ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
46# else
47# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0
49# endif
50# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0
52# endif
37# endif 53# endif
38 54
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 56# define EV_USE_SELECT 1
57# else
58# define EV_USE_SELECT 0
41# endif 59# endif
42 60
43# if HAVE_POLL && HAVE_POLL_H 61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 62# define EV_USE_POLL 1
63# else
64# define EV_USE_POLL 0
45# endif 65# endif
46 66
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 68# define EV_USE_EPOLL 1
69# else
70# define EV_USE_EPOLL 0
49# endif 71# endif
50 72
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 74# define EV_USE_KQUEUE 1
75# else
76# define EV_USE_KQUEUE 0
77# endif
78
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT)
80# define EV_USE_PORT 1
81# else
82# define EV_USE_PORT 0
53# endif 83# endif
54 84
55#endif 85#endif
56 86
57#include <math.h> 87#include <math.h>
66#include <sys/types.h> 96#include <sys/types.h>
67#include <time.h> 97#include <time.h>
68 98
69#include <signal.h> 99#include <signal.h>
70 100
71#ifndef WIN32 101#ifndef _WIN32
72# include <unistd.h> 102# include <unistd.h>
73# include <sys/time.h> 103# include <sys/time.h>
74# include <sys/wait.h> 104# include <sys/wait.h>
105#else
106# define WIN32_LEAN_AND_MEAN
107# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1
75#endif 110# endif
111#endif
112
76/**/ 113/**/
77 114
78#ifndef EV_USE_MONOTONIC 115#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0
80#endif 121#endif
81 122
82#ifndef EV_USE_SELECT 123#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 124# define EV_USE_SELECT 1
84#endif 125#endif
85 126
86#ifndef EV_USE_POLL 127#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 128# ifdef _WIN32
129# define EV_USE_POLL 0
130# else
131# define EV_USE_POLL 1
132# endif
88#endif 133#endif
89 134
90#ifndef EV_USE_EPOLL 135#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 136# define EV_USE_EPOLL 0
92#endif 137#endif
93 138
94#ifndef EV_USE_KQUEUE 139#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 140# define EV_USE_KQUEUE 0
96#endif 141#endif
97 142
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 143#ifndef EV_USE_PORT
109# define EV_USE_REALTIME 1 144# define EV_USE_PORT 0
110#endif 145#endif
111 146
112/**/ 147/**/
148
149/* darwin simply cannot be helped */
150#ifdef __APPLE__
151# undef EV_USE_POLL
152# undef EV_USE_KQUEUE
153#endif
113 154
114#ifndef CLOCK_MONOTONIC 155#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 156# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 157# define EV_USE_MONOTONIC 0
117#endif 158#endif
119#ifndef CLOCK_REALTIME 160#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 161# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 162# define EV_USE_REALTIME 0
122#endif 163#endif
123 164
165#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h>
167#endif
168
124/**/ 169/**/
125 170
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
130 175
176#ifdef EV_H
177# include EV_H
178#else
131#include "ev.h" 179# include "ev.h"
180#endif
132 181
133#if __GNUC__ >= 3 182#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 183# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 184# define inline static inline
136#else 185#else
137# define expect(expr,value) (expr) 186# define expect(expr,value) (expr)
138# define inline static 187# define inline static
139#endif 188#endif
140 189
142#define expect_true(expr) expect ((expr) != 0, 1) 191#define expect_true(expr) expect ((expr) != 0, 1)
143 192
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 194#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146 195
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */
198
147typedef struct ev_watcher *W; 199typedef struct ev_watcher *W;
148typedef struct ev_watcher_list *WL; 200typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 201typedef struct ev_watcher_time *WT;
150 202
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 204
153#if WIN32 205#ifdef _WIN32
154/* note: the comment below could not be substantiated, but what would I care */ 206# include "ev_win32.c"
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 207#endif
211 208
212/*****************************************************************************/ 209/*****************************************************************************/
213 210
214static void (*syserr_cb)(const char *msg); 211static void (*syserr_cb)(const char *msg);
262typedef struct 259typedef struct
263{ 260{
264 WL head; 261 WL head;
265 unsigned char events; 262 unsigned char events;
266 unsigned char reify; 263 unsigned char reify;
264#if EV_SELECT_IS_WINSOCKET
265 SOCKET handle;
266#endif
267} ANFD; 267} ANFD;
268 268
269typedef struct 269typedef struct
270{ 270{
271 W w; 271 W w;
272 int events; 272 int events;
273} ANPENDING; 273} ANPENDING;
274 274
275#if EV_MULTIPLICITY 275#if EV_MULTIPLICITY
276 276
277struct ev_loop 277 struct ev_loop
278{ 278 {
279 ev_tstamp ev_rt_now;
280 #define ev_rt_now ((loop)->ev_rt_now)
279# define VAR(name,decl) decl; 281 #define VAR(name,decl) decl;
280# include "ev_vars.h" 282 #include "ev_vars.h"
281};
282# undef VAR 283 #undef VAR
284 };
283# include "ev_wrap.h" 285 #include "ev_wrap.h"
286
287 static struct ev_loop default_loop_struct;
288 struct ev_loop *ev_default_loop_ptr;
284 289
285#else 290#else
286 291
292 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 293 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 294 #include "ev_vars.h"
289# undef VAR 295 #undef VAR
296
297 static int ev_default_loop_ptr;
290 298
291#endif 299#endif
292 300
293/*****************************************************************************/ 301/*****************************************************************************/
294 302
295inline ev_tstamp 303ev_tstamp
296ev_time (void) 304ev_time (void)
297{ 305{
298#if EV_USE_REALTIME 306#if EV_USE_REALTIME
299 struct timespec ts; 307 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 308 clock_gettime (CLOCK_REALTIME, &ts);
319#endif 327#endif
320 328
321 return ev_time (); 329 return ev_time ();
322} 330}
323 331
332#if EV_MULTIPLICITY
324ev_tstamp 333ev_tstamp
325ev_now (EV_P) 334ev_now (EV_P)
326{ 335{
327 return rt_now; 336 return ev_rt_now;
328} 337}
338#endif
329 339
330#define array_roundsize(base,n) ((n) | 4 & ~3) 340#define array_roundsize(type,n) (((n) | 4) & ~3)
331 341
332#define array_needsize(base,cur,cnt,init) \ 342#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 343 if (expect_false ((cnt) > cur)) \
334 { \ 344 { \
335 int newcnt = cur; \ 345 int newcnt = cur; \
336 do \ 346 do \
337 { \ 347 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 348 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 349 } \
340 while ((cnt) > newcnt); \ 350 while ((cnt) > newcnt); \
341 \ 351 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 353 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 354 cur = newcnt; \
345 } 355 }
346 356
347#define array_slim(stem) \ 357#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 359 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 360 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 363 }
354
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359 364
360#define array_free(stem, idx) \ 365#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
362 367
363/*****************************************************************************/ 368/*****************************************************************************/
373 378
374 ++base; 379 ++base;
375 } 380 }
376} 381}
377 382
378static void 383void
379event (EV_P_ W w, int events) 384ev_feed_event (EV_P_ void *w, int revents)
380{ 385{
381 if (w->pending) 386 W w_ = (W)w;
387
388 if (expect_false (w_->pending))
382 { 389 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
384 return; 391 return;
385 } 392 }
386 393
387 w->pending = ++pendingcnt [ABSPRI (w)]; 394 w_->pending = ++pendingcnt [ABSPRI (w_)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
389 pendings [ABSPRI (w)][w->pending - 1].w = w; 396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w)][w->pending - 1].events = events; 397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
391} 398}
392 399
393static void 400static void
394queue_events (EV_P_ W *events, int eventcnt, int type) 401queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 402{
396 int i; 403 int i;
397 404
398 for (i = 0; i < eventcnt; ++i) 405 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 406 ev_feed_event (EV_A_ events [i], type);
400} 407}
401 408
402static void 409inline void
403fd_event (EV_P_ int fd, int events) 410fd_event (EV_P_ int fd, int revents)
404{ 411{
405 ANFD *anfd = anfds + fd; 412 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 413 struct ev_io *w;
407 414
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 { 416 {
410 int ev = w->events & events; 417 int ev = w->events & revents;
411 418
412 if (ev) 419 if (ev)
413 event (EV_A_ (W)w, ev); 420 ev_feed_event (EV_A_ (W)w, ev);
414 } 421 }
422}
423
424void
425ev_feed_fd_event (EV_P_ int fd, int revents)
426{
427 fd_event (EV_A_ fd, revents);
415} 428}
416 429
417/*****************************************************************************/ 430/*****************************************************************************/
418 431
419static void 432inline void
420fd_reify (EV_P) 433fd_reify (EV_P)
421{ 434{
422 int i; 435 int i;
423 436
424 for (i = 0; i < fdchangecnt; ++i) 437 for (i = 0; i < fdchangecnt; ++i)
430 int events = 0; 443 int events = 0;
431 444
432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
433 events |= w->events; 446 events |= w->events;
434 447
448#if EV_SELECT_IS_WINSOCKET
449 if (events)
450 {
451 unsigned long argp;
452 anfd->handle = _get_osfhandle (fd);
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
454 }
455#endif
456
435 anfd->reify = 0; 457 anfd->reify = 0;
436 458
437 method_modify (EV_A_ fd, anfd->events, events); 459 method_modify (EV_A_ fd, anfd->events, events);
438 anfd->events = events; 460 anfd->events = events;
439 } 461 }
442} 464}
443 465
444static void 466static void
445fd_change (EV_P_ int fd) 467fd_change (EV_P_ int fd)
446{ 468{
447 if (anfds [fd].reify) 469 if (expect_false (anfds [fd].reify))
448 return; 470 return;
449 471
450 anfds [fd].reify = 1; 472 anfds [fd].reify = 1;
451 473
452 ++fdchangecnt; 474 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
454 fdchanges [fdchangecnt - 1] = fd; 476 fdchanges [fdchangecnt - 1] = fd;
455} 477}
456 478
457static void 479static void
458fd_kill (EV_P_ int fd) 480fd_kill (EV_P_ int fd)
460 struct ev_io *w; 482 struct ev_io *w;
461 483
462 while ((w = (struct ev_io *)anfds [fd].head)) 484 while ((w = (struct ev_io *)anfds [fd].head))
463 { 485 {
464 ev_io_stop (EV_A_ w); 486 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 488 }
467} 489}
468 490
469static int 491inline int
470fd_valid (int fd) 492fd_valid (int fd)
471{ 493{
472#ifdef WIN32 494#ifdef _WIN32
473 return !!win32_get_osfhandle (fd); 495 return _get_osfhandle (fd) != -1;
474#else 496#else
475 return fcntl (fd, F_GETFD) != -1; 497 return fcntl (fd, F_GETFD) != -1;
476#endif 498#endif
477} 499}
478 500
558 580
559 heap [k] = w; 581 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 582 ((W)heap [k])->active = k + 1;
561} 583}
562 584
585inline void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
563/*****************************************************************************/ 592/*****************************************************************************/
564 593
565typedef struct 594typedef struct
566{ 595{
567 WL head; 596 WL head;
588} 617}
589 618
590static void 619static void
591sighandler (int signum) 620sighandler (int signum)
592{ 621{
593#if WIN32 622#if _WIN32
594 signal (signum, sighandler); 623 signal (signum, sighandler);
595#endif 624#endif
596 625
597 signals [signum - 1].gotsig = 1; 626 signals [signum - 1].gotsig = 1;
598 627
603 write (sigpipe [1], &signum, 1); 632 write (sigpipe [1], &signum, 1);
604 errno = old_errno; 633 errno = old_errno;
605 } 634 }
606} 635}
607 636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
608static void 657static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 658sigcb (EV_P_ struct ev_io *iow, int revents)
610{ 659{
611 WL w;
612 int signum; 660 int signum;
613 661
614 read (sigpipe [0], &revents, 1); 662 read (sigpipe [0], &revents, 1);
615 gotsig = 0; 663 gotsig = 0;
616 664
617 for (signum = signalmax; signum--; ) 665 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 666 if (signals [signum].gotsig)
619 { 667 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0; 668}
621 669
622 for (w = signals [signum].head; w; w = w->next) 670static void
623 event (EV_A_ (W)w, EV_SIGNAL); 671fd_intern (int fd)
624 } 672{
673#ifdef _WIN32
674 int arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
676#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif
625} 680}
626 681
627static void 682static void
628siginit (EV_P) 683siginit (EV_P)
629{ 684{
630#ifndef WIN32 685 fd_intern (sigpipe [0]);
631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 686 fd_intern (sigpipe [1]);
632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
633
634 /* rather than sort out wether we really need nb, set it */
635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
638 687
639 ev_io_set (&sigev, sigpipe [0], EV_READ); 688 ev_io_set (&sigev, sigpipe [0], EV_READ);
640 ev_io_start (EV_A_ &sigev); 689 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */ 690 ev_unref (EV_A); /* child watcher should not keep loop alive */
642} 691}
643 692
644/*****************************************************************************/ 693/*****************************************************************************/
645 694
646static struct ev_child *childs [PID_HASHSIZE]; 695static struct ev_child *childs [PID_HASHSIZE];
647 696
648#ifndef WIN32 697#ifndef _WIN32
649 698
650static struct ev_signal childev; 699static struct ev_signal childev;
651 700
652#ifndef WCONTINUED 701#ifndef WCONTINUED
653# define WCONTINUED 0 702# define WCONTINUED 0
662 if (w->pid == pid || !w->pid) 711 if (w->pid == pid || !w->pid)
663 { 712 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 714 w->rpid = pid;
666 w->rstatus = status; 715 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 717 }
669} 718}
670 719
671static void 720static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 721childcb (EV_P_ struct ev_signal *sw, int revents)
674 int pid, status; 723 int pid, status;
675 724
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 726 {
678 /* make sure we are called again until all childs have been reaped */ 727 /* make sure we are called again until all childs have been reaped */
679 event (EV_A_ (W)sw, EV_SIGNAL); 728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 729
681 child_reap (EV_A_ sw, pid, pid, status); 730 child_reap (EV_A_ sw, pid, pid, status);
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
683 } 732 }
684} 733}
685 734
686#endif 735#endif
687 736
688/*****************************************************************************/ 737/*****************************************************************************/
689 738
739#if EV_USE_PORT
740# include "ev_port.c"
741#endif
690#if EV_USE_KQUEUE 742#if EV_USE_KQUEUE
691# include "ev_kqueue.c" 743# include "ev_kqueue.c"
692#endif 744#endif
693#if EV_USE_EPOLL 745#if EV_USE_EPOLL
694# include "ev_epoll.c" 746# include "ev_epoll.c"
714 766
715/* return true if we are running with elevated privileges and should ignore env variables */ 767/* return true if we are running with elevated privileges and should ignore env variables */
716static int 768static int
717enable_secure (void) 769enable_secure (void)
718{ 770{
719#ifdef WIN32 771#ifdef _WIN32
720 return 0; 772 return 0;
721#else 773#else
722 return getuid () != geteuid () 774 return getuid () != geteuid ()
723 || getgid () != getegid (); 775 || getgid () != getegid ();
724#endif 776#endif
725} 777}
726 778
727int 779unsigned int
728ev_method (EV_P) 780ev_method (EV_P)
729{ 781{
730 return method; 782 return method;
731} 783}
732 784
733static void 785static void
734loop_init (EV_P_ int methods) 786loop_init (EV_P_ unsigned int flags)
735{ 787{
736 if (!method) 788 if (!method)
737 { 789 {
738#if EV_USE_MONOTONIC 790#if EV_USE_MONOTONIC
739 { 791 {
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 793 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 794 have_monotonic = 1;
743 } 795 }
744#endif 796#endif
745 797
746 rt_now = ev_time (); 798 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 799 mn_now = get_clock ();
748 now_floor = mn_now; 800 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 801 rtmn_diff = ev_rt_now - mn_now;
750 802
751 if (methods == EVMETHOD_AUTO) 803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
752 if (!enable_secure () && getenv ("LIBEV_METHODS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 804 flags = atoi (getenv ("LIBEV_FLAGS"));
754 else 805
755 methods = EVMETHOD_ANY; 806 if (!(flags & 0x0000ffff))
807 flags |= 0x0000ffff;
756 808
757 method = 0; 809 method = 0;
758#if EV_USE_WIN32 810#if EV_USE_PORT
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
760#endif 812#endif
761#if EV_USE_KQUEUE 813#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
763#endif 815#endif
764#if EV_USE_EPOLL 816#if EV_USE_EPOLL
765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
766#endif 818#endif
767#if EV_USE_POLL 819#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
769#endif 821#endif
770#if EV_USE_SELECT 822#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
772#endif 824#endif
773 825
774 ev_watcher_init (&sigev, sigcb); 826 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 827 ev_set_priority (&sigev, EV_MAXPRI);
776 } 828 }
777} 829}
778 830
779void 831static void
780loop_destroy (EV_P) 832loop_destroy (EV_P)
781{ 833{
782 int i; 834 int i;
783 835
784#if EV_USE_WIN32 836#if EV_USE_PORT
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 837 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
786#endif 838#endif
787#if EV_USE_KQUEUE 839#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
789#endif 841#endif
790#if EV_USE_EPOLL 842#if EV_USE_EPOLL
799 851
800 for (i = NUMPRI; i--; ) 852 for (i = NUMPRI; i--; )
801 array_free (pending, [i]); 853 array_free (pending, [i]);
802 854
803 /* have to use the microsoft-never-gets-it-right macro */ 855 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 856 array_free (fdchange, EMPTY0);
805 array_free_microshit (timer); 857 array_free (timer, EMPTY0);
806 array_free_microshit (periodic); 858#if EV_PERIODICS
807 array_free_microshit (idle); 859 array_free (periodic, EMPTY0);
808 array_free_microshit (prepare); 860#endif
809 array_free_microshit (check); 861 array_free (idle, EMPTY0);
862 array_free (prepare, EMPTY0);
863 array_free (check, EMPTY0);
810 864
811 method = 0; 865 method = 0;
812} 866}
813 867
814static void 868static void
815loop_fork (EV_P) 869loop_fork (EV_P)
816{ 870{
871#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A);
873#endif
874#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
876#endif
817#if EV_USE_EPOLL 877#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
819#endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif 879#endif
823 880
824 if (ev_is_active (&sigev)) 881 if (ev_is_active (&sigev))
825 { 882 {
826 /* default loop */ 883 /* default loop */
828 ev_ref (EV_A); 885 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 886 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 887 close (sigpipe [0]);
831 close (sigpipe [1]); 888 close (sigpipe [1]);
832 889
833 while (ev_pipe (sigpipe)) 890 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 891 syserr ("(libev) error creating pipe");
835 892
836 siginit (EV_A); 893 siginit (EV_A);
837 } 894 }
838 895
839 postfork = 0; 896 postfork = 0;
840} 897}
841 898
842#if EV_MULTIPLICITY 899#if EV_MULTIPLICITY
843struct ev_loop * 900struct ev_loop *
844ev_loop_new (int methods) 901ev_loop_new (unsigned int flags)
845{ 902{
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847 904
848 memset (loop, 0, sizeof (struct ev_loop)); 905 memset (loop, 0, sizeof (struct ev_loop));
849 906
850 loop_init (EV_A_ methods); 907 loop_init (EV_A_ flags);
851 908
852 if (ev_method (EV_A)) 909 if (ev_method (EV_A))
853 return loop; 910 return loop;
854 911
855 return 0; 912 return 0;
869} 926}
870 927
871#endif 928#endif
872 929
873#if EV_MULTIPLICITY 930#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 931struct ev_loop *
932ev_default_loop_init (unsigned int flags)
878#else 933#else
879static int default_loop;
880
881int 934int
935ev_default_loop (unsigned int flags)
882#endif 936#endif
883ev_default_loop (int methods)
884{ 937{
885 if (sigpipe [0] == sigpipe [1]) 938 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 939 if (pipe (sigpipe))
887 return 0; 940 return 0;
888 941
889 if (!default_loop) 942 if (!ev_default_loop_ptr)
890 { 943 {
891#if EV_MULTIPLICITY 944#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct; 945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
893#else 946#else
894 default_loop = 1; 947 ev_default_loop_ptr = 1;
895#endif 948#endif
896 949
897 loop_init (EV_A_ methods); 950 loop_init (EV_A_ flags);
898 951
899 if (ev_method (EV_A)) 952 if (ev_method (EV_A))
900 { 953 {
901 siginit (EV_A); 954 siginit (EV_A);
902 955
903#ifndef WIN32 956#ifndef _WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 957 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 958 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 959 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 960 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 961#endif
909 } 962 }
910 else 963 else
911 default_loop = 0; 964 ev_default_loop_ptr = 0;
912 } 965 }
913 966
914 return default_loop; 967 return ev_default_loop_ptr;
915} 968}
916 969
917void 970void
918ev_default_destroy (void) 971ev_default_destroy (void)
919{ 972{
920#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 974 struct ev_loop *loop = ev_default_loop_ptr;
922#endif 975#endif
923 976
924#ifndef WIN32 977#ifndef _WIN32
925 ev_ref (EV_A); /* child watcher */ 978 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 979 ev_signal_stop (EV_A_ &childev);
927#endif 980#endif
928 981
929 ev_ref (EV_A); /* signal watcher */ 982 ev_ref (EV_A); /* signal watcher */
937 990
938void 991void
939ev_default_fork (void) 992ev_default_fork (void)
940{ 993{
941#if EV_MULTIPLICITY 994#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 995 struct ev_loop *loop = ev_default_loop_ptr;
943#endif 996#endif
944 997
945 if (method) 998 if (method)
946 postfork = 1; 999 postfork = 1;
947} 1000}
948 1001
949/*****************************************************************************/ 1002/*****************************************************************************/
950 1003
951static void 1004static int
1005any_pending (EV_P)
1006{
1007 int pri;
1008
1009 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri])
1011 return 1;
1012
1013 return 0;
1014}
1015
1016inline void
952call_pending (EV_P) 1017call_pending (EV_P)
953{ 1018{
954 int pri; 1019 int pri;
955 1020
956 for (pri = NUMPRI; pri--; ) 1021 for (pri = NUMPRI; pri--; )
957 while (pendingcnt [pri]) 1022 while (pendingcnt [pri])
958 { 1023 {
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 1025
961 if (p->w) 1026 if (expect_true (p->w))
962 { 1027 {
963 p->w->pending = 0; 1028 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 1029 EV_CB_INVOKE (p->w, p->events);
965 } 1030 }
966 } 1031 }
967} 1032}
968 1033
969static void 1034inline void
970timers_reify (EV_P) 1035timers_reify (EV_P)
971{ 1036{
972 while (timercnt && ((WT)timers [0])->at <= mn_now) 1037 while (timercnt && ((WT)timers [0])->at <= mn_now)
973 { 1038 {
974 struct ev_timer *w = timers [0]; 1039 struct ev_timer *w = timers [0];
977 1042
978 /* first reschedule or stop timer */ 1043 /* first reschedule or stop timer */
979 if (w->repeat) 1044 if (w->repeat)
980 { 1045 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047
982 ((WT)w)->at = mn_now + w->repeat; 1048 ((WT)w)->at += w->repeat;
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
983 downheap ((WT *)timers, timercnt, 0); 1052 downheap ((WT *)timers, timercnt, 0);
984 } 1053 }
985 else 1054 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1056
988 event (EV_A_ (W)w, EV_TIMEOUT); 1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1058 }
990} 1059}
991 1060
992static void 1061#if EV_PERIODICS
1062inline void
993periodics_reify (EV_P) 1063periodics_reify (EV_P)
994{ 1064{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1066 {
997 struct ev_periodic *w = periodics [0]; 1067 struct ev_periodic *w = periodics [0];
998 1068
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1069 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1070
1001 /* first reschedule or stop timer */ 1071 /* first reschedule or stop timer */
1002 if (w->interval) 1072 if (w->reschedule_cb)
1003 { 1073 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 }
1078 else if (w->interval)
1079 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1082 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1083 }
1008 else 1084 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1086
1011 event (EV_A_ (W)w, EV_PERIODIC); 1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1088 }
1013} 1089}
1014 1090
1015static void 1091static void
1016periodics_reschedule (EV_P) 1092periodics_reschedule (EV_P)
1020 /* adjust periodics after time jump */ 1096 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1097 for (i = 0; i < periodiccnt; ++i)
1022 { 1098 {
1023 struct ev_periodic *w = periodics [i]; 1099 struct ev_periodic *w = periodics [i];
1024 1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1103 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1038} 1110}
1111#endif
1039 1112
1040inline int 1113inline int
1041time_update_monotonic (EV_P) 1114time_update_monotonic (EV_P)
1042{ 1115{
1043 mn_now = get_clock (); 1116 mn_now = get_clock ();
1044 1117
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1119 {
1047 rt_now = rtmn_diff + mn_now; 1120 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1121 return 0;
1049 } 1122 }
1050 else 1123 else
1051 { 1124 {
1052 now_floor = mn_now; 1125 now_floor = mn_now;
1053 rt_now = ev_time (); 1126 ev_rt_now = ev_time ();
1054 return 1; 1127 return 1;
1055 } 1128 }
1056} 1129}
1057 1130
1058static void 1131inline void
1059time_update (EV_P) 1132time_update (EV_P)
1060{ 1133{
1061 int i; 1134 int i;
1062 1135
1063#if EV_USE_MONOTONIC 1136#if EV_USE_MONOTONIC
1067 { 1140 {
1068 ev_tstamp odiff = rtmn_diff; 1141 ev_tstamp odiff = rtmn_diff;
1069 1142
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 { 1144 {
1072 rtmn_diff = rt_now - mn_now; 1145 rtmn_diff = ev_rt_now - mn_now;
1073 1146
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1148 return; /* all is well */
1076 1149
1077 rt_now = ev_time (); 1150 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1151 mn_now = get_clock ();
1079 now_floor = mn_now; 1152 now_floor = mn_now;
1080 } 1153 }
1081 1154
1155# if EV_PERIODICS
1082 periodics_reschedule (EV_A); 1156 periodics_reschedule (EV_A);
1157# endif
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 1160 }
1086 } 1161 }
1087 else 1162 else
1088#endif 1163#endif
1089 { 1164 {
1090 rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
1091 1166
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1168 {
1169#if EV_PERIODICS
1094 periodics_reschedule (EV_A); 1170 periodics_reschedule (EV_A);
1171#endif
1095 1172
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1173 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1174 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1176 }
1100 1177
1101 mn_now = rt_now; 1178 mn_now = ev_rt_now;
1102 } 1179 }
1103} 1180}
1104 1181
1105void 1182void
1106ev_ref (EV_P) 1183ev_ref (EV_P)
1120ev_loop (EV_P_ int flags) 1197ev_loop (EV_P_ int flags)
1121{ 1198{
1122 double block; 1199 double block;
1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1124 1201
1125 do 1202 while (activecnt)
1126 { 1203 {
1127 /* queue check watchers (and execute them) */ 1204 /* queue check watchers (and execute them) */
1128 if (expect_false (preparecnt)) 1205 if (expect_false (preparecnt))
1129 { 1206 {
1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1138 /* update fd-related kernel structures */ 1215 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1216 fd_reify (EV_A);
1140 1217
1141 /* calculate blocking time */ 1218 /* calculate blocking time */
1142 1219
1143 /* we only need this for !monotonic clockor timers, but as we basically 1220 /* we only need this for !monotonic clock or timers, but as we basically
1144 always have timers, we just calculate it always */ 1221 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC 1222#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1223 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1224 time_update_monotonic (EV_A);
1148 else 1225 else
1149#endif 1226#endif
1150 { 1227 {
1151 rt_now = ev_time (); 1228 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1229 mn_now = ev_rt_now;
1153 } 1230 }
1154 1231
1155 if (flags & EVLOOP_NONBLOCK || idlecnt) 1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.; 1233 block = 0.;
1157 else 1234 else
1162 { 1239 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1164 if (block > to) block = to; 1241 if (block > to) block = to;
1165 } 1242 }
1166 1243
1244#if EV_PERIODICS
1167 if (periodiccnt) 1245 if (periodiccnt)
1168 { 1246 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1170 if (block > to) block = to; 1248 if (block > to) block = to;
1171 } 1249 }
1250#endif
1172 1251
1173 if (block < 0.) block = 0.; 1252 if (expect_false (block < 0.)) block = 0.;
1174 } 1253 }
1175 1254
1176 method_poll (EV_A_ block); 1255 method_poll (EV_A_ block);
1177 1256
1178 /* update rt_now, do magic */ 1257 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1258 time_update (EV_A);
1180 1259
1181 /* queue pending timers and reschedule them */ 1260 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1261 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS
1183 periodics_reify (EV_A); /* absolute timers called first */ 1263 periodics_reify (EV_A); /* absolute timers called first */
1264#endif
1184 1265
1185 /* queue idle watchers unless io or timers are pending */ 1266 /* queue idle watchers unless io or timers are pending */
1186 if (!pendingcnt) 1267 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1269
1189 /* queue check watchers, to be executed first */ 1270 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1271 if (expect_false (checkcnt))
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1192 1273
1193 call_pending (EV_A); 1274 call_pending (EV_A);
1275
1276 if (expect_false (loop_done))
1277 break;
1194 } 1278 }
1195 while (activecnt && !loop_done);
1196 1279
1197 if (loop_done != 2) 1280 if (loop_done != 2)
1198 loop_done = 0; 1281 loop_done = 0;
1199} 1282}
1200 1283
1260void 1343void
1261ev_io_start (EV_P_ struct ev_io *w) 1344ev_io_start (EV_P_ struct ev_io *w)
1262{ 1345{
1263 int fd = w->fd; 1346 int fd = w->fd;
1264 1347
1265 if (ev_is_active (w)) 1348 if (expect_false (ev_is_active (w)))
1266 return; 1349 return;
1267 1350
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1351 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1352
1270 ev_start (EV_A_ (W)w, 1); 1353 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1355 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1356
1274 fd_change (EV_A_ fd); 1357 fd_change (EV_A_ fd);
1275} 1358}
1276 1359
1277void 1360void
1278ev_io_stop (EV_P_ struct ev_io *w) 1361ev_io_stop (EV_P_ struct ev_io *w)
1279{ 1362{
1280 ev_clear_pending (EV_A_ (W)w); 1363 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1364 if (expect_false (!ev_is_active (w)))
1282 return; 1365 return;
1366
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1283 1368
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1370 ev_stop (EV_A_ (W)w);
1286 1371
1287 fd_change (EV_A_ w->fd); 1372 fd_change (EV_A_ w->fd);
1288} 1373}
1289 1374
1290void 1375void
1291ev_timer_start (EV_P_ struct ev_timer *w) 1376ev_timer_start (EV_P_ struct ev_timer *w)
1292{ 1377{
1293 if (ev_is_active (w)) 1378 if (expect_false (ev_is_active (w)))
1294 return; 1379 return;
1295 1380
1296 ((WT)w)->at += mn_now; 1381 ((WT)w)->at += mn_now;
1297 1382
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1384
1300 ev_start (EV_A_ (W)w, ++timercnt); 1385 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1302 timers [timercnt - 1] = w; 1387 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1388 upheap ((WT *)timers, timercnt - 1);
1304 1389
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1391}
1307 1392
1308void 1393void
1309ev_timer_stop (EV_P_ struct ev_timer *w) 1394ev_timer_stop (EV_P_ struct ev_timer *w)
1310{ 1395{
1311 ev_clear_pending (EV_A_ (W)w); 1396 ev_clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 1397 if (expect_false (!ev_is_active (w)))
1313 return; 1398 return;
1314 1399
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316 1401
1317 if (((W)w)->active < timercnt--) 1402 if (expect_true (((W)w)->active < timercnt--))
1318 { 1403 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 1404 timers [((W)w)->active - 1] = timers [timercnt];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 } 1406 }
1322 1407
1323 ((WT)w)->at = w->repeat; 1408 ((WT)w)->at -= mn_now;
1324 1409
1325 ev_stop (EV_A_ (W)w); 1410 ev_stop (EV_A_ (W)w);
1326} 1411}
1327 1412
1328void 1413void
1331 if (ev_is_active (w)) 1416 if (ev_is_active (w))
1332 { 1417 {
1333 if (w->repeat) 1418 if (w->repeat)
1334 { 1419 {
1335 ((WT)w)->at = mn_now + w->repeat; 1420 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1337 } 1422 }
1338 else 1423 else
1339 ev_timer_stop (EV_A_ w); 1424 ev_timer_stop (EV_A_ w);
1340 } 1425 }
1341 else if (w->repeat) 1426 else if (w->repeat)
1427 {
1428 w->at = w->repeat;
1342 ev_timer_start (EV_A_ w); 1429 ev_timer_start (EV_A_ w);
1430 }
1343} 1431}
1344 1432
1433#if EV_PERIODICS
1345void 1434void
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1435ev_periodic_start (EV_P_ struct ev_periodic *w)
1347{ 1436{
1348 if (ev_is_active (w)) 1437 if (expect_false (ev_is_active (w)))
1349 return; 1438 return;
1350 1439
1440 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval)
1443 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1445 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1447 }
1356 1448
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1449 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1359 periodics [periodiccnt - 1] = w; 1451 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1452 upheap ((WT *)periodics, periodiccnt - 1);
1361 1453
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1455}
1364 1456
1365void 1457void
1366ev_periodic_stop (EV_P_ struct ev_periodic *w) 1458ev_periodic_stop (EV_P_ struct ev_periodic *w)
1367{ 1459{
1368 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1369 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1370 return; 1462 return;
1371 1463
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373 1465
1374 if (((W)w)->active < periodiccnt--) 1466 if (expect_true (((W)w)->active < periodiccnt--))
1375 { 1467 {
1376 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1468 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1378 } 1470 }
1379 1471
1380 ev_stop (EV_A_ (W)w); 1472 ev_stop (EV_A_ (W)w);
1381} 1473}
1382 1474
1383void 1475void
1476ev_periodic_again (EV_P_ struct ev_periodic *w)
1477{
1478 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w);
1481}
1482#endif
1483
1484void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1485ev_idle_start (EV_P_ struct ev_idle *w)
1385{ 1486{
1386 if (ev_is_active (w)) 1487 if (expect_false (ev_is_active (w)))
1387 return; 1488 return;
1388 1489
1389 ev_start (EV_A_ (W)w, ++idlecnt); 1490 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void)); 1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1391 idles [idlecnt - 1] = w; 1492 idles [idlecnt - 1] = w;
1392} 1493}
1393 1494
1394void 1495void
1395ev_idle_stop (EV_P_ struct ev_idle *w) 1496ev_idle_stop (EV_P_ struct ev_idle *w)
1396{ 1497{
1397 ev_clear_pending (EV_A_ (W)w); 1498 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w)) 1499 if (expect_false (!ev_is_active (w)))
1399 return; 1500 return;
1400 1501
1401 idles [((W)w)->active - 1] = idles [--idlecnt]; 1502 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w); 1503 ev_stop (EV_A_ (W)w);
1403} 1504}
1404 1505
1405void 1506void
1406ev_prepare_start (EV_P_ struct ev_prepare *w) 1507ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{ 1508{
1408 if (ev_is_active (w)) 1509 if (expect_false (ev_is_active (w)))
1409 return; 1510 return;
1410 1511
1411 ev_start (EV_A_ (W)w, ++preparecnt); 1512 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void)); 1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1413 prepares [preparecnt - 1] = w; 1514 prepares [preparecnt - 1] = w;
1414} 1515}
1415 1516
1416void 1517void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w) 1518ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{ 1519{
1419 ev_clear_pending (EV_A_ (W)w); 1520 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w)) 1521 if (expect_false (!ev_is_active (w)))
1421 return; 1522 return;
1422 1523
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1524 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w); 1525 ev_stop (EV_A_ (W)w);
1425} 1526}
1426 1527
1427void 1528void
1428ev_check_start (EV_P_ struct ev_check *w) 1529ev_check_start (EV_P_ struct ev_check *w)
1429{ 1530{
1430 if (ev_is_active (w)) 1531 if (expect_false (ev_is_active (w)))
1431 return; 1532 return;
1432 1533
1433 ev_start (EV_A_ (W)w, ++checkcnt); 1534 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void)); 1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1435 checks [checkcnt - 1] = w; 1536 checks [checkcnt - 1] = w;
1436} 1537}
1437 1538
1438void 1539void
1439ev_check_stop (EV_P_ struct ev_check *w) 1540ev_check_stop (EV_P_ struct ev_check *w)
1440{ 1541{
1441 ev_clear_pending (EV_A_ (W)w); 1542 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w)) 1543 if (expect_false (!ev_is_active (w)))
1443 return; 1544 return;
1444 1545
1445 checks [((W)w)->active - 1] = checks [--checkcnt]; 1546 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1447} 1548}
1452 1553
1453void 1554void
1454ev_signal_start (EV_P_ struct ev_signal *w) 1555ev_signal_start (EV_P_ struct ev_signal *w)
1455{ 1556{
1456#if EV_MULTIPLICITY 1557#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1458#endif 1559#endif
1459 if (ev_is_active (w)) 1560 if (expect_false (ev_is_active (w)))
1460 return; 1561 return;
1461 1562
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1564
1464 ev_start (EV_A_ (W)w, 1); 1565 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1568
1468 if (!((WL)w)->next) 1569 if (!((WL)w)->next)
1469 { 1570 {
1470#if WIN32 1571#if _WIN32
1471 signal (w->signum, sighandler); 1572 signal (w->signum, sighandler);
1472#else 1573#else
1473 struct sigaction sa; 1574 struct sigaction sa;
1474 sa.sa_handler = sighandler; 1575 sa.sa_handler = sighandler;
1475 sigfillset (&sa.sa_mask); 1576 sigfillset (&sa.sa_mask);
1481 1582
1482void 1583void
1483ev_signal_stop (EV_P_ struct ev_signal *w) 1584ev_signal_stop (EV_P_ struct ev_signal *w)
1484{ 1585{
1485 ev_clear_pending (EV_A_ (W)w); 1586 ev_clear_pending (EV_A_ (W)w);
1486 if (!ev_is_active (w)) 1587 if (expect_false (!ev_is_active (w)))
1487 return; 1588 return;
1488 1589
1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1490 ev_stop (EV_A_ (W)w); 1591 ev_stop (EV_A_ (W)w);
1491 1592
1495 1596
1496void 1597void
1497ev_child_start (EV_P_ struct ev_child *w) 1598ev_child_start (EV_P_ struct ev_child *w)
1498{ 1599{
1499#if EV_MULTIPLICITY 1600#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1501#endif 1602#endif
1502 if (ev_is_active (w)) 1603 if (expect_false (ev_is_active (w)))
1503 return; 1604 return;
1504 1605
1505 ev_start (EV_A_ (W)w, 1); 1606 ev_start (EV_A_ (W)w, 1);
1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1507} 1608}
1508 1609
1509void 1610void
1510ev_child_stop (EV_P_ struct ev_child *w) 1611ev_child_stop (EV_P_ struct ev_child *w)
1511{ 1612{
1512 ev_clear_pending (EV_A_ (W)w); 1613 ev_clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 1614 if (expect_false (!ev_is_active (w)))
1514 return; 1615 return;
1515 1616
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1518} 1619}
1553} 1654}
1554 1655
1555void 1656void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1658{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1660
1560 if (!once) 1661 if (expect_false (!once))
1662 {
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1664 return;
1563 { 1665 }
1666
1564 once->cb = cb; 1667 once->cb = cb;
1565 once->arg = arg; 1668 once->arg = arg;
1566 1669
1567 ev_watcher_init (&once->io, once_cb_io); 1670 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1671 if (fd >= 0)
1569 { 1672 {
1570 ev_io_set (&once->io, fd, events); 1673 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1674 ev_io_start (EV_A_ &once->io);
1572 } 1675 }
1573 1676
1574 ev_watcher_init (&once->to, once_cb_to); 1677 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1678 if (timeout >= 0.)
1576 { 1679 {
1577 ev_timer_set (&once->to, timeout, 0.); 1680 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1681 ev_timer_start (EV_A_ &once->to);
1579 }
1580 } 1682 }
1581} 1683}
1582 1684
1685#ifdef __cplusplus
1686}
1687#endif
1688

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines