ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.384 by root, Wed Jul 20 00:58:45 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
57# else 88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
58# define EV_USE_SELECT 0 99# define EV_USE_SELECT 0
59# endif 100# endif
60 101
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 102# if HAVE_POLL && HAVE_POLL_H
62# define EV_USE_POLL 1 103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
63# else 106# else
107# undef EV_USE_POLL
64# define EV_USE_POLL 0 108# define EV_USE_POLL 0
65# endif 109# endif
66 110
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
68# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
69# else 115# else
116# undef EV_USE_EPOLL
70# define EV_USE_EPOLL 0 117# define EV_USE_EPOLL 0
71# endif 118# endif
72 119
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
74# define EV_USE_KQUEUE 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
75# else 124# else
125# undef EV_USE_KQUEUE
76# define EV_USE_KQUEUE 0 126# define EV_USE_KQUEUE 0
77# endif 127# endif
78 128
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 129# if HAVE_PORT_H && HAVE_PORT_CREATE
80# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
81# else 133# else
134# undef EV_USE_PORT
82# define EV_USE_PORT 0 135# define EV_USE_PORT 0
83# endif 136# endif
84 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
85#endif 145# endif
86 146
87#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
88#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
89#include <fcntl.h> 169#include <fcntl.h>
90#include <stddef.h> 170#include <stddef.h>
91 171
92#include <stdio.h> 172#include <stdio.h>
93 173
94#include <assert.h> 174#include <assert.h>
95#include <errno.h> 175#include <errno.h>
96#include <sys/types.h> 176#include <sys/types.h>
97#include <time.h> 177#include <time.h>
178#include <limits.h>
98 179
99#include <signal.h> 180#include <signal.h>
100 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
101#ifndef _WIN32 190#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 191# include <sys/time.h>
104# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
105#else 194#else
195# include <io.h>
106# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 197# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
110# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
111#endif 251# endif
112 252#endif
113/**/
114 253
115#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
116# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
117#endif 260#endif
118 261
119#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
121#endif 272#endif
122 273
123#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
125#endif 276#endif
126 277
127#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
128# ifdef _WIN32 279# ifdef _WIN32
129# define EV_USE_POLL 0 280# define EV_USE_POLL 0
130# else 281# else
131# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
132# endif 283# endif
133#endif 284#endif
134 285
135#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
136# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
137#endif 292#endif
138 293
139#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
141#endif 296#endif
142 297
143#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 299# define EV_USE_PORT 0
145#endif 300#endif
146 301
147/**/ 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
148 309
149/* darwin simply cannot be helped */ 310#ifndef EV_PID_HASHSIZE
150#ifdef __APPLE__ 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
151# undef EV_USE_POLL 370# undef EV_USE_POLL
152# undef EV_USE_KQUEUE 371# define EV_USE_POLL 0
153#endif 372#endif
154 373
155#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
160#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
163#endif 382#endif
164 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
165#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 407# include <winsock.h>
167#endif 408#endif
168 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
169/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
170 462
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
175 465
176#ifdef EV_H 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
177# include EV_H 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following are taken from libecb */
470/* ecb.h start */
471
472/* many compilers define _GNUC_ to some versions but then only implement
473 * what their idiot authors think are the "more important" extensions,
474 * causing enourmous grief in return for some better fake benchmark numbers.
475 * or so.
476 * we try to detect these and simply assume they are not gcc - if they have
477 * an issue with that they should have done it right in the first place.
478 */
479#ifndef ECB_GCC_VERSION
480 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481 #define ECB_GCC_VERSION(major,minor) 0
482 #else
483 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
484 #endif
485#endif
486
487#if __cplusplus
488 #define ecb_inline static inline
489#elif ECB_GCC_VERSION(2,5)
490 #define ecb_inline static __inline__
491#elif ECB_C99
492 #define ecb_inline static inline
178#else 493#else
179# include "ev.h" 494 #define ecb_inline static
495#endif
496
497#ifndef ECB_MEMORY_FENCE
498 #if ECB_GCC_VERSION(2,5)
499 #if __x86
500 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
501 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
502 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE /* better be safe than sorry */
503 #elif __amd64
504 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
505 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
506 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence")
507 #endif
180#endif 508 #endif
509#endif
181 510
182#if __GNUC__ >= 3 511#ifndef ECB_MEMORY_FENCE
512 #if ECB_GCC_VERSION(4,4)
513 #define ECB_MEMORY_FENCE __sync_synchronize ()
514 #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
515 #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); })
516 #elif _MSC_VER >= 1400
517 #define ECB_MEMORY_FENCE do { } while (0)
518 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
519 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
520 #elif defined(_WIN32) && defined(MemoryBarrier)
521 #define ECB_MEMORY_FENCE MemoryBarrier ()
522 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
523 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
524 #endif
525#endif
526
527#ifndef ECB_MEMORY_FENCE
528 #include <pthread.h>
529
530 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
531 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
532 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
533 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
534#endif
535
536#if ECB_GCC_VERSION(3,1)
537 #define ecb_attribute(attrlist) __attribute__(attrlist)
538 #define ecb_is_constant(expr) __builtin_constant_p (expr)
183# define expect(expr,value) __builtin_expect ((expr),(value)) 539 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
184# define inline static inline 540 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
185#else 541#else
542 #define ecb_attribute(attrlist)
543 #define ecb_is_constant(expr) 0
186# define expect(expr,value) (expr) 544 #define ecb_expect(expr,value) (expr)
187# define inline static 545 #define ecb_prefetch(addr,rw,locality)
188#endif 546#endif
189 547
548#define ecb_noinline ecb_attribute ((__noinline__))
549#define ecb_noreturn ecb_attribute ((__noreturn__))
550#define ecb_unused ecb_attribute ((__unused__))
551#define ecb_const ecb_attribute ((__const__))
552#define ecb_pure ecb_attribute ((__pure__))
553
554#if ECB_GCC_VERSION(4,3)
555 #define ecb_artificial ecb_attribute ((__artificial__))
556 #define ecb_hot ecb_attribute ((__hot__))
557 #define ecb_cold ecb_attribute ((__cold__))
558#else
559 #define ecb_artificial
560 #define ecb_hot
561 #define ecb_cold
562#endif
563
564/* put around conditional expressions if you are very sure that the */
565/* expression is mostly true or mostly false. note that these return */
566/* booleans, not the expression. */
190#define expect_false(expr) expect ((expr) != 0, 0) 567#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 568#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
569/* ecb.h end */
192 570
571#define expect_false(cond) ecb_expect_false (cond)
572#define expect_true(cond) ecb_expect_true (cond)
573#define noinline ecb_noinline
574
575#define inline_size ecb_inline
576
577#if EV_FEATURE_CODE
578# define inline_speed ecb_inline
579#else
580# define inline_speed static noinline
581#endif
582
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 583#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
584
585#if EV_MINPRI == EV_MAXPRI
586# define ABSPRI(w) (((W)w), 0)
587#else
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 588# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
589#endif
195 590
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 591#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 592#define EMPTY2(a,b) /* used to suppress some warnings */
198 593
199typedef struct ev_watcher *W; 594typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 595typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 596typedef ev_watcher_time *WT;
202 597
598#define ev_active(w) ((W)(w))->active
599#define ev_at(w) ((WT)(w))->at
600
601#if EV_USE_REALTIME
602/* sig_atomic_t is used to avoid per-thread variables or locking but still */
603/* giving it a reasonably high chance of working on typical architectures */
604static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
605#endif
606
607#if EV_USE_MONOTONIC
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 608static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
609#endif
610
611#ifndef EV_FD_TO_WIN32_HANDLE
612# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
613#endif
614#ifndef EV_WIN32_HANDLE_TO_FD
615# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
616#endif
617#ifndef EV_WIN32_CLOSE_FD
618# define EV_WIN32_CLOSE_FD(fd) close (fd)
619#endif
204 620
205#ifdef _WIN32 621#ifdef _WIN32
206# include "ev_win32.c" 622# include "ev_win32.c"
207#endif 623#endif
208 624
209/*****************************************************************************/ 625/*****************************************************************************/
210 626
627/* define a suitable floor function (only used by periodics atm) */
628
629#if EV_USE_FLOOR
630# include <math.h>
631# define ev_floor(v) floor (v)
632#else
633
634#include <float.h>
635
636/* a floor() replacement function, should be independent of ev_tstamp type */
637static ev_tstamp noinline
638ev_floor (ev_tstamp v)
639{
640 /* the choice of shift factor is not terribly important */
641#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
642 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
643#else
644 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
645#endif
646
647 /* argument too large for an unsigned long? */
648 if (expect_false (v >= shift))
649 {
650 ev_tstamp f;
651
652 if (v == v - 1.)
653 return v; /* very large number */
654
655 f = shift * ev_floor (v * (1. / shift));
656 return f + ev_floor (v - f);
657 }
658
659 /* special treatment for negative args? */
660 if (expect_false (v < 0.))
661 {
662 ev_tstamp f = -ev_floor (-v);
663
664 return f - (f == v ? 0 : 1);
665 }
666
667 /* fits into an unsigned long */
668 return (unsigned long)v;
669}
670
671#endif
672
673/*****************************************************************************/
674
675#ifdef __linux
676# include <sys/utsname.h>
677#endif
678
679static unsigned int noinline ecb_cold
680ev_linux_version (void)
681{
682#ifdef __linux
683 unsigned int v = 0;
684 struct utsname buf;
685 int i;
686 char *p = buf.release;
687
688 if (uname (&buf))
689 return 0;
690
691 for (i = 3+1; --i; )
692 {
693 unsigned int c = 0;
694
695 for (;;)
696 {
697 if (*p >= '0' && *p <= '9')
698 c = c * 10 + *p++ - '0';
699 else
700 {
701 p += *p == '.';
702 break;
703 }
704 }
705
706 v = (v << 8) | c;
707 }
708
709 return v;
710#else
711 return 0;
712#endif
713}
714
715/*****************************************************************************/
716
717#if EV_AVOID_STDIO
718static void noinline ecb_cold
719ev_printerr (const char *msg)
720{
721 write (STDERR_FILENO, msg, strlen (msg));
722}
723#endif
724
211static void (*syserr_cb)(const char *msg); 725static void (*syserr_cb)(const char *msg);
212 726
727void ecb_cold
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 728ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 729{
215 syserr_cb = cb; 730 syserr_cb = cb;
216} 731}
217 732
218static void 733static void noinline ecb_cold
219syserr (const char *msg) 734ev_syserr (const char *msg)
220{ 735{
221 if (!msg) 736 if (!msg)
222 msg = "(libev) system error"; 737 msg = "(libev) system error";
223 738
224 if (syserr_cb) 739 if (syserr_cb)
225 syserr_cb (msg); 740 syserr_cb (msg);
226 else 741 else
227 { 742 {
743#if EV_AVOID_STDIO
744 ev_printerr (msg);
745 ev_printerr (": ");
746 ev_printerr (strerror (errno));
747 ev_printerr ("\n");
748#else
228 perror (msg); 749 perror (msg);
750#endif
229 abort (); 751 abort ();
230 } 752 }
231} 753}
232 754
755static void *
756ev_realloc_emul (void *ptr, long size)
757{
758#if __GLIBC__
759 return realloc (ptr, size);
760#else
761 /* some systems, notably openbsd and darwin, fail to properly
762 * implement realloc (x, 0) (as required by both ansi c-89 and
763 * the single unix specification, so work around them here.
764 */
765
766 if (size)
767 return realloc (ptr, size);
768
769 free (ptr);
770 return 0;
771#endif
772}
773
233static void *(*alloc)(void *ptr, long size); 774static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 775
776void ecb_cold
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 777ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 778{
237 alloc = cb; 779 alloc = cb;
238} 780}
239 781
240static void * 782inline_speed void *
241ev_realloc (void *ptr, long size) 783ev_realloc (void *ptr, long size)
242{ 784{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 785 ptr = alloc (ptr, size);
244 786
245 if (!ptr && size) 787 if (!ptr && size)
246 { 788 {
789#if EV_AVOID_STDIO
790 ev_printerr ("(libev) memory allocation failed, aborting.\n");
791#else
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 792 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
793#endif
248 abort (); 794 abort ();
249 } 795 }
250 796
251 return ptr; 797 return ptr;
252} 798}
254#define ev_malloc(size) ev_realloc (0, (size)) 800#define ev_malloc(size) ev_realloc (0, (size))
255#define ev_free(ptr) ev_realloc ((ptr), 0) 801#define ev_free(ptr) ev_realloc ((ptr), 0)
256 802
257/*****************************************************************************/ 803/*****************************************************************************/
258 804
805/* set in reify when reification needed */
806#define EV_ANFD_REIFY 1
807
808/* file descriptor info structure */
259typedef struct 809typedef struct
260{ 810{
261 WL head; 811 WL head;
262 unsigned char events; 812 unsigned char events; /* the events watched for */
813 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
814 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
263 unsigned char reify; 815 unsigned char unused;
816#if EV_USE_EPOLL
817 unsigned int egen; /* generation counter to counter epoll bugs */
818#endif
264#if EV_SELECT_IS_WINSOCKET 819#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
265 SOCKET handle; 820 SOCKET handle;
266#endif 821#endif
822#if EV_USE_IOCP
823 OVERLAPPED or, ow;
824#endif
267} ANFD; 825} ANFD;
268 826
827/* stores the pending event set for a given watcher */
269typedef struct 828typedef struct
270{ 829{
271 W w; 830 W w;
272 int events; 831 int events; /* the pending event set for the given watcher */
273} ANPENDING; 832} ANPENDING;
833
834#if EV_USE_INOTIFY
835/* hash table entry per inotify-id */
836typedef struct
837{
838 WL head;
839} ANFS;
840#endif
841
842/* Heap Entry */
843#if EV_HEAP_CACHE_AT
844 /* a heap element */
845 typedef struct {
846 ev_tstamp at;
847 WT w;
848 } ANHE;
849
850 #define ANHE_w(he) (he).w /* access watcher, read-write */
851 #define ANHE_at(he) (he).at /* access cached at, read-only */
852 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
853#else
854 /* a heap element */
855 typedef WT ANHE;
856
857 #define ANHE_w(he) (he)
858 #define ANHE_at(he) (he)->at
859 #define ANHE_at_cache(he)
860#endif
274 861
275#if EV_MULTIPLICITY 862#if EV_MULTIPLICITY
276 863
277 struct ev_loop 864 struct ev_loop
278 { 865 {
296 883
297 static int ev_default_loop_ptr; 884 static int ev_default_loop_ptr;
298 885
299#endif 886#endif
300 887
888#if EV_FEATURE_API
889# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
890# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
891# define EV_INVOKE_PENDING invoke_cb (EV_A)
892#else
893# define EV_RELEASE_CB (void)0
894# define EV_ACQUIRE_CB (void)0
895# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
896#endif
897
898#define EVBREAK_RECURSE 0x80
899
301/*****************************************************************************/ 900/*****************************************************************************/
302 901
902#ifndef EV_HAVE_EV_TIME
303ev_tstamp 903ev_tstamp
304ev_time (void) 904ev_time (void)
305{ 905{
306#if EV_USE_REALTIME 906#if EV_USE_REALTIME
907 if (expect_true (have_realtime))
908 {
307 struct timespec ts; 909 struct timespec ts;
308 clock_gettime (CLOCK_REALTIME, &ts); 910 clock_gettime (CLOCK_REALTIME, &ts);
309 return ts.tv_sec + ts.tv_nsec * 1e-9; 911 return ts.tv_sec + ts.tv_nsec * 1e-9;
310#else 912 }
913#endif
914
311 struct timeval tv; 915 struct timeval tv;
312 gettimeofday (&tv, 0); 916 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 917 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif
315} 918}
919#endif
316 920
317inline ev_tstamp 921inline_size ev_tstamp
318get_clock (void) 922get_clock (void)
319{ 923{
320#if EV_USE_MONOTONIC 924#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 925 if (expect_true (have_monotonic))
322 { 926 {
335{ 939{
336 return ev_rt_now; 940 return ev_rt_now;
337} 941}
338#endif 942#endif
339 943
340#define array_roundsize(type,n) (((n) | 4) & ~3) 944void
945ev_sleep (ev_tstamp delay)
946{
947 if (delay > 0.)
948 {
949#if EV_USE_NANOSLEEP
950 struct timespec ts;
951
952 EV_TS_SET (ts, delay);
953 nanosleep (&ts, 0);
954#elif defined(_WIN32)
955 Sleep ((unsigned long)(delay * 1e3));
956#else
957 struct timeval tv;
958
959 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
960 /* something not guaranteed by newer posix versions, but guaranteed */
961 /* by older ones */
962 EV_TV_SET (tv, delay);
963 select (0, 0, 0, 0, &tv);
964#endif
965 }
966}
967
968/*****************************************************************************/
969
970#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
971
972/* find a suitable new size for the given array, */
973/* hopefully by rounding to a nice-to-malloc size */
974inline_size int
975array_nextsize (int elem, int cur, int cnt)
976{
977 int ncur = cur + 1;
978
979 do
980 ncur <<= 1;
981 while (cnt > ncur);
982
983 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
984 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
985 {
986 ncur *= elem;
987 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
988 ncur = ncur - sizeof (void *) * 4;
989 ncur /= elem;
990 }
991
992 return ncur;
993}
994
995static void * noinline ecb_cold
996array_realloc (int elem, void *base, int *cur, int cnt)
997{
998 *cur = array_nextsize (elem, *cur, cnt);
999 return ev_realloc (base, elem * *cur);
1000}
1001
1002#define array_init_zero(base,count) \
1003 memset ((void *)(base), 0, sizeof (*(base)) * (count))
341 1004
342#define array_needsize(type,base,cur,cnt,init) \ 1005#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 1006 if (expect_false ((cnt) > (cur))) \
344 { \ 1007 { \
345 int newcnt = cur; \ 1008 int ecb_unused ocur_ = (cur); \
346 do \ 1009 (base) = (type *)array_realloc \
347 { \ 1010 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 1011 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 1012 }
356 1013
1014#if 0
357#define array_slim(type,stem) \ 1015#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1016 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 1017 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1018 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1019 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1020 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 1021 }
1022#endif
364 1023
365#define array_free(stem, idx) \ 1024#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1025 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
367 1026
368/*****************************************************************************/ 1027/*****************************************************************************/
369 1028
370static void 1029/* dummy callback for pending events */
371anfds_init (ANFD *base, int count) 1030static void noinline
1031pendingcb (EV_P_ ev_prepare *w, int revents)
372{ 1032{
373 while (count--)
374 {
375 base->head = 0;
376 base->events = EV_NONE;
377 base->reify = 0;
378
379 ++base;
380 }
381} 1033}
382 1034
383void 1035void noinline
384ev_feed_event (EV_P_ void *w, int revents) 1036ev_feed_event (EV_P_ void *w, int revents)
385{ 1037{
386 W w_ = (W)w; 1038 W w_ = (W)w;
1039 int pri = ABSPRI (w_);
387 1040
388 if (expect_false (w_->pending)) 1041 if (expect_false (w_->pending))
1042 pendings [pri][w_->pending - 1].events |= revents;
1043 else
389 { 1044 {
1045 w_->pending = ++pendingcnt [pri];
1046 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1047 pendings [pri][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1048 pendings [pri][w_->pending - 1].events = revents;
391 return;
392 } 1049 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398} 1050}
399 1051
400static void 1052inline_speed void
1053feed_reverse (EV_P_ W w)
1054{
1055 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1056 rfeeds [rfeedcnt++] = w;
1057}
1058
1059inline_size void
1060feed_reverse_done (EV_P_ int revents)
1061{
1062 do
1063 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1064 while (rfeedcnt);
1065}
1066
1067inline_speed void
401queue_events (EV_P_ W *events, int eventcnt, int type) 1068queue_events (EV_P_ W *events, int eventcnt, int type)
402{ 1069{
403 int i; 1070 int i;
404 1071
405 for (i = 0; i < eventcnt; ++i) 1072 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type); 1073 ev_feed_event (EV_A_ events [i], type);
407} 1074}
408 1075
1076/*****************************************************************************/
1077
409inline void 1078inline_speed void
410fd_event (EV_P_ int fd, int revents) 1079fd_event_nocheck (EV_P_ int fd, int revents)
411{ 1080{
412 ANFD *anfd = anfds + fd; 1081 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 1082 ev_io *w;
414 1083
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1084 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 1085 {
417 int ev = w->events & revents; 1086 int ev = w->events & revents;
418 1087
419 if (ev) 1088 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 1089 ev_feed_event (EV_A_ (W)w, ev);
421 } 1090 }
422} 1091}
423 1092
1093/* do not submit kernel events for fds that have reify set */
1094/* because that means they changed while we were polling for new events */
1095inline_speed void
1096fd_event (EV_P_ int fd, int revents)
1097{
1098 ANFD *anfd = anfds + fd;
1099
1100 if (expect_true (!anfd->reify))
1101 fd_event_nocheck (EV_A_ fd, revents);
1102}
1103
424void 1104void
425ev_feed_fd_event (EV_P_ int fd, int revents) 1105ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 1106{
1107 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 1108 fd_event_nocheck (EV_A_ fd, revents);
428} 1109}
429 1110
430/*****************************************************************************/ 1111/* make sure the external fd watch events are in-sync */
431 1112/* with the kernel/libev internal state */
432inline void 1113inline_size void
433fd_reify (EV_P) 1114fd_reify (EV_P)
434{ 1115{
435 int i; 1116 int i;
436 1117
1118#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
437 for (i = 0; i < fdchangecnt; ++i) 1119 for (i = 0; i < fdchangecnt; ++i)
438 { 1120 {
439 int fd = fdchanges [i]; 1121 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 1122 ANFD *anfd = anfds + fd;
441 struct ev_io *w;
442 1123
443 int events = 0; 1124 if (anfd->reify & EV__IOFDSET && anfd->head)
444
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
446 events |= w->events;
447
448#if EV_SELECT_IS_WINSOCKET
449 if (events)
450 { 1125 {
1126 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1127
1128 if (handle != anfd->handle)
1129 {
451 unsigned long argp; 1130 unsigned long arg;
452 anfd->handle = _get_osfhandle (fd); 1131
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1132 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1133
1134 /* handle changed, but fd didn't - we need to do it in two steps */
1135 backend_modify (EV_A_ fd, anfd->events, 0);
1136 anfd->events = 0;
1137 anfd->handle = handle;
1138 }
454 } 1139 }
1140 }
455#endif 1141#endif
456 1142
1143 for (i = 0; i < fdchangecnt; ++i)
1144 {
1145 int fd = fdchanges [i];
1146 ANFD *anfd = anfds + fd;
1147 ev_io *w;
1148
1149 unsigned char o_events = anfd->events;
1150 unsigned char o_reify = anfd->reify;
1151
457 anfd->reify = 0; 1152 anfd->reify = 0;
458 1153
459 method_modify (EV_A_ fd, anfd->events, events); 1154 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1155 {
460 anfd->events = events; 1156 anfd->events = 0;
1157
1158 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1159 anfd->events |= (unsigned char)w->events;
1160
1161 if (o_events != anfd->events)
1162 o_reify = EV__IOFDSET; /* actually |= */
1163 }
1164
1165 if (o_reify & EV__IOFDSET)
1166 backend_modify (EV_A_ fd, o_events, anfd->events);
461 } 1167 }
462 1168
463 fdchangecnt = 0; 1169 fdchangecnt = 0;
464} 1170}
465 1171
466static void 1172/* something about the given fd changed */
1173inline_size void
467fd_change (EV_P_ int fd) 1174fd_change (EV_P_ int fd, int flags)
468{ 1175{
469 if (expect_false (anfds [fd].reify)) 1176 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 1177 anfds [fd].reify |= flags;
473 1178
1179 if (expect_true (!reify))
1180 {
474 ++fdchangecnt; 1181 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1182 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 1183 fdchanges [fdchangecnt - 1] = fd;
1184 }
477} 1185}
478 1186
479static void 1187/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1188inline_speed void ecb_cold
480fd_kill (EV_P_ int fd) 1189fd_kill (EV_P_ int fd)
481{ 1190{
482 struct ev_io *w; 1191 ev_io *w;
483 1192
484 while ((w = (struct ev_io *)anfds [fd].head)) 1193 while ((w = (ev_io *)anfds [fd].head))
485 { 1194 {
486 ev_io_stop (EV_A_ w); 1195 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1196 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 1197 }
489} 1198}
490 1199
491inline int 1200/* check whether the given fd is actually valid, for error recovery */
1201inline_size int ecb_cold
492fd_valid (int fd) 1202fd_valid (int fd)
493{ 1203{
494#ifdef _WIN32 1204#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 1205 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
496#else 1206#else
497 return fcntl (fd, F_GETFD) != -1; 1207 return fcntl (fd, F_GETFD) != -1;
498#endif 1208#endif
499} 1209}
500 1210
501/* called on EBADF to verify fds */ 1211/* called on EBADF to verify fds */
502static void 1212static void noinline ecb_cold
503fd_ebadf (EV_P) 1213fd_ebadf (EV_P)
504{ 1214{
505 int fd; 1215 int fd;
506 1216
507 for (fd = 0; fd < anfdmax; ++fd) 1217 for (fd = 0; fd < anfdmax; ++fd)
508 if (anfds [fd].events) 1218 if (anfds [fd].events)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 1219 if (!fd_valid (fd) && errno == EBADF)
510 fd_kill (EV_A_ fd); 1220 fd_kill (EV_A_ fd);
511} 1221}
512 1222
513/* called on ENOMEM in select/poll to kill some fds and retry */ 1223/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 1224static void noinline ecb_cold
515fd_enomem (EV_P) 1225fd_enomem (EV_P)
516{ 1226{
517 int fd; 1227 int fd;
518 1228
519 for (fd = anfdmax; fd--; ) 1229 for (fd = anfdmax; fd--; )
520 if (anfds [fd].events) 1230 if (anfds [fd].events)
521 { 1231 {
522 fd_kill (EV_A_ fd); 1232 fd_kill (EV_A_ fd);
523 return; 1233 break;
524 } 1234 }
525} 1235}
526 1236
527/* usually called after fork if method needs to re-arm all fds from scratch */ 1237/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 1238static void noinline
529fd_rearm_all (EV_P) 1239fd_rearm_all (EV_P)
530{ 1240{
531 int fd; 1241 int fd;
532 1242
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 1243 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 1244 if (anfds [fd].events)
536 { 1245 {
537 anfds [fd].events = 0; 1246 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 1247 anfds [fd].emask = 0;
1248 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
539 } 1249 }
540} 1250}
541 1251
542/*****************************************************************************/ 1252/* used to prepare libev internal fd's */
543 1253/* this is not fork-safe */
544static void
545upheap (WT *heap, int k)
546{
547 WT w = heap [k];
548
549 while (k && heap [k >> 1]->at > w->at)
550 {
551 heap [k] = heap [k >> 1];
552 ((W)heap [k])->active = k + 1;
553 k >>= 1;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558
559}
560
561static void
562downheap (WT *heap, int N, int k)
563{
564 WT w = heap [k];
565
566 while (k < (N >> 1))
567 {
568 int j = k << 1;
569
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
571 ++j;
572
573 if (w->at <= heap [j]->at)
574 break;
575
576 heap [k] = heap [j];
577 ((W)heap [k])->active = k + 1;
578 k = j;
579 }
580
581 heap [k] = w;
582 ((W)heap [k])->active = k + 1;
583}
584
585inline void 1254inline_speed void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
592/*****************************************************************************/
593
594typedef struct
595{
596 WL head;
597 sig_atomic_t volatile gotsig;
598} ANSIG;
599
600static ANSIG *signals;
601static int signalmax;
602
603static int sigpipe [2];
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606
607static void
608signals_init (ANSIG *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->gotsig = 0;
614
615 ++base;
616 }
617}
618
619static void
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625
626 signals [signum - 1].gotsig = 1;
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 1255fd_intern (int fd)
672{ 1256{
673#ifdef _WIN32 1257#ifdef _WIN32
674 int arg = 1; 1258 unsigned long arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1259 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
676#else 1260#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 1261 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 1262 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 1263#endif
680} 1264}
681 1265
1266/*****************************************************************************/
1267
1268/*
1269 * the heap functions want a real array index. array index 0 is guaranteed to not
1270 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1271 * the branching factor of the d-tree.
1272 */
1273
1274/*
1275 * at the moment we allow libev the luxury of two heaps,
1276 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1277 * which is more cache-efficient.
1278 * the difference is about 5% with 50000+ watchers.
1279 */
1280#if EV_USE_4HEAP
1281
1282#define DHEAP 4
1283#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1284#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1285#define UPHEAP_DONE(p,k) ((p) == (k))
1286
1287/* away from the root */
1288inline_speed void
1289downheap (ANHE *heap, int N, int k)
1290{
1291 ANHE he = heap [k];
1292 ANHE *E = heap + N + HEAP0;
1293
1294 for (;;)
1295 {
1296 ev_tstamp minat;
1297 ANHE *minpos;
1298 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1299
1300 /* find minimum child */
1301 if (expect_true (pos + DHEAP - 1 < E))
1302 {
1303 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1304 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1305 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1306 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1307 }
1308 else if (pos < E)
1309 {
1310 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1311 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1312 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1313 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1314 }
1315 else
1316 break;
1317
1318 if (ANHE_at (he) <= minat)
1319 break;
1320
1321 heap [k] = *minpos;
1322 ev_active (ANHE_w (*minpos)) = k;
1323
1324 k = minpos - heap;
1325 }
1326
1327 heap [k] = he;
1328 ev_active (ANHE_w (he)) = k;
1329}
1330
1331#else /* 4HEAP */
1332
1333#define HEAP0 1
1334#define HPARENT(k) ((k) >> 1)
1335#define UPHEAP_DONE(p,k) (!(p))
1336
1337/* away from the root */
1338inline_speed void
1339downheap (ANHE *heap, int N, int k)
1340{
1341 ANHE he = heap [k];
1342
1343 for (;;)
1344 {
1345 int c = k << 1;
1346
1347 if (c >= N + HEAP0)
1348 break;
1349
1350 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1351 ? 1 : 0;
1352
1353 if (ANHE_at (he) <= ANHE_at (heap [c]))
1354 break;
1355
1356 heap [k] = heap [c];
1357 ev_active (ANHE_w (heap [k])) = k;
1358
1359 k = c;
1360 }
1361
1362 heap [k] = he;
1363 ev_active (ANHE_w (he)) = k;
1364}
1365#endif
1366
1367/* towards the root */
1368inline_speed void
1369upheap (ANHE *heap, int k)
1370{
1371 ANHE he = heap [k];
1372
1373 for (;;)
1374 {
1375 int p = HPARENT (k);
1376
1377 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1378 break;
1379
1380 heap [k] = heap [p];
1381 ev_active (ANHE_w (heap [k])) = k;
1382 k = p;
1383 }
1384
1385 heap [k] = he;
1386 ev_active (ANHE_w (he)) = k;
1387}
1388
1389/* move an element suitably so it is in a correct place */
1390inline_size void
1391adjustheap (ANHE *heap, int N, int k)
1392{
1393 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1394 upheap (heap, k);
1395 else
1396 downheap (heap, N, k);
1397}
1398
1399/* rebuild the heap: this function is used only once and executed rarely */
1400inline_size void
1401reheap (ANHE *heap, int N)
1402{
1403 int i;
1404
1405 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1406 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1407 for (i = 0; i < N; ++i)
1408 upheap (heap, i + HEAP0);
1409}
1410
1411/*****************************************************************************/
1412
1413/* associate signal watchers to a signal signal */
1414typedef struct
1415{
1416 EV_ATOMIC_T pending;
1417#if EV_MULTIPLICITY
1418 EV_P;
1419#endif
1420 WL head;
1421} ANSIG;
1422
1423static ANSIG signals [EV_NSIG - 1];
1424
1425/*****************************************************************************/
1426
1427#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1428
1429static void noinline ecb_cold
1430evpipe_init (EV_P)
1431{
1432 if (!ev_is_active (&pipe_w))
1433 {
1434# if EV_USE_EVENTFD
1435 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1436 if (evfd < 0 && errno == EINVAL)
1437 evfd = eventfd (0, 0);
1438
1439 if (evfd >= 0)
1440 {
1441 evpipe [0] = -1;
1442 fd_intern (evfd); /* doing it twice doesn't hurt */
1443 ev_io_set (&pipe_w, evfd, EV_READ);
1444 }
1445 else
1446# endif
1447 {
1448 while (pipe (evpipe))
1449 ev_syserr ("(libev) error creating signal/async pipe");
1450
1451 fd_intern (evpipe [0]);
1452 fd_intern (evpipe [1]);
1453 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1454 }
1455
1456 ev_io_start (EV_A_ &pipe_w);
1457 ev_unref (EV_A); /* watcher should not keep loop alive */
1458 }
1459}
1460
1461inline_speed void
1462evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1463{
1464 if (expect_true (*flag))
1465 return;
1466
1467 *flag = 1;
1468
1469 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1470
1471 pipe_write_skipped = 1;
1472
1473 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1474
1475 if (pipe_write_wanted)
1476 {
1477 int old_errno;
1478
1479 pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1480
1481 old_errno = errno; /* save errno because write will clobber it */
1482
1483#if EV_USE_EVENTFD
1484 if (evfd >= 0)
1485 {
1486 uint64_t counter = 1;
1487 write (evfd, &counter, sizeof (uint64_t));
1488 }
1489 else
1490#endif
1491 {
1492 /* win32 people keep sending patches that change this write() to send() */
1493 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1494 /* so when you think this write should be a send instead, please find out */
1495 /* where your send() is from - it's definitely not the microsoft send, and */
1496 /* tell me. thank you. */
1497 write (evpipe [1], &(evpipe [1]), 1);
1498 }
1499
1500 errno = old_errno;
1501 }
1502}
1503
1504/* called whenever the libev signal pipe */
1505/* got some events (signal, async) */
682static void 1506static void
683siginit (EV_P) 1507pipecb (EV_P_ ev_io *iow, int revents)
684{ 1508{
685 fd_intern (sigpipe [0]); 1509 int i;
686 fd_intern (sigpipe [1]);
687 1510
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1511 if (revents & EV_READ)
689 ev_io_start (EV_A_ &sigev); 1512 {
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1513#if EV_USE_EVENTFD
1514 if (evfd >= 0)
1515 {
1516 uint64_t counter;
1517 read (evfd, &counter, sizeof (uint64_t));
1518 }
1519 else
1520#endif
1521 {
1522 char dummy;
1523 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1524 read (evpipe [0], &dummy, 1);
1525 }
1526 }
1527
1528 pipe_write_skipped = 0;
1529
1530#if EV_SIGNAL_ENABLE
1531 if (sig_pending)
1532 {
1533 sig_pending = 0;
1534
1535 for (i = EV_NSIG - 1; i--; )
1536 if (expect_false (signals [i].pending))
1537 ev_feed_signal_event (EV_A_ i + 1);
1538 }
1539#endif
1540
1541#if EV_ASYNC_ENABLE
1542 if (async_pending)
1543 {
1544 async_pending = 0;
1545
1546 for (i = asynccnt; i--; )
1547 if (asyncs [i]->sent)
1548 {
1549 asyncs [i]->sent = 0;
1550 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1551 }
1552 }
1553#endif
691} 1554}
692 1555
693/*****************************************************************************/ 1556/*****************************************************************************/
694 1557
695static struct ev_child *childs [PID_HASHSIZE]; 1558void
1559ev_feed_signal (int signum)
1560{
1561#if EV_MULTIPLICITY
1562 EV_P = signals [signum - 1].loop;
696 1563
1564 if (!EV_A)
1565 return;
1566#endif
1567
1568 if (!ev_active (&pipe_w))
1569 return;
1570
1571 signals [signum - 1].pending = 1;
1572 evpipe_write (EV_A_ &sig_pending);
1573}
1574
1575static void
1576ev_sighandler (int signum)
1577{
697#ifndef _WIN32 1578#ifdef _WIN32
1579 signal (signum, ev_sighandler);
1580#endif
698 1581
1582 ev_feed_signal (signum);
1583}
1584
1585void noinline
1586ev_feed_signal_event (EV_P_ int signum)
1587{
1588 WL w;
1589
1590 if (expect_false (signum <= 0 || signum > EV_NSIG))
1591 return;
1592
1593 --signum;
1594
1595#if EV_MULTIPLICITY
1596 /* it is permissible to try to feed a signal to the wrong loop */
1597 /* or, likely more useful, feeding a signal nobody is waiting for */
1598
1599 if (expect_false (signals [signum].loop != EV_A))
1600 return;
1601#endif
1602
1603 signals [signum].pending = 0;
1604
1605 for (w = signals [signum].head; w; w = w->next)
1606 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1607}
1608
1609#if EV_USE_SIGNALFD
1610static void
1611sigfdcb (EV_P_ ev_io *iow, int revents)
1612{
1613 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1614
1615 for (;;)
1616 {
1617 ssize_t res = read (sigfd, si, sizeof (si));
1618
1619 /* not ISO-C, as res might be -1, but works with SuS */
1620 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1621 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1622
1623 if (res < (ssize_t)sizeof (si))
1624 break;
1625 }
1626}
1627#endif
1628
1629#endif
1630
1631/*****************************************************************************/
1632
1633#if EV_CHILD_ENABLE
1634static WL childs [EV_PID_HASHSIZE];
1635
699static struct ev_signal childev; 1636static ev_signal childev;
1637
1638#ifndef WIFCONTINUED
1639# define WIFCONTINUED(status) 0
1640#endif
1641
1642/* handle a single child status event */
1643inline_speed void
1644child_reap (EV_P_ int chain, int pid, int status)
1645{
1646 ev_child *w;
1647 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1648
1649 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1650 {
1651 if ((w->pid == pid || !w->pid)
1652 && (!traced || (w->flags & 1)))
1653 {
1654 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1655 w->rpid = pid;
1656 w->rstatus = status;
1657 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1658 }
1659 }
1660}
700 1661
701#ifndef WCONTINUED 1662#ifndef WCONTINUED
702# define WCONTINUED 0 1663# define WCONTINUED 0
703#endif 1664#endif
704 1665
1666/* called on sigchld etc., calls waitpid */
705static void 1667static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 1668childcb (EV_P_ ev_signal *sw, int revents)
722{ 1669{
723 int pid, status; 1670 int pid, status;
724 1671
1672 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1673 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 1674 if (!WCONTINUED
1675 || errno != EINVAL
1676 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1677 return;
1678
727 /* make sure we are called again until all childs have been reaped */ 1679 /* make sure we are called again until all children have been reaped */
1680 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1681 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 1682
730 child_reap (EV_A_ sw, pid, pid, status); 1683 child_reap (EV_A_ pid, pid, status);
1684 if ((EV_PID_HASHSIZE) > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1685 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 1686}
734 1687
735#endif 1688#endif
736 1689
737/*****************************************************************************/ 1690/*****************************************************************************/
738 1691
1692#if EV_USE_IOCP
1693# include "ev_iocp.c"
1694#endif
739#if EV_USE_PORT 1695#if EV_USE_PORT
740# include "ev_port.c" 1696# include "ev_port.c"
741#endif 1697#endif
742#if EV_USE_KQUEUE 1698#if EV_USE_KQUEUE
743# include "ev_kqueue.c" 1699# include "ev_kqueue.c"
750#endif 1706#endif
751#if EV_USE_SELECT 1707#if EV_USE_SELECT
752# include "ev_select.c" 1708# include "ev_select.c"
753#endif 1709#endif
754 1710
755int 1711int ecb_cold
756ev_version_major (void) 1712ev_version_major (void)
757{ 1713{
758 return EV_VERSION_MAJOR; 1714 return EV_VERSION_MAJOR;
759} 1715}
760 1716
761int 1717int ecb_cold
762ev_version_minor (void) 1718ev_version_minor (void)
763{ 1719{
764 return EV_VERSION_MINOR; 1720 return EV_VERSION_MINOR;
765} 1721}
766 1722
767/* return true if we are running with elevated privileges and should ignore env variables */ 1723/* return true if we are running with elevated privileges and should ignore env variables */
768static int 1724int inline_size ecb_cold
769enable_secure (void) 1725enable_secure (void)
770{ 1726{
771#ifdef _WIN32 1727#ifdef _WIN32
772 return 0; 1728 return 0;
773#else 1729#else
774 return getuid () != geteuid () 1730 return getuid () != geteuid ()
775 || getgid () != getegid (); 1731 || getgid () != getegid ();
776#endif 1732#endif
777} 1733}
778 1734
1735unsigned int ecb_cold
1736ev_supported_backends (void)
1737{
1738 unsigned int flags = 0;
1739
1740 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1741 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1742 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1743 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1744 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1745
1746 return flags;
1747}
1748
1749unsigned int ecb_cold
1750ev_recommended_backends (void)
1751{
1752 unsigned int flags = ev_supported_backends ();
1753
1754#ifndef __NetBSD__
1755 /* kqueue is borked on everything but netbsd apparently */
1756 /* it usually doesn't work correctly on anything but sockets and pipes */
1757 flags &= ~EVBACKEND_KQUEUE;
1758#endif
1759#ifdef __APPLE__
1760 /* only select works correctly on that "unix-certified" platform */
1761 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1762 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1763#endif
1764#ifdef __FreeBSD__
1765 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1766#endif
1767
1768 return flags;
1769}
1770
1771unsigned int ecb_cold
1772ev_embeddable_backends (void)
1773{
1774 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1775
1776 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1777 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1778 flags &= ~EVBACKEND_EPOLL;
1779
1780 return flags;
1781}
1782
779unsigned int 1783unsigned int
1784ev_backend (EV_P)
1785{
1786 return backend;
1787}
1788
1789#if EV_FEATURE_API
1790unsigned int
1791ev_iteration (EV_P)
1792{
1793 return loop_count;
1794}
1795
1796unsigned int
780ev_method (EV_P) 1797ev_depth (EV_P)
781{ 1798{
782 return method; 1799 return loop_depth;
783} 1800}
784 1801
785static void 1802void
1803ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1804{
1805 io_blocktime = interval;
1806}
1807
1808void
1809ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1810{
1811 timeout_blocktime = interval;
1812}
1813
1814void
1815ev_set_userdata (EV_P_ void *data)
1816{
1817 userdata = data;
1818}
1819
1820void *
1821ev_userdata (EV_P)
1822{
1823 return userdata;
1824}
1825
1826void
1827ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1828{
1829 invoke_cb = invoke_pending_cb;
1830}
1831
1832void
1833ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1834{
1835 release_cb = release;
1836 acquire_cb = acquire;
1837}
1838#endif
1839
1840/* initialise a loop structure, must be zero-initialised */
1841static void noinline ecb_cold
786loop_init (EV_P_ unsigned int flags) 1842loop_init (EV_P_ unsigned int flags)
787{ 1843{
788 if (!method) 1844 if (!backend)
789 { 1845 {
1846 origflags = flags;
1847
1848#if EV_USE_REALTIME
1849 if (!have_realtime)
1850 {
1851 struct timespec ts;
1852
1853 if (!clock_gettime (CLOCK_REALTIME, &ts))
1854 have_realtime = 1;
1855 }
1856#endif
1857
790#if EV_USE_MONOTONIC 1858#if EV_USE_MONOTONIC
1859 if (!have_monotonic)
1860 {
1861 struct timespec ts;
1862
1863 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1864 have_monotonic = 1;
1865 }
1866#endif
1867
1868 /* pid check not overridable via env */
1869#ifndef _WIN32
1870 if (flags & EVFLAG_FORKCHECK)
1871 curpid = getpid ();
1872#endif
1873
1874 if (!(flags & EVFLAG_NOENV)
1875 && !enable_secure ()
1876 && getenv ("LIBEV_FLAGS"))
1877 flags = atoi (getenv ("LIBEV_FLAGS"));
1878
1879 ev_rt_now = ev_time ();
1880 mn_now = get_clock ();
1881 now_floor = mn_now;
1882 rtmn_diff = ev_rt_now - mn_now;
1883#if EV_FEATURE_API
1884 invoke_cb = ev_invoke_pending;
1885#endif
1886
1887 io_blocktime = 0.;
1888 timeout_blocktime = 0.;
1889 backend = 0;
1890 backend_fd = -1;
1891 sig_pending = 0;
1892#if EV_ASYNC_ENABLE
1893 async_pending = 0;
1894#endif
1895 pipe_write_skipped = 0;
1896 pipe_write_wanted = 0;
1897#if EV_USE_INOTIFY
1898 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1899#endif
1900#if EV_USE_SIGNALFD
1901 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1902#endif
1903
1904 if (!(flags & EVBACKEND_MASK))
1905 flags |= ev_recommended_backends ();
1906
1907#if EV_USE_IOCP
1908 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1909#endif
1910#if EV_USE_PORT
1911 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1912#endif
1913#if EV_USE_KQUEUE
1914 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1915#endif
1916#if EV_USE_EPOLL
1917 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1918#endif
1919#if EV_USE_POLL
1920 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1921#endif
1922#if EV_USE_SELECT
1923 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1924#endif
1925
1926 ev_prepare_init (&pending_w, pendingcb);
1927
1928#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1929 ev_init (&pipe_w, pipecb);
1930 ev_set_priority (&pipe_w, EV_MAXPRI);
1931#endif
1932 }
1933}
1934
1935/* free up a loop structure */
1936void ecb_cold
1937ev_loop_destroy (EV_P)
1938{
1939 int i;
1940
1941#if EV_MULTIPLICITY
1942 /* mimic free (0) */
1943 if (!EV_A)
1944 return;
1945#endif
1946
1947#if EV_CLEANUP_ENABLE
1948 /* queue cleanup watchers (and execute them) */
1949 if (expect_false (cleanupcnt))
1950 {
1951 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1952 EV_INVOKE_PENDING;
1953 }
1954#endif
1955
1956#if EV_CHILD_ENABLE
1957 if (ev_is_active (&childev))
1958 {
1959 ev_ref (EV_A); /* child watcher */
1960 ev_signal_stop (EV_A_ &childev);
1961 }
1962#endif
1963
1964 if (ev_is_active (&pipe_w))
1965 {
1966 /*ev_ref (EV_A);*/
1967 /*ev_io_stop (EV_A_ &pipe_w);*/
1968
1969#if EV_USE_EVENTFD
1970 if (evfd >= 0)
1971 close (evfd);
1972#endif
1973
1974 if (evpipe [0] >= 0)
1975 {
1976 EV_WIN32_CLOSE_FD (evpipe [0]);
1977 EV_WIN32_CLOSE_FD (evpipe [1]);
1978 }
1979 }
1980
1981#if EV_USE_SIGNALFD
1982 if (ev_is_active (&sigfd_w))
1983 close (sigfd);
1984#endif
1985
1986#if EV_USE_INOTIFY
1987 if (fs_fd >= 0)
1988 close (fs_fd);
1989#endif
1990
1991 if (backend_fd >= 0)
1992 close (backend_fd);
1993
1994#if EV_USE_IOCP
1995 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1996#endif
1997#if EV_USE_PORT
1998 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1999#endif
2000#if EV_USE_KQUEUE
2001 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2002#endif
2003#if EV_USE_EPOLL
2004 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2005#endif
2006#if EV_USE_POLL
2007 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2008#endif
2009#if EV_USE_SELECT
2010 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2011#endif
2012
2013 for (i = NUMPRI; i--; )
2014 {
2015 array_free (pending, [i]);
2016#if EV_IDLE_ENABLE
2017 array_free (idle, [i]);
2018#endif
2019 }
2020
2021 ev_free (anfds); anfds = 0; anfdmax = 0;
2022
2023 /* have to use the microsoft-never-gets-it-right macro */
2024 array_free (rfeed, EMPTY);
2025 array_free (fdchange, EMPTY);
2026 array_free (timer, EMPTY);
2027#if EV_PERIODIC_ENABLE
2028 array_free (periodic, EMPTY);
2029#endif
2030#if EV_FORK_ENABLE
2031 array_free (fork, EMPTY);
2032#endif
2033#if EV_CLEANUP_ENABLE
2034 array_free (cleanup, EMPTY);
2035#endif
2036 array_free (prepare, EMPTY);
2037 array_free (check, EMPTY);
2038#if EV_ASYNC_ENABLE
2039 array_free (async, EMPTY);
2040#endif
2041
2042 backend = 0;
2043
2044#if EV_MULTIPLICITY
2045 if (ev_is_default_loop (EV_A))
2046#endif
2047 ev_default_loop_ptr = 0;
2048#if EV_MULTIPLICITY
2049 else
2050 ev_free (EV_A);
2051#endif
2052}
2053
2054#if EV_USE_INOTIFY
2055inline_size void infy_fork (EV_P);
2056#endif
2057
2058inline_size void
2059loop_fork (EV_P)
2060{
2061#if EV_USE_PORT
2062 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2063#endif
2064#if EV_USE_KQUEUE
2065 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2066#endif
2067#if EV_USE_EPOLL
2068 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2069#endif
2070#if EV_USE_INOTIFY
2071 infy_fork (EV_A);
2072#endif
2073
2074 if (ev_is_active (&pipe_w))
2075 {
2076 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2077
2078 ev_ref (EV_A);
2079 ev_io_stop (EV_A_ &pipe_w);
2080
2081#if EV_USE_EVENTFD
2082 if (evfd >= 0)
2083 close (evfd);
2084#endif
2085
2086 if (evpipe [0] >= 0)
2087 {
2088 EV_WIN32_CLOSE_FD (evpipe [0]);
2089 EV_WIN32_CLOSE_FD (evpipe [1]);
2090 }
2091
2092#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2093 evpipe_init (EV_A);
2094 /* now iterate over everything, in case we missed something */
2095 pipecb (EV_A_ &pipe_w, EV_READ);
2096#endif
2097 }
2098
2099 postfork = 0;
2100}
2101
2102#if EV_MULTIPLICITY
2103
2104struct ev_loop * ecb_cold
2105ev_loop_new (unsigned int flags)
2106{
2107 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2108
2109 memset (EV_A, 0, sizeof (struct ev_loop));
2110 loop_init (EV_A_ flags);
2111
2112 if (ev_backend (EV_A))
2113 return EV_A;
2114
2115 ev_free (EV_A);
2116 return 0;
2117}
2118
2119#endif /* multiplicity */
2120
2121#if EV_VERIFY
2122static void noinline ecb_cold
2123verify_watcher (EV_P_ W w)
2124{
2125 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2126
2127 if (w->pending)
2128 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2129}
2130
2131static void noinline ecb_cold
2132verify_heap (EV_P_ ANHE *heap, int N)
2133{
2134 int i;
2135
2136 for (i = HEAP0; i < N + HEAP0; ++i)
2137 {
2138 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2139 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2140 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2141
2142 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2143 }
2144}
2145
2146static void noinline ecb_cold
2147array_verify (EV_P_ W *ws, int cnt)
2148{
2149 while (cnt--)
2150 {
2151 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2152 verify_watcher (EV_A_ ws [cnt]);
2153 }
2154}
2155#endif
2156
2157#if EV_FEATURE_API
2158void ecb_cold
2159ev_verify (EV_P)
2160{
2161#if EV_VERIFY
2162 int i;
2163 WL w;
2164
2165 assert (activecnt >= -1);
2166
2167 assert (fdchangemax >= fdchangecnt);
2168 for (i = 0; i < fdchangecnt; ++i)
2169 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2170
2171 assert (anfdmax >= 0);
2172 for (i = 0; i < anfdmax; ++i)
2173 for (w = anfds [i].head; w; w = w->next)
791 { 2174 {
792 struct timespec ts; 2175 verify_watcher (EV_A_ (W)w);
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2176 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
794 have_monotonic = 1; 2177 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
795 } 2178 }
796#endif
797 2179
798 ev_rt_now = ev_time (); 2180 assert (timermax >= timercnt);
799 mn_now = get_clock (); 2181 verify_heap (EV_A_ timers, timercnt);
800 now_floor = mn_now;
801 rtmn_diff = ev_rt_now - mn_now;
802 2182
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2183#if EV_PERIODIC_ENABLE
804 flags = atoi (getenv ("LIBEV_FLAGS")); 2184 assert (periodicmax >= periodiccnt);
805 2185 verify_heap (EV_A_ periodics, periodiccnt);
806 if (!(flags & 0x0000ffff))
807 flags |= 0x0000ffff;
808
809 method = 0;
810#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
812#endif
813#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
815#endif
816#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
818#endif
819#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
821#endif
822#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
824#endif
825
826 ev_init (&sigev, sigcb);
827 ev_set_priority (&sigev, EV_MAXPRI);
828 }
829}
830
831static void
832loop_destroy (EV_P)
833{
834 int i;
835
836#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
838#endif
839#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
841#endif
842#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
844#endif
845#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
847#endif
848#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
850#endif 2186#endif
851 2187
852 for (i = NUMPRI; i--; ) 2188 for (i = NUMPRI; i--; )
853 array_free (pending, [i]); 2189 {
2190 assert (pendingmax [i] >= pendingcnt [i]);
2191#if EV_IDLE_ENABLE
2192 assert (idleall >= 0);
2193 assert (idlemax [i] >= idlecnt [i]);
2194 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2195#endif
2196 }
854 2197
855 /* have to use the microsoft-never-gets-it-right macro */ 2198#if EV_FORK_ENABLE
856 array_free (fdchange, EMPTY0); 2199 assert (forkmax >= forkcnt);
857 array_free (timer, EMPTY0); 2200 array_verify (EV_A_ (W *)forks, forkcnt);
858#if EV_PERIODICS 2201#endif
859 array_free (periodic, EMPTY0); 2202
2203#if EV_CLEANUP_ENABLE
2204 assert (cleanupmax >= cleanupcnt);
2205 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2206#endif
2207
2208#if EV_ASYNC_ENABLE
2209 assert (asyncmax >= asynccnt);
2210 array_verify (EV_A_ (W *)asyncs, asynccnt);
2211#endif
2212
2213#if EV_PREPARE_ENABLE
2214 assert (preparemax >= preparecnt);
2215 array_verify (EV_A_ (W *)prepares, preparecnt);
2216#endif
2217
2218#if EV_CHECK_ENABLE
2219 assert (checkmax >= checkcnt);
2220 array_verify (EV_A_ (W *)checks, checkcnt);
2221#endif
2222
2223# if 0
2224#if EV_CHILD_ENABLE
2225 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2226 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2227#endif
860#endif 2228# endif
861 array_free (idle, EMPTY0);
862 array_free (prepare, EMPTY0);
863 array_free (check, EMPTY0);
864
865 method = 0;
866}
867
868static void
869loop_fork (EV_P)
870{
871#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A);
873#endif 2229#endif
874#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
876#endif
877#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
879#endif
880
881 if (ev_is_active (&sigev))
882 {
883 /* default loop */
884
885 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A);
894 }
895
896 postfork = 0;
897} 2230}
2231#endif
898 2232
899#if EV_MULTIPLICITY 2233#if EV_MULTIPLICITY
900struct ev_loop * 2234struct ev_loop * ecb_cold
901ev_loop_new (unsigned int flags)
902{
903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
904
905 memset (loop, 0, sizeof (struct ev_loop));
906
907 loop_init (EV_A_ flags);
908
909 if (ev_method (EV_A))
910 return loop;
911
912 return 0;
913}
914
915void
916ev_loop_destroy (EV_P)
917{
918 loop_destroy (EV_A);
919 ev_free (loop);
920}
921
922void
923ev_loop_fork (EV_P)
924{
925 postfork = 1;
926}
927
928#endif
929
930#if EV_MULTIPLICITY
931struct ev_loop *
932ev_default_loop_init (unsigned int flags)
933#else 2235#else
934int 2236int
2237#endif
935ev_default_loop (unsigned int flags) 2238ev_default_loop (unsigned int flags)
936#endif
937{ 2239{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 2240 if (!ev_default_loop_ptr)
943 { 2241 {
944#if EV_MULTIPLICITY 2242#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2243 EV_P = ev_default_loop_ptr = &default_loop_struct;
946#else 2244#else
947 ev_default_loop_ptr = 1; 2245 ev_default_loop_ptr = 1;
948#endif 2246#endif
949 2247
950 loop_init (EV_A_ flags); 2248 loop_init (EV_A_ flags);
951 2249
952 if (ev_method (EV_A)) 2250 if (ev_backend (EV_A))
953 { 2251 {
954 siginit (EV_A); 2252#if EV_CHILD_ENABLE
955
956#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 2253 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 2254 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 2255 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2256 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#endif 2257#endif
966 2262
967 return ev_default_loop_ptr; 2263 return ev_default_loop_ptr;
968} 2264}
969 2265
970void 2266void
971ev_default_destroy (void) 2267ev_loop_fork (EV_P)
972{ 2268{
973#if EV_MULTIPLICITY 2269 postfork = 1; /* must be in line with ev_default_fork */
974 struct ev_loop *loop = ev_default_loop_ptr;
975#endif
976
977#ifndef _WIN32
978 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev);
980#endif
981
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A);
989} 2270}
2271
2272/*****************************************************************************/
990 2273
991void 2274void
992ev_default_fork (void) 2275ev_invoke (EV_P_ void *w, int revents)
993{ 2276{
994#if EV_MULTIPLICITY 2277 EV_CB_INVOKE ((W)w, revents);
995 struct ev_loop *loop = ev_default_loop_ptr;
996#endif
997
998 if (method)
999 postfork = 1;
1000} 2278}
1001 2279
1002/*****************************************************************************/ 2280unsigned int
1003 2281ev_pending_count (EV_P)
1004static int
1005any_pending (EV_P)
1006{ 2282{
1007 int pri; 2283 int pri;
2284 unsigned int count = 0;
1008 2285
1009 for (pri = NUMPRI; pri--; ) 2286 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri]) 2287 count += pendingcnt [pri];
1011 return 1;
1012 2288
1013 return 0; 2289 return count;
1014} 2290}
1015 2291
1016inline void 2292void noinline
1017call_pending (EV_P) 2293ev_invoke_pending (EV_P)
1018{ 2294{
1019 int pri; 2295 int pri;
1020 2296
1021 for (pri = NUMPRI; pri--; ) 2297 for (pri = NUMPRI; pri--; )
1022 while (pendingcnt [pri]) 2298 while (pendingcnt [pri])
1023 { 2299 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2300 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 2301
1026 if (expect_true (p->w))
1027 {
1028 p->w->pending = 0; 2302 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 2303 EV_CB_INVOKE (p->w, p->events);
1030 } 2304 EV_FREQUENT_CHECK;
1031 } 2305 }
1032} 2306}
1033 2307
2308#if EV_IDLE_ENABLE
2309/* make idle watchers pending. this handles the "call-idle */
2310/* only when higher priorities are idle" logic */
1034inline void 2311inline_size void
2312idle_reify (EV_P)
2313{
2314 if (expect_false (idleall))
2315 {
2316 int pri;
2317
2318 for (pri = NUMPRI; pri--; )
2319 {
2320 if (pendingcnt [pri])
2321 break;
2322
2323 if (idlecnt [pri])
2324 {
2325 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2326 break;
2327 }
2328 }
2329 }
2330}
2331#endif
2332
2333/* make timers pending */
2334inline_size void
1035timers_reify (EV_P) 2335timers_reify (EV_P)
1036{ 2336{
2337 EV_FREQUENT_CHECK;
2338
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 2339 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 2340 {
1039 struct ev_timer *w = timers [0]; 2341 do
1040
1041 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1042
1043 /* first reschedule or stop timer */
1044 if (w->repeat)
1045 { 2342 {
2343 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2344
2345 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2346
2347 /* first reschedule or stop timer */
2348 if (w->repeat)
2349 {
2350 ev_at (w) += w->repeat;
2351 if (ev_at (w) < mn_now)
2352 ev_at (w) = mn_now;
2353
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2354 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 2355
1048 ((WT)w)->at += w->repeat; 2356 ANHE_at_cache (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 2357 downheap (timers, timercnt, HEAP0);
2358 }
2359 else
2360 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2361
2362 EV_FREQUENT_CHECK;
2363 feed_reverse (EV_A_ (W)w);
1053 } 2364 }
1054 else 2365 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 2366
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2367 feed_reverse_done (EV_A_ EV_TIMER);
2368 }
2369}
2370
2371#if EV_PERIODIC_ENABLE
2372
2373static void noinline
2374periodic_recalc (EV_P_ ev_periodic *w)
2375{
2376 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2377 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2378
2379 /* the above almost always errs on the low side */
2380 while (at <= ev_rt_now)
1058 } 2381 {
1059} 2382 ev_tstamp nat = at + w->interval;
1060 2383
1061#if EV_PERIODICS 2384 /* when resolution fails us, we use ev_rt_now */
2385 if (expect_false (nat == at))
2386 {
2387 at = ev_rt_now;
2388 break;
2389 }
2390
2391 at = nat;
2392 }
2393
2394 ev_at (w) = at;
2395}
2396
2397/* make periodics pending */
1062inline void 2398inline_size void
1063periodics_reify (EV_P) 2399periodics_reify (EV_P)
1064{ 2400{
2401 EV_FREQUENT_CHECK;
2402
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2403 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 2404 {
1067 struct ev_periodic *w = periodics [0]; 2405 int feed_count = 0;
1068 2406
2407 do
2408 {
2409 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2410
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2411 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 2412
1071 /* first reschedule or stop timer */ 2413 /* first reschedule or stop timer */
2414 if (w->reschedule_cb)
2415 {
2416 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2417
2418 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2419
2420 ANHE_at_cache (periodics [HEAP0]);
2421 downheap (periodics, periodiccnt, HEAP0);
2422 }
2423 else if (w->interval)
2424 {
2425 periodic_recalc (EV_A_ w);
2426 ANHE_at_cache (periodics [HEAP0]);
2427 downheap (periodics, periodiccnt, HEAP0);
2428 }
2429 else
2430 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2431
2432 EV_FREQUENT_CHECK;
2433 feed_reverse (EV_A_ (W)w);
2434 }
2435 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2436
2437 feed_reverse_done (EV_A_ EV_PERIODIC);
2438 }
2439}
2440
2441/* simply recalculate all periodics */
2442/* TODO: maybe ensure that at least one event happens when jumping forward? */
2443static void noinline ecb_cold
2444periodics_reschedule (EV_P)
2445{
2446 int i;
2447
2448 /* adjust periodics after time jump */
2449 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2450 {
2451 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2452
1072 if (w->reschedule_cb) 2453 if (w->reschedule_cb)
2454 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2455 else if (w->interval)
2456 periodic_recalc (EV_A_ w);
2457
2458 ANHE_at_cache (periodics [i]);
2459 }
2460
2461 reheap (periodics, periodiccnt);
2462}
2463#endif
2464
2465/* adjust all timers by a given offset */
2466static void noinline ecb_cold
2467timers_reschedule (EV_P_ ev_tstamp adjust)
2468{
2469 int i;
2470
2471 for (i = 0; i < timercnt; ++i)
2472 {
2473 ANHE *he = timers + i + HEAP0;
2474 ANHE_w (*he)->at += adjust;
2475 ANHE_at_cache (*he);
2476 }
2477}
2478
2479/* fetch new monotonic and realtime times from the kernel */
2480/* also detect if there was a timejump, and act accordingly */
2481inline_speed void
2482time_update (EV_P_ ev_tstamp max_block)
2483{
2484#if EV_USE_MONOTONIC
2485 if (expect_true (have_monotonic))
2486 {
2487 int i;
2488 ev_tstamp odiff = rtmn_diff;
2489
2490 mn_now = get_clock ();
2491
2492 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2493 /* interpolate in the meantime */
2494 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1073 { 2495 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2496 ev_rt_now = rtmn_diff + mn_now;
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2497 return;
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 } 2498 }
1078 else if (w->interval)
1079 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1082 downheap ((WT *)periodics, periodiccnt, 0);
1083 }
1084 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 2499
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 }
1089}
1090
1091static void
1092periodics_reschedule (EV_P)
1093{
1094 int i;
1095
1096 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i)
1098 {
1099 struct ev_periodic *w = periodics [i];
1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock ();
1117
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 {
1120 ev_rt_now = rtmn_diff + mn_now;
1121 return 0;
1122 }
1123 else
1124 {
1125 now_floor = mn_now; 2500 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 2501 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 2502
1131inline void 2503 /* loop a few times, before making important decisions.
1132time_update (EV_P) 2504 * on the choice of "4": one iteration isn't enough,
1133{ 2505 * in case we get preempted during the calls to
1134 int i; 2506 * ev_time and get_clock. a second call is almost guaranteed
1135 2507 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 2508 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 2509 * in the unlikely event of having been preempted here.
1138 { 2510 */
1139 if (time_update_monotonic (EV_A)) 2511 for (i = 4; --i; )
1140 { 2512 {
1141 ev_tstamp odiff = rtmn_diff; 2513 ev_tstamp diff;
1142
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1144 {
1145 rtmn_diff = ev_rt_now - mn_now; 2514 rtmn_diff = ev_rt_now - mn_now;
1146 2515
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2516 diff = odiff - rtmn_diff;
2517
2518 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1148 return; /* all is well */ 2519 return; /* all is well */
1149 2520
1150 ev_rt_now = ev_time (); 2521 ev_rt_now = ev_time ();
1151 mn_now = get_clock (); 2522 mn_now = get_clock ();
1152 now_floor = mn_now; 2523 now_floor = mn_now;
1153 } 2524 }
1154 2525
2526 /* no timer adjustment, as the monotonic clock doesn't jump */
2527 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1155# if EV_PERIODICS 2528# if EV_PERIODIC_ENABLE
2529 periodics_reschedule (EV_A);
2530# endif
2531 }
2532 else
2533#endif
2534 {
2535 ev_rt_now = ev_time ();
2536
2537 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2538 {
2539 /* adjust timers. this is easy, as the offset is the same for all of them */
2540 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2541#if EV_PERIODIC_ENABLE
1156 periodics_reschedule (EV_A); 2542 periodics_reschedule (EV_A);
1157# endif 2543#endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 2544 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 2545
1178 mn_now = ev_rt_now; 2546 mn_now = ev_rt_now;
1179 } 2547 }
1180} 2548}
1181 2549
1182void 2550void
1183ev_ref (EV_P)
1184{
1185 ++activecnt;
1186}
1187
1188void
1189ev_unref (EV_P)
1190{
1191 --activecnt;
1192}
1193
1194static int loop_done;
1195
1196void
1197ev_loop (EV_P_ int flags) 2551ev_run (EV_P_ int flags)
1198{ 2552{
1199 double block; 2553#if EV_FEATURE_API
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2554 ++loop_depth;
2555#endif
1201 2556
1202 while (activecnt) 2557 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2558
2559 loop_done = EVBREAK_CANCEL;
2560
2561 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2562
2563 do
1203 { 2564 {
2565#if EV_VERIFY >= 2
2566 ev_verify (EV_A);
2567#endif
2568
2569#ifndef _WIN32
2570 if (expect_false (curpid)) /* penalise the forking check even more */
2571 if (expect_false (getpid () != curpid))
2572 {
2573 curpid = getpid ();
2574 postfork = 1;
2575 }
2576#endif
2577
2578#if EV_FORK_ENABLE
2579 /* we might have forked, so queue fork handlers */
2580 if (expect_false (postfork))
2581 if (forkcnt)
2582 {
2583 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2584 EV_INVOKE_PENDING;
2585 }
2586#endif
2587
2588#if EV_PREPARE_ENABLE
1204 /* queue check watchers (and execute them) */ 2589 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 2590 if (expect_false (preparecnt))
1206 { 2591 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2592 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 2593 EV_INVOKE_PENDING;
1209 } 2594 }
2595#endif
2596
2597 if (expect_false (loop_done))
2598 break;
1210 2599
1211 /* we might have forked, so reify kernel state if necessary */ 2600 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 2601 if (expect_false (postfork))
1213 loop_fork (EV_A); 2602 loop_fork (EV_A);
1214 2603
1215 /* update fd-related kernel structures */ 2604 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 2605 fd_reify (EV_A);
1217 2606
1218 /* calculate blocking time */ 2607 /* calculate blocking time */
2608 {
2609 ev_tstamp waittime = 0.;
2610 ev_tstamp sleeptime = 0.;
1219 2611
1220 /* we only need this for !monotonic clock or timers, but as we basically 2612 /* remember old timestamp for io_blocktime calculation */
1221 always have timers, we just calculate it always */ 2613 ev_tstamp prev_mn_now = mn_now;
1222#if EV_USE_MONOTONIC 2614
1223 if (expect_true (have_monotonic)) 2615 /* update time to cancel out callback processing overhead */
1224 time_update_monotonic (EV_A); 2616 time_update (EV_A_ 1e100);
1225 else 2617
1226#endif 2618 /* from now on, we want a pipe-wake-up */
2619 pipe_write_wanted = 1;
2620
2621 ECB_MEMORY_FENCE; /* amke sure pipe_write_wanted is visible before we check for potential skips */
2622
2623 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1227 { 2624 {
1228 ev_rt_now = ev_time ();
1229 mn_now = ev_rt_now;
1230 }
1231
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 2625 waittime = MAX_BLOCKTIME;
1237 2626
1238 if (timercnt) 2627 if (timercnt)
1239 { 2628 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2629 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1241 if (block > to) block = to; 2630 if (waittime > to) waittime = to;
1242 } 2631 }
1243 2632
1244#if EV_PERIODICS 2633#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 2634 if (periodiccnt)
1246 { 2635 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2636 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1248 if (block > to) block = to; 2637 if (waittime > to) waittime = to;
1249 } 2638 }
1250#endif 2639#endif
1251 2640
1252 if (expect_false (block < 0.)) block = 0.; 2641 /* don't let timeouts decrease the waittime below timeout_blocktime */
2642 if (expect_false (waittime < timeout_blocktime))
2643 waittime = timeout_blocktime;
2644
2645 /* at this point, we NEED to wait, so we have to ensure */
2646 /* to pass a minimum nonzero value to the backend */
2647 if (expect_false (waittime < backend_mintime))
2648 waittime = backend_mintime;
2649
2650 /* extra check because io_blocktime is commonly 0 */
2651 if (expect_false (io_blocktime))
2652 {
2653 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2654
2655 if (sleeptime > waittime - backend_mintime)
2656 sleeptime = waittime - backend_mintime;
2657
2658 if (expect_true (sleeptime > 0.))
2659 {
2660 ev_sleep (sleeptime);
2661 waittime -= sleeptime;
2662 }
2663 }
1253 } 2664 }
1254 2665
1255 method_poll (EV_A_ block); 2666#if EV_FEATURE_API
2667 ++loop_count;
2668#endif
2669 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2670 backend_poll (EV_A_ waittime);
2671 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1256 2672
2673 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2674
2675 if (pipe_write_skipped)
2676 {
2677 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2678 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2679 }
2680
2681
1257 /* update ev_rt_now, do magic */ 2682 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 2683 time_update (EV_A_ waittime + sleeptime);
2684 }
1259 2685
1260 /* queue pending timers and reschedule them */ 2686 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 2687 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 2688#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 2689 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 2690#endif
1265 2691
2692#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 2693 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 2694 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2695#endif
1269 2696
2697#if EV_CHECK_ENABLE
1270 /* queue check watchers, to be executed first */ 2698 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 2699 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2700 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2701#endif
1273 2702
1274 call_pending (EV_A); 2703 EV_INVOKE_PENDING;
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 2704 }
2705 while (expect_true (
2706 activecnt
2707 && !loop_done
2708 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2709 ));
1279 2710
1280 if (loop_done != 2) 2711 if (loop_done == EVBREAK_ONE)
1281 loop_done = 0; 2712 loop_done = EVBREAK_CANCEL;
2713
2714#if EV_FEATURE_API
2715 --loop_depth;
2716#endif
1282} 2717}
1283 2718
1284void 2719void
1285ev_unloop (EV_P_ int how) 2720ev_break (EV_P_ int how)
1286{ 2721{
1287 loop_done = how; 2722 loop_done = how;
1288} 2723}
1289 2724
2725void
2726ev_ref (EV_P)
2727{
2728 ++activecnt;
2729}
2730
2731void
2732ev_unref (EV_P)
2733{
2734 --activecnt;
2735}
2736
2737void
2738ev_now_update (EV_P)
2739{
2740 time_update (EV_A_ 1e100);
2741}
2742
2743void
2744ev_suspend (EV_P)
2745{
2746 ev_now_update (EV_A);
2747}
2748
2749void
2750ev_resume (EV_P)
2751{
2752 ev_tstamp mn_prev = mn_now;
2753
2754 ev_now_update (EV_A);
2755 timers_reschedule (EV_A_ mn_now - mn_prev);
2756#if EV_PERIODIC_ENABLE
2757 /* TODO: really do this? */
2758 periodics_reschedule (EV_A);
2759#endif
2760}
2761
1290/*****************************************************************************/ 2762/*****************************************************************************/
2763/* singly-linked list management, used when the expected list length is short */
1291 2764
1292inline void 2765inline_size void
1293wlist_add (WL *head, WL elem) 2766wlist_add (WL *head, WL elem)
1294{ 2767{
1295 elem->next = *head; 2768 elem->next = *head;
1296 *head = elem; 2769 *head = elem;
1297} 2770}
1298 2771
1299inline void 2772inline_size void
1300wlist_del (WL *head, WL elem) 2773wlist_del (WL *head, WL elem)
1301{ 2774{
1302 while (*head) 2775 while (*head)
1303 { 2776 {
1304 if (*head == elem) 2777 if (expect_true (*head == elem))
1305 { 2778 {
1306 *head = elem->next; 2779 *head = elem->next;
1307 return; 2780 break;
1308 } 2781 }
1309 2782
1310 head = &(*head)->next; 2783 head = &(*head)->next;
1311 } 2784 }
1312} 2785}
1313 2786
2787/* internal, faster, version of ev_clear_pending */
1314inline void 2788inline_speed void
1315ev_clear_pending (EV_P_ W w) 2789clear_pending (EV_P_ W w)
1316{ 2790{
1317 if (w->pending) 2791 if (w->pending)
1318 { 2792 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2793 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1320 w->pending = 0; 2794 w->pending = 0;
1321 } 2795 }
1322} 2796}
1323 2797
2798int
2799ev_clear_pending (EV_P_ void *w)
2800{
2801 W w_ = (W)w;
2802 int pending = w_->pending;
2803
2804 if (expect_true (pending))
2805 {
2806 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2807 p->w = (W)&pending_w;
2808 w_->pending = 0;
2809 return p->events;
2810 }
2811 else
2812 return 0;
2813}
2814
1324inline void 2815inline_size void
2816pri_adjust (EV_P_ W w)
2817{
2818 int pri = ev_priority (w);
2819 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2820 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2821 ev_set_priority (w, pri);
2822}
2823
2824inline_speed void
1325ev_start (EV_P_ W w, int active) 2825ev_start (EV_P_ W w, int active)
1326{ 2826{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2827 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 2828 w->active = active;
1331 ev_ref (EV_A); 2829 ev_ref (EV_A);
1332} 2830}
1333 2831
1334inline void 2832inline_size void
1335ev_stop (EV_P_ W w) 2833ev_stop (EV_P_ W w)
1336{ 2834{
1337 ev_unref (EV_A); 2835 ev_unref (EV_A);
1338 w->active = 0; 2836 w->active = 0;
1339} 2837}
1340 2838
1341/*****************************************************************************/ 2839/*****************************************************************************/
1342 2840
1343void 2841void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 2842ev_io_start (EV_P_ ev_io *w)
1345{ 2843{
1346 int fd = w->fd; 2844 int fd = w->fd;
1347 2845
1348 if (expect_false (ev_is_active (w))) 2846 if (expect_false (ev_is_active (w)))
1349 return; 2847 return;
1350 2848
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 2849 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2850 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2851
2852 EV_FREQUENT_CHECK;
1352 2853
1353 ev_start (EV_A_ (W)w, 1); 2854 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2855 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2856 wlist_add (&anfds[fd].head, (WL)w);
1356 2857
1357 fd_change (EV_A_ fd); 2858 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1358} 2859 w->events &= ~EV__IOFDSET;
1359 2860
1360void 2861 EV_FREQUENT_CHECK;
2862}
2863
2864void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 2865ev_io_stop (EV_P_ ev_io *w)
1362{ 2866{
1363 ev_clear_pending (EV_A_ (W)w); 2867 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 2868 if (expect_false (!ev_is_active (w)))
1365 return; 2869 return;
1366 2870
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2871 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 2872
2873 EV_FREQUENT_CHECK;
2874
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2875 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 2876 ev_stop (EV_A_ (W)w);
1371 2877
1372 fd_change (EV_A_ w->fd); 2878 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1373}
1374 2879
1375void 2880 EV_FREQUENT_CHECK;
2881}
2882
2883void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 2884ev_timer_start (EV_P_ ev_timer *w)
1377{ 2885{
1378 if (expect_false (ev_is_active (w))) 2886 if (expect_false (ev_is_active (w)))
1379 return; 2887 return;
1380 2888
1381 ((WT)w)->at += mn_now; 2889 ev_at (w) += mn_now;
1382 2890
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2891 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 2892
2893 EV_FREQUENT_CHECK;
2894
2895 ++timercnt;
1385 ev_start (EV_A_ (W)w, ++timercnt); 2896 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2897 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 2898 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 2899 ANHE_at_cache (timers [ev_active (w)]);
2900 upheap (timers, ev_active (w));
1389 2901
2902 EV_FREQUENT_CHECK;
2903
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2904 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 2905}
1392 2906
1393void 2907void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 2908ev_timer_stop (EV_P_ ev_timer *w)
1395{ 2909{
1396 ev_clear_pending (EV_A_ (W)w); 2910 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 2911 if (expect_false (!ev_is_active (w)))
1398 return; 2912 return;
1399 2913
2914 EV_FREQUENT_CHECK;
2915
2916 {
2917 int active = ev_active (w);
2918
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2919 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 2920
2921 --timercnt;
2922
1402 if (expect_true (((W)w)->active < timercnt--)) 2923 if (expect_true (active < timercnt + HEAP0))
1403 { 2924 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 2925 timers [active] = timers [timercnt + HEAP0];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2926 adjustheap (timers, timercnt, active);
1406 } 2927 }
2928 }
1407 2929
1408 ((WT)w)->at -= mn_now; 2930 ev_at (w) -= mn_now;
1409 2931
1410 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
1411}
1412 2933
1413void 2934 EV_FREQUENT_CHECK;
2935}
2936
2937void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 2938ev_timer_again (EV_P_ ev_timer *w)
1415{ 2939{
2940 EV_FREQUENT_CHECK;
2941
1416 if (ev_is_active (w)) 2942 if (ev_is_active (w))
1417 { 2943 {
1418 if (w->repeat) 2944 if (w->repeat)
1419 { 2945 {
1420 ((WT)w)->at = mn_now + w->repeat; 2946 ev_at (w) = mn_now + w->repeat;
2947 ANHE_at_cache (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2948 adjustheap (timers, timercnt, ev_active (w));
1422 } 2949 }
1423 else 2950 else
1424 ev_timer_stop (EV_A_ w); 2951 ev_timer_stop (EV_A_ w);
1425 } 2952 }
1426 else if (w->repeat) 2953 else if (w->repeat)
1427 { 2954 {
1428 w->at = w->repeat; 2955 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 2956 ev_timer_start (EV_A_ w);
1430 } 2957 }
1431}
1432 2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962ev_tstamp
2963ev_timer_remaining (EV_P_ ev_timer *w)
2964{
2965 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2966}
2967
1433#if EV_PERIODICS 2968#if EV_PERIODIC_ENABLE
1434void 2969void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 2970ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 2971{
1437 if (expect_false (ev_is_active (w))) 2972 if (expect_false (ev_is_active (w)))
1438 return; 2973 return;
1439 2974
1440 if (w->reschedule_cb) 2975 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2976 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 2977 else if (w->interval)
1443 { 2978 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2979 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 2980 periodic_recalc (EV_A_ w);
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1447 } 2981 }
2982 else
2983 ev_at (w) = w->offset;
1448 2984
2985 EV_FREQUENT_CHECK;
2986
2987 ++periodiccnt;
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 2988 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2989 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 2990 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 2991 ANHE_at_cache (periodics [ev_active (w)]);
2992 upheap (periodics, ev_active (w));
1453 2993
2994 EV_FREQUENT_CHECK;
2995
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2996 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 2997}
1456 2998
1457void 2999void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 3000ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 3001{
1460 ev_clear_pending (EV_A_ (W)w); 3002 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 3003 if (expect_false (!ev_is_active (w)))
1462 return; 3004 return;
1463 3005
3006 EV_FREQUENT_CHECK;
3007
3008 {
3009 int active = ev_active (w);
3010
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3011 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 3012
3013 --periodiccnt;
3014
1466 if (expect_true (((W)w)->active < periodiccnt--)) 3015 if (expect_true (active < periodiccnt + HEAP0))
1467 { 3016 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3017 periodics [active] = periodics [periodiccnt + HEAP0];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3018 adjustheap (periodics, periodiccnt, active);
1470 } 3019 }
3020 }
1471 3021
1472 ev_stop (EV_A_ (W)w); 3022 ev_stop (EV_A_ (W)w);
1473}
1474 3023
1475void 3024 EV_FREQUENT_CHECK;
3025}
3026
3027void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 3028ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 3029{
1478 /* TODO: use adjustheap and recalculation */ 3030 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 3031 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 3032 ev_periodic_start (EV_A_ w);
1481} 3033}
1482#endif 3034#endif
1483 3035
1484void 3036#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 3037# define SA_RESTART 0
3038#endif
3039
3040#if EV_SIGNAL_ENABLE
3041
3042void noinline
3043ev_signal_start (EV_P_ ev_signal *w)
1486{ 3044{
1487 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
1488 return; 3046 return;
1489 3047
3048 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3049
3050#if EV_MULTIPLICITY
3051 assert (("libev: a signal must not be attached to two different loops",
3052 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3053
3054 signals [w->signum - 1].loop = EV_A;
3055#endif
3056
3057 EV_FREQUENT_CHECK;
3058
3059#if EV_USE_SIGNALFD
3060 if (sigfd == -2)
3061 {
3062 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3063 if (sigfd < 0 && errno == EINVAL)
3064 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3065
3066 if (sigfd >= 0)
3067 {
3068 fd_intern (sigfd); /* doing it twice will not hurt */
3069
3070 sigemptyset (&sigfd_set);
3071
3072 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3073 ev_set_priority (&sigfd_w, EV_MAXPRI);
3074 ev_io_start (EV_A_ &sigfd_w);
3075 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3076 }
3077 }
3078
3079 if (sigfd >= 0)
3080 {
3081 /* TODO: check .head */
3082 sigaddset (&sigfd_set, w->signum);
3083 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3084
3085 signalfd (sigfd, &sigfd_set, 0);
3086 }
3087#endif
3088
1490 ev_start (EV_A_ (W)w, ++idlecnt); 3089 ev_start (EV_A_ (W)w, 1);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3090 wlist_add (&signals [w->signum - 1].head, (WL)w);
1492 idles [idlecnt - 1] = w;
1493}
1494 3091
1495void 3092 if (!((WL)w)->next)
1496ev_idle_stop (EV_P_ struct ev_idle *w) 3093# if EV_USE_SIGNALFD
3094 if (sigfd < 0) /*TODO*/
3095# endif
3096 {
3097# ifdef _WIN32
3098 evpipe_init (EV_A);
3099
3100 signal (w->signum, ev_sighandler);
3101# else
3102 struct sigaction sa;
3103
3104 evpipe_init (EV_A);
3105
3106 sa.sa_handler = ev_sighandler;
3107 sigfillset (&sa.sa_mask);
3108 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3109 sigaction (w->signum, &sa, 0);
3110
3111 if (origflags & EVFLAG_NOSIGMASK)
3112 {
3113 sigemptyset (&sa.sa_mask);
3114 sigaddset (&sa.sa_mask, w->signum);
3115 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3116 }
3117#endif
3118 }
3119
3120 EV_FREQUENT_CHECK;
3121}
3122
3123void noinline
3124ev_signal_stop (EV_P_ ev_signal *w)
1497{ 3125{
1498 ev_clear_pending (EV_A_ (W)w); 3126 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 3127 if (expect_false (!ev_is_active (w)))
1500 return; 3128 return;
1501 3129
1502 idles [((W)w)->active - 1] = idles [--idlecnt]; 3130 EV_FREQUENT_CHECK;
3131
3132 wlist_del (&signals [w->signum - 1].head, (WL)w);
1503 ev_stop (EV_A_ (W)w); 3133 ev_stop (EV_A_ (W)w);
3134
3135 if (!signals [w->signum - 1].head)
3136 {
3137#if EV_MULTIPLICITY
3138 signals [w->signum - 1].loop = 0; /* unattach from signal */
3139#endif
3140#if EV_USE_SIGNALFD
3141 if (sigfd >= 0)
3142 {
3143 sigset_t ss;
3144
3145 sigemptyset (&ss);
3146 sigaddset (&ss, w->signum);
3147 sigdelset (&sigfd_set, w->signum);
3148
3149 signalfd (sigfd, &sigfd_set, 0);
3150 sigprocmask (SIG_UNBLOCK, &ss, 0);
3151 }
3152 else
3153#endif
3154 signal (w->signum, SIG_DFL);
3155 }
3156
3157 EV_FREQUENT_CHECK;
1504} 3158}
3159
3160#endif
3161
3162#if EV_CHILD_ENABLE
1505 3163
1506void 3164void
1507ev_prepare_start (EV_P_ struct ev_prepare *w) 3165ev_child_start (EV_P_ ev_child *w)
1508{ 3166{
3167#if EV_MULTIPLICITY
3168 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3169#endif
1509 if (expect_false (ev_is_active (w))) 3170 if (expect_false (ev_is_active (w)))
1510 return; 3171 return;
1511 3172
3173 EV_FREQUENT_CHECK;
3174
1512 ev_start (EV_A_ (W)w, ++preparecnt); 3175 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3176 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1514 prepares [preparecnt - 1] = w; 3177
3178 EV_FREQUENT_CHECK;
1515} 3179}
1516 3180
1517void 3181void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w) 3182ev_child_stop (EV_P_ ev_child *w)
1519{ 3183{
1520 ev_clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
1522 return; 3186 return;
1523 3187
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3188 EV_FREQUENT_CHECK;
3189
3190 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1525 ev_stop (EV_A_ (W)w); 3191 ev_stop (EV_A_ (W)w);
3192
3193 EV_FREQUENT_CHECK;
1526} 3194}
3195
3196#endif
3197
3198#if EV_STAT_ENABLE
3199
3200# ifdef _WIN32
3201# undef lstat
3202# define lstat(a,b) _stati64 (a,b)
3203# endif
3204
3205#define DEF_STAT_INTERVAL 5.0074891
3206#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3207#define MIN_STAT_INTERVAL 0.1074891
3208
3209static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3210
3211#if EV_USE_INOTIFY
3212
3213/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3214# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3215
3216static void noinline
3217infy_add (EV_P_ ev_stat *w)
3218{
3219 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3220
3221 if (w->wd >= 0)
3222 {
3223 struct statfs sfs;
3224
3225 /* now local changes will be tracked by inotify, but remote changes won't */
3226 /* unless the filesystem is known to be local, we therefore still poll */
3227 /* also do poll on <2.6.25, but with normal frequency */
3228
3229 if (!fs_2625)
3230 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3231 else if (!statfs (w->path, &sfs)
3232 && (sfs.f_type == 0x1373 /* devfs */
3233 || sfs.f_type == 0xEF53 /* ext2/3 */
3234 || sfs.f_type == 0x3153464a /* jfs */
3235 || sfs.f_type == 0x52654973 /* reiser3 */
3236 || sfs.f_type == 0x01021994 /* tempfs */
3237 || sfs.f_type == 0x58465342 /* xfs */))
3238 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3239 else
3240 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3241 }
3242 else
3243 {
3244 /* can't use inotify, continue to stat */
3245 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3246
3247 /* if path is not there, monitor some parent directory for speedup hints */
3248 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3249 /* but an efficiency issue only */
3250 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3251 {
3252 char path [4096];
3253 strcpy (path, w->path);
3254
3255 do
3256 {
3257 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3258 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3259
3260 char *pend = strrchr (path, '/');
3261
3262 if (!pend || pend == path)
3263 break;
3264
3265 *pend = 0;
3266 w->wd = inotify_add_watch (fs_fd, path, mask);
3267 }
3268 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3269 }
3270 }
3271
3272 if (w->wd >= 0)
3273 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3274
3275 /* now re-arm timer, if required */
3276 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3277 ev_timer_again (EV_A_ &w->timer);
3278 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3279}
3280
3281static void noinline
3282infy_del (EV_P_ ev_stat *w)
3283{
3284 int slot;
3285 int wd = w->wd;
3286
3287 if (wd < 0)
3288 return;
3289
3290 w->wd = -2;
3291 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3292 wlist_del (&fs_hash [slot].head, (WL)w);
3293
3294 /* remove this watcher, if others are watching it, they will rearm */
3295 inotify_rm_watch (fs_fd, wd);
3296}
3297
3298static void noinline
3299infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3300{
3301 if (slot < 0)
3302 /* overflow, need to check for all hash slots */
3303 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3304 infy_wd (EV_A_ slot, wd, ev);
3305 else
3306 {
3307 WL w_;
3308
3309 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3310 {
3311 ev_stat *w = (ev_stat *)w_;
3312 w_ = w_->next; /* lets us remove this watcher and all before it */
3313
3314 if (w->wd == wd || wd == -1)
3315 {
3316 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3317 {
3318 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3319 w->wd = -1;
3320 infy_add (EV_A_ w); /* re-add, no matter what */
3321 }
3322
3323 stat_timer_cb (EV_A_ &w->timer, 0);
3324 }
3325 }
3326 }
3327}
3328
3329static void
3330infy_cb (EV_P_ ev_io *w, int revents)
3331{
3332 char buf [EV_INOTIFY_BUFSIZE];
3333 int ofs;
3334 int len = read (fs_fd, buf, sizeof (buf));
3335
3336 for (ofs = 0; ofs < len; )
3337 {
3338 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3339 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3340 ofs += sizeof (struct inotify_event) + ev->len;
3341 }
3342}
3343
3344inline_size void ecb_cold
3345ev_check_2625 (EV_P)
3346{
3347 /* kernels < 2.6.25 are borked
3348 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3349 */
3350 if (ev_linux_version () < 0x020619)
3351 return;
3352
3353 fs_2625 = 1;
3354}
3355
3356inline_size int
3357infy_newfd (void)
3358{
3359#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3360 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3361 if (fd >= 0)
3362 return fd;
3363#endif
3364 return inotify_init ();
3365}
3366
3367inline_size void
3368infy_init (EV_P)
3369{
3370 if (fs_fd != -2)
3371 return;
3372
3373 fs_fd = -1;
3374
3375 ev_check_2625 (EV_A);
3376
3377 fs_fd = infy_newfd ();
3378
3379 if (fs_fd >= 0)
3380 {
3381 fd_intern (fs_fd);
3382 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3383 ev_set_priority (&fs_w, EV_MAXPRI);
3384 ev_io_start (EV_A_ &fs_w);
3385 ev_unref (EV_A);
3386 }
3387}
3388
3389inline_size void
3390infy_fork (EV_P)
3391{
3392 int slot;
3393
3394 if (fs_fd < 0)
3395 return;
3396
3397 ev_ref (EV_A);
3398 ev_io_stop (EV_A_ &fs_w);
3399 close (fs_fd);
3400 fs_fd = infy_newfd ();
3401
3402 if (fs_fd >= 0)
3403 {
3404 fd_intern (fs_fd);
3405 ev_io_set (&fs_w, fs_fd, EV_READ);
3406 ev_io_start (EV_A_ &fs_w);
3407 ev_unref (EV_A);
3408 }
3409
3410 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3411 {
3412 WL w_ = fs_hash [slot].head;
3413 fs_hash [slot].head = 0;
3414
3415 while (w_)
3416 {
3417 ev_stat *w = (ev_stat *)w_;
3418 w_ = w_->next; /* lets us add this watcher */
3419
3420 w->wd = -1;
3421
3422 if (fs_fd >= 0)
3423 infy_add (EV_A_ w); /* re-add, no matter what */
3424 else
3425 {
3426 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3427 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3428 ev_timer_again (EV_A_ &w->timer);
3429 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3430 }
3431 }
3432 }
3433}
3434
3435#endif
3436
3437#ifdef _WIN32
3438# define EV_LSTAT(p,b) _stati64 (p, b)
3439#else
3440# define EV_LSTAT(p,b) lstat (p, b)
3441#endif
1527 3442
1528void 3443void
1529ev_check_start (EV_P_ struct ev_check *w) 3444ev_stat_stat (EV_P_ ev_stat *w)
3445{
3446 if (lstat (w->path, &w->attr) < 0)
3447 w->attr.st_nlink = 0;
3448 else if (!w->attr.st_nlink)
3449 w->attr.st_nlink = 1;
3450}
3451
3452static void noinline
3453stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3454{
3455 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3456
3457 ev_statdata prev = w->attr;
3458 ev_stat_stat (EV_A_ w);
3459
3460 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3461 if (
3462 prev.st_dev != w->attr.st_dev
3463 || prev.st_ino != w->attr.st_ino
3464 || prev.st_mode != w->attr.st_mode
3465 || prev.st_nlink != w->attr.st_nlink
3466 || prev.st_uid != w->attr.st_uid
3467 || prev.st_gid != w->attr.st_gid
3468 || prev.st_rdev != w->attr.st_rdev
3469 || prev.st_size != w->attr.st_size
3470 || prev.st_atime != w->attr.st_atime
3471 || prev.st_mtime != w->attr.st_mtime
3472 || prev.st_ctime != w->attr.st_ctime
3473 ) {
3474 /* we only update w->prev on actual differences */
3475 /* in case we test more often than invoke the callback, */
3476 /* to ensure that prev is always different to attr */
3477 w->prev = prev;
3478
3479 #if EV_USE_INOTIFY
3480 if (fs_fd >= 0)
3481 {
3482 infy_del (EV_A_ w);
3483 infy_add (EV_A_ w);
3484 ev_stat_stat (EV_A_ w); /* avoid race... */
3485 }
3486 #endif
3487
3488 ev_feed_event (EV_A_ w, EV_STAT);
3489 }
3490}
3491
3492void
3493ev_stat_start (EV_P_ ev_stat *w)
1530{ 3494{
1531 if (expect_false (ev_is_active (w))) 3495 if (expect_false (ev_is_active (w)))
1532 return; 3496 return;
1533 3497
3498 ev_stat_stat (EV_A_ w);
3499
3500 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3501 w->interval = MIN_STAT_INTERVAL;
3502
3503 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3504 ev_set_priority (&w->timer, ev_priority (w));
3505
3506#if EV_USE_INOTIFY
3507 infy_init (EV_A);
3508
3509 if (fs_fd >= 0)
3510 infy_add (EV_A_ w);
3511 else
3512#endif
3513 {
3514 ev_timer_again (EV_A_ &w->timer);
3515 ev_unref (EV_A);
3516 }
3517
1534 ev_start (EV_A_ (W)w, ++checkcnt); 3518 ev_start (EV_A_ (W)w, 1);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3519
1536 checks [checkcnt - 1] = w; 3520 EV_FREQUENT_CHECK;
1537} 3521}
1538 3522
1539void 3523void
1540ev_check_stop (EV_P_ struct ev_check *w) 3524ev_stat_stop (EV_P_ ev_stat *w)
1541{ 3525{
1542 ev_clear_pending (EV_A_ (W)w); 3526 clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w))) 3527 if (expect_false (!ev_is_active (w)))
1544 return; 3528 return;
1545 3529
1546 checks [((W)w)->active - 1] = checks [--checkcnt]; 3530 EV_FREQUENT_CHECK;
3531
3532#if EV_USE_INOTIFY
3533 infy_del (EV_A_ w);
3534#endif
3535
3536 if (ev_is_active (&w->timer))
3537 {
3538 ev_ref (EV_A);
3539 ev_timer_stop (EV_A_ &w->timer);
3540 }
3541
1547 ev_stop (EV_A_ (W)w); 3542 ev_stop (EV_A_ (W)w);
1548}
1549 3543
1550#ifndef SA_RESTART 3544 EV_FREQUENT_CHECK;
1551# define SA_RESTART 0 3545}
1552#endif 3546#endif
1553 3547
3548#if EV_IDLE_ENABLE
1554void 3549void
1555ev_signal_start (EV_P_ struct ev_signal *w) 3550ev_idle_start (EV_P_ ev_idle *w)
1556{ 3551{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w))) 3552 if (expect_false (ev_is_active (w)))
1561 return; 3553 return;
1562 3554
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3555 pri_adjust (EV_A_ (W)w);
1564 3556
3557 EV_FREQUENT_CHECK;
3558
3559 {
3560 int active = ++idlecnt [ABSPRI (w)];
3561
3562 ++idleall;
1565 ev_start (EV_A_ (W)w, 1); 3563 ev_start (EV_A_ (W)w, active);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1568 3564
1569 if (!((WL)w)->next) 3565 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1570 { 3566 idles [ABSPRI (w)][active - 1] = w;
1571#if _WIN32
1572 signal (w->signum, sighandler);
1573#else
1574 struct sigaction sa;
1575 sa.sa_handler = sighandler;
1576 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0);
1579#endif
1580 } 3567 }
3568
3569 EV_FREQUENT_CHECK;
1581} 3570}
1582 3571
1583void 3572void
1584ev_signal_stop (EV_P_ struct ev_signal *w) 3573ev_idle_stop (EV_P_ ev_idle *w)
1585{ 3574{
1586 ev_clear_pending (EV_A_ (W)w); 3575 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 3576 if (expect_false (!ev_is_active (w)))
1588 return; 3577 return;
1589 3578
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3579 EV_FREQUENT_CHECK;
3580
3581 {
3582 int active = ev_active (w);
3583
3584 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3585 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3586
1591 ev_stop (EV_A_ (W)w); 3587 ev_stop (EV_A_ (W)w);
3588 --idleall;
3589 }
1592 3590
1593 if (!signals [w->signum - 1].head) 3591 EV_FREQUENT_CHECK;
1594 signal (w->signum, SIG_DFL);
1595} 3592}
3593#endif
1596 3594
3595#if EV_PREPARE_ENABLE
1597void 3596void
1598ev_child_start (EV_P_ struct ev_child *w) 3597ev_prepare_start (EV_P_ ev_prepare *w)
1599{ 3598{
1600#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif
1603 if (expect_false (ev_is_active (w))) 3599 if (expect_false (ev_is_active (w)))
1604 return; 3600 return;
1605 3601
3602 EV_FREQUENT_CHECK;
3603
1606 ev_start (EV_A_ (W)w, 1); 3604 ev_start (EV_A_ (W)w, ++preparecnt);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3605 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3606 prepares [preparecnt - 1] = w;
3607
3608 EV_FREQUENT_CHECK;
1608} 3609}
1609 3610
1610void 3611void
1611ev_child_stop (EV_P_ struct ev_child *w) 3612ev_prepare_stop (EV_P_ ev_prepare *w)
1612{ 3613{
1613 ev_clear_pending (EV_A_ (W)w); 3614 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 3615 if (expect_false (!ev_is_active (w)))
1615 return; 3616 return;
1616 3617
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3618 EV_FREQUENT_CHECK;
3619
3620 {
3621 int active = ev_active (w);
3622
3623 prepares [active - 1] = prepares [--preparecnt];
3624 ev_active (prepares [active - 1]) = active;
3625 }
3626
1618 ev_stop (EV_A_ (W)w); 3627 ev_stop (EV_A_ (W)w);
3628
3629 EV_FREQUENT_CHECK;
1619} 3630}
3631#endif
3632
3633#if EV_CHECK_ENABLE
3634void
3635ev_check_start (EV_P_ ev_check *w)
3636{
3637 if (expect_false (ev_is_active (w)))
3638 return;
3639
3640 EV_FREQUENT_CHECK;
3641
3642 ev_start (EV_A_ (W)w, ++checkcnt);
3643 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3644 checks [checkcnt - 1] = w;
3645
3646 EV_FREQUENT_CHECK;
3647}
3648
3649void
3650ev_check_stop (EV_P_ ev_check *w)
3651{
3652 clear_pending (EV_A_ (W)w);
3653 if (expect_false (!ev_is_active (w)))
3654 return;
3655
3656 EV_FREQUENT_CHECK;
3657
3658 {
3659 int active = ev_active (w);
3660
3661 checks [active - 1] = checks [--checkcnt];
3662 ev_active (checks [active - 1]) = active;
3663 }
3664
3665 ev_stop (EV_A_ (W)w);
3666
3667 EV_FREQUENT_CHECK;
3668}
3669#endif
3670
3671#if EV_EMBED_ENABLE
3672void noinline
3673ev_embed_sweep (EV_P_ ev_embed *w)
3674{
3675 ev_run (w->other, EVRUN_NOWAIT);
3676}
3677
3678static void
3679embed_io_cb (EV_P_ ev_io *io, int revents)
3680{
3681 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3682
3683 if (ev_cb (w))
3684 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3685 else
3686 ev_run (w->other, EVRUN_NOWAIT);
3687}
3688
3689static void
3690embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3691{
3692 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3693
3694 {
3695 EV_P = w->other;
3696
3697 while (fdchangecnt)
3698 {
3699 fd_reify (EV_A);
3700 ev_run (EV_A_ EVRUN_NOWAIT);
3701 }
3702 }
3703}
3704
3705static void
3706embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3707{
3708 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3709
3710 ev_embed_stop (EV_A_ w);
3711
3712 {
3713 EV_P = w->other;
3714
3715 ev_loop_fork (EV_A);
3716 ev_run (EV_A_ EVRUN_NOWAIT);
3717 }
3718
3719 ev_embed_start (EV_A_ w);
3720}
3721
3722#if 0
3723static void
3724embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3725{
3726 ev_idle_stop (EV_A_ idle);
3727}
3728#endif
3729
3730void
3731ev_embed_start (EV_P_ ev_embed *w)
3732{
3733 if (expect_false (ev_is_active (w)))
3734 return;
3735
3736 {
3737 EV_P = w->other;
3738 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3739 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3740 }
3741
3742 EV_FREQUENT_CHECK;
3743
3744 ev_set_priority (&w->io, ev_priority (w));
3745 ev_io_start (EV_A_ &w->io);
3746
3747 ev_prepare_init (&w->prepare, embed_prepare_cb);
3748 ev_set_priority (&w->prepare, EV_MINPRI);
3749 ev_prepare_start (EV_A_ &w->prepare);
3750
3751 ev_fork_init (&w->fork, embed_fork_cb);
3752 ev_fork_start (EV_A_ &w->fork);
3753
3754 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3755
3756 ev_start (EV_A_ (W)w, 1);
3757
3758 EV_FREQUENT_CHECK;
3759}
3760
3761void
3762ev_embed_stop (EV_P_ ev_embed *w)
3763{
3764 clear_pending (EV_A_ (W)w);
3765 if (expect_false (!ev_is_active (w)))
3766 return;
3767
3768 EV_FREQUENT_CHECK;
3769
3770 ev_io_stop (EV_A_ &w->io);
3771 ev_prepare_stop (EV_A_ &w->prepare);
3772 ev_fork_stop (EV_A_ &w->fork);
3773
3774 ev_stop (EV_A_ (W)w);
3775
3776 EV_FREQUENT_CHECK;
3777}
3778#endif
3779
3780#if EV_FORK_ENABLE
3781void
3782ev_fork_start (EV_P_ ev_fork *w)
3783{
3784 if (expect_false (ev_is_active (w)))
3785 return;
3786
3787 EV_FREQUENT_CHECK;
3788
3789 ev_start (EV_A_ (W)w, ++forkcnt);
3790 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3791 forks [forkcnt - 1] = w;
3792
3793 EV_FREQUENT_CHECK;
3794}
3795
3796void
3797ev_fork_stop (EV_P_ ev_fork *w)
3798{
3799 clear_pending (EV_A_ (W)w);
3800 if (expect_false (!ev_is_active (w)))
3801 return;
3802
3803 EV_FREQUENT_CHECK;
3804
3805 {
3806 int active = ev_active (w);
3807
3808 forks [active - 1] = forks [--forkcnt];
3809 ev_active (forks [active - 1]) = active;
3810 }
3811
3812 ev_stop (EV_A_ (W)w);
3813
3814 EV_FREQUENT_CHECK;
3815}
3816#endif
3817
3818#if EV_CLEANUP_ENABLE
3819void
3820ev_cleanup_start (EV_P_ ev_cleanup *w)
3821{
3822 if (expect_false (ev_is_active (w)))
3823 return;
3824
3825 EV_FREQUENT_CHECK;
3826
3827 ev_start (EV_A_ (W)w, ++cleanupcnt);
3828 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3829 cleanups [cleanupcnt - 1] = w;
3830
3831 /* cleanup watchers should never keep a refcount on the loop */
3832 ev_unref (EV_A);
3833 EV_FREQUENT_CHECK;
3834}
3835
3836void
3837ev_cleanup_stop (EV_P_ ev_cleanup *w)
3838{
3839 clear_pending (EV_A_ (W)w);
3840 if (expect_false (!ev_is_active (w)))
3841 return;
3842
3843 EV_FREQUENT_CHECK;
3844 ev_ref (EV_A);
3845
3846 {
3847 int active = ev_active (w);
3848
3849 cleanups [active - 1] = cleanups [--cleanupcnt];
3850 ev_active (cleanups [active - 1]) = active;
3851 }
3852
3853 ev_stop (EV_A_ (W)w);
3854
3855 EV_FREQUENT_CHECK;
3856}
3857#endif
3858
3859#if EV_ASYNC_ENABLE
3860void
3861ev_async_start (EV_P_ ev_async *w)
3862{
3863 if (expect_false (ev_is_active (w)))
3864 return;
3865
3866 w->sent = 0;
3867
3868 evpipe_init (EV_A);
3869
3870 EV_FREQUENT_CHECK;
3871
3872 ev_start (EV_A_ (W)w, ++asynccnt);
3873 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3874 asyncs [asynccnt - 1] = w;
3875
3876 EV_FREQUENT_CHECK;
3877}
3878
3879void
3880ev_async_stop (EV_P_ ev_async *w)
3881{
3882 clear_pending (EV_A_ (W)w);
3883 if (expect_false (!ev_is_active (w)))
3884 return;
3885
3886 EV_FREQUENT_CHECK;
3887
3888 {
3889 int active = ev_active (w);
3890
3891 asyncs [active - 1] = asyncs [--asynccnt];
3892 ev_active (asyncs [active - 1]) = active;
3893 }
3894
3895 ev_stop (EV_A_ (W)w);
3896
3897 EV_FREQUENT_CHECK;
3898}
3899
3900void
3901ev_async_send (EV_P_ ev_async *w)
3902{
3903 w->sent = 1;
3904 evpipe_write (EV_A_ &async_pending);
3905}
3906#endif
1620 3907
1621/*****************************************************************************/ 3908/*****************************************************************************/
1622 3909
1623struct ev_once 3910struct ev_once
1624{ 3911{
1625 struct ev_io io; 3912 ev_io io;
1626 struct ev_timer to; 3913 ev_timer to;
1627 void (*cb)(int revents, void *arg); 3914 void (*cb)(int revents, void *arg);
1628 void *arg; 3915 void *arg;
1629}; 3916};
1630 3917
1631static void 3918static void
1632once_cb (EV_P_ struct ev_once *once, int revents) 3919once_cb (EV_P_ struct ev_once *once, int revents)
1633{ 3920{
1634 void (*cb)(int revents, void *arg) = once->cb; 3921 void (*cb)(int revents, void *arg) = once->cb;
1635 void *arg = once->arg; 3922 void *arg = once->arg;
1636 3923
1637 ev_io_stop (EV_A_ &once->io); 3924 ev_io_stop (EV_A_ &once->io);
1638 ev_timer_stop (EV_A_ &once->to); 3925 ev_timer_stop (EV_A_ &once->to);
1639 ev_free (once); 3926 ev_free (once);
1640 3927
1641 cb (revents, arg); 3928 cb (revents, arg);
1642} 3929}
1643 3930
1644static void 3931static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 3932once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 3933{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3934 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3935
3936 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1648} 3937}
1649 3938
1650static void 3939static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 3940once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 3941{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3942 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3943
3944 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1654} 3945}
1655 3946
1656void 3947void
1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3948ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1658{ 3949{
1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3950 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1660 3951
1661 if (expect_false (!once)) 3952 if (expect_false (!once))
1662 { 3953 {
1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3954 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1664 return; 3955 return;
1665 } 3956 }
1666 3957
1667 once->cb = cb; 3958 once->cb = cb;
1668 once->arg = arg; 3959 once->arg = arg;
1680 ev_timer_set (&once->to, timeout, 0.); 3971 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 3972 ev_timer_start (EV_A_ &once->to);
1682 } 3973 }
1683} 3974}
1684 3975
1685#ifdef __cplusplus 3976/*****************************************************************************/
1686} 3977
3978#if EV_WALK_ENABLE
3979void ecb_cold
3980ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3981{
3982 int i, j;
3983 ev_watcher_list *wl, *wn;
3984
3985 if (types & (EV_IO | EV_EMBED))
3986 for (i = 0; i < anfdmax; ++i)
3987 for (wl = anfds [i].head; wl; )
3988 {
3989 wn = wl->next;
3990
3991#if EV_EMBED_ENABLE
3992 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3993 {
3994 if (types & EV_EMBED)
3995 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3996 }
3997 else
3998#endif
3999#if EV_USE_INOTIFY
4000 if (ev_cb ((ev_io *)wl) == infy_cb)
4001 ;
4002 else
4003#endif
4004 if ((ev_io *)wl != &pipe_w)
4005 if (types & EV_IO)
4006 cb (EV_A_ EV_IO, wl);
4007
4008 wl = wn;
4009 }
4010
4011 if (types & (EV_TIMER | EV_STAT))
4012 for (i = timercnt + HEAP0; i-- > HEAP0; )
4013#if EV_STAT_ENABLE
4014 /*TODO: timer is not always active*/
4015 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4016 {
4017 if (types & EV_STAT)
4018 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4019 }
4020 else
4021#endif
4022 if (types & EV_TIMER)
4023 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4024
4025#if EV_PERIODIC_ENABLE
4026 if (types & EV_PERIODIC)
4027 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4028 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4029#endif
4030
4031#if EV_IDLE_ENABLE
4032 if (types & EV_IDLE)
4033 for (j = NUMPRI; i--; )
4034 for (i = idlecnt [j]; i--; )
4035 cb (EV_A_ EV_IDLE, idles [j][i]);
4036#endif
4037
4038#if EV_FORK_ENABLE
4039 if (types & EV_FORK)
4040 for (i = forkcnt; i--; )
4041 if (ev_cb (forks [i]) != embed_fork_cb)
4042 cb (EV_A_ EV_FORK, forks [i]);
4043#endif
4044
4045#if EV_ASYNC_ENABLE
4046 if (types & EV_ASYNC)
4047 for (i = asynccnt; i--; )
4048 cb (EV_A_ EV_ASYNC, asyncs [i]);
4049#endif
4050
4051#if EV_PREPARE_ENABLE
4052 if (types & EV_PREPARE)
4053 for (i = preparecnt; i--; )
4054# if EV_EMBED_ENABLE
4055 if (ev_cb (prepares [i]) != embed_prepare_cb)
1687#endif 4056# endif
4057 cb (EV_A_ EV_PREPARE, prepares [i]);
4058#endif
1688 4059
4060#if EV_CHECK_ENABLE
4061 if (types & EV_CHECK)
4062 for (i = checkcnt; i--; )
4063 cb (EV_A_ EV_CHECK, checks [i]);
4064#endif
4065
4066#if EV_SIGNAL_ENABLE
4067 if (types & EV_SIGNAL)
4068 for (i = 0; i < EV_NSIG - 1; ++i)
4069 for (wl = signals [i].head; wl; )
4070 {
4071 wn = wl->next;
4072 cb (EV_A_ EV_SIGNAL, wl);
4073 wl = wn;
4074 }
4075#endif
4076
4077#if EV_CHILD_ENABLE
4078 if (types & EV_CHILD)
4079 for (i = (EV_PID_HASHSIZE); i--; )
4080 for (wl = childs [i]; wl; )
4081 {
4082 wn = wl->next;
4083 cb (EV_A_ EV_CHILD, wl);
4084 wl = wn;
4085 }
4086#endif
4087/* EV_STAT 0x00001000 /* stat data changed */
4088/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4089}
4090#endif
4091
4092#if EV_MULTIPLICITY
4093 #include "ev_wrap.h"
4094#endif
4095
4096EV_CPP(})
4097

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines