ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
116# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 160# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
120# endif 163# endif
121#endif 164#endif
122 165
123/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
124 167
125#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
126# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
127#endif 170#endif
128 171
129#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
131#endif 178#endif
132 179
133#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
135#endif 182#endif
141# define EV_USE_POLL 1 188# define EV_USE_POLL 1
142# endif 189# endif
143#endif 190#endif
144 191
145#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
146# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
147#endif 198#endif
148 199
149#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
151#endif 202#endif
152 203
153#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 205# define EV_USE_PORT 0
155#endif 206#endif
156 207
157/**/ 208#ifndef EV_USE_INOTIFY
158 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 211# else
161# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 259
165#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
168#endif 263#endif
170#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
173#endif 268#endif
174 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
175#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 286# include <winsock.h>
177#endif 287#endif
178 288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
179/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 318
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 322
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 323#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 325# define noinline __attribute__ ((noinline))
195#else 326#else
196# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
197# define inline static 328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif
198#endif 332#endif
199 333
200#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 335#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline
337
338#if EV_MINIMAL
339# define inline_speed static noinline
340#else
341# define inline_speed static inline
342#endif
202 343
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
205 346
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 347#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 348#define EMPTY2(a,b) /* used to suppress some warnings */
208 349
209typedef struct ev_watcher *W; 350typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
212 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
214 362
215#ifdef _WIN32 363#ifdef _WIN32
216# include "ev_win32.c" 364# include "ev_win32.c"
217#endif 365#endif
218 366
219/*****************************************************************************/ 367/*****************************************************************************/
220 368
221static void (*syserr_cb)(const char *msg); 369static void (*syserr_cb)(const char *msg);
222 370
371void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 372ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 373{
225 syserr_cb = cb; 374 syserr_cb = cb;
226} 375}
227 376
228static void 377static void noinline
229syserr (const char *msg) 378syserr (const char *msg)
230{ 379{
231 if (!msg) 380 if (!msg)
232 msg = "(libev) system error"; 381 msg = "(libev) system error";
233 382
238 perror (msg); 387 perror (msg);
239 abort (); 388 abort ();
240 } 389 }
241} 390}
242 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
243static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 408
409void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 411{
247 alloc = cb; 412 alloc = cb;
248} 413}
249 414
250static void * 415inline_speed void *
251ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
252{ 417{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
254 419
255 if (!ptr && size) 420 if (!ptr && size)
256 { 421 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 423 abort ();
279typedef struct 444typedef struct
280{ 445{
281 W w; 446 W w;
282 int events; 447 int events;
283} ANPENDING; 448} ANPENDING;
449
450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
452typedef struct
453{
454 WL head;
455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
474#endif
284 475
285#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
286 477
287 struct ev_loop 478 struct ev_loop
288 { 479 {
322 gettimeofday (&tv, 0); 513 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 514 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif 515#endif
325} 516}
326 517
327inline ev_tstamp 518ev_tstamp inline_size
328get_clock (void) 519get_clock (void)
329{ 520{
330#if EV_USE_MONOTONIC 521#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 522 if (expect_true (have_monotonic))
332 { 523 {
345{ 536{
346 return ev_rt_now; 537 return ev_rt_now;
347} 538}
348#endif 539#endif
349 540
350#define array_roundsize(type,n) (((n) | 4) & ~3) 541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
570int inline_size
571array_nextsize (int elem, int cur, int cnt)
572{
573 int ncur = cur + 1;
574
575 do
576 ncur <<= 1;
577 while (cnt > ncur);
578
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 {
582 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4;
585 ncur /= elem;
586 }
587
588 return ncur;
589}
590
591static noinline void *
592array_realloc (int elem, void *base, int *cur, int cnt)
593{
594 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur);
596}
351 597
352#define array_needsize(type,base,cur,cnt,init) \ 598#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 599 if (expect_false ((cnt) > (cur))) \
354 { \ 600 { \
355 int newcnt = cur; \ 601 int ocur_ = (cur); \
356 do \ 602 (base) = (type *)array_realloc \
357 { \ 603 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 604 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 605 }
366 606
607#if 0
367#define array_slim(type,stem) \ 608#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 609 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 610 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 611 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 612 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 614 }
615#endif
374 616
375#define array_free(stem, idx) \ 617#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
377 619
378/*****************************************************************************/ 620/*****************************************************************************/
379 621
380static void 622void noinline
623ev_feed_event (EV_P_ void *w, int revents)
624{
625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
627
628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents;
636 }
637}
638
639void inline_speed
640queue_events (EV_P_ W *events, int eventcnt, int type)
641{
642 int i;
643
644 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type);
646}
647
648/*****************************************************************************/
649
650void inline_size
381anfds_init (ANFD *base, int count) 651anfds_init (ANFD *base, int count)
382{ 652{
383 while (count--) 653 while (count--)
384 { 654 {
385 base->head = 0; 655 base->head = 0;
388 658
389 ++base; 659 ++base;
390 } 660 }
391} 661}
392 662
393void 663void inline_speed
394ev_feed_event (EV_P_ void *w, int revents)
395{
396 W w_ = (W)w;
397
398 if (expect_false (w_->pending))
399 {
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
401 return;
402 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408}
409
410static void
411queue_events (EV_P_ W *events, int eventcnt, int type)
412{
413 int i;
414
415 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type);
417}
418
419inline void
420fd_event (EV_P_ int fd, int revents) 664fd_event (EV_P_ int fd, int revents)
421{ 665{
422 ANFD *anfd = anfds + fd; 666 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 667 ev_io *w;
424 668
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 670 {
427 int ev = w->events & revents; 671 int ev = w->events & revents;
428 672
429 if (ev) 673 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 674 ev_feed_event (EV_A_ (W)w, ev);
432} 676}
433 677
434void 678void
435ev_feed_fd_event (EV_P_ int fd, int revents) 679ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 680{
681 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 682 fd_event (EV_A_ fd, revents);
438} 683}
439 684
440/*****************************************************************************/ 685void inline_size
441
442inline void
443fd_reify (EV_P) 686fd_reify (EV_P)
444{ 687{
445 int i; 688 int i;
446 689
447 for (i = 0; i < fdchangecnt; ++i) 690 for (i = 0; i < fdchangecnt; ++i)
448 { 691 {
449 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 694 ev_io *w;
452 695
453 int events = 0; 696 unsigned char events = 0;
454 697
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 699 events |= (unsigned char)w->events;
457 700
458#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
459 if (events) 702 if (events)
460 { 703 {
461 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
462 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
464 } 711 }
465#endif 712#endif
466 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
467 anfd->reify = 0; 718 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
471 } 724 }
472 725
473 fdchangecnt = 0; 726 fdchangecnt = 0;
474} 727}
475 728
476static void 729void inline_size
477fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
478{ 731{
479 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
483 734
735 if (expect_true (!reify))
736 {
484 ++fdchangecnt; 737 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
487} 741}
488 742
489static void 743void inline_speed
490fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
491{ 745{
492 struct ev_io *w; 746 ev_io *w;
493 747
494 while ((w = (struct ev_io *)anfds [fd].head)) 748 while ((w = (ev_io *)anfds [fd].head))
495 { 749 {
496 ev_io_stop (EV_A_ w); 750 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 752 }
499} 753}
500 754
501inline int 755int inline_size
502fd_valid (int fd) 756fd_valid (int fd)
503{ 757{
504#ifdef _WIN32 758#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 759 return _get_osfhandle (fd) != -1;
506#else 760#else
507 return fcntl (fd, F_GETFD) != -1; 761 return fcntl (fd, F_GETFD) != -1;
508#endif 762#endif
509} 763}
510 764
511/* called on EBADF to verify fds */ 765/* called on EBADF to verify fds */
512static void 766static void noinline
513fd_ebadf (EV_P) 767fd_ebadf (EV_P)
514{ 768{
515 int fd; 769 int fd;
516 770
517 for (fd = 0; fd < anfdmax; ++fd) 771 for (fd = 0; fd < anfdmax; ++fd)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 773 if (!fd_valid (fd) == -1 && errno == EBADF)
520 fd_kill (EV_A_ fd); 774 fd_kill (EV_A_ fd);
521} 775}
522 776
523/* called on ENOMEM in select/poll to kill some fds and retry */ 777/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 778static void noinline
525fd_enomem (EV_P) 779fd_enomem (EV_P)
526{ 780{
527 int fd; 781 int fd;
528 782
529 for (fd = anfdmax; fd--; ) 783 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
533 return; 787 return;
534 } 788 }
535} 789}
536 790
537/* usually called after fork if method needs to re-arm all fds from scratch */ 791/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 792static void noinline
539fd_rearm_all (EV_P) 793fd_rearm_all (EV_P)
540{ 794{
541 int fd; 795 int fd;
542 796
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 798 if (anfds [fd].events)
546 { 799 {
547 anfds [fd].events = 0; 800 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
549 } 802 }
550} 803}
551 804
552/*****************************************************************************/ 805/*****************************************************************************/
553 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
827void inline_speed
828downheap (ANHE *heap, int N, int k)
829{
830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
832
833 for (;;)
834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
926}
927
928void inline_size
929adjustheap (ANHE *heap, int N, int k)
930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
932 upheap (heap, k);
933 else
934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
554static void 949static void
555upheap (WT *heap, int k) 950checkheap (ANHE *heap, int N)
556{ 951{
557 WT w = heap [k]; 952 int i;
558 953
559 while (k && heap [k >> 1]->at > w->at) 954 for (i = HEAP0; i < N + HEAP0; ++i)
560 {
561 heap [k] = heap [k >> 1];
562 ((W)heap [k])->active = k + 1;
563 k >>= 1;
564 } 955 {
565 956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
566 heap [k] = w; 957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
567 ((W)heap [k])->active = k + 1; 958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
568
569}
570
571static void
572downheap (WT *heap, int N, int k)
573{
574 WT w = heap [k];
575
576 while (k < (N >> 1))
577 { 959 }
578 int j = k << 1;
579
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break;
585
586 heap [k] = heap [j];
587 ((W)heap [k])->active = k + 1;
588 k = j;
589 }
590
591 heap [k] = w;
592 ((W)heap [k])->active = k + 1;
593} 960}
594 961#endif
595inline void
596adjustheap (WT *heap, int N, int k)
597{
598 upheap (heap, k);
599 downheap (heap, N, k);
600}
601 962
602/*****************************************************************************/ 963/*****************************************************************************/
603 964
604typedef struct 965typedef struct
605{ 966{
606 WL head; 967 WL head;
607 sig_atomic_t volatile gotsig; 968 EV_ATOMIC_T gotsig;
608} ANSIG; 969} ANSIG;
609 970
610static ANSIG *signals; 971static ANSIG *signals;
611static int signalmax; 972static int signalmax;
612 973
613static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 975
617static void 976void inline_size
618signals_init (ANSIG *base, int count) 977signals_init (ANSIG *base, int count)
619{ 978{
620 while (count--) 979 while (count--)
621 { 980 {
622 base->head = 0; 981 base->head = 0;
624 983
625 ++base; 984 ++base;
626 } 985 }
627} 986}
628 987
629static void 988/*****************************************************************************/
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635 989
636 signals [signum - 1].gotsig = 1; 990void inline_speed
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 991fd_intern (int fd)
682{ 992{
683#ifdef _WIN32 993#ifdef _WIN32
684 int arg = 1; 994 int arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 995 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 997 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 998 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 999#endif
690} 1000}
691 1001
1002static void noinline
1003evpipe_init (EV_P)
1004{
1005 if (!ev_is_active (&pipeev))
1006 {
1007#if EV_USE_EVENTFD
1008 if ((evfd = eventfd (0, 0)) >= 0)
1009 {
1010 evpipe [0] = -1;
1011 fd_intern (evfd);
1012 ev_io_set (&pipeev, evfd, EV_READ);
1013 }
1014 else
1015#endif
1016 {
1017 while (pipe (evpipe))
1018 syserr ("(libev) error creating signal/async pipe");
1019
1020 fd_intern (evpipe [0]);
1021 fd_intern (evpipe [1]);
1022 ev_io_set (&pipeev, evpipe [0], EV_READ);
1023 }
1024
1025 ev_io_start (EV_A_ &pipeev);
1026 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 }
1028}
1029
1030void inline_size
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{
1033 if (!*flag)
1034 {
1035 int old_errno = errno; /* save errno because write might clobber it */
1036
1037 *flag = 1;
1038
1039#if EV_USE_EVENTFD
1040 if (evfd >= 0)
1041 {
1042 uint64_t counter = 1;
1043 write (evfd, &counter, sizeof (uint64_t));
1044 }
1045 else
1046#endif
1047 write (evpipe [1], &old_errno, 1);
1048
1049 errno = old_errno;
1050 }
1051}
1052
692static void 1053static void
693siginit (EV_P) 1054pipecb (EV_P_ ev_io *iow, int revents)
694{ 1055{
695 fd_intern (sigpipe [0]); 1056#if EV_USE_EVENTFD
696 fd_intern (sigpipe [1]); 1057 if (evfd >= 0)
1058 {
1059 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t));
1061 }
1062 else
1063#endif
1064 {
1065 char dummy;
1066 read (evpipe [0], &dummy, 1);
1067 }
697 1068
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1069 if (gotsig && ev_is_default_loop (EV_A))
699 ev_io_start (EV_A_ &sigev); 1070 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1071 int signum;
1072 gotsig = 0;
1073
1074 for (signum = signalmax; signum--; )
1075 if (signals [signum].gotsig)
1076 ev_feed_signal_event (EV_A_ signum + 1);
1077 }
1078
1079#if EV_ASYNC_ENABLE
1080 if (gotasync)
1081 {
1082 int i;
1083 gotasync = 0;
1084
1085 for (i = asynccnt; i--; )
1086 if (asyncs [i]->sent)
1087 {
1088 asyncs [i]->sent = 0;
1089 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1090 }
1091 }
1092#endif
701} 1093}
702 1094
703/*****************************************************************************/ 1095/*****************************************************************************/
704 1096
705static struct ev_child *childs [PID_HASHSIZE]; 1097static void
1098ev_sighandler (int signum)
1099{
1100#if EV_MULTIPLICITY
1101 struct ev_loop *loop = &default_loop_struct;
1102#endif
1103
1104#if _WIN32
1105 signal (signum, ev_sighandler);
1106#endif
1107
1108 signals [signum - 1].gotsig = 1;
1109 evpipe_write (EV_A_ &gotsig);
1110}
1111
1112void noinline
1113ev_feed_signal_event (EV_P_ int signum)
1114{
1115 WL w;
1116
1117#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1119#endif
1120
1121 --signum;
1122
1123 if (signum < 0 || signum >= signalmax)
1124 return;
1125
1126 signals [signum].gotsig = 0;
1127
1128 for (w = signals [signum].head; w; w = w->next)
1129 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1130}
1131
1132/*****************************************************************************/
1133
1134static WL childs [EV_PID_HASHSIZE];
706 1135
707#ifndef _WIN32 1136#ifndef _WIN32
708 1137
709static struct ev_signal childev; 1138static ev_signal childev;
1139
1140#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0
1142#endif
1143
1144void inline_speed
1145child_reap (EV_P_ int chain, int pid, int status)
1146{
1147 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1149
1150 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1151 {
1152 if ((w->pid == pid || !w->pid)
1153 && (!traced || (w->flags & 1)))
1154 {
1155 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1156 w->rpid = pid;
1157 w->rstatus = status;
1158 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1159 }
1160 }
1161}
710 1162
711#ifndef WCONTINUED 1163#ifndef WCONTINUED
712# define WCONTINUED 0 1164# define WCONTINUED 0
713#endif 1165#endif
714 1166
715static void 1167static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1168childcb (EV_P_ ev_signal *sw, int revents)
732{ 1169{
733 int pid, status; 1170 int pid, status;
734 1171
1172 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1173 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1174 if (!WCONTINUED
1175 || errno != EINVAL
1176 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1177 return;
1178
737 /* make sure we are called again until all childs have been reaped */ 1179 /* make sure we are called again until all children have been reaped */
1180 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1181 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1182
740 child_reap (EV_A_ sw, pid, pid, status); 1183 child_reap (EV_A_ pid, pid, status);
1184 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1185 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1186}
744 1187
745#endif 1188#endif
746 1189
747/*****************************************************************************/ 1190/*****************************************************************************/
773{ 1216{
774 return EV_VERSION_MINOR; 1217 return EV_VERSION_MINOR;
775} 1218}
776 1219
777/* return true if we are running with elevated privileges and should ignore env variables */ 1220/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1221int inline_size
779enable_secure (void) 1222enable_secure (void)
780{ 1223{
781#ifdef _WIN32 1224#ifdef _WIN32
782 return 0; 1225 return 0;
783#else 1226#else
785 || getgid () != getegid (); 1228 || getgid () != getegid ();
786#endif 1229#endif
787} 1230}
788 1231
789unsigned int 1232unsigned int
790ev_method (EV_P) 1233ev_supported_backends (void)
791{ 1234{
792 return method; 1235 unsigned int flags = 0;
793}
794 1236
795static void 1237 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1238 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1239 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1240 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1241 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1242
1243 return flags;
1244}
1245
1246unsigned int
1247ev_recommended_backends (void)
1248{
1249 unsigned int flags = ev_supported_backends ();
1250
1251#ifndef __NetBSD__
1252 /* kqueue is borked on everything but netbsd apparently */
1253 /* it usually doesn't work correctly on anything but sockets and pipes */
1254 flags &= ~EVBACKEND_KQUEUE;
1255#endif
1256#ifdef __APPLE__
1257 // flags &= ~EVBACKEND_KQUEUE; for documentation
1258 flags &= ~EVBACKEND_POLL;
1259#endif
1260
1261 return flags;
1262}
1263
1264unsigned int
1265ev_embeddable_backends (void)
1266{
1267 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1268
1269 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1270 /* please fix it and tell me how to detect the fix */
1271 flags &= ~EVBACKEND_EPOLL;
1272
1273 return flags;
1274}
1275
1276unsigned int
1277ev_backend (EV_P)
1278{
1279 return backend;
1280}
1281
1282unsigned int
1283ev_loop_count (EV_P)
1284{
1285 return loop_count;
1286}
1287
1288void
1289ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 io_blocktime = interval;
1292}
1293
1294void
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1296{
1297 timeout_blocktime = interval;
1298}
1299
1300static void noinline
796loop_init (EV_P_ unsigned int flags) 1301loop_init (EV_P_ unsigned int flags)
797{ 1302{
798 if (!method) 1303 if (!backend)
799 { 1304 {
800#if EV_USE_MONOTONIC 1305#if EV_USE_MONOTONIC
801 { 1306 {
802 struct timespec ts; 1307 struct timespec ts;
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1309 have_monotonic = 1;
805 } 1310 }
806#endif 1311#endif
807 1312
808 ev_rt_now = ev_time (); 1313 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1314 mn_now = get_clock ();
810 now_floor = mn_now; 1315 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1316 rtmn_diff = ev_rt_now - mn_now;
812 1317
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1318 io_blocktime = 0.;
1319 timeout_blocktime = 0.;
1320 backend = 0;
1321 backend_fd = -1;
1322 gotasync = 0;
1323#if EV_USE_INOTIFY
1324 fs_fd = -2;
1325#endif
1326
1327 /* pid check not overridable via env */
1328#ifndef _WIN32
1329 if (flags & EVFLAG_FORKCHECK)
1330 curpid = getpid ();
1331#endif
1332
1333 if (!(flags & EVFLAG_NOENV)
1334 && !enable_secure ()
1335 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1336 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1337
816 if (!(flags & 0x0000ffff)) 1338 if (!(flags & 0x0000ffffU))
817 flags |= 0x0000ffff; 1339 flags |= ev_recommended_backends ();
818 1340
819 method = 0;
820#if EV_USE_PORT 1341#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1343#endif
823#if EV_USE_KQUEUE 1344#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1345 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1346#endif
826#if EV_USE_EPOLL 1347#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1348 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1349#endif
829#if EV_USE_POLL 1350#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1351 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1352#endif
832#if EV_USE_SELECT 1353#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1355#endif
835 1356
836 ev_init (&sigev, sigcb); 1357 ev_init (&pipeev, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1358 ev_set_priority (&pipeev, EV_MAXPRI);
838 } 1359 }
839} 1360}
840 1361
841static void 1362static void noinline
842loop_destroy (EV_P) 1363loop_destroy (EV_P)
843{ 1364{
844 int i; 1365 int i;
845 1366
1367 if (ev_is_active (&pipeev))
1368 {
1369 ev_ref (EV_A); /* signal watcher */
1370 ev_io_stop (EV_A_ &pipeev);
1371
1372#if EV_USE_EVENTFD
1373 if (evfd >= 0)
1374 close (evfd);
1375#endif
1376
1377 if (evpipe [0] >= 0)
1378 {
1379 close (evpipe [0]);
1380 close (evpipe [1]);
1381 }
1382 }
1383
1384#if EV_USE_INOTIFY
1385 if (fs_fd >= 0)
1386 close (fs_fd);
1387#endif
1388
1389 if (backend_fd >= 0)
1390 close (backend_fd);
1391
846#if EV_USE_PORT 1392#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1393 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1394#endif
849#if EV_USE_KQUEUE 1395#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1396 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1397#endif
852#if EV_USE_EPOLL 1398#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1399 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1400#endif
855#if EV_USE_POLL 1401#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1402 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1403#endif
858#if EV_USE_SELECT 1404#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1405 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1406#endif
861 1407
862 for (i = NUMPRI; i--; ) 1408 for (i = NUMPRI; i--; )
1409 {
863 array_free (pending, [i]); 1410 array_free (pending, [i]);
1411#if EV_IDLE_ENABLE
1412 array_free (idle, [i]);
1413#endif
1414 }
1415
1416 ev_free (anfds); anfdmax = 0;
864 1417
865 /* have to use the microsoft-never-gets-it-right macro */ 1418 /* have to use the microsoft-never-gets-it-right macro */
866 array_free (fdchange, EMPTY0); 1419 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1420 array_free (timer, EMPTY);
868#if EV_PERIODICS 1421#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1422 array_free (periodic, EMPTY);
870#endif 1423#endif
1424#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1425 array_free (fork, EMPTY);
1426#endif
872 array_free (prepare, EMPTY0); 1427 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1428 array_free (check, EMPTY);
1429#if EV_ASYNC_ENABLE
1430 array_free (async, EMPTY);
1431#endif
874 1432
875 method = 0; 1433 backend = 0;
876} 1434}
877 1435
878static void 1436#if EV_USE_INOTIFY
1437void inline_size infy_fork (EV_P);
1438#endif
1439
1440void inline_size
879loop_fork (EV_P) 1441loop_fork (EV_P)
880{ 1442{
881#if EV_USE_PORT 1443#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1444 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1445#endif
884#if EV_USE_KQUEUE 1446#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1447 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1448#endif
887#if EV_USE_EPOLL 1449#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1450 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 1451#endif
1452#if EV_USE_INOTIFY
1453 infy_fork (EV_A);
1454#endif
890 1455
891 if (ev_is_active (&sigev)) 1456 if (ev_is_active (&pipeev))
892 { 1457 {
893 /* default loop */ 1458 /* this "locks" the handlers against writing to the pipe */
1459 /* while we modify the fd vars */
1460 gotsig = 1;
1461#if EV_ASYNC_ENABLE
1462 gotasync = 1;
1463#endif
894 1464
895 ev_ref (EV_A); 1465 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 1466 ev_io_stop (EV_A_ &pipeev);
1467
1468#if EV_USE_EVENTFD
1469 if (evfd >= 0)
1470 close (evfd);
1471#endif
1472
1473 if (evpipe [0] >= 0)
1474 {
897 close (sigpipe [0]); 1475 close (evpipe [0]);
898 close (sigpipe [1]); 1476 close (evpipe [1]);
1477 }
899 1478
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A); 1479 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */
1481 pipecb (EV_A_ &pipeev, EV_READ);
904 } 1482 }
905 1483
906 postfork = 0; 1484 postfork = 0;
907} 1485}
908 1486
909#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
910struct ev_loop * 1489struct ev_loop *
911ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
912{ 1491{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914 1493
915 memset (loop, 0, sizeof (struct ev_loop)); 1494 memset (loop, 0, sizeof (struct ev_loop));
916 1495
917 loop_init (EV_A_ flags); 1496 loop_init (EV_A_ flags);
918 1497
919 if (ev_method (EV_A)) 1498 if (ev_backend (EV_A))
920 return loop; 1499 return loop;
921 1500
922 return 0; 1501 return 0;
923} 1502}
924 1503
930} 1509}
931 1510
932void 1511void
933ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
934{ 1513{
935 postfork = 1; 1514 postfork = 1; /* must be in line with ev_default_fork */
936} 1515}
937 1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
938#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
939 1553
940#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
941struct ev_loop * 1555struct ev_loop *
942ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
943#else 1557#else
944int 1558int
945ev_default_loop (unsigned int flags) 1559ev_default_loop (unsigned int flags)
946#endif 1560#endif
947{ 1561{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 1562 if (!ev_default_loop_ptr)
953 { 1563 {
954#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1565 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
956#else 1566#else
957 ev_default_loop_ptr = 1; 1567 ev_default_loop_ptr = 1;
958#endif 1568#endif
959 1569
960 loop_init (EV_A_ flags); 1570 loop_init (EV_A_ flags);
961 1571
962 if (ev_method (EV_A)) 1572 if (ev_backend (EV_A))
963 { 1573 {
964 siginit (EV_A);
965
966#ifndef _WIN32 1574#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1575 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 1576 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 1577 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1578 ev_unref (EV_A); /* child watcher should not keep loop alive */
987#ifndef _WIN32 1595#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */ 1596 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev); 1597 ev_signal_stop (EV_A_ &childev);
990#endif 1598#endif
991 1599
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A); 1600 loop_destroy (EV_A);
999} 1601}
1000 1602
1001void 1603void
1002ev_default_fork (void) 1604ev_default_fork (void)
1003{ 1605{
1004#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1607 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif 1608#endif
1007 1609
1008 if (method) 1610 if (backend)
1009 postfork = 1; 1611 postfork = 1; /* must be in line with ev_loop_fork */
1010} 1612}
1011 1613
1012/*****************************************************************************/ 1614/*****************************************************************************/
1013 1615
1014static int 1616void
1015any_pending (EV_P) 1617ev_invoke (EV_P_ void *w, int revents)
1016{ 1618{
1017 int pri; 1619 EV_CB_INVOKE ((W)w, revents);
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024} 1620}
1025 1621
1026inline void 1622void inline_speed
1027call_pending (EV_P) 1623call_pending (EV_P)
1028{ 1624{
1029 int pri; 1625 int pri;
1030 1626
1031 for (pri = NUMPRI; pri--; ) 1627 for (pri = NUMPRI; pri--; )
1033 { 1629 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1631
1036 if (expect_true (p->w)) 1632 if (expect_true (p->w))
1037 { 1633 {
1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1635
1038 p->w->pending = 0; 1636 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1040 } 1639 }
1041 } 1640 }
1042} 1641}
1043 1642
1044inline void 1643#if EV_IDLE_ENABLE
1644void inline_size
1645idle_reify (EV_P)
1646{
1647 if (expect_false (idleall))
1648 {
1649 int pri;
1650
1651 for (pri = NUMPRI; pri--; )
1652 {
1653 if (pendingcnt [pri])
1654 break;
1655
1656 if (idlecnt [pri])
1657 {
1658 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1659 break;
1660 }
1661 }
1662 }
1663}
1664#endif
1665
1666void inline_size
1045timers_reify (EV_P) 1667timers_reify (EV_P)
1046{ 1668{
1669 EV_FREQUENT_CHECK;
1670
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 1672 {
1049 struct ev_timer *w = timers [0]; 1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1050 1674
1051 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1052 1676
1053 /* first reschedule or stop timer */ 1677 /* first reschedule or stop timer */
1054 if (w->repeat) 1678 if (w->repeat)
1055 { 1679 {
1680 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now;
1683
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 1685
1058 ((WT)w)->at += w->repeat; 1686 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 1687 downheap (timers, timercnt, HEAP0);
1063 } 1688 }
1064 else 1689 else
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 1691
1692 EV_FREQUENT_CHECK;
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1068 } 1694 }
1069} 1695}
1070 1696
1071#if EV_PERIODICS 1697#if EV_PERIODIC_ENABLE
1072inline void 1698void inline_size
1073periodics_reify (EV_P) 1699periodics_reify (EV_P)
1074{ 1700{
1701 EV_FREQUENT_CHECK;
1702
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 1704 {
1077 struct ev_periodic *w = periodics [0]; 1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1078 1706
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 1708
1081 /* first reschedule or stop timer */ 1709 /* first reschedule or stop timer */
1082 if (w->reschedule_cb) 1710 if (w->reschedule_cb)
1083 { 1711 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1086 downheap ((WT *)periodics, periodiccnt, 0); 1717 downheap (periodics, periodiccnt, HEAP0);
1087 } 1718 }
1088 else if (w->interval) 1719 else if (w->interval)
1089 { 1720 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1092 downheap ((WT *)periodics, periodiccnt, 0); 1736 downheap (periodics, periodiccnt, HEAP0);
1093 } 1737 }
1094 else 1738 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 1740
1741 EV_FREQUENT_CHECK;
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 } 1743 }
1099} 1744}
1100 1745
1101static void 1746static void noinline
1102periodics_reschedule (EV_P) 1747periodics_reschedule (EV_P)
1103{ 1748{
1104 int i; 1749 int i;
1105 1750
1106 /* adjust periodics after time jump */ 1751 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i) 1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1108 { 1753 {
1109 struct ev_periodic *w = periodics [i]; 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1110 1755
1111 if (w->reschedule_cb) 1756 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval) 1758 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1760
1761 ANHE_at_cache (periodics [i]);
1762 }
1763
1764 reheap (periodics, periodiccnt);
1765}
1766#endif
1767
1768void inline_speed
1769time_update (EV_P_ ev_tstamp max_block)
1770{
1771 int i;
1772
1773#if EV_USE_MONOTONIC
1774 if (expect_true (have_monotonic))
1115 } 1775 {
1776 ev_tstamp odiff = rtmn_diff;
1116 1777
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock (); 1778 mn_now = get_clock ();
1127 1779
1780 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1781 /* interpolate in the meantime */
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1782 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 { 1783 {
1130 ev_rt_now = rtmn_diff + mn_now; 1784 ev_rt_now = rtmn_diff + mn_now;
1131 return 0; 1785 return;
1132 } 1786 }
1133 else 1787
1134 {
1135 now_floor = mn_now; 1788 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 1789 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 1790
1141inline void 1791 /* loop a few times, before making important decisions.
1142time_update (EV_P) 1792 * on the choice of "4": one iteration isn't enough,
1143{ 1793 * in case we get preempted during the calls to
1144 int i; 1794 * ev_time and get_clock. a second call is almost guaranteed
1145 1795 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 1796 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 1797 * in the unlikely event of having been preempted here.
1148 { 1798 */
1149 if (time_update_monotonic (EV_A)) 1799 for (i = 4; --i; )
1150 { 1800 {
1151 ev_tstamp odiff = rtmn_diff; 1801 rtmn_diff = ev_rt_now - mn_now;
1152 1802
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1804 return; /* all is well */
1805
1806 ev_rt_now = ev_time ();
1807 mn_now = get_clock ();
1808 now_floor = mn_now;
1809 }
1810
1811# if EV_PERIODIC_ENABLE
1812 periodics_reschedule (EV_A);
1813# endif
1814 /* no timer adjustment, as the monotonic clock doesn't jump */
1815 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1816 }
1817 else
1818#endif
1819 {
1820 ev_rt_now = ev_time ();
1821
1822 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1823 {
1824#if EV_PERIODIC_ENABLE
1825 periodics_reschedule (EV_A);
1826#endif
1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1828 for (i = 0; i < timercnt; ++i)
1154 { 1829 {
1155 rtmn_diff = ev_rt_now - mn_now; 1830 ANHE *he = timers + i + HEAP0;
1156 1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1832 ANHE_at_cache (*he);
1158 return; /* all is well */
1159
1160 ev_rt_now = ev_time ();
1161 mn_now = get_clock ();
1162 now_floor = mn_now;
1163 } 1833 }
1164
1165# if EV_PERIODICS
1166 periodics_reschedule (EV_A);
1167# endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 1834 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 1835
1188 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1189 } 1837 }
1190} 1838}
1191 1839
1204static int loop_done; 1852static int loop_done;
1205 1853
1206void 1854void
1207ev_loop (EV_P_ int flags) 1855ev_loop (EV_P_ int flags)
1208{ 1856{
1209 double block; 1857 loop_done = EVUNLOOP_CANCEL;
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1211 1858
1212 while (activecnt) 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1860
1861 do
1213 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1867#ifndef _WIN32
1868 if (expect_false (curpid)) /* penalise the forking check even more */
1869 if (expect_false (getpid () != curpid))
1870 {
1871 curpid = getpid ();
1872 postfork = 1;
1873 }
1874#endif
1875
1876#if EV_FORK_ENABLE
1877 /* we might have forked, so queue fork handlers */
1878 if (expect_false (postfork))
1879 if (forkcnt)
1880 {
1881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1882 call_pending (EV_A);
1883 }
1884#endif
1885
1214 /* queue check watchers (and execute them) */ 1886 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 1887 if (expect_false (preparecnt))
1216 { 1888 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1889 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 1890 call_pending (EV_A);
1219 } 1891 }
1220 1892
1893 if (expect_false (!activecnt))
1894 break;
1895
1221 /* we might have forked, so reify kernel state if necessary */ 1896 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 1897 if (expect_false (postfork))
1223 loop_fork (EV_A); 1898 loop_fork (EV_A);
1224 1899
1225 /* update fd-related kernel structures */ 1900 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 1901 fd_reify (EV_A);
1227 1902
1228 /* calculate blocking time */ 1903 /* calculate blocking time */
1904 {
1905 ev_tstamp waittime = 0.;
1906 ev_tstamp sleeptime = 0.;
1229 1907
1230 /* we only need this for !monotonic clock or timers, but as we basically 1908 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 1909 {
1238 ev_rt_now = ev_time (); 1910 /* update time to cancel out callback processing overhead */
1239 mn_now = ev_rt_now; 1911 time_update (EV_A_ 1e100);
1240 }
1241 1912
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1247 1914
1248 if (timercnt) 1915 if (timercnt)
1249 { 1916 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1251 if (block > to) block = to; 1918 if (waittime > to) waittime = to;
1252 } 1919 }
1253 1920
1254#if EV_PERIODICS 1921#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 1922 if (periodiccnt)
1256 { 1923 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 1925 if (waittime > to) waittime = to;
1259 } 1926 }
1260#endif 1927#endif
1261 1928
1262 if (expect_false (block < 0.)) block = 0.; 1929 if (expect_false (waittime < timeout_blocktime))
1930 waittime = timeout_blocktime;
1931
1932 sleeptime = waittime - backend_fudge;
1933
1934 if (expect_true (sleeptime > io_blocktime))
1935 sleeptime = io_blocktime;
1936
1937 if (sleeptime)
1938 {
1939 ev_sleep (sleeptime);
1940 waittime -= sleeptime;
1941 }
1263 } 1942 }
1264 1943
1265 method_poll (EV_A_ block); 1944 ++loop_count;
1945 backend_poll (EV_A_ waittime);
1266 1946
1267 /* update ev_rt_now, do magic */ 1947 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 1948 time_update (EV_A_ waittime + sleeptime);
1949 }
1269 1950
1270 /* queue pending timers and reschedule them */ 1951 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 1952 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 1953#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 1954 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 1955#endif
1275 1956
1957#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 1958 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 1959 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1960#endif
1279 1961
1280 /* queue check watchers, to be executed first */ 1962 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 1963 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 1965
1284 call_pending (EV_A); 1966 call_pending (EV_A);
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 1967 }
1968 while (expect_true (
1969 activecnt
1970 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1972 ));
1289 1973
1290 if (loop_done != 2) 1974 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 1975 loop_done = EVUNLOOP_CANCEL;
1292} 1976}
1293 1977
1294void 1978void
1295ev_unloop (EV_P_ int how) 1979ev_unloop (EV_P_ int how)
1296{ 1980{
1297 loop_done = how; 1981 loop_done = how;
1298} 1982}
1299 1983
1300/*****************************************************************************/ 1984/*****************************************************************************/
1301 1985
1302inline void 1986void inline_size
1303wlist_add (WL *head, WL elem) 1987wlist_add (WL *head, WL elem)
1304{ 1988{
1305 elem->next = *head; 1989 elem->next = *head;
1306 *head = elem; 1990 *head = elem;
1307} 1991}
1308 1992
1309inline void 1993void inline_size
1310wlist_del (WL *head, WL elem) 1994wlist_del (WL *head, WL elem)
1311{ 1995{
1312 while (*head) 1996 while (*head)
1313 { 1997 {
1314 if (*head == elem) 1998 if (*head == elem)
1319 2003
1320 head = &(*head)->next; 2004 head = &(*head)->next;
1321 } 2005 }
1322} 2006}
1323 2007
1324inline void 2008void inline_speed
1325ev_clear_pending (EV_P_ W w) 2009clear_pending (EV_P_ W w)
1326{ 2010{
1327 if (w->pending) 2011 if (w->pending)
1328 { 2012 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2013 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1330 w->pending = 0; 2014 w->pending = 0;
1331 } 2015 }
1332} 2016}
1333 2017
1334inline void 2018int
2019ev_clear_pending (EV_P_ void *w)
2020{
2021 W w_ = (W)w;
2022 int pending = w_->pending;
2023
2024 if (expect_true (pending))
2025 {
2026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2027 w_->pending = 0;
2028 p->w = 0;
2029 return p->events;
2030 }
2031 else
2032 return 0;
2033}
2034
2035void inline_size
2036pri_adjust (EV_P_ W w)
2037{
2038 int pri = w->priority;
2039 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2040 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2041 w->priority = pri;
2042}
2043
2044void inline_speed
1335ev_start (EV_P_ W w, int active) 2045ev_start (EV_P_ W w, int active)
1336{ 2046{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2047 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2048 w->active = active;
1341 ev_ref (EV_A); 2049 ev_ref (EV_A);
1342} 2050}
1343 2051
1344inline void 2052void inline_size
1345ev_stop (EV_P_ W w) 2053ev_stop (EV_P_ W w)
1346{ 2054{
1347 ev_unref (EV_A); 2055 ev_unref (EV_A);
1348 w->active = 0; 2056 w->active = 0;
1349} 2057}
1350 2058
1351/*****************************************************************************/ 2059/*****************************************************************************/
1352 2060
1353void 2061void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2062ev_io_start (EV_P_ ev_io *w)
1355{ 2063{
1356 int fd = w->fd; 2064 int fd = w->fd;
1357 2065
1358 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1359 return; 2067 return;
1360 2068
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1362 2070
2071 EV_FREQUENT_CHECK;
2072
1363 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1366 2076
1367 fd_change (EV_A_ fd); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1368} 2078 w->events &= ~EV_IOFDSET;
1369 2079
1370void 2080 EV_FREQUENT_CHECK;
2081}
2082
2083void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1372{ 2085{
1373 ev_clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1375 return; 2088 return;
1376 2089
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2091
2092 EV_FREQUENT_CHECK;
2093
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1381 2096
1382 fd_change (EV_A_ w->fd); 2097 fd_change (EV_A_ w->fd, 1);
1383}
1384 2098
1385void 2099 EV_FREQUENT_CHECK;
2100}
2101
2102void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1387{ 2104{
1388 if (expect_false (ev_is_active (w))) 2105 if (expect_false (ev_is_active (w)))
1389 return; 2106 return;
1390 2107
1391 ((WT)w)->at += mn_now; 2108 ev_at (w) += mn_now;
1392 2109
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2118 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w));
1399 2120
2121 EV_FREQUENT_CHECK;
2122
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2124}
1402 2125
1403void 2126void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2128{
1406 ev_clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1408 return; 2131 return;
1409 2132
2133 EV_FREQUENT_CHECK;
2134
2135 {
2136 int active = ev_active (w);
2137
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2139
2140 --timercnt;
2141
1412 if (expect_true (((W)w)->active < timercnt--)) 2142 if (expect_true (active < timercnt + HEAP0))
1413 { 2143 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2144 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2145 adjustheap (timers, timercnt, active);
1416 } 2146 }
2147 }
1417 2148
1418 ((WT)w)->at -= mn_now; 2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now;
1419 2152
1420 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1421} 2154}
1422 2155
1423void 2156void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
1425{ 2158{
2159 EV_FREQUENT_CHECK;
2160
1426 if (ev_is_active (w)) 2161 if (ev_is_active (w))
1427 { 2162 {
1428 if (w->repeat) 2163 if (w->repeat)
1429 { 2164 {
1430 ((WT)w)->at = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2167 adjustheap (timers, timercnt, ev_active (w));
1432 } 2168 }
1433 else 2169 else
1434 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
1435 } 2171 }
1436 else if (w->repeat) 2172 else if (w->repeat)
1437 { 2173 {
1438 w->at = w->repeat; 2174 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
1440 } 2176 }
1441}
1442 2177
2178 EV_FREQUENT_CHECK;
2179}
2180
1443#if EV_PERIODICS 2181#if EV_PERIODIC_ENABLE
1444void 2182void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2184{
1447 if (expect_false (ev_is_active (w))) 2185 if (expect_false (ev_is_active (w)))
1448 return; 2186 return;
1449 2187
1450 if (w->reschedule_cb) 2188 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2190 else if (w->interval)
1453 { 2191 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2193 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 2195 }
2196 else
2197 ev_at (w) = w->offset;
1458 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2205 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w));
1463 2207
2208 EV_FREQUENT_CHECK;
2209
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2211}
1466 2212
1467void 2213void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2215{
1470 ev_clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
1472 return; 2218 return;
1473 2219
2220 EV_FREQUENT_CHECK;
2221
2222 {
2223 int active = ev_active (w);
2224
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2226
2227 --periodiccnt;
2228
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2229 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2230 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2232 adjustheap (periodics, periodiccnt, active);
1480 } 2233 }
2234 }
2235
2236 EV_FREQUENT_CHECK;
1481 2237
1482 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
1483} 2239}
1484 2240
1485void 2241void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2242ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2243{
1488 /* TODO: use adjustheap and recalculation */ 2244 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2245 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2246 ev_periodic_start (EV_A_ w);
1491} 2247}
1492#endif 2248#endif
1493 2249
1494void 2250#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2251# define SA_RESTART 0
2252#endif
2253
2254void noinline
2255ev_signal_start (EV_P_ ev_signal *w)
1496{ 2256{
2257#if EV_MULTIPLICITY
2258 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2259#endif
1497 if (expect_false (ev_is_active (w))) 2260 if (expect_false (ev_is_active (w)))
1498 return; 2261 return;
1499 2262
1500 ev_start (EV_A_ (W)w, ++idlecnt);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1502 idles [idlecnt - 1] = w;
1503}
1504
1505void
1506ev_idle_stop (EV_P_ struct ev_idle *w)
1507{
1508 ev_clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w)))
1510 return;
1511
1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1513 ev_stop (EV_A_ (W)w);
1514}
1515
1516void
1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1518{
1519 if (expect_false (ev_is_active (w)))
1520 return;
1521
1522 ev_start (EV_A_ (W)w, ++preparecnt);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1524 prepares [preparecnt - 1] = w;
1525}
1526
1527void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1529{
1530 ev_clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w)))
1532 return;
1533
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1535 ev_stop (EV_A_ (W)w);
1536}
1537
1538void
1539ev_check_start (EV_P_ struct ev_check *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++checkcnt);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548
1549void
1550ev_check_stop (EV_P_ struct ev_check *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560#ifndef SA_RESTART
1561# define SA_RESTART 0
1562#endif
1563
1564void
1565ev_signal_start (EV_P_ struct ev_signal *w)
1566{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1574 2264
2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
2268
2269 {
2270#ifndef _WIN32
2271 sigset_t full, prev;
2272 sigfillset (&full);
2273 sigprocmask (SIG_SETMASK, &full, &prev);
2274#endif
2275
2276 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2277
2278#ifndef _WIN32
2279 sigprocmask (SIG_SETMASK, &prev, 0);
2280#endif
2281 }
2282
1575 ev_start (EV_A_ (W)w, 1); 2283 ev_start (EV_A_ (W)w, 1);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2284 wlist_add (&signals [w->signum - 1].head, (WL)w);
1578 2285
1579 if (!((WL)w)->next) 2286 if (!((WL)w)->next)
1580 { 2287 {
1581#if _WIN32 2288#if _WIN32
1582 signal (w->signum, sighandler); 2289 signal (w->signum, ev_sighandler);
1583#else 2290#else
1584 struct sigaction sa; 2291 struct sigaction sa;
1585 sa.sa_handler = sighandler; 2292 sa.sa_handler = ev_sighandler;
1586 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
1589#endif 2296#endif
1590 } 2297 }
1591}
1592 2298
1593void 2299 EV_FREQUENT_CHECK;
2300}
2301
2302void noinline
1594ev_signal_stop (EV_P_ struct ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
1595{ 2304{
1596 ev_clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
1598 return; 2307 return;
1599 2308
2309 EV_FREQUENT_CHECK;
2310
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
1601 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1602 2313
1603 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
1604 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
1605}
1606 2316
2317 EV_FREQUENT_CHECK;
2318}
2319
1607void 2320void
1608ev_child_start (EV_P_ struct ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
1609{ 2322{
1610#if EV_MULTIPLICITY 2323#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 2325#endif
1613 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
1614 return; 2327 return;
1615 2328
2329 EV_FREQUENT_CHECK;
2330
1616 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618}
1619 2333
2334 EV_FREQUENT_CHECK;
2335}
2336
1620void 2337void
1621ev_child_stop (EV_P_ struct ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
1622{ 2339{
1623 ev_clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
1625 return; 2342 return;
1626 2343
2344 EV_FREQUENT_CHECK;
2345
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1628 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
1629} 2350}
2351
2352#if EV_STAT_ENABLE
2353
2354# ifdef _WIN32
2355# undef lstat
2356# define lstat(a,b) _stati64 (a,b)
2357# endif
2358
2359#define DEF_STAT_INTERVAL 5.0074891
2360#define MIN_STAT_INTERVAL 0.1074891
2361
2362static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2363
2364#if EV_USE_INOTIFY
2365# define EV_INOTIFY_BUFSIZE 8192
2366
2367static void noinline
2368infy_add (EV_P_ ev_stat *w)
2369{
2370 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2371
2372 if (w->wd < 0)
2373 {
2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2375
2376 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */
2378 /* but an efficiency issue only */
2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2380 {
2381 char path [4096];
2382 strcpy (path, w->path);
2383
2384 do
2385 {
2386 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2387 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2388
2389 char *pend = strrchr (path, '/');
2390
2391 if (!pend)
2392 break; /* whoops, no '/', complain to your admin */
2393
2394 *pend = 0;
2395 w->wd = inotify_add_watch (fs_fd, path, mask);
2396 }
2397 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2398 }
2399 }
2400 else
2401 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2402
2403 if (w->wd >= 0)
2404 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2405}
2406
2407static void noinline
2408infy_del (EV_P_ ev_stat *w)
2409{
2410 int slot;
2411 int wd = w->wd;
2412
2413 if (wd < 0)
2414 return;
2415
2416 w->wd = -2;
2417 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2418 wlist_del (&fs_hash [slot].head, (WL)w);
2419
2420 /* remove this watcher, if others are watching it, they will rearm */
2421 inotify_rm_watch (fs_fd, wd);
2422}
2423
2424static void noinline
2425infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2426{
2427 if (slot < 0)
2428 /* overflow, need to check for all hahs slots */
2429 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2430 infy_wd (EV_A_ slot, wd, ev);
2431 else
2432 {
2433 WL w_;
2434
2435 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2436 {
2437 ev_stat *w = (ev_stat *)w_;
2438 w_ = w_->next; /* lets us remove this watcher and all before it */
2439
2440 if (w->wd == wd || wd == -1)
2441 {
2442 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2443 {
2444 w->wd = -1;
2445 infy_add (EV_A_ w); /* re-add, no matter what */
2446 }
2447
2448 stat_timer_cb (EV_A_ &w->timer, 0);
2449 }
2450 }
2451 }
2452}
2453
2454static void
2455infy_cb (EV_P_ ev_io *w, int revents)
2456{
2457 char buf [EV_INOTIFY_BUFSIZE];
2458 struct inotify_event *ev = (struct inotify_event *)buf;
2459 int ofs;
2460 int len = read (fs_fd, buf, sizeof (buf));
2461
2462 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2463 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2464}
2465
2466void inline_size
2467infy_init (EV_P)
2468{
2469 if (fs_fd != -2)
2470 return;
2471
2472 fs_fd = inotify_init ();
2473
2474 if (fs_fd >= 0)
2475 {
2476 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2477 ev_set_priority (&fs_w, EV_MAXPRI);
2478 ev_io_start (EV_A_ &fs_w);
2479 }
2480}
2481
2482void inline_size
2483infy_fork (EV_P)
2484{
2485 int slot;
2486
2487 if (fs_fd < 0)
2488 return;
2489
2490 close (fs_fd);
2491 fs_fd = inotify_init ();
2492
2493 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2494 {
2495 WL w_ = fs_hash [slot].head;
2496 fs_hash [slot].head = 0;
2497
2498 while (w_)
2499 {
2500 ev_stat *w = (ev_stat *)w_;
2501 w_ = w_->next; /* lets us add this watcher */
2502
2503 w->wd = -1;
2504
2505 if (fs_fd >= 0)
2506 infy_add (EV_A_ w); /* re-add, no matter what */
2507 else
2508 ev_timer_start (EV_A_ &w->timer);
2509 }
2510
2511 }
2512}
2513
2514#endif
2515
2516void
2517ev_stat_stat (EV_P_ ev_stat *w)
2518{
2519 if (lstat (w->path, &w->attr) < 0)
2520 w->attr.st_nlink = 0;
2521 else if (!w->attr.st_nlink)
2522 w->attr.st_nlink = 1;
2523}
2524
2525static void noinline
2526stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2527{
2528 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2529
2530 /* we copy this here each the time so that */
2531 /* prev has the old value when the callback gets invoked */
2532 w->prev = w->attr;
2533 ev_stat_stat (EV_A_ w);
2534
2535 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2536 if (
2537 w->prev.st_dev != w->attr.st_dev
2538 || w->prev.st_ino != w->attr.st_ino
2539 || w->prev.st_mode != w->attr.st_mode
2540 || w->prev.st_nlink != w->attr.st_nlink
2541 || w->prev.st_uid != w->attr.st_uid
2542 || w->prev.st_gid != w->attr.st_gid
2543 || w->prev.st_rdev != w->attr.st_rdev
2544 || w->prev.st_size != w->attr.st_size
2545 || w->prev.st_atime != w->attr.st_atime
2546 || w->prev.st_mtime != w->attr.st_mtime
2547 || w->prev.st_ctime != w->attr.st_ctime
2548 ) {
2549 #if EV_USE_INOTIFY
2550 infy_del (EV_A_ w);
2551 infy_add (EV_A_ w);
2552 ev_stat_stat (EV_A_ w); /* avoid race... */
2553 #endif
2554
2555 ev_feed_event (EV_A_ w, EV_STAT);
2556 }
2557}
2558
2559void
2560ev_stat_start (EV_P_ ev_stat *w)
2561{
2562 if (expect_false (ev_is_active (w)))
2563 return;
2564
2565 /* since we use memcmp, we need to clear any padding data etc. */
2566 memset (&w->prev, 0, sizeof (ev_statdata));
2567 memset (&w->attr, 0, sizeof (ev_statdata));
2568
2569 ev_stat_stat (EV_A_ w);
2570
2571 if (w->interval < MIN_STAT_INTERVAL)
2572 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2573
2574 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2575 ev_set_priority (&w->timer, ev_priority (w));
2576
2577#if EV_USE_INOTIFY
2578 infy_init (EV_A);
2579
2580 if (fs_fd >= 0)
2581 infy_add (EV_A_ w);
2582 else
2583#endif
2584 ev_timer_start (EV_A_ &w->timer);
2585
2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2589}
2590
2591void
2592ev_stat_stop (EV_P_ ev_stat *w)
2593{
2594 clear_pending (EV_A_ (W)w);
2595 if (expect_false (!ev_is_active (w)))
2596 return;
2597
2598 EV_FREQUENT_CHECK;
2599
2600#if EV_USE_INOTIFY
2601 infy_del (EV_A_ w);
2602#endif
2603 ev_timer_stop (EV_A_ &w->timer);
2604
2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2608}
2609#endif
2610
2611#if EV_IDLE_ENABLE
2612void
2613ev_idle_start (EV_P_ ev_idle *w)
2614{
2615 if (expect_false (ev_is_active (w)))
2616 return;
2617
2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2621
2622 {
2623 int active = ++idlecnt [ABSPRI (w)];
2624
2625 ++idleall;
2626 ev_start (EV_A_ (W)w, active);
2627
2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2629 idles [ABSPRI (w)][active - 1] = w;
2630 }
2631
2632 EV_FREQUENT_CHECK;
2633}
2634
2635void
2636ev_idle_stop (EV_P_ ev_idle *w)
2637{
2638 clear_pending (EV_A_ (W)w);
2639 if (expect_false (!ev_is_active (w)))
2640 return;
2641
2642 EV_FREQUENT_CHECK;
2643
2644 {
2645 int active = ev_active (w);
2646
2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2649
2650 ev_stop (EV_A_ (W)w);
2651 --idleall;
2652 }
2653
2654 EV_FREQUENT_CHECK;
2655}
2656#endif
2657
2658void
2659ev_prepare_start (EV_P_ ev_prepare *w)
2660{
2661 if (expect_false (ev_is_active (w)))
2662 return;
2663
2664 EV_FREQUENT_CHECK;
2665
2666 ev_start (EV_A_ (W)w, ++preparecnt);
2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2671}
2672
2673void
2674ev_prepare_stop (EV_P_ ev_prepare *w)
2675{
2676 clear_pending (EV_A_ (W)w);
2677 if (expect_false (!ev_is_active (w)))
2678 return;
2679
2680 EV_FREQUENT_CHECK;
2681
2682 {
2683 int active = ev_active (w);
2684
2685 prepares [active - 1] = prepares [--preparecnt];
2686 ev_active (prepares [active - 1]) = active;
2687 }
2688
2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2692}
2693
2694void
2695ev_check_start (EV_P_ ev_check *w)
2696{
2697 if (expect_false (ev_is_active (w)))
2698 return;
2699
2700 EV_FREQUENT_CHECK;
2701
2702 ev_start (EV_A_ (W)w, ++checkcnt);
2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2707}
2708
2709void
2710ev_check_stop (EV_P_ ev_check *w)
2711{
2712 clear_pending (EV_A_ (W)w);
2713 if (expect_false (!ev_is_active (w)))
2714 return;
2715
2716 EV_FREQUENT_CHECK;
2717
2718 {
2719 int active = ev_active (w);
2720
2721 checks [active - 1] = checks [--checkcnt];
2722 ev_active (checks [active - 1]) = active;
2723 }
2724
2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2728}
2729
2730#if EV_EMBED_ENABLE
2731void noinline
2732ev_embed_sweep (EV_P_ ev_embed *w)
2733{
2734 ev_loop (w->other, EVLOOP_NONBLOCK);
2735}
2736
2737static void
2738embed_io_cb (EV_P_ ev_io *io, int revents)
2739{
2740 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2741
2742 if (ev_cb (w))
2743 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2744 else
2745 ev_loop (w->other, EVLOOP_NONBLOCK);
2746}
2747
2748static void
2749embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2750{
2751 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2752
2753 {
2754 struct ev_loop *loop = w->other;
2755
2756 while (fdchangecnt)
2757 {
2758 fd_reify (EV_A);
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2760 }
2761 }
2762}
2763
2764#if 0
2765static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2767{
2768 ev_idle_stop (EV_A_ idle);
2769}
2770#endif
2771
2772void
2773ev_embed_start (EV_P_ ev_embed *w)
2774{
2775 if (expect_false (ev_is_active (w)))
2776 return;
2777
2778 {
2779 struct ev_loop *loop = w->other;
2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2782 }
2783
2784 EV_FREQUENT_CHECK;
2785
2786 ev_set_priority (&w->io, ev_priority (w));
2787 ev_io_start (EV_A_ &w->io);
2788
2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare);
2792
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794
2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2798}
2799
2800void
2801ev_embed_stop (EV_P_ ev_embed *w)
2802{
2803 clear_pending (EV_A_ (W)w);
2804 if (expect_false (!ev_is_active (w)))
2805 return;
2806
2807 EV_FREQUENT_CHECK;
2808
2809 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare);
2811
2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2815}
2816#endif
2817
2818#if EV_FORK_ENABLE
2819void
2820ev_fork_start (EV_P_ ev_fork *w)
2821{
2822 if (expect_false (ev_is_active (w)))
2823 return;
2824
2825 EV_FREQUENT_CHECK;
2826
2827 ev_start (EV_A_ (W)w, ++forkcnt);
2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834void
2835ev_fork_stop (EV_P_ ev_fork *w)
2836{
2837 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
2843 {
2844 int active = ev_active (w);
2845
2846 forks [active - 1] = forks [--forkcnt];
2847 ev_active (forks [active - 1]) = active;
2848 }
2849
2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854#endif
2855
2856#if EV_ASYNC_ENABLE
2857void
2858ev_async_start (EV_P_ ev_async *w)
2859{
2860 if (expect_false (ev_is_active (w)))
2861 return;
2862
2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2866
2867 ev_start (EV_A_ (W)w, ++asynccnt);
2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2872}
2873
2874void
2875ev_async_stop (EV_P_ ev_async *w)
2876{
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ev_active (w);
2885
2886 asyncs [active - 1] = asyncs [--asynccnt];
2887 ev_active (asyncs [active - 1]) = active;
2888 }
2889
2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void
2896ev_async_send (EV_P_ ev_async *w)
2897{
2898 w->sent = 1;
2899 evpipe_write (EV_A_ &gotasync);
2900}
2901#endif
1630 2902
1631/*****************************************************************************/ 2903/*****************************************************************************/
1632 2904
1633struct ev_once 2905struct ev_once
1634{ 2906{
1635 struct ev_io io; 2907 ev_io io;
1636 struct ev_timer to; 2908 ev_timer to;
1637 void (*cb)(int revents, void *arg); 2909 void (*cb)(int revents, void *arg);
1638 void *arg; 2910 void *arg;
1639}; 2911};
1640 2912
1641static void 2913static void
1650 2922
1651 cb (revents, arg); 2923 cb (revents, arg);
1652} 2924}
1653 2925
1654static void 2926static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 2927once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 2928{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2929 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1658} 2930}
1659 2931
1660static void 2932static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 2933once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 2934{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2935 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1664} 2936}
1665 2937
1666void 2938void
1690 ev_timer_set (&once->to, timeout, 0.); 2962 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 2963 ev_timer_start (EV_A_ &once->to);
1692 } 2964 }
1693} 2965}
1694 2966
2967#if EV_MULTIPLICITY
2968 #include "ev_wrap.h"
2969#endif
2970
1695#ifdef __cplusplus 2971#ifdef __cplusplus
1696} 2972}
1697#endif 2973#endif
1698 2974

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines