev_realloc ((ptr), 0) 762#define ev_free(ptr) ev_realloc ((ptr), 0)
256 763
257/*****************************************************************************/ 764/*****************************************************************************/
258 765
766/* set in reify when reification needed */
767#define EV_ANFD_REIFY 1
768
769/* file descriptor info structure */
259typedef struct 770typedef struct
260{ 771{
261 WL head; 772 WL head;
262 unsigned char events; 773 unsigned char events; /* the events watched for */
774 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
775 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
263 unsigned char reify; 776 unsigned char unused;
777#if EV_USE_EPOLL
778 unsigned int egen; /* generation counter to counter epoll bugs */
779#endif
264#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
265 SOCKET handle; 781 SOCKET handle;
266#endif 782#endif
783#if EV_USE_IOCP
784 OVERLAPPED or, ow;
785#endif
267} ANFD; 786} ANFD;
268 787
788/* stores the pending event set for a given watcher */
269typedef struct 789typedef struct
270{ 790{
271 W w; 791 W w;
272 int events; 792 int events; /* the pending event set for the given watcher */
273} ANPENDING; 793} ANPENDING;
794
795#if EV_USE_INOTIFY
796/* hash table entry per inotify-id */
797typedef struct
798{
799 WL head;
800} ANFS;
801#endif
802
803/* Heap Entry */
804#if EV_HEAP_CACHE_AT
805 /* a heap element */
806 typedef struct {
807 ev_tstamp at;
808 WT w;
809 } ANHE;
810
811 #define ANHE_w(he) (he).w /* access watcher, read-write */
812 #define ANHE_at(he) (he).at /* access cached at, read-only */
813 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
814#else
815 /* a heap element */
816 typedef WT ANHE;
817
818 #define ANHE_w(he) (he)
819 #define ANHE_at(he) (he)->at
820 #define ANHE_at_cache(he)
821#endif
274 822
275#if EV_MULTIPLICITY 823#if EV_MULTIPLICITY
276 824
277 struct ev_loop 825 struct ev_loop
278 { 826 {
296 844
297 static int ev_default_loop_ptr; 845 static int ev_default_loop_ptr;
298 846
299#endif 847#endif
300 848
849#if EV_FEATURE_API
850# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
851# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
852# define EV_INVOKE_PENDING invoke_cb (EV_A)
853#else
854# define EV_RELEASE_CB (void)0
855# define EV_ACQUIRE_CB (void)0
856# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
857#endif
858
859#define EVBREAK_RECURSE 0x80
860
301/*****************************************************************************/ 861/*****************************************************************************/
302 862
863#ifndef EV_HAVE_EV_TIME
303ev_tstamp 864ev_tstamp
304ev_time (void) 865ev_time (void)
305{ 866{
306#if EV_USE_REALTIME 867#if EV_USE_REALTIME
868 if (expect_true (have_realtime))
869 {
307 struct timespec ts; 870 struct timespec ts;
308 clock_gettime (CLOCK_REALTIME, &ts); 871 clock_gettime (CLOCK_REALTIME, &ts);
309 return ts.tv_sec + ts.tv_nsec * 1e-9; 872 return ts.tv_sec + ts.tv_nsec * 1e-9;
310#else 873 }
874#endif
875
311 struct timeval tv; 876 struct timeval tv;
312 gettimeofday (&tv, 0); 877 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 878 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif
315} 879}
880#endif
316 881
317inline ev_tstamp 882inline_size ev_tstamp
318get_clock (void) 883get_clock (void)
319{ 884{
320#if EV_USE_MONOTONIC 885#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 886 if (expect_true (have_monotonic))
322 { 887 {
335{ 900{
336 return ev_rt_now; 901 return ev_rt_now;
337} 902}
338#endif 903#endif
339 904
340#define array_roundsize(type,n) (((n) | 4) & ~3) 905void
906ev_sleep (ev_tstamp delay)
907{
908 if (delay > 0.)
909 {
910#if EV_USE_NANOSLEEP
911 struct timespec ts;
912
913 EV_TS_SET (ts, delay);
914 nanosleep (&ts, 0);
915#elif defined(_WIN32)
916 Sleep ((unsigned long)(delay * 1e3));
917#else
918 struct timeval tv;
919
920 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
921 /* something not guaranteed by newer posix versions, but guaranteed */
922 /* by older ones */
923 EV_TV_SET (tv, delay);
924 select (0, 0, 0, 0, &tv);
925#endif
926 }
927}
928
929/*****************************************************************************/
930
931#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
932
933/* find a suitable new size for the given array, */
934/* hopefully by rounding to a nice-to-malloc size */
935inline_size int
936array_nextsize (int elem, int cur, int cnt)
937{
938 int ncur = cur + 1;
939
940 do
941 ncur <<= 1;
942 while (cnt > ncur);
943
944 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
945 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
946 {
947 ncur *= elem;
948 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
949 ncur = ncur - sizeof (void *) * 4;
950 ncur /= elem;
951 }
952
953 return ncur;
954}
955
956static void * noinline ecb_cold
957array_realloc (int elem, void *base, int *cur, int cnt)
958{
959 *cur = array_nextsize (elem, *cur, cnt);
960 return ev_realloc (base, elem * *cur);
961}
962
963#define array_init_zero(base,count) \
964 memset ((void *)(base), 0, sizeof (*(base)) * (count))
341 965
342#define array_needsize(type,base,cur,cnt,init) \ 966#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 967 if (expect_false ((cnt) > (cur))) \
344 { \ 968 { \
345 int newcnt = cur; \ 969 int ecb_unused ocur_ = (cur); \
346 do \ 970 (base) = (type *)array_realloc \
347 { \ 971 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 972 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 973 }
356 974
975#if 0
357#define array_slim(type,stem) \ 976#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 977 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 978 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 979 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 980 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 981 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 982 }
983#endif
364 984
365#define array_free(stem, idx) \ 985#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 986 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
367 987
368/*****************************************************************************/ 988/*****************************************************************************/
369 989
370static void 990/* dummy callback for pending events */
371anfds_init (ANFD *base, int count) 991static void noinline
992pendingcb (EV_P_ ev_prepare *w, int revents)
372{ 993{
373 while (count--)
374 {
375 base->head = 0;
376 base->events = EV_NONE;
377 base->reify = 0;
378
379 ++base;
380 }
381} 994}
382 995
383void 996void noinline
384ev_feed_event (EV_P_ void *w, int revents) 997ev_feed_event (EV_P_ void *w, int revents)
385{ 998{
386 W w_ = (W)w; 999 W w_ = (W)w;
1000 int pri = ABSPRI (w_);
387 1001
388 if (expect_false (w_->pending)) 1002 if (expect_false (w_->pending))
1003 pendings [pri][w_->pending - 1].events |= revents;
1004 else
389 { 1005 {
1006 w_->pending = ++pendingcnt [pri];
1007 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1008 pendings [pri][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1009 pendings [pri][w_->pending - 1].events = revents;
391 return;
392 } 1010 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398} 1011}
399 1012
400static void 1013inline_speed void
1014feed_reverse (EV_P_ W w)
1015{
1016 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1017 rfeeds [rfeedcnt++] = w;
1018}
1019
1020inline_size void
1021feed_reverse_done (EV_P_ int revents)
1022{
1023 do
1024 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1025 while (rfeedcnt);
1026}
1027
1028inline_speed void
401queue_events (EV_P_ W *events, int eventcnt, int type) 1029queue_events (EV_P_ W *events, int eventcnt, int type)
402{ 1030{
403 int i; 1031 int i;
404 1032
405 for (i = 0; i < eventcnt; ++i) 1033 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type); 1034 ev_feed_event (EV_A_ events [i], type);
407} 1035}
408 1036
1037/*****************************************************************************/
1038
409inline void 1039inline_speed void
410fd_event (EV_P_ int fd, int revents) 1040fd_event_nocheck (EV_P_ int fd, int revents)
411{ 1041{
412 ANFD *anfd = anfds + fd; 1042 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 1043 ev_io *w;
414 1044
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1045 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 1046 {
417 int ev = w->events & revents; 1047 int ev = w->events & revents;
418 1048
419 if (ev) 1049 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 1050 ev_feed_event (EV_A_ (W)w, ev);
421 } 1051 }
422} 1052}
423 1053
1054/* do not submit kernel events for fds that have reify set */
1055/* because that means they changed while we were polling for new events */
1056inline_speed void
1057fd_event (EV_P_ int fd, int revents)
1058{
1059 ANFD *anfd = anfds + fd;
1060
1061 if (expect_true (!anfd->reify))
1062 fd_event_nocheck (EV_A_ fd, revents);
1063}
1064
424void 1065void
425ev_feed_fd_event (EV_P_ int fd, int revents) 1066ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 1067{
1068 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 1069 fd_event_nocheck (EV_A_ fd, revents);
428} 1070}
429 1071
430/*****************************************************************************/ 1072/* make sure the external fd watch events are in-sync */
431 1073/* with the kernel/libev internal state */
432inline void 1074inline_size void
433fd_reify (EV_P) 1075fd_reify (EV_P)
434{ 1076{
435 int i; 1077 int i;
436 1078
1079#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
437 for (i = 0; i < fdchangecnt; ++i) 1080 for (i = 0; i < fdchangecnt; ++i)
438 { 1081 {
439 int fd = fdchanges [i]; 1082 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 1083 ANFD *anfd = anfds + fd;
441 struct ev_io *w;
442 1084
443 int events = 0; 1085 if (anfd->reify & EV__IOFDSET && anfd->head)
444
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
446 events |= w->events;
447
448#if EV_SELECT_IS_WINSOCKET
449 if (events)
450 { 1086 {
1087 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1088
1089 if (handle != anfd->handle)
1090 {
451 unsigned long argp; 1091 unsigned long arg;
452 anfd->handle = _get_osfhandle (fd); 1092
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1093 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1094
1095 /* handle changed, but fd didn't - we need to do it in two steps */
1096 backend_modify (EV_A_ fd, anfd->events, 0);
1097 anfd->events = 0;
1098 anfd->handle = handle;
1099 }
454 } 1100 }
1101 }
455#endif 1102#endif
456 1103
1104 for (i = 0; i < fdchangecnt; ++i)
1105 {
1106 int fd = fdchanges [i];
1107 ANFD *anfd = anfds + fd;
1108 ev_io *w;
1109
1110 unsigned char o_events = anfd->events;
1111 unsigned char o_reify = anfd->reify;
1112
457 anfd->reify = 0; 1113 anfd->reify = 0;
458 1114
459 method_modify (EV_A_ fd, anfd->events, events); 1115 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1116 {
460 anfd->events = events; 1117 anfd->events = 0;
1118
1119 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1120 anfd->events |= (unsigned char)w->events;
1121
1122 if (o_events != anfd->events)
1123 o_reify = EV__IOFDSET; /* actually |= */
1124 }
1125
1126 if (o_reify & EV__IOFDSET)
1127 backend_modify (EV_A_ fd, o_events, anfd->events);
461 } 1128 }
462 1129
463 fdchangecnt = 0; 1130 fdchangecnt = 0;
464} 1131}
465 1132
466static void 1133/* something about the given fd changed */
1134inline_size void
467fd_change (EV_P_ int fd) 1135fd_change (EV_P_ int fd, int flags)
468{ 1136{
469 if (expect_false (anfds [fd].reify)) 1137 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 1138 anfds [fd].reify |= flags;
473 1139
1140 if (expect_true (!reify))
1141 {
474 ++fdchangecnt; 1142 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1143 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 1144 fdchanges [fdchangecnt - 1] = fd;
1145 }
477} 1146}
478 1147
479static void 1148/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1149inline_speed void ecb_cold
480fd_kill (EV_P_ int fd) 1150fd_kill (EV_P_ int fd)
481{ 1151{
482 struct ev_io *w; 1152 ev_io *w;
483 1153
484 while ((w = (struct ev_io *)anfds [fd].head)) 1154 while ((w = (ev_io *)anfds [fd].head))
485 { 1155 {
486 ev_io_stop (EV_A_ w); 1156 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1157 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 1158 }
489} 1159}
490 1160
491inline int 1161/* check whether the given fd is actually valid, for error recovery */
1162inline_size int ecb_cold
492fd_valid (int fd) 1163fd_valid (int fd)
493{ 1164{
494#ifdef _WIN32 1165#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 1166 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
496#else 1167#else
497 return fcntl (fd, F_GETFD) != -1; 1168 return fcntl (fd, F_GETFD) != -1;
498#endif 1169#endif
499} 1170}
500 1171
501/* called on EBADF to verify fds */ 1172/* called on EBADF to verify fds */
502static void 1173static void noinline ecb_cold
503fd_ebadf (EV_P) 1174fd_ebadf (EV_P)
504{ 1175{
505 int fd; 1176 int fd;
506 1177
507 for (fd = 0; fd < anfdmax; ++fd) 1178 for (fd = 0; fd < anfdmax; ++fd)
508 if (anfds [fd].events) 1179 if (anfds [fd].events)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 1180 if (!fd_valid (fd) && errno == EBADF)
510 fd_kill (EV_A_ fd); 1181 fd_kill (EV_A_ fd);
511} 1182}
512 1183
513/* called on ENOMEM in select/poll to kill some fds and retry */ 1184/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 1185static void noinline ecb_cold
515fd_enomem (EV_P) 1186fd_enomem (EV_P)
516{ 1187{
517 int fd; 1188 int fd;
518 1189
519 for (fd = anfdmax; fd--; ) 1190 for (fd = anfdmax; fd--; )
520 if (anfds [fd].events) 1191 if (anfds [fd].events)
521 { 1192 {
522 fd_kill (EV_A_ fd); 1193 fd_kill (EV_A_ fd);
523 return; 1194 break;
524 } 1195 }
525} 1196}
526 1197
527/* usually called after fork if method needs to re-arm all fds from scratch */ 1198/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 1199static void noinline
529fd_rearm_all (EV_P) 1200fd_rearm_all (EV_P)
530{ 1201{
531 int fd; 1202 int fd;
532 1203
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 1204 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 1205 if (anfds [fd].events)
536 { 1206 {
537 anfds [fd].events = 0; 1207 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 1208 anfds [fd].emask = 0;
1209 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
539 } 1210 }
540} 1211}
541 1212
542/*****************************************************************************/ 1213/* used to prepare libev internal fd's */
543 1214/* this is not fork-safe */
544static void
545upheap (WT *heap, int k)
546{
547 WT w = heap [k];
548
549 while (k && heap [k >> 1]->at > w->at)
550 {
551 heap [k] = heap [k >> 1];
552 ((W)heap [k])->active = k + 1;
553 k >>= 1;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558
559}
560
561static void
562downheap (WT *heap, int N, int k)
563{
564 WT w = heap [k];
565
566 while (k < (N >> 1))
567 {
568 int j = k << 1;
569
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
571 ++j;
572
573 if (w->at <= heap [j]->at)
574 break;
575
576 heap [k] = heap [j];
577 ((W)heap [k])->active = k + 1;
578 k = j;
579 }
580
581 heap [k] = w;
582 ((W)heap [k])->active = k + 1;
583}
584
585inline void 1215inline_speed void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
592/*****************************************************************************/
593
594typedef struct
595{
596 WL head;
597 sig_atomic_t volatile gotsig;
598} ANSIG;
599
600static ANSIG *signals;
601static int signalmax;
602
603static int sigpipe [2];
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606
607static void
608signals_init (ANSIG *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->gotsig = 0;
614
615 ++base;
616 }
617}
618
619static void
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625
626 signals [signum - 1].gotsig = 1;
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 1216fd_intern (int fd)
672{ 1217{
673#ifdef _WIN32 1218#ifdef _WIN32
674 int arg = 1; 1219 unsigned long arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1220 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
676#else 1221#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 1222 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 1223 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 1224#endif
680} 1225}
681 1226
1227/*****************************************************************************/
1228
1229/*
1230 * the heap functions want a real array index. array index 0 is guaranteed to not
1231 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1232 * the branching factor of the d-tree.
1233 */
1234
1235/*
1236 * at the moment we allow libev the luxury of two heaps,
1237 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1238 * which is more cache-efficient.
1239 * the difference is about 5% with 50000+ watchers.
1240 */
1241#if EV_USE_4HEAP
1242
1243#define DHEAP 4
1244#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1245#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1246#define UPHEAP_DONE(p,k) ((p) == (k))
1247
1248/* away from the root */
1249inline_speed void
1250downheap (ANHE *heap, int N, int k)
1251{
1252 ANHE he = heap [k];
1253 ANHE *E = heap + N + HEAP0;
1254
1255 for (;;)
1256 {
1257 ev_tstamp minat;
1258 ANHE *minpos;
1259 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1260
1261 /* find minimum child */
1262 if (expect_true (pos + DHEAP - 1 < E))
1263 {
1264 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1265 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1266 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1267 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1268 }
1269 else if (pos < E)
1270 {
1271 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1272 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1273 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1274 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1275 }
1276 else
1277 break;
1278
1279 if (ANHE_at (he) <= minat)
1280 break;
1281
1282 heap [k] = *minpos;
1283 ev_active (ANHE_w (*minpos)) = k;
1284
1285 k = minpos - heap;
1286 }
1287
1288 heap [k] = he;
1289 ev_active (ANHE_w (he)) = k;
1290}
1291
1292#else /* 4HEAP */
1293
1294#define HEAP0 1
1295#define HPARENT(k) ((k) >> 1)
1296#define UPHEAP_DONE(p,k) (!(p))
1297
1298/* away from the root */
1299inline_speed void
1300downheap (ANHE *heap, int N, int k)
1301{
1302 ANHE he = heap [k];
1303
1304 for (;;)
1305 {
1306 int c = k << 1;
1307
1308 if (c >= N + HEAP0)
1309 break;
1310
1311 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1312 ? 1 : 0;
1313
1314 if (ANHE_at (he) <= ANHE_at (heap [c]))
1315 break;
1316
1317 heap [k] = heap [c];
1318 ev_active (ANHE_w (heap [k])) = k;
1319
1320 k = c;
1321 }
1322
1323 heap [k] = he;
1324 ev_active (ANHE_w (he)) = k;
1325}
1326#endif
1327
1328/* towards the root */
1329inline_speed void
1330upheap (ANHE *heap, int k)
1331{
1332 ANHE he = heap [k];
1333
1334 for (;;)
1335 {
1336 int p = HPARENT (k);
1337
1338 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1339 break;
1340
1341 heap [k] = heap [p];
1342 ev_active (ANHE_w (heap [k])) = k;
1343 k = p;
1344 }
1345
1346 heap [k] = he;
1347 ev_active (ANHE_w (he)) = k;
1348}
1349
1350/* move an element suitably so it is in a correct place */
1351inline_size void
1352adjustheap (ANHE *heap, int N, int k)
1353{
1354 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1355 upheap (heap, k);
1356 else
1357 downheap (heap, N, k);
1358}
1359
1360/* rebuild the heap: this function is used only once and executed rarely */
1361inline_size void
1362reheap (ANHE *heap, int N)
1363{
1364 int i;
1365
1366 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1367 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1368 for (i = 0; i < N; ++i)
1369 upheap (heap, i + HEAP0);
1370}
1371
1372/*****************************************************************************/
1373
1374/* associate signal watchers to a signal signal */
1375typedef struct
1376{
1377 EV_ATOMIC_T pending;
1378#if EV_MULTIPLICITY
1379 EV_P;
1380#endif
1381 WL head;
1382} ANSIG;
1383
1384static ANSIG signals [EV_NSIG - 1];
1385
1386/*****************************************************************************/
1387
1388#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1389
1390static void noinline ecb_cold
1391evpipe_init (EV_P)
1392{
1393 if (!ev_is_active (&pipe_w))
1394 {
1395# if EV_USE_EVENTFD
1396 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1397 if (evfd < 0 && errno == EINVAL)
1398 evfd = eventfd (0, 0);
1399
1400 if (evfd >= 0)
1401 {
1402 evpipe [0] = -1;
1403 fd_intern (evfd); /* doing it twice doesn't hurt */
1404 ev_io_set (&pipe_w, evfd, EV_READ);
1405 }
1406 else
1407# endif
1408 {
1409 while (pipe (evpipe))
1410 ev_syserr ("(libev) error creating signal/async pipe");
1411
1412 fd_intern (evpipe [0]);
1413 fd_intern (evpipe [1]);
1414 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1415 }
1416
1417 ev_io_start (EV_A_ &pipe_w);
1418 ev_unref (EV_A); /* watcher should not keep loop alive */
1419 }
1420}
1421
1422inline_speed void
1423evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1424{
1425 if (!*flag)
1426 {
1427 *flag = 1;
1428
1429 pipe_write_skipped = 1;
1430
1431 if (pipe_write_wanted)
1432 {
1433 int old_errno;
1434
1435 pipe_write_skipped = 0;
1436
1437 old_errno = errno; /* save errno because write will clobber it */
1438
1439#if EV_USE_EVENTFD
1440 if (evfd >= 0)
1441 {
1442 uint64_t counter = 1;
1443 write (evfd, &counter, sizeof (uint64_t));
1444 }
1445 else
1446#endif
1447 {
1448 /* win32 people keep sending patches that change this write() to send() */
1449 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1450 /* so when you think this write should be a send instead, please find out */
1451 /* where your send() is from - it's definitely not the microsoft send, and */
1452 /* tell me. thank you. */
1453 write (evpipe [1], &(evpipe [1]), 1);
1454 }
1455
1456 errno = old_errno;
1457 }
1458 }
1459}
1460
1461/* called whenever the libev signal pipe */
1462/* got some events (signal, async) */
682static void 1463static void
683siginit (EV_P) 1464pipecb (EV_P_ ev_io *iow, int revents)
684{ 1465{
685 fd_intern (sigpipe [0]); 1466 int i;
686 fd_intern (sigpipe [1]);
687 1467
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1468 if (revents & EV_READ)
689 ev_io_start (EV_A_ &sigev); 1469 {
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1470#if EV_USE_EVENTFD
1471 if (evfd >= 0)
1472 {
1473 uint64_t counter;
1474 read (evfd, &counter, sizeof (uint64_t));
1475 }
1476 else
1477#endif
1478 {
1479 char dummy;
1480 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1481 read (evpipe [0], &dummy, 1);
1482 }
1483 }
1484
1485 pipe_write_skipped = 0;
1486
1487#if EV_SIGNAL_ENABLE
1488 if (sig_pending)
1489 {
1490 sig_pending = 0;
1491
1492 for (i = EV_NSIG - 1; i--; )
1493 if (expect_false (signals [i].pending))
1494 ev_feed_signal_event (EV_A_ i + 1);
1495 }
1496#endif
1497
1498#if EV_ASYNC_ENABLE
1499 if (async_pending)
1500 {
1501 async_pending = 0;
1502
1503 for (i = asynccnt; i--; )
1504 if (asyncs [i]->sent)
1505 {
1506 asyncs [i]->sent = 0;
1507 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1508 }
1509 }
1510#endif
691} 1511}
692 1512
693/*****************************************************************************/ 1513/*****************************************************************************/
694 1514
695static struct ev_child *childs [PID_HASHSIZE]; 1515void
1516ev_feed_signal (int signum)
1517{
1518#if EV_MULTIPLICITY
1519 EV_P = signals [signum - 1].loop;
696 1520
1521 if (!EV_A)
1522 return;
1523#endif
1524
1525 if (!ev_active (&pipe_w))
1526 return;
1527
1528 signals [signum - 1].pending = 1;
1529 evpipe_write (EV_A_ &sig_pending);
1530}
1531
1532static void
1533ev_sighandler (int signum)
1534{
697#ifndef _WIN32 1535#ifdef _WIN32
1536 signal (signum, ev_sighandler);
1537#endif
698 1538
1539 ev_feed_signal (signum);
1540}
1541
1542void noinline
1543ev_feed_signal_event (EV_P_ int signum)
1544{
1545 WL w;
1546
1547 if (expect_false (signum <= 0 || signum > EV_NSIG))
1548 return;
1549
1550 --signum;
1551
1552#if EV_MULTIPLICITY
1553 /* it is permissible to try to feed a signal to the wrong loop */
1554 /* or, likely more useful, feeding a signal nobody is waiting for */
1555
1556 if (expect_false (signals [signum].loop != EV_A))
1557 return;
1558#endif
1559
1560 signals [signum].pending = 0;
1561
1562 for (w = signals [signum].head; w; w = w->next)
1563 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1564}
1565
1566#if EV_USE_SIGNALFD
1567static void
1568sigfdcb (EV_P_ ev_io *iow, int revents)
1569{
1570 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1571
1572 for (;;)
1573 {
1574 ssize_t res = read (sigfd, si, sizeof (si));
1575
1576 /* not ISO-C, as res might be -1, but works with SuS */
1577 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1578 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1579
1580 if (res < (ssize_t)sizeof (si))
1581 break;
1582 }
1583}
1584#endif
1585
1586#endif
1587
1588/*****************************************************************************/
1589
1590#if EV_CHILD_ENABLE
1591static WL childs [EV_PID_HASHSIZE];
1592
699static struct ev_signal childev; 1593static ev_signal childev;
1594
1595#ifndef WIFCONTINUED
1596# define WIFCONTINUED(status) 0
1597#endif
1598
1599/* handle a single child status event */
1600inline_speed void
1601child_reap (EV_P_ int chain, int pid, int status)
1602{
1603 ev_child *w;
1604 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1605
1606 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1607 {
1608 if ((w->pid == pid || !w->pid)
1609 && (!traced || (w->flags & 1)))
1610 {
1611 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1612 w->rpid = pid;
1613 w->rstatus = status;
1614 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1615 }
1616 }
1617}
700 1618
701#ifndef WCONTINUED 1619#ifndef WCONTINUED
702# define WCONTINUED 0 1620# define WCONTINUED 0
703#endif 1621#endif
704 1622
1623/* called on sigchld etc., calls waitpid */
705static void 1624static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 1625childcb (EV_P_ ev_signal *sw, int revents)
722{ 1626{
723 int pid, status; 1627 int pid, status;
724 1628
1629 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1630 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 1631 if (!WCONTINUED
1632 || errno != EINVAL
1633 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1634 return;
1635
727 /* make sure we are called again until all childs have been reaped */ 1636 /* make sure we are called again until all children have been reaped */
1637 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1638 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 1639
730 child_reap (EV_A_ sw, pid, pid, status); 1640 child_reap (EV_A_ pid, pid, status);
1641 if ((EV_PID_HASHSIZE) > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1642 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 1643}
734 1644
735#endif 1645#endif
736 1646
737/*****************************************************************************/ 1647/*****************************************************************************/
738 1648
1649#if EV_USE_IOCP
1650# include "ev_iocp.c"
1651#endif
739#if EV_USE_PORT 1652#if EV_USE_PORT
740# include "ev_port.c" 1653# include "ev_port.c"
741#endif 1654#endif
742#if EV_USE_KQUEUE 1655#if EV_USE_KQUEUE
743# include "ev_kqueue.c" 1656# include "ev_kqueue.c"
750#endif 1663#endif
751#if EV_USE_SELECT 1664#if EV_USE_SELECT
752# include "ev_select.c" 1665# include "ev_select.c"
753#endif 1666#endif
754 1667
755int 1668int ecb_cold
756ev_version_major (void) 1669ev_version_major (void)
757{ 1670{
758 return EV_VERSION_MAJOR; 1671 return EV_VERSION_MAJOR;
759} 1672}
760 1673
761int 1674int ecb_cold
762ev_version_minor (void) 1675ev_version_minor (void)
763{ 1676{
764 return EV_VERSION_MINOR; 1677 return EV_VERSION_MINOR;
765} 1678}
766 1679
767/* return true if we are running with elevated privileges and should ignore env variables */ 1680/* return true if we are running with elevated privileges and should ignore env variables */
768static int 1681int inline_size ecb_cold
769enable_secure (void) 1682enable_secure (void)
770{ 1683{
771#ifdef _WIN32 1684#ifdef _WIN32
772 return 0; 1685 return 0;
773#else 1686#else
774 return getuid () != geteuid () 1687 return getuid () != geteuid ()
775 || getgid () != getegid (); 1688 || getgid () != getegid ();
776#endif 1689#endif
777} 1690}
778 1691
1692unsigned int ecb_cold
1693ev_supported_backends (void)
1694{
1695 unsigned int flags = 0;
1696
1697 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1698 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1699 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1700 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1701 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1702
1703 return flags;
1704}
1705
1706unsigned int ecb_cold
1707ev_recommended_backends (void)
1708{
1709 unsigned int flags = ev_supported_backends ();
1710
1711#ifndef __NetBSD__
1712 /* kqueue is borked on everything but netbsd apparently */
1713 /* it usually doesn't work correctly on anything but sockets and pipes */
1714 flags &= ~EVBACKEND_KQUEUE;
1715#endif
1716#ifdef __APPLE__
1717 /* only select works correctly on that "unix-certified" platform */
1718 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1719 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1720#endif
1721#ifdef __FreeBSD__
1722 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1723#endif
1724
1725 return flags;
1726}
1727
1728unsigned int ecb_cold
1729ev_embeddable_backends (void)
1730{
1731 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1732
1733 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1734 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1735 flags &= ~EVBACKEND_EPOLL;
1736
1737 return flags;
1738}
1739
779unsigned int 1740unsigned int
1741ev_backend (EV_P)
1742{
1743 return backend;
1744}
1745
1746#if EV_FEATURE_API
1747unsigned int
1748ev_iteration (EV_P)
1749{
1750 return loop_count;
1751}
1752
1753unsigned int
780ev_method (EV_P) 1754ev_depth (EV_P)
781{ 1755{
782 return method; 1756 return loop_depth;
783} 1757}
784 1758
785static void 1759void
1760ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1761{
1762 io_blocktime = interval;
1763}
1764
1765void
1766ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1767{
1768 timeout_blocktime = interval;
1769}
1770
1771void
1772ev_set_userdata (EV_P_ void *data)
1773{
1774 userdata = data;
1775}
1776
1777void *
1778ev_userdata (EV_P)
1779{
1780 return userdata;
1781}
1782
1783void
1784ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1785{
1786 invoke_cb = invoke_pending_cb;
1787}
1788
1789void
1790ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1791{
1792 release_cb = release;
1793 acquire_cb = acquire;
1794}
1795#endif
1796
1797/* initialise a loop structure, must be zero-initialised */
1798static void noinline ecb_cold
786loop_init (EV_P_ unsigned int flags) 1799loop_init (EV_P_ unsigned int flags)
787{ 1800{
788 if (!method) 1801 if (!backend)
789 { 1802 {
1803 origflags = flags;
1804
1805#if EV_USE_REALTIME
1806 if (!have_realtime)
1807 {
1808 struct timespec ts;
1809
1810 if (!clock_gettime (CLOCK_REALTIME, &ts))
1811 have_realtime = 1;
1812 }
1813#endif
1814
790#if EV_USE_MONOTONIC 1815#if EV_USE_MONOTONIC
1816 if (!have_monotonic)
1817 {
1818 struct timespec ts;
1819
1820 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1821 have_monotonic = 1;
1822 }
1823#endif
1824
1825 /* pid check not overridable via env */
1826#ifndef _WIN32
1827 if (flags & EVFLAG_FORKCHECK)
1828 curpid = getpid ();
1829#endif
1830
1831 if (!(flags & EVFLAG_NOENV)
1832 && !enable_secure ()
1833 && getenv ("LIBEV_FLAGS"))
1834 flags = atoi (getenv ("LIBEV_FLAGS"));
1835
1836 ev_rt_now = ev_time ();
1837 mn_now = get_clock ();
1838 now_floor = mn_now;
1839 rtmn_diff = ev_rt_now - mn_now;
1840#if EV_FEATURE_API
1841 invoke_cb = ev_invoke_pending;
1842#endif
1843
1844 io_blocktime = 0.;
1845 timeout_blocktime = 0.;
1846 backend = 0;
1847 backend_fd = -1;
1848 sig_pending = 0;
1849#if EV_ASYNC_ENABLE
1850 async_pending = 0;
1851#endif
1852 pipe_write_skipped = 0;
1853 pipe_write_wanted = 0;
1854#if EV_USE_INOTIFY
1855 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1856#endif
1857#if EV_USE_SIGNALFD
1858 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1859#endif
1860
1861 if (!(flags & EVBACKEND_MASK))
1862 flags |= ev_recommended_backends ();
1863
1864#if EV_USE_IOCP
1865 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1866#endif
1867#if EV_USE_PORT
1868 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1869#endif
1870#if EV_USE_KQUEUE
1871 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1872#endif
1873#if EV_USE_EPOLL
1874 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1875#endif
1876#if EV_USE_POLL
1877 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1878#endif
1879#if EV_USE_SELECT
1880 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1881#endif
1882
1883 ev_prepare_init (&pending_w, pendingcb);
1884
1885#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1886 ev_init (&pipe_w, pipecb);
1887 ev_set_priority (&pipe_w, EV_MAXPRI);
1888#endif
1889 }
1890}
1891
1892/* free up a loop structure */
1893void ecb_cold
1894ev_loop_destroy (EV_P)
1895{
1896 int i;
1897
1898#if EV_MULTIPLICITY
1899 /* mimic free (0) */
1900 if (!EV_A)
1901 return;
1902#endif
1903
1904#if EV_CLEANUP_ENABLE
1905 /* queue cleanup watchers (and execute them) */
1906 if (expect_false (cleanupcnt))
1907 {
1908 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1909 EV_INVOKE_PENDING;
1910 }
1911#endif
1912
1913#if EV_CHILD_ENABLE
1914 if (ev_is_active (&childev))
1915 {
1916 ev_ref (EV_A); /* child watcher */
1917 ev_signal_stop (EV_A_ &childev);
1918 }
1919#endif
1920
1921 if (ev_is_active (&pipe_w))
1922 {
1923 /*ev_ref (EV_A);*/
1924 /*ev_io_stop (EV_A_ &pipe_w);*/
1925
1926#if EV_USE_EVENTFD
1927 if (evfd >= 0)
1928 close (evfd);
1929#endif
1930
1931 if (evpipe [0] >= 0)
1932 {
1933 EV_WIN32_CLOSE_FD (evpipe [0]);
1934 EV_WIN32_CLOSE_FD (evpipe [1]);
1935 }
1936 }
1937
1938#if EV_USE_SIGNALFD
1939 if (ev_is_active (&sigfd_w))
1940 close (sigfd);
1941#endif
1942
1943#if EV_USE_INOTIFY
1944 if (fs_fd >= 0)
1945 close (fs_fd);
1946#endif
1947
1948 if (backend_fd >= 0)
1949 close (backend_fd);
1950
1951#if EV_USE_IOCP
1952 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1953#endif
1954#if EV_USE_PORT
1955 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1956#endif
1957#if EV_USE_KQUEUE
1958 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1959#endif
1960#if EV_USE_EPOLL
1961 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1962#endif
1963#if EV_USE_POLL
1964 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1965#endif
1966#if EV_USE_SELECT
1967 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1968#endif
1969
1970 for (i = NUMPRI; i--; )
1971 {
1972 array_free (pending, [i]);
1973#if EV_IDLE_ENABLE
1974 array_free (idle, [i]);
1975#endif
1976 }
1977
1978 ev_free (anfds); anfds = 0; anfdmax = 0;
1979
1980 /* have to use the microsoft-never-gets-it-right macro */
1981 array_free (rfeed, EMPTY);
1982 array_free (fdchange, EMPTY);
1983 array_free (timer, EMPTY);
1984#if EV_PERIODIC_ENABLE
1985 array_free (periodic, EMPTY);
1986#endif
1987#if EV_FORK_ENABLE
1988 array_free (fork, EMPTY);
1989#endif
1990#if EV_CLEANUP_ENABLE
1991 array_free (cleanup, EMPTY);
1992#endif
1993 array_free (prepare, EMPTY);
1994 array_free (check, EMPTY);
1995#if EV_ASYNC_ENABLE
1996 array_free (async, EMPTY);
1997#endif
1998
1999 backend = 0;
2000
2001#if EV_MULTIPLICITY
2002 if (ev_is_default_loop (EV_A))
2003#endif
2004 ev_default_loop_ptr = 0;
2005#if EV_MULTIPLICITY
2006 else
2007 ev_free (EV_A);
2008#endif
2009}
2010
2011#if EV_USE_INOTIFY
2012inline_size void infy_fork (EV_P);
2013#endif
2014
2015inline_size void
2016loop_fork (EV_P)
2017{
2018#if EV_USE_PORT
2019 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2020#endif
2021#if EV_USE_KQUEUE
2022 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2023#endif
2024#if EV_USE_EPOLL
2025 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2026#endif
2027#if EV_USE_INOTIFY
2028 infy_fork (EV_A);
2029#endif
2030
2031 if (ev_is_active (&pipe_w))
2032 {
2033 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2034
2035 ev_ref (EV_A);
2036 ev_io_stop (EV_A_ &pipe_w);
2037
2038#if EV_USE_EVENTFD
2039 if (evfd >= 0)
2040 close (evfd);
2041#endif
2042
2043 if (evpipe [0] >= 0)
2044 {
2045 EV_WIN32_CLOSE_FD (evpipe [0]);
2046 EV_WIN32_CLOSE_FD (evpipe [1]);
2047 }
2048
2049#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2050 evpipe_init (EV_A);
2051 /* now iterate over everything, in case we missed something */
2052 pipecb (EV_A_ &pipe_w, EV_READ);
2053#endif
2054 }
2055
2056 postfork = 0;
2057}
2058
2059#if EV_MULTIPLICITY
2060
2061struct ev_loop * ecb_cold
2062ev_loop_new (unsigned int flags)
2063{
2064 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2065
2066 memset (EV_A, 0, sizeof (struct ev_loop));
2067 loop_init (EV_A_ flags);
2068
2069 if (ev_backend (EV_A))
2070 return EV_A;
2071
2072 ev_free (EV_A);
2073 return 0;
2074}
2075
2076#endif /* multiplicity */
2077
2078#if EV_VERIFY
2079static void noinline ecb_cold
2080verify_watcher (EV_P_ W w)
2081{
2082 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2083
2084 if (w->pending)
2085 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2086}
2087
2088static void noinline ecb_cold
2089verify_heap (EV_P_ ANHE *heap, int N)
2090{
2091 int i;
2092
2093 for (i = HEAP0; i < N + HEAP0; ++i)
2094 {
2095 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2096 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2097 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2098
2099 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2100 }
2101}
2102
2103static void noinline ecb_cold
2104array_verify (EV_P_ W *ws, int cnt)
2105{
2106 while (cnt--)
2107 {
2108 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2109 verify_watcher (EV_A_ ws [cnt]);
2110 }
2111}
2112#endif
2113
2114#if EV_FEATURE_API
2115void ecb_cold
2116ev_verify (EV_P)
2117{
2118#if EV_VERIFY
2119 int i;
2120 WL w;
2121
2122 assert (activecnt >= -1);
2123
2124 assert (fdchangemax >= fdchangecnt);
2125 for (i = 0; i < fdchangecnt; ++i)
2126 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2127
2128 assert (anfdmax >= 0);
2129 for (i = 0; i < anfdmax; ++i)
2130 for (w = anfds [i].head; w; w = w->next)
791 { 2131 {
792 struct timespec ts; 2132 verify_watcher (EV_A_ (W)w);
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2133 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
794 have_monotonic = 1; 2134 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
795 } 2135 }
796#endif
797 2136
798 ev_rt_now = ev_time (); 2137 assert (timermax >= timercnt);
799 mn_now = get_clock (); 2138 verify_heap (EV_A_ timers, timercnt);
800 now_floor = mn_now;
801 rtmn_diff = ev_rt_now - mn_now;
802 2139
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2140#if EV_PERIODIC_ENABLE
804 flags = atoi (getenv ("LIBEV_FLAGS")); 2141 assert (periodicmax >= periodiccnt);
805 2142 verify_heap (EV_A_ periodics, periodiccnt);
806 if (!(flags & 0x0000ffff))
807 flags |= 0x0000ffff;
808
809 method = 0;
810#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
812#endif
813#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
815#endif
816#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
818#endif
819#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
821#endif
822#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
824#endif
825
826 ev_init (&sigev, sigcb);
827 ev_set_priority (&sigev, EV_MAXPRI);
828 }
829}
830
831static void
832loop_destroy (EV_P)
833{
834 int i;
835
836#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
838#endif
839#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
841#endif
842#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
844#endif
845#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
847#endif
848#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
850#endif 2143#endif
851 2144
852 for (i = NUMPRI; i--; ) 2145 for (i = NUMPRI; i--; )
853 array_free (pending, [i]); 2146 {
2147 assert (pendingmax [i] >= pendingcnt [i]);
2148#if EV_IDLE_ENABLE
2149 assert (idleall >= 0);
2150 assert (idlemax [i] >= idlecnt [i]);
2151 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2152#endif
2153 }
854 2154
855 /* have to use the microsoft-never-gets-it-right macro */ 2155#if EV_FORK_ENABLE
856 array_free (fdchange, EMPTY0); 2156 assert (forkmax >= forkcnt);
857 array_free (timer, EMPTY0); 2157 array_verify (EV_A_ (W *)forks, forkcnt);
858#if EV_PERIODICS 2158#endif
859 array_free (periodic, EMPTY0); 2159
2160#if EV_CLEANUP_ENABLE
2161 assert (cleanupmax >= cleanupcnt);
2162 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2163#endif
2164
2165#if EV_ASYNC_ENABLE
2166 assert (asyncmax >= asynccnt);
2167 array_verify (EV_A_ (W *)asyncs, asynccnt);
2168#endif
2169
2170#if EV_PREPARE_ENABLE
2171 assert (preparemax >= preparecnt);
2172 array_verify (EV_A_ (W *)prepares, preparecnt);
2173#endif
2174
2175#if EV_CHECK_ENABLE
2176 assert (checkmax >= checkcnt);
2177 array_verify (EV_A_ (W *)checks, checkcnt);
2178#endif
2179
2180# if 0
2181#if EV_CHILD_ENABLE
2182 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2183 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2184#endif
860#endif 2185# endif
861 array_free (idle, EMPTY0);
862 array_free (prepare, EMPTY0);
863 array_free (check, EMPTY0);
864
865 method = 0;
866}
867
868static void
869loop_fork (EV_P)
870{
871#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A);
873#endif 2186#endif
874#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
876#endif
877#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
879#endif
880
881 if (ev_is_active (&sigev))
882 {
883 /* default loop */
884
885 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A);
894 }
895
896 postfork = 0;
897} 2187}
2188#endif
898 2189
899#if EV_MULTIPLICITY 2190#if EV_MULTIPLICITY
900struct ev_loop * 2191struct ev_loop * ecb_cold
901ev_loop_new (unsigned int flags)
902{
903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
904
905 memset (loop, 0, sizeof (struct ev_loop));
906
907 loop_init (EV_A_ flags);
908
909 if (ev_method (EV_A))
910 return loop;
911
912 return 0;
913}
914
915void
916ev_loop_destroy (EV_P)
917{
918 loop_destroy (EV_A);
919 ev_free (loop);
920}
921
922void
923ev_loop_fork (EV_P)
924{
925 postfork = 1;
926}
927
928#endif
929
930#if EV_MULTIPLICITY
931struct ev_loop *
932ev_default_loop_init (unsigned int flags)
933#else 2192#else
934int 2193int
2194#endif
935ev_default_loop (unsigned int flags) 2195ev_default_loop (unsigned int flags)
936#endif
937{ 2196{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 2197 if (!ev_default_loop_ptr)
943 { 2198 {
944#if EV_MULTIPLICITY 2199#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2200 EV_P = ev_default_loop_ptr = &default_loop_struct;
946#else 2201#else
947 ev_default_loop_ptr = 1; 2202 ev_default_loop_ptr = 1;
948#endif 2203#endif
949 2204
950 loop_init (EV_A_ flags); 2205 loop_init (EV_A_ flags);
951 2206
952 if (ev_method (EV_A)) 2207 if (ev_backend (EV_A))
953 { 2208 {
954 siginit (EV_A); 2209#if EV_CHILD_ENABLE
955
956#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 2210 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 2211 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 2212 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2213 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#endif 2214#endif
966 2219
967 return ev_default_loop_ptr; 2220 return ev_default_loop_ptr;
968} 2221}
969 2222
970void 2223void
971ev_default_destroy (void) 2224ev_loop_fork (EV_P)
972{ 2225{
973#if EV_MULTIPLICITY 2226 postfork = 1; /* must be in line with ev_default_fork */
974 struct ev_loop *loop = ev_default_loop_ptr;
975#endif
976
977#ifndef _WIN32
978 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev);
980#endif
981
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A);
989} 2227}
2228
2229/*****************************************************************************/
990 2230
991void 2231void
992ev_default_fork (void) 2232ev_invoke (EV_P_ void *w, int revents)
993{ 2233{
994#if EV_MULTIPLICITY 2234 EV_CB_INVOKE ((W)w, revents);
995 struct ev_loop *loop = ev_default_loop_ptr;
996#endif
997
998 if (method)
999 postfork = 1;
1000} 2235}
1001 2236
1002/*****************************************************************************/ 2237unsigned int
1003 2238ev_pending_count (EV_P)
1004static int
1005any_pending (EV_P)
1006{ 2239{
1007 int pri; 2240 int pri;
2241 unsigned int count = 0;
1008 2242
1009 for (pri = NUMPRI; pri--; ) 2243 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri]) 2244 count += pendingcnt [pri];
1011 return 1;
1012 2245
1013 return 0; 2246 return count;
1014} 2247}
1015 2248
1016inline void 2249void noinline
1017call_pending (EV_P) 2250ev_invoke_pending (EV_P)
1018{ 2251{
1019 int pri; 2252 int pri;
1020 2253
1021 for (pri = NUMPRI; pri--; ) 2254 for (pri = NUMPRI; pri--; )
1022 while (pendingcnt [pri]) 2255 while (pendingcnt [pri])
1023 { 2256 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2257 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 2258
1026 if (expect_true (p->w))
1027 {
1028 p->w->pending = 0; 2259 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 2260 EV_CB_INVOKE (p->w, p->events);
1030 } 2261 EV_FREQUENT_CHECK;
1031 } 2262 }
1032} 2263}
1033 2264
2265#if EV_IDLE_ENABLE
2266/* make idle watchers pending. this handles the "call-idle */
2267/* only when higher priorities are idle" logic */
1034inline void 2268inline_size void
2269idle_reify (EV_P)
2270{
2271 if (expect_false (idleall))
2272 {
2273 int pri;
2274
2275 for (pri = NUMPRI; pri--; )
2276 {
2277 if (pendingcnt [pri])
2278 break;
2279
2280 if (idlecnt [pri])
2281 {
2282 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2283 break;
2284 }
2285 }
2286 }
2287}
2288#endif
2289
2290/* make timers pending */
2291inline_size void
1035timers_reify (EV_P) 2292timers_reify (EV_P)
1036{ 2293{
2294 EV_FREQUENT_CHECK;
2295
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 2296 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 2297 {
1039 struct ev_timer *w = timers [0]; 2298 do
1040
1041 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1042
1043 /* first reschedule or stop timer */
1044 if (w->repeat)
1045 { 2299 {
2300 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2301
2302 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2303
2304 /* first reschedule or stop timer */
2305 if (w->repeat)
2306 {
2307 ev_at (w) += w->repeat;
2308 if (ev_at (w) < mn_now)
2309 ev_at (w) = mn_now;
2310
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2311 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 2312
1048 ((WT)w)->at += w->repeat; 2313 ANHE_at_cache (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 2314 downheap (timers, timercnt, HEAP0);
2315 }
2316 else
2317 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2318
2319 EV_FREQUENT_CHECK;
2320 feed_reverse (EV_A_ (W)w);
1053 } 2321 }
1054 else 2322 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 2323
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2324 feed_reverse_done (EV_A_ EV_TIMER);
2325 }
2326}
2327
2328#if EV_PERIODIC_ENABLE
2329
2330static void noinline
2331periodic_recalc (EV_P_ ev_periodic *w)
2332{
2333 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2334 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2335
2336 /* the above almost always errs on the low side */
2337 while (at <= ev_rt_now)
1058 } 2338 {
1059} 2339 ev_tstamp nat = at + w->interval;
1060 2340
1061#if EV_PERIODICS 2341 /* when resolution fails us, we use ev_rt_now */
2342 if (expect_false (nat == at))
2343 {
2344 at = ev_rt_now;
2345 break;
2346 }
2347
2348 at = nat;
2349 }
2350
2351 ev_at (w) = at;
2352}
2353
2354/* make periodics pending */
1062inline void 2355inline_size void
1063periodics_reify (EV_P) 2356periodics_reify (EV_P)
1064{ 2357{
2358 EV_FREQUENT_CHECK;
2359
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2360 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 2361 {
1067 struct ev_periodic *w = periodics [0]; 2362 int feed_count = 0;
1068 2363
2364 do
2365 {
2366 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2367
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2368 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 2369
1071 /* first reschedule or stop timer */ 2370 /* first reschedule or stop timer */
2371 if (w->reschedule_cb)
2372 {
2373 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2374
2375 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2376
2377 ANHE_at_cache (periodics [HEAP0]);
2378 downheap (periodics, periodiccnt, HEAP0);
2379 }
2380 else if (w->interval)
2381 {
2382 periodic_recalc (EV_A_ w);
2383 ANHE_at_cache (periodics [HEAP0]);
2384 downheap (periodics, periodiccnt, HEAP0);
2385 }
2386 else
2387 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2388
2389 EV_FREQUENT_CHECK;
2390 feed_reverse (EV_A_ (W)w);
2391 }
2392 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2393
2394 feed_reverse_done (EV_A_ EV_PERIODIC);
2395 }
2396}
2397
2398/* simply recalculate all periodics */
2399/* TODO: maybe ensure that at least one event happens when jumping forward? */
2400static void noinline ecb_cold
2401periodics_reschedule (EV_P)
2402{
2403 int i;
2404
2405 /* adjust periodics after time jump */
2406 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2407 {
2408 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2409
1072 if (w->reschedule_cb) 2410 if (w->reschedule_cb)
2411 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2412 else if (w->interval)
2413 periodic_recalc (EV_A_ w);
2414
2415 ANHE_at_cache (periodics [i]);
2416 }
2417
2418 reheap (periodics, periodiccnt);
2419}
2420#endif
2421
2422/* adjust all timers by a given offset */
2423static void noinline ecb_cold
2424timers_reschedule (EV_P_ ev_tstamp adjust)
2425{
2426 int i;
2427
2428 for (i = 0; i < timercnt; ++i)
2429 {
2430 ANHE *he = timers + i + HEAP0;
2431 ANHE_w (*he)->at += adjust;
2432 ANHE_at_cache (*he);
2433 }
2434}
2435
2436/* fetch new monotonic and realtime times from the kernel */
2437/* also detect if there was a timejump, and act accordingly */
2438inline_speed void
2439time_update (EV_P_ ev_tstamp max_block)
2440{
2441#if EV_USE_MONOTONIC
2442 if (expect_true (have_monotonic))
2443 {
2444 int i;
2445 ev_tstamp odiff = rtmn_diff;
2446
2447 mn_now = get_clock ();
2448
2449 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2450 /* interpolate in the meantime */
2451 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1073 { 2452 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2453 ev_rt_now = rtmn_diff + mn_now;
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2454 return;
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 } 2455 }
1078 else if (w->interval)
1079 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1082 downheap ((WT *)periodics, periodiccnt, 0);
1083 }
1084 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 2456
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 }
1089}
1090
1091static void
1092periodics_reschedule (EV_P)
1093{
1094 int i;
1095
1096 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i)
1098 {
1099 struct ev_periodic *w = periodics [i];
1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock ();
1117
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 {
1120 ev_rt_now = rtmn_diff + mn_now;
1121 return 0;
1122 }
1123 else
1124 {
1125 now_floor = mn_now; 2457 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 2458 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 2459
1131inline void 2460 /* loop a few times, before making important decisions.
1132time_update (EV_P) 2461 * on the choice of "4": one iteration isn't enough,
1133{ 2462 * in case we get preempted during the calls to
1134 int i; 2463 * ev_time and get_clock. a second call is almost guaranteed
1135 2464 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 2465 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 2466 * in the unlikely event of having been preempted here.
1138 { 2467 */
1139 if (time_update_monotonic (EV_A)) 2468 for (i = 4; --i; )
1140 { 2469 {
1141 ev_tstamp odiff = rtmn_diff; 2470 ev_tstamp diff;
1142
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1144 {
1145 rtmn_diff = ev_rt_now - mn_now; 2471 rtmn_diff = ev_rt_now - mn_now;
1146 2472
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2473 diff = odiff - rtmn_diff;
2474
2475 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1148 return; /* all is well */ 2476 return; /* all is well */
1149 2477
1150 ev_rt_now = ev_time (); 2478 ev_rt_now = ev_time ();
1151 mn_now = get_clock (); 2479 mn_now = get_clock ();
1152 now_floor = mn_now; 2480 now_floor = mn_now;
1153 } 2481 }
1154 2482
2483 /* no timer adjustment, as the monotonic clock doesn't jump */
2484 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1155# if EV_PERIODICS 2485# if EV_PERIODIC_ENABLE
2486 periodics_reschedule (EV_A);
2487# endif
2488 }
2489 else
2490#endif
2491 {
2492 ev_rt_now = ev_time ();
2493
2494 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2495 {
2496 /* adjust timers. this is easy, as the offset is the same for all of them */
2497 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2498#if EV_PERIODIC_ENABLE
1156 periodics_reschedule (EV_A); 2499 periodics_reschedule (EV_A);
1157# endif 2500#endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 2501 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 2502
1178 mn_now = ev_rt_now; 2503 mn_now = ev_rt_now;
1179 } 2504 }
1180} 2505}
1181 2506
1182void 2507void
1183ev_ref (EV_P)
1184{
1185 ++activecnt;
1186}
1187
1188void
1189ev_unref (EV_P)
1190{
1191 --activecnt;
1192}
1193
1194static int loop_done;
1195
1196void
1197ev_loop (EV_P_ int flags) 2508ev_run (EV_P_ int flags)
1198{ 2509{
1199 double block; 2510#if EV_FEATURE_API
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2511 ++loop_depth;
2512#endif
1201 2513
1202 while (activecnt) 2514 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2515
2516 loop_done = EVBREAK_CANCEL;
2517
2518 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2519
2520 do
1203 { 2521 {
2522#if EV_VERIFY >= 2
2523 ev_verify (EV_A);
2524#endif
2525
2526#ifndef _WIN32
2527 if (expect_false (curpid)) /* penalise the forking check even more */
2528 if (expect_false (getpid () != curpid))
2529 {
2530 curpid = getpid ();
2531 postfork = 1;
2532 }
2533#endif
2534
2535#if EV_FORK_ENABLE
2536 /* we might have forked, so queue fork handlers */
2537 if (expect_false (postfork))
2538 if (forkcnt)
2539 {
2540 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2541 EV_INVOKE_PENDING;
2542 }
2543#endif
2544
2545#if EV_PREPARE_ENABLE
1204 /* queue check watchers (and execute them) */ 2546 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 2547 if (expect_false (preparecnt))
1206 { 2548 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2549 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 2550 EV_INVOKE_PENDING;
1209 } 2551 }
2552#endif
2553
2554 if (expect_false (loop_done))
2555 break;
1210 2556
1211 /* we might have forked, so reify kernel state if necessary */ 2557 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 2558 if (expect_false (postfork))
1213 loop_fork (EV_A); 2559 loop_fork (EV_A);
1214 2560
1215 /* update fd-related kernel structures */ 2561 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 2562 fd_reify (EV_A);
1217 2563
1218 /* calculate blocking time */ 2564 /* calculate blocking time */
2565 {
2566 ev_tstamp waittime = 0.;
2567 ev_tstamp sleeptime = 0.;
1219 2568
1220 /* we only need this for !monotonic clock or timers, but as we basically 2569 /* remember old timestamp for io_blocktime calculation */
1221 always have timers, we just calculate it always */ 2570 ev_tstamp prev_mn_now = mn_now;
1222#if EV_USE_MONOTONIC 2571
1223 if (expect_true (have_monotonic)) 2572 /* update time to cancel out callback processing overhead */
1224 time_update_monotonic (EV_A); 2573 time_update (EV_A_ 1e100);
1225 else 2574
1226#endif 2575 /* from now on, we want a pipe-wake-up */
2576 pipe_write_wanted = 1;
2577
2578 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1227 { 2579 {
1228 ev_rt_now = ev_time ();
1229 mn_now = ev_rt_now;
1230 }
1231
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 2580 waittime = MAX_BLOCKTIME;
1237 2581
1238 if (timercnt) 2582 if (timercnt)
1239 { 2583 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2584 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1241 if (block > to) block = to; 2585 if (waittime > to) waittime = to;
1242 } 2586 }
1243 2587
1244#if EV_PERIODICS 2588#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 2589 if (periodiccnt)
1246 { 2590 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2591 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1248 if (block > to) block = to; 2592 if (waittime > to) waittime = to;
1249 } 2593 }
1250#endif 2594#endif
1251 2595
1252 if (expect_false (block < 0.)) block = 0.; 2596 /* don't let timeouts decrease the waittime below timeout_blocktime */
2597 if (expect_false (waittime < timeout_blocktime))
2598 waittime = timeout_blocktime;
2599
2600 /* at this point, we NEED to wait, so we have to ensure */
2601 /* to pass a minimum nonzero value to the backend */
2602 if (expect_false (waittime < backend_mintime))
2603 waittime = backend_mintime;
2604
2605 /* extra check because io_blocktime is commonly 0 */
2606 if (expect_false (io_blocktime))
2607 {
2608 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2609
2610 if (sleeptime > waittime - backend_mintime)
2611 sleeptime = waittime - backend_mintime;
2612
2613 if (expect_true (sleeptime > 0.))
2614 {
2615 ev_sleep (sleeptime);
2616 waittime -= sleeptime;
2617 }
2618 }
1253 } 2619 }
1254 2620
1255 method_poll (EV_A_ block); 2621#if EV_FEATURE_API
2622 ++loop_count;
2623#endif
2624 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2625 backend_poll (EV_A_ waittime);
2626 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1256 2627
2628 pipe_write_wanted = 0;
2629
2630 if (pipe_write_skipped)
2631 {
2632 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2633 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2634 }
2635
2636
1257 /* update ev_rt_now, do magic */ 2637 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 2638 time_update (EV_A_ waittime + sleeptime);
2639 }
1259 2640
1260 /* queue pending timers and reschedule them */ 2641 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 2642 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 2643#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 2644 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 2645#endif
1265 2646
2647#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 2648 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 2649 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2650#endif
1269 2651
2652#if EV_CHECK_ENABLE
1270 /* queue check watchers, to be executed first */ 2653 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 2654 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2655 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2656#endif
1273 2657
1274 call_pending (EV_A); 2658 EV_INVOKE_PENDING;
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 2659 }
2660 while (expect_true (
2661 activecnt
2662 && !loop_done
2663 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2664 ));
1279 2665
1280 if (loop_done != 2) 2666 if (loop_done == EVBREAK_ONE)
1281 loop_done = 0; 2667 loop_done = EVBREAK_CANCEL;
2668
2669#if EV_FEATURE_API
2670 --loop_depth;
2671#endif
1282} 2672}
1283 2673
1284void 2674void
1285ev_unloop (EV_P_ int how) 2675ev_break (EV_P_ int how)
1286{ 2676{
1287 loop_done = how; 2677 loop_done = how;
1288} 2678}
1289 2679
2680void
2681ev_ref (EV_P)
2682{
2683 ++activecnt;
2684}
2685
2686void
2687ev_unref (EV_P)
2688{
2689 --activecnt;
2690}
2691
2692void
2693ev_now_update (EV_P)
2694{
2695 time_update (EV_A_ 1e100);
2696}
2697
2698void
2699ev_suspend (EV_P)
2700{
2701 ev_now_update (EV_A);
2702}
2703
2704void
2705ev_resume (EV_P)
2706{
2707 ev_tstamp mn_prev = mn_now;
2708
2709 ev_now_update (EV_A);
2710 timers_reschedule (EV_A_ mn_now - mn_prev);
2711#if EV_PERIODIC_ENABLE
2712 /* TODO: really do this? */
2713 periodics_reschedule (EV_A);
2714#endif
2715}
2716
1290/*****************************************************************************/ 2717/*****************************************************************************/
2718/* singly-linked list management, used when the expected list length is short */
1291 2719
1292inline void 2720inline_size void
1293wlist_add (WL *head, WL elem) 2721wlist_add (WL *head, WL elem)
1294{ 2722{
1295 elem->next = *head; 2723 elem->next = *head;
1296 *head = elem; 2724 *head = elem;
1297} 2725}
1298 2726
1299inline void 2727inline_size void
1300wlist_del (WL *head, WL elem) 2728wlist_del (WL *head, WL elem)
1301{ 2729{
1302 while (*head) 2730 while (*head)
1303 { 2731 {
1304 if (*head == elem) 2732 if (expect_true (*head == elem))
1305 { 2733 {
1306 *head = elem->next; 2734 *head = elem->next;
1307 return; 2735 break;
1308 } 2736 }
1309 2737
1310 head = &(*head)->next; 2738 head = &(*head)->next;
1311 } 2739 }
1312} 2740}
1313 2741
2742/* internal, faster, version of ev_clear_pending */
1314inline void 2743inline_speed void
1315ev_clear_pending (EV_P_ W w) 2744clear_pending (EV_P_ W w)
1316{ 2745{
1317 if (w->pending) 2746 if (w->pending)
1318 { 2747 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2748 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1320 w->pending = 0; 2749 w->pending = 0;
1321 } 2750 }
1322} 2751}
1323 2752
2753int
2754ev_clear_pending (EV_P_ void *w)
2755{
2756 W w_ = (W)w;
2757 int pending = w_->pending;
2758
2759 if (expect_true (pending))
2760 {
2761 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2762 p->w = (W)&pending_w;
2763 w_->pending = 0;
2764 return p->events;
2765 }
2766 else
2767 return 0;
2768}
2769
1324inline void 2770inline_size void
2771pri_adjust (EV_P_ W w)
2772{
2773 int pri = ev_priority (w);
2774 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2775 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2776 ev_set_priority (w, pri);
2777}
2778
2779inline_speed void
1325ev_start (EV_P_ W w, int active) 2780ev_start (EV_P_ W w, int active)
1326{ 2781{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2782 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 2783 w->active = active;
1331 ev_ref (EV_A); 2784 ev_ref (EV_A);
1332} 2785}
1333 2786
1334inline void 2787inline_size void
1335ev_stop (EV_P_ W w) 2788ev_stop (EV_P_ W w)
1336{ 2789{
1337 ev_unref (EV_A); 2790 ev_unref (EV_A);
1338 w->active = 0; 2791 w->active = 0;
1339} 2792}
1340 2793
1341/*****************************************************************************/ 2794/*****************************************************************************/
1342 2795
1343void 2796void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 2797ev_io_start (EV_P_ ev_io *w)
1345{ 2798{
1346 int fd = w->fd; 2799 int fd = w->fd;
1347 2800
1348 if (expect_false (ev_is_active (w))) 2801 if (expect_false (ev_is_active (w)))
1349 return; 2802 return;
1350 2803
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 2804 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2805 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2806
2807 EV_FREQUENT_CHECK;
1352 2808
1353 ev_start (EV_A_ (W)w, 1); 2809 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2810 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2811 wlist_add (&anfds[fd].head, (WL)w);
1356 2812
1357 fd_change (EV_A_ fd); 2813 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1358} 2814 w->events &= ~EV__IOFDSET;
1359 2815
1360void 2816 EV_FREQUENT_CHECK;
2817}
2818
2819void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 2820ev_io_stop (EV_P_ ev_io *w)
1362{ 2821{
1363 ev_clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
1365 return; 2824 return;
1366 2825
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2826 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 2827
2828 EV_FREQUENT_CHECK;
2829
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2830 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 2831 ev_stop (EV_A_ (W)w);
1371 2832
1372 fd_change (EV_A_ w->fd); 2833 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1373}
1374 2834
1375void 2835 EV_FREQUENT_CHECK;
2836}
2837
2838void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 2839ev_timer_start (EV_P_ ev_timer *w)
1377{ 2840{
1378 if (expect_false (ev_is_active (w))) 2841 if (expect_false (ev_is_active (w)))
1379 return; 2842 return;
1380 2843
1381 ((WT)w)->at += mn_now; 2844 ev_at (w) += mn_now;
1382 2845
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2846 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 2847
2848 EV_FREQUENT_CHECK;
2849
2850 ++timercnt;
1385 ev_start (EV_A_ (W)w, ++timercnt); 2851 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2852 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 2853 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 2854 ANHE_at_cache (timers [ev_active (w)]);
2855 upheap (timers, ev_active (w));
1389 2856
2857 EV_FREQUENT_CHECK;
2858
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2859 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 2860}
1392 2861
1393void 2862void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 2863ev_timer_stop (EV_P_ ev_timer *w)
1395{ 2864{
1396 ev_clear_pending (EV_A_ (W)w); 2865 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 2866 if (expect_false (!ev_is_active (w)))
1398 return; 2867 return;
1399 2868
2869 EV_FREQUENT_CHECK;
2870
2871 {
2872 int active = ev_active (w);
2873
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2874 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 2875
2876 --timercnt;
2877
1402 if (expect_true (((W)w)->active < timercnt--)) 2878 if (expect_true (active < timercnt + HEAP0))
1403 { 2879 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 2880 timers [active] = timers [timercnt + HEAP0];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2881 adjustheap (timers, timercnt, active);
1406 } 2882 }
2883 }
1407 2884
1408 ((WT)w)->at -= mn_now; 2885 ev_at (w) -= mn_now;
1409 2886
1410 ev_stop (EV_A_ (W)w); 2887 ev_stop (EV_A_ (W)w);
1411}
1412 2888
1413void 2889 EV_FREQUENT_CHECK;
2890}
2891
2892void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 2893ev_timer_again (EV_P_ ev_timer *w)
1415{ 2894{
2895 EV_FREQUENT_CHECK;
2896
1416 if (ev_is_active (w)) 2897 if (ev_is_active (w))
1417 { 2898 {
1418 if (w->repeat) 2899 if (w->repeat)
1419 { 2900 {
1420 ((WT)w)->at = mn_now + w->repeat; 2901 ev_at (w) = mn_now + w->repeat;
2902 ANHE_at_cache (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2903 adjustheap (timers, timercnt, ev_active (w));
1422 } 2904 }
1423 else 2905 else
1424 ev_timer_stop (EV_A_ w); 2906 ev_timer_stop (EV_A_ w);
1425 } 2907 }
1426 else if (w->repeat) 2908 else if (w->repeat)
1427 { 2909 {
1428 w->at = w->repeat; 2910 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 2911 ev_timer_start (EV_A_ w);
1430 } 2912 }
1431}
1432 2913
2914 EV_FREQUENT_CHECK;
2915}
2916
2917ev_tstamp
2918ev_timer_remaining (EV_P_ ev_timer *w)
2919{
2920 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2921}
2922
1433#if EV_PERIODICS 2923#if EV_PERIODIC_ENABLE
1434void 2924void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 2925ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 2926{
1437 if (expect_false (ev_is_active (w))) 2927 if (expect_false (ev_is_active (w)))
1438 return; 2928 return;
1439 2929
1440 if (w->reschedule_cb) 2930 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 2932 else if (w->interval)
1443 { 2933 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2934 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 2935 periodic_recalc (EV_A_ w);
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1447 } 2936 }
2937 else
2938 ev_at (w) = w->offset;
1448 2939
2940 EV_FREQUENT_CHECK;
2941
2942 ++periodiccnt;
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 2943 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2944 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 2945 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 2946 ANHE_at_cache (periodics [ev_active (w)]);
2947 upheap (periodics, ev_active (w));
1453 2948
2949 EV_FREQUENT_CHECK;
2950
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2951 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 2952}
1456 2953
1457void 2954void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 2955ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 2956{
1460 ev_clear_pending (EV_A_ (W)w); 2957 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2958 if (expect_false (!ev_is_active (w)))
1462 return; 2959 return;
1463 2960
2961 EV_FREQUENT_CHECK;
2962
2963 {
2964 int active = ev_active (w);
2965
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2966 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 2967
2968 --periodiccnt;
2969
1466 if (expect_true (((W)w)->active < periodiccnt--)) 2970 if (expect_true (active < periodiccnt + HEAP0))
1467 { 2971 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2972 periodics [active] = periodics [periodiccnt + HEAP0];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2973 adjustheap (periodics, periodiccnt, active);
1470 } 2974 }
2975 }
1471 2976
1472 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
1473}
1474 2978
1475void 2979 EV_FREQUENT_CHECK;
2980}
2981
2982void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 2983ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 2984{
1478 /* TODO: use adjustheap and recalculation */ 2985 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 2986 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 2987 ev_periodic_start (EV_A_ w);
1481} 2988}
1482#endif 2989#endif
1483 2990
1484void 2991#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 2992# define SA_RESTART 0
2993#endif
2994
2995#if EV_SIGNAL_ENABLE
2996
2997void noinline
2998ev_signal_start (EV_P_ ev_signal *w)
1486{ 2999{
1487 if (expect_false (ev_is_active (w))) 3000 if (expect_false (ev_is_active (w)))
1488 return; 3001 return;
1489 3002
3003 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3004
3005#if EV_MULTIPLICITY
3006 assert (("libev: a signal must not be attached to two different loops",
3007 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3008
3009 signals [w->signum - 1].loop = EV_A;
3010#endif
3011
3012 EV_FREQUENT_CHECK;
3013
3014#if EV_USE_SIGNALFD
3015 if (sigfd == -2)
3016 {
3017 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3018 if (sigfd < 0 && errno == EINVAL)
3019 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3020
3021 if (sigfd >= 0)
3022 {
3023 fd_intern (sigfd); /* doing it twice will not hurt */
3024
3025 sigemptyset (&sigfd_set);
3026
3027 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3028 ev_set_priority (&sigfd_w, EV_MAXPRI);
3029 ev_io_start (EV_A_ &sigfd_w);
3030 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3031 }
3032 }
3033
3034 if (sigfd >= 0)
3035 {
3036 /* TODO: check .head */
3037 sigaddset (&sigfd_set, w->signum);
3038 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3039
3040 signalfd (sigfd, &sigfd_set, 0);
3041 }
3042#endif
3043
1490 ev_start (EV_A_ (W)w, ++idlecnt); 3044 ev_start (EV_A_ (W)w, 1);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3045 wlist_add (&signals [w->signum - 1].head, (WL)w);
1492 idles [idlecnt - 1] = w;
1493}
1494 3046
1495void 3047 if (!((WL)w)->next)
1496ev_idle_stop (EV_P_ struct ev_idle *w) 3048# if EV_USE_SIGNALFD
3049 if (sigfd < 0) /*TODO*/
3050# endif
3051 {
3052# ifdef _WIN32
3053 evpipe_init (EV_A);
3054
3055 signal (w->signum, ev_sighandler);
3056# else
3057 struct sigaction sa;
3058
3059 evpipe_init (EV_A);
3060
3061 sa.sa_handler = ev_sighandler;
3062 sigfillset (&sa.sa_mask);
3063 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3064 sigaction (w->signum, &sa, 0);
3065
3066 if (origflags & EVFLAG_NOSIGMASK)
3067 {
3068 sigemptyset (&sa.sa_mask);
3069 sigaddset (&sa.sa_mask, w->signum);
3070 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3071 }
3072#endif
3073 }
3074
3075 EV_FREQUENT_CHECK;
3076}
3077
3078void noinline
3079ev_signal_stop (EV_P_ ev_signal *w)
1497{ 3080{
1498 ev_clear_pending (EV_A_ (W)w); 3081 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 3082 if (expect_false (!ev_is_active (w)))
1500 return; 3083 return;
1501 3084
1502 idles [((W)w)->active - 1] = idles [--idlecnt]; 3085 EV_FREQUENT_CHECK;
3086
3087 wlist_del (&signals [w->signum - 1].head, (WL)w);
1503 ev_stop (EV_A_ (W)w); 3088 ev_stop (EV_A_ (W)w);
3089
3090 if (!signals [w->signum - 1].head)
3091 {
3092#if EV_MULTIPLICITY
3093 signals [w->signum - 1].loop = 0; /* unattach from signal */
3094#endif
3095#if EV_USE_SIGNALFD
3096 if (sigfd >= 0)
3097 {
3098 sigset_t ss;
3099
3100 sigemptyset (&ss);
3101 sigaddset (&ss, w->signum);
3102 sigdelset (&sigfd_set, w->signum);
3103
3104 signalfd (sigfd, &sigfd_set, 0);
3105 sigprocmask (SIG_UNBLOCK, &ss, 0);
3106 }
3107 else
3108#endif
3109 signal (w->signum, SIG_DFL);
3110 }
3111
3112 EV_FREQUENT_CHECK;
1504} 3113}
3114
3115#endif
3116
3117#if EV_CHILD_ENABLE
1505 3118
1506void 3119void
1507ev_prepare_start (EV_P_ struct ev_prepare *w) 3120ev_child_start (EV_P_ ev_child *w)
1508{ 3121{
3122#if EV_MULTIPLICITY
3123 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3124#endif
1509 if (expect_false (ev_is_active (w))) 3125 if (expect_false (ev_is_active (w)))
1510 return; 3126 return;
1511 3127
3128 EV_FREQUENT_CHECK;
3129
1512 ev_start (EV_A_ (W)w, ++preparecnt); 3130 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3131 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1514 prepares [preparecnt - 1] = w; 3132
3133 EV_FREQUENT_CHECK;
1515} 3134}
1516 3135
1517void 3136void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w) 3137ev_child_stop (EV_P_ ev_child *w)
1519{ 3138{
1520 ev_clear_pending (EV_A_ (W)w); 3139 clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w))) 3140 if (expect_false (!ev_is_active (w)))
1522 return; 3141 return;
1523 3142
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3143 EV_FREQUENT_CHECK;
3144
3145 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1525 ev_stop (EV_A_ (W)w); 3146 ev_stop (EV_A_ (W)w);
3147
3148 EV_FREQUENT_CHECK;
1526} 3149}
3150
3151#endif
3152
3153#if EV_STAT_ENABLE
3154
3155# ifdef _WIN32
3156# undef lstat
3157# define lstat(a,b) _stati64 (a,b)
3158# endif
3159
3160#define DEF_STAT_INTERVAL 5.0074891
3161#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3162#define MIN_STAT_INTERVAL 0.1074891
3163
3164static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3165
3166#if EV_USE_INOTIFY
3167
3168/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3169# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3170
3171static void noinline
3172infy_add (EV_P_ ev_stat *w)
3173{
3174 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3175
3176 if (w->wd >= 0)
3177 {
3178 struct statfs sfs;
3179
3180 /* now local changes will be tracked by inotify, but remote changes won't */
3181 /* unless the filesystem is known to be local, we therefore still poll */
3182 /* also do poll on <2.6.25, but with normal frequency */
3183
3184 if (!fs_2625)
3185 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3186 else if (!statfs (w->path, &sfs)
3187 && (sfs.f_type == 0x1373 /* devfs */
3188 || sfs.f_type == 0xEF53 /* ext2/3 */
3189 || sfs.f_type == 0x3153464a /* jfs */
3190 || sfs.f_type == 0x52654973 /* reiser3 */
3191 || sfs.f_type == 0x01021994 /* tempfs */
3192 || sfs.f_type == 0x58465342 /* xfs */))
3193 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3194 else
3195 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3196 }
3197 else
3198 {
3199 /* can't use inotify, continue to stat */
3200 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3201
3202 /* if path is not there, monitor some parent directory for speedup hints */
3203 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3204 /* but an efficiency issue only */
3205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3206 {
3207 char path [4096];
3208 strcpy (path, w->path);
3209
3210 do
3211 {
3212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3214
3215 char *pend = strrchr (path, '/');
3216
3217 if (!pend || pend == path)
3218 break;
3219
3220 *pend = 0;
3221 w->wd = inotify_add_watch (fs_fd, path, mask);
3222 }
3223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3224 }
3225 }
3226
3227 if (w->wd >= 0)
3228 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3229
3230 /* now re-arm timer, if required */
3231 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3232 ev_timer_again (EV_A_ &w->timer);
3233 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3234}
3235
3236static void noinline
3237infy_del (EV_P_ ev_stat *w)
3238{
3239 int slot;
3240 int wd = w->wd;
3241
3242 if (wd < 0)
3243 return;
3244
3245 w->wd = -2;
3246 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3247 wlist_del (&fs_hash [slot].head, (WL)w);
3248
3249 /* remove this watcher, if others are watching it, they will rearm */
3250 inotify_rm_watch (fs_fd, wd);
3251}
3252
3253static void noinline
3254infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3255{
3256 if (slot < 0)
3257 /* overflow, need to check for all hash slots */
3258 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3259 infy_wd (EV_A_ slot, wd, ev);
3260 else
3261 {
3262 WL w_;
3263
3264 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3265 {
3266 ev_stat *w = (ev_stat *)w_;
3267 w_ = w_->next; /* lets us remove this watcher and all before it */
3268
3269 if (w->wd == wd || wd == -1)
3270 {
3271 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3272 {
3273 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3274 w->wd = -1;
3275 infy_add (EV_A_ w); /* re-add, no matter what */
3276 }
3277
3278 stat_timer_cb (EV_A_ &w->timer, 0);
3279 }
3280 }
3281 }
3282}
3283
3284static void
3285infy_cb (EV_P_ ev_io *w, int revents)
3286{
3287 char buf [EV_INOTIFY_BUFSIZE];
3288 int ofs;
3289 int len = read (fs_fd, buf, sizeof (buf));
3290
3291 for (ofs = 0; ofs < len; )
3292 {
3293 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3294 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3295 ofs += sizeof (struct inotify_event) + ev->len;
3296 }
3297}
3298
3299inline_size void ecb_cold
3300ev_check_2625 (EV_P)
3301{
3302 /* kernels < 2.6.25 are borked
3303 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3304 */
3305 if (ev_linux_version () < 0x020619)
3306 return;
3307
3308 fs_2625 = 1;
3309}
3310
3311inline_size int
3312infy_newfd (void)
3313{
3314#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3315 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3316 if (fd >= 0)
3317 return fd;
3318#endif
3319 return inotify_init ();
3320}
3321
3322inline_size void
3323infy_init (EV_P)
3324{
3325 if (fs_fd != -2)
3326 return;
3327
3328 fs_fd = -1;
3329
3330 ev_check_2625 (EV_A);
3331
3332 fs_fd = infy_newfd ();
3333
3334 if (fs_fd >= 0)
3335 {
3336 fd_intern (fs_fd);
3337 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3338 ev_set_priority (&fs_w, EV_MAXPRI);
3339 ev_io_start (EV_A_ &fs_w);
3340 ev_unref (EV_A);
3341 }
3342}
3343
3344inline_size void
3345infy_fork (EV_P)
3346{
3347 int slot;
3348
3349 if (fs_fd < 0)
3350 return;
3351
3352 ev_ref (EV_A);
3353 ev_io_stop (EV_A_ &fs_w);
3354 close (fs_fd);
3355 fs_fd = infy_newfd ();
3356
3357 if (fs_fd >= 0)
3358 {
3359 fd_intern (fs_fd);
3360 ev_io_set (&fs_w, fs_fd, EV_READ);
3361 ev_io_start (EV_A_ &fs_w);
3362 ev_unref (EV_A);
3363 }
3364
3365 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3366 {
3367 WL w_ = fs_hash [slot].head;
3368 fs_hash [slot].head = 0;
3369
3370 while (w_)
3371 {
3372 ev_stat *w = (ev_stat *)w_;
3373 w_ = w_->next; /* lets us add this watcher */
3374
3375 w->wd = -1;
3376
3377 if (fs_fd >= 0)
3378 infy_add (EV_A_ w); /* re-add, no matter what */
3379 else
3380 {
3381 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3382 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3383 ev_timer_again (EV_A_ &w->timer);
3384 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3385 }
3386 }
3387 }
3388}
3389
3390#endif
3391
3392#ifdef _WIN32
3393# define EV_LSTAT(p,b) _stati64 (p, b)
3394#else
3395# define EV_LSTAT(p,b) lstat (p, b)
3396#endif
1527 3397
1528void 3398void
1529ev_check_start (EV_P_ struct ev_check *w) 3399ev_stat_stat (EV_P_ ev_stat *w)
3400{
3401 if (lstat (w->path, &w->attr) < 0)
3402 w->attr.st_nlink = 0;
3403 else if (!w->attr.st_nlink)
3404 w->attr.st_nlink = 1;
3405}
3406
3407static void noinline
3408stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3409{
3410 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3411
3412 ev_statdata prev = w->attr;
3413 ev_stat_stat (EV_A_ w);
3414
3415 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3416 if (
3417 prev.st_dev != w->attr.st_dev
3418 || prev.st_ino != w->attr.st_ino
3419 || prev.st_mode != w->attr.st_mode
3420 || prev.st_nlink != w->attr.st_nlink
3421 || prev.st_uid != w->attr.st_uid
3422 || prev.st_gid != w->attr.st_gid
3423 || prev.st_rdev != w->attr.st_rdev
3424 || prev.st_size != w->attr.st_size
3425 || prev.st_atime != w->attr.st_atime
3426 || prev.st_mtime != w->attr.st_mtime
3427 || prev.st_ctime != w->attr.st_ctime
3428 ) {
3429 /* we only update w->prev on actual differences */
3430 /* in case we test more often than invoke the callback, */
3431 /* to ensure that prev is always different to attr */
3432 w->prev = prev;
3433
3434 #if EV_USE_INOTIFY
3435 if (fs_fd >= 0)
3436 {
3437 infy_del (EV_A_ w);
3438 infy_add (EV_A_ w);
3439 ev_stat_stat (EV_A_ w); /* avoid race... */
3440 }
3441 #endif
3442
3443 ev_feed_event (EV_A_ w, EV_STAT);
3444 }
3445}
3446
3447void
3448ev_stat_start (EV_P_ ev_stat *w)
1530{ 3449{
1531 if (expect_false (ev_is_active (w))) 3450 if (expect_false (ev_is_active (w)))
1532 return; 3451 return;
1533 3452
3453 ev_stat_stat (EV_A_ w);
3454
3455 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3456 w->interval = MIN_STAT_INTERVAL;
3457
3458 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3459 ev_set_priority (&w->timer, ev_priority (w));
3460
3461#if EV_USE_INOTIFY
3462 infy_init (EV_A);
3463
3464 if (fs_fd >= 0)
3465 infy_add (EV_A_ w);
3466 else
3467#endif
3468 {
3469 ev_timer_again (EV_A_ &w->timer);
3470 ev_unref (EV_A);
3471 }
3472
1534 ev_start (EV_A_ (W)w, ++checkcnt); 3473 ev_start (EV_A_ (W)w, 1);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3474
1536 checks [checkcnt - 1] = w; 3475 EV_FREQUENT_CHECK;
1537} 3476}
1538 3477
1539void 3478void
1540ev_check_stop (EV_P_ struct ev_check *w) 3479ev_stat_stop (EV_P_ ev_stat *w)
1541{ 3480{
1542 ev_clear_pending (EV_A_ (W)w); 3481 clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w))) 3482 if (expect_false (!ev_is_active (w)))
1544 return; 3483 return;
1545 3484
1546 checks [((W)w)->active - 1] = checks [--checkcnt]; 3485 EV_FREQUENT_CHECK;
3486
3487#if EV_USE_INOTIFY
3488 infy_del (EV_A_ w);
3489#endif
3490
3491 if (ev_is_active (&w->timer))
3492 {
3493 ev_ref (EV_A);
3494 ev_timer_stop (EV_A_ &w->timer);
3495 }
3496
1547 ev_stop (EV_A_ (W)w); 3497 ev_stop (EV_A_ (W)w);
1548}
1549 3498
1550#ifndef SA_RESTART 3499 EV_FREQUENT_CHECK;
1551# define SA_RESTART 0 3500}
1552#endif 3501#endif
1553 3502
3503#if EV_IDLE_ENABLE
1554void 3504void
1555ev_signal_start (EV_P_ struct ev_signal *w) 3505ev_idle_start (EV_P_ ev_idle *w)
1556{ 3506{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w))) 3507 if (expect_false (ev_is_active (w)))
1561 return; 3508 return;
1562 3509
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3510 pri_adjust (EV_A_ (W)w);
1564 3511
3512 EV_FREQUENT_CHECK;
3513
3514 {
3515 int active = ++idlecnt [ABSPRI (w)];
3516
3517 ++idleall;
1565 ev_start (EV_A_ (W)w, 1); 3518 ev_start (EV_A_ (W)w, active);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1568 3519
1569 if (!((WL)w)->next) 3520 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1570 { 3521 idles [ABSPRI (w)][active - 1] = w;
1571#if _WIN32
1572 signal (w->signum, sighandler);
1573#else
1574 struct sigaction sa;
1575 sa.sa_handler = sighandler;
1576 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0);
1579#endif
1580 } 3522 }
3523
3524 EV_FREQUENT_CHECK;
1581} 3525}
1582 3526
1583void 3527void
1584ev_signal_stop (EV_P_ struct ev_signal *w) 3528ev_idle_stop (EV_P_ ev_idle *w)
1585{ 3529{
1586 ev_clear_pending (EV_A_ (W)w); 3530 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 3531 if (expect_false (!ev_is_active (w)))
1588 return; 3532 return;
1589 3533
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3534 EV_FREQUENT_CHECK;
3535
3536 {
3537 int active = ev_active (w);
3538
3539 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3540 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3541
1591 ev_stop (EV_A_ (W)w); 3542 ev_stop (EV_A_ (W)w);
3543 --idleall;
3544 }
1592 3545
1593 if (!signals [w->signum - 1].head) 3546 EV_FREQUENT_CHECK;
1594 signal (w->signum, SIG_DFL);
1595} 3547}
3548#endif
1596 3549
3550#if EV_PREPARE_ENABLE
1597void 3551void
1598ev_child_start (EV_P_ struct ev_child *w) 3552ev_prepare_start (EV_P_ ev_prepare *w)
1599{ 3553{
1600#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif
1603 if (expect_false (ev_is_active (w))) 3554 if (expect_false (ev_is_active (w)))
1604 return; 3555 return;
1605 3556
3557 EV_FREQUENT_CHECK;
3558
1606 ev_start (EV_A_ (W)w, 1); 3559 ev_start (EV_A_ (W)w, ++preparecnt);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3560 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3561 prepares [preparecnt - 1] = w;
3562
3563 EV_FREQUENT_CHECK;
1608} 3564}
1609 3565
1610void 3566void
1611ev_child_stop (EV_P_ struct ev_child *w) 3567ev_prepare_stop (EV_P_ ev_prepare *w)
1612{ 3568{
1613 ev_clear_pending (EV_A_ (W)w); 3569 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 3570 if (expect_false (!ev_is_active (w)))
1615 return; 3571 return;
1616 3572
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3573 EV_FREQUENT_CHECK;
3574
3575 {
3576 int active = ev_active (w);
3577
3578 prepares [active - 1] = prepares [--preparecnt];
3579 ev_active (prepares [active - 1]) = active;
3580 }
3581
1618 ev_stop (EV_A_ (W)w); 3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
1619} 3585}
3586#endif
3587
3588#if EV_CHECK_ENABLE
3589void
3590ev_check_start (EV_P_ ev_check *w)
3591{
3592 if (expect_false (ev_is_active (w)))
3593 return;
3594
3595 EV_FREQUENT_CHECK;
3596
3597 ev_start (EV_A_ (W)w, ++checkcnt);
3598 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3599 checks [checkcnt - 1] = w;
3600
3601 EV_FREQUENT_CHECK;
3602}
3603
3604void
3605ev_check_stop (EV_P_ ev_check *w)
3606{
3607 clear_pending (EV_A_ (W)w);
3608 if (expect_false (!ev_is_active (w)))
3609 return;
3610
3611 EV_FREQUENT_CHECK;
3612
3613 {
3614 int active = ev_active (w);
3615
3616 checks [active - 1] = checks [--checkcnt];
3617 ev_active (checks [active - 1]) = active;
3618 }
3619
3620 ev_stop (EV_A_ (W)w);
3621
3622 EV_FREQUENT_CHECK;
3623}
3624#endif
3625
3626#if EV_EMBED_ENABLE
3627void noinline
3628ev_embed_sweep (EV_P_ ev_embed *w)
3629{
3630 ev_run (w->other, EVRUN_NOWAIT);
3631}
3632
3633static void
3634embed_io_cb (EV_P_ ev_io *io, int revents)
3635{
3636 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3637
3638 if (ev_cb (w))
3639 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3640 else
3641 ev_run (w->other, EVRUN_NOWAIT);
3642}
3643
3644static void
3645embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3646{
3647 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3648
3649 {
3650 EV_P = w->other;
3651
3652 while (fdchangecnt)
3653 {
3654 fd_reify (EV_A);
3655 ev_run (EV_A_ EVRUN_NOWAIT);
3656 }
3657 }
3658}
3659
3660static void
3661embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3662{
3663 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3664
3665 ev_embed_stop (EV_A_ w);
3666
3667 {
3668 EV_P = w->other;
3669
3670 ev_loop_fork (EV_A);
3671 ev_run (EV_A_ EVRUN_NOWAIT);
3672 }
3673
3674 ev_embed_start (EV_A_ w);
3675}
3676
3677#if 0
3678static void
3679embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3680{
3681 ev_idle_stop (EV_A_ idle);
3682}
3683#endif
3684
3685void
3686ev_embed_start (EV_P_ ev_embed *w)
3687{
3688 if (expect_false (ev_is_active (w)))
3689 return;
3690
3691 {
3692 EV_P = w->other;
3693 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3694 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3695 }
3696
3697 EV_FREQUENT_CHECK;
3698
3699 ev_set_priority (&w->io, ev_priority (w));
3700 ev_io_start (EV_A_ &w->io);
3701
3702 ev_prepare_init (&w->prepare, embed_prepare_cb);
3703 ev_set_priority (&w->prepare, EV_MINPRI);
3704 ev_prepare_start (EV_A_ &w->prepare);
3705
3706 ev_fork_init (&w->fork, embed_fork_cb);
3707 ev_fork_start (EV_A_ &w->fork);
3708
3709 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3710
3711 ev_start (EV_A_ (W)w, 1);
3712
3713 EV_FREQUENT_CHECK;
3714}
3715
3716void
3717ev_embed_stop (EV_P_ ev_embed *w)
3718{
3719 clear_pending (EV_A_ (W)w);
3720 if (expect_false (!ev_is_active (w)))
3721 return;
3722
3723 EV_FREQUENT_CHECK;
3724
3725 ev_io_stop (EV_A_ &w->io);
3726 ev_prepare_stop (EV_A_ &w->prepare);
3727 ev_fork_stop (EV_A_ &w->fork);
3728
3729 ev_stop (EV_A_ (W)w);
3730
3731 EV_FREQUENT_CHECK;
3732}
3733#endif
3734
3735#if EV_FORK_ENABLE
3736void
3737ev_fork_start (EV_P_ ev_fork *w)
3738{
3739 if (expect_false (ev_is_active (w)))
3740 return;
3741
3742 EV_FREQUENT_CHECK;
3743
3744 ev_start (EV_A_ (W)w, ++forkcnt);
3745 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3746 forks [forkcnt - 1] = w;
3747
3748 EV_FREQUENT_CHECK;
3749}
3750
3751void
3752ev_fork_stop (EV_P_ ev_fork *w)
3753{
3754 clear_pending (EV_A_ (W)w);
3755 if (expect_false (!ev_is_active (w)))
3756 return;
3757
3758 EV_FREQUENT_CHECK;
3759
3760 {
3761 int active = ev_active (w);
3762
3763 forks [active - 1] = forks [--forkcnt];
3764 ev_active (forks [active - 1]) = active;
3765 }
3766
3767 ev_stop (EV_A_ (W)w);
3768
3769 EV_FREQUENT_CHECK;
3770}
3771#endif
3772
3773#if EV_CLEANUP_ENABLE
3774void
3775ev_cleanup_start (EV_P_ ev_cleanup *w)
3776{
3777 if (expect_false (ev_is_active (w)))
3778 return;
3779
3780 EV_FREQUENT_CHECK;
3781
3782 ev_start (EV_A_ (W)w, ++cleanupcnt);
3783 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3784 cleanups [cleanupcnt - 1] = w;
3785
3786 /* cleanup watchers should never keep a refcount on the loop */
3787 ev_unref (EV_A);
3788 EV_FREQUENT_CHECK;
3789}
3790
3791void
3792ev_cleanup_stop (EV_P_ ev_cleanup *w)
3793{
3794 clear_pending (EV_A_ (W)w);
3795 if (expect_false (!ev_is_active (w)))
3796 return;
3797
3798 EV_FREQUENT_CHECK;
3799 ev_ref (EV_A);
3800
3801 {
3802 int active = ev_active (w);
3803
3804 cleanups [active - 1] = cleanups [--cleanupcnt];
3805 ev_active (cleanups [active - 1]) = active;
3806 }
3807
3808 ev_stop (EV_A_ (W)w);
3809
3810 EV_FREQUENT_CHECK;
3811}
3812#endif
3813
3814#if EV_ASYNC_ENABLE
3815void
3816ev_async_start (EV_P_ ev_async *w)
3817{
3818 if (expect_false (ev_is_active (w)))
3819 return;
3820
3821 w->sent = 0;
3822
3823 evpipe_init (EV_A);
3824
3825 EV_FREQUENT_CHECK;
3826
3827 ev_start (EV_A_ (W)w, ++asynccnt);
3828 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3829 asyncs [asynccnt - 1] = w;
3830
3831 EV_FREQUENT_CHECK;
3832}
3833
3834void
3835ev_async_stop (EV_P_ ev_async *w)
3836{
3837 clear_pending (EV_A_ (W)w);
3838 if (expect_false (!ev_is_active (w)))
3839 return;
3840
3841 EV_FREQUENT_CHECK;
3842
3843 {
3844 int active = ev_active (w);
3845
3846 asyncs [active - 1] = asyncs [--asynccnt];
3847 ev_active (asyncs [active - 1]) = active;
3848 }
3849
3850 ev_stop (EV_A_ (W)w);
3851
3852 EV_FREQUENT_CHECK;
3853}
3854
3855void
3856ev_async_send (EV_P_ ev_async *w)
3857{
3858 w->sent = 1;
3859 evpipe_write (EV_A_ &async_pending);
3860}
3861#endif
1620 3862
1621/*****************************************************************************/ 3863/*****************************************************************************/
1622 3864
1623struct ev_once 3865struct ev_once
1624{ 3866{
1625 struct ev_io io; 3867 ev_io io;
1626 struct ev_timer to; 3868 ev_timer to;
1627 void (*cb)(int revents, void *arg); 3869 void (*cb)(int revents, void *arg);
1628 void *arg; 3870 void *arg;
1629}; 3871};
1630 3872
1631static void 3873static void
1632once_cb (EV_P_ struct ev_once *once, int revents) 3874once_cb (EV_P_ struct ev_once *once, int revents)
1633{ 3875{
1634 void (*cb)(int revents, void *arg) = once->cb; 3876 void (*cb)(int revents, void *arg) = once->cb;
1635 void *arg = once->arg; 3877 void *arg = once->arg;
1636 3878
1637 ev_io_stop (EV_A_ &once->io); 3879 ev_io_stop (EV_A_ &once->io);
1638 ev_timer_stop (EV_A_ &once->to); 3880 ev_timer_stop (EV_A_ &once->to);
1639 ev_free (once); 3881 ev_free (once);
1640 3882
1641 cb (revents, arg); 3883 cb (revents, arg);
1642} 3884}
1643 3885
1644static void 3886static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 3887once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 3888{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3889 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3890
3891 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1648} 3892}
1649 3893
1650static void 3894static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 3895once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 3896{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3897 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3898
3899 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1654} 3900}
1655 3901
1656void 3902void
1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3903ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1658{ 3904{
1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3905 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1660 3906
1661 if (expect_false (!once)) 3907 if (expect_false (!once))
1662 { 3908 {
1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3909 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1664 return; 3910 return;
1665 } 3911 }
1666 3912
1667 once->cb = cb; 3913 once->cb = cb;
1668 once->arg = arg; 3914 once->arg = arg;
1680 ev_timer_set (&once->to, timeout, 0.); 3926 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 3927 ev_timer_start (EV_A_ &once->to);
1682 } 3928 }
1683} 3929}
1684 3930
1685#ifdef __cplusplus 3931/*****************************************************************************/
1686} 3932
3933#if EV_WALK_ENABLE
3934void ecb_cold
3935ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3936{
3937 int i, j;
3938 ev_watcher_list *wl, *wn;
3939
3940 if (types & (EV_IO | EV_EMBED))
3941 for (i = 0; i < anfdmax; ++i)
3942 for (wl = anfds [i].head; wl; )
3943 {
3944 wn = wl->next;
3945
3946#if EV_EMBED_ENABLE
3947 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3948 {
3949 if (types & EV_EMBED)
3950 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3951 }
3952 else
3953#endif
3954#if EV_USE_INOTIFY
3955 if (ev_cb ((ev_io *)wl) == infy_cb)
3956 ;
3957 else
3958#endif
3959 if ((ev_io *)wl != &pipe_w)
3960 if (types & EV_IO)
3961 cb (EV_A_ EV_IO, wl);
3962
3963 wl = wn;
3964 }
3965
3966 if (types & (EV_TIMER | EV_STAT))
3967 for (i = timercnt + HEAP0; i-- > HEAP0; )
3968#if EV_STAT_ENABLE
3969 /*TODO: timer is not always active*/
3970 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3971 {
3972 if (types & EV_STAT)
3973 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3974 }
3975 else
3976#endif
3977 if (types & EV_TIMER)
3978 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3979
3980#if EV_PERIODIC_ENABLE
3981 if (types & EV_PERIODIC)
3982 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3983 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3984#endif
3985
3986#if EV_IDLE_ENABLE
3987 if (types & EV_IDLE)
3988 for (j = NUMPRI; i--; )
3989 for (i = idlecnt [j]; i--; )
3990 cb (EV_A_ EV_IDLE, idles [j][i]);
3991#endif
3992
3993#if EV_FORK_ENABLE
3994 if (types & EV_FORK)
3995 for (i = forkcnt; i--; )
3996 if (ev_cb (forks [i]) != embed_fork_cb)
3997 cb (EV_A_ EV_FORK, forks [i]);
3998#endif
3999
4000#if EV_ASYNC_ENABLE
4001 if (types & EV_ASYNC)
4002 for (i = asynccnt; i--; )
4003 cb (EV_A_ EV_ASYNC, asyncs [i]);
4004#endif
4005
4006#if EV_PREPARE_ENABLE
4007 if (types & EV_PREPARE)
4008 for (i = preparecnt; i--; )
4009# if EV_EMBED_ENABLE
4010 if (ev_cb (prepares [i]) != embed_prepare_cb)
1687#endif 4011# endif
4012 cb (EV_A_ EV_PREPARE, prepares [i]);
4013#endif
1688 4014
4015#if EV_CHECK_ENABLE
4016 if (types & EV_CHECK)
4017 for (i = checkcnt; i--; )
4018 cb (EV_A_ EV_CHECK, checks [i]);
4019#endif
4020
4021#if EV_SIGNAL_ENABLE
4022 if (types & EV_SIGNAL)
4023 for (i = 0; i < EV_NSIG - 1; ++i)
4024 for (wl = signals [i].head; wl; )
4025 {
4026 wn = wl->next;
4027 cb (EV_A_ EV_SIGNAL, wl);
4028 wl = wn;
4029 }
4030#endif
4031
4032#if EV_CHILD_ENABLE
4033 if (types & EV_CHILD)
4034 for (i = (EV_PID_HASHSIZE); i--; )
4035 for (wl = childs [i]; wl; )
4036 {
4037 wn = wl->next;
4038 cb (EV_A_ EV_CHILD, wl);
4039 wl = wn;
4040 }
4041#endif
4042/* EV_STAT 0x00001000 /* stat data changed */
4043/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4044}
4045#endif
4046
4047#if EV_MULTIPLICITY
4048 #include "ev_wrap.h"
4049#endif
4050
4051EV_CPP(})
4052

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines