ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.411 by root, Tue Feb 21 04:34:02 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
57# else 88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
58# define EV_USE_SELECT 0 99# define EV_USE_SELECT 0
59# endif 100# endif
60 101
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 102# if HAVE_POLL && HAVE_POLL_H
62# define EV_USE_POLL 1 103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
63# else 106# else
107# undef EV_USE_POLL
64# define EV_USE_POLL 0 108# define EV_USE_POLL 0
65# endif 109# endif
66 110
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
68# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
69# else 115# else
116# undef EV_USE_EPOLL
70# define EV_USE_EPOLL 0 117# define EV_USE_EPOLL 0
71# endif 118# endif
72 119
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
74# define EV_USE_KQUEUE 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
75# else 124# else
125# undef EV_USE_KQUEUE
76# define EV_USE_KQUEUE 0 126# define EV_USE_KQUEUE 0
77# endif 127# endif
78 128
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 129# if HAVE_PORT_H && HAVE_PORT_CREATE
80# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
81# else 133# else
134# undef EV_USE_PORT
82# define EV_USE_PORT 0 135# define EV_USE_PORT 0
83# endif 136# endif
84 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
85#endif 145# endif
86 146
87#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
88#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
89#include <fcntl.h> 169#include <fcntl.h>
90#include <stddef.h> 170#include <stddef.h>
91 171
92#include <stdio.h> 172#include <stdio.h>
93 173
94#include <assert.h> 174#include <assert.h>
95#include <errno.h> 175#include <errno.h>
96#include <sys/types.h> 176#include <sys/types.h>
97#include <time.h> 177#include <time.h>
178#include <limits.h>
98 179
99#include <signal.h> 180#include <signal.h>
100 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
101#ifndef _WIN32 199#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 200# include <sys/time.h>
104# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
105#else 203#else
204# include <io.h>
106# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 206# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
110# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined (EV_NSIG)
225/* use what's provided */
226#elif defined (NSIG)
227# define EV_NSIG (NSIG)
228#elif defined(_NSIG)
229# define EV_NSIG (_NSIG)
230#elif defined (SIGMAX)
231# define EV_NSIG (SIGMAX+1)
232#elif defined (SIG_MAX)
233# define EV_NSIG (SIG_MAX+1)
234#elif defined (_SIG_MAX)
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined (MAXSIG)
237# define EV_NSIG (MAXSIG+1)
238#elif defined (MAX_SIG)
239# define EV_NSIG (MAX_SIG+1)
240#elif defined (SIGARRAYSIZE)
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined (_sys_nsig)
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
111#endif 260# endif
112 261#endif
113/**/
114 262
115#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
116# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
117#endif 269#endif
118 270
119#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
121#endif 281#endif
122 282
123#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
125#endif 285#endif
126 286
127#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
128# ifdef _WIN32 288# ifdef _WIN32
129# define EV_USE_POLL 0 289# define EV_USE_POLL 0
130# else 290# else
131# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
132# endif 292# endif
133#endif 293#endif
134 294
135#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
136# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
137#endif 301#endif
138 302
139#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
141#endif 305#endif
142 306
143#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 308# define EV_USE_PORT 0
145#endif 309#endif
146 310
147/**/ 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
315# define EV_USE_INOTIFY 0
316# endif
317#endif
148 318
149/* darwin simply cannot be helped */ 319#ifndef EV_PID_HASHSIZE
150#ifdef __APPLE__ 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
330# else
331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
151# undef EV_USE_POLL 379# undef EV_USE_POLL
152# undef EV_USE_KQUEUE 380# define EV_USE_POLL 0
153#endif 381#endif
154 382
155#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
160#ifndef CLOCK_REALTIME 388#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 389# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 390# define EV_USE_REALTIME 0
163#endif 391#endif
164 392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined(_WIN32) && !defined(__hpux)
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
165#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 416# include <winsock.h>
167#endif 417#endif
168 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
169/**/ 457/**/
458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
465/*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
170 471
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
175 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
176#ifdef EV_H 509#ifndef ECB_H
177# include EV_H 510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
178#else 526#else
179# include "ev.h" 527 #include <inttypes.h>
528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
180#endif 542 #endif
543#endif
181 544
182#if __GNUC__ >= 3 545/*****************************************************************************/
183# define expect(expr,value) __builtin_expect ((expr),(value)) 546
184# define inline static inline 547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #endif
583 #endif
584#endif
585
586#ifndef ECB_MEMORY_FENCE
587 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
588 #define ECB_MEMORY_FENCE __sync_synchronize ()
589 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
590 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
591 #elif _MSC_VER >= 1400 /* VC++ 2005 */
592 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
593 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
594 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
595 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
596 #elif defined(_WIN32)
597 #include <WinNT.h>
598 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
599 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #include <mbarrier.h>
601 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
602 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
603 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
604 #endif
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if !ECB_AVOID_PTHREADS
609 /*
610 * if you get undefined symbol references to pthread_mutex_lock,
611 * or failure to find pthread.h, then you should implement
612 * the ECB_MEMORY_FENCE operations for your cpu/compiler
613 * OR provide pthread.h and link against the posix thread library
614 * of your system.
615 */
616 #include <pthread.h>
617 #define ECB_NEEDS_PTHREADS 1
618 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
619
620 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
621 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
622 #endif
623#endif
624
625#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
626 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
627#endif
628
629#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
630 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
631#endif
632
633/*****************************************************************************/
634
635#define ECB_C99 (__STDC_VERSION__ >= 199901L)
636
637#if __cplusplus
638 #define ecb_inline static inline
639#elif ECB_GCC_VERSION(2,5)
640 #define ecb_inline static __inline__
641#elif ECB_C99
642 #define ecb_inline static inline
185#else 643#else
644 #define ecb_inline static
645#endif
646
647#if ECB_GCC_VERSION(3,3)
648 #define ecb_restrict __restrict__
649#elif ECB_C99
650 #define ecb_restrict restrict
651#else
652 #define ecb_restrict
653#endif
654
655typedef int ecb_bool;
656
657#define ECB_CONCAT_(a, b) a ## b
658#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
659#define ECB_STRINGIFY_(a) # a
660#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
661
662#define ecb_function_ ecb_inline
663
664#if ECB_GCC_VERSION(3,1)
665 #define ecb_attribute(attrlist) __attribute__(attrlist)
666 #define ecb_is_constant(expr) __builtin_constant_p (expr)
667 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
668 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
669#else
670 #define ecb_attribute(attrlist)
671 #define ecb_is_constant(expr) 0
186# define expect(expr,value) (expr) 672 #define ecb_expect(expr,value) (expr)
187# define inline static 673 #define ecb_prefetch(addr,rw,locality)
188#endif 674#endif
189 675
676/* no emulation for ecb_decltype */
677#if ECB_GCC_VERSION(4,5)
678 #define ecb_decltype(x) __decltype(x)
679#elif ECB_GCC_VERSION(3,0)
680 #define ecb_decltype(x) __typeof(x)
681#endif
682
683#define ecb_noinline ecb_attribute ((__noinline__))
684#define ecb_noreturn ecb_attribute ((__noreturn__))
685#define ecb_unused ecb_attribute ((__unused__))
686#define ecb_const ecb_attribute ((__const__))
687#define ecb_pure ecb_attribute ((__pure__))
688
689#if ECB_GCC_VERSION(4,3)
690 #define ecb_artificial ecb_attribute ((__artificial__))
691 #define ecb_hot ecb_attribute ((__hot__))
692 #define ecb_cold ecb_attribute ((__cold__))
693#else
694 #define ecb_artificial
695 #define ecb_hot
696 #define ecb_cold
697#endif
698
699/* put around conditional expressions if you are very sure that the */
700/* expression is mostly true or mostly false. note that these return */
701/* booleans, not the expression. */
190#define expect_false(expr) expect ((expr) != 0, 0) 702#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 703#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
704/* for compatibility to the rest of the world */
705#define ecb_likely(expr) ecb_expect_true (expr)
706#define ecb_unlikely(expr) ecb_expect_false (expr)
192 707
708/* count trailing zero bits and count # of one bits */
709#if ECB_GCC_VERSION(3,4)
710 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
711 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
712 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
713 #define ecb_ctz32(x) __builtin_ctz (x)
714 #define ecb_ctz64(x) __builtin_ctzll (x)
715 #define ecb_popcount32(x) __builtin_popcount (x)
716 /* no popcountll */
717#else
718 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
719 ecb_function_ int
720 ecb_ctz32 (uint32_t x)
721 {
722 int r = 0;
723
724 x &= ~x + 1; /* this isolates the lowest bit */
725
726#if ECB_branchless_on_i386
727 r += !!(x & 0xaaaaaaaa) << 0;
728 r += !!(x & 0xcccccccc) << 1;
729 r += !!(x & 0xf0f0f0f0) << 2;
730 r += !!(x & 0xff00ff00) << 3;
731 r += !!(x & 0xffff0000) << 4;
732#else
733 if (x & 0xaaaaaaaa) r += 1;
734 if (x & 0xcccccccc) r += 2;
735 if (x & 0xf0f0f0f0) r += 4;
736 if (x & 0xff00ff00) r += 8;
737 if (x & 0xffff0000) r += 16;
738#endif
739
740 return r;
741 }
742
743 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
744 ecb_function_ int
745 ecb_ctz64 (uint64_t x)
746 {
747 int shift = x & 0xffffffffU ? 0 : 32;
748 return ecb_ctz32 (x >> shift) + shift;
749 }
750
751 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
752 ecb_function_ int
753 ecb_popcount32 (uint32_t x)
754 {
755 x -= (x >> 1) & 0x55555555;
756 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
757 x = ((x >> 4) + x) & 0x0f0f0f0f;
758 x *= 0x01010101;
759
760 return x >> 24;
761 }
762
763 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
764 ecb_function_ int ecb_ld32 (uint32_t x)
765 {
766 int r = 0;
767
768 if (x >> 16) { x >>= 16; r += 16; }
769 if (x >> 8) { x >>= 8; r += 8; }
770 if (x >> 4) { x >>= 4; r += 4; }
771 if (x >> 2) { x >>= 2; r += 2; }
772 if (x >> 1) { r += 1; }
773
774 return r;
775 }
776
777 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
778 ecb_function_ int ecb_ld64 (uint64_t x)
779 {
780 int r = 0;
781
782 if (x >> 32) { x >>= 32; r += 32; }
783
784 return r + ecb_ld32 (x);
785 }
786#endif
787
788ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
789ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
790{
791 return ( (x * 0x0802U & 0x22110U)
792 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
793}
794
795ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
796ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
797{
798 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
799 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
800 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
801 x = ( x >> 8 ) | ( x << 8);
802
803 return x;
804}
805
806ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
807ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
808{
809 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
810 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
811 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
812 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
813 x = ( x >> 16 ) | ( x << 16);
814
815 return x;
816}
817
818/* popcount64 is only available on 64 bit cpus as gcc builtin */
819/* so for this version we are lazy */
820ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
821ecb_function_ int
822ecb_popcount64 (uint64_t x)
823{
824 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
825}
826
827ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
828ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
829ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
830ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
831ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
832ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
833ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
834ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
835
836ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
837ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
838ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
839ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
840ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
841ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
842ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
843ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
844
845#if ECB_GCC_VERSION(4,3)
846 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
847 #define ecb_bswap32(x) __builtin_bswap32 (x)
848 #define ecb_bswap64(x) __builtin_bswap64 (x)
849#else
850 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
851 ecb_function_ uint16_t
852 ecb_bswap16 (uint16_t x)
853 {
854 return ecb_rotl16 (x, 8);
855 }
856
857 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
858 ecb_function_ uint32_t
859 ecb_bswap32 (uint32_t x)
860 {
861 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
862 }
863
864 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
865 ecb_function_ uint64_t
866 ecb_bswap64 (uint64_t x)
867 {
868 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
869 }
870#endif
871
872#if ECB_GCC_VERSION(4,5)
873 #define ecb_unreachable() __builtin_unreachable ()
874#else
875 /* this seems to work fine, but gcc always emits a warning for it :/ */
876 ecb_inline void ecb_unreachable (void) ecb_noreturn;
877 ecb_inline void ecb_unreachable (void) { }
878#endif
879
880/* try to tell the compiler that some condition is definitely true */
881#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
882
883ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
884ecb_inline unsigned char
885ecb_byteorder_helper (void)
886{
887 const uint32_t u = 0x11223344;
888 return *(unsigned char *)&u;
889}
890
891ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
892ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
893ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
894ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
895
896#if ECB_GCC_VERSION(3,0) || ECB_C99
897 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
898#else
899 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
900#endif
901
902#if __cplusplus
903 template<typename T>
904 static inline T ecb_div_rd (T val, T div)
905 {
906 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
907 }
908 template<typename T>
909 static inline T ecb_div_ru (T val, T div)
910 {
911 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
912 }
913#else
914 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
915 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
916#endif
917
918#if ecb_cplusplus_does_not_suck
919 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
920 template<typename T, int N>
921 static inline int ecb_array_length (const T (&arr)[N])
922 {
923 return N;
924 }
925#else
926 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
927#endif
928
929#endif
930
931/* ECB.H END */
932
933#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
934/* if your architecture doesn't need memory fences, e.g. because it is
935 * single-cpu/core, or if you use libev in a project that doesn't use libev
936 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
937 * libev, in which cases the memory fences become nops.
938 * alternatively, you can remove this #error and link against libpthread,
939 * which will then provide the memory fences.
940 */
941# error "memory fences not defined for your architecture, please report"
942#endif
943
944#ifndef ECB_MEMORY_FENCE
945# define ECB_MEMORY_FENCE do { } while (0)
946# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
947# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
948#endif
949
950#define expect_false(cond) ecb_expect_false (cond)
951#define expect_true(cond) ecb_expect_true (cond)
952#define noinline ecb_noinline
953
954#define inline_size ecb_inline
955
956#if EV_FEATURE_CODE
957# define inline_speed ecb_inline
958#else
959# define inline_speed static noinline
960#endif
961
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 962#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
963
964#if EV_MINPRI == EV_MAXPRI
965# define ABSPRI(w) (((W)w), 0)
966#else
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 967# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
968#endif
195 969
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 970#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 971#define EMPTY2(a,b) /* used to suppress some warnings */
198 972
199typedef struct ev_watcher *W; 973typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 974typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 975typedef ev_watcher_time *WT;
202 976
977#define ev_active(w) ((W)(w))->active
978#define ev_at(w) ((WT)(w))->at
979
980#if EV_USE_REALTIME
981/* sig_atomic_t is used to avoid per-thread variables or locking but still */
982/* giving it a reasonably high chance of working on typical architectures */
983static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
984#endif
985
986#if EV_USE_MONOTONIC
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 987static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
988#endif
989
990#ifndef EV_FD_TO_WIN32_HANDLE
991# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
992#endif
993#ifndef EV_WIN32_HANDLE_TO_FD
994# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
995#endif
996#ifndef EV_WIN32_CLOSE_FD
997# define EV_WIN32_CLOSE_FD(fd) close (fd)
998#endif
204 999
205#ifdef _WIN32 1000#ifdef _WIN32
206# include "ev_win32.c" 1001# include "ev_win32.c"
207#endif 1002#endif
208 1003
209/*****************************************************************************/ 1004/*****************************************************************************/
210 1005
1006/* define a suitable floor function (only used by periodics atm) */
1007
1008#if EV_USE_FLOOR
1009# include <math.h>
1010# define ev_floor(v) floor (v)
1011#else
1012
1013#include <float.h>
1014
1015/* a floor() replacement function, should be independent of ev_tstamp type */
1016static ev_tstamp noinline
1017ev_floor (ev_tstamp v)
1018{
1019 /* the choice of shift factor is not terribly important */
1020#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1021 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1022#else
1023 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1024#endif
1025
1026 /* argument too large for an unsigned long? */
1027 if (expect_false (v >= shift))
1028 {
1029 ev_tstamp f;
1030
1031 if (v == v - 1.)
1032 return v; /* very large number */
1033
1034 f = shift * ev_floor (v * (1. / shift));
1035 return f + ev_floor (v - f);
1036 }
1037
1038 /* special treatment for negative args? */
1039 if (expect_false (v < 0.))
1040 {
1041 ev_tstamp f = -ev_floor (-v);
1042
1043 return f - (f == v ? 0 : 1);
1044 }
1045
1046 /* fits into an unsigned long */
1047 return (unsigned long)v;
1048}
1049
1050#endif
1051
1052/*****************************************************************************/
1053
1054#ifdef __linux
1055# include <sys/utsname.h>
1056#endif
1057
1058static unsigned int noinline ecb_cold
1059ev_linux_version (void)
1060{
1061#ifdef __linux
1062 unsigned int v = 0;
1063 struct utsname buf;
1064 int i;
1065 char *p = buf.release;
1066
1067 if (uname (&buf))
1068 return 0;
1069
1070 for (i = 3+1; --i; )
1071 {
1072 unsigned int c = 0;
1073
1074 for (;;)
1075 {
1076 if (*p >= '0' && *p <= '9')
1077 c = c * 10 + *p++ - '0';
1078 else
1079 {
1080 p += *p == '.';
1081 break;
1082 }
1083 }
1084
1085 v = (v << 8) | c;
1086 }
1087
1088 return v;
1089#else
1090 return 0;
1091#endif
1092}
1093
1094/*****************************************************************************/
1095
1096#if EV_AVOID_STDIO
1097static void noinline ecb_cold
1098ev_printerr (const char *msg)
1099{
1100 write (STDERR_FILENO, msg, strlen (msg));
1101}
1102#endif
1103
211static void (*syserr_cb)(const char *msg); 1104static void (*syserr_cb)(const char *msg);
212 1105
1106void ecb_cold
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 1107ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 1108{
215 syserr_cb = cb; 1109 syserr_cb = cb;
216} 1110}
217 1111
218static void 1112static void noinline ecb_cold
219syserr (const char *msg) 1113ev_syserr (const char *msg)
220{ 1114{
221 if (!msg) 1115 if (!msg)
222 msg = "(libev) system error"; 1116 msg = "(libev) system error";
223 1117
224 if (syserr_cb) 1118 if (syserr_cb)
225 syserr_cb (msg); 1119 syserr_cb (msg);
226 else 1120 else
227 { 1121 {
1122#if EV_AVOID_STDIO
1123 ev_printerr (msg);
1124 ev_printerr (": ");
1125 ev_printerr (strerror (errno));
1126 ev_printerr ("\n");
1127#else
228 perror (msg); 1128 perror (msg);
1129#endif
229 abort (); 1130 abort ();
230 } 1131 }
231} 1132}
232 1133
1134static void *
1135ev_realloc_emul (void *ptr, long size)
1136{
1137#if __GLIBC__
1138 return realloc (ptr, size);
1139#else
1140 /* some systems, notably openbsd and darwin, fail to properly
1141 * implement realloc (x, 0) (as required by both ansi c-89 and
1142 * the single unix specification, so work around them here.
1143 */
1144
1145 if (size)
1146 return realloc (ptr, size);
1147
1148 free (ptr);
1149 return 0;
1150#endif
1151}
1152
233static void *(*alloc)(void *ptr, long size); 1153static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 1154
1155void ecb_cold
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1156ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 1157{
237 alloc = cb; 1158 alloc = cb;
238} 1159}
239 1160
240static void * 1161inline_speed void *
241ev_realloc (void *ptr, long size) 1162ev_realloc (void *ptr, long size)
242{ 1163{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1164 ptr = alloc (ptr, size);
244 1165
245 if (!ptr && size) 1166 if (!ptr && size)
246 { 1167 {
1168#if EV_AVOID_STDIO
1169 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1170#else
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1171 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1172#endif
248 abort (); 1173 abort ();
249 } 1174 }
250 1175
251 return ptr; 1176 return ptr;
252} 1177}
254#define ev_malloc(size) ev_realloc (0, (size)) 1179#define ev_malloc(size) ev_realloc (0, (size))
255#define ev_free(ptr) ev_realloc ((ptr), 0) 1180#define ev_free(ptr) ev_realloc ((ptr), 0)
256 1181
257/*****************************************************************************/ 1182/*****************************************************************************/
258 1183
1184/* set in reify when reification needed */
1185#define EV_ANFD_REIFY 1
1186
1187/* file descriptor info structure */
259typedef struct 1188typedef struct
260{ 1189{
261 WL head; 1190 WL head;
262 unsigned char events; 1191 unsigned char events; /* the events watched for */
1192 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1193 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
263 unsigned char reify; 1194 unsigned char unused;
1195#if EV_USE_EPOLL
1196 unsigned int egen; /* generation counter to counter epoll bugs */
1197#endif
264#if EV_SELECT_IS_WINSOCKET 1198#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
265 SOCKET handle; 1199 SOCKET handle;
266#endif 1200#endif
1201#if EV_USE_IOCP
1202 OVERLAPPED or, ow;
1203#endif
267} ANFD; 1204} ANFD;
268 1205
1206/* stores the pending event set for a given watcher */
269typedef struct 1207typedef struct
270{ 1208{
271 W w; 1209 W w;
272 int events; 1210 int events; /* the pending event set for the given watcher */
273} ANPENDING; 1211} ANPENDING;
1212
1213#if EV_USE_INOTIFY
1214/* hash table entry per inotify-id */
1215typedef struct
1216{
1217 WL head;
1218} ANFS;
1219#endif
1220
1221/* Heap Entry */
1222#if EV_HEAP_CACHE_AT
1223 /* a heap element */
1224 typedef struct {
1225 ev_tstamp at;
1226 WT w;
1227 } ANHE;
1228
1229 #define ANHE_w(he) (he).w /* access watcher, read-write */
1230 #define ANHE_at(he) (he).at /* access cached at, read-only */
1231 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1232#else
1233 /* a heap element */
1234 typedef WT ANHE;
1235
1236 #define ANHE_w(he) (he)
1237 #define ANHE_at(he) (he)->at
1238 #define ANHE_at_cache(he)
1239#endif
274 1240
275#if EV_MULTIPLICITY 1241#if EV_MULTIPLICITY
276 1242
277 struct ev_loop 1243 struct ev_loop
278 { 1244 {
283 #undef VAR 1249 #undef VAR
284 }; 1250 };
285 #include "ev_wrap.h" 1251 #include "ev_wrap.h"
286 1252
287 static struct ev_loop default_loop_struct; 1253 static struct ev_loop default_loop_struct;
288 struct ev_loop *ev_default_loop_ptr; 1254 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
289 1255
290#else 1256#else
291 1257
292 ev_tstamp ev_rt_now; 1258 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
293 #define VAR(name,decl) static decl; 1259 #define VAR(name,decl) static decl;
294 #include "ev_vars.h" 1260 #include "ev_vars.h"
295 #undef VAR 1261 #undef VAR
296 1262
297 static int ev_default_loop_ptr; 1263 static int ev_default_loop_ptr;
298 1264
299#endif 1265#endif
300 1266
1267#if EV_FEATURE_API
1268# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1269# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1270# define EV_INVOKE_PENDING invoke_cb (EV_A)
1271#else
1272# define EV_RELEASE_CB (void)0
1273# define EV_ACQUIRE_CB (void)0
1274# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1275#endif
1276
1277#define EVBREAK_RECURSE 0x80
1278
301/*****************************************************************************/ 1279/*****************************************************************************/
302 1280
1281#ifndef EV_HAVE_EV_TIME
303ev_tstamp 1282ev_tstamp
304ev_time (void) 1283ev_time (void)
305{ 1284{
306#if EV_USE_REALTIME 1285#if EV_USE_REALTIME
1286 if (expect_true (have_realtime))
1287 {
307 struct timespec ts; 1288 struct timespec ts;
308 clock_gettime (CLOCK_REALTIME, &ts); 1289 clock_gettime (CLOCK_REALTIME, &ts);
309 return ts.tv_sec + ts.tv_nsec * 1e-9; 1290 return ts.tv_sec + ts.tv_nsec * 1e-9;
310#else 1291 }
1292#endif
1293
311 struct timeval tv; 1294 struct timeval tv;
312 gettimeofday (&tv, 0); 1295 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 1296 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif
315} 1297}
1298#endif
316 1299
317inline ev_tstamp 1300inline_size ev_tstamp
318get_clock (void) 1301get_clock (void)
319{ 1302{
320#if EV_USE_MONOTONIC 1303#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 1304 if (expect_true (have_monotonic))
322 { 1305 {
335{ 1318{
336 return ev_rt_now; 1319 return ev_rt_now;
337} 1320}
338#endif 1321#endif
339 1322
340#define array_roundsize(type,n) (((n) | 4) & ~3) 1323void
1324ev_sleep (ev_tstamp delay)
1325{
1326 if (delay > 0.)
1327 {
1328#if EV_USE_NANOSLEEP
1329 struct timespec ts;
1330
1331 EV_TS_SET (ts, delay);
1332 nanosleep (&ts, 0);
1333#elif defined(_WIN32)
1334 Sleep ((unsigned long)(delay * 1e3));
1335#else
1336 struct timeval tv;
1337
1338 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1339 /* something not guaranteed by newer posix versions, but guaranteed */
1340 /* by older ones */
1341 EV_TV_SET (tv, delay);
1342 select (0, 0, 0, 0, &tv);
1343#endif
1344 }
1345}
1346
1347/*****************************************************************************/
1348
1349#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1350
1351/* find a suitable new size for the given array, */
1352/* hopefully by rounding to a nice-to-malloc size */
1353inline_size int
1354array_nextsize (int elem, int cur, int cnt)
1355{
1356 int ncur = cur + 1;
1357
1358 do
1359 ncur <<= 1;
1360 while (cnt > ncur);
1361
1362 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1363 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1364 {
1365 ncur *= elem;
1366 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1367 ncur = ncur - sizeof (void *) * 4;
1368 ncur /= elem;
1369 }
1370
1371 return ncur;
1372}
1373
1374static void * noinline ecb_cold
1375array_realloc (int elem, void *base, int *cur, int cnt)
1376{
1377 *cur = array_nextsize (elem, *cur, cnt);
1378 return ev_realloc (base, elem * *cur);
1379}
1380
1381#define array_init_zero(base,count) \
1382 memset ((void *)(base), 0, sizeof (*(base)) * (count))
341 1383
342#define array_needsize(type,base,cur,cnt,init) \ 1384#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 1385 if (expect_false ((cnt) > (cur))) \
344 { \ 1386 { \
345 int newcnt = cur; \ 1387 int ecb_unused ocur_ = (cur); \
346 do \ 1388 (base) = (type *)array_realloc \
347 { \ 1389 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 1390 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 1391 }
356 1392
1393#if 0
357#define array_slim(type,stem) \ 1394#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1395 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 1396 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1397 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1398 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1399 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 1400 }
1401#endif
364 1402
365#define array_free(stem, idx) \ 1403#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1404 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
367 1405
368/*****************************************************************************/ 1406/*****************************************************************************/
369 1407
370static void 1408/* dummy callback for pending events */
371anfds_init (ANFD *base, int count) 1409static void noinline
1410pendingcb (EV_P_ ev_prepare *w, int revents)
372{ 1411{
373 while (count--)
374 {
375 base->head = 0;
376 base->events = EV_NONE;
377 base->reify = 0;
378
379 ++base;
380 }
381} 1412}
382 1413
383void 1414void noinline
384ev_feed_event (EV_P_ void *w, int revents) 1415ev_feed_event (EV_P_ void *w, int revents)
385{ 1416{
386 W w_ = (W)w; 1417 W w_ = (W)w;
1418 int pri = ABSPRI (w_);
387 1419
388 if (expect_false (w_->pending)) 1420 if (expect_false (w_->pending))
1421 pendings [pri][w_->pending - 1].events |= revents;
1422 else
389 { 1423 {
1424 w_->pending = ++pendingcnt [pri];
1425 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1426 pendings [pri][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1427 pendings [pri][w_->pending - 1].events = revents;
391 return;
392 } 1428 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398} 1429}
399 1430
400static void 1431inline_speed void
1432feed_reverse (EV_P_ W w)
1433{
1434 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1435 rfeeds [rfeedcnt++] = w;
1436}
1437
1438inline_size void
1439feed_reverse_done (EV_P_ int revents)
1440{
1441 do
1442 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1443 while (rfeedcnt);
1444}
1445
1446inline_speed void
401queue_events (EV_P_ W *events, int eventcnt, int type) 1447queue_events (EV_P_ W *events, int eventcnt, int type)
402{ 1448{
403 int i; 1449 int i;
404 1450
405 for (i = 0; i < eventcnt; ++i) 1451 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type); 1452 ev_feed_event (EV_A_ events [i], type);
407} 1453}
408 1454
1455/*****************************************************************************/
1456
409inline void 1457inline_speed void
410fd_event (EV_P_ int fd, int revents) 1458fd_event_nocheck (EV_P_ int fd, int revents)
411{ 1459{
412 ANFD *anfd = anfds + fd; 1460 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 1461 ev_io *w;
414 1462
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1463 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 1464 {
417 int ev = w->events & revents; 1465 int ev = w->events & revents;
418 1466
419 if (ev) 1467 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 1468 ev_feed_event (EV_A_ (W)w, ev);
421 } 1469 }
422} 1470}
423 1471
1472/* do not submit kernel events for fds that have reify set */
1473/* because that means they changed while we were polling for new events */
1474inline_speed void
1475fd_event (EV_P_ int fd, int revents)
1476{
1477 ANFD *anfd = anfds + fd;
1478
1479 if (expect_true (!anfd->reify))
1480 fd_event_nocheck (EV_A_ fd, revents);
1481}
1482
424void 1483void
425ev_feed_fd_event (EV_P_ int fd, int revents) 1484ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 1485{
1486 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 1487 fd_event_nocheck (EV_A_ fd, revents);
428} 1488}
429 1489
430/*****************************************************************************/ 1490/* make sure the external fd watch events are in-sync */
431 1491/* with the kernel/libev internal state */
432inline void 1492inline_size void
433fd_reify (EV_P) 1493fd_reify (EV_P)
434{ 1494{
435 int i; 1495 int i;
436 1496
1497#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
437 for (i = 0; i < fdchangecnt; ++i) 1498 for (i = 0; i < fdchangecnt; ++i)
438 { 1499 {
439 int fd = fdchanges [i]; 1500 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 1501 ANFD *anfd = anfds + fd;
441 struct ev_io *w;
442 1502
443 int events = 0; 1503 if (anfd->reify & EV__IOFDSET && anfd->head)
444
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
446 events |= w->events;
447
448#if EV_SELECT_IS_WINSOCKET
449 if (events)
450 { 1504 {
1505 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1506
1507 if (handle != anfd->handle)
1508 {
451 unsigned long argp; 1509 unsigned long arg;
452 anfd->handle = _get_osfhandle (fd); 1510
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1511 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1512
1513 /* handle changed, but fd didn't - we need to do it in two steps */
1514 backend_modify (EV_A_ fd, anfd->events, 0);
1515 anfd->events = 0;
1516 anfd->handle = handle;
1517 }
454 } 1518 }
1519 }
455#endif 1520#endif
456 1521
1522 for (i = 0; i < fdchangecnt; ++i)
1523 {
1524 int fd = fdchanges [i];
1525 ANFD *anfd = anfds + fd;
1526 ev_io *w;
1527
1528 unsigned char o_events = anfd->events;
1529 unsigned char o_reify = anfd->reify;
1530
457 anfd->reify = 0; 1531 anfd->reify = 0;
458 1532
459 method_modify (EV_A_ fd, anfd->events, events); 1533 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1534 {
460 anfd->events = events; 1535 anfd->events = 0;
1536
1537 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1538 anfd->events |= (unsigned char)w->events;
1539
1540 if (o_events != anfd->events)
1541 o_reify = EV__IOFDSET; /* actually |= */
1542 }
1543
1544 if (o_reify & EV__IOFDSET)
1545 backend_modify (EV_A_ fd, o_events, anfd->events);
461 } 1546 }
462 1547
463 fdchangecnt = 0; 1548 fdchangecnt = 0;
464} 1549}
465 1550
466static void 1551/* something about the given fd changed */
1552inline_size void
467fd_change (EV_P_ int fd) 1553fd_change (EV_P_ int fd, int flags)
468{ 1554{
469 if (expect_false (anfds [fd].reify)) 1555 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 1556 anfds [fd].reify |= flags;
473 1557
1558 if (expect_true (!reify))
1559 {
474 ++fdchangecnt; 1560 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1561 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 1562 fdchanges [fdchangecnt - 1] = fd;
1563 }
477} 1564}
478 1565
479static void 1566/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1567inline_speed void ecb_cold
480fd_kill (EV_P_ int fd) 1568fd_kill (EV_P_ int fd)
481{ 1569{
482 struct ev_io *w; 1570 ev_io *w;
483 1571
484 while ((w = (struct ev_io *)anfds [fd].head)) 1572 while ((w = (ev_io *)anfds [fd].head))
485 { 1573 {
486 ev_io_stop (EV_A_ w); 1574 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1575 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 1576 }
489} 1577}
490 1578
491inline int 1579/* check whether the given fd is actually valid, for error recovery */
1580inline_size int ecb_cold
492fd_valid (int fd) 1581fd_valid (int fd)
493{ 1582{
494#ifdef _WIN32 1583#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 1584 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
496#else 1585#else
497 return fcntl (fd, F_GETFD) != -1; 1586 return fcntl (fd, F_GETFD) != -1;
498#endif 1587#endif
499} 1588}
500 1589
501/* called on EBADF to verify fds */ 1590/* called on EBADF to verify fds */
502static void 1591static void noinline ecb_cold
503fd_ebadf (EV_P) 1592fd_ebadf (EV_P)
504{ 1593{
505 int fd; 1594 int fd;
506 1595
507 for (fd = 0; fd < anfdmax; ++fd) 1596 for (fd = 0; fd < anfdmax; ++fd)
508 if (anfds [fd].events) 1597 if (anfds [fd].events)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 1598 if (!fd_valid (fd) && errno == EBADF)
510 fd_kill (EV_A_ fd); 1599 fd_kill (EV_A_ fd);
511} 1600}
512 1601
513/* called on ENOMEM in select/poll to kill some fds and retry */ 1602/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 1603static void noinline ecb_cold
515fd_enomem (EV_P) 1604fd_enomem (EV_P)
516{ 1605{
517 int fd; 1606 int fd;
518 1607
519 for (fd = anfdmax; fd--; ) 1608 for (fd = anfdmax; fd--; )
520 if (anfds [fd].events) 1609 if (anfds [fd].events)
521 { 1610 {
522 fd_kill (EV_A_ fd); 1611 fd_kill (EV_A_ fd);
523 return; 1612 break;
524 } 1613 }
525} 1614}
526 1615
527/* usually called after fork if method needs to re-arm all fds from scratch */ 1616/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 1617static void noinline
529fd_rearm_all (EV_P) 1618fd_rearm_all (EV_P)
530{ 1619{
531 int fd; 1620 int fd;
532 1621
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 1622 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 1623 if (anfds [fd].events)
536 { 1624 {
537 anfds [fd].events = 0; 1625 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 1626 anfds [fd].emask = 0;
1627 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
539 } 1628 }
540} 1629}
541 1630
542/*****************************************************************************/ 1631/* used to prepare libev internal fd's */
543 1632/* this is not fork-safe */
544static void
545upheap (WT *heap, int k)
546{
547 WT w = heap [k];
548
549 while (k && heap [k >> 1]->at > w->at)
550 {
551 heap [k] = heap [k >> 1];
552 ((W)heap [k])->active = k + 1;
553 k >>= 1;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558
559}
560
561static void
562downheap (WT *heap, int N, int k)
563{
564 WT w = heap [k];
565
566 while (k < (N >> 1))
567 {
568 int j = k << 1;
569
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
571 ++j;
572
573 if (w->at <= heap [j]->at)
574 break;
575
576 heap [k] = heap [j];
577 ((W)heap [k])->active = k + 1;
578 k = j;
579 }
580
581 heap [k] = w;
582 ((W)heap [k])->active = k + 1;
583}
584
585inline void 1633inline_speed void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
592/*****************************************************************************/
593
594typedef struct
595{
596 WL head;
597 sig_atomic_t volatile gotsig;
598} ANSIG;
599
600static ANSIG *signals;
601static int signalmax;
602
603static int sigpipe [2];
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606
607static void
608signals_init (ANSIG *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->gotsig = 0;
614
615 ++base;
616 }
617}
618
619static void
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625
626 signals [signum - 1].gotsig = 1;
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 1634fd_intern (int fd)
672{ 1635{
673#ifdef _WIN32 1636#ifdef _WIN32
674 int arg = 1; 1637 unsigned long arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1638 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
676#else 1639#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 1640 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 1641 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 1642#endif
680} 1643}
681 1644
1645/*****************************************************************************/
1646
1647/*
1648 * the heap functions want a real array index. array index 0 is guaranteed to not
1649 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1650 * the branching factor of the d-tree.
1651 */
1652
1653/*
1654 * at the moment we allow libev the luxury of two heaps,
1655 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1656 * which is more cache-efficient.
1657 * the difference is about 5% with 50000+ watchers.
1658 */
1659#if EV_USE_4HEAP
1660
1661#define DHEAP 4
1662#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1663#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1664#define UPHEAP_DONE(p,k) ((p) == (k))
1665
1666/* away from the root */
1667inline_speed void
1668downheap (ANHE *heap, int N, int k)
1669{
1670 ANHE he = heap [k];
1671 ANHE *E = heap + N + HEAP0;
1672
1673 for (;;)
1674 {
1675 ev_tstamp minat;
1676 ANHE *minpos;
1677 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1678
1679 /* find minimum child */
1680 if (expect_true (pos + DHEAP - 1 < E))
1681 {
1682 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1683 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1684 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1685 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1686 }
1687 else if (pos < E)
1688 {
1689 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1690 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1691 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1692 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1693 }
1694 else
1695 break;
1696
1697 if (ANHE_at (he) <= minat)
1698 break;
1699
1700 heap [k] = *minpos;
1701 ev_active (ANHE_w (*minpos)) = k;
1702
1703 k = minpos - heap;
1704 }
1705
1706 heap [k] = he;
1707 ev_active (ANHE_w (he)) = k;
1708}
1709
1710#else /* 4HEAP */
1711
1712#define HEAP0 1
1713#define HPARENT(k) ((k) >> 1)
1714#define UPHEAP_DONE(p,k) (!(p))
1715
1716/* away from the root */
1717inline_speed void
1718downheap (ANHE *heap, int N, int k)
1719{
1720 ANHE he = heap [k];
1721
1722 for (;;)
1723 {
1724 int c = k << 1;
1725
1726 if (c >= N + HEAP0)
1727 break;
1728
1729 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1730 ? 1 : 0;
1731
1732 if (ANHE_at (he) <= ANHE_at (heap [c]))
1733 break;
1734
1735 heap [k] = heap [c];
1736 ev_active (ANHE_w (heap [k])) = k;
1737
1738 k = c;
1739 }
1740
1741 heap [k] = he;
1742 ev_active (ANHE_w (he)) = k;
1743}
1744#endif
1745
1746/* towards the root */
1747inline_speed void
1748upheap (ANHE *heap, int k)
1749{
1750 ANHE he = heap [k];
1751
1752 for (;;)
1753 {
1754 int p = HPARENT (k);
1755
1756 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1757 break;
1758
1759 heap [k] = heap [p];
1760 ev_active (ANHE_w (heap [k])) = k;
1761 k = p;
1762 }
1763
1764 heap [k] = he;
1765 ev_active (ANHE_w (he)) = k;
1766}
1767
1768/* move an element suitably so it is in a correct place */
1769inline_size void
1770adjustheap (ANHE *heap, int N, int k)
1771{
1772 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1773 upheap (heap, k);
1774 else
1775 downheap (heap, N, k);
1776}
1777
1778/* rebuild the heap: this function is used only once and executed rarely */
1779inline_size void
1780reheap (ANHE *heap, int N)
1781{
1782 int i;
1783
1784 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1785 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1786 for (i = 0; i < N; ++i)
1787 upheap (heap, i + HEAP0);
1788}
1789
1790/*****************************************************************************/
1791
1792/* associate signal watchers to a signal signal */
1793typedef struct
1794{
1795 EV_ATOMIC_T pending;
1796#if EV_MULTIPLICITY
1797 EV_P;
1798#endif
1799 WL head;
1800} ANSIG;
1801
1802static ANSIG signals [EV_NSIG - 1];
1803
1804/*****************************************************************************/
1805
1806#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1807
1808static void noinline ecb_cold
1809evpipe_init (EV_P)
1810{
1811 if (!ev_is_active (&pipe_w))
1812 {
1813# if EV_USE_EVENTFD
1814 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1815 if (evfd < 0 && errno == EINVAL)
1816 evfd = eventfd (0, 0);
1817
1818 if (evfd >= 0)
1819 {
1820 evpipe [0] = -1;
1821 fd_intern (evfd); /* doing it twice doesn't hurt */
1822 ev_io_set (&pipe_w, evfd, EV_READ);
1823 }
1824 else
1825# endif
1826 {
1827 while (pipe (evpipe))
1828 ev_syserr ("(libev) error creating signal/async pipe");
1829
1830 fd_intern (evpipe [0]);
1831 fd_intern (evpipe [1]);
1832 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1833 }
1834
1835 ev_io_start (EV_A_ &pipe_w);
1836 ev_unref (EV_A); /* watcher should not keep loop alive */
1837 }
1838}
1839
1840inline_speed void
1841evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1842{
1843 if (expect_true (*flag))
1844 return;
1845
1846 *flag = 1;
1847
1848 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1849
1850 pipe_write_skipped = 1;
1851
1852 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1853
1854 if (pipe_write_wanted)
1855 {
1856 int old_errno;
1857
1858 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1859
1860 old_errno = errno; /* save errno because write will clobber it */
1861
1862#if EV_USE_EVENTFD
1863 if (evfd >= 0)
1864 {
1865 uint64_t counter = 1;
1866 write (evfd, &counter, sizeof (uint64_t));
1867 }
1868 else
1869#endif
1870 {
1871 /* win32 people keep sending patches that change this write() to send() */
1872 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1873 /* so when you think this write should be a send instead, please find out */
1874 /* where your send() is from - it's definitely not the microsoft send, and */
1875 /* tell me. thank you. */
1876 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1877 /* check the ev documentation on how to use this flag */
1878 write (evpipe [1], &(evpipe [1]), 1);
1879 }
1880
1881 errno = old_errno;
1882 }
1883}
1884
1885/* called whenever the libev signal pipe */
1886/* got some events (signal, async) */
682static void 1887static void
683siginit (EV_P) 1888pipecb (EV_P_ ev_io *iow, int revents)
684{ 1889{
685 fd_intern (sigpipe [0]); 1890 int i;
686 fd_intern (sigpipe [1]);
687 1891
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1892 if (revents & EV_READ)
689 ev_io_start (EV_A_ &sigev); 1893 {
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1894#if EV_USE_EVENTFD
1895 if (evfd >= 0)
1896 {
1897 uint64_t counter;
1898 read (evfd, &counter, sizeof (uint64_t));
1899 }
1900 else
1901#endif
1902 {
1903 char dummy;
1904 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1905 read (evpipe [0], &dummy, 1);
1906 }
1907 }
1908
1909 pipe_write_skipped = 0;
1910
1911#if EV_SIGNAL_ENABLE
1912 if (sig_pending)
1913 {
1914 sig_pending = 0;
1915
1916 for (i = EV_NSIG - 1; i--; )
1917 if (expect_false (signals [i].pending))
1918 ev_feed_signal_event (EV_A_ i + 1);
1919 }
1920#endif
1921
1922#if EV_ASYNC_ENABLE
1923 if (async_pending)
1924 {
1925 async_pending = 0;
1926
1927 for (i = asynccnt; i--; )
1928 if (asyncs [i]->sent)
1929 {
1930 asyncs [i]->sent = 0;
1931 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1932 }
1933 }
1934#endif
691} 1935}
692 1936
693/*****************************************************************************/ 1937/*****************************************************************************/
694 1938
695static struct ev_child *childs [PID_HASHSIZE]; 1939void
1940ev_feed_signal (int signum)
1941{
1942#if EV_MULTIPLICITY
1943 EV_P = signals [signum - 1].loop;
696 1944
1945 if (!EV_A)
1946 return;
1947#endif
1948
1949 if (!ev_active (&pipe_w))
1950 return;
1951
1952 signals [signum - 1].pending = 1;
1953 evpipe_write (EV_A_ &sig_pending);
1954}
1955
1956static void
1957ev_sighandler (int signum)
1958{
697#ifndef _WIN32 1959#ifdef _WIN32
1960 signal (signum, ev_sighandler);
1961#endif
698 1962
1963 ev_feed_signal (signum);
1964}
1965
1966void noinline
1967ev_feed_signal_event (EV_P_ int signum)
1968{
1969 WL w;
1970
1971 if (expect_false (signum <= 0 || signum > EV_NSIG))
1972 return;
1973
1974 --signum;
1975
1976#if EV_MULTIPLICITY
1977 /* it is permissible to try to feed a signal to the wrong loop */
1978 /* or, likely more useful, feeding a signal nobody is waiting for */
1979
1980 if (expect_false (signals [signum].loop != EV_A))
1981 return;
1982#endif
1983
1984 signals [signum].pending = 0;
1985
1986 for (w = signals [signum].head; w; w = w->next)
1987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1988}
1989
1990#if EV_USE_SIGNALFD
1991static void
1992sigfdcb (EV_P_ ev_io *iow, int revents)
1993{
1994 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1995
1996 for (;;)
1997 {
1998 ssize_t res = read (sigfd, si, sizeof (si));
1999
2000 /* not ISO-C, as res might be -1, but works with SuS */
2001 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2002 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2003
2004 if (res < (ssize_t)sizeof (si))
2005 break;
2006 }
2007}
2008#endif
2009
2010#endif
2011
2012/*****************************************************************************/
2013
2014#if EV_CHILD_ENABLE
2015static WL childs [EV_PID_HASHSIZE];
2016
699static struct ev_signal childev; 2017static ev_signal childev;
2018
2019#ifndef WIFCONTINUED
2020# define WIFCONTINUED(status) 0
2021#endif
2022
2023/* handle a single child status event */
2024inline_speed void
2025child_reap (EV_P_ int chain, int pid, int status)
2026{
2027 ev_child *w;
2028 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2029
2030 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2031 {
2032 if ((w->pid == pid || !w->pid)
2033 && (!traced || (w->flags & 1)))
2034 {
2035 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2036 w->rpid = pid;
2037 w->rstatus = status;
2038 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2039 }
2040 }
2041}
700 2042
701#ifndef WCONTINUED 2043#ifndef WCONTINUED
702# define WCONTINUED 0 2044# define WCONTINUED 0
703#endif 2045#endif
704 2046
2047/* called on sigchld etc., calls waitpid */
705static void 2048static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 2049childcb (EV_P_ ev_signal *sw, int revents)
722{ 2050{
723 int pid, status; 2051 int pid, status;
724 2052
2053 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2054 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 2055 if (!WCONTINUED
2056 || errno != EINVAL
2057 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2058 return;
2059
727 /* make sure we are called again until all childs have been reaped */ 2060 /* make sure we are called again until all children have been reaped */
2061 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2062 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 2063
730 child_reap (EV_A_ sw, pid, pid, status); 2064 child_reap (EV_A_ pid, pid, status);
2065 if ((EV_PID_HASHSIZE) > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2066 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 2067}
734 2068
735#endif 2069#endif
736 2070
737/*****************************************************************************/ 2071/*****************************************************************************/
738 2072
2073#if EV_USE_IOCP
2074# include "ev_iocp.c"
2075#endif
739#if EV_USE_PORT 2076#if EV_USE_PORT
740# include "ev_port.c" 2077# include "ev_port.c"
741#endif 2078#endif
742#if EV_USE_KQUEUE 2079#if EV_USE_KQUEUE
743# include "ev_kqueue.c" 2080# include "ev_kqueue.c"
750#endif 2087#endif
751#if EV_USE_SELECT 2088#if EV_USE_SELECT
752# include "ev_select.c" 2089# include "ev_select.c"
753#endif 2090#endif
754 2091
755int 2092int ecb_cold
756ev_version_major (void) 2093ev_version_major (void)
757{ 2094{
758 return EV_VERSION_MAJOR; 2095 return EV_VERSION_MAJOR;
759} 2096}
760 2097
761int 2098int ecb_cold
762ev_version_minor (void) 2099ev_version_minor (void)
763{ 2100{
764 return EV_VERSION_MINOR; 2101 return EV_VERSION_MINOR;
765} 2102}
766 2103
767/* return true if we are running with elevated privileges and should ignore env variables */ 2104/* return true if we are running with elevated privileges and should ignore env variables */
768static int 2105int inline_size ecb_cold
769enable_secure (void) 2106enable_secure (void)
770{ 2107{
771#ifdef _WIN32 2108#ifdef _WIN32
772 return 0; 2109 return 0;
773#else 2110#else
774 return getuid () != geteuid () 2111 return getuid () != geteuid ()
775 || getgid () != getegid (); 2112 || getgid () != getegid ();
776#endif 2113#endif
777} 2114}
778 2115
2116unsigned int ecb_cold
2117ev_supported_backends (void)
2118{
2119 unsigned int flags = 0;
2120
2121 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2122 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2123 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2124 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2125 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2126
2127 return flags;
2128}
2129
2130unsigned int ecb_cold
2131ev_recommended_backends (void)
2132{
2133 unsigned int flags = ev_supported_backends ();
2134
2135#ifndef __NetBSD__
2136 /* kqueue is borked on everything but netbsd apparently */
2137 /* it usually doesn't work correctly on anything but sockets and pipes */
2138 flags &= ~EVBACKEND_KQUEUE;
2139#endif
2140#ifdef __APPLE__
2141 /* only select works correctly on that "unix-certified" platform */
2142 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2143 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2144#endif
2145#ifdef __FreeBSD__
2146 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2147#endif
2148
2149 return flags;
2150}
2151
2152unsigned int ecb_cold
2153ev_embeddable_backends (void)
2154{
2155 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2156
2157 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2158 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2159 flags &= ~EVBACKEND_EPOLL;
2160
2161 return flags;
2162}
2163
779unsigned int 2164unsigned int
2165ev_backend (EV_P)
2166{
2167 return backend;
2168}
2169
2170#if EV_FEATURE_API
2171unsigned int
2172ev_iteration (EV_P)
2173{
2174 return loop_count;
2175}
2176
2177unsigned int
780ev_method (EV_P) 2178ev_depth (EV_P)
781{ 2179{
782 return method; 2180 return loop_depth;
783} 2181}
784 2182
785static void 2183void
2184ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2185{
2186 io_blocktime = interval;
2187}
2188
2189void
2190ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2191{
2192 timeout_blocktime = interval;
2193}
2194
2195void
2196ev_set_userdata (EV_P_ void *data)
2197{
2198 userdata = data;
2199}
2200
2201void *
2202ev_userdata (EV_P)
2203{
2204 return userdata;
2205}
2206
2207void
2208ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2209{
2210 invoke_cb = invoke_pending_cb;
2211}
2212
2213void
2214ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2215{
2216 release_cb = release;
2217 acquire_cb = acquire;
2218}
2219#endif
2220
2221/* initialise a loop structure, must be zero-initialised */
2222static void noinline ecb_cold
786loop_init (EV_P_ unsigned int flags) 2223loop_init (EV_P_ unsigned int flags)
787{ 2224{
788 if (!method) 2225 if (!backend)
789 { 2226 {
2227 origflags = flags;
2228
2229#if EV_USE_REALTIME
2230 if (!have_realtime)
2231 {
2232 struct timespec ts;
2233
2234 if (!clock_gettime (CLOCK_REALTIME, &ts))
2235 have_realtime = 1;
2236 }
2237#endif
2238
790#if EV_USE_MONOTONIC 2239#if EV_USE_MONOTONIC
2240 if (!have_monotonic)
2241 {
2242 struct timespec ts;
2243
2244 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2245 have_monotonic = 1;
2246 }
2247#endif
2248
2249 /* pid check not overridable via env */
2250#ifndef _WIN32
2251 if (flags & EVFLAG_FORKCHECK)
2252 curpid = getpid ();
2253#endif
2254
2255 if (!(flags & EVFLAG_NOENV)
2256 && !enable_secure ()
2257 && getenv ("LIBEV_FLAGS"))
2258 flags = atoi (getenv ("LIBEV_FLAGS"));
2259
2260 ev_rt_now = ev_time ();
2261 mn_now = get_clock ();
2262 now_floor = mn_now;
2263 rtmn_diff = ev_rt_now - mn_now;
2264#if EV_FEATURE_API
2265 invoke_cb = ev_invoke_pending;
2266#endif
2267
2268 io_blocktime = 0.;
2269 timeout_blocktime = 0.;
2270 backend = 0;
2271 backend_fd = -1;
2272 sig_pending = 0;
2273#if EV_ASYNC_ENABLE
2274 async_pending = 0;
2275#endif
2276 pipe_write_skipped = 0;
2277 pipe_write_wanted = 0;
2278#if EV_USE_INOTIFY
2279 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2280#endif
2281#if EV_USE_SIGNALFD
2282 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2283#endif
2284
2285 if (!(flags & EVBACKEND_MASK))
2286 flags |= ev_recommended_backends ();
2287
2288#if EV_USE_IOCP
2289 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2290#endif
2291#if EV_USE_PORT
2292 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2293#endif
2294#if EV_USE_KQUEUE
2295 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2296#endif
2297#if EV_USE_EPOLL
2298 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2299#endif
2300#if EV_USE_POLL
2301 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2302#endif
2303#if EV_USE_SELECT
2304 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2305#endif
2306
2307 ev_prepare_init (&pending_w, pendingcb);
2308
2309#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2310 ev_init (&pipe_w, pipecb);
2311 ev_set_priority (&pipe_w, EV_MAXPRI);
2312#endif
2313 }
2314}
2315
2316/* free up a loop structure */
2317void ecb_cold
2318ev_loop_destroy (EV_P)
2319{
2320 int i;
2321
2322#if EV_MULTIPLICITY
2323 /* mimic free (0) */
2324 if (!EV_A)
2325 return;
2326#endif
2327
2328#if EV_CLEANUP_ENABLE
2329 /* queue cleanup watchers (and execute them) */
2330 if (expect_false (cleanupcnt))
2331 {
2332 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2333 EV_INVOKE_PENDING;
2334 }
2335#endif
2336
2337#if EV_CHILD_ENABLE
2338 if (ev_is_active (&childev))
2339 {
2340 ev_ref (EV_A); /* child watcher */
2341 ev_signal_stop (EV_A_ &childev);
2342 }
2343#endif
2344
2345 if (ev_is_active (&pipe_w))
2346 {
2347 /*ev_ref (EV_A);*/
2348 /*ev_io_stop (EV_A_ &pipe_w);*/
2349
2350#if EV_USE_EVENTFD
2351 if (evfd >= 0)
2352 close (evfd);
2353#endif
2354
2355 if (evpipe [0] >= 0)
2356 {
2357 EV_WIN32_CLOSE_FD (evpipe [0]);
2358 EV_WIN32_CLOSE_FD (evpipe [1]);
2359 }
2360 }
2361
2362#if EV_USE_SIGNALFD
2363 if (ev_is_active (&sigfd_w))
2364 close (sigfd);
2365#endif
2366
2367#if EV_USE_INOTIFY
2368 if (fs_fd >= 0)
2369 close (fs_fd);
2370#endif
2371
2372 if (backend_fd >= 0)
2373 close (backend_fd);
2374
2375#if EV_USE_IOCP
2376 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2377#endif
2378#if EV_USE_PORT
2379 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2380#endif
2381#if EV_USE_KQUEUE
2382 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2383#endif
2384#if EV_USE_EPOLL
2385 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2386#endif
2387#if EV_USE_POLL
2388 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2389#endif
2390#if EV_USE_SELECT
2391 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2392#endif
2393
2394 for (i = NUMPRI; i--; )
2395 {
2396 array_free (pending, [i]);
2397#if EV_IDLE_ENABLE
2398 array_free (idle, [i]);
2399#endif
2400 }
2401
2402 ev_free (anfds); anfds = 0; anfdmax = 0;
2403
2404 /* have to use the microsoft-never-gets-it-right macro */
2405 array_free (rfeed, EMPTY);
2406 array_free (fdchange, EMPTY);
2407 array_free (timer, EMPTY);
2408#if EV_PERIODIC_ENABLE
2409 array_free (periodic, EMPTY);
2410#endif
2411#if EV_FORK_ENABLE
2412 array_free (fork, EMPTY);
2413#endif
2414#if EV_CLEANUP_ENABLE
2415 array_free (cleanup, EMPTY);
2416#endif
2417 array_free (prepare, EMPTY);
2418 array_free (check, EMPTY);
2419#if EV_ASYNC_ENABLE
2420 array_free (async, EMPTY);
2421#endif
2422
2423 backend = 0;
2424
2425#if EV_MULTIPLICITY
2426 if (ev_is_default_loop (EV_A))
2427#endif
2428 ev_default_loop_ptr = 0;
2429#if EV_MULTIPLICITY
2430 else
2431 ev_free (EV_A);
2432#endif
2433}
2434
2435#if EV_USE_INOTIFY
2436inline_size void infy_fork (EV_P);
2437#endif
2438
2439inline_size void
2440loop_fork (EV_P)
2441{
2442#if EV_USE_PORT
2443 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2444#endif
2445#if EV_USE_KQUEUE
2446 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2447#endif
2448#if EV_USE_EPOLL
2449 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2450#endif
2451#if EV_USE_INOTIFY
2452 infy_fork (EV_A);
2453#endif
2454
2455 if (ev_is_active (&pipe_w))
2456 {
2457 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2458
2459 ev_ref (EV_A);
2460 ev_io_stop (EV_A_ &pipe_w);
2461
2462#if EV_USE_EVENTFD
2463 if (evfd >= 0)
2464 close (evfd);
2465#endif
2466
2467 if (evpipe [0] >= 0)
2468 {
2469 EV_WIN32_CLOSE_FD (evpipe [0]);
2470 EV_WIN32_CLOSE_FD (evpipe [1]);
2471 }
2472
2473#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2474 evpipe_init (EV_A);
2475 /* now iterate over everything, in case we missed something */
2476 pipecb (EV_A_ &pipe_w, EV_READ);
2477#endif
2478 }
2479
2480 postfork = 0;
2481}
2482
2483#if EV_MULTIPLICITY
2484
2485struct ev_loop * ecb_cold
2486ev_loop_new (unsigned int flags)
2487{
2488 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2489
2490 memset (EV_A, 0, sizeof (struct ev_loop));
2491 loop_init (EV_A_ flags);
2492
2493 if (ev_backend (EV_A))
2494 return EV_A;
2495
2496 ev_free (EV_A);
2497 return 0;
2498}
2499
2500#endif /* multiplicity */
2501
2502#if EV_VERIFY
2503static void noinline ecb_cold
2504verify_watcher (EV_P_ W w)
2505{
2506 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2507
2508 if (w->pending)
2509 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2510}
2511
2512static void noinline ecb_cold
2513verify_heap (EV_P_ ANHE *heap, int N)
2514{
2515 int i;
2516
2517 for (i = HEAP0; i < N + HEAP0; ++i)
2518 {
2519 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2520 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2521 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2522
2523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2524 }
2525}
2526
2527static void noinline ecb_cold
2528array_verify (EV_P_ W *ws, int cnt)
2529{
2530 while (cnt--)
2531 {
2532 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2533 verify_watcher (EV_A_ ws [cnt]);
2534 }
2535}
2536#endif
2537
2538#if EV_FEATURE_API
2539void ecb_cold
2540ev_verify (EV_P)
2541{
2542#if EV_VERIFY
2543 int i;
2544 WL w;
2545
2546 assert (activecnt >= -1);
2547
2548 assert (fdchangemax >= fdchangecnt);
2549 for (i = 0; i < fdchangecnt; ++i)
2550 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2551
2552 assert (anfdmax >= 0);
2553 for (i = 0; i < anfdmax; ++i)
2554 for (w = anfds [i].head; w; w = w->next)
791 { 2555 {
792 struct timespec ts; 2556 verify_watcher (EV_A_ (W)w);
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2557 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
794 have_monotonic = 1; 2558 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
795 } 2559 }
796#endif
797 2560
798 ev_rt_now = ev_time (); 2561 assert (timermax >= timercnt);
799 mn_now = get_clock (); 2562 verify_heap (EV_A_ timers, timercnt);
800 now_floor = mn_now;
801 rtmn_diff = ev_rt_now - mn_now;
802 2563
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2564#if EV_PERIODIC_ENABLE
804 flags = atoi (getenv ("LIBEV_FLAGS")); 2565 assert (periodicmax >= periodiccnt);
805 2566 verify_heap (EV_A_ periodics, periodiccnt);
806 if (!(flags & 0x0000ffff))
807 flags |= 0x0000ffff;
808
809 method = 0;
810#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
812#endif
813#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
815#endif
816#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
818#endif
819#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
821#endif
822#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
824#endif
825
826 ev_init (&sigev, sigcb);
827 ev_set_priority (&sigev, EV_MAXPRI);
828 }
829}
830
831static void
832loop_destroy (EV_P)
833{
834 int i;
835
836#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
838#endif
839#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
841#endif
842#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
844#endif
845#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
847#endif
848#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
850#endif 2567#endif
851 2568
852 for (i = NUMPRI; i--; ) 2569 for (i = NUMPRI; i--; )
853 array_free (pending, [i]); 2570 {
2571 assert (pendingmax [i] >= pendingcnt [i]);
2572#if EV_IDLE_ENABLE
2573 assert (idleall >= 0);
2574 assert (idlemax [i] >= idlecnt [i]);
2575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2576#endif
2577 }
854 2578
855 /* have to use the microsoft-never-gets-it-right macro */ 2579#if EV_FORK_ENABLE
856 array_free (fdchange, EMPTY0); 2580 assert (forkmax >= forkcnt);
857 array_free (timer, EMPTY0); 2581 array_verify (EV_A_ (W *)forks, forkcnt);
858#if EV_PERIODICS 2582#endif
859 array_free (periodic, EMPTY0); 2583
2584#if EV_CLEANUP_ENABLE
2585 assert (cleanupmax >= cleanupcnt);
2586 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2587#endif
2588
2589#if EV_ASYNC_ENABLE
2590 assert (asyncmax >= asynccnt);
2591 array_verify (EV_A_ (W *)asyncs, asynccnt);
2592#endif
2593
2594#if EV_PREPARE_ENABLE
2595 assert (preparemax >= preparecnt);
2596 array_verify (EV_A_ (W *)prepares, preparecnt);
2597#endif
2598
2599#if EV_CHECK_ENABLE
2600 assert (checkmax >= checkcnt);
2601 array_verify (EV_A_ (W *)checks, checkcnt);
2602#endif
2603
2604# if 0
2605#if EV_CHILD_ENABLE
2606 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2607 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2608#endif
860#endif 2609# endif
861 array_free (idle, EMPTY0);
862 array_free (prepare, EMPTY0);
863 array_free (check, EMPTY0);
864
865 method = 0;
866}
867
868static void
869loop_fork (EV_P)
870{
871#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A);
873#endif 2610#endif
874#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
876#endif
877#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
879#endif
880
881 if (ev_is_active (&sigev))
882 {
883 /* default loop */
884
885 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A);
894 }
895
896 postfork = 0;
897} 2611}
2612#endif
898 2613
899#if EV_MULTIPLICITY 2614#if EV_MULTIPLICITY
900struct ev_loop * 2615struct ev_loop * ecb_cold
901ev_loop_new (unsigned int flags)
902{
903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
904
905 memset (loop, 0, sizeof (struct ev_loop));
906
907 loop_init (EV_A_ flags);
908
909 if (ev_method (EV_A))
910 return loop;
911
912 return 0;
913}
914
915void
916ev_loop_destroy (EV_P)
917{
918 loop_destroy (EV_A);
919 ev_free (loop);
920}
921
922void
923ev_loop_fork (EV_P)
924{
925 postfork = 1;
926}
927
928#endif
929
930#if EV_MULTIPLICITY
931struct ev_loop *
932ev_default_loop_init (unsigned int flags)
933#else 2616#else
934int 2617int
2618#endif
935ev_default_loop (unsigned int flags) 2619ev_default_loop (unsigned int flags)
936#endif
937{ 2620{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 2621 if (!ev_default_loop_ptr)
943 { 2622 {
944#if EV_MULTIPLICITY 2623#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2624 EV_P = ev_default_loop_ptr = &default_loop_struct;
946#else 2625#else
947 ev_default_loop_ptr = 1; 2626 ev_default_loop_ptr = 1;
948#endif 2627#endif
949 2628
950 loop_init (EV_A_ flags); 2629 loop_init (EV_A_ flags);
951 2630
952 if (ev_method (EV_A)) 2631 if (ev_backend (EV_A))
953 { 2632 {
954 siginit (EV_A); 2633#if EV_CHILD_ENABLE
955
956#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 2634 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 2635 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 2636 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2637 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#endif 2638#endif
966 2643
967 return ev_default_loop_ptr; 2644 return ev_default_loop_ptr;
968} 2645}
969 2646
970void 2647void
971ev_default_destroy (void) 2648ev_loop_fork (EV_P)
972{ 2649{
973#if EV_MULTIPLICITY 2650 postfork = 1; /* must be in line with ev_default_fork */
974 struct ev_loop *loop = ev_default_loop_ptr;
975#endif
976
977#ifndef _WIN32
978 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev);
980#endif
981
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A);
989} 2651}
2652
2653/*****************************************************************************/
990 2654
991void 2655void
992ev_default_fork (void) 2656ev_invoke (EV_P_ void *w, int revents)
993{ 2657{
994#if EV_MULTIPLICITY 2658 EV_CB_INVOKE ((W)w, revents);
995 struct ev_loop *loop = ev_default_loop_ptr;
996#endif
997
998 if (method)
999 postfork = 1;
1000} 2659}
1001 2660
1002/*****************************************************************************/ 2661unsigned int
1003 2662ev_pending_count (EV_P)
1004static int
1005any_pending (EV_P)
1006{ 2663{
1007 int pri; 2664 int pri;
2665 unsigned int count = 0;
1008 2666
1009 for (pri = NUMPRI; pri--; ) 2667 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri]) 2668 count += pendingcnt [pri];
1011 return 1;
1012 2669
1013 return 0; 2670 return count;
1014} 2671}
1015 2672
1016inline void 2673void noinline
1017call_pending (EV_P) 2674ev_invoke_pending (EV_P)
1018{ 2675{
1019 int pri; 2676 int pri;
1020 2677
1021 for (pri = NUMPRI; pri--; ) 2678 for (pri = NUMPRI; pri--; )
1022 while (pendingcnt [pri]) 2679 while (pendingcnt [pri])
1023 { 2680 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2681 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 2682
1026 if (expect_true (p->w))
1027 {
1028 p->w->pending = 0; 2683 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 2684 EV_CB_INVOKE (p->w, p->events);
1030 } 2685 EV_FREQUENT_CHECK;
1031 } 2686 }
1032} 2687}
1033 2688
2689#if EV_IDLE_ENABLE
2690/* make idle watchers pending. this handles the "call-idle */
2691/* only when higher priorities are idle" logic */
1034inline void 2692inline_size void
2693idle_reify (EV_P)
2694{
2695 if (expect_false (idleall))
2696 {
2697 int pri;
2698
2699 for (pri = NUMPRI; pri--; )
2700 {
2701 if (pendingcnt [pri])
2702 break;
2703
2704 if (idlecnt [pri])
2705 {
2706 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2707 break;
2708 }
2709 }
2710 }
2711}
2712#endif
2713
2714/* make timers pending */
2715inline_size void
1035timers_reify (EV_P) 2716timers_reify (EV_P)
1036{ 2717{
2718 EV_FREQUENT_CHECK;
2719
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 2720 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 2721 {
1039 struct ev_timer *w = timers [0]; 2722 do
1040
1041 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1042
1043 /* first reschedule or stop timer */
1044 if (w->repeat)
1045 { 2723 {
2724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2725
2726 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2727
2728 /* first reschedule or stop timer */
2729 if (w->repeat)
2730 {
2731 ev_at (w) += w->repeat;
2732 if (ev_at (w) < mn_now)
2733 ev_at (w) = mn_now;
2734
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2735 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 2736
1048 ((WT)w)->at += w->repeat; 2737 ANHE_at_cache (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 2738 downheap (timers, timercnt, HEAP0);
2739 }
2740 else
2741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2742
2743 EV_FREQUENT_CHECK;
2744 feed_reverse (EV_A_ (W)w);
1053 } 2745 }
1054 else 2746 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 2747
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2748 feed_reverse_done (EV_A_ EV_TIMER);
2749 }
2750}
2751
2752#if EV_PERIODIC_ENABLE
2753
2754static void noinline
2755periodic_recalc (EV_P_ ev_periodic *w)
2756{
2757 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2758 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2759
2760 /* the above almost always errs on the low side */
2761 while (at <= ev_rt_now)
1058 } 2762 {
1059} 2763 ev_tstamp nat = at + w->interval;
1060 2764
1061#if EV_PERIODICS 2765 /* when resolution fails us, we use ev_rt_now */
2766 if (expect_false (nat == at))
2767 {
2768 at = ev_rt_now;
2769 break;
2770 }
2771
2772 at = nat;
2773 }
2774
2775 ev_at (w) = at;
2776}
2777
2778/* make periodics pending */
1062inline void 2779inline_size void
1063periodics_reify (EV_P) 2780periodics_reify (EV_P)
1064{ 2781{
2782 EV_FREQUENT_CHECK;
2783
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2784 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 2785 {
1067 struct ev_periodic *w = periodics [0]; 2786 int feed_count = 0;
1068 2787
2788 do
2789 {
2790 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2791
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2792 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 2793
1071 /* first reschedule or stop timer */ 2794 /* first reschedule or stop timer */
2795 if (w->reschedule_cb)
2796 {
2797 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2798
2799 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2800
2801 ANHE_at_cache (periodics [HEAP0]);
2802 downheap (periodics, periodiccnt, HEAP0);
2803 }
2804 else if (w->interval)
2805 {
2806 periodic_recalc (EV_A_ w);
2807 ANHE_at_cache (periodics [HEAP0]);
2808 downheap (periodics, periodiccnt, HEAP0);
2809 }
2810 else
2811 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2812
2813 EV_FREQUENT_CHECK;
2814 feed_reverse (EV_A_ (W)w);
2815 }
2816 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2817
2818 feed_reverse_done (EV_A_ EV_PERIODIC);
2819 }
2820}
2821
2822/* simply recalculate all periodics */
2823/* TODO: maybe ensure that at least one event happens when jumping forward? */
2824static void noinline ecb_cold
2825periodics_reschedule (EV_P)
2826{
2827 int i;
2828
2829 /* adjust periodics after time jump */
2830 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2831 {
2832 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2833
1072 if (w->reschedule_cb) 2834 if (w->reschedule_cb)
2835 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2836 else if (w->interval)
2837 periodic_recalc (EV_A_ w);
2838
2839 ANHE_at_cache (periodics [i]);
2840 }
2841
2842 reheap (periodics, periodiccnt);
2843}
2844#endif
2845
2846/* adjust all timers by a given offset */
2847static void noinline ecb_cold
2848timers_reschedule (EV_P_ ev_tstamp adjust)
2849{
2850 int i;
2851
2852 for (i = 0; i < timercnt; ++i)
2853 {
2854 ANHE *he = timers + i + HEAP0;
2855 ANHE_w (*he)->at += adjust;
2856 ANHE_at_cache (*he);
2857 }
2858}
2859
2860/* fetch new monotonic and realtime times from the kernel */
2861/* also detect if there was a timejump, and act accordingly */
2862inline_speed void
2863time_update (EV_P_ ev_tstamp max_block)
2864{
2865#if EV_USE_MONOTONIC
2866 if (expect_true (have_monotonic))
2867 {
2868 int i;
2869 ev_tstamp odiff = rtmn_diff;
2870
2871 mn_now = get_clock ();
2872
2873 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2874 /* interpolate in the meantime */
2875 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1073 { 2876 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2877 ev_rt_now = rtmn_diff + mn_now;
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2878 return;
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 } 2879 }
1078 else if (w->interval)
1079 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1082 downheap ((WT *)periodics, periodiccnt, 0);
1083 }
1084 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 2880
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 }
1089}
1090
1091static void
1092periodics_reschedule (EV_P)
1093{
1094 int i;
1095
1096 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i)
1098 {
1099 struct ev_periodic *w = periodics [i];
1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock ();
1117
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 {
1120 ev_rt_now = rtmn_diff + mn_now;
1121 return 0;
1122 }
1123 else
1124 {
1125 now_floor = mn_now; 2881 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 2882 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 2883
1131inline void 2884 /* loop a few times, before making important decisions.
1132time_update (EV_P) 2885 * on the choice of "4": one iteration isn't enough,
1133{ 2886 * in case we get preempted during the calls to
1134 int i; 2887 * ev_time and get_clock. a second call is almost guaranteed
1135 2888 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 2889 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 2890 * in the unlikely event of having been preempted here.
1138 { 2891 */
1139 if (time_update_monotonic (EV_A)) 2892 for (i = 4; --i; )
1140 { 2893 {
1141 ev_tstamp odiff = rtmn_diff; 2894 ev_tstamp diff;
1142
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1144 {
1145 rtmn_diff = ev_rt_now - mn_now; 2895 rtmn_diff = ev_rt_now - mn_now;
1146 2896
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2897 diff = odiff - rtmn_diff;
2898
2899 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1148 return; /* all is well */ 2900 return; /* all is well */
1149 2901
1150 ev_rt_now = ev_time (); 2902 ev_rt_now = ev_time ();
1151 mn_now = get_clock (); 2903 mn_now = get_clock ();
1152 now_floor = mn_now; 2904 now_floor = mn_now;
1153 } 2905 }
1154 2906
2907 /* no timer adjustment, as the monotonic clock doesn't jump */
2908 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1155# if EV_PERIODICS 2909# if EV_PERIODIC_ENABLE
2910 periodics_reschedule (EV_A);
2911# endif
2912 }
2913 else
2914#endif
2915 {
2916 ev_rt_now = ev_time ();
2917
2918 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2919 {
2920 /* adjust timers. this is easy, as the offset is the same for all of them */
2921 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2922#if EV_PERIODIC_ENABLE
1156 periodics_reschedule (EV_A); 2923 periodics_reschedule (EV_A);
1157# endif 2924#endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 2925 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 2926
1178 mn_now = ev_rt_now; 2927 mn_now = ev_rt_now;
1179 } 2928 }
1180} 2929}
1181 2930
1182void 2931void
1183ev_ref (EV_P)
1184{
1185 ++activecnt;
1186}
1187
1188void
1189ev_unref (EV_P)
1190{
1191 --activecnt;
1192}
1193
1194static int loop_done;
1195
1196void
1197ev_loop (EV_P_ int flags) 2932ev_run (EV_P_ int flags)
1198{ 2933{
1199 double block; 2934#if EV_FEATURE_API
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2935 ++loop_depth;
2936#endif
1201 2937
1202 while (activecnt) 2938 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2939
2940 loop_done = EVBREAK_CANCEL;
2941
2942 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2943
2944 do
1203 { 2945 {
2946#if EV_VERIFY >= 2
2947 ev_verify (EV_A);
2948#endif
2949
2950#ifndef _WIN32
2951 if (expect_false (curpid)) /* penalise the forking check even more */
2952 if (expect_false (getpid () != curpid))
2953 {
2954 curpid = getpid ();
2955 postfork = 1;
2956 }
2957#endif
2958
2959#if EV_FORK_ENABLE
2960 /* we might have forked, so queue fork handlers */
2961 if (expect_false (postfork))
2962 if (forkcnt)
2963 {
2964 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2965 EV_INVOKE_PENDING;
2966 }
2967#endif
2968
2969#if EV_PREPARE_ENABLE
1204 /* queue check watchers (and execute them) */ 2970 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 2971 if (expect_false (preparecnt))
1206 { 2972 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2973 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 2974 EV_INVOKE_PENDING;
1209 } 2975 }
2976#endif
2977
2978 if (expect_false (loop_done))
2979 break;
1210 2980
1211 /* we might have forked, so reify kernel state if necessary */ 2981 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 2982 if (expect_false (postfork))
1213 loop_fork (EV_A); 2983 loop_fork (EV_A);
1214 2984
1215 /* update fd-related kernel structures */ 2985 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 2986 fd_reify (EV_A);
1217 2987
1218 /* calculate blocking time */ 2988 /* calculate blocking time */
2989 {
2990 ev_tstamp waittime = 0.;
2991 ev_tstamp sleeptime = 0.;
1219 2992
1220 /* we only need this for !monotonic clock or timers, but as we basically 2993 /* remember old timestamp for io_blocktime calculation */
1221 always have timers, we just calculate it always */ 2994 ev_tstamp prev_mn_now = mn_now;
1222#if EV_USE_MONOTONIC 2995
1223 if (expect_true (have_monotonic)) 2996 /* update time to cancel out callback processing overhead */
1224 time_update_monotonic (EV_A); 2997 time_update (EV_A_ 1e100);
1225 else 2998
1226#endif 2999 /* from now on, we want a pipe-wake-up */
3000 pipe_write_wanted = 1;
3001
3002 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3003
3004 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1227 { 3005 {
1228 ev_rt_now = ev_time ();
1229 mn_now = ev_rt_now;
1230 }
1231
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 3006 waittime = MAX_BLOCKTIME;
1237 3007
1238 if (timercnt) 3008 if (timercnt)
1239 { 3009 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3010 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1241 if (block > to) block = to; 3011 if (waittime > to) waittime = to;
1242 } 3012 }
1243 3013
1244#if EV_PERIODICS 3014#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 3015 if (periodiccnt)
1246 { 3016 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3017 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1248 if (block > to) block = to; 3018 if (waittime > to) waittime = to;
1249 } 3019 }
1250#endif 3020#endif
1251 3021
1252 if (expect_false (block < 0.)) block = 0.; 3022 /* don't let timeouts decrease the waittime below timeout_blocktime */
3023 if (expect_false (waittime < timeout_blocktime))
3024 waittime = timeout_blocktime;
3025
3026 /* at this point, we NEED to wait, so we have to ensure */
3027 /* to pass a minimum nonzero value to the backend */
3028 if (expect_false (waittime < backend_mintime))
3029 waittime = backend_mintime;
3030
3031 /* extra check because io_blocktime is commonly 0 */
3032 if (expect_false (io_blocktime))
3033 {
3034 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3035
3036 if (sleeptime > waittime - backend_mintime)
3037 sleeptime = waittime - backend_mintime;
3038
3039 if (expect_true (sleeptime > 0.))
3040 {
3041 ev_sleep (sleeptime);
3042 waittime -= sleeptime;
3043 }
3044 }
1253 } 3045 }
1254 3046
1255 method_poll (EV_A_ block); 3047#if EV_FEATURE_API
3048 ++loop_count;
3049#endif
3050 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3051 backend_poll (EV_A_ waittime);
3052 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1256 3053
3054 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3055
3056 if (pipe_write_skipped)
3057 {
3058 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3059 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3060 }
3061
3062
1257 /* update ev_rt_now, do magic */ 3063 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 3064 time_update (EV_A_ waittime + sleeptime);
3065 }
1259 3066
1260 /* queue pending timers and reschedule them */ 3067 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 3068 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 3069#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 3070 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 3071#endif
1265 3072
3073#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 3074 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 3075 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3076#endif
1269 3077
3078#if EV_CHECK_ENABLE
1270 /* queue check watchers, to be executed first */ 3079 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 3080 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3081 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3082#endif
1273 3083
1274 call_pending (EV_A); 3084 EV_INVOKE_PENDING;
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 3085 }
3086 while (expect_true (
3087 activecnt
3088 && !loop_done
3089 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3090 ));
1279 3091
1280 if (loop_done != 2) 3092 if (loop_done == EVBREAK_ONE)
1281 loop_done = 0; 3093 loop_done = EVBREAK_CANCEL;
3094
3095#if EV_FEATURE_API
3096 --loop_depth;
3097#endif
1282} 3098}
1283 3099
1284void 3100void
1285ev_unloop (EV_P_ int how) 3101ev_break (EV_P_ int how)
1286{ 3102{
1287 loop_done = how; 3103 loop_done = how;
1288} 3104}
1289 3105
3106void
3107ev_ref (EV_P)
3108{
3109 ++activecnt;
3110}
3111
3112void
3113ev_unref (EV_P)
3114{
3115 --activecnt;
3116}
3117
3118void
3119ev_now_update (EV_P)
3120{
3121 time_update (EV_A_ 1e100);
3122}
3123
3124void
3125ev_suspend (EV_P)
3126{
3127 ev_now_update (EV_A);
3128}
3129
3130void
3131ev_resume (EV_P)
3132{
3133 ev_tstamp mn_prev = mn_now;
3134
3135 ev_now_update (EV_A);
3136 timers_reschedule (EV_A_ mn_now - mn_prev);
3137#if EV_PERIODIC_ENABLE
3138 /* TODO: really do this? */
3139 periodics_reschedule (EV_A);
3140#endif
3141}
3142
1290/*****************************************************************************/ 3143/*****************************************************************************/
3144/* singly-linked list management, used when the expected list length is short */
1291 3145
1292inline void 3146inline_size void
1293wlist_add (WL *head, WL elem) 3147wlist_add (WL *head, WL elem)
1294{ 3148{
1295 elem->next = *head; 3149 elem->next = *head;
1296 *head = elem; 3150 *head = elem;
1297} 3151}
1298 3152
1299inline void 3153inline_size void
1300wlist_del (WL *head, WL elem) 3154wlist_del (WL *head, WL elem)
1301{ 3155{
1302 while (*head) 3156 while (*head)
1303 { 3157 {
1304 if (*head == elem) 3158 if (expect_true (*head == elem))
1305 { 3159 {
1306 *head = elem->next; 3160 *head = elem->next;
1307 return; 3161 break;
1308 } 3162 }
1309 3163
1310 head = &(*head)->next; 3164 head = &(*head)->next;
1311 } 3165 }
1312} 3166}
1313 3167
3168/* internal, faster, version of ev_clear_pending */
1314inline void 3169inline_speed void
1315ev_clear_pending (EV_P_ W w) 3170clear_pending (EV_P_ W w)
1316{ 3171{
1317 if (w->pending) 3172 if (w->pending)
1318 { 3173 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3174 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1320 w->pending = 0; 3175 w->pending = 0;
1321 } 3176 }
1322} 3177}
1323 3178
3179int
3180ev_clear_pending (EV_P_ void *w)
3181{
3182 W w_ = (W)w;
3183 int pending = w_->pending;
3184
3185 if (expect_true (pending))
3186 {
3187 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3188 p->w = (W)&pending_w;
3189 w_->pending = 0;
3190 return p->events;
3191 }
3192 else
3193 return 0;
3194}
3195
1324inline void 3196inline_size void
3197pri_adjust (EV_P_ W w)
3198{
3199 int pri = ev_priority (w);
3200 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3201 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3202 ev_set_priority (w, pri);
3203}
3204
3205inline_speed void
1325ev_start (EV_P_ W w, int active) 3206ev_start (EV_P_ W w, int active)
1326{ 3207{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3208 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 3209 w->active = active;
1331 ev_ref (EV_A); 3210 ev_ref (EV_A);
1332} 3211}
1333 3212
1334inline void 3213inline_size void
1335ev_stop (EV_P_ W w) 3214ev_stop (EV_P_ W w)
1336{ 3215{
1337 ev_unref (EV_A); 3216 ev_unref (EV_A);
1338 w->active = 0; 3217 w->active = 0;
1339} 3218}
1340 3219
1341/*****************************************************************************/ 3220/*****************************************************************************/
1342 3221
1343void 3222void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 3223ev_io_start (EV_P_ ev_io *w)
1345{ 3224{
1346 int fd = w->fd; 3225 int fd = w->fd;
1347 3226
1348 if (expect_false (ev_is_active (w))) 3227 if (expect_false (ev_is_active (w)))
1349 return; 3228 return;
1350 3229
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 3230 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3231 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3232
3233 EV_FREQUENT_CHECK;
1352 3234
1353 ev_start (EV_A_ (W)w, 1); 3235 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3236 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3237 wlist_add (&anfds[fd].head, (WL)w);
1356 3238
1357 fd_change (EV_A_ fd); 3239 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1358} 3240 w->events &= ~EV__IOFDSET;
1359 3241
1360void 3242 EV_FREQUENT_CHECK;
3243}
3244
3245void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 3246ev_io_stop (EV_P_ ev_io *w)
1362{ 3247{
1363 ev_clear_pending (EV_A_ (W)w); 3248 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 3249 if (expect_false (!ev_is_active (w)))
1365 return; 3250 return;
1366 3251
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3252 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 3253
3254 EV_FREQUENT_CHECK;
3255
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3256 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 3257 ev_stop (EV_A_ (W)w);
1371 3258
1372 fd_change (EV_A_ w->fd); 3259 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1373}
1374 3260
1375void 3261 EV_FREQUENT_CHECK;
3262}
3263
3264void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 3265ev_timer_start (EV_P_ ev_timer *w)
1377{ 3266{
1378 if (expect_false (ev_is_active (w))) 3267 if (expect_false (ev_is_active (w)))
1379 return; 3268 return;
1380 3269
1381 ((WT)w)->at += mn_now; 3270 ev_at (w) += mn_now;
1382 3271
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3272 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 3273
3274 EV_FREQUENT_CHECK;
3275
3276 ++timercnt;
1385 ev_start (EV_A_ (W)w, ++timercnt); 3277 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3278 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 3279 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 3280 ANHE_at_cache (timers [ev_active (w)]);
3281 upheap (timers, ev_active (w));
1389 3282
3283 EV_FREQUENT_CHECK;
3284
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3285 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 3286}
1392 3287
1393void 3288void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 3289ev_timer_stop (EV_P_ ev_timer *w)
1395{ 3290{
1396 ev_clear_pending (EV_A_ (W)w); 3291 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 3292 if (expect_false (!ev_is_active (w)))
1398 return; 3293 return;
1399 3294
3295 EV_FREQUENT_CHECK;
3296
3297 {
3298 int active = ev_active (w);
3299
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3300 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 3301
3302 --timercnt;
3303
1402 if (expect_true (((W)w)->active < timercnt--)) 3304 if (expect_true (active < timercnt + HEAP0))
1403 { 3305 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 3306 timers [active] = timers [timercnt + HEAP0];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3307 adjustheap (timers, timercnt, active);
1406 } 3308 }
3309 }
1407 3310
1408 ((WT)w)->at -= mn_now; 3311 ev_at (w) -= mn_now;
1409 3312
1410 ev_stop (EV_A_ (W)w); 3313 ev_stop (EV_A_ (W)w);
1411}
1412 3314
1413void 3315 EV_FREQUENT_CHECK;
3316}
3317
3318void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 3319ev_timer_again (EV_P_ ev_timer *w)
1415{ 3320{
3321 EV_FREQUENT_CHECK;
3322
3323 clear_pending (EV_A_ (W)w);
3324
1416 if (ev_is_active (w)) 3325 if (ev_is_active (w))
1417 { 3326 {
1418 if (w->repeat) 3327 if (w->repeat)
1419 { 3328 {
1420 ((WT)w)->at = mn_now + w->repeat; 3329 ev_at (w) = mn_now + w->repeat;
3330 ANHE_at_cache (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3331 adjustheap (timers, timercnt, ev_active (w));
1422 } 3332 }
1423 else 3333 else
1424 ev_timer_stop (EV_A_ w); 3334 ev_timer_stop (EV_A_ w);
1425 } 3335 }
1426 else if (w->repeat) 3336 else if (w->repeat)
1427 { 3337 {
1428 w->at = w->repeat; 3338 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 3339 ev_timer_start (EV_A_ w);
1430 } 3340 }
1431}
1432 3341
3342 EV_FREQUENT_CHECK;
3343}
3344
3345ev_tstamp
3346ev_timer_remaining (EV_P_ ev_timer *w)
3347{
3348 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3349}
3350
1433#if EV_PERIODICS 3351#if EV_PERIODIC_ENABLE
1434void 3352void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 3353ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 3354{
1437 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
1438 return; 3356 return;
1439 3357
1440 if (w->reschedule_cb) 3358 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3359 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 3360 else if (w->interval)
1443 { 3361 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3362 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 3363 periodic_recalc (EV_A_ w);
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1447 } 3364 }
3365 else
3366 ev_at (w) = w->offset;
1448 3367
3368 EV_FREQUENT_CHECK;
3369
3370 ++periodiccnt;
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 3371 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3372 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 3373 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 3374 ANHE_at_cache (periodics [ev_active (w)]);
3375 upheap (periodics, ev_active (w));
1453 3376
3377 EV_FREQUENT_CHECK;
3378
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3379 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 3380}
1456 3381
1457void 3382void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 3383ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 3384{
1460 ev_clear_pending (EV_A_ (W)w); 3385 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 3386 if (expect_false (!ev_is_active (w)))
1462 return; 3387 return;
1463 3388
3389 EV_FREQUENT_CHECK;
3390
3391 {
3392 int active = ev_active (w);
3393
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3394 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 3395
3396 --periodiccnt;
3397
1466 if (expect_true (((W)w)->active < periodiccnt--)) 3398 if (expect_true (active < periodiccnt + HEAP0))
1467 { 3399 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3400 periodics [active] = periodics [periodiccnt + HEAP0];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3401 adjustheap (periodics, periodiccnt, active);
1470 } 3402 }
3403 }
1471 3404
1472 ev_stop (EV_A_ (W)w); 3405 ev_stop (EV_A_ (W)w);
1473}
1474 3406
1475void 3407 EV_FREQUENT_CHECK;
3408}
3409
3410void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 3411ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 3412{
1478 /* TODO: use adjustheap and recalculation */ 3413 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 3414 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 3415 ev_periodic_start (EV_A_ w);
1481} 3416}
1482#endif 3417#endif
1483 3418
1484void 3419#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 3420# define SA_RESTART 0
3421#endif
3422
3423#if EV_SIGNAL_ENABLE
3424
3425void noinline
3426ev_signal_start (EV_P_ ev_signal *w)
1486{ 3427{
1487 if (expect_false (ev_is_active (w))) 3428 if (expect_false (ev_is_active (w)))
1488 return; 3429 return;
1489 3430
3431 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3432
3433#if EV_MULTIPLICITY
3434 assert (("libev: a signal must not be attached to two different loops",
3435 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3436
3437 signals [w->signum - 1].loop = EV_A;
3438#endif
3439
3440 EV_FREQUENT_CHECK;
3441
3442#if EV_USE_SIGNALFD
3443 if (sigfd == -2)
3444 {
3445 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3446 if (sigfd < 0 && errno == EINVAL)
3447 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3448
3449 if (sigfd >= 0)
3450 {
3451 fd_intern (sigfd); /* doing it twice will not hurt */
3452
3453 sigemptyset (&sigfd_set);
3454
3455 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3456 ev_set_priority (&sigfd_w, EV_MAXPRI);
3457 ev_io_start (EV_A_ &sigfd_w);
3458 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3459 }
3460 }
3461
3462 if (sigfd >= 0)
3463 {
3464 /* TODO: check .head */
3465 sigaddset (&sigfd_set, w->signum);
3466 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3467
3468 signalfd (sigfd, &sigfd_set, 0);
3469 }
3470#endif
3471
1490 ev_start (EV_A_ (W)w, ++idlecnt); 3472 ev_start (EV_A_ (W)w, 1);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3473 wlist_add (&signals [w->signum - 1].head, (WL)w);
1492 idles [idlecnt - 1] = w;
1493}
1494 3474
1495void 3475 if (!((WL)w)->next)
1496ev_idle_stop (EV_P_ struct ev_idle *w) 3476# if EV_USE_SIGNALFD
3477 if (sigfd < 0) /*TODO*/
3478# endif
3479 {
3480# ifdef _WIN32
3481 evpipe_init (EV_A);
3482
3483 signal (w->signum, ev_sighandler);
3484# else
3485 struct sigaction sa;
3486
3487 evpipe_init (EV_A);
3488
3489 sa.sa_handler = ev_sighandler;
3490 sigfillset (&sa.sa_mask);
3491 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3492 sigaction (w->signum, &sa, 0);
3493
3494 if (origflags & EVFLAG_NOSIGMASK)
3495 {
3496 sigemptyset (&sa.sa_mask);
3497 sigaddset (&sa.sa_mask, w->signum);
3498 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3499 }
3500#endif
3501 }
3502
3503 EV_FREQUENT_CHECK;
3504}
3505
3506void noinline
3507ev_signal_stop (EV_P_ ev_signal *w)
1497{ 3508{
1498 ev_clear_pending (EV_A_ (W)w); 3509 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 3510 if (expect_false (!ev_is_active (w)))
1500 return; 3511 return;
1501 3512
1502 idles [((W)w)->active - 1] = idles [--idlecnt]; 3513 EV_FREQUENT_CHECK;
3514
3515 wlist_del (&signals [w->signum - 1].head, (WL)w);
1503 ev_stop (EV_A_ (W)w); 3516 ev_stop (EV_A_ (W)w);
3517
3518 if (!signals [w->signum - 1].head)
3519 {
3520#if EV_MULTIPLICITY
3521 signals [w->signum - 1].loop = 0; /* unattach from signal */
3522#endif
3523#if EV_USE_SIGNALFD
3524 if (sigfd >= 0)
3525 {
3526 sigset_t ss;
3527
3528 sigemptyset (&ss);
3529 sigaddset (&ss, w->signum);
3530 sigdelset (&sigfd_set, w->signum);
3531
3532 signalfd (sigfd, &sigfd_set, 0);
3533 sigprocmask (SIG_UNBLOCK, &ss, 0);
3534 }
3535 else
3536#endif
3537 signal (w->signum, SIG_DFL);
3538 }
3539
3540 EV_FREQUENT_CHECK;
1504} 3541}
3542
3543#endif
3544
3545#if EV_CHILD_ENABLE
1505 3546
1506void 3547void
1507ev_prepare_start (EV_P_ struct ev_prepare *w) 3548ev_child_start (EV_P_ ev_child *w)
1508{ 3549{
3550#if EV_MULTIPLICITY
3551 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3552#endif
1509 if (expect_false (ev_is_active (w))) 3553 if (expect_false (ev_is_active (w)))
1510 return; 3554 return;
1511 3555
3556 EV_FREQUENT_CHECK;
3557
1512 ev_start (EV_A_ (W)w, ++preparecnt); 3558 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3559 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1514 prepares [preparecnt - 1] = w; 3560
3561 EV_FREQUENT_CHECK;
1515} 3562}
1516 3563
1517void 3564void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w) 3565ev_child_stop (EV_P_ ev_child *w)
1519{ 3566{
1520 ev_clear_pending (EV_A_ (W)w); 3567 clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w))) 3568 if (expect_false (!ev_is_active (w)))
1522 return; 3569 return;
1523 3570
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3571 EV_FREQUENT_CHECK;
3572
3573 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1525 ev_stop (EV_A_ (W)w); 3574 ev_stop (EV_A_ (W)w);
3575
3576 EV_FREQUENT_CHECK;
1526} 3577}
3578
3579#endif
3580
3581#if EV_STAT_ENABLE
3582
3583# ifdef _WIN32
3584# undef lstat
3585# define lstat(a,b) _stati64 (a,b)
3586# endif
3587
3588#define DEF_STAT_INTERVAL 5.0074891
3589#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3590#define MIN_STAT_INTERVAL 0.1074891
3591
3592static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3593
3594#if EV_USE_INOTIFY
3595
3596/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3597# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3598
3599static void noinline
3600infy_add (EV_P_ ev_stat *w)
3601{
3602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3603
3604 if (w->wd >= 0)
3605 {
3606 struct statfs sfs;
3607
3608 /* now local changes will be tracked by inotify, but remote changes won't */
3609 /* unless the filesystem is known to be local, we therefore still poll */
3610 /* also do poll on <2.6.25, but with normal frequency */
3611
3612 if (!fs_2625)
3613 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3614 else if (!statfs (w->path, &sfs)
3615 && (sfs.f_type == 0x1373 /* devfs */
3616 || sfs.f_type == 0xEF53 /* ext2/3 */
3617 || sfs.f_type == 0x3153464a /* jfs */
3618 || sfs.f_type == 0x52654973 /* reiser3 */
3619 || sfs.f_type == 0x01021994 /* tempfs */
3620 || sfs.f_type == 0x58465342 /* xfs */))
3621 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3622 else
3623 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3624 }
3625 else
3626 {
3627 /* can't use inotify, continue to stat */
3628 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3629
3630 /* if path is not there, monitor some parent directory for speedup hints */
3631 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3632 /* but an efficiency issue only */
3633 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3634 {
3635 char path [4096];
3636 strcpy (path, w->path);
3637
3638 do
3639 {
3640 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3641 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3642
3643 char *pend = strrchr (path, '/');
3644
3645 if (!pend || pend == path)
3646 break;
3647
3648 *pend = 0;
3649 w->wd = inotify_add_watch (fs_fd, path, mask);
3650 }
3651 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3652 }
3653 }
3654
3655 if (w->wd >= 0)
3656 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3657
3658 /* now re-arm timer, if required */
3659 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3660 ev_timer_again (EV_A_ &w->timer);
3661 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3662}
3663
3664static void noinline
3665infy_del (EV_P_ ev_stat *w)
3666{
3667 int slot;
3668 int wd = w->wd;
3669
3670 if (wd < 0)
3671 return;
3672
3673 w->wd = -2;
3674 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3675 wlist_del (&fs_hash [slot].head, (WL)w);
3676
3677 /* remove this watcher, if others are watching it, they will rearm */
3678 inotify_rm_watch (fs_fd, wd);
3679}
3680
3681static void noinline
3682infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3683{
3684 if (slot < 0)
3685 /* overflow, need to check for all hash slots */
3686 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3687 infy_wd (EV_A_ slot, wd, ev);
3688 else
3689 {
3690 WL w_;
3691
3692 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3693 {
3694 ev_stat *w = (ev_stat *)w_;
3695 w_ = w_->next; /* lets us remove this watcher and all before it */
3696
3697 if (w->wd == wd || wd == -1)
3698 {
3699 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3700 {
3701 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3702 w->wd = -1;
3703 infy_add (EV_A_ w); /* re-add, no matter what */
3704 }
3705
3706 stat_timer_cb (EV_A_ &w->timer, 0);
3707 }
3708 }
3709 }
3710}
3711
3712static void
3713infy_cb (EV_P_ ev_io *w, int revents)
3714{
3715 char buf [EV_INOTIFY_BUFSIZE];
3716 int ofs;
3717 int len = read (fs_fd, buf, sizeof (buf));
3718
3719 for (ofs = 0; ofs < len; )
3720 {
3721 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3722 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3723 ofs += sizeof (struct inotify_event) + ev->len;
3724 }
3725}
3726
3727inline_size void ecb_cold
3728ev_check_2625 (EV_P)
3729{
3730 /* kernels < 2.6.25 are borked
3731 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3732 */
3733 if (ev_linux_version () < 0x020619)
3734 return;
3735
3736 fs_2625 = 1;
3737}
3738
3739inline_size int
3740infy_newfd (void)
3741{
3742#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3743 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3744 if (fd >= 0)
3745 return fd;
3746#endif
3747 return inotify_init ();
3748}
3749
3750inline_size void
3751infy_init (EV_P)
3752{
3753 if (fs_fd != -2)
3754 return;
3755
3756 fs_fd = -1;
3757
3758 ev_check_2625 (EV_A);
3759
3760 fs_fd = infy_newfd ();
3761
3762 if (fs_fd >= 0)
3763 {
3764 fd_intern (fs_fd);
3765 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3766 ev_set_priority (&fs_w, EV_MAXPRI);
3767 ev_io_start (EV_A_ &fs_w);
3768 ev_unref (EV_A);
3769 }
3770}
3771
3772inline_size void
3773infy_fork (EV_P)
3774{
3775 int slot;
3776
3777 if (fs_fd < 0)
3778 return;
3779
3780 ev_ref (EV_A);
3781 ev_io_stop (EV_A_ &fs_w);
3782 close (fs_fd);
3783 fs_fd = infy_newfd ();
3784
3785 if (fs_fd >= 0)
3786 {
3787 fd_intern (fs_fd);
3788 ev_io_set (&fs_w, fs_fd, EV_READ);
3789 ev_io_start (EV_A_ &fs_w);
3790 ev_unref (EV_A);
3791 }
3792
3793 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3794 {
3795 WL w_ = fs_hash [slot].head;
3796 fs_hash [slot].head = 0;
3797
3798 while (w_)
3799 {
3800 ev_stat *w = (ev_stat *)w_;
3801 w_ = w_->next; /* lets us add this watcher */
3802
3803 w->wd = -1;
3804
3805 if (fs_fd >= 0)
3806 infy_add (EV_A_ w); /* re-add, no matter what */
3807 else
3808 {
3809 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3810 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3811 ev_timer_again (EV_A_ &w->timer);
3812 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3813 }
3814 }
3815 }
3816}
3817
3818#endif
3819
3820#ifdef _WIN32
3821# define EV_LSTAT(p,b) _stati64 (p, b)
3822#else
3823# define EV_LSTAT(p,b) lstat (p, b)
3824#endif
1527 3825
1528void 3826void
1529ev_check_start (EV_P_ struct ev_check *w) 3827ev_stat_stat (EV_P_ ev_stat *w)
3828{
3829 if (lstat (w->path, &w->attr) < 0)
3830 w->attr.st_nlink = 0;
3831 else if (!w->attr.st_nlink)
3832 w->attr.st_nlink = 1;
3833}
3834
3835static void noinline
3836stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3837{
3838 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3839
3840 ev_statdata prev = w->attr;
3841 ev_stat_stat (EV_A_ w);
3842
3843 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3844 if (
3845 prev.st_dev != w->attr.st_dev
3846 || prev.st_ino != w->attr.st_ino
3847 || prev.st_mode != w->attr.st_mode
3848 || prev.st_nlink != w->attr.st_nlink
3849 || prev.st_uid != w->attr.st_uid
3850 || prev.st_gid != w->attr.st_gid
3851 || prev.st_rdev != w->attr.st_rdev
3852 || prev.st_size != w->attr.st_size
3853 || prev.st_atime != w->attr.st_atime
3854 || prev.st_mtime != w->attr.st_mtime
3855 || prev.st_ctime != w->attr.st_ctime
3856 ) {
3857 /* we only update w->prev on actual differences */
3858 /* in case we test more often than invoke the callback, */
3859 /* to ensure that prev is always different to attr */
3860 w->prev = prev;
3861
3862 #if EV_USE_INOTIFY
3863 if (fs_fd >= 0)
3864 {
3865 infy_del (EV_A_ w);
3866 infy_add (EV_A_ w);
3867 ev_stat_stat (EV_A_ w); /* avoid race... */
3868 }
3869 #endif
3870
3871 ev_feed_event (EV_A_ w, EV_STAT);
3872 }
3873}
3874
3875void
3876ev_stat_start (EV_P_ ev_stat *w)
1530{ 3877{
1531 if (expect_false (ev_is_active (w))) 3878 if (expect_false (ev_is_active (w)))
1532 return; 3879 return;
1533 3880
3881 ev_stat_stat (EV_A_ w);
3882
3883 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3884 w->interval = MIN_STAT_INTERVAL;
3885
3886 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3887 ev_set_priority (&w->timer, ev_priority (w));
3888
3889#if EV_USE_INOTIFY
3890 infy_init (EV_A);
3891
3892 if (fs_fd >= 0)
3893 infy_add (EV_A_ w);
3894 else
3895#endif
3896 {
3897 ev_timer_again (EV_A_ &w->timer);
3898 ev_unref (EV_A);
3899 }
3900
1534 ev_start (EV_A_ (W)w, ++checkcnt); 3901 ev_start (EV_A_ (W)w, 1);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3902
1536 checks [checkcnt - 1] = w; 3903 EV_FREQUENT_CHECK;
1537} 3904}
1538 3905
1539void 3906void
1540ev_check_stop (EV_P_ struct ev_check *w) 3907ev_stat_stop (EV_P_ ev_stat *w)
1541{ 3908{
1542 ev_clear_pending (EV_A_ (W)w); 3909 clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w))) 3910 if (expect_false (!ev_is_active (w)))
1544 return; 3911 return;
1545 3912
1546 checks [((W)w)->active - 1] = checks [--checkcnt]; 3913 EV_FREQUENT_CHECK;
3914
3915#if EV_USE_INOTIFY
3916 infy_del (EV_A_ w);
3917#endif
3918
3919 if (ev_is_active (&w->timer))
3920 {
3921 ev_ref (EV_A);
3922 ev_timer_stop (EV_A_ &w->timer);
3923 }
3924
1547 ev_stop (EV_A_ (W)w); 3925 ev_stop (EV_A_ (W)w);
1548}
1549 3926
1550#ifndef SA_RESTART 3927 EV_FREQUENT_CHECK;
1551# define SA_RESTART 0 3928}
1552#endif 3929#endif
1553 3930
3931#if EV_IDLE_ENABLE
1554void 3932void
1555ev_signal_start (EV_P_ struct ev_signal *w) 3933ev_idle_start (EV_P_ ev_idle *w)
1556{ 3934{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w))) 3935 if (expect_false (ev_is_active (w)))
1561 return; 3936 return;
1562 3937
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3938 pri_adjust (EV_A_ (W)w);
1564 3939
3940 EV_FREQUENT_CHECK;
3941
3942 {
3943 int active = ++idlecnt [ABSPRI (w)];
3944
3945 ++idleall;
1565 ev_start (EV_A_ (W)w, 1); 3946 ev_start (EV_A_ (W)w, active);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1568 3947
1569 if (!((WL)w)->next) 3948 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1570 { 3949 idles [ABSPRI (w)][active - 1] = w;
1571#if _WIN32
1572 signal (w->signum, sighandler);
1573#else
1574 struct sigaction sa;
1575 sa.sa_handler = sighandler;
1576 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0);
1579#endif
1580 } 3950 }
3951
3952 EV_FREQUENT_CHECK;
1581} 3953}
1582 3954
1583void 3955void
1584ev_signal_stop (EV_P_ struct ev_signal *w) 3956ev_idle_stop (EV_P_ ev_idle *w)
1585{ 3957{
1586 ev_clear_pending (EV_A_ (W)w); 3958 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 3959 if (expect_false (!ev_is_active (w)))
1588 return; 3960 return;
1589 3961
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3962 EV_FREQUENT_CHECK;
3963
3964 {
3965 int active = ev_active (w);
3966
3967 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3968 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3969
1591 ev_stop (EV_A_ (W)w); 3970 ev_stop (EV_A_ (W)w);
3971 --idleall;
3972 }
1592 3973
1593 if (!signals [w->signum - 1].head) 3974 EV_FREQUENT_CHECK;
1594 signal (w->signum, SIG_DFL);
1595} 3975}
3976#endif
1596 3977
3978#if EV_PREPARE_ENABLE
1597void 3979void
1598ev_child_start (EV_P_ struct ev_child *w) 3980ev_prepare_start (EV_P_ ev_prepare *w)
1599{ 3981{
1600#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif
1603 if (expect_false (ev_is_active (w))) 3982 if (expect_false (ev_is_active (w)))
1604 return; 3983 return;
1605 3984
3985 EV_FREQUENT_CHECK;
3986
1606 ev_start (EV_A_ (W)w, 1); 3987 ev_start (EV_A_ (W)w, ++preparecnt);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3988 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3989 prepares [preparecnt - 1] = w;
3990
3991 EV_FREQUENT_CHECK;
1608} 3992}
1609 3993
1610void 3994void
1611ev_child_stop (EV_P_ struct ev_child *w) 3995ev_prepare_stop (EV_P_ ev_prepare *w)
1612{ 3996{
1613 ev_clear_pending (EV_A_ (W)w); 3997 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 3998 if (expect_false (!ev_is_active (w)))
1615 return; 3999 return;
1616 4000
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4001 EV_FREQUENT_CHECK;
4002
4003 {
4004 int active = ev_active (w);
4005
4006 prepares [active - 1] = prepares [--preparecnt];
4007 ev_active (prepares [active - 1]) = active;
4008 }
4009
1618 ev_stop (EV_A_ (W)w); 4010 ev_stop (EV_A_ (W)w);
4011
4012 EV_FREQUENT_CHECK;
1619} 4013}
4014#endif
4015
4016#if EV_CHECK_ENABLE
4017void
4018ev_check_start (EV_P_ ev_check *w)
4019{
4020 if (expect_false (ev_is_active (w)))
4021 return;
4022
4023 EV_FREQUENT_CHECK;
4024
4025 ev_start (EV_A_ (W)w, ++checkcnt);
4026 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4027 checks [checkcnt - 1] = w;
4028
4029 EV_FREQUENT_CHECK;
4030}
4031
4032void
4033ev_check_stop (EV_P_ ev_check *w)
4034{
4035 clear_pending (EV_A_ (W)w);
4036 if (expect_false (!ev_is_active (w)))
4037 return;
4038
4039 EV_FREQUENT_CHECK;
4040
4041 {
4042 int active = ev_active (w);
4043
4044 checks [active - 1] = checks [--checkcnt];
4045 ev_active (checks [active - 1]) = active;
4046 }
4047
4048 ev_stop (EV_A_ (W)w);
4049
4050 EV_FREQUENT_CHECK;
4051}
4052#endif
4053
4054#if EV_EMBED_ENABLE
4055void noinline
4056ev_embed_sweep (EV_P_ ev_embed *w)
4057{
4058 ev_run (w->other, EVRUN_NOWAIT);
4059}
4060
4061static void
4062embed_io_cb (EV_P_ ev_io *io, int revents)
4063{
4064 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4065
4066 if (ev_cb (w))
4067 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4068 else
4069 ev_run (w->other, EVRUN_NOWAIT);
4070}
4071
4072static void
4073embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4074{
4075 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4076
4077 {
4078 EV_P = w->other;
4079
4080 while (fdchangecnt)
4081 {
4082 fd_reify (EV_A);
4083 ev_run (EV_A_ EVRUN_NOWAIT);
4084 }
4085 }
4086}
4087
4088static void
4089embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4090{
4091 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4092
4093 ev_embed_stop (EV_A_ w);
4094
4095 {
4096 EV_P = w->other;
4097
4098 ev_loop_fork (EV_A);
4099 ev_run (EV_A_ EVRUN_NOWAIT);
4100 }
4101
4102 ev_embed_start (EV_A_ w);
4103}
4104
4105#if 0
4106static void
4107embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4108{
4109 ev_idle_stop (EV_A_ idle);
4110}
4111#endif
4112
4113void
4114ev_embed_start (EV_P_ ev_embed *w)
4115{
4116 if (expect_false (ev_is_active (w)))
4117 return;
4118
4119 {
4120 EV_P = w->other;
4121 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4122 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4123 }
4124
4125 EV_FREQUENT_CHECK;
4126
4127 ev_set_priority (&w->io, ev_priority (w));
4128 ev_io_start (EV_A_ &w->io);
4129
4130 ev_prepare_init (&w->prepare, embed_prepare_cb);
4131 ev_set_priority (&w->prepare, EV_MINPRI);
4132 ev_prepare_start (EV_A_ &w->prepare);
4133
4134 ev_fork_init (&w->fork, embed_fork_cb);
4135 ev_fork_start (EV_A_ &w->fork);
4136
4137 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4138
4139 ev_start (EV_A_ (W)w, 1);
4140
4141 EV_FREQUENT_CHECK;
4142}
4143
4144void
4145ev_embed_stop (EV_P_ ev_embed *w)
4146{
4147 clear_pending (EV_A_ (W)w);
4148 if (expect_false (!ev_is_active (w)))
4149 return;
4150
4151 EV_FREQUENT_CHECK;
4152
4153 ev_io_stop (EV_A_ &w->io);
4154 ev_prepare_stop (EV_A_ &w->prepare);
4155 ev_fork_stop (EV_A_ &w->fork);
4156
4157 ev_stop (EV_A_ (W)w);
4158
4159 EV_FREQUENT_CHECK;
4160}
4161#endif
4162
4163#if EV_FORK_ENABLE
4164void
4165ev_fork_start (EV_P_ ev_fork *w)
4166{
4167 if (expect_false (ev_is_active (w)))
4168 return;
4169
4170 EV_FREQUENT_CHECK;
4171
4172 ev_start (EV_A_ (W)w, ++forkcnt);
4173 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4174 forks [forkcnt - 1] = w;
4175
4176 EV_FREQUENT_CHECK;
4177}
4178
4179void
4180ev_fork_stop (EV_P_ ev_fork *w)
4181{
4182 clear_pending (EV_A_ (W)w);
4183 if (expect_false (!ev_is_active (w)))
4184 return;
4185
4186 EV_FREQUENT_CHECK;
4187
4188 {
4189 int active = ev_active (w);
4190
4191 forks [active - 1] = forks [--forkcnt];
4192 ev_active (forks [active - 1]) = active;
4193 }
4194
4195 ev_stop (EV_A_ (W)w);
4196
4197 EV_FREQUENT_CHECK;
4198}
4199#endif
4200
4201#if EV_CLEANUP_ENABLE
4202void
4203ev_cleanup_start (EV_P_ ev_cleanup *w)
4204{
4205 if (expect_false (ev_is_active (w)))
4206 return;
4207
4208 EV_FREQUENT_CHECK;
4209
4210 ev_start (EV_A_ (W)w, ++cleanupcnt);
4211 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4212 cleanups [cleanupcnt - 1] = w;
4213
4214 /* cleanup watchers should never keep a refcount on the loop */
4215 ev_unref (EV_A);
4216 EV_FREQUENT_CHECK;
4217}
4218
4219void
4220ev_cleanup_stop (EV_P_ ev_cleanup *w)
4221{
4222 clear_pending (EV_A_ (W)w);
4223 if (expect_false (!ev_is_active (w)))
4224 return;
4225
4226 EV_FREQUENT_CHECK;
4227 ev_ref (EV_A);
4228
4229 {
4230 int active = ev_active (w);
4231
4232 cleanups [active - 1] = cleanups [--cleanupcnt];
4233 ev_active (cleanups [active - 1]) = active;
4234 }
4235
4236 ev_stop (EV_A_ (W)w);
4237
4238 EV_FREQUENT_CHECK;
4239}
4240#endif
4241
4242#if EV_ASYNC_ENABLE
4243void
4244ev_async_start (EV_P_ ev_async *w)
4245{
4246 if (expect_false (ev_is_active (w)))
4247 return;
4248
4249 w->sent = 0;
4250
4251 evpipe_init (EV_A);
4252
4253 EV_FREQUENT_CHECK;
4254
4255 ev_start (EV_A_ (W)w, ++asynccnt);
4256 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4257 asyncs [asynccnt - 1] = w;
4258
4259 EV_FREQUENT_CHECK;
4260}
4261
4262void
4263ev_async_stop (EV_P_ ev_async *w)
4264{
4265 clear_pending (EV_A_ (W)w);
4266 if (expect_false (!ev_is_active (w)))
4267 return;
4268
4269 EV_FREQUENT_CHECK;
4270
4271 {
4272 int active = ev_active (w);
4273
4274 asyncs [active - 1] = asyncs [--asynccnt];
4275 ev_active (asyncs [active - 1]) = active;
4276 }
4277
4278 ev_stop (EV_A_ (W)w);
4279
4280 EV_FREQUENT_CHECK;
4281}
4282
4283void
4284ev_async_send (EV_P_ ev_async *w)
4285{
4286 w->sent = 1;
4287 evpipe_write (EV_A_ &async_pending);
4288}
4289#endif
1620 4290
1621/*****************************************************************************/ 4291/*****************************************************************************/
1622 4292
1623struct ev_once 4293struct ev_once
1624{ 4294{
1625 struct ev_io io; 4295 ev_io io;
1626 struct ev_timer to; 4296 ev_timer to;
1627 void (*cb)(int revents, void *arg); 4297 void (*cb)(int revents, void *arg);
1628 void *arg; 4298 void *arg;
1629}; 4299};
1630 4300
1631static void 4301static void
1632once_cb (EV_P_ struct ev_once *once, int revents) 4302once_cb (EV_P_ struct ev_once *once, int revents)
1633{ 4303{
1634 void (*cb)(int revents, void *arg) = once->cb; 4304 void (*cb)(int revents, void *arg) = once->cb;
1635 void *arg = once->arg; 4305 void *arg = once->arg;
1636 4306
1637 ev_io_stop (EV_A_ &once->io); 4307 ev_io_stop (EV_A_ &once->io);
1638 ev_timer_stop (EV_A_ &once->to); 4308 ev_timer_stop (EV_A_ &once->to);
1639 ev_free (once); 4309 ev_free (once);
1640 4310
1641 cb (revents, arg); 4311 cb (revents, arg);
1642} 4312}
1643 4313
1644static void 4314static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 4315once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 4316{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4317 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4318
4319 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1648} 4320}
1649 4321
1650static void 4322static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 4323once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 4324{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4325 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4326
4327 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1654} 4328}
1655 4329
1656void 4330void
1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1658{ 4332{
1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4333 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1660 4334
1661 if (expect_false (!once)) 4335 if (expect_false (!once))
1662 { 4336 {
1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4337 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1664 return; 4338 return;
1665 } 4339 }
1666 4340
1667 once->cb = cb; 4341 once->cb = cb;
1668 once->arg = arg; 4342 once->arg = arg;
1680 ev_timer_set (&once->to, timeout, 0.); 4354 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 4355 ev_timer_start (EV_A_ &once->to);
1682 } 4356 }
1683} 4357}
1684 4358
1685#ifdef __cplusplus 4359/*****************************************************************************/
1686} 4360
4361#if EV_WALK_ENABLE
4362void ecb_cold
4363ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4364{
4365 int i, j;
4366 ev_watcher_list *wl, *wn;
4367
4368 if (types & (EV_IO | EV_EMBED))
4369 for (i = 0; i < anfdmax; ++i)
4370 for (wl = anfds [i].head; wl; )
4371 {
4372 wn = wl->next;
4373
4374#if EV_EMBED_ENABLE
4375 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4376 {
4377 if (types & EV_EMBED)
4378 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4379 }
4380 else
4381#endif
4382#if EV_USE_INOTIFY
4383 if (ev_cb ((ev_io *)wl) == infy_cb)
4384 ;
4385 else
4386#endif
4387 if ((ev_io *)wl != &pipe_w)
4388 if (types & EV_IO)
4389 cb (EV_A_ EV_IO, wl);
4390
4391 wl = wn;
4392 }
4393
4394 if (types & (EV_TIMER | EV_STAT))
4395 for (i = timercnt + HEAP0; i-- > HEAP0; )
4396#if EV_STAT_ENABLE
4397 /*TODO: timer is not always active*/
4398 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4399 {
4400 if (types & EV_STAT)
4401 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4402 }
4403 else
4404#endif
4405 if (types & EV_TIMER)
4406 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4407
4408#if EV_PERIODIC_ENABLE
4409 if (types & EV_PERIODIC)
4410 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4411 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4412#endif
4413
4414#if EV_IDLE_ENABLE
4415 if (types & EV_IDLE)
4416 for (j = NUMPRI; j--; )
4417 for (i = idlecnt [j]; i--; )
4418 cb (EV_A_ EV_IDLE, idles [j][i]);
4419#endif
4420
4421#if EV_FORK_ENABLE
4422 if (types & EV_FORK)
4423 for (i = forkcnt; i--; )
4424 if (ev_cb (forks [i]) != embed_fork_cb)
4425 cb (EV_A_ EV_FORK, forks [i]);
4426#endif
4427
4428#if EV_ASYNC_ENABLE
4429 if (types & EV_ASYNC)
4430 for (i = asynccnt; i--; )
4431 cb (EV_A_ EV_ASYNC, asyncs [i]);
4432#endif
4433
4434#if EV_PREPARE_ENABLE
4435 if (types & EV_PREPARE)
4436 for (i = preparecnt; i--; )
4437# if EV_EMBED_ENABLE
4438 if (ev_cb (prepares [i]) != embed_prepare_cb)
1687#endif 4439# endif
4440 cb (EV_A_ EV_PREPARE, prepares [i]);
4441#endif
1688 4442
4443#if EV_CHECK_ENABLE
4444 if (types & EV_CHECK)
4445 for (i = checkcnt; i--; )
4446 cb (EV_A_ EV_CHECK, checks [i]);
4447#endif
4448
4449#if EV_SIGNAL_ENABLE
4450 if (types & EV_SIGNAL)
4451 for (i = 0; i < EV_NSIG - 1; ++i)
4452 for (wl = signals [i].head; wl; )
4453 {
4454 wn = wl->next;
4455 cb (EV_A_ EV_SIGNAL, wl);
4456 wl = wn;
4457 }
4458#endif
4459
4460#if EV_CHILD_ENABLE
4461 if (types & EV_CHILD)
4462 for (i = (EV_PID_HASHSIZE); i--; )
4463 for (wl = childs [i]; wl; )
4464 {
4465 wn = wl->next;
4466 cb (EV_A_ EV_CHILD, wl);
4467 wl = wn;
4468 }
4469#endif
4470/* EV_STAT 0x00001000 /* stat data changed */
4471/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4472}
4473#endif
4474
4475#if EV_MULTIPLICITY
4476 #include "ev_wrap.h"
4477#endif
4478

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines