ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC vs.
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
46# else
47# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0
49# endif
50# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0
52# endif
37# endif 53# endif
38 54
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 56# define EV_USE_SELECT 1
57# else
58# define EV_USE_SELECT 0
41# endif 59# endif
42 60
43# if HAVE_POLL && HAVE_POLL_H 61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 62# define EV_USE_POLL 1
63# else
64# define EV_USE_POLL 0
45# endif 65# endif
46 66
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 68# define EV_USE_EPOLL 1
69# else
70# define EV_USE_EPOLL 0
49# endif 71# endif
50 72
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 74# define EV_USE_KQUEUE 1
75# else
76# define EV_USE_KQUEUE 0
77# endif
78
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT)
80# define EV_USE_PORT 1
81# else
82# define EV_USE_PORT 0
53# endif 83# endif
54 84
55#endif 85#endif
56 86
57#include <math.h> 87#include <math.h>
58#include <stdlib.h> 88#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 89#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 90#include <stddef.h>
63 91
64#include <stdio.h> 92#include <stdio.h>
65 93
66#include <assert.h> 94#include <assert.h>
67#include <errno.h> 95#include <errno.h>
68#include <sys/types.h> 96#include <sys/types.h>
97#include <time.h>
98
99#include <signal.h>
100
69#ifndef WIN32 101#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h>
70# include <sys/wait.h> 104# include <sys/wait.h>
105#else
106# define WIN32_LEAN_AND_MEAN
107# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1
71#endif 110# endif
72#include <sys/time.h> 111#endif
73#include <time.h>
74 112
75/**/ 113/**/
76 114
77#ifndef EV_USE_MONOTONIC 115#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0
79#endif 121#endif
80 122
81#ifndef EV_USE_SELECT 123#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 124# define EV_USE_SELECT 1
83#endif 125#endif
84 126
85#ifndef EV_USE_POLL 127#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 128# ifdef _WIN32
129# define EV_USE_POLL 0
130# else
131# define EV_USE_POLL 1
132# endif
87#endif 133#endif
88 134
89#ifndef EV_USE_EPOLL 135#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 136# define EV_USE_EPOLL 0
91#endif 137#endif
92 138
93#ifndef EV_USE_KQUEUE 139#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 140# define EV_USE_KQUEUE 0
95#endif 141#endif
96 142
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 143#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 144# define EV_USE_PORT 0
107#endif 145#endif
108 146
109/**/ 147/**/
148
149/* darwin simply cannot be helped */
150#ifdef __APPLE__
151# undef EV_USE_POLL
152# undef EV_USE_KQUEUE
153#endif
110 154
111#ifndef CLOCK_MONOTONIC 155#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 156# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 157# define EV_USE_MONOTONIC 0
114#endif 158#endif
116#ifndef CLOCK_REALTIME 160#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 161# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 162# define EV_USE_REALTIME 0
119#endif 163#endif
120 164
165#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h>
167#endif
168
121/**/ 169/**/
122 170
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 175
176#ifdef EV_H
177# include EV_H
178#else
128#include "ev.h" 179# include "ev.h"
180#endif
129 181
130#if __GNUC__ >= 3 182#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 183# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 184# define inline static inline
133#else 185#else
134# define expect(expr,value) (expr) 186# define expect(expr,value) (expr)
135# define inline static 187# define inline static
136#endif 188#endif
137 189
139#define expect_true(expr) expect ((expr) != 0, 1) 191#define expect_true(expr) expect ((expr) != 0, 1)
140 192
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 194#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 195
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */
198
144typedef struct ev_watcher *W; 199typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 200typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 201typedef struct ev_watcher_time *WT;
147 202
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 204
205#ifdef _WIN32
206# include "ev_win32.c"
207#endif
208
150/*****************************************************************************/ 209/*****************************************************************************/
151 210
211static void (*syserr_cb)(const char *msg);
212
213void ev_set_syserr_cb (void (*cb)(const char *msg))
214{
215 syserr_cb = cb;
216}
217
218static void
219syserr (const char *msg)
220{
221 if (!msg)
222 msg = "(libev) system error";
223
224 if (syserr_cb)
225 syserr_cb (msg);
226 else
227 {
228 perror (msg);
229 abort ();
230 }
231}
232
233static void *(*alloc)(void *ptr, long size);
234
235void ev_set_allocator (void *(*cb)(void *ptr, long size))
236{
237 alloc = cb;
238}
239
240static void *
241ev_realloc (void *ptr, long size)
242{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
244
245 if (!ptr && size)
246 {
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
248 abort ();
249 }
250
251 return ptr;
252}
253
254#define ev_malloc(size) ev_realloc (0, (size))
255#define ev_free(ptr) ev_realloc ((ptr), 0)
256
257/*****************************************************************************/
258
152typedef struct 259typedef struct
153{ 260{
154 struct ev_watcher_list *head; 261 WL head;
155 unsigned char events; 262 unsigned char events;
156 unsigned char reify; 263 unsigned char reify;
264#if EV_SELECT_IS_WINSOCKET
265 SOCKET handle;
266#endif
157} ANFD; 267} ANFD;
158 268
159typedef struct 269typedef struct
160{ 270{
161 W w; 271 W w;
162 int events; 272 int events;
163} ANPENDING; 273} ANPENDING;
164 274
165#if EV_MULTIPLICITY 275#if EV_MULTIPLICITY
166 276
167struct ev_loop 277 struct ev_loop
168{ 278 {
279 ev_tstamp ev_rt_now;
280 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 281 #define VAR(name,decl) decl;
170# include "ev_vars.h" 282 #include "ev_vars.h"
171};
172# undef VAR 283 #undef VAR
284 };
173# include "ev_wrap.h" 285 #include "ev_wrap.h"
286
287 static struct ev_loop default_loop_struct;
288 struct ev_loop *ev_default_loop_ptr;
174 289
175#else 290#else
176 291
292 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 293 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 294 #include "ev_vars.h"
179# undef VAR 295 #undef VAR
296
297 static int ev_default_loop_ptr;
180 298
181#endif 299#endif
182 300
183/*****************************************************************************/ 301/*****************************************************************************/
184 302
185inline ev_tstamp 303ev_tstamp
186ev_time (void) 304ev_time (void)
187{ 305{
188#if EV_USE_REALTIME 306#if EV_USE_REALTIME
189 struct timespec ts; 307 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 308 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 327#endif
210 328
211 return ev_time (); 329 return ev_time ();
212} 330}
213 331
332#if EV_MULTIPLICITY
214ev_tstamp 333ev_tstamp
215ev_now (EV_P) 334ev_now (EV_P)
216{ 335{
217 return rt_now; 336 return ev_rt_now;
218} 337}
338#endif
219 339
220#define array_roundsize(base,n) ((n) | 4 & ~3) 340#define array_roundsize(type,n) (((n) | 4) & ~3)
221 341
222#define array_needsize(base,cur,cnt,init) \ 342#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 343 if (expect_false ((cnt) > cur)) \
224 { \ 344 { \
225 int newcnt = cur; \ 345 int newcnt = cur; \
226 do \ 346 do \
227 { \ 347 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 348 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 349 } \
230 while ((cnt) > newcnt); \ 350 while ((cnt) > newcnt); \
231 \ 351 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 353 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 354 cur = newcnt; \
235 } 355 }
356
357#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 }
364
365#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 367
237/*****************************************************************************/ 368/*****************************************************************************/
238 369
239static void 370static void
240anfds_init (ANFD *base, int count) 371anfds_init (ANFD *base, int count)
247 378
248 ++base; 379 ++base;
249 } 380 }
250} 381}
251 382
252static void 383void
253event (EV_P_ W w, int events) 384ev_feed_event (EV_P_ void *w, int revents)
254{ 385{
255 if (w->pending) 386 W w_ = (W)w;
387
388 if (expect_false (w_->pending))
256 { 389 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 391 return;
259 } 392 }
260 393
261 w->pending = ++pendingcnt [ABSPRI (w)]; 394 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 398}
266 399
267static void 400static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 401queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 402{
270 int i; 403 int i;
271 404
272 for (i = 0; i < eventcnt; ++i) 405 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 406 ev_feed_event (EV_A_ events [i], type);
274} 407}
275 408
276static void 409inline void
277fd_event (EV_P_ int fd, int events) 410fd_event (EV_P_ int fd, int revents)
278{ 411{
279 ANFD *anfd = anfds + fd; 412 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 413 struct ev_io *w;
281 414
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 416 {
284 int ev = w->events & events; 417 int ev = w->events & revents;
285 418
286 if (ev) 419 if (ev)
287 event (EV_A_ (W)w, ev); 420 ev_feed_event (EV_A_ (W)w, ev);
288 } 421 }
422}
423
424void
425ev_feed_fd_event (EV_P_ int fd, int revents)
426{
427 fd_event (EV_A_ fd, revents);
289} 428}
290 429
291/*****************************************************************************/ 430/*****************************************************************************/
292 431
293static void 432inline void
294fd_reify (EV_P) 433fd_reify (EV_P)
295{ 434{
296 int i; 435 int i;
297 436
298 for (i = 0; i < fdchangecnt; ++i) 437 for (i = 0; i < fdchangecnt; ++i)
304 int events = 0; 443 int events = 0;
305 444
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 446 events |= w->events;
308 447
448#if EV_SELECT_IS_WINSOCKET
449 if (events)
450 {
451 unsigned long argp;
452 anfd->handle = _get_osfhandle (fd);
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
454 }
455#endif
456
309 anfd->reify = 0; 457 anfd->reify = 0;
310 458
311 method_modify (EV_A_ fd, anfd->events, events); 459 method_modify (EV_A_ fd, anfd->events, events);
312 anfd->events = events; 460 anfd->events = events;
313 } 461 }
316} 464}
317 465
318static void 466static void
319fd_change (EV_P_ int fd) 467fd_change (EV_P_ int fd)
320{ 468{
321 if (anfds [fd].reify || fdchangecnt < 0) 469 if (expect_false (anfds [fd].reify))
322 return; 470 return;
323 471
324 anfds [fd].reify = 1; 472 anfds [fd].reify = 1;
325 473
326 ++fdchangecnt; 474 ++fdchangecnt;
327 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
328 fdchanges [fdchangecnt - 1] = fd; 476 fdchanges [fdchangecnt - 1] = fd;
329} 477}
330 478
331static void 479static void
332fd_kill (EV_P_ int fd) 480fd_kill (EV_P_ int fd)
334 struct ev_io *w; 482 struct ev_io *w;
335 483
336 while ((w = (struct ev_io *)anfds [fd].head)) 484 while ((w = (struct ev_io *)anfds [fd].head))
337 { 485 {
338 ev_io_stop (EV_A_ w); 486 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 } 488 }
489}
490
491inline int
492fd_valid (int fd)
493{
494#ifdef _WIN32
495 return _get_osfhandle (fd) != -1;
496#else
497 return fcntl (fd, F_GETFD) != -1;
498#endif
341} 499}
342 500
343/* called on EBADF to verify fds */ 501/* called on EBADF to verify fds */
344static void 502static void
345fd_ebadf (EV_P) 503fd_ebadf (EV_P)
346{ 504{
347 int fd; 505 int fd;
348 506
349 for (fd = 0; fd < anfdmax; ++fd) 507 for (fd = 0; fd < anfdmax; ++fd)
350 if (anfds [fd].events) 508 if (anfds [fd].events)
351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 509 if (!fd_valid (fd) == -1 && errno == EBADF)
352 fd_kill (EV_A_ fd); 510 fd_kill (EV_A_ fd);
353} 511}
354 512
355/* called on ENOMEM in select/poll to kill some fds and retry */ 513/* called on ENOMEM in select/poll to kill some fds and retry */
356static void 514static void
359 int fd; 517 int fd;
360 518
361 for (fd = anfdmax; fd--; ) 519 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events) 520 if (anfds [fd].events)
363 { 521 {
364 close (fd);
365 fd_kill (EV_A_ fd); 522 fd_kill (EV_A_ fd);
366 return; 523 return;
367 } 524 }
368} 525}
369 526
370/* susually called after fork if method needs to re-arm all fds from scratch */ 527/* usually called after fork if method needs to re-arm all fds from scratch */
371static void 528static void
372fd_rearm_all (EV_P) 529fd_rearm_all (EV_P)
373{ 530{
374 int fd; 531 int fd;
375 532
423 580
424 heap [k] = w; 581 heap [k] = w;
425 ((W)heap [k])->active = k + 1; 582 ((W)heap [k])->active = k + 1;
426} 583}
427 584
585inline void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
428/*****************************************************************************/ 592/*****************************************************************************/
429 593
430typedef struct 594typedef struct
431{ 595{
432 struct ev_watcher_list *head; 596 WL head;
433 sig_atomic_t volatile gotsig; 597 sig_atomic_t volatile gotsig;
434} ANSIG; 598} ANSIG;
435 599
436static ANSIG *signals; 600static ANSIG *signals;
437static int signalmax; 601static int signalmax;
453} 617}
454 618
455static void 619static void
456sighandler (int signum) 620sighandler (int signum)
457{ 621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625
458 signals [signum - 1].gotsig = 1; 626 signals [signum - 1].gotsig = 1;
459 627
460 if (!gotsig) 628 if (!gotsig)
461 { 629 {
462 int old_errno = errno; 630 int old_errno = errno;
464 write (sigpipe [1], &signum, 1); 632 write (sigpipe [1], &signum, 1);
465 errno = old_errno; 633 errno = old_errno;
466 } 634 }
467} 635}
468 636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
469static void 657static void
470sigcb (EV_P_ struct ev_io *iow, int revents) 658sigcb (EV_P_ struct ev_io *iow, int revents)
471{ 659{
472 struct ev_watcher_list *w;
473 int signum; 660 int signum;
474 661
475 read (sigpipe [0], &revents, 1); 662 read (sigpipe [0], &revents, 1);
476 gotsig = 0; 663 gotsig = 0;
477 664
478 for (signum = signalmax; signum--; ) 665 for (signum = signalmax; signum--; )
479 if (signals [signum].gotsig) 666 if (signals [signum].gotsig)
480 { 667 ev_feed_signal_event (EV_A_ signum + 1);
481 signals [signum].gotsig = 0; 668}
482 669
483 for (w = signals [signum].head; w; w = w->next) 670static void
484 event (EV_A_ (W)w, EV_SIGNAL); 671fd_intern (int fd)
485 } 672{
673#ifdef _WIN32
674 int arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
676#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif
486} 680}
487 681
488static void 682static void
489siginit (EV_P) 683siginit (EV_P)
490{ 684{
491#ifndef WIN32 685 fd_intern (sigpipe [0]);
492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 686 fd_intern (sigpipe [1]);
493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
494
495 /* rather than sort out wether we really need nb, set it */
496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
499 687
500 ev_io_set (&sigev, sigpipe [0], EV_READ); 688 ev_io_set (&sigev, sigpipe [0], EV_READ);
501 ev_io_start (EV_A_ &sigev); 689 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */ 690 ev_unref (EV_A); /* child watcher should not keep loop alive */
503} 691}
504 692
505/*****************************************************************************/ 693/*****************************************************************************/
506 694
507#ifndef WIN32
508
509static struct ev_child *childs [PID_HASHSIZE]; 695static struct ev_child *childs [PID_HASHSIZE];
696
697#ifndef _WIN32
698
510static struct ev_signal childev; 699static struct ev_signal childev;
511 700
512#ifndef WCONTINUED 701#ifndef WCONTINUED
513# define WCONTINUED 0 702# define WCONTINUED 0
514#endif 703#endif
522 if (w->pid == pid || !w->pid) 711 if (w->pid == pid || !w->pid)
523 { 712 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid; 714 w->rpid = pid;
526 w->rstatus = status; 715 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD); 716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
528 } 717 }
529} 718}
530 719
531static void 720static void
532childcb (EV_P_ struct ev_signal *sw, int revents) 721childcb (EV_P_ struct ev_signal *sw, int revents)
534 int pid, status; 723 int pid, status;
535 724
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 { 726 {
538 /* make sure we are called again until all childs have been reaped */ 727 /* make sure we are called again until all childs have been reaped */
539 event (EV_A_ (W)sw, EV_SIGNAL); 728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
540 729
541 child_reap (EV_A_ sw, pid, pid, status); 730 child_reap (EV_A_ sw, pid, pid, status);
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
543 } 732 }
544} 733}
545 734
546#endif 735#endif
547 736
548/*****************************************************************************/ 737/*****************************************************************************/
549 738
739#if EV_USE_PORT
740# include "ev_port.c"
741#endif
550#if EV_USE_KQUEUE 742#if EV_USE_KQUEUE
551# include "ev_kqueue.c" 743# include "ev_kqueue.c"
552#endif 744#endif
553#if EV_USE_EPOLL 745#if EV_USE_EPOLL
554# include "ev_epoll.c" 746# include "ev_epoll.c"
574 766
575/* return true if we are running with elevated privileges and should ignore env variables */ 767/* return true if we are running with elevated privileges and should ignore env variables */
576static int 768static int
577enable_secure (void) 769enable_secure (void)
578{ 770{
579#ifdef WIN32 771#ifdef _WIN32
580 return 0; 772 return 0;
581#else 773#else
582 return getuid () != geteuid () 774 return getuid () != geteuid ()
583 || getgid () != getegid (); 775 || getgid () != getegid ();
584#endif 776#endif
585} 777}
586 778
587int 779unsigned int
588ev_method (EV_P) 780ev_method (EV_P)
589{ 781{
590 return method; 782 return method;
591} 783}
592 784
593static void 785static void
594loop_init (EV_P_ int methods) 786loop_init (EV_P_ unsigned int flags)
595{ 787{
596 if (!method) 788 if (!method)
597 { 789 {
598#if EV_USE_MONOTONIC 790#if EV_USE_MONOTONIC
599 { 791 {
601 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 793 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
602 have_monotonic = 1; 794 have_monotonic = 1;
603 } 795 }
604#endif 796#endif
605 797
606 rt_now = ev_time (); 798 ev_rt_now = ev_time ();
607 mn_now = get_clock (); 799 mn_now = get_clock ();
608 now_floor = mn_now; 800 now_floor = mn_now;
609 rtmn_diff = rt_now - mn_now; 801 rtmn_diff = ev_rt_now - mn_now;
610 802
611 if (methods == EVMETHOD_AUTO) 803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
613 methods = atoi (getenv ("LIBEV_METHODS")); 804 flags = atoi (getenv ("LIBEV_FLAGS"));
614 else 805
615 methods = EVMETHOD_ANY; 806 if (!(flags & 0x0000ffff))
807 flags |= 0x0000ffff;
616 808
617 method = 0; 809 method = 0;
618#if EV_USE_WIN32 810#if EV_USE_PORT
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
620#endif 812#endif
621#if EV_USE_KQUEUE 813#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
623#endif 815#endif
624#if EV_USE_EPOLL 816#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
626#endif 818#endif
627#if EV_USE_POLL 819#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
629#endif 821#endif
630#if EV_USE_SELECT 822#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
632#endif 824#endif
633 }
634}
635 825
636void 826 ev_init (&sigev, sigcb);
827 ev_set_priority (&sigev, EV_MAXPRI);
828 }
829}
830
831static void
637loop_destroy (EV_P) 832loop_destroy (EV_P)
638{ 833{
639#if EV_USE_WIN32 834 int i;
835
836#if EV_USE_PORT
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 837 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
641#endif 838#endif
642#if EV_USE_KQUEUE 839#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif 841#endif
645#if EV_USE_EPOLL 842#if EV_USE_EPOLL
650#endif 847#endif
651#if EV_USE_SELECT 848#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 849 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif 850#endif
654 851
852 for (i = NUMPRI; i--; )
853 array_free (pending, [i]);
854
855 /* have to use the microsoft-never-gets-it-right macro */
856 array_free (fdchange, EMPTY0);
857 array_free (timer, EMPTY0);
858#if EV_PERIODICS
859 array_free (periodic, EMPTY0);
860#endif
861 array_free (idle, EMPTY0);
862 array_free (prepare, EMPTY0);
863 array_free (check, EMPTY0);
864
655 method = 0; 865 method = 0;
656 /*TODO*/
657} 866}
658 867
659void 868static void
660loop_fork (EV_P) 869loop_fork (EV_P)
661{ 870{
662 /*TODO*/ 871#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A);
873#endif
874#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
876#endif
663#if EV_USE_EPOLL 877#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif 879#endif
666#if EV_USE_KQUEUE 880
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 881 if (ev_is_active (&sigev))
668#endif 882 {
883 /* default loop */
884
885 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A);
894 }
895
896 postfork = 0;
669} 897}
670 898
671#if EV_MULTIPLICITY 899#if EV_MULTIPLICITY
672struct ev_loop * 900struct ev_loop *
673ev_loop_new (int methods) 901ev_loop_new (unsigned int flags)
674{ 902{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
676 904
905 memset (loop, 0, sizeof (struct ev_loop));
906
677 loop_init (EV_A_ methods); 907 loop_init (EV_A_ flags);
678 908
679 if (ev_method (EV_A)) 909 if (ev_method (EV_A))
680 return loop; 910 return loop;
681 911
682 return 0; 912 return 0;
684 914
685void 915void
686ev_loop_destroy (EV_P) 916ev_loop_destroy (EV_P)
687{ 917{
688 loop_destroy (EV_A); 918 loop_destroy (EV_A);
689 free (loop); 919 ev_free (loop);
690} 920}
691 921
692void 922void
693ev_loop_fork (EV_P) 923ev_loop_fork (EV_P)
694{ 924{
695 loop_fork (EV_A); 925 postfork = 1;
696} 926}
697 927
698#endif 928#endif
699 929
700#if EV_MULTIPLICITY 930#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop * 931struct ev_loop *
932ev_default_loop_init (unsigned int flags)
705#else 933#else
706static int default_loop;
707
708int 934int
935ev_default_loop (unsigned int flags)
709#endif 936#endif
710ev_default_loop (int methods)
711{ 937{
712 if (sigpipe [0] == sigpipe [1]) 938 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe)) 939 if (pipe (sigpipe))
714 return 0; 940 return 0;
715 941
716 if (!default_loop) 942 if (!ev_default_loop_ptr)
717 { 943 {
718#if EV_MULTIPLICITY 944#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct; 945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
720#else 946#else
721 default_loop = 1; 947 ev_default_loop_ptr = 1;
722#endif 948#endif
723 949
724 loop_init (EV_A_ methods); 950 loop_init (EV_A_ flags);
725 951
726 if (ev_method (EV_A)) 952 if (ev_method (EV_A))
727 { 953 {
728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
730 siginit (EV_A); 954 siginit (EV_A);
731 955
732#ifndef WIN32 956#ifndef _WIN32
733 ev_signal_init (&childev, childcb, SIGCHLD); 957 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI); 958 ev_set_priority (&childev, EV_MAXPRI);
735 ev_signal_start (EV_A_ &childev); 959 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */ 960 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif 961#endif
738 } 962 }
739 else 963 else
740 default_loop = 0; 964 ev_default_loop_ptr = 0;
741 } 965 }
742 966
743 return default_loop; 967 return ev_default_loop_ptr;
744} 968}
745 969
746void 970void
747ev_default_destroy (void) 971ev_default_destroy (void)
748{ 972{
749#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
750 struct ev_loop *loop = default_loop; 974 struct ev_loop *loop = ev_default_loop_ptr;
751#endif 975#endif
752 976
977#ifndef _WIN32
753 ev_ref (EV_A); /* child watcher */ 978 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev); 979 ev_signal_stop (EV_A_ &childev);
980#endif
755 981
756 ev_ref (EV_A); /* signal watcher */ 982 ev_ref (EV_A); /* signal watcher */
757 ev_io_stop (EV_A_ &sigev); 983 ev_io_stop (EV_A_ &sigev);
758 984
759 close (sigpipe [0]); sigpipe [0] = 0; 985 close (sigpipe [0]); sigpipe [0] = 0;
764 990
765void 991void
766ev_default_fork (void) 992ev_default_fork (void)
767{ 993{
768#if EV_MULTIPLICITY 994#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop; 995 struct ev_loop *loop = ev_default_loop_ptr;
770#endif 996#endif
771 997
772 loop_fork (EV_A); 998 if (method)
773 999 postfork = 1;
774 ev_io_stop (EV_A_ &sigev);
775 close (sigpipe [0]);
776 close (sigpipe [1]);
777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
780 siginit (EV_A);
781} 1000}
782 1001
783/*****************************************************************************/ 1002/*****************************************************************************/
784 1003
785static void 1004static int
1005any_pending (EV_P)
1006{
1007 int pri;
1008
1009 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri])
1011 return 1;
1012
1013 return 0;
1014}
1015
1016inline void
786call_pending (EV_P) 1017call_pending (EV_P)
787{ 1018{
788 int pri; 1019 int pri;
789 1020
790 for (pri = NUMPRI; pri--; ) 1021 for (pri = NUMPRI; pri--; )
791 while (pendingcnt [pri]) 1022 while (pendingcnt [pri])
792 { 1023 {
793 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
794 1025
795 if (p->w) 1026 if (expect_true (p->w))
796 { 1027 {
797 p->w->pending = 0; 1028 p->w->pending = 0;
798 1029 EV_CB_INVOKE (p->w, p->events);
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
800 } 1030 }
801 } 1031 }
802} 1032}
803 1033
804static void 1034inline void
805timers_reify (EV_P) 1035timers_reify (EV_P)
806{ 1036{
807 while (timercnt && ((WT)timers [0])->at <= mn_now) 1037 while (timercnt && ((WT)timers [0])->at <= mn_now)
808 { 1038 {
809 struct ev_timer *w = timers [0]; 1039 struct ev_timer *w = timers [0];
812 1042
813 /* first reschedule or stop timer */ 1043 /* first reschedule or stop timer */
814 if (w->repeat) 1044 if (w->repeat)
815 { 1045 {
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047
817 ((WT)w)->at = mn_now + w->repeat; 1048 ((WT)w)->at += w->repeat;
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
818 downheap ((WT *)timers, timercnt, 0); 1052 downheap ((WT *)timers, timercnt, 0);
819 } 1053 }
820 else 1054 else
821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
822 1056
823 event (EV_A_ (W)w, EV_TIMEOUT); 1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
824 } 1058 }
825} 1059}
826 1060
827static void 1061#if EV_PERIODICS
1062inline void
828periodics_reify (EV_P) 1063periodics_reify (EV_P)
829{ 1064{
830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
831 { 1066 {
832 struct ev_periodic *w = periodics [0]; 1067 struct ev_periodic *w = periodics [0];
833 1068
834 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1069 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
835 1070
836 /* first reschedule or stop timer */ 1071 /* first reschedule or stop timer */
837 if (w->interval) 1072 if (w->reschedule_cb)
838 { 1073 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 }
1078 else if (w->interval)
1079 {
839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
841 downheap ((WT *)periodics, periodiccnt, 0); 1082 downheap ((WT *)periodics, periodiccnt, 0);
842 } 1083 }
843 else 1084 else
844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
845 1086
846 event (EV_A_ (W)w, EV_PERIODIC); 1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
847 } 1088 }
848} 1089}
849 1090
850static void 1091static void
851periodics_reschedule (EV_P) 1092periodics_reschedule (EV_P)
855 /* adjust periodics after time jump */ 1096 /* adjust periodics after time jump */
856 for (i = 0; i < periodiccnt; ++i) 1097 for (i = 0; i < periodiccnt; ++i)
857 { 1098 {
858 struct ev_periodic *w = periodics [i]; 1099 struct ev_periodic *w = periodics [i];
859 1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
860 if (w->interval) 1103 else if (w->interval)
861 {
862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
863
864 if (fabs (diff) >= 1e-4)
865 {
866 ev_periodic_stop (EV_A_ w);
867 ev_periodic_start (EV_A_ w);
868
869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
870 }
871 }
872 } 1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
873} 1110}
1111#endif
874 1112
875inline int 1113inline int
876time_update_monotonic (EV_P) 1114time_update_monotonic (EV_P)
877{ 1115{
878 mn_now = get_clock (); 1116 mn_now = get_clock ();
879 1117
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 { 1119 {
882 rt_now = rtmn_diff + mn_now; 1120 ev_rt_now = rtmn_diff + mn_now;
883 return 0; 1121 return 0;
884 } 1122 }
885 else 1123 else
886 { 1124 {
887 now_floor = mn_now; 1125 now_floor = mn_now;
888 rt_now = ev_time (); 1126 ev_rt_now = ev_time ();
889 return 1; 1127 return 1;
890 } 1128 }
891} 1129}
892 1130
893static void 1131inline void
894time_update (EV_P) 1132time_update (EV_P)
895{ 1133{
896 int i; 1134 int i;
897 1135
898#if EV_USE_MONOTONIC 1136#if EV_USE_MONOTONIC
902 { 1140 {
903 ev_tstamp odiff = rtmn_diff; 1141 ev_tstamp odiff = rtmn_diff;
904 1142
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
906 { 1144 {
907 rtmn_diff = rt_now - mn_now; 1145 rtmn_diff = ev_rt_now - mn_now;
908 1146
909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
910 return; /* all is well */ 1148 return; /* all is well */
911 1149
912 rt_now = ev_time (); 1150 ev_rt_now = ev_time ();
913 mn_now = get_clock (); 1151 mn_now = get_clock ();
914 now_floor = mn_now; 1152 now_floor = mn_now;
915 } 1153 }
916 1154
1155# if EV_PERIODICS
917 periodics_reschedule (EV_A); 1156 periodics_reschedule (EV_A);
1157# endif
918 /* no timer adjustment, as the monotonic clock doesn't jump */ 1158 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
920 } 1160 }
921 } 1161 }
922 else 1162 else
923#endif 1163#endif
924 { 1164 {
925 rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
926 1166
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
928 { 1168 {
1169#if EV_PERIODICS
929 periodics_reschedule (EV_A); 1170 periodics_reschedule (EV_A);
1171#endif
930 1172
931 /* adjust timers. this is easy, as the offset is the same for all */ 1173 /* adjust timers. this is easy, as the offset is the same for all */
932 for (i = 0; i < timercnt; ++i) 1174 for (i = 0; i < timercnt; ++i)
933 ((WT)timers [i])->at += rt_now - mn_now; 1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
934 } 1176 }
935 1177
936 mn_now = rt_now; 1178 mn_now = ev_rt_now;
937 } 1179 }
938} 1180}
939 1181
940void 1182void
941ev_ref (EV_P) 1183ev_ref (EV_P)
955ev_loop (EV_P_ int flags) 1197ev_loop (EV_P_ int flags)
956{ 1198{
957 double block; 1199 double block;
958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
959 1201
960 do 1202 while (activecnt)
961 { 1203 {
962 /* queue check watchers (and execute them) */ 1204 /* queue check watchers (and execute them) */
963 if (expect_false (preparecnt)) 1205 if (expect_false (preparecnt))
964 { 1206 {
965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
966 call_pending (EV_A); 1208 call_pending (EV_A);
967 } 1209 }
968 1210
1211 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork))
1213 loop_fork (EV_A);
1214
969 /* update fd-related kernel structures */ 1215 /* update fd-related kernel structures */
970 fd_reify (EV_A); 1216 fd_reify (EV_A);
971 1217
972 /* calculate blocking time */ 1218 /* calculate blocking time */
973 1219
974 /* we only need this for !monotonic clockor timers, but as we basically 1220 /* we only need this for !monotonic clock or timers, but as we basically
975 always have timers, we just calculate it always */ 1221 always have timers, we just calculate it always */
976#if EV_USE_MONOTONIC 1222#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic)) 1223 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A); 1224 time_update_monotonic (EV_A);
979 else 1225 else
980#endif 1226#endif
981 { 1227 {
982 rt_now = ev_time (); 1228 ev_rt_now = ev_time ();
983 mn_now = rt_now; 1229 mn_now = ev_rt_now;
984 } 1230 }
985 1231
986 if (flags & EVLOOP_NONBLOCK || idlecnt) 1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
987 block = 0.; 1233 block = 0.;
988 else 1234 else
993 { 1239 {
994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
995 if (block > to) block = to; 1241 if (block > to) block = to;
996 } 1242 }
997 1243
1244#if EV_PERIODICS
998 if (periodiccnt) 1245 if (periodiccnt)
999 { 1246 {
1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1001 if (block > to) block = to; 1248 if (block > to) block = to;
1002 } 1249 }
1250#endif
1003 1251
1004 if (block < 0.) block = 0.; 1252 if (expect_false (block < 0.)) block = 0.;
1005 } 1253 }
1006 1254
1007 method_poll (EV_A_ block); 1255 method_poll (EV_A_ block);
1008 1256
1009 /* update rt_now, do magic */ 1257 /* update ev_rt_now, do magic */
1010 time_update (EV_A); 1258 time_update (EV_A);
1011 1259
1012 /* queue pending timers and reschedule them */ 1260 /* queue pending timers and reschedule them */
1013 timers_reify (EV_A); /* relative timers called last */ 1261 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS
1014 periodics_reify (EV_A); /* absolute timers called first */ 1263 periodics_reify (EV_A); /* absolute timers called first */
1264#endif
1015 1265
1016 /* queue idle watchers unless io or timers are pending */ 1266 /* queue idle watchers unless io or timers are pending */
1017 if (!pendingcnt) 1267 if (idlecnt && !any_pending (EV_A))
1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1019 1269
1020 /* queue check watchers, to be executed first */ 1270 /* queue check watchers, to be executed first */
1021 if (checkcnt) 1271 if (expect_false (checkcnt))
1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1023 1273
1024 call_pending (EV_A); 1274 call_pending (EV_A);
1275
1276 if (expect_false (loop_done))
1277 break;
1025 } 1278 }
1026 while (activecnt && !loop_done);
1027 1279
1028 if (loop_done != 2) 1280 if (loop_done != 2)
1029 loop_done = 0; 1281 loop_done = 0;
1030} 1282}
1031 1283
1091void 1343void
1092ev_io_start (EV_P_ struct ev_io *w) 1344ev_io_start (EV_P_ struct ev_io *w)
1093{ 1345{
1094 int fd = w->fd; 1346 int fd = w->fd;
1095 1347
1096 if (ev_is_active (w)) 1348 if (expect_false (ev_is_active (w)))
1097 return; 1349 return;
1098 1350
1099 assert (("ev_io_start called with negative fd", fd >= 0)); 1351 assert (("ev_io_start called with negative fd", fd >= 0));
1100 1352
1101 ev_start (EV_A_ (W)w, 1); 1353 ev_start (EV_A_ (W)w, 1);
1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1103 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1355 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1104 1356
1105 fd_change (EV_A_ fd); 1357 fd_change (EV_A_ fd);
1106} 1358}
1107 1359
1108void 1360void
1109ev_io_stop (EV_P_ struct ev_io *w) 1361ev_io_stop (EV_P_ struct ev_io *w)
1110{ 1362{
1111 ev_clear_pending (EV_A_ (W)w); 1363 ev_clear_pending (EV_A_ (W)w);
1112 if (!ev_is_active (w)) 1364 if (expect_false (!ev_is_active (w)))
1113 return; 1365 return;
1366
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1114 1368
1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1116 ev_stop (EV_A_ (W)w); 1370 ev_stop (EV_A_ (W)w);
1117 1371
1118 fd_change (EV_A_ w->fd); 1372 fd_change (EV_A_ w->fd);
1119} 1373}
1120 1374
1121void 1375void
1122ev_timer_start (EV_P_ struct ev_timer *w) 1376ev_timer_start (EV_P_ struct ev_timer *w)
1123{ 1377{
1124 if (ev_is_active (w)) 1378 if (expect_false (ev_is_active (w)))
1125 return; 1379 return;
1126 1380
1127 ((WT)w)->at += mn_now; 1381 ((WT)w)->at += mn_now;
1128 1382
1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1130 1384
1131 ev_start (EV_A_ (W)w, ++timercnt); 1385 ev_start (EV_A_ (W)w, ++timercnt);
1132 array_needsize (timers, timermax, timercnt, ); 1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1133 timers [timercnt - 1] = w; 1387 timers [timercnt - 1] = w;
1134 upheap ((WT *)timers, timercnt - 1); 1388 upheap ((WT *)timers, timercnt - 1);
1135 1389
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137} 1391}
1138 1392
1139void 1393void
1140ev_timer_stop (EV_P_ struct ev_timer *w) 1394ev_timer_stop (EV_P_ struct ev_timer *w)
1141{ 1395{
1142 ev_clear_pending (EV_A_ (W)w); 1396 ev_clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 1397 if (expect_false (!ev_is_active (w)))
1144 return; 1398 return;
1145 1399
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1147 1401
1148 if (((W)w)->active < timercnt--) 1402 if (expect_true (((W)w)->active < timercnt--))
1149 { 1403 {
1150 timers [((W)w)->active - 1] = timers [timercnt]; 1404 timers [((W)w)->active - 1] = timers [timercnt];
1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1152 } 1406 }
1153 1407
1154 ((WT)w)->at = w->repeat; 1408 ((WT)w)->at -= mn_now;
1155 1409
1156 ev_stop (EV_A_ (W)w); 1410 ev_stop (EV_A_ (W)w);
1157} 1411}
1158 1412
1159void 1413void
1162 if (ev_is_active (w)) 1416 if (ev_is_active (w))
1163 { 1417 {
1164 if (w->repeat) 1418 if (w->repeat)
1165 { 1419 {
1166 ((WT)w)->at = mn_now + w->repeat; 1420 ((WT)w)->at = mn_now + w->repeat;
1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1168 } 1422 }
1169 else 1423 else
1170 ev_timer_stop (EV_A_ w); 1424 ev_timer_stop (EV_A_ w);
1171 } 1425 }
1172 else if (w->repeat) 1426 else if (w->repeat)
1427 {
1428 w->at = w->repeat;
1173 ev_timer_start (EV_A_ w); 1429 ev_timer_start (EV_A_ w);
1430 }
1174} 1431}
1175 1432
1433#if EV_PERIODICS
1176void 1434void
1177ev_periodic_start (EV_P_ struct ev_periodic *w) 1435ev_periodic_start (EV_P_ struct ev_periodic *w)
1178{ 1436{
1179 if (ev_is_active (w)) 1437 if (expect_false (ev_is_active (w)))
1180 return; 1438 return;
1181 1439
1440 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval)
1443 {
1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1183
1184 /* this formula differs from the one in periodic_reify because we do not always round up */ 1445 /* this formula differs from the one in periodic_reify because we do not always round up */
1185 if (w->interval)
1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1447 }
1187 1448
1188 ev_start (EV_A_ (W)w, ++periodiccnt); 1449 ev_start (EV_A_ (W)w, ++periodiccnt);
1189 array_needsize (periodics, periodicmax, periodiccnt, ); 1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1190 periodics [periodiccnt - 1] = w; 1451 periodics [periodiccnt - 1] = w;
1191 upheap ((WT *)periodics, periodiccnt - 1); 1452 upheap ((WT *)periodics, periodiccnt - 1);
1192 1453
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194} 1455}
1195 1456
1196void 1457void
1197ev_periodic_stop (EV_P_ struct ev_periodic *w) 1458ev_periodic_stop (EV_P_ struct ev_periodic *w)
1198{ 1459{
1199 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1200 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1201 return; 1462 return;
1202 1463
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1204 1465
1205 if (((W)w)->active < periodiccnt--) 1466 if (expect_true (((W)w)->active < periodiccnt--))
1206 { 1467 {
1207 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1468 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1209 } 1470 }
1210 1471
1211 ev_stop (EV_A_ (W)w); 1472 ev_stop (EV_A_ (W)w);
1212} 1473}
1213 1474
1214void 1475void
1476ev_periodic_again (EV_P_ struct ev_periodic *w)
1477{
1478 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w);
1481}
1482#endif
1483
1484void
1215ev_idle_start (EV_P_ struct ev_idle *w) 1485ev_idle_start (EV_P_ struct ev_idle *w)
1216{ 1486{
1217 if (ev_is_active (w)) 1487 if (expect_false (ev_is_active (w)))
1218 return; 1488 return;
1219 1489
1220 ev_start (EV_A_ (W)w, ++idlecnt); 1490 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, ); 1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1222 idles [idlecnt - 1] = w; 1492 idles [idlecnt - 1] = w;
1223} 1493}
1224 1494
1225void 1495void
1226ev_idle_stop (EV_P_ struct ev_idle *w) 1496ev_idle_stop (EV_P_ struct ev_idle *w)
1227{ 1497{
1228 ev_clear_pending (EV_A_ (W)w); 1498 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w)) 1499 if (expect_false (!ev_is_active (w)))
1230 return; 1500 return;
1231 1501
1232 idles [((W)w)->active - 1] = idles [--idlecnt]; 1502 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w); 1503 ev_stop (EV_A_ (W)w);
1234} 1504}
1235 1505
1236void 1506void
1237ev_prepare_start (EV_P_ struct ev_prepare *w) 1507ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{ 1508{
1239 if (ev_is_active (w)) 1509 if (expect_false (ev_is_active (w)))
1240 return; 1510 return;
1241 1511
1242 ev_start (EV_A_ (W)w, ++preparecnt); 1512 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, ); 1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1244 prepares [preparecnt - 1] = w; 1514 prepares [preparecnt - 1] = w;
1245} 1515}
1246 1516
1247void 1517void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w) 1518ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{ 1519{
1250 ev_clear_pending (EV_A_ (W)w); 1520 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w)) 1521 if (expect_false (!ev_is_active (w)))
1252 return; 1522 return;
1253 1523
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1524 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w); 1525 ev_stop (EV_A_ (W)w);
1256} 1526}
1257 1527
1258void 1528void
1259ev_check_start (EV_P_ struct ev_check *w) 1529ev_check_start (EV_P_ struct ev_check *w)
1260{ 1530{
1261 if (ev_is_active (w)) 1531 if (expect_false (ev_is_active (w)))
1262 return; 1532 return;
1263 1533
1264 ev_start (EV_A_ (W)w, ++checkcnt); 1534 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, ); 1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1266 checks [checkcnt - 1] = w; 1536 checks [checkcnt - 1] = w;
1267} 1537}
1268 1538
1269void 1539void
1270ev_check_stop (EV_P_ struct ev_check *w) 1540ev_check_stop (EV_P_ struct ev_check *w)
1271{ 1541{
1272 ev_clear_pending (EV_A_ (W)w); 1542 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w)) 1543 if (expect_false (!ev_is_active (w)))
1274 return; 1544 return;
1275 1545
1276 checks [((W)w)->active - 1] = checks [--checkcnt]; 1546 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1278} 1548}
1283 1553
1284void 1554void
1285ev_signal_start (EV_P_ struct ev_signal *w) 1555ev_signal_start (EV_P_ struct ev_signal *w)
1286{ 1556{
1287#if EV_MULTIPLICITY 1557#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1289#endif 1559#endif
1290 if (ev_is_active (w)) 1560 if (expect_false (ev_is_active (w)))
1291 return; 1561 return;
1292 1562
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1294 1564
1295 ev_start (EV_A_ (W)w, 1); 1565 ev_start (EV_A_ (W)w, 1);
1296 array_needsize (signals, signalmax, w->signum, signals_init); 1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1298 1568
1299 if (!((WL)w)->next) 1569 if (!((WL)w)->next)
1300 { 1570 {
1571#if _WIN32
1572 signal (w->signum, sighandler);
1573#else
1301 struct sigaction sa; 1574 struct sigaction sa;
1302 sa.sa_handler = sighandler; 1575 sa.sa_handler = sighandler;
1303 sigfillset (&sa.sa_mask); 1576 sigfillset (&sa.sa_mask);
1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1305 sigaction (w->signum, &sa, 0); 1578 sigaction (w->signum, &sa, 0);
1579#endif
1306 } 1580 }
1307} 1581}
1308 1582
1309void 1583void
1310ev_signal_stop (EV_P_ struct ev_signal *w) 1584ev_signal_stop (EV_P_ struct ev_signal *w)
1311{ 1585{
1312 ev_clear_pending (EV_A_ (W)w); 1586 ev_clear_pending (EV_A_ (W)w);
1313 if (!ev_is_active (w)) 1587 if (expect_false (!ev_is_active (w)))
1314 return; 1588 return;
1315 1589
1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1317 ev_stop (EV_A_ (W)w); 1591 ev_stop (EV_A_ (W)w);
1318 1592
1322 1596
1323void 1597void
1324ev_child_start (EV_P_ struct ev_child *w) 1598ev_child_start (EV_P_ struct ev_child *w)
1325{ 1599{
1326#if EV_MULTIPLICITY 1600#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1328#endif 1602#endif
1329 if (ev_is_active (w)) 1603 if (expect_false (ev_is_active (w)))
1330 return; 1604 return;
1331 1605
1332 ev_start (EV_A_ (W)w, 1); 1606 ev_start (EV_A_ (W)w, 1);
1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1334} 1608}
1335 1609
1336void 1610void
1337ev_child_stop (EV_P_ struct ev_child *w) 1611ev_child_stop (EV_P_ struct ev_child *w)
1338{ 1612{
1339 ev_clear_pending (EV_A_ (W)w); 1613 ev_clear_pending (EV_A_ (W)w);
1340 if (ev_is_active (w)) 1614 if (expect_false (!ev_is_active (w)))
1341 return; 1615 return;
1342 1616
1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1344 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1345} 1619}
1360 void (*cb)(int revents, void *arg) = once->cb; 1634 void (*cb)(int revents, void *arg) = once->cb;
1361 void *arg = once->arg; 1635 void *arg = once->arg;
1362 1636
1363 ev_io_stop (EV_A_ &once->io); 1637 ev_io_stop (EV_A_ &once->io);
1364 ev_timer_stop (EV_A_ &once->to); 1638 ev_timer_stop (EV_A_ &once->to);
1365 free (once); 1639 ev_free (once);
1366 1640
1367 cb (revents, arg); 1641 cb (revents, arg);
1368} 1642}
1369 1643
1370static void 1644static void
1380} 1654}
1381 1655
1382void 1656void
1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1384{ 1658{
1385 struct ev_once *once = malloc (sizeof (struct ev_once)); 1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1386 1660
1387 if (!once) 1661 if (expect_false (!once))
1662 {
1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1389 else 1664 return;
1390 { 1665 }
1666
1391 once->cb = cb; 1667 once->cb = cb;
1392 once->arg = arg; 1668 once->arg = arg;
1393 1669
1394 ev_watcher_init (&once->io, once_cb_io); 1670 ev_init (&once->io, once_cb_io);
1395 if (fd >= 0) 1671 if (fd >= 0)
1396 { 1672 {
1397 ev_io_set (&once->io, fd, events); 1673 ev_io_set (&once->io, fd, events);
1398 ev_io_start (EV_A_ &once->io); 1674 ev_io_start (EV_A_ &once->io);
1399 } 1675 }
1400 1676
1401 ev_watcher_init (&once->to, once_cb_to); 1677 ev_init (&once->to, once_cb_to);
1402 if (timeout >= 0.) 1678 if (timeout >= 0.)
1403 { 1679 {
1404 ev_timer_set (&once->to, timeout, 0.); 1680 ev_timer_set (&once->to, timeout, 0.);
1405 ev_timer_start (EV_A_ &once->to); 1681 ev_timer_start (EV_A_ &once->to);
1406 }
1407 } 1682 }
1408} 1683}
1409 1684
1685#ifdef __cplusplus
1686}
1687#endif
1688

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines