ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.414 by root, Sat Mar 24 19:38:51 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
57# else 88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
58# define EV_USE_SELECT 0 99# define EV_USE_SELECT 0
59# endif 100# endif
60 101
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 102# if HAVE_POLL && HAVE_POLL_H
62# define EV_USE_POLL 1 103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
63# else 106# else
107# undef EV_USE_POLL
64# define EV_USE_POLL 0 108# define EV_USE_POLL 0
65# endif 109# endif
66 110
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
68# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
69# else 115# else
116# undef EV_USE_EPOLL
70# define EV_USE_EPOLL 0 117# define EV_USE_EPOLL 0
71# endif 118# endif
72 119
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
74# define EV_USE_KQUEUE 1 121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
75# else 124# else
125# undef EV_USE_KQUEUE
76# define EV_USE_KQUEUE 0 126# define EV_USE_KQUEUE 0
77# endif 127# endif
78 128
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 129# if HAVE_PORT_H && HAVE_PORT_CREATE
80# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
81# else 133# else
134# undef EV_USE_PORT
82# define EV_USE_PORT 0 135# define EV_USE_PORT 0
83# endif 136# endif
84 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
85#endif 145# endif
86 146
87#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
88#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
89#include <fcntl.h> 169#include <fcntl.h>
90#include <stddef.h> 170#include <stddef.h>
91 171
92#include <stdio.h> 172#include <stdio.h>
93 173
94#include <assert.h> 174#include <assert.h>
95#include <errno.h> 175#include <errno.h>
96#include <sys/types.h> 176#include <sys/types.h>
97#include <time.h> 177#include <time.h>
178#include <limits.h>
98 179
99#include <signal.h> 180#include <signal.h>
100 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
101#ifndef _WIN32 199#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 200# include <sys/time.h>
104# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
105#else 203#else
204# include <io.h>
106# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 206# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
110# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined (EV_NSIG)
225/* use what's provided */
226#elif defined (NSIG)
227# define EV_NSIG (NSIG)
228#elif defined(_NSIG)
229# define EV_NSIG (_NSIG)
230#elif defined (SIGMAX)
231# define EV_NSIG (SIGMAX+1)
232#elif defined (SIG_MAX)
233# define EV_NSIG (SIG_MAX+1)
234#elif defined (_SIG_MAX)
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined (MAXSIG)
237# define EV_NSIG (MAXSIG+1)
238#elif defined (MAX_SIG)
239# define EV_NSIG (MAX_SIG+1)
240#elif defined (SIGARRAYSIZE)
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined (_sys_nsig)
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
111#endif 260# endif
112 261#endif
113/**/
114 262
115#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
116# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
117#endif 269#endif
118 270
119#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
121#endif 281#endif
122 282
123#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
125#endif 285#endif
126 286
127#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
128# ifdef _WIN32 288# ifdef _WIN32
129# define EV_USE_POLL 0 289# define EV_USE_POLL 0
130# else 290# else
131# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
132# endif 292# endif
133#endif 293#endif
134 294
135#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
136# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
137#endif 301#endif
138 302
139#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
141#endif 305#endif
142 306
143#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 308# define EV_USE_PORT 0
145#endif 309#endif
146 310
147/**/ 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
315# define EV_USE_INOTIFY 0
316# endif
317#endif
148 318
149/* darwin simply cannot be helped */ 319#ifndef EV_PID_HASHSIZE
150#ifdef __APPLE__ 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
330# else
331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
151# undef EV_USE_POLL 379# undef EV_USE_POLL
152# undef EV_USE_KQUEUE 380# define EV_USE_POLL 0
153#endif 381#endif
154 382
155#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
160#ifndef CLOCK_REALTIME 388#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 389# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 390# define EV_USE_REALTIME 0
163#endif 391#endif
164 392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined(_WIN32) && !defined(__hpux)
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
165#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 416# include <winsock.h>
167#endif 417#endif
168 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
169/**/ 457/**/
458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
465/*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
170 471
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
175 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
176#ifdef EV_H 509#ifndef ECB_H
177# include EV_H 510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
178#else 526#else
179# include "ev.h" 527 #include <inttypes.h>
528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
180#endif 542 #endif
543#endif
181 544
182#if __GNUC__ >= 3 545/*****************************************************************************/
183# define expect(expr,value) __builtin_expect ((expr),(value)) 546
184# define inline static inline 547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined(__mips__)
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #endif
585 #endif
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
590 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 #elif defined(_WIN32)
599 #include <WinNT.h>
600 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602 #include <mbarrier.h>
603 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 #elif __xlC__
607 #define ECB_MEMORY_FENCE __sync ()
608 #endif
609#endif
610
611#ifndef ECB_MEMORY_FENCE
612 #if !ECB_AVOID_PTHREADS
613 /*
614 * if you get undefined symbol references to pthread_mutex_lock,
615 * or failure to find pthread.h, then you should implement
616 * the ECB_MEMORY_FENCE operations for your cpu/compiler
617 * OR provide pthread.h and link against the posix thread library
618 * of your system.
619 */
620 #include <pthread.h>
621 #define ECB_NEEDS_PTHREADS 1
622 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
623
624 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
625 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
626 #endif
627#endif
628
629#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
630 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
631#endif
632
633#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
634 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
635#endif
636
637/*****************************************************************************/
638
639#define ECB_C99 (__STDC_VERSION__ >= 199901L)
640
641#if __cplusplus
642 #define ecb_inline static inline
643#elif ECB_GCC_VERSION(2,5)
644 #define ecb_inline static __inline__
645#elif ECB_C99
646 #define ecb_inline static inline
185#else 647#else
648 #define ecb_inline static
649#endif
650
651#if ECB_GCC_VERSION(3,3)
652 #define ecb_restrict __restrict__
653#elif ECB_C99
654 #define ecb_restrict restrict
655#else
656 #define ecb_restrict
657#endif
658
659typedef int ecb_bool;
660
661#define ECB_CONCAT_(a, b) a ## b
662#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
663#define ECB_STRINGIFY_(a) # a
664#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
665
666#define ecb_function_ ecb_inline
667
668#if ECB_GCC_VERSION(3,1)
669 #define ecb_attribute(attrlist) __attribute__(attrlist)
670 #define ecb_is_constant(expr) __builtin_constant_p (expr)
671 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
672 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
673#else
674 #define ecb_attribute(attrlist)
675 #define ecb_is_constant(expr) 0
186# define expect(expr,value) (expr) 676 #define ecb_expect(expr,value) (expr)
187# define inline static 677 #define ecb_prefetch(addr,rw,locality)
188#endif 678#endif
189 679
680/* no emulation for ecb_decltype */
681#if ECB_GCC_VERSION(4,5)
682 #define ecb_decltype(x) __decltype(x)
683#elif ECB_GCC_VERSION(3,0)
684 #define ecb_decltype(x) __typeof(x)
685#endif
686
687#define ecb_noinline ecb_attribute ((__noinline__))
688#define ecb_noreturn ecb_attribute ((__noreturn__))
689#define ecb_unused ecb_attribute ((__unused__))
690#define ecb_const ecb_attribute ((__const__))
691#define ecb_pure ecb_attribute ((__pure__))
692
693#if ECB_GCC_VERSION(4,3)
694 #define ecb_artificial ecb_attribute ((__artificial__))
695 #define ecb_hot ecb_attribute ((__hot__))
696 #define ecb_cold ecb_attribute ((__cold__))
697#else
698 #define ecb_artificial
699 #define ecb_hot
700 #define ecb_cold
701#endif
702
703/* put around conditional expressions if you are very sure that the */
704/* expression is mostly true or mostly false. note that these return */
705/* booleans, not the expression. */
190#define expect_false(expr) expect ((expr) != 0, 0) 706#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 707#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
708/* for compatibility to the rest of the world */
709#define ecb_likely(expr) ecb_expect_true (expr)
710#define ecb_unlikely(expr) ecb_expect_false (expr)
192 711
712/* count trailing zero bits and count # of one bits */
713#if ECB_GCC_VERSION(3,4)
714 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
715 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
716 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
717 #define ecb_ctz32(x) __builtin_ctz (x)
718 #define ecb_ctz64(x) __builtin_ctzll (x)
719 #define ecb_popcount32(x) __builtin_popcount (x)
720 /* no popcountll */
721#else
722 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
723 ecb_function_ int
724 ecb_ctz32 (uint32_t x)
725 {
726 int r = 0;
727
728 x &= ~x + 1; /* this isolates the lowest bit */
729
730#if ECB_branchless_on_i386
731 r += !!(x & 0xaaaaaaaa) << 0;
732 r += !!(x & 0xcccccccc) << 1;
733 r += !!(x & 0xf0f0f0f0) << 2;
734 r += !!(x & 0xff00ff00) << 3;
735 r += !!(x & 0xffff0000) << 4;
736#else
737 if (x & 0xaaaaaaaa) r += 1;
738 if (x & 0xcccccccc) r += 2;
739 if (x & 0xf0f0f0f0) r += 4;
740 if (x & 0xff00ff00) r += 8;
741 if (x & 0xffff0000) r += 16;
742#endif
743
744 return r;
745 }
746
747 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
748 ecb_function_ int
749 ecb_ctz64 (uint64_t x)
750 {
751 int shift = x & 0xffffffffU ? 0 : 32;
752 return ecb_ctz32 (x >> shift) + shift;
753 }
754
755 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
756 ecb_function_ int
757 ecb_popcount32 (uint32_t x)
758 {
759 x -= (x >> 1) & 0x55555555;
760 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
761 x = ((x >> 4) + x) & 0x0f0f0f0f;
762 x *= 0x01010101;
763
764 return x >> 24;
765 }
766
767 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
768 ecb_function_ int ecb_ld32 (uint32_t x)
769 {
770 int r = 0;
771
772 if (x >> 16) { x >>= 16; r += 16; }
773 if (x >> 8) { x >>= 8; r += 8; }
774 if (x >> 4) { x >>= 4; r += 4; }
775 if (x >> 2) { x >>= 2; r += 2; }
776 if (x >> 1) { r += 1; }
777
778 return r;
779 }
780
781 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
782 ecb_function_ int ecb_ld64 (uint64_t x)
783 {
784 int r = 0;
785
786 if (x >> 32) { x >>= 32; r += 32; }
787
788 return r + ecb_ld32 (x);
789 }
790#endif
791
792ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
793ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
794{
795 return ( (x * 0x0802U & 0x22110U)
796 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
797}
798
799ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
800ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
801{
802 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
803 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
804 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
805 x = ( x >> 8 ) | ( x << 8);
806
807 return x;
808}
809
810ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
811ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
812{
813 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
814 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
815 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
816 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
817 x = ( x >> 16 ) | ( x << 16);
818
819 return x;
820}
821
822/* popcount64 is only available on 64 bit cpus as gcc builtin */
823/* so for this version we are lazy */
824ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
825ecb_function_ int
826ecb_popcount64 (uint64_t x)
827{
828 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
829}
830
831ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
832ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
833ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
834ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
835ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
836ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
837ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
838ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
839
840ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
841ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
842ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
843ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
844ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
845ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
846ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
847ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
848
849#if ECB_GCC_VERSION(4,3)
850 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
851 #define ecb_bswap32(x) __builtin_bswap32 (x)
852 #define ecb_bswap64(x) __builtin_bswap64 (x)
853#else
854 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
855 ecb_function_ uint16_t
856 ecb_bswap16 (uint16_t x)
857 {
858 return ecb_rotl16 (x, 8);
859 }
860
861 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
862 ecb_function_ uint32_t
863 ecb_bswap32 (uint32_t x)
864 {
865 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
866 }
867
868 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
869 ecb_function_ uint64_t
870 ecb_bswap64 (uint64_t x)
871 {
872 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
873 }
874#endif
875
876#if ECB_GCC_VERSION(4,5)
877 #define ecb_unreachable() __builtin_unreachable ()
878#else
879 /* this seems to work fine, but gcc always emits a warning for it :/ */
880 ecb_inline void ecb_unreachable (void) ecb_noreturn;
881 ecb_inline void ecb_unreachable (void) { }
882#endif
883
884/* try to tell the compiler that some condition is definitely true */
885#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
886
887ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
888ecb_inline unsigned char
889ecb_byteorder_helper (void)
890{
891 const uint32_t u = 0x11223344;
892 return *(unsigned char *)&u;
893}
894
895ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
896ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
897ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
899
900#if ECB_GCC_VERSION(3,0) || ECB_C99
901 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
902#else
903 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
904#endif
905
906#if __cplusplus
907 template<typename T>
908 static inline T ecb_div_rd (T val, T div)
909 {
910 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
911 }
912 template<typename T>
913 static inline T ecb_div_ru (T val, T div)
914 {
915 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
916 }
917#else
918 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
919 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
920#endif
921
922#if ecb_cplusplus_does_not_suck
923 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
924 template<typename T, int N>
925 static inline int ecb_array_length (const T (&arr)[N])
926 {
927 return N;
928 }
929#else
930 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
931#endif
932
933#endif
934
935/* ECB.H END */
936
937#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
938/* if your architecture doesn't need memory fences, e.g. because it is
939 * single-cpu/core, or if you use libev in a project that doesn't use libev
940 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
941 * libev, in which cases the memory fences become nops.
942 * alternatively, you can remove this #error and link against libpthread,
943 * which will then provide the memory fences.
944 */
945# error "memory fences not defined for your architecture, please report"
946#endif
947
948#ifndef ECB_MEMORY_FENCE
949# define ECB_MEMORY_FENCE do { } while (0)
950# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
952#endif
953
954#define expect_false(cond) ecb_expect_false (cond)
955#define expect_true(cond) ecb_expect_true (cond)
956#define noinline ecb_noinline
957
958#define inline_size ecb_inline
959
960#if EV_FEATURE_CODE
961# define inline_speed ecb_inline
962#else
963# define inline_speed static noinline
964#endif
965
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 966#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
967
968#if EV_MINPRI == EV_MAXPRI
969# define ABSPRI(w) (((W)w), 0)
970#else
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 971# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
972#endif
195 973
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 974#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 975#define EMPTY2(a,b) /* used to suppress some warnings */
198 976
199typedef struct ev_watcher *W; 977typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 978typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 979typedef ev_watcher_time *WT;
202 980
981#define ev_active(w) ((W)(w))->active
982#define ev_at(w) ((WT)(w))->at
983
984#if EV_USE_REALTIME
985/* sig_atomic_t is used to avoid per-thread variables or locking but still */
986/* giving it a reasonably high chance of working on typical architectures */
987static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
988#endif
989
990#if EV_USE_MONOTONIC
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 991static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
992#endif
993
994#ifndef EV_FD_TO_WIN32_HANDLE
995# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
996#endif
997#ifndef EV_WIN32_HANDLE_TO_FD
998# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
999#endif
1000#ifndef EV_WIN32_CLOSE_FD
1001# define EV_WIN32_CLOSE_FD(fd) close (fd)
1002#endif
204 1003
205#ifdef _WIN32 1004#ifdef _WIN32
206# include "ev_win32.c" 1005# include "ev_win32.c"
207#endif 1006#endif
208 1007
209/*****************************************************************************/ 1008/*****************************************************************************/
210 1009
1010/* define a suitable floor function (only used by periodics atm) */
1011
1012#if EV_USE_FLOOR
1013# include <math.h>
1014# define ev_floor(v) floor (v)
1015#else
1016
1017#include <float.h>
1018
1019/* a floor() replacement function, should be independent of ev_tstamp type */
1020static ev_tstamp noinline
1021ev_floor (ev_tstamp v)
1022{
1023 /* the choice of shift factor is not terribly important */
1024#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1025 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1026#else
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1028#endif
1029
1030 /* argument too large for an unsigned long? */
1031 if (expect_false (v >= shift))
1032 {
1033 ev_tstamp f;
1034
1035 if (v == v - 1.)
1036 return v; /* very large number */
1037
1038 f = shift * ev_floor (v * (1. / shift));
1039 return f + ev_floor (v - f);
1040 }
1041
1042 /* special treatment for negative args? */
1043 if (expect_false (v < 0.))
1044 {
1045 ev_tstamp f = -ev_floor (-v);
1046
1047 return f - (f == v ? 0 : 1);
1048 }
1049
1050 /* fits into an unsigned long */
1051 return (unsigned long)v;
1052}
1053
1054#endif
1055
1056/*****************************************************************************/
1057
1058#ifdef __linux
1059# include <sys/utsname.h>
1060#endif
1061
1062static unsigned int noinline ecb_cold
1063ev_linux_version (void)
1064{
1065#ifdef __linux
1066 unsigned int v = 0;
1067 struct utsname buf;
1068 int i;
1069 char *p = buf.release;
1070
1071 if (uname (&buf))
1072 return 0;
1073
1074 for (i = 3+1; --i; )
1075 {
1076 unsigned int c = 0;
1077
1078 for (;;)
1079 {
1080 if (*p >= '0' && *p <= '9')
1081 c = c * 10 + *p++ - '0';
1082 else
1083 {
1084 p += *p == '.';
1085 break;
1086 }
1087 }
1088
1089 v = (v << 8) | c;
1090 }
1091
1092 return v;
1093#else
1094 return 0;
1095#endif
1096}
1097
1098/*****************************************************************************/
1099
1100#if EV_AVOID_STDIO
1101static void noinline ecb_cold
1102ev_printerr (const char *msg)
1103{
1104 write (STDERR_FILENO, msg, strlen (msg));
1105}
1106#endif
1107
211static void (*syserr_cb)(const char *msg); 1108static void (*syserr_cb)(const char *msg);
212 1109
1110void ecb_cold
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 1111ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 1112{
215 syserr_cb = cb; 1113 syserr_cb = cb;
216} 1114}
217 1115
218static void 1116static void noinline ecb_cold
219syserr (const char *msg) 1117ev_syserr (const char *msg)
220{ 1118{
221 if (!msg) 1119 if (!msg)
222 msg = "(libev) system error"; 1120 msg = "(libev) system error";
223 1121
224 if (syserr_cb) 1122 if (syserr_cb)
225 syserr_cb (msg); 1123 syserr_cb (msg);
226 else 1124 else
227 { 1125 {
1126#if EV_AVOID_STDIO
1127 ev_printerr (msg);
1128 ev_printerr (": ");
1129 ev_printerr (strerror (errno));
1130 ev_printerr ("\n");
1131#else
228 perror (msg); 1132 perror (msg);
1133#endif
229 abort (); 1134 abort ();
230 } 1135 }
231} 1136}
232 1137
1138static void *
1139ev_realloc_emul (void *ptr, long size)
1140{
1141#if __GLIBC__
1142 return realloc (ptr, size);
1143#else
1144 /* some systems, notably openbsd and darwin, fail to properly
1145 * implement realloc (x, 0) (as required by both ansi c-89 and
1146 * the single unix specification, so work around them here.
1147 */
1148
1149 if (size)
1150 return realloc (ptr, size);
1151
1152 free (ptr);
1153 return 0;
1154#endif
1155}
1156
233static void *(*alloc)(void *ptr, long size); 1157static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 1158
1159void ecb_cold
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1160ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 1161{
237 alloc = cb; 1162 alloc = cb;
238} 1163}
239 1164
240static void * 1165inline_speed void *
241ev_realloc (void *ptr, long size) 1166ev_realloc (void *ptr, long size)
242{ 1167{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1168 ptr = alloc (ptr, size);
244 1169
245 if (!ptr && size) 1170 if (!ptr && size)
246 { 1171 {
1172#if EV_AVOID_STDIO
1173 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1174#else
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1175 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1176#endif
248 abort (); 1177 abort ();
249 } 1178 }
250 1179
251 return ptr; 1180 return ptr;
252} 1181}
254#define ev_malloc(size) ev_realloc (0, (size)) 1183#define ev_malloc(size) ev_realloc (0, (size))
255#define ev_free(ptr) ev_realloc ((ptr), 0) 1184#define ev_free(ptr) ev_realloc ((ptr), 0)
256 1185
257/*****************************************************************************/ 1186/*****************************************************************************/
258 1187
1188/* set in reify when reification needed */
1189#define EV_ANFD_REIFY 1
1190
1191/* file descriptor info structure */
259typedef struct 1192typedef struct
260{ 1193{
261 WL head; 1194 WL head;
262 unsigned char events; 1195 unsigned char events; /* the events watched for */
1196 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1197 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
263 unsigned char reify; 1198 unsigned char unused;
1199#if EV_USE_EPOLL
1200 unsigned int egen; /* generation counter to counter epoll bugs */
1201#endif
264#if EV_SELECT_IS_WINSOCKET 1202#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
265 SOCKET handle; 1203 SOCKET handle;
266#endif 1204#endif
1205#if EV_USE_IOCP
1206 OVERLAPPED or, ow;
1207#endif
267} ANFD; 1208} ANFD;
268 1209
1210/* stores the pending event set for a given watcher */
269typedef struct 1211typedef struct
270{ 1212{
271 W w; 1213 W w;
272 int events; 1214 int events; /* the pending event set for the given watcher */
273} ANPENDING; 1215} ANPENDING;
1216
1217#if EV_USE_INOTIFY
1218/* hash table entry per inotify-id */
1219typedef struct
1220{
1221 WL head;
1222} ANFS;
1223#endif
1224
1225/* Heap Entry */
1226#if EV_HEAP_CACHE_AT
1227 /* a heap element */
1228 typedef struct {
1229 ev_tstamp at;
1230 WT w;
1231 } ANHE;
1232
1233 #define ANHE_w(he) (he).w /* access watcher, read-write */
1234 #define ANHE_at(he) (he).at /* access cached at, read-only */
1235 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1236#else
1237 /* a heap element */
1238 typedef WT ANHE;
1239
1240 #define ANHE_w(he) (he)
1241 #define ANHE_at(he) (he)->at
1242 #define ANHE_at_cache(he)
1243#endif
274 1244
275#if EV_MULTIPLICITY 1245#if EV_MULTIPLICITY
276 1246
277 struct ev_loop 1247 struct ev_loop
278 { 1248 {
283 #undef VAR 1253 #undef VAR
284 }; 1254 };
285 #include "ev_wrap.h" 1255 #include "ev_wrap.h"
286 1256
287 static struct ev_loop default_loop_struct; 1257 static struct ev_loop default_loop_struct;
288 struct ev_loop *ev_default_loop_ptr; 1258 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
289 1259
290#else 1260#else
291 1261
292 ev_tstamp ev_rt_now; 1262 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
293 #define VAR(name,decl) static decl; 1263 #define VAR(name,decl) static decl;
294 #include "ev_vars.h" 1264 #include "ev_vars.h"
295 #undef VAR 1265 #undef VAR
296 1266
297 static int ev_default_loop_ptr; 1267 static int ev_default_loop_ptr;
298 1268
299#endif 1269#endif
300 1270
1271#if EV_FEATURE_API
1272# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1273# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1274# define EV_INVOKE_PENDING invoke_cb (EV_A)
1275#else
1276# define EV_RELEASE_CB (void)0
1277# define EV_ACQUIRE_CB (void)0
1278# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1279#endif
1280
1281#define EVBREAK_RECURSE 0x80
1282
301/*****************************************************************************/ 1283/*****************************************************************************/
302 1284
1285#ifndef EV_HAVE_EV_TIME
303ev_tstamp 1286ev_tstamp
304ev_time (void) 1287ev_time (void)
305{ 1288{
306#if EV_USE_REALTIME 1289#if EV_USE_REALTIME
1290 if (expect_true (have_realtime))
1291 {
307 struct timespec ts; 1292 struct timespec ts;
308 clock_gettime (CLOCK_REALTIME, &ts); 1293 clock_gettime (CLOCK_REALTIME, &ts);
309 return ts.tv_sec + ts.tv_nsec * 1e-9; 1294 return ts.tv_sec + ts.tv_nsec * 1e-9;
310#else 1295 }
1296#endif
1297
311 struct timeval tv; 1298 struct timeval tv;
312 gettimeofday (&tv, 0); 1299 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 1300 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif
315} 1301}
1302#endif
316 1303
317inline ev_tstamp 1304inline_size ev_tstamp
318get_clock (void) 1305get_clock (void)
319{ 1306{
320#if EV_USE_MONOTONIC 1307#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 1308 if (expect_true (have_monotonic))
322 { 1309 {
335{ 1322{
336 return ev_rt_now; 1323 return ev_rt_now;
337} 1324}
338#endif 1325#endif
339 1326
340#define array_roundsize(type,n) (((n) | 4) & ~3) 1327void
1328ev_sleep (ev_tstamp delay)
1329{
1330 if (delay > 0.)
1331 {
1332#if EV_USE_NANOSLEEP
1333 struct timespec ts;
1334
1335 EV_TS_SET (ts, delay);
1336 nanosleep (&ts, 0);
1337#elif defined(_WIN32)
1338 Sleep ((unsigned long)(delay * 1e3));
1339#else
1340 struct timeval tv;
1341
1342 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1343 /* something not guaranteed by newer posix versions, but guaranteed */
1344 /* by older ones */
1345 EV_TV_SET (tv, delay);
1346 select (0, 0, 0, 0, &tv);
1347#endif
1348 }
1349}
1350
1351/*****************************************************************************/
1352
1353#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1354
1355/* find a suitable new size for the given array, */
1356/* hopefully by rounding to a nice-to-malloc size */
1357inline_size int
1358array_nextsize (int elem, int cur, int cnt)
1359{
1360 int ncur = cur + 1;
1361
1362 do
1363 ncur <<= 1;
1364 while (cnt > ncur);
1365
1366 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1367 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1368 {
1369 ncur *= elem;
1370 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1371 ncur = ncur - sizeof (void *) * 4;
1372 ncur /= elem;
1373 }
1374
1375 return ncur;
1376}
1377
1378static void * noinline ecb_cold
1379array_realloc (int elem, void *base, int *cur, int cnt)
1380{
1381 *cur = array_nextsize (elem, *cur, cnt);
1382 return ev_realloc (base, elem * *cur);
1383}
1384
1385#define array_init_zero(base,count) \
1386 memset ((void *)(base), 0, sizeof (*(base)) * (count))
341 1387
342#define array_needsize(type,base,cur,cnt,init) \ 1388#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 1389 if (expect_false ((cnt) > (cur))) \
344 { \ 1390 { \
345 int newcnt = cur; \ 1391 int ecb_unused ocur_ = (cur); \
346 do \ 1392 (base) = (type *)array_realloc \
347 { \ 1393 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 1394 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 1395 }
356 1396
1397#if 0
357#define array_slim(type,stem) \ 1398#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1399 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 1400 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1401 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1402 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1403 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 1404 }
1405#endif
364 1406
365#define array_free(stem, idx) \ 1407#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1408 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
367 1409
368/*****************************************************************************/ 1410/*****************************************************************************/
369 1411
370static void 1412/* dummy callback for pending events */
371anfds_init (ANFD *base, int count) 1413static void noinline
1414pendingcb (EV_P_ ev_prepare *w, int revents)
372{ 1415{
373 while (count--)
374 {
375 base->head = 0;
376 base->events = EV_NONE;
377 base->reify = 0;
378
379 ++base;
380 }
381} 1416}
382 1417
383void 1418void noinline
384ev_feed_event (EV_P_ void *w, int revents) 1419ev_feed_event (EV_P_ void *w, int revents)
385{ 1420{
386 W w_ = (W)w; 1421 W w_ = (W)w;
1422 int pri = ABSPRI (w_);
387 1423
388 if (expect_false (w_->pending)) 1424 if (expect_false (w_->pending))
1425 pendings [pri][w_->pending - 1].events |= revents;
1426 else
389 { 1427 {
1428 w_->pending = ++pendingcnt [pri];
1429 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1430 pendings [pri][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1431 pendings [pri][w_->pending - 1].events = revents;
391 return;
392 } 1432 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398} 1433}
399 1434
400static void 1435inline_speed void
1436feed_reverse (EV_P_ W w)
1437{
1438 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1439 rfeeds [rfeedcnt++] = w;
1440}
1441
1442inline_size void
1443feed_reverse_done (EV_P_ int revents)
1444{
1445 do
1446 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1447 while (rfeedcnt);
1448}
1449
1450inline_speed void
401queue_events (EV_P_ W *events, int eventcnt, int type) 1451queue_events (EV_P_ W *events, int eventcnt, int type)
402{ 1452{
403 int i; 1453 int i;
404 1454
405 for (i = 0; i < eventcnt; ++i) 1455 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type); 1456 ev_feed_event (EV_A_ events [i], type);
407} 1457}
408 1458
1459/*****************************************************************************/
1460
409inline void 1461inline_speed void
410fd_event (EV_P_ int fd, int revents) 1462fd_event_nocheck (EV_P_ int fd, int revents)
411{ 1463{
412 ANFD *anfd = anfds + fd; 1464 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 1465 ev_io *w;
414 1466
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1467 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 1468 {
417 int ev = w->events & revents; 1469 int ev = w->events & revents;
418 1470
419 if (ev) 1471 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 1472 ev_feed_event (EV_A_ (W)w, ev);
421 } 1473 }
422} 1474}
423 1475
1476/* do not submit kernel events for fds that have reify set */
1477/* because that means they changed while we were polling for new events */
1478inline_speed void
1479fd_event (EV_P_ int fd, int revents)
1480{
1481 ANFD *anfd = anfds + fd;
1482
1483 if (expect_true (!anfd->reify))
1484 fd_event_nocheck (EV_A_ fd, revents);
1485}
1486
424void 1487void
425ev_feed_fd_event (EV_P_ int fd, int revents) 1488ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 1489{
1490 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 1491 fd_event_nocheck (EV_A_ fd, revents);
428} 1492}
429 1493
430/*****************************************************************************/ 1494/* make sure the external fd watch events are in-sync */
431 1495/* with the kernel/libev internal state */
432inline void 1496inline_size void
433fd_reify (EV_P) 1497fd_reify (EV_P)
434{ 1498{
435 int i; 1499 int i;
436 1500
1501#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
437 for (i = 0; i < fdchangecnt; ++i) 1502 for (i = 0; i < fdchangecnt; ++i)
438 { 1503 {
439 int fd = fdchanges [i]; 1504 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 1505 ANFD *anfd = anfds + fd;
441 struct ev_io *w;
442 1506
443 int events = 0; 1507 if (anfd->reify & EV__IOFDSET && anfd->head)
444
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
446 events |= w->events;
447
448#if EV_SELECT_IS_WINSOCKET
449 if (events)
450 { 1508 {
1509 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1510
1511 if (handle != anfd->handle)
1512 {
451 unsigned long argp; 1513 unsigned long arg;
452 anfd->handle = _get_osfhandle (fd); 1514
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1515 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1516
1517 /* handle changed, but fd didn't - we need to do it in two steps */
1518 backend_modify (EV_A_ fd, anfd->events, 0);
1519 anfd->events = 0;
1520 anfd->handle = handle;
1521 }
454 } 1522 }
1523 }
455#endif 1524#endif
456 1525
1526 for (i = 0; i < fdchangecnt; ++i)
1527 {
1528 int fd = fdchanges [i];
1529 ANFD *anfd = anfds + fd;
1530 ev_io *w;
1531
1532 unsigned char o_events = anfd->events;
1533 unsigned char o_reify = anfd->reify;
1534
457 anfd->reify = 0; 1535 anfd->reify = 0;
458 1536
459 method_modify (EV_A_ fd, anfd->events, events); 1537 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1538 {
460 anfd->events = events; 1539 anfd->events = 0;
1540
1541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1542 anfd->events |= (unsigned char)w->events;
1543
1544 if (o_events != anfd->events)
1545 o_reify = EV__IOFDSET; /* actually |= */
1546 }
1547
1548 if (o_reify & EV__IOFDSET)
1549 backend_modify (EV_A_ fd, o_events, anfd->events);
461 } 1550 }
462 1551
463 fdchangecnt = 0; 1552 fdchangecnt = 0;
464} 1553}
465 1554
466static void 1555/* something about the given fd changed */
1556inline_size void
467fd_change (EV_P_ int fd) 1557fd_change (EV_P_ int fd, int flags)
468{ 1558{
469 if (expect_false (anfds [fd].reify)) 1559 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 1560 anfds [fd].reify |= flags;
473 1561
1562 if (expect_true (!reify))
1563 {
474 ++fdchangecnt; 1564 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1565 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 1566 fdchanges [fdchangecnt - 1] = fd;
1567 }
477} 1568}
478 1569
479static void 1570/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1571inline_speed void ecb_cold
480fd_kill (EV_P_ int fd) 1572fd_kill (EV_P_ int fd)
481{ 1573{
482 struct ev_io *w; 1574 ev_io *w;
483 1575
484 while ((w = (struct ev_io *)anfds [fd].head)) 1576 while ((w = (ev_io *)anfds [fd].head))
485 { 1577 {
486 ev_io_stop (EV_A_ w); 1578 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1579 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 1580 }
489} 1581}
490 1582
491inline int 1583/* check whether the given fd is actually valid, for error recovery */
1584inline_size int ecb_cold
492fd_valid (int fd) 1585fd_valid (int fd)
493{ 1586{
494#ifdef _WIN32 1587#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 1588 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
496#else 1589#else
497 return fcntl (fd, F_GETFD) != -1; 1590 return fcntl (fd, F_GETFD) != -1;
498#endif 1591#endif
499} 1592}
500 1593
501/* called on EBADF to verify fds */ 1594/* called on EBADF to verify fds */
502static void 1595static void noinline ecb_cold
503fd_ebadf (EV_P) 1596fd_ebadf (EV_P)
504{ 1597{
505 int fd; 1598 int fd;
506 1599
507 for (fd = 0; fd < anfdmax; ++fd) 1600 for (fd = 0; fd < anfdmax; ++fd)
508 if (anfds [fd].events) 1601 if (anfds [fd].events)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 1602 if (!fd_valid (fd) && errno == EBADF)
510 fd_kill (EV_A_ fd); 1603 fd_kill (EV_A_ fd);
511} 1604}
512 1605
513/* called on ENOMEM in select/poll to kill some fds and retry */ 1606/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 1607static void noinline ecb_cold
515fd_enomem (EV_P) 1608fd_enomem (EV_P)
516{ 1609{
517 int fd; 1610 int fd;
518 1611
519 for (fd = anfdmax; fd--; ) 1612 for (fd = anfdmax; fd--; )
520 if (anfds [fd].events) 1613 if (anfds [fd].events)
521 { 1614 {
522 fd_kill (EV_A_ fd); 1615 fd_kill (EV_A_ fd);
523 return; 1616 break;
524 } 1617 }
525} 1618}
526 1619
527/* usually called after fork if method needs to re-arm all fds from scratch */ 1620/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 1621static void noinline
529fd_rearm_all (EV_P) 1622fd_rearm_all (EV_P)
530{ 1623{
531 int fd; 1624 int fd;
532 1625
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 1626 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 1627 if (anfds [fd].events)
536 { 1628 {
537 anfds [fd].events = 0; 1629 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 1630 anfds [fd].emask = 0;
1631 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
539 } 1632 }
540} 1633}
541 1634
542/*****************************************************************************/ 1635/* used to prepare libev internal fd's */
543 1636/* this is not fork-safe */
544static void
545upheap (WT *heap, int k)
546{
547 WT w = heap [k];
548
549 while (k && heap [k >> 1]->at > w->at)
550 {
551 heap [k] = heap [k >> 1];
552 ((W)heap [k])->active = k + 1;
553 k >>= 1;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558
559}
560
561static void
562downheap (WT *heap, int N, int k)
563{
564 WT w = heap [k];
565
566 while (k < (N >> 1))
567 {
568 int j = k << 1;
569
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
571 ++j;
572
573 if (w->at <= heap [j]->at)
574 break;
575
576 heap [k] = heap [j];
577 ((W)heap [k])->active = k + 1;
578 k = j;
579 }
580
581 heap [k] = w;
582 ((W)heap [k])->active = k + 1;
583}
584
585inline void 1637inline_speed void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
592/*****************************************************************************/
593
594typedef struct
595{
596 WL head;
597 sig_atomic_t volatile gotsig;
598} ANSIG;
599
600static ANSIG *signals;
601static int signalmax;
602
603static int sigpipe [2];
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606
607static void
608signals_init (ANSIG *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->gotsig = 0;
614
615 ++base;
616 }
617}
618
619static void
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625
626 signals [signum - 1].gotsig = 1;
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 1638fd_intern (int fd)
672{ 1639{
673#ifdef _WIN32 1640#ifdef _WIN32
674 int arg = 1; 1641 unsigned long arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1642 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
676#else 1643#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 1644 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 1645 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 1646#endif
680} 1647}
681 1648
1649/*****************************************************************************/
1650
1651/*
1652 * the heap functions want a real array index. array index 0 is guaranteed to not
1653 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1654 * the branching factor of the d-tree.
1655 */
1656
1657/*
1658 * at the moment we allow libev the luxury of two heaps,
1659 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1660 * which is more cache-efficient.
1661 * the difference is about 5% with 50000+ watchers.
1662 */
1663#if EV_USE_4HEAP
1664
1665#define DHEAP 4
1666#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1667#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1668#define UPHEAP_DONE(p,k) ((p) == (k))
1669
1670/* away from the root */
1671inline_speed void
1672downheap (ANHE *heap, int N, int k)
1673{
1674 ANHE he = heap [k];
1675 ANHE *E = heap + N + HEAP0;
1676
1677 for (;;)
1678 {
1679 ev_tstamp minat;
1680 ANHE *minpos;
1681 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1682
1683 /* find minimum child */
1684 if (expect_true (pos + DHEAP - 1 < E))
1685 {
1686 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1687 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1690 }
1691 else if (pos < E)
1692 {
1693 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1694 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1695 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1696 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1697 }
1698 else
1699 break;
1700
1701 if (ANHE_at (he) <= minat)
1702 break;
1703
1704 heap [k] = *minpos;
1705 ev_active (ANHE_w (*minpos)) = k;
1706
1707 k = minpos - heap;
1708 }
1709
1710 heap [k] = he;
1711 ev_active (ANHE_w (he)) = k;
1712}
1713
1714#else /* 4HEAP */
1715
1716#define HEAP0 1
1717#define HPARENT(k) ((k) >> 1)
1718#define UPHEAP_DONE(p,k) (!(p))
1719
1720/* away from the root */
1721inline_speed void
1722downheap (ANHE *heap, int N, int k)
1723{
1724 ANHE he = heap [k];
1725
1726 for (;;)
1727 {
1728 int c = k << 1;
1729
1730 if (c >= N + HEAP0)
1731 break;
1732
1733 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1734 ? 1 : 0;
1735
1736 if (ANHE_at (he) <= ANHE_at (heap [c]))
1737 break;
1738
1739 heap [k] = heap [c];
1740 ev_active (ANHE_w (heap [k])) = k;
1741
1742 k = c;
1743 }
1744
1745 heap [k] = he;
1746 ev_active (ANHE_w (he)) = k;
1747}
1748#endif
1749
1750/* towards the root */
1751inline_speed void
1752upheap (ANHE *heap, int k)
1753{
1754 ANHE he = heap [k];
1755
1756 for (;;)
1757 {
1758 int p = HPARENT (k);
1759
1760 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1761 break;
1762
1763 heap [k] = heap [p];
1764 ev_active (ANHE_w (heap [k])) = k;
1765 k = p;
1766 }
1767
1768 heap [k] = he;
1769 ev_active (ANHE_w (he)) = k;
1770}
1771
1772/* move an element suitably so it is in a correct place */
1773inline_size void
1774adjustheap (ANHE *heap, int N, int k)
1775{
1776 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1777 upheap (heap, k);
1778 else
1779 downheap (heap, N, k);
1780}
1781
1782/* rebuild the heap: this function is used only once and executed rarely */
1783inline_size void
1784reheap (ANHE *heap, int N)
1785{
1786 int i;
1787
1788 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1789 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1790 for (i = 0; i < N; ++i)
1791 upheap (heap, i + HEAP0);
1792}
1793
1794/*****************************************************************************/
1795
1796/* associate signal watchers to a signal signal */
1797typedef struct
1798{
1799 EV_ATOMIC_T pending;
1800#if EV_MULTIPLICITY
1801 EV_P;
1802#endif
1803 WL head;
1804} ANSIG;
1805
1806static ANSIG signals [EV_NSIG - 1];
1807
1808/*****************************************************************************/
1809
1810#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1811
1812static void noinline ecb_cold
1813evpipe_init (EV_P)
1814{
1815 if (!ev_is_active (&pipe_w))
1816 {
1817# if EV_USE_EVENTFD
1818 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1819 if (evfd < 0 && errno == EINVAL)
1820 evfd = eventfd (0, 0);
1821
1822 if (evfd >= 0)
1823 {
1824 evpipe [0] = -1;
1825 fd_intern (evfd); /* doing it twice doesn't hurt */
1826 ev_io_set (&pipe_w, evfd, EV_READ);
1827 }
1828 else
1829# endif
1830 {
1831 while (pipe (evpipe))
1832 ev_syserr ("(libev) error creating signal/async pipe");
1833
1834 fd_intern (evpipe [0]);
1835 fd_intern (evpipe [1]);
1836 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1837 }
1838
1839 ev_io_start (EV_A_ &pipe_w);
1840 ev_unref (EV_A); /* watcher should not keep loop alive */
1841 }
1842}
1843
1844inline_speed void
1845evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1846{
1847 if (expect_true (*flag))
1848 return;
1849
1850 *flag = 1;
1851
1852 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1853
1854 pipe_write_skipped = 1;
1855
1856 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1857
1858 if (pipe_write_wanted)
1859 {
1860 int old_errno;
1861
1862 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1863
1864 old_errno = errno; /* save errno because write will clobber it */
1865
1866#if EV_USE_EVENTFD
1867 if (evfd >= 0)
1868 {
1869 uint64_t counter = 1;
1870 write (evfd, &counter, sizeof (uint64_t));
1871 }
1872 else
1873#endif
1874 {
1875 /* win32 people keep sending patches that change this write() to send() */
1876 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1877 /* so when you think this write should be a send instead, please find out */
1878 /* where your send() is from - it's definitely not the microsoft send, and */
1879 /* tell me. thank you. */
1880 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1881 /* check the ev documentation on how to use this flag */
1882 write (evpipe [1], &(evpipe [1]), 1);
1883 }
1884
1885 errno = old_errno;
1886 }
1887}
1888
1889/* called whenever the libev signal pipe */
1890/* got some events (signal, async) */
682static void 1891static void
683siginit (EV_P) 1892pipecb (EV_P_ ev_io *iow, int revents)
684{ 1893{
685 fd_intern (sigpipe [0]); 1894 int i;
686 fd_intern (sigpipe [1]);
687 1895
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1896 if (revents & EV_READ)
689 ev_io_start (EV_A_ &sigev); 1897 {
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1898#if EV_USE_EVENTFD
1899 if (evfd >= 0)
1900 {
1901 uint64_t counter;
1902 read (evfd, &counter, sizeof (uint64_t));
1903 }
1904 else
1905#endif
1906 {
1907 char dummy;
1908 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1909 read (evpipe [0], &dummy, 1);
1910 }
1911 }
1912
1913 pipe_write_skipped = 0;
1914
1915#if EV_SIGNAL_ENABLE
1916 if (sig_pending)
1917 {
1918 sig_pending = 0;
1919
1920 for (i = EV_NSIG - 1; i--; )
1921 if (expect_false (signals [i].pending))
1922 ev_feed_signal_event (EV_A_ i + 1);
1923 }
1924#endif
1925
1926#if EV_ASYNC_ENABLE
1927 if (async_pending)
1928 {
1929 async_pending = 0;
1930
1931 for (i = asynccnt; i--; )
1932 if (asyncs [i]->sent)
1933 {
1934 asyncs [i]->sent = 0;
1935 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1936 }
1937 }
1938#endif
691} 1939}
692 1940
693/*****************************************************************************/ 1941/*****************************************************************************/
694 1942
695static struct ev_child *childs [PID_HASHSIZE]; 1943void
1944ev_feed_signal (int signum)
1945{
1946#if EV_MULTIPLICITY
1947 EV_P = signals [signum - 1].loop;
696 1948
1949 if (!EV_A)
1950 return;
1951#endif
1952
1953 if (!ev_active (&pipe_w))
1954 return;
1955
1956 signals [signum - 1].pending = 1;
1957 evpipe_write (EV_A_ &sig_pending);
1958}
1959
1960static void
1961ev_sighandler (int signum)
1962{
697#ifndef _WIN32 1963#ifdef _WIN32
1964 signal (signum, ev_sighandler);
1965#endif
698 1966
1967 ev_feed_signal (signum);
1968}
1969
1970void noinline
1971ev_feed_signal_event (EV_P_ int signum)
1972{
1973 WL w;
1974
1975 if (expect_false (signum <= 0 || signum > EV_NSIG))
1976 return;
1977
1978 --signum;
1979
1980#if EV_MULTIPLICITY
1981 /* it is permissible to try to feed a signal to the wrong loop */
1982 /* or, likely more useful, feeding a signal nobody is waiting for */
1983
1984 if (expect_false (signals [signum].loop != EV_A))
1985 return;
1986#endif
1987
1988 signals [signum].pending = 0;
1989
1990 for (w = signals [signum].head; w; w = w->next)
1991 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1992}
1993
1994#if EV_USE_SIGNALFD
1995static void
1996sigfdcb (EV_P_ ev_io *iow, int revents)
1997{
1998 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1999
2000 for (;;)
2001 {
2002 ssize_t res = read (sigfd, si, sizeof (si));
2003
2004 /* not ISO-C, as res might be -1, but works with SuS */
2005 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2006 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2007
2008 if (res < (ssize_t)sizeof (si))
2009 break;
2010 }
2011}
2012#endif
2013
2014#endif
2015
2016/*****************************************************************************/
2017
2018#if EV_CHILD_ENABLE
2019static WL childs [EV_PID_HASHSIZE];
2020
699static struct ev_signal childev; 2021static ev_signal childev;
2022
2023#ifndef WIFCONTINUED
2024# define WIFCONTINUED(status) 0
2025#endif
2026
2027/* handle a single child status event */
2028inline_speed void
2029child_reap (EV_P_ int chain, int pid, int status)
2030{
2031 ev_child *w;
2032 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2033
2034 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2035 {
2036 if ((w->pid == pid || !w->pid)
2037 && (!traced || (w->flags & 1)))
2038 {
2039 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2040 w->rpid = pid;
2041 w->rstatus = status;
2042 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2043 }
2044 }
2045}
700 2046
701#ifndef WCONTINUED 2047#ifndef WCONTINUED
702# define WCONTINUED 0 2048# define WCONTINUED 0
703#endif 2049#endif
704 2050
2051/* called on sigchld etc., calls waitpid */
705static void 2052static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 2053childcb (EV_P_ ev_signal *sw, int revents)
722{ 2054{
723 int pid, status; 2055 int pid, status;
724 2056
2057 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2058 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 2059 if (!WCONTINUED
2060 || errno != EINVAL
2061 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2062 return;
2063
727 /* make sure we are called again until all childs have been reaped */ 2064 /* make sure we are called again until all children have been reaped */
2065 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2066 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 2067
730 child_reap (EV_A_ sw, pid, pid, status); 2068 child_reap (EV_A_ pid, pid, status);
2069 if ((EV_PID_HASHSIZE) > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2070 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 2071}
734 2072
735#endif 2073#endif
736 2074
737/*****************************************************************************/ 2075/*****************************************************************************/
738 2076
2077#if EV_USE_IOCP
2078# include "ev_iocp.c"
2079#endif
739#if EV_USE_PORT 2080#if EV_USE_PORT
740# include "ev_port.c" 2081# include "ev_port.c"
741#endif 2082#endif
742#if EV_USE_KQUEUE 2083#if EV_USE_KQUEUE
743# include "ev_kqueue.c" 2084# include "ev_kqueue.c"
750#endif 2091#endif
751#if EV_USE_SELECT 2092#if EV_USE_SELECT
752# include "ev_select.c" 2093# include "ev_select.c"
753#endif 2094#endif
754 2095
755int 2096int ecb_cold
756ev_version_major (void) 2097ev_version_major (void)
757{ 2098{
758 return EV_VERSION_MAJOR; 2099 return EV_VERSION_MAJOR;
759} 2100}
760 2101
761int 2102int ecb_cold
762ev_version_minor (void) 2103ev_version_minor (void)
763{ 2104{
764 return EV_VERSION_MINOR; 2105 return EV_VERSION_MINOR;
765} 2106}
766 2107
767/* return true if we are running with elevated privileges and should ignore env variables */ 2108/* return true if we are running with elevated privileges and should ignore env variables */
768static int 2109int inline_size ecb_cold
769enable_secure (void) 2110enable_secure (void)
770{ 2111{
771#ifdef _WIN32 2112#ifdef _WIN32
772 return 0; 2113 return 0;
773#else 2114#else
774 return getuid () != geteuid () 2115 return getuid () != geteuid ()
775 || getgid () != getegid (); 2116 || getgid () != getegid ();
776#endif 2117#endif
777} 2118}
778 2119
2120unsigned int ecb_cold
2121ev_supported_backends (void)
2122{
2123 unsigned int flags = 0;
2124
2125 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2126 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2127 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2128 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2129 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2130
2131 return flags;
2132}
2133
2134unsigned int ecb_cold
2135ev_recommended_backends (void)
2136{
2137 unsigned int flags = ev_supported_backends ();
2138
2139#ifndef __NetBSD__
2140 /* kqueue is borked on everything but netbsd apparently */
2141 /* it usually doesn't work correctly on anything but sockets and pipes */
2142 flags &= ~EVBACKEND_KQUEUE;
2143#endif
2144#ifdef __APPLE__
2145 /* only select works correctly on that "unix-certified" platform */
2146 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2147 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2148#endif
2149#ifdef __FreeBSD__
2150 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2151#endif
2152
2153 return flags;
2154}
2155
2156unsigned int ecb_cold
2157ev_embeddable_backends (void)
2158{
2159 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2160
2161 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2162 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2163 flags &= ~EVBACKEND_EPOLL;
2164
2165 return flags;
2166}
2167
779unsigned int 2168unsigned int
2169ev_backend (EV_P)
2170{
2171 return backend;
2172}
2173
2174#if EV_FEATURE_API
2175unsigned int
2176ev_iteration (EV_P)
2177{
2178 return loop_count;
2179}
2180
2181unsigned int
780ev_method (EV_P) 2182ev_depth (EV_P)
781{ 2183{
782 return method; 2184 return loop_depth;
783} 2185}
784 2186
785static void 2187void
2188ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2189{
2190 io_blocktime = interval;
2191}
2192
2193void
2194ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2195{
2196 timeout_blocktime = interval;
2197}
2198
2199void
2200ev_set_userdata (EV_P_ void *data)
2201{
2202 userdata = data;
2203}
2204
2205void *
2206ev_userdata (EV_P)
2207{
2208 return userdata;
2209}
2210
2211void
2212ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2213{
2214 invoke_cb = invoke_pending_cb;
2215}
2216
2217void
2218ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2219{
2220 release_cb = release;
2221 acquire_cb = acquire;
2222}
2223#endif
2224
2225/* initialise a loop structure, must be zero-initialised */
2226static void noinline ecb_cold
786loop_init (EV_P_ unsigned int flags) 2227loop_init (EV_P_ unsigned int flags)
787{ 2228{
788 if (!method) 2229 if (!backend)
789 { 2230 {
2231 origflags = flags;
2232
2233#if EV_USE_REALTIME
2234 if (!have_realtime)
2235 {
2236 struct timespec ts;
2237
2238 if (!clock_gettime (CLOCK_REALTIME, &ts))
2239 have_realtime = 1;
2240 }
2241#endif
2242
790#if EV_USE_MONOTONIC 2243#if EV_USE_MONOTONIC
2244 if (!have_monotonic)
2245 {
2246 struct timespec ts;
2247
2248 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2249 have_monotonic = 1;
2250 }
2251#endif
2252
2253 /* pid check not overridable via env */
2254#ifndef _WIN32
2255 if (flags & EVFLAG_FORKCHECK)
2256 curpid = getpid ();
2257#endif
2258
2259 if (!(flags & EVFLAG_NOENV)
2260 && !enable_secure ()
2261 && getenv ("LIBEV_FLAGS"))
2262 flags = atoi (getenv ("LIBEV_FLAGS"));
2263
2264 ev_rt_now = ev_time ();
2265 mn_now = get_clock ();
2266 now_floor = mn_now;
2267 rtmn_diff = ev_rt_now - mn_now;
2268#if EV_FEATURE_API
2269 invoke_cb = ev_invoke_pending;
2270#endif
2271
2272 io_blocktime = 0.;
2273 timeout_blocktime = 0.;
2274 backend = 0;
2275 backend_fd = -1;
2276 sig_pending = 0;
2277#if EV_ASYNC_ENABLE
2278 async_pending = 0;
2279#endif
2280 pipe_write_skipped = 0;
2281 pipe_write_wanted = 0;
2282#if EV_USE_INOTIFY
2283 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2284#endif
2285#if EV_USE_SIGNALFD
2286 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2287#endif
2288
2289 if (!(flags & EVBACKEND_MASK))
2290 flags |= ev_recommended_backends ();
2291
2292#if EV_USE_IOCP
2293 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2294#endif
2295#if EV_USE_PORT
2296 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2297#endif
2298#if EV_USE_KQUEUE
2299 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2300#endif
2301#if EV_USE_EPOLL
2302 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2303#endif
2304#if EV_USE_POLL
2305 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2306#endif
2307#if EV_USE_SELECT
2308 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2309#endif
2310
2311 ev_prepare_init (&pending_w, pendingcb);
2312
2313#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2314 ev_init (&pipe_w, pipecb);
2315 ev_set_priority (&pipe_w, EV_MAXPRI);
2316#endif
2317 }
2318}
2319
2320/* free up a loop structure */
2321void ecb_cold
2322ev_loop_destroy (EV_P)
2323{
2324 int i;
2325
2326#if EV_MULTIPLICITY
2327 /* mimic free (0) */
2328 if (!EV_A)
2329 return;
2330#endif
2331
2332#if EV_CLEANUP_ENABLE
2333 /* queue cleanup watchers (and execute them) */
2334 if (expect_false (cleanupcnt))
2335 {
2336 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2337 EV_INVOKE_PENDING;
2338 }
2339#endif
2340
2341#if EV_CHILD_ENABLE
2342 if (ev_is_active (&childev))
2343 {
2344 ev_ref (EV_A); /* child watcher */
2345 ev_signal_stop (EV_A_ &childev);
2346 }
2347#endif
2348
2349 if (ev_is_active (&pipe_w))
2350 {
2351 /*ev_ref (EV_A);*/
2352 /*ev_io_stop (EV_A_ &pipe_w);*/
2353
2354#if EV_USE_EVENTFD
2355 if (evfd >= 0)
2356 close (evfd);
2357#endif
2358
2359 if (evpipe [0] >= 0)
2360 {
2361 EV_WIN32_CLOSE_FD (evpipe [0]);
2362 EV_WIN32_CLOSE_FD (evpipe [1]);
2363 }
2364 }
2365
2366#if EV_USE_SIGNALFD
2367 if (ev_is_active (&sigfd_w))
2368 close (sigfd);
2369#endif
2370
2371#if EV_USE_INOTIFY
2372 if (fs_fd >= 0)
2373 close (fs_fd);
2374#endif
2375
2376 if (backend_fd >= 0)
2377 close (backend_fd);
2378
2379#if EV_USE_IOCP
2380 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2381#endif
2382#if EV_USE_PORT
2383 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2384#endif
2385#if EV_USE_KQUEUE
2386 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2387#endif
2388#if EV_USE_EPOLL
2389 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2390#endif
2391#if EV_USE_POLL
2392 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2393#endif
2394#if EV_USE_SELECT
2395 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2396#endif
2397
2398 for (i = NUMPRI; i--; )
2399 {
2400 array_free (pending, [i]);
2401#if EV_IDLE_ENABLE
2402 array_free (idle, [i]);
2403#endif
2404 }
2405
2406 ev_free (anfds); anfds = 0; anfdmax = 0;
2407
2408 /* have to use the microsoft-never-gets-it-right macro */
2409 array_free (rfeed, EMPTY);
2410 array_free (fdchange, EMPTY);
2411 array_free (timer, EMPTY);
2412#if EV_PERIODIC_ENABLE
2413 array_free (periodic, EMPTY);
2414#endif
2415#if EV_FORK_ENABLE
2416 array_free (fork, EMPTY);
2417#endif
2418#if EV_CLEANUP_ENABLE
2419 array_free (cleanup, EMPTY);
2420#endif
2421 array_free (prepare, EMPTY);
2422 array_free (check, EMPTY);
2423#if EV_ASYNC_ENABLE
2424 array_free (async, EMPTY);
2425#endif
2426
2427 backend = 0;
2428
2429#if EV_MULTIPLICITY
2430 if (ev_is_default_loop (EV_A))
2431#endif
2432 ev_default_loop_ptr = 0;
2433#if EV_MULTIPLICITY
2434 else
2435 ev_free (EV_A);
2436#endif
2437}
2438
2439#if EV_USE_INOTIFY
2440inline_size void infy_fork (EV_P);
2441#endif
2442
2443inline_size void
2444loop_fork (EV_P)
2445{
2446#if EV_USE_PORT
2447 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2448#endif
2449#if EV_USE_KQUEUE
2450 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2451#endif
2452#if EV_USE_EPOLL
2453 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2454#endif
2455#if EV_USE_INOTIFY
2456 infy_fork (EV_A);
2457#endif
2458
2459 if (ev_is_active (&pipe_w))
2460 {
2461 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2462
2463 ev_ref (EV_A);
2464 ev_io_stop (EV_A_ &pipe_w);
2465
2466#if EV_USE_EVENTFD
2467 if (evfd >= 0)
2468 close (evfd);
2469#endif
2470
2471 if (evpipe [0] >= 0)
2472 {
2473 EV_WIN32_CLOSE_FD (evpipe [0]);
2474 EV_WIN32_CLOSE_FD (evpipe [1]);
2475 }
2476
2477#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2478 evpipe_init (EV_A);
2479 /* now iterate over everything, in case we missed something */
2480 pipecb (EV_A_ &pipe_w, EV_READ);
2481#endif
2482 }
2483
2484 postfork = 0;
2485}
2486
2487#if EV_MULTIPLICITY
2488
2489struct ev_loop * ecb_cold
2490ev_loop_new (unsigned int flags)
2491{
2492 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2493
2494 memset (EV_A, 0, sizeof (struct ev_loop));
2495 loop_init (EV_A_ flags);
2496
2497 if (ev_backend (EV_A))
2498 return EV_A;
2499
2500 ev_free (EV_A);
2501 return 0;
2502}
2503
2504#endif /* multiplicity */
2505
2506#if EV_VERIFY
2507static void noinline ecb_cold
2508verify_watcher (EV_P_ W w)
2509{
2510 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2511
2512 if (w->pending)
2513 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2514}
2515
2516static void noinline ecb_cold
2517verify_heap (EV_P_ ANHE *heap, int N)
2518{
2519 int i;
2520
2521 for (i = HEAP0; i < N + HEAP0; ++i)
2522 {
2523 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2524 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2525 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2526
2527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2528 }
2529}
2530
2531static void noinline ecb_cold
2532array_verify (EV_P_ W *ws, int cnt)
2533{
2534 while (cnt--)
2535 {
2536 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2537 verify_watcher (EV_A_ ws [cnt]);
2538 }
2539}
2540#endif
2541
2542#if EV_FEATURE_API
2543void ecb_cold
2544ev_verify (EV_P)
2545{
2546#if EV_VERIFY
2547 int i;
2548 WL w;
2549
2550 assert (activecnt >= -1);
2551
2552 assert (fdchangemax >= fdchangecnt);
2553 for (i = 0; i < fdchangecnt; ++i)
2554 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2555
2556 assert (anfdmax >= 0);
2557 for (i = 0; i < anfdmax; ++i)
2558 for (w = anfds [i].head; w; w = w->next)
791 { 2559 {
792 struct timespec ts; 2560 verify_watcher (EV_A_ (W)w);
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2561 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
794 have_monotonic = 1; 2562 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
795 } 2563 }
796#endif
797 2564
798 ev_rt_now = ev_time (); 2565 assert (timermax >= timercnt);
799 mn_now = get_clock (); 2566 verify_heap (EV_A_ timers, timercnt);
800 now_floor = mn_now;
801 rtmn_diff = ev_rt_now - mn_now;
802 2567
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2568#if EV_PERIODIC_ENABLE
804 flags = atoi (getenv ("LIBEV_FLAGS")); 2569 assert (periodicmax >= periodiccnt);
805 2570 verify_heap (EV_A_ periodics, periodiccnt);
806 if (!(flags & 0x0000ffff))
807 flags |= 0x0000ffff;
808
809 method = 0;
810#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
812#endif
813#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
815#endif
816#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
818#endif
819#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
821#endif
822#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
824#endif
825
826 ev_init (&sigev, sigcb);
827 ev_set_priority (&sigev, EV_MAXPRI);
828 }
829}
830
831static void
832loop_destroy (EV_P)
833{
834 int i;
835
836#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
838#endif
839#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
841#endif
842#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
844#endif
845#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
847#endif
848#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
850#endif 2571#endif
851 2572
852 for (i = NUMPRI; i--; ) 2573 for (i = NUMPRI; i--; )
853 array_free (pending, [i]); 2574 {
2575 assert (pendingmax [i] >= pendingcnt [i]);
2576#if EV_IDLE_ENABLE
2577 assert (idleall >= 0);
2578 assert (idlemax [i] >= idlecnt [i]);
2579 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2580#endif
2581 }
854 2582
855 /* have to use the microsoft-never-gets-it-right macro */ 2583#if EV_FORK_ENABLE
856 array_free (fdchange, EMPTY0); 2584 assert (forkmax >= forkcnt);
857 array_free (timer, EMPTY0); 2585 array_verify (EV_A_ (W *)forks, forkcnt);
858#if EV_PERIODICS 2586#endif
859 array_free (periodic, EMPTY0); 2587
2588#if EV_CLEANUP_ENABLE
2589 assert (cleanupmax >= cleanupcnt);
2590 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2591#endif
2592
2593#if EV_ASYNC_ENABLE
2594 assert (asyncmax >= asynccnt);
2595 array_verify (EV_A_ (W *)asyncs, asynccnt);
2596#endif
2597
2598#if EV_PREPARE_ENABLE
2599 assert (preparemax >= preparecnt);
2600 array_verify (EV_A_ (W *)prepares, preparecnt);
2601#endif
2602
2603#if EV_CHECK_ENABLE
2604 assert (checkmax >= checkcnt);
2605 array_verify (EV_A_ (W *)checks, checkcnt);
2606#endif
2607
2608# if 0
2609#if EV_CHILD_ENABLE
2610 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2611 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2612#endif
860#endif 2613# endif
861 array_free (idle, EMPTY0);
862 array_free (prepare, EMPTY0);
863 array_free (check, EMPTY0);
864
865 method = 0;
866}
867
868static void
869loop_fork (EV_P)
870{
871#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A);
873#endif 2614#endif
874#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
876#endif
877#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
879#endif
880
881 if (ev_is_active (&sigev))
882 {
883 /* default loop */
884
885 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A);
894 }
895
896 postfork = 0;
897} 2615}
2616#endif
898 2617
899#if EV_MULTIPLICITY 2618#if EV_MULTIPLICITY
900struct ev_loop * 2619struct ev_loop * ecb_cold
901ev_loop_new (unsigned int flags)
902{
903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
904
905 memset (loop, 0, sizeof (struct ev_loop));
906
907 loop_init (EV_A_ flags);
908
909 if (ev_method (EV_A))
910 return loop;
911
912 return 0;
913}
914
915void
916ev_loop_destroy (EV_P)
917{
918 loop_destroy (EV_A);
919 ev_free (loop);
920}
921
922void
923ev_loop_fork (EV_P)
924{
925 postfork = 1;
926}
927
928#endif
929
930#if EV_MULTIPLICITY
931struct ev_loop *
932ev_default_loop_init (unsigned int flags)
933#else 2620#else
934int 2621int
2622#endif
935ev_default_loop (unsigned int flags) 2623ev_default_loop (unsigned int flags)
936#endif
937{ 2624{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 2625 if (!ev_default_loop_ptr)
943 { 2626 {
944#if EV_MULTIPLICITY 2627#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2628 EV_P = ev_default_loop_ptr = &default_loop_struct;
946#else 2629#else
947 ev_default_loop_ptr = 1; 2630 ev_default_loop_ptr = 1;
948#endif 2631#endif
949 2632
950 loop_init (EV_A_ flags); 2633 loop_init (EV_A_ flags);
951 2634
952 if (ev_method (EV_A)) 2635 if (ev_backend (EV_A))
953 { 2636 {
954 siginit (EV_A); 2637#if EV_CHILD_ENABLE
955
956#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 2638 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 2639 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 2640 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2641 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#endif 2642#endif
966 2647
967 return ev_default_loop_ptr; 2648 return ev_default_loop_ptr;
968} 2649}
969 2650
970void 2651void
971ev_default_destroy (void) 2652ev_loop_fork (EV_P)
972{ 2653{
973#if EV_MULTIPLICITY 2654 postfork = 1; /* must be in line with ev_default_fork */
974 struct ev_loop *loop = ev_default_loop_ptr;
975#endif
976
977#ifndef _WIN32
978 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev);
980#endif
981
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A);
989} 2655}
2656
2657/*****************************************************************************/
990 2658
991void 2659void
992ev_default_fork (void) 2660ev_invoke (EV_P_ void *w, int revents)
993{ 2661{
994#if EV_MULTIPLICITY 2662 EV_CB_INVOKE ((W)w, revents);
995 struct ev_loop *loop = ev_default_loop_ptr;
996#endif
997
998 if (method)
999 postfork = 1;
1000} 2663}
1001 2664
1002/*****************************************************************************/ 2665unsigned int
1003 2666ev_pending_count (EV_P)
1004static int
1005any_pending (EV_P)
1006{ 2667{
1007 int pri; 2668 int pri;
2669 unsigned int count = 0;
1008 2670
1009 for (pri = NUMPRI; pri--; ) 2671 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri]) 2672 count += pendingcnt [pri];
1011 return 1;
1012 2673
1013 return 0; 2674 return count;
1014} 2675}
1015 2676
1016inline void 2677void noinline
1017call_pending (EV_P) 2678ev_invoke_pending (EV_P)
1018{ 2679{
1019 int pri; 2680 int pri;
1020 2681
1021 for (pri = NUMPRI; pri--; ) 2682 for (pri = NUMPRI; pri--; )
1022 while (pendingcnt [pri]) 2683 while (pendingcnt [pri])
1023 { 2684 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2685 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 2686
1026 if (expect_true (p->w))
1027 {
1028 p->w->pending = 0; 2687 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 2688 EV_CB_INVOKE (p->w, p->events);
1030 } 2689 EV_FREQUENT_CHECK;
1031 } 2690 }
1032} 2691}
1033 2692
2693#if EV_IDLE_ENABLE
2694/* make idle watchers pending. this handles the "call-idle */
2695/* only when higher priorities are idle" logic */
1034inline void 2696inline_size void
2697idle_reify (EV_P)
2698{
2699 if (expect_false (idleall))
2700 {
2701 int pri;
2702
2703 for (pri = NUMPRI; pri--; )
2704 {
2705 if (pendingcnt [pri])
2706 break;
2707
2708 if (idlecnt [pri])
2709 {
2710 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2711 break;
2712 }
2713 }
2714 }
2715}
2716#endif
2717
2718/* make timers pending */
2719inline_size void
1035timers_reify (EV_P) 2720timers_reify (EV_P)
1036{ 2721{
2722 EV_FREQUENT_CHECK;
2723
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 2724 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 2725 {
1039 struct ev_timer *w = timers [0]; 2726 do
1040
1041 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1042
1043 /* first reschedule or stop timer */
1044 if (w->repeat)
1045 { 2727 {
2728 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2729
2730 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2731
2732 /* first reschedule or stop timer */
2733 if (w->repeat)
2734 {
2735 ev_at (w) += w->repeat;
2736 if (ev_at (w) < mn_now)
2737 ev_at (w) = mn_now;
2738
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2739 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 2740
1048 ((WT)w)->at += w->repeat; 2741 ANHE_at_cache (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 2742 downheap (timers, timercnt, HEAP0);
2743 }
2744 else
2745 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2746
2747 EV_FREQUENT_CHECK;
2748 feed_reverse (EV_A_ (W)w);
1053 } 2749 }
1054 else 2750 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 2751
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2752 feed_reverse_done (EV_A_ EV_TIMER);
2753 }
2754}
2755
2756#if EV_PERIODIC_ENABLE
2757
2758static void noinline
2759periodic_recalc (EV_P_ ev_periodic *w)
2760{
2761 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2762 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2763
2764 /* the above almost always errs on the low side */
2765 while (at <= ev_rt_now)
1058 } 2766 {
1059} 2767 ev_tstamp nat = at + w->interval;
1060 2768
1061#if EV_PERIODICS 2769 /* when resolution fails us, we use ev_rt_now */
2770 if (expect_false (nat == at))
2771 {
2772 at = ev_rt_now;
2773 break;
2774 }
2775
2776 at = nat;
2777 }
2778
2779 ev_at (w) = at;
2780}
2781
2782/* make periodics pending */
1062inline void 2783inline_size void
1063periodics_reify (EV_P) 2784periodics_reify (EV_P)
1064{ 2785{
2786 EV_FREQUENT_CHECK;
2787
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2788 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 2789 {
1067 struct ev_periodic *w = periodics [0]; 2790 int feed_count = 0;
1068 2791
2792 do
2793 {
2794 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2795
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2796 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 2797
1071 /* first reschedule or stop timer */ 2798 /* first reschedule or stop timer */
2799 if (w->reschedule_cb)
2800 {
2801 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2802
2803 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2804
2805 ANHE_at_cache (periodics [HEAP0]);
2806 downheap (periodics, periodiccnt, HEAP0);
2807 }
2808 else if (w->interval)
2809 {
2810 periodic_recalc (EV_A_ w);
2811 ANHE_at_cache (periodics [HEAP0]);
2812 downheap (periodics, periodiccnt, HEAP0);
2813 }
2814 else
2815 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2816
2817 EV_FREQUENT_CHECK;
2818 feed_reverse (EV_A_ (W)w);
2819 }
2820 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2821
2822 feed_reverse_done (EV_A_ EV_PERIODIC);
2823 }
2824}
2825
2826/* simply recalculate all periodics */
2827/* TODO: maybe ensure that at least one event happens when jumping forward? */
2828static void noinline ecb_cold
2829periodics_reschedule (EV_P)
2830{
2831 int i;
2832
2833 /* adjust periodics after time jump */
2834 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2835 {
2836 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2837
1072 if (w->reschedule_cb) 2838 if (w->reschedule_cb)
2839 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2840 else if (w->interval)
2841 periodic_recalc (EV_A_ w);
2842
2843 ANHE_at_cache (periodics [i]);
2844 }
2845
2846 reheap (periodics, periodiccnt);
2847}
2848#endif
2849
2850/* adjust all timers by a given offset */
2851static void noinline ecb_cold
2852timers_reschedule (EV_P_ ev_tstamp adjust)
2853{
2854 int i;
2855
2856 for (i = 0; i < timercnt; ++i)
2857 {
2858 ANHE *he = timers + i + HEAP0;
2859 ANHE_w (*he)->at += adjust;
2860 ANHE_at_cache (*he);
2861 }
2862}
2863
2864/* fetch new monotonic and realtime times from the kernel */
2865/* also detect if there was a timejump, and act accordingly */
2866inline_speed void
2867time_update (EV_P_ ev_tstamp max_block)
2868{
2869#if EV_USE_MONOTONIC
2870 if (expect_true (have_monotonic))
2871 {
2872 int i;
2873 ev_tstamp odiff = rtmn_diff;
2874
2875 mn_now = get_clock ();
2876
2877 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2878 /* interpolate in the meantime */
2879 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1073 { 2880 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2881 ev_rt_now = rtmn_diff + mn_now;
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2882 return;
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 } 2883 }
1078 else if (w->interval)
1079 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1082 downheap ((WT *)periodics, periodiccnt, 0);
1083 }
1084 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 2884
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 }
1089}
1090
1091static void
1092periodics_reschedule (EV_P)
1093{
1094 int i;
1095
1096 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i)
1098 {
1099 struct ev_periodic *w = periodics [i];
1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock ();
1117
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 {
1120 ev_rt_now = rtmn_diff + mn_now;
1121 return 0;
1122 }
1123 else
1124 {
1125 now_floor = mn_now; 2885 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 2886 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 2887
1131inline void 2888 /* loop a few times, before making important decisions.
1132time_update (EV_P) 2889 * on the choice of "4": one iteration isn't enough,
1133{ 2890 * in case we get preempted during the calls to
1134 int i; 2891 * ev_time and get_clock. a second call is almost guaranteed
1135 2892 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 2893 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 2894 * in the unlikely event of having been preempted here.
1138 { 2895 */
1139 if (time_update_monotonic (EV_A)) 2896 for (i = 4; --i; )
1140 { 2897 {
1141 ev_tstamp odiff = rtmn_diff; 2898 ev_tstamp diff;
1142
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1144 {
1145 rtmn_diff = ev_rt_now - mn_now; 2899 rtmn_diff = ev_rt_now - mn_now;
1146 2900
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2901 diff = odiff - rtmn_diff;
2902
2903 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1148 return; /* all is well */ 2904 return; /* all is well */
1149 2905
1150 ev_rt_now = ev_time (); 2906 ev_rt_now = ev_time ();
1151 mn_now = get_clock (); 2907 mn_now = get_clock ();
1152 now_floor = mn_now; 2908 now_floor = mn_now;
1153 } 2909 }
1154 2910
2911 /* no timer adjustment, as the monotonic clock doesn't jump */
2912 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1155# if EV_PERIODICS 2913# if EV_PERIODIC_ENABLE
2914 periodics_reschedule (EV_A);
2915# endif
2916 }
2917 else
2918#endif
2919 {
2920 ev_rt_now = ev_time ();
2921
2922 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2923 {
2924 /* adjust timers. this is easy, as the offset is the same for all of them */
2925 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2926#if EV_PERIODIC_ENABLE
1156 periodics_reschedule (EV_A); 2927 periodics_reschedule (EV_A);
1157# endif 2928#endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 2929 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 2930
1178 mn_now = ev_rt_now; 2931 mn_now = ev_rt_now;
1179 } 2932 }
1180} 2933}
1181 2934
1182void 2935void
1183ev_ref (EV_P)
1184{
1185 ++activecnt;
1186}
1187
1188void
1189ev_unref (EV_P)
1190{
1191 --activecnt;
1192}
1193
1194static int loop_done;
1195
1196void
1197ev_loop (EV_P_ int flags) 2936ev_run (EV_P_ int flags)
1198{ 2937{
1199 double block; 2938#if EV_FEATURE_API
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2939 ++loop_depth;
2940#endif
1201 2941
1202 while (activecnt) 2942 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2943
2944 loop_done = EVBREAK_CANCEL;
2945
2946 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2947
2948 do
1203 { 2949 {
2950#if EV_VERIFY >= 2
2951 ev_verify (EV_A);
2952#endif
2953
2954#ifndef _WIN32
2955 if (expect_false (curpid)) /* penalise the forking check even more */
2956 if (expect_false (getpid () != curpid))
2957 {
2958 curpid = getpid ();
2959 postfork = 1;
2960 }
2961#endif
2962
2963#if EV_FORK_ENABLE
2964 /* we might have forked, so queue fork handlers */
2965 if (expect_false (postfork))
2966 if (forkcnt)
2967 {
2968 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2969 EV_INVOKE_PENDING;
2970 }
2971#endif
2972
2973#if EV_PREPARE_ENABLE
1204 /* queue check watchers (and execute them) */ 2974 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 2975 if (expect_false (preparecnt))
1206 { 2976 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2977 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 2978 EV_INVOKE_PENDING;
1209 } 2979 }
2980#endif
2981
2982 if (expect_false (loop_done))
2983 break;
1210 2984
1211 /* we might have forked, so reify kernel state if necessary */ 2985 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 2986 if (expect_false (postfork))
1213 loop_fork (EV_A); 2987 loop_fork (EV_A);
1214 2988
1215 /* update fd-related kernel structures */ 2989 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 2990 fd_reify (EV_A);
1217 2991
1218 /* calculate blocking time */ 2992 /* calculate blocking time */
2993 {
2994 ev_tstamp waittime = 0.;
2995 ev_tstamp sleeptime = 0.;
1219 2996
1220 /* we only need this for !monotonic clock or timers, but as we basically 2997 /* remember old timestamp for io_blocktime calculation */
1221 always have timers, we just calculate it always */ 2998 ev_tstamp prev_mn_now = mn_now;
1222#if EV_USE_MONOTONIC 2999
1223 if (expect_true (have_monotonic)) 3000 /* update time to cancel out callback processing overhead */
1224 time_update_monotonic (EV_A); 3001 time_update (EV_A_ 1e100);
1225 else 3002
1226#endif 3003 /* from now on, we want a pipe-wake-up */
3004 pipe_write_wanted = 1;
3005
3006 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3007
3008 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1227 { 3009 {
1228 ev_rt_now = ev_time ();
1229 mn_now = ev_rt_now;
1230 }
1231
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 3010 waittime = MAX_BLOCKTIME;
1237 3011
1238 if (timercnt) 3012 if (timercnt)
1239 { 3013 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3014 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1241 if (block > to) block = to; 3015 if (waittime > to) waittime = to;
1242 } 3016 }
1243 3017
1244#if EV_PERIODICS 3018#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 3019 if (periodiccnt)
1246 { 3020 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3021 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1248 if (block > to) block = to; 3022 if (waittime > to) waittime = to;
1249 } 3023 }
1250#endif 3024#endif
1251 3025
1252 if (expect_false (block < 0.)) block = 0.; 3026 /* don't let timeouts decrease the waittime below timeout_blocktime */
3027 if (expect_false (waittime < timeout_blocktime))
3028 waittime = timeout_blocktime;
3029
3030 /* at this point, we NEED to wait, so we have to ensure */
3031 /* to pass a minimum nonzero value to the backend */
3032 if (expect_false (waittime < backend_mintime))
3033 waittime = backend_mintime;
3034
3035 /* extra check because io_blocktime is commonly 0 */
3036 if (expect_false (io_blocktime))
3037 {
3038 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3039
3040 if (sleeptime > waittime - backend_mintime)
3041 sleeptime = waittime - backend_mintime;
3042
3043 if (expect_true (sleeptime > 0.))
3044 {
3045 ev_sleep (sleeptime);
3046 waittime -= sleeptime;
3047 }
3048 }
1253 } 3049 }
1254 3050
1255 method_poll (EV_A_ block); 3051#if EV_FEATURE_API
3052 ++loop_count;
3053#endif
3054 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3055 backend_poll (EV_A_ waittime);
3056 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1256 3057
3058 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3059
3060 if (pipe_write_skipped)
3061 {
3062 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3063 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3064 }
3065
3066
1257 /* update ev_rt_now, do magic */ 3067 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 3068 time_update (EV_A_ waittime + sleeptime);
3069 }
1259 3070
1260 /* queue pending timers and reschedule them */ 3071 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 3072 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 3073#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 3074 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 3075#endif
1265 3076
3077#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 3078 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 3079 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3080#endif
1269 3081
3082#if EV_CHECK_ENABLE
1270 /* queue check watchers, to be executed first */ 3083 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 3084 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3085 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3086#endif
1273 3087
1274 call_pending (EV_A); 3088 EV_INVOKE_PENDING;
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 3089 }
3090 while (expect_true (
3091 activecnt
3092 && !loop_done
3093 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3094 ));
1279 3095
1280 if (loop_done != 2) 3096 if (loop_done == EVBREAK_ONE)
1281 loop_done = 0; 3097 loop_done = EVBREAK_CANCEL;
3098
3099#if EV_FEATURE_API
3100 --loop_depth;
3101#endif
1282} 3102}
1283 3103
1284void 3104void
1285ev_unloop (EV_P_ int how) 3105ev_break (EV_P_ int how)
1286{ 3106{
1287 loop_done = how; 3107 loop_done = how;
1288} 3108}
1289 3109
3110void
3111ev_ref (EV_P)
3112{
3113 ++activecnt;
3114}
3115
3116void
3117ev_unref (EV_P)
3118{
3119 --activecnt;
3120}
3121
3122void
3123ev_now_update (EV_P)
3124{
3125 time_update (EV_A_ 1e100);
3126}
3127
3128void
3129ev_suspend (EV_P)
3130{
3131 ev_now_update (EV_A);
3132}
3133
3134void
3135ev_resume (EV_P)
3136{
3137 ev_tstamp mn_prev = mn_now;
3138
3139 ev_now_update (EV_A);
3140 timers_reschedule (EV_A_ mn_now - mn_prev);
3141#if EV_PERIODIC_ENABLE
3142 /* TODO: really do this? */
3143 periodics_reschedule (EV_A);
3144#endif
3145}
3146
1290/*****************************************************************************/ 3147/*****************************************************************************/
3148/* singly-linked list management, used when the expected list length is short */
1291 3149
1292inline void 3150inline_size void
1293wlist_add (WL *head, WL elem) 3151wlist_add (WL *head, WL elem)
1294{ 3152{
1295 elem->next = *head; 3153 elem->next = *head;
1296 *head = elem; 3154 *head = elem;
1297} 3155}
1298 3156
1299inline void 3157inline_size void
1300wlist_del (WL *head, WL elem) 3158wlist_del (WL *head, WL elem)
1301{ 3159{
1302 while (*head) 3160 while (*head)
1303 { 3161 {
1304 if (*head == elem) 3162 if (expect_true (*head == elem))
1305 { 3163 {
1306 *head = elem->next; 3164 *head = elem->next;
1307 return; 3165 break;
1308 } 3166 }
1309 3167
1310 head = &(*head)->next; 3168 head = &(*head)->next;
1311 } 3169 }
1312} 3170}
1313 3171
3172/* internal, faster, version of ev_clear_pending */
1314inline void 3173inline_speed void
1315ev_clear_pending (EV_P_ W w) 3174clear_pending (EV_P_ W w)
1316{ 3175{
1317 if (w->pending) 3176 if (w->pending)
1318 { 3177 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3178 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1320 w->pending = 0; 3179 w->pending = 0;
1321 } 3180 }
1322} 3181}
1323 3182
3183int
3184ev_clear_pending (EV_P_ void *w)
3185{
3186 W w_ = (W)w;
3187 int pending = w_->pending;
3188
3189 if (expect_true (pending))
3190 {
3191 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3192 p->w = (W)&pending_w;
3193 w_->pending = 0;
3194 return p->events;
3195 }
3196 else
3197 return 0;
3198}
3199
1324inline void 3200inline_size void
3201pri_adjust (EV_P_ W w)
3202{
3203 int pri = ev_priority (w);
3204 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3205 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3206 ev_set_priority (w, pri);
3207}
3208
3209inline_speed void
1325ev_start (EV_P_ W w, int active) 3210ev_start (EV_P_ W w, int active)
1326{ 3211{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3212 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 3213 w->active = active;
1331 ev_ref (EV_A); 3214 ev_ref (EV_A);
1332} 3215}
1333 3216
1334inline void 3217inline_size void
1335ev_stop (EV_P_ W w) 3218ev_stop (EV_P_ W w)
1336{ 3219{
1337 ev_unref (EV_A); 3220 ev_unref (EV_A);
1338 w->active = 0; 3221 w->active = 0;
1339} 3222}
1340 3223
1341/*****************************************************************************/ 3224/*****************************************************************************/
1342 3225
1343void 3226void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 3227ev_io_start (EV_P_ ev_io *w)
1345{ 3228{
1346 int fd = w->fd; 3229 int fd = w->fd;
1347 3230
1348 if (expect_false (ev_is_active (w))) 3231 if (expect_false (ev_is_active (w)))
1349 return; 3232 return;
1350 3233
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 3234 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3235 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3236
3237 EV_FREQUENT_CHECK;
1352 3238
1353 ev_start (EV_A_ (W)w, 1); 3239 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3240 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3241 wlist_add (&anfds[fd].head, (WL)w);
1356 3242
1357 fd_change (EV_A_ fd); 3243 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1358} 3244 w->events &= ~EV__IOFDSET;
1359 3245
1360void 3246 EV_FREQUENT_CHECK;
3247}
3248
3249void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 3250ev_io_stop (EV_P_ ev_io *w)
1362{ 3251{
1363 ev_clear_pending (EV_A_ (W)w); 3252 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 3253 if (expect_false (!ev_is_active (w)))
1365 return; 3254 return;
1366 3255
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3256 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 3257
3258 EV_FREQUENT_CHECK;
3259
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3260 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 3261 ev_stop (EV_A_ (W)w);
1371 3262
1372 fd_change (EV_A_ w->fd); 3263 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1373}
1374 3264
1375void 3265 EV_FREQUENT_CHECK;
3266}
3267
3268void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 3269ev_timer_start (EV_P_ ev_timer *w)
1377{ 3270{
1378 if (expect_false (ev_is_active (w))) 3271 if (expect_false (ev_is_active (w)))
1379 return; 3272 return;
1380 3273
1381 ((WT)w)->at += mn_now; 3274 ev_at (w) += mn_now;
1382 3275
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3276 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 3277
3278 EV_FREQUENT_CHECK;
3279
3280 ++timercnt;
1385 ev_start (EV_A_ (W)w, ++timercnt); 3281 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3282 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 3283 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 3284 ANHE_at_cache (timers [ev_active (w)]);
3285 upheap (timers, ev_active (w));
1389 3286
3287 EV_FREQUENT_CHECK;
3288
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3289 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 3290}
1392 3291
1393void 3292void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 3293ev_timer_stop (EV_P_ ev_timer *w)
1395{ 3294{
1396 ev_clear_pending (EV_A_ (W)w); 3295 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 3296 if (expect_false (!ev_is_active (w)))
1398 return; 3297 return;
1399 3298
3299 EV_FREQUENT_CHECK;
3300
3301 {
3302 int active = ev_active (w);
3303
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3304 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 3305
3306 --timercnt;
3307
1402 if (expect_true (((W)w)->active < timercnt--)) 3308 if (expect_true (active < timercnt + HEAP0))
1403 { 3309 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 3310 timers [active] = timers [timercnt + HEAP0];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3311 adjustheap (timers, timercnt, active);
1406 } 3312 }
3313 }
1407 3314
1408 ((WT)w)->at -= mn_now; 3315 ev_at (w) -= mn_now;
1409 3316
1410 ev_stop (EV_A_ (W)w); 3317 ev_stop (EV_A_ (W)w);
1411}
1412 3318
1413void 3319 EV_FREQUENT_CHECK;
3320}
3321
3322void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 3323ev_timer_again (EV_P_ ev_timer *w)
1415{ 3324{
3325 EV_FREQUENT_CHECK;
3326
3327 clear_pending (EV_A_ (W)w);
3328
1416 if (ev_is_active (w)) 3329 if (ev_is_active (w))
1417 { 3330 {
1418 if (w->repeat) 3331 if (w->repeat)
1419 { 3332 {
1420 ((WT)w)->at = mn_now + w->repeat; 3333 ev_at (w) = mn_now + w->repeat;
3334 ANHE_at_cache (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3335 adjustheap (timers, timercnt, ev_active (w));
1422 } 3336 }
1423 else 3337 else
1424 ev_timer_stop (EV_A_ w); 3338 ev_timer_stop (EV_A_ w);
1425 } 3339 }
1426 else if (w->repeat) 3340 else if (w->repeat)
1427 { 3341 {
1428 w->at = w->repeat; 3342 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 3343 ev_timer_start (EV_A_ w);
1430 } 3344 }
1431}
1432 3345
3346 EV_FREQUENT_CHECK;
3347}
3348
3349ev_tstamp
3350ev_timer_remaining (EV_P_ ev_timer *w)
3351{
3352 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3353}
3354
1433#if EV_PERIODICS 3355#if EV_PERIODIC_ENABLE
1434void 3356void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 3357ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 3358{
1437 if (expect_false (ev_is_active (w))) 3359 if (expect_false (ev_is_active (w)))
1438 return; 3360 return;
1439 3361
1440 if (w->reschedule_cb) 3362 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3363 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 3364 else if (w->interval)
1443 { 3365 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3366 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 3367 periodic_recalc (EV_A_ w);
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1447 } 3368 }
3369 else
3370 ev_at (w) = w->offset;
1448 3371
3372 EV_FREQUENT_CHECK;
3373
3374 ++periodiccnt;
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 3375 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3376 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 3377 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 3378 ANHE_at_cache (periodics [ev_active (w)]);
3379 upheap (periodics, ev_active (w));
1453 3380
3381 EV_FREQUENT_CHECK;
3382
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3383 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 3384}
1456 3385
1457void 3386void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 3387ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 3388{
1460 ev_clear_pending (EV_A_ (W)w); 3389 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 3390 if (expect_false (!ev_is_active (w)))
1462 return; 3391 return;
1463 3392
3393 EV_FREQUENT_CHECK;
3394
3395 {
3396 int active = ev_active (w);
3397
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3398 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 3399
3400 --periodiccnt;
3401
1466 if (expect_true (((W)w)->active < periodiccnt--)) 3402 if (expect_true (active < periodiccnt + HEAP0))
1467 { 3403 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3404 periodics [active] = periodics [periodiccnt + HEAP0];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3405 adjustheap (periodics, periodiccnt, active);
1470 } 3406 }
3407 }
1471 3408
1472 ev_stop (EV_A_ (W)w); 3409 ev_stop (EV_A_ (W)w);
1473}
1474 3410
1475void 3411 EV_FREQUENT_CHECK;
3412}
3413
3414void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 3415ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 3416{
1478 /* TODO: use adjustheap and recalculation */ 3417 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 3418 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 3419 ev_periodic_start (EV_A_ w);
1481} 3420}
1482#endif 3421#endif
1483 3422
1484void 3423#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 3424# define SA_RESTART 0
3425#endif
3426
3427#if EV_SIGNAL_ENABLE
3428
3429void noinline
3430ev_signal_start (EV_P_ ev_signal *w)
1486{ 3431{
1487 if (expect_false (ev_is_active (w))) 3432 if (expect_false (ev_is_active (w)))
1488 return; 3433 return;
1489 3434
3435 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3436
3437#if EV_MULTIPLICITY
3438 assert (("libev: a signal must not be attached to two different loops",
3439 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3440
3441 signals [w->signum - 1].loop = EV_A;
3442#endif
3443
3444 EV_FREQUENT_CHECK;
3445
3446#if EV_USE_SIGNALFD
3447 if (sigfd == -2)
3448 {
3449 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3450 if (sigfd < 0 && errno == EINVAL)
3451 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3452
3453 if (sigfd >= 0)
3454 {
3455 fd_intern (sigfd); /* doing it twice will not hurt */
3456
3457 sigemptyset (&sigfd_set);
3458
3459 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3460 ev_set_priority (&sigfd_w, EV_MAXPRI);
3461 ev_io_start (EV_A_ &sigfd_w);
3462 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3463 }
3464 }
3465
3466 if (sigfd >= 0)
3467 {
3468 /* TODO: check .head */
3469 sigaddset (&sigfd_set, w->signum);
3470 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3471
3472 signalfd (sigfd, &sigfd_set, 0);
3473 }
3474#endif
3475
1490 ev_start (EV_A_ (W)w, ++idlecnt); 3476 ev_start (EV_A_ (W)w, 1);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3477 wlist_add (&signals [w->signum - 1].head, (WL)w);
1492 idles [idlecnt - 1] = w;
1493}
1494 3478
1495void 3479 if (!((WL)w)->next)
1496ev_idle_stop (EV_P_ struct ev_idle *w) 3480# if EV_USE_SIGNALFD
3481 if (sigfd < 0) /*TODO*/
3482# endif
3483 {
3484# ifdef _WIN32
3485 evpipe_init (EV_A);
3486
3487 signal (w->signum, ev_sighandler);
3488# else
3489 struct sigaction sa;
3490
3491 evpipe_init (EV_A);
3492
3493 sa.sa_handler = ev_sighandler;
3494 sigfillset (&sa.sa_mask);
3495 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3496 sigaction (w->signum, &sa, 0);
3497
3498 if (origflags & EVFLAG_NOSIGMASK)
3499 {
3500 sigemptyset (&sa.sa_mask);
3501 sigaddset (&sa.sa_mask, w->signum);
3502 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3503 }
3504#endif
3505 }
3506
3507 EV_FREQUENT_CHECK;
3508}
3509
3510void noinline
3511ev_signal_stop (EV_P_ ev_signal *w)
1497{ 3512{
1498 ev_clear_pending (EV_A_ (W)w); 3513 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 3514 if (expect_false (!ev_is_active (w)))
1500 return; 3515 return;
1501 3516
1502 idles [((W)w)->active - 1] = idles [--idlecnt]; 3517 EV_FREQUENT_CHECK;
3518
3519 wlist_del (&signals [w->signum - 1].head, (WL)w);
1503 ev_stop (EV_A_ (W)w); 3520 ev_stop (EV_A_ (W)w);
3521
3522 if (!signals [w->signum - 1].head)
3523 {
3524#if EV_MULTIPLICITY
3525 signals [w->signum - 1].loop = 0; /* unattach from signal */
3526#endif
3527#if EV_USE_SIGNALFD
3528 if (sigfd >= 0)
3529 {
3530 sigset_t ss;
3531
3532 sigemptyset (&ss);
3533 sigaddset (&ss, w->signum);
3534 sigdelset (&sigfd_set, w->signum);
3535
3536 signalfd (sigfd, &sigfd_set, 0);
3537 sigprocmask (SIG_UNBLOCK, &ss, 0);
3538 }
3539 else
3540#endif
3541 signal (w->signum, SIG_DFL);
3542 }
3543
3544 EV_FREQUENT_CHECK;
1504} 3545}
3546
3547#endif
3548
3549#if EV_CHILD_ENABLE
1505 3550
1506void 3551void
1507ev_prepare_start (EV_P_ struct ev_prepare *w) 3552ev_child_start (EV_P_ ev_child *w)
1508{ 3553{
3554#if EV_MULTIPLICITY
3555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3556#endif
1509 if (expect_false (ev_is_active (w))) 3557 if (expect_false (ev_is_active (w)))
1510 return; 3558 return;
1511 3559
3560 EV_FREQUENT_CHECK;
3561
1512 ev_start (EV_A_ (W)w, ++preparecnt); 3562 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3563 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1514 prepares [preparecnt - 1] = w; 3564
3565 EV_FREQUENT_CHECK;
1515} 3566}
1516 3567
1517void 3568void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w) 3569ev_child_stop (EV_P_ ev_child *w)
1519{ 3570{
1520 ev_clear_pending (EV_A_ (W)w); 3571 clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w))) 3572 if (expect_false (!ev_is_active (w)))
1522 return; 3573 return;
1523 3574
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3575 EV_FREQUENT_CHECK;
3576
3577 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1525 ev_stop (EV_A_ (W)w); 3578 ev_stop (EV_A_ (W)w);
3579
3580 EV_FREQUENT_CHECK;
1526} 3581}
3582
3583#endif
3584
3585#if EV_STAT_ENABLE
3586
3587# ifdef _WIN32
3588# undef lstat
3589# define lstat(a,b) _stati64 (a,b)
3590# endif
3591
3592#define DEF_STAT_INTERVAL 5.0074891
3593#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3594#define MIN_STAT_INTERVAL 0.1074891
3595
3596static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3597
3598#if EV_USE_INOTIFY
3599
3600/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3601# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3602
3603static void noinline
3604infy_add (EV_P_ ev_stat *w)
3605{
3606 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3607
3608 if (w->wd >= 0)
3609 {
3610 struct statfs sfs;
3611
3612 /* now local changes will be tracked by inotify, but remote changes won't */
3613 /* unless the filesystem is known to be local, we therefore still poll */
3614 /* also do poll on <2.6.25, but with normal frequency */
3615
3616 if (!fs_2625)
3617 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3618 else if (!statfs (w->path, &sfs)
3619 && (sfs.f_type == 0x1373 /* devfs */
3620 || sfs.f_type == 0xEF53 /* ext2/3 */
3621 || sfs.f_type == 0x3153464a /* jfs */
3622 || sfs.f_type == 0x52654973 /* reiser3 */
3623 || sfs.f_type == 0x01021994 /* tempfs */
3624 || sfs.f_type == 0x58465342 /* xfs */))
3625 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3626 else
3627 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3628 }
3629 else
3630 {
3631 /* can't use inotify, continue to stat */
3632 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3633
3634 /* if path is not there, monitor some parent directory for speedup hints */
3635 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3636 /* but an efficiency issue only */
3637 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3638 {
3639 char path [4096];
3640 strcpy (path, w->path);
3641
3642 do
3643 {
3644 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3645 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3646
3647 char *pend = strrchr (path, '/');
3648
3649 if (!pend || pend == path)
3650 break;
3651
3652 *pend = 0;
3653 w->wd = inotify_add_watch (fs_fd, path, mask);
3654 }
3655 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3656 }
3657 }
3658
3659 if (w->wd >= 0)
3660 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3661
3662 /* now re-arm timer, if required */
3663 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3664 ev_timer_again (EV_A_ &w->timer);
3665 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3666}
3667
3668static void noinline
3669infy_del (EV_P_ ev_stat *w)
3670{
3671 int slot;
3672 int wd = w->wd;
3673
3674 if (wd < 0)
3675 return;
3676
3677 w->wd = -2;
3678 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3679 wlist_del (&fs_hash [slot].head, (WL)w);
3680
3681 /* remove this watcher, if others are watching it, they will rearm */
3682 inotify_rm_watch (fs_fd, wd);
3683}
3684
3685static void noinline
3686infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3687{
3688 if (slot < 0)
3689 /* overflow, need to check for all hash slots */
3690 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3691 infy_wd (EV_A_ slot, wd, ev);
3692 else
3693 {
3694 WL w_;
3695
3696 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3697 {
3698 ev_stat *w = (ev_stat *)w_;
3699 w_ = w_->next; /* lets us remove this watcher and all before it */
3700
3701 if (w->wd == wd || wd == -1)
3702 {
3703 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3704 {
3705 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3706 w->wd = -1;
3707 infy_add (EV_A_ w); /* re-add, no matter what */
3708 }
3709
3710 stat_timer_cb (EV_A_ &w->timer, 0);
3711 }
3712 }
3713 }
3714}
3715
3716static void
3717infy_cb (EV_P_ ev_io *w, int revents)
3718{
3719 char buf [EV_INOTIFY_BUFSIZE];
3720 int ofs;
3721 int len = read (fs_fd, buf, sizeof (buf));
3722
3723 for (ofs = 0; ofs < len; )
3724 {
3725 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3726 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3727 ofs += sizeof (struct inotify_event) + ev->len;
3728 }
3729}
3730
3731inline_size void ecb_cold
3732ev_check_2625 (EV_P)
3733{
3734 /* kernels < 2.6.25 are borked
3735 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3736 */
3737 if (ev_linux_version () < 0x020619)
3738 return;
3739
3740 fs_2625 = 1;
3741}
3742
3743inline_size int
3744infy_newfd (void)
3745{
3746#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3747 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3748 if (fd >= 0)
3749 return fd;
3750#endif
3751 return inotify_init ();
3752}
3753
3754inline_size void
3755infy_init (EV_P)
3756{
3757 if (fs_fd != -2)
3758 return;
3759
3760 fs_fd = -1;
3761
3762 ev_check_2625 (EV_A);
3763
3764 fs_fd = infy_newfd ();
3765
3766 if (fs_fd >= 0)
3767 {
3768 fd_intern (fs_fd);
3769 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3770 ev_set_priority (&fs_w, EV_MAXPRI);
3771 ev_io_start (EV_A_ &fs_w);
3772 ev_unref (EV_A);
3773 }
3774}
3775
3776inline_size void
3777infy_fork (EV_P)
3778{
3779 int slot;
3780
3781 if (fs_fd < 0)
3782 return;
3783
3784 ev_ref (EV_A);
3785 ev_io_stop (EV_A_ &fs_w);
3786 close (fs_fd);
3787 fs_fd = infy_newfd ();
3788
3789 if (fs_fd >= 0)
3790 {
3791 fd_intern (fs_fd);
3792 ev_io_set (&fs_w, fs_fd, EV_READ);
3793 ev_io_start (EV_A_ &fs_w);
3794 ev_unref (EV_A);
3795 }
3796
3797 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3798 {
3799 WL w_ = fs_hash [slot].head;
3800 fs_hash [slot].head = 0;
3801
3802 while (w_)
3803 {
3804 ev_stat *w = (ev_stat *)w_;
3805 w_ = w_->next; /* lets us add this watcher */
3806
3807 w->wd = -1;
3808
3809 if (fs_fd >= 0)
3810 infy_add (EV_A_ w); /* re-add, no matter what */
3811 else
3812 {
3813 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3814 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3815 ev_timer_again (EV_A_ &w->timer);
3816 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3817 }
3818 }
3819 }
3820}
3821
3822#endif
3823
3824#ifdef _WIN32
3825# define EV_LSTAT(p,b) _stati64 (p, b)
3826#else
3827# define EV_LSTAT(p,b) lstat (p, b)
3828#endif
1527 3829
1528void 3830void
1529ev_check_start (EV_P_ struct ev_check *w) 3831ev_stat_stat (EV_P_ ev_stat *w)
3832{
3833 if (lstat (w->path, &w->attr) < 0)
3834 w->attr.st_nlink = 0;
3835 else if (!w->attr.st_nlink)
3836 w->attr.st_nlink = 1;
3837}
3838
3839static void noinline
3840stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3841{
3842 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3843
3844 ev_statdata prev = w->attr;
3845 ev_stat_stat (EV_A_ w);
3846
3847 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3848 if (
3849 prev.st_dev != w->attr.st_dev
3850 || prev.st_ino != w->attr.st_ino
3851 || prev.st_mode != w->attr.st_mode
3852 || prev.st_nlink != w->attr.st_nlink
3853 || prev.st_uid != w->attr.st_uid
3854 || prev.st_gid != w->attr.st_gid
3855 || prev.st_rdev != w->attr.st_rdev
3856 || prev.st_size != w->attr.st_size
3857 || prev.st_atime != w->attr.st_atime
3858 || prev.st_mtime != w->attr.st_mtime
3859 || prev.st_ctime != w->attr.st_ctime
3860 ) {
3861 /* we only update w->prev on actual differences */
3862 /* in case we test more often than invoke the callback, */
3863 /* to ensure that prev is always different to attr */
3864 w->prev = prev;
3865
3866 #if EV_USE_INOTIFY
3867 if (fs_fd >= 0)
3868 {
3869 infy_del (EV_A_ w);
3870 infy_add (EV_A_ w);
3871 ev_stat_stat (EV_A_ w); /* avoid race... */
3872 }
3873 #endif
3874
3875 ev_feed_event (EV_A_ w, EV_STAT);
3876 }
3877}
3878
3879void
3880ev_stat_start (EV_P_ ev_stat *w)
1530{ 3881{
1531 if (expect_false (ev_is_active (w))) 3882 if (expect_false (ev_is_active (w)))
1532 return; 3883 return;
1533 3884
3885 ev_stat_stat (EV_A_ w);
3886
3887 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3888 w->interval = MIN_STAT_INTERVAL;
3889
3890 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3891 ev_set_priority (&w->timer, ev_priority (w));
3892
3893#if EV_USE_INOTIFY
3894 infy_init (EV_A);
3895
3896 if (fs_fd >= 0)
3897 infy_add (EV_A_ w);
3898 else
3899#endif
3900 {
3901 ev_timer_again (EV_A_ &w->timer);
3902 ev_unref (EV_A);
3903 }
3904
1534 ev_start (EV_A_ (W)w, ++checkcnt); 3905 ev_start (EV_A_ (W)w, 1);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3906
1536 checks [checkcnt - 1] = w; 3907 EV_FREQUENT_CHECK;
1537} 3908}
1538 3909
1539void 3910void
1540ev_check_stop (EV_P_ struct ev_check *w) 3911ev_stat_stop (EV_P_ ev_stat *w)
1541{ 3912{
1542 ev_clear_pending (EV_A_ (W)w); 3913 clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w))) 3914 if (expect_false (!ev_is_active (w)))
1544 return; 3915 return;
1545 3916
1546 checks [((W)w)->active - 1] = checks [--checkcnt]; 3917 EV_FREQUENT_CHECK;
3918
3919#if EV_USE_INOTIFY
3920 infy_del (EV_A_ w);
3921#endif
3922
3923 if (ev_is_active (&w->timer))
3924 {
3925 ev_ref (EV_A);
3926 ev_timer_stop (EV_A_ &w->timer);
3927 }
3928
1547 ev_stop (EV_A_ (W)w); 3929 ev_stop (EV_A_ (W)w);
1548}
1549 3930
1550#ifndef SA_RESTART 3931 EV_FREQUENT_CHECK;
1551# define SA_RESTART 0 3932}
1552#endif 3933#endif
1553 3934
3935#if EV_IDLE_ENABLE
1554void 3936void
1555ev_signal_start (EV_P_ struct ev_signal *w) 3937ev_idle_start (EV_P_ ev_idle *w)
1556{ 3938{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w))) 3939 if (expect_false (ev_is_active (w)))
1561 return; 3940 return;
1562 3941
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3942 pri_adjust (EV_A_ (W)w);
1564 3943
3944 EV_FREQUENT_CHECK;
3945
3946 {
3947 int active = ++idlecnt [ABSPRI (w)];
3948
3949 ++idleall;
1565 ev_start (EV_A_ (W)w, 1); 3950 ev_start (EV_A_ (W)w, active);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1568 3951
1569 if (!((WL)w)->next) 3952 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1570 { 3953 idles [ABSPRI (w)][active - 1] = w;
1571#if _WIN32
1572 signal (w->signum, sighandler);
1573#else
1574 struct sigaction sa;
1575 sa.sa_handler = sighandler;
1576 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0);
1579#endif
1580 } 3954 }
3955
3956 EV_FREQUENT_CHECK;
1581} 3957}
1582 3958
1583void 3959void
1584ev_signal_stop (EV_P_ struct ev_signal *w) 3960ev_idle_stop (EV_P_ ev_idle *w)
1585{ 3961{
1586 ev_clear_pending (EV_A_ (W)w); 3962 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 3963 if (expect_false (!ev_is_active (w)))
1588 return; 3964 return;
1589 3965
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3966 EV_FREQUENT_CHECK;
3967
3968 {
3969 int active = ev_active (w);
3970
3971 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3972 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3973
1591 ev_stop (EV_A_ (W)w); 3974 ev_stop (EV_A_ (W)w);
3975 --idleall;
3976 }
1592 3977
1593 if (!signals [w->signum - 1].head) 3978 EV_FREQUENT_CHECK;
1594 signal (w->signum, SIG_DFL);
1595} 3979}
3980#endif
1596 3981
3982#if EV_PREPARE_ENABLE
1597void 3983void
1598ev_child_start (EV_P_ struct ev_child *w) 3984ev_prepare_start (EV_P_ ev_prepare *w)
1599{ 3985{
1600#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif
1603 if (expect_false (ev_is_active (w))) 3986 if (expect_false (ev_is_active (w)))
1604 return; 3987 return;
1605 3988
3989 EV_FREQUENT_CHECK;
3990
1606 ev_start (EV_A_ (W)w, 1); 3991 ev_start (EV_A_ (W)w, ++preparecnt);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3992 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3993 prepares [preparecnt - 1] = w;
3994
3995 EV_FREQUENT_CHECK;
1608} 3996}
1609 3997
1610void 3998void
1611ev_child_stop (EV_P_ struct ev_child *w) 3999ev_prepare_stop (EV_P_ ev_prepare *w)
1612{ 4000{
1613 ev_clear_pending (EV_A_ (W)w); 4001 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 4002 if (expect_false (!ev_is_active (w)))
1615 return; 4003 return;
1616 4004
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4005 EV_FREQUENT_CHECK;
4006
4007 {
4008 int active = ev_active (w);
4009
4010 prepares [active - 1] = prepares [--preparecnt];
4011 ev_active (prepares [active - 1]) = active;
4012 }
4013
1618 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
1619} 4017}
4018#endif
4019
4020#if EV_CHECK_ENABLE
4021void
4022ev_check_start (EV_P_ ev_check *w)
4023{
4024 if (expect_false (ev_is_active (w)))
4025 return;
4026
4027 EV_FREQUENT_CHECK;
4028
4029 ev_start (EV_A_ (W)w, ++checkcnt);
4030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4031 checks [checkcnt - 1] = w;
4032
4033 EV_FREQUENT_CHECK;
4034}
4035
4036void
4037ev_check_stop (EV_P_ ev_check *w)
4038{
4039 clear_pending (EV_A_ (W)w);
4040 if (expect_false (!ev_is_active (w)))
4041 return;
4042
4043 EV_FREQUENT_CHECK;
4044
4045 {
4046 int active = ev_active (w);
4047
4048 checks [active - 1] = checks [--checkcnt];
4049 ev_active (checks [active - 1]) = active;
4050 }
4051
4052 ev_stop (EV_A_ (W)w);
4053
4054 EV_FREQUENT_CHECK;
4055}
4056#endif
4057
4058#if EV_EMBED_ENABLE
4059void noinline
4060ev_embed_sweep (EV_P_ ev_embed *w)
4061{
4062 ev_run (w->other, EVRUN_NOWAIT);
4063}
4064
4065static void
4066embed_io_cb (EV_P_ ev_io *io, int revents)
4067{
4068 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4069
4070 if (ev_cb (w))
4071 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4072 else
4073 ev_run (w->other, EVRUN_NOWAIT);
4074}
4075
4076static void
4077embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4078{
4079 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4080
4081 {
4082 EV_P = w->other;
4083
4084 while (fdchangecnt)
4085 {
4086 fd_reify (EV_A);
4087 ev_run (EV_A_ EVRUN_NOWAIT);
4088 }
4089 }
4090}
4091
4092static void
4093embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4094{
4095 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4096
4097 ev_embed_stop (EV_A_ w);
4098
4099 {
4100 EV_P = w->other;
4101
4102 ev_loop_fork (EV_A);
4103 ev_run (EV_A_ EVRUN_NOWAIT);
4104 }
4105
4106 ev_embed_start (EV_A_ w);
4107}
4108
4109#if 0
4110static void
4111embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4112{
4113 ev_idle_stop (EV_A_ idle);
4114}
4115#endif
4116
4117void
4118ev_embed_start (EV_P_ ev_embed *w)
4119{
4120 if (expect_false (ev_is_active (w)))
4121 return;
4122
4123 {
4124 EV_P = w->other;
4125 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4126 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4127 }
4128
4129 EV_FREQUENT_CHECK;
4130
4131 ev_set_priority (&w->io, ev_priority (w));
4132 ev_io_start (EV_A_ &w->io);
4133
4134 ev_prepare_init (&w->prepare, embed_prepare_cb);
4135 ev_set_priority (&w->prepare, EV_MINPRI);
4136 ev_prepare_start (EV_A_ &w->prepare);
4137
4138 ev_fork_init (&w->fork, embed_fork_cb);
4139 ev_fork_start (EV_A_ &w->fork);
4140
4141 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4142
4143 ev_start (EV_A_ (W)w, 1);
4144
4145 EV_FREQUENT_CHECK;
4146}
4147
4148void
4149ev_embed_stop (EV_P_ ev_embed *w)
4150{
4151 clear_pending (EV_A_ (W)w);
4152 if (expect_false (!ev_is_active (w)))
4153 return;
4154
4155 EV_FREQUENT_CHECK;
4156
4157 ev_io_stop (EV_A_ &w->io);
4158 ev_prepare_stop (EV_A_ &w->prepare);
4159 ev_fork_stop (EV_A_ &w->fork);
4160
4161 ev_stop (EV_A_ (W)w);
4162
4163 EV_FREQUENT_CHECK;
4164}
4165#endif
4166
4167#if EV_FORK_ENABLE
4168void
4169ev_fork_start (EV_P_ ev_fork *w)
4170{
4171 if (expect_false (ev_is_active (w)))
4172 return;
4173
4174 EV_FREQUENT_CHECK;
4175
4176 ev_start (EV_A_ (W)w, ++forkcnt);
4177 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4178 forks [forkcnt - 1] = w;
4179
4180 EV_FREQUENT_CHECK;
4181}
4182
4183void
4184ev_fork_stop (EV_P_ ev_fork *w)
4185{
4186 clear_pending (EV_A_ (W)w);
4187 if (expect_false (!ev_is_active (w)))
4188 return;
4189
4190 EV_FREQUENT_CHECK;
4191
4192 {
4193 int active = ev_active (w);
4194
4195 forks [active - 1] = forks [--forkcnt];
4196 ev_active (forks [active - 1]) = active;
4197 }
4198
4199 ev_stop (EV_A_ (W)w);
4200
4201 EV_FREQUENT_CHECK;
4202}
4203#endif
4204
4205#if EV_CLEANUP_ENABLE
4206void
4207ev_cleanup_start (EV_P_ ev_cleanup *w)
4208{
4209 if (expect_false (ev_is_active (w)))
4210 return;
4211
4212 EV_FREQUENT_CHECK;
4213
4214 ev_start (EV_A_ (W)w, ++cleanupcnt);
4215 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4216 cleanups [cleanupcnt - 1] = w;
4217
4218 /* cleanup watchers should never keep a refcount on the loop */
4219 ev_unref (EV_A);
4220 EV_FREQUENT_CHECK;
4221}
4222
4223void
4224ev_cleanup_stop (EV_P_ ev_cleanup *w)
4225{
4226 clear_pending (EV_A_ (W)w);
4227 if (expect_false (!ev_is_active (w)))
4228 return;
4229
4230 EV_FREQUENT_CHECK;
4231 ev_ref (EV_A);
4232
4233 {
4234 int active = ev_active (w);
4235
4236 cleanups [active - 1] = cleanups [--cleanupcnt];
4237 ev_active (cleanups [active - 1]) = active;
4238 }
4239
4240 ev_stop (EV_A_ (W)w);
4241
4242 EV_FREQUENT_CHECK;
4243}
4244#endif
4245
4246#if EV_ASYNC_ENABLE
4247void
4248ev_async_start (EV_P_ ev_async *w)
4249{
4250 if (expect_false (ev_is_active (w)))
4251 return;
4252
4253 w->sent = 0;
4254
4255 evpipe_init (EV_A);
4256
4257 EV_FREQUENT_CHECK;
4258
4259 ev_start (EV_A_ (W)w, ++asynccnt);
4260 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4261 asyncs [asynccnt - 1] = w;
4262
4263 EV_FREQUENT_CHECK;
4264}
4265
4266void
4267ev_async_stop (EV_P_ ev_async *w)
4268{
4269 clear_pending (EV_A_ (W)w);
4270 if (expect_false (!ev_is_active (w)))
4271 return;
4272
4273 EV_FREQUENT_CHECK;
4274
4275 {
4276 int active = ev_active (w);
4277
4278 asyncs [active - 1] = asyncs [--asynccnt];
4279 ev_active (asyncs [active - 1]) = active;
4280 }
4281
4282 ev_stop (EV_A_ (W)w);
4283
4284 EV_FREQUENT_CHECK;
4285}
4286
4287void
4288ev_async_send (EV_P_ ev_async *w)
4289{
4290 w->sent = 1;
4291 evpipe_write (EV_A_ &async_pending);
4292}
4293#endif
1620 4294
1621/*****************************************************************************/ 4295/*****************************************************************************/
1622 4296
1623struct ev_once 4297struct ev_once
1624{ 4298{
1625 struct ev_io io; 4299 ev_io io;
1626 struct ev_timer to; 4300 ev_timer to;
1627 void (*cb)(int revents, void *arg); 4301 void (*cb)(int revents, void *arg);
1628 void *arg; 4302 void *arg;
1629}; 4303};
1630 4304
1631static void 4305static void
1632once_cb (EV_P_ struct ev_once *once, int revents) 4306once_cb (EV_P_ struct ev_once *once, int revents)
1633{ 4307{
1634 void (*cb)(int revents, void *arg) = once->cb; 4308 void (*cb)(int revents, void *arg) = once->cb;
1635 void *arg = once->arg; 4309 void *arg = once->arg;
1636 4310
1637 ev_io_stop (EV_A_ &once->io); 4311 ev_io_stop (EV_A_ &once->io);
1638 ev_timer_stop (EV_A_ &once->to); 4312 ev_timer_stop (EV_A_ &once->to);
1639 ev_free (once); 4313 ev_free (once);
1640 4314
1641 cb (revents, arg); 4315 cb (revents, arg);
1642} 4316}
1643 4317
1644static void 4318static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 4319once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 4320{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4321 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4322
4323 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1648} 4324}
1649 4325
1650static void 4326static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 4327once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 4328{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4329 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4330
4331 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1654} 4332}
1655 4333
1656void 4334void
1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4335ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1658{ 4336{
1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4337 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1660 4338
1661 if (expect_false (!once)) 4339 if (expect_false (!once))
1662 { 4340 {
1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1664 return; 4342 return;
1665 } 4343 }
1666 4344
1667 once->cb = cb; 4345 once->cb = cb;
1668 once->arg = arg; 4346 once->arg = arg;
1680 ev_timer_set (&once->to, timeout, 0.); 4358 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 4359 ev_timer_start (EV_A_ &once->to);
1682 } 4360 }
1683} 4361}
1684 4362
1685#ifdef __cplusplus 4363/*****************************************************************************/
1686} 4364
4365#if EV_WALK_ENABLE
4366void ecb_cold
4367ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4368{
4369 int i, j;
4370 ev_watcher_list *wl, *wn;
4371
4372 if (types & (EV_IO | EV_EMBED))
4373 for (i = 0; i < anfdmax; ++i)
4374 for (wl = anfds [i].head; wl; )
4375 {
4376 wn = wl->next;
4377
4378#if EV_EMBED_ENABLE
4379 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4380 {
4381 if (types & EV_EMBED)
4382 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4383 }
4384 else
4385#endif
4386#if EV_USE_INOTIFY
4387 if (ev_cb ((ev_io *)wl) == infy_cb)
4388 ;
4389 else
4390#endif
4391 if ((ev_io *)wl != &pipe_w)
4392 if (types & EV_IO)
4393 cb (EV_A_ EV_IO, wl);
4394
4395 wl = wn;
4396 }
4397
4398 if (types & (EV_TIMER | EV_STAT))
4399 for (i = timercnt + HEAP0; i-- > HEAP0; )
4400#if EV_STAT_ENABLE
4401 /*TODO: timer is not always active*/
4402 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4403 {
4404 if (types & EV_STAT)
4405 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4406 }
4407 else
4408#endif
4409 if (types & EV_TIMER)
4410 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4411
4412#if EV_PERIODIC_ENABLE
4413 if (types & EV_PERIODIC)
4414 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4415 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4416#endif
4417
4418#if EV_IDLE_ENABLE
4419 if (types & EV_IDLE)
4420 for (j = NUMPRI; j--; )
4421 for (i = idlecnt [j]; i--; )
4422 cb (EV_A_ EV_IDLE, idles [j][i]);
4423#endif
4424
4425#if EV_FORK_ENABLE
4426 if (types & EV_FORK)
4427 for (i = forkcnt; i--; )
4428 if (ev_cb (forks [i]) != embed_fork_cb)
4429 cb (EV_A_ EV_FORK, forks [i]);
4430#endif
4431
4432#if EV_ASYNC_ENABLE
4433 if (types & EV_ASYNC)
4434 for (i = asynccnt; i--; )
4435 cb (EV_A_ EV_ASYNC, asyncs [i]);
4436#endif
4437
4438#if EV_PREPARE_ENABLE
4439 if (types & EV_PREPARE)
4440 for (i = preparecnt; i--; )
4441# if EV_EMBED_ENABLE
4442 if (ev_cb (prepares [i]) != embed_prepare_cb)
1687#endif 4443# endif
4444 cb (EV_A_ EV_PREPARE, prepares [i]);
4445#endif
1688 4446
4447#if EV_CHECK_ENABLE
4448 if (types & EV_CHECK)
4449 for (i = checkcnt; i--; )
4450 cb (EV_A_ EV_CHECK, checks [i]);
4451#endif
4452
4453#if EV_SIGNAL_ENABLE
4454 if (types & EV_SIGNAL)
4455 for (i = 0; i < EV_NSIG - 1; ++i)
4456 for (wl = signals [i].head; wl; )
4457 {
4458 wn = wl->next;
4459 cb (EV_A_ EV_SIGNAL, wl);
4460 wl = wn;
4461 }
4462#endif
4463
4464#if EV_CHILD_ENABLE
4465 if (types & EV_CHILD)
4466 for (i = (EV_PID_HASHSIZE); i--; )
4467 for (wl = childs [i]; wl; )
4468 {
4469 wn = wl->next;
4470 cb (EV_A_ EV_CHILD, wl);
4471 wl = wn;
4472 }
4473#endif
4474/* EV_STAT 0x00001000 /* stat data changed */
4475/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4476}
4477#endif
4478
4479#if EV_MULTIPLICITY
4480 #include "ev_wrap.h"
4481#endif
4482

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines