ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
159# include <io.h>
116# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 161# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
120# endif 164# endif
121#endif 165#endif
122 166
123/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
124 168
125#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
126# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
127#endif 175#endif
128 176
129#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
131#endif 187#endif
132 188
133#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
135#endif 191#endif
141# define EV_USE_POLL 1 197# define EV_USE_POLL 1
142# endif 198# endif
143#endif 199#endif
144 200
145#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
146# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
147#endif 207#endif
148 208
149#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
151#endif 211#endif
152 212
153#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 214# define EV_USE_PORT 0
155#endif 215#endif
156 216
157/**/ 217#ifndef EV_USE_INOTIFY
158 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 219# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 220# else
161# undef EV_USE_POLL 221# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 268
165#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
168#endif 272#endif
170#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
173#endif 277#endif
174 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
175#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 301# include <winsock.h>
177#endif 302#endif
178 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
179/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 333
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 337
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 338#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 340# define noinline __attribute__ ((noinline))
195#else 341#else
196# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
197# define inline static 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
198#endif 347#endif
199 348
200#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
202 358
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
205 361
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 363#define EMPTY2(a,b) /* used to suppress some warnings */
208 364
209typedef struct ev_watcher *W; 365typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
212 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
214 377
215#ifdef _WIN32 378#ifdef _WIN32
216# include "ev_win32.c" 379# include "ev_win32.c"
217#endif 380#endif
218 381
219/*****************************************************************************/ 382/*****************************************************************************/
220 383
221static void (*syserr_cb)(const char *msg); 384static void (*syserr_cb)(const char *msg);
222 385
386void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 387ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 388{
225 syserr_cb = cb; 389 syserr_cb = cb;
226} 390}
227 391
228static void 392static void noinline
229syserr (const char *msg) 393syserr (const char *msg)
230{ 394{
231 if (!msg) 395 if (!msg)
232 msg = "(libev) system error"; 396 msg = "(libev) system error";
233 397
238 perror (msg); 402 perror (msg);
239 abort (); 403 abort ();
240 } 404 }
241} 405}
242 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
243static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 423
424void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 426{
247 alloc = cb; 427 alloc = cb;
248} 428}
249 429
250static void * 430inline_speed void *
251ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
252{ 432{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
254 434
255 if (!ptr && size) 435 if (!ptr && size)
256 { 436 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 438 abort ();
279typedef struct 459typedef struct
280{ 460{
281 W w; 461 W w;
282 int events; 462 int events;
283} ANPENDING; 463} ANPENDING;
464
465#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */
467typedef struct
468{
469 WL head;
470} ANFS;
471#endif
472
473/* Heap Entry */
474#if EV_HEAP_CACHE_AT
475 typedef struct {
476 ev_tstamp at;
477 WT w;
478 } ANHE;
479
480 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else
484 typedef WT ANHE;
485
486 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he)
489#endif
284 490
285#if EV_MULTIPLICITY 491#if EV_MULTIPLICITY
286 492
287 struct ev_loop 493 struct ev_loop
288 { 494 {
322 gettimeofday (&tv, 0); 528 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 529 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif 530#endif
325} 531}
326 532
327inline ev_tstamp 533ev_tstamp inline_size
328get_clock (void) 534get_clock (void)
329{ 535{
330#if EV_USE_MONOTONIC 536#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 537 if (expect_true (have_monotonic))
332 { 538 {
345{ 551{
346 return ev_rt_now; 552 return ev_rt_now;
347} 553}
348#endif 554#endif
349 555
350#define array_roundsize(type,n) (((n) | 4) & ~3) 556void
557ev_sleep (ev_tstamp delay)
558{
559 if (delay > 0.)
560 {
561#if EV_USE_NANOSLEEP
562 struct timespec ts;
563
564 ts.tv_sec = (time_t)delay;
565 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
566
567 nanosleep (&ts, 0);
568#elif defined(_WIN32)
569 Sleep ((unsigned long)(delay * 1e3));
570#else
571 struct timeval tv;
572
573 tv.tv_sec = (time_t)delay;
574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */
579 select (0, 0, 0, 0, &tv);
580#endif
581 }
582}
583
584/*****************************************************************************/
585
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
587
588int inline_size
589array_nextsize (int elem, int cur, int cnt)
590{
591 int ncur = cur + 1;
592
593 do
594 ncur <<= 1;
595 while (cnt > ncur);
596
597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
599 {
600 ncur *= elem;
601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
602 ncur = ncur - sizeof (void *) * 4;
603 ncur /= elem;
604 }
605
606 return ncur;
607}
608
609static noinline void *
610array_realloc (int elem, void *base, int *cur, int cnt)
611{
612 *cur = array_nextsize (elem, *cur, cnt);
613 return ev_realloc (base, elem * *cur);
614}
351 615
352#define array_needsize(type,base,cur,cnt,init) \ 616#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 617 if (expect_false ((cnt) > (cur))) \
354 { \ 618 { \
355 int newcnt = cur; \ 619 int ocur_ = (cur); \
356 do \ 620 (base) = (type *)array_realloc \
357 { \ 621 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 622 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 623 }
366 624
625#if 0
367#define array_slim(type,stem) \ 626#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 627 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 628 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 629 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 630 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 631 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 632 }
633#endif
374 634
375#define array_free(stem, idx) \ 635#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 636 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
377 637
378/*****************************************************************************/ 638/*****************************************************************************/
379 639
380static void 640void noinline
641ev_feed_event (EV_P_ void *w, int revents)
642{
643 W w_ = (W)w;
644 int pri = ABSPRI (w_);
645
646 if (expect_false (w_->pending))
647 pendings [pri][w_->pending - 1].events |= revents;
648 else
649 {
650 w_->pending = ++pendingcnt [pri];
651 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
652 pendings [pri][w_->pending - 1].w = w_;
653 pendings [pri][w_->pending - 1].events = revents;
654 }
655}
656
657void inline_speed
658queue_events (EV_P_ W *events, int eventcnt, int type)
659{
660 int i;
661
662 for (i = 0; i < eventcnt; ++i)
663 ev_feed_event (EV_A_ events [i], type);
664}
665
666/*****************************************************************************/
667
668void inline_size
381anfds_init (ANFD *base, int count) 669anfds_init (ANFD *base, int count)
382{ 670{
383 while (count--) 671 while (count--)
384 { 672 {
385 base->head = 0; 673 base->head = 0;
388 676
389 ++base; 677 ++base;
390 } 678 }
391} 679}
392 680
393void 681void inline_speed
394ev_feed_event (EV_P_ void *w, int revents)
395{
396 W w_ = (W)w;
397
398 if (expect_false (w_->pending))
399 {
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
401 return;
402 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408}
409
410static void
411queue_events (EV_P_ W *events, int eventcnt, int type)
412{
413 int i;
414
415 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type);
417}
418
419inline void
420fd_event (EV_P_ int fd, int revents) 682fd_event (EV_P_ int fd, int revents)
421{ 683{
422 ANFD *anfd = anfds + fd; 684 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 685 ev_io *w;
424 686
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 687 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 688 {
427 int ev = w->events & revents; 689 int ev = w->events & revents;
428 690
429 if (ev) 691 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 692 ev_feed_event (EV_A_ (W)w, ev);
432} 694}
433 695
434void 696void
435ev_feed_fd_event (EV_P_ int fd, int revents) 697ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 698{
699 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 700 fd_event (EV_A_ fd, revents);
438} 701}
439 702
440/*****************************************************************************/ 703void inline_size
441
442inline void
443fd_reify (EV_P) 704fd_reify (EV_P)
444{ 705{
445 int i; 706 int i;
446 707
447 for (i = 0; i < fdchangecnt; ++i) 708 for (i = 0; i < fdchangecnt; ++i)
448 { 709 {
449 int fd = fdchanges [i]; 710 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 711 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 712 ev_io *w;
452 713
453 int events = 0; 714 unsigned char events = 0;
454 715
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 716 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 717 events |= (unsigned char)w->events;
457 718
458#if EV_SELECT_IS_WINSOCKET 719#if EV_SELECT_IS_WINSOCKET
459 if (events) 720 if (events)
460 { 721 {
461 unsigned long argp; 722 unsigned long arg;
723 #ifdef EV_FD_TO_WIN32_HANDLE
724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
725 #else
462 anfd->handle = _get_osfhandle (fd); 726 anfd->handle = _get_osfhandle (fd);
727 #endif
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
464 } 729 }
465#endif 730#endif
466 731
732 {
733 unsigned char o_events = anfd->events;
734 unsigned char o_reify = anfd->reify;
735
467 anfd->reify = 0; 736 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 737 anfd->events = events;
738
739 if (o_events != events || o_reify & EV_IOFDSET)
740 backend_modify (EV_A_ fd, o_events, events);
741 }
471 } 742 }
472 743
473 fdchangecnt = 0; 744 fdchangecnt = 0;
474} 745}
475 746
476static void 747void inline_size
477fd_change (EV_P_ int fd) 748fd_change (EV_P_ int fd, int flags)
478{ 749{
479 if (expect_false (anfds [fd].reify)) 750 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 751 anfds [fd].reify |= flags;
483 752
753 if (expect_true (!reify))
754 {
484 ++fdchangecnt; 755 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 756 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 757 fdchanges [fdchangecnt - 1] = fd;
758 }
487} 759}
488 760
489static void 761void inline_speed
490fd_kill (EV_P_ int fd) 762fd_kill (EV_P_ int fd)
491{ 763{
492 struct ev_io *w; 764 ev_io *w;
493 765
494 while ((w = (struct ev_io *)anfds [fd].head)) 766 while ((w = (ev_io *)anfds [fd].head))
495 { 767 {
496 ev_io_stop (EV_A_ w); 768 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 769 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 770 }
499} 771}
500 772
501inline int 773int inline_size
502fd_valid (int fd) 774fd_valid (int fd)
503{ 775{
504#ifdef _WIN32 776#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 777 return _get_osfhandle (fd) != -1;
506#else 778#else
507 return fcntl (fd, F_GETFD) != -1; 779 return fcntl (fd, F_GETFD) != -1;
508#endif 780#endif
509} 781}
510 782
511/* called on EBADF to verify fds */ 783/* called on EBADF to verify fds */
512static void 784static void noinline
513fd_ebadf (EV_P) 785fd_ebadf (EV_P)
514{ 786{
515 int fd; 787 int fd;
516 788
517 for (fd = 0; fd < anfdmax; ++fd) 789 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 790 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 791 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 792 fd_kill (EV_A_ fd);
521} 793}
522 794
523/* called on ENOMEM in select/poll to kill some fds and retry */ 795/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 796static void noinline
525fd_enomem (EV_P) 797fd_enomem (EV_P)
526{ 798{
527 int fd; 799 int fd;
528 800
529 for (fd = anfdmax; fd--; ) 801 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 804 fd_kill (EV_A_ fd);
533 return; 805 return;
534 } 806 }
535} 807}
536 808
537/* usually called after fork if method needs to re-arm all fds from scratch */ 809/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 810static void noinline
539fd_rearm_all (EV_P) 811fd_rearm_all (EV_P)
540{ 812{
541 int fd; 813 int fd;
542 814
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 815 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 816 if (anfds [fd].events)
546 { 817 {
547 anfds [fd].events = 0; 818 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 819 fd_change (EV_A_ fd, EV_IOFDSET | 1);
549 } 820 }
550} 821}
551 822
552/*****************************************************************************/ 823/*****************************************************************************/
553 824
554static void 825/*
555upheap (WT *heap, int k) 826 * the heap functions want a real array index. array index 0 uis guaranteed to not
556{ 827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
557 WT w = heap [k]; 828 * the branching factor of the d-tree.
829 */
558 830
559 while (k && heap [k >> 1]->at > w->at) 831/*
560 { 832 * at the moment we allow libev the luxury of two heaps,
561 heap [k] = heap [k >> 1]; 833 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
562 ((W)heap [k])->active = k + 1; 834 * which is more cache-efficient.
563 k >>= 1; 835 * the difference is about 5% with 50000+ watchers.
564 } 836 */
837#if EV_USE_4HEAP
565 838
566 heap [k] = w; 839#define DHEAP 4
567 ((W)heap [k])->active = k + 1; 840#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k))
568 843
569} 844/* away from the root */
570 845void inline_speed
571static void
572downheap (WT *heap, int N, int k) 846downheap (ANHE *heap, int N, int k)
573{ 847{
574 WT w = heap [k]; 848 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0;
575 850
576 while (k < (N >> 1)) 851 for (;;)
577 { 852 {
578 int j = k << 1; 853 ev_tstamp minat;
854 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
579 856
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 857 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E))
581 ++j; 859 {
582 860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
583 if (w->at <= heap [j]->at) 861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else if (pos < E)
866 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 }
872 else
584 break; 873 break;
585 874
875 if (ANHE_at (he) <= minat)
876 break;
877
878 heap [k] = *minpos;
879 ev_active (ANHE_w (*minpos)) = k;
880
881 k = minpos - heap;
882 }
883
884 heap [k] = he;
885 ev_active (ANHE_w (he)) = k;
886}
887
888#else /* 4HEAP */
889
890#define HEAP0 1
891#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p))
893
894/* away from the root */
895void inline_speed
896downheap (ANHE *heap, int N, int k)
897{
898 ANHE he = heap [k];
899
900 for (;;)
901 {
902 int c = k << 1;
903
904 if (c > N + HEAP0 - 1)
905 break;
906
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break;
912
586 heap [k] = heap [j]; 913 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
915
588 k = j; 916 k = c;
589 } 917 }
590 918
591 heap [k] = w; 919 heap [k] = he;
592 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
593} 921}
922#endif
594 923
595inline void 924/* towards the root */
925void inline_speed
926upheap (ANHE *heap, int k)
927{
928 ANHE he = heap [k];
929
930 for (;;)
931 {
932 int p = HPARENT (k);
933
934 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
935 break;
936
937 heap [k] = heap [p];
938 ev_active (ANHE_w (heap [k])) = k;
939 k = p;
940 }
941
942 heap [k] = he;
943 ev_active (ANHE_w (he)) = k;
944}
945
946void inline_size
596adjustheap (WT *heap, int N, int k) 947adjustheap (ANHE *heap, int N, int k)
597{ 948{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
598 upheap (heap, k); 950 upheap (heap, k);
951 else
599 downheap (heap, N, k); 952 downheap (heap, N, k);
953}
954
955/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size
957reheap (ANHE *heap, int N)
958{
959 int i;
960
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
962 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
963 for (i = 0; i < N; ++i)
964 upheap (heap, i + HEAP0);
600} 965}
601 966
602/*****************************************************************************/ 967/*****************************************************************************/
603 968
604typedef struct 969typedef struct
605{ 970{
606 WL head; 971 WL head;
607 sig_atomic_t volatile gotsig; 972 EV_ATOMIC_T gotsig;
608} ANSIG; 973} ANSIG;
609 974
610static ANSIG *signals; 975static ANSIG *signals;
611static int signalmax; 976static int signalmax;
612 977
613static int sigpipe [2]; 978static EV_ATOMIC_T gotsig;
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 979
617static void 980void inline_size
618signals_init (ANSIG *base, int count) 981signals_init (ANSIG *base, int count)
619{ 982{
620 while (count--) 983 while (count--)
621 { 984 {
622 base->head = 0; 985 base->head = 0;
624 987
625 ++base; 988 ++base;
626 } 989 }
627} 990}
628 991
629static void 992/*****************************************************************************/
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635 993
636 signals [signum - 1].gotsig = 1; 994void inline_speed
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 995fd_intern (int fd)
682{ 996{
683#ifdef _WIN32 997#ifdef _WIN32
684 int arg = 1; 998 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
686#else 1000#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1002 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1003#endif
690} 1004}
691 1005
1006static void noinline
1007evpipe_init (EV_P)
1008{
1009 if (!ev_is_active (&pipeev))
1010 {
1011#if EV_USE_EVENTFD
1012 if ((evfd = eventfd (0, 0)) >= 0)
1013 {
1014 evpipe [0] = -1;
1015 fd_intern (evfd);
1016 ev_io_set (&pipeev, evfd, EV_READ);
1017 }
1018 else
1019#endif
1020 {
1021 while (pipe (evpipe))
1022 syserr ("(libev) error creating signal/async pipe");
1023
1024 fd_intern (evpipe [0]);
1025 fd_intern (evpipe [1]);
1026 ev_io_set (&pipeev, evpipe [0], EV_READ);
1027 }
1028
1029 ev_io_start (EV_A_ &pipeev);
1030 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 }
1032}
1033
1034void inline_size
1035evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1036{
1037 if (!*flag)
1038 {
1039 int old_errno = errno; /* save errno because write might clobber it */
1040
1041 *flag = 1;
1042
1043#if EV_USE_EVENTFD
1044 if (evfd >= 0)
1045 {
1046 uint64_t counter = 1;
1047 write (evfd, &counter, sizeof (uint64_t));
1048 }
1049 else
1050#endif
1051 write (evpipe [1], &old_errno, 1);
1052
1053 errno = old_errno;
1054 }
1055}
1056
692static void 1057static void
693siginit (EV_P) 1058pipecb (EV_P_ ev_io *iow, int revents)
694{ 1059{
695 fd_intern (sigpipe [0]); 1060#if EV_USE_EVENTFD
696 fd_intern (sigpipe [1]); 1061 if (evfd >= 0)
1062 {
1063 uint64_t counter;
1064 read (evfd, &counter, sizeof (uint64_t));
1065 }
1066 else
1067#endif
1068 {
1069 char dummy;
1070 read (evpipe [0], &dummy, 1);
1071 }
697 1072
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1073 if (gotsig && ev_is_default_loop (EV_A))
699 ev_io_start (EV_A_ &sigev); 1074 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1075 int signum;
1076 gotsig = 0;
1077
1078 for (signum = signalmax; signum--; )
1079 if (signals [signum].gotsig)
1080 ev_feed_signal_event (EV_A_ signum + 1);
1081 }
1082
1083#if EV_ASYNC_ENABLE
1084 if (gotasync)
1085 {
1086 int i;
1087 gotasync = 0;
1088
1089 for (i = asynccnt; i--; )
1090 if (asyncs [i]->sent)
1091 {
1092 asyncs [i]->sent = 0;
1093 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1094 }
1095 }
1096#endif
701} 1097}
702 1098
703/*****************************************************************************/ 1099/*****************************************************************************/
704 1100
705static struct ev_child *childs [PID_HASHSIZE]; 1101static void
1102ev_sighandler (int signum)
1103{
1104#if EV_MULTIPLICITY
1105 struct ev_loop *loop = &default_loop_struct;
1106#endif
1107
1108#if _WIN32
1109 signal (signum, ev_sighandler);
1110#endif
1111
1112 signals [signum - 1].gotsig = 1;
1113 evpipe_write (EV_A_ &gotsig);
1114}
1115
1116void noinline
1117ev_feed_signal_event (EV_P_ int signum)
1118{
1119 WL w;
1120
1121#if EV_MULTIPLICITY
1122 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1123#endif
1124
1125 --signum;
1126
1127 if (signum < 0 || signum >= signalmax)
1128 return;
1129
1130 signals [signum].gotsig = 0;
1131
1132 for (w = signals [signum].head; w; w = w->next)
1133 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1134}
1135
1136/*****************************************************************************/
1137
1138static WL childs [EV_PID_HASHSIZE];
706 1139
707#ifndef _WIN32 1140#ifndef _WIN32
708 1141
709static struct ev_signal childev; 1142static ev_signal childev;
1143
1144#ifndef WIFCONTINUED
1145# define WIFCONTINUED(status) 0
1146#endif
1147
1148void inline_speed
1149child_reap (EV_P_ int chain, int pid, int status)
1150{
1151 ev_child *w;
1152 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1153
1154 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1155 {
1156 if ((w->pid == pid || !w->pid)
1157 && (!traced || (w->flags & 1)))
1158 {
1159 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 w->rpid = pid;
1161 w->rstatus = status;
1162 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1163 }
1164 }
1165}
710 1166
711#ifndef WCONTINUED 1167#ifndef WCONTINUED
712# define WCONTINUED 0 1168# define WCONTINUED 0
713#endif 1169#endif
714 1170
715static void 1171static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1172childcb (EV_P_ ev_signal *sw, int revents)
732{ 1173{
733 int pid, status; 1174 int pid, status;
734 1175
1176 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1177 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1178 if (!WCONTINUED
1179 || errno != EINVAL
1180 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1181 return;
1182
737 /* make sure we are called again until all childs have been reaped */ 1183 /* make sure we are called again until all children have been reaped */
1184 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1185 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1186
740 child_reap (EV_A_ sw, pid, pid, status); 1187 child_reap (EV_A_ pid, pid, status);
1188 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1189 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1190}
744 1191
745#endif 1192#endif
746 1193
747/*****************************************************************************/ 1194/*****************************************************************************/
773{ 1220{
774 return EV_VERSION_MINOR; 1221 return EV_VERSION_MINOR;
775} 1222}
776 1223
777/* return true if we are running with elevated privileges and should ignore env variables */ 1224/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1225int inline_size
779enable_secure (void) 1226enable_secure (void)
780{ 1227{
781#ifdef _WIN32 1228#ifdef _WIN32
782 return 0; 1229 return 0;
783#else 1230#else
785 || getgid () != getegid (); 1232 || getgid () != getegid ();
786#endif 1233#endif
787} 1234}
788 1235
789unsigned int 1236unsigned int
790ev_method (EV_P) 1237ev_supported_backends (void)
791{ 1238{
792 return method; 1239 unsigned int flags = 0;
793}
794 1240
795static void 1241 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1242 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1243 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1244 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1245 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1246
1247 return flags;
1248}
1249
1250unsigned int
1251ev_recommended_backends (void)
1252{
1253 unsigned int flags = ev_supported_backends ();
1254
1255#ifndef __NetBSD__
1256 /* kqueue is borked on everything but netbsd apparently */
1257 /* it usually doesn't work correctly on anything but sockets and pipes */
1258 flags &= ~EVBACKEND_KQUEUE;
1259#endif
1260#ifdef __APPLE__
1261 // flags &= ~EVBACKEND_KQUEUE; for documentation
1262 flags &= ~EVBACKEND_POLL;
1263#endif
1264
1265 return flags;
1266}
1267
1268unsigned int
1269ev_embeddable_backends (void)
1270{
1271 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1272
1273 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1274 /* please fix it and tell me how to detect the fix */
1275 flags &= ~EVBACKEND_EPOLL;
1276
1277 return flags;
1278}
1279
1280unsigned int
1281ev_backend (EV_P)
1282{
1283 return backend;
1284}
1285
1286unsigned int
1287ev_loop_count (EV_P)
1288{
1289 return loop_count;
1290}
1291
1292void
1293ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 io_blocktime = interval;
1296}
1297
1298void
1299ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1300{
1301 timeout_blocktime = interval;
1302}
1303
1304static void noinline
796loop_init (EV_P_ unsigned int flags) 1305loop_init (EV_P_ unsigned int flags)
797{ 1306{
798 if (!method) 1307 if (!backend)
799 { 1308 {
800#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
801 { 1310 {
802 struct timespec ts; 1311 struct timespec ts;
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1312 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1313 have_monotonic = 1;
805 } 1314 }
806#endif 1315#endif
807 1316
808 ev_rt_now = ev_time (); 1317 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1318 mn_now = get_clock ();
810 now_floor = mn_now; 1319 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1320 rtmn_diff = ev_rt_now - mn_now;
812 1321
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1322 io_blocktime = 0.;
1323 timeout_blocktime = 0.;
1324 backend = 0;
1325 backend_fd = -1;
1326 gotasync = 0;
1327#if EV_USE_INOTIFY
1328 fs_fd = -2;
1329#endif
1330
1331 /* pid check not overridable via env */
1332#ifndef _WIN32
1333 if (flags & EVFLAG_FORKCHECK)
1334 curpid = getpid ();
1335#endif
1336
1337 if (!(flags & EVFLAG_NOENV)
1338 && !enable_secure ()
1339 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1340 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1341
816 if (!(flags & 0x0000ffff)) 1342 if (!(flags & 0x0000ffffU))
817 flags |= 0x0000ffff; 1343 flags |= ev_recommended_backends ();
818 1344
819 method = 0;
820#if EV_USE_PORT 1345#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1347#endif
823#if EV_USE_KQUEUE 1348#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1350#endif
826#if EV_USE_EPOLL 1351#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1353#endif
829#if EV_USE_POLL 1354#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1355 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1356#endif
832#if EV_USE_SELECT 1357#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1358 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1359#endif
835 1360
836 ev_init (&sigev, sigcb); 1361 ev_init (&pipeev, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1362 ev_set_priority (&pipeev, EV_MAXPRI);
838 } 1363 }
839} 1364}
840 1365
841static void 1366static void noinline
842loop_destroy (EV_P) 1367loop_destroy (EV_P)
843{ 1368{
844 int i; 1369 int i;
845 1370
1371 if (ev_is_active (&pipeev))
1372 {
1373 ev_ref (EV_A); /* signal watcher */
1374 ev_io_stop (EV_A_ &pipeev);
1375
1376#if EV_USE_EVENTFD
1377 if (evfd >= 0)
1378 close (evfd);
1379#endif
1380
1381 if (evpipe [0] >= 0)
1382 {
1383 close (evpipe [0]);
1384 close (evpipe [1]);
1385 }
1386 }
1387
1388#if EV_USE_INOTIFY
1389 if (fs_fd >= 0)
1390 close (fs_fd);
1391#endif
1392
1393 if (backend_fd >= 0)
1394 close (backend_fd);
1395
846#if EV_USE_PORT 1396#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1397 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1398#endif
849#if EV_USE_KQUEUE 1399#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1400 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1401#endif
852#if EV_USE_EPOLL 1402#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1403 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1404#endif
855#if EV_USE_POLL 1405#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1406 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1407#endif
858#if EV_USE_SELECT 1408#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1409 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1410#endif
861 1411
862 for (i = NUMPRI; i--; ) 1412 for (i = NUMPRI; i--; )
1413 {
863 array_free (pending, [i]); 1414 array_free (pending, [i]);
1415#if EV_IDLE_ENABLE
1416 array_free (idle, [i]);
1417#endif
1418 }
1419
1420 ev_free (anfds); anfdmax = 0;
864 1421
865 /* have to use the microsoft-never-gets-it-right macro */ 1422 /* have to use the microsoft-never-gets-it-right macro */
866 array_free (fdchange, EMPTY0); 1423 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1424 array_free (timer, EMPTY);
868#if EV_PERIODICS 1425#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1426 array_free (periodic, EMPTY);
870#endif 1427#endif
1428#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1429 array_free (fork, EMPTY);
1430#endif
872 array_free (prepare, EMPTY0); 1431 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1432 array_free (check, EMPTY);
1433#if EV_ASYNC_ENABLE
1434 array_free (async, EMPTY);
1435#endif
874 1436
875 method = 0; 1437 backend = 0;
876} 1438}
877 1439
878static void 1440#if EV_USE_INOTIFY
1441void inline_size infy_fork (EV_P);
1442#endif
1443
1444void inline_size
879loop_fork (EV_P) 1445loop_fork (EV_P)
880{ 1446{
881#if EV_USE_PORT 1447#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1448 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1449#endif
884#if EV_USE_KQUEUE 1450#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1451 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1452#endif
887#if EV_USE_EPOLL 1453#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1454 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 1455#endif
1456#if EV_USE_INOTIFY
1457 infy_fork (EV_A);
1458#endif
890 1459
891 if (ev_is_active (&sigev)) 1460 if (ev_is_active (&pipeev))
892 { 1461 {
893 /* default loop */ 1462 /* this "locks" the handlers against writing to the pipe */
1463 /* while we modify the fd vars */
1464 gotsig = 1;
1465#if EV_ASYNC_ENABLE
1466 gotasync = 1;
1467#endif
894 1468
895 ev_ref (EV_A); 1469 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 1470 ev_io_stop (EV_A_ &pipeev);
1471
1472#if EV_USE_EVENTFD
1473 if (evfd >= 0)
1474 close (evfd);
1475#endif
1476
1477 if (evpipe [0] >= 0)
1478 {
897 close (sigpipe [0]); 1479 close (evpipe [0]);
898 close (sigpipe [1]); 1480 close (evpipe [1]);
1481 }
899 1482
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A); 1483 evpipe_init (EV_A);
1484 /* now iterate over everything, in case we missed something */
1485 pipecb (EV_A_ &pipeev, EV_READ);
904 } 1486 }
905 1487
906 postfork = 0; 1488 postfork = 0;
907} 1489}
908 1490
909#if EV_MULTIPLICITY 1491#if EV_MULTIPLICITY
1492
910struct ev_loop * 1493struct ev_loop *
911ev_loop_new (unsigned int flags) 1494ev_loop_new (unsigned int flags)
912{ 1495{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914 1497
915 memset (loop, 0, sizeof (struct ev_loop)); 1498 memset (loop, 0, sizeof (struct ev_loop));
916 1499
917 loop_init (EV_A_ flags); 1500 loop_init (EV_A_ flags);
918 1501
919 if (ev_method (EV_A)) 1502 if (ev_backend (EV_A))
920 return loop; 1503 return loop;
921 1504
922 return 0; 1505 return 0;
923} 1506}
924 1507
930} 1513}
931 1514
932void 1515void
933ev_loop_fork (EV_P) 1516ev_loop_fork (EV_P)
934{ 1517{
935 postfork = 1; 1518 postfork = 1; /* must be in line with ev_default_fork */
936} 1519}
937 1520
1521#if EV_VERIFY
1522static void noinline
1523verify_watcher (EV_P_ W w)
1524{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526
1527 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529}
1530
1531static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N)
1533{
1534 int i;
1535
1536 for (i = HEAP0; i < N + HEAP0; ++i)
1537 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 }
1544}
1545
1546static void noinline
1547array_verify (EV_P_ W *ws, int cnt)
1548{
1549 while (cnt--)
1550 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]);
1553 }
1554}
1555#endif
1556
1557void
1558ev_loop_verify (EV_P)
1559{
1560#if EV_VERIFY
1561 int i;
1562 WL w;
1563
1564 assert (activecnt >= -1);
1565
1566 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1569
1570 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next)
1573 {
1574 verify_watcher (EV_A_ (W)w);
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 }
1578
1579 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt);
1581
1582#if EV_PERIODIC_ENABLE
1583 assert (periodicmax >= periodiccnt);
1584 verify_heap (EV_A_ periodics, periodiccnt);
1585#endif
1586
1587 for (i = NUMPRI; i--; )
1588 {
1589 assert (pendingmax [i] >= pendingcnt [i]);
1590#if EV_IDLE_ENABLE
1591 assert (idleall >= 0);
1592 assert (idlemax [i] >= idlecnt [i]);
1593 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1594#endif
1595 }
1596
1597#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif
1601
1602#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif
1606
1607 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt);
1609
1610 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt);
1612
1613# if 0
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
938#endif 1616# endif
1617#endif
1618}
1619
1620#endif /* multiplicity */
939 1621
940#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
941struct ev_loop * 1623struct ev_loop *
942ev_default_loop_init (unsigned int flags) 1624ev_default_loop_init (unsigned int flags)
943#else 1625#else
944int 1626int
945ev_default_loop (unsigned int flags) 1627ev_default_loop (unsigned int flags)
946#endif 1628#endif
947{ 1629{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 1630 if (!ev_default_loop_ptr)
953 { 1631 {
954#if EV_MULTIPLICITY 1632#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1633 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
956#else 1634#else
957 ev_default_loop_ptr = 1; 1635 ev_default_loop_ptr = 1;
958#endif 1636#endif
959 1637
960 loop_init (EV_A_ flags); 1638 loop_init (EV_A_ flags);
961 1639
962 if (ev_method (EV_A)) 1640 if (ev_backend (EV_A))
963 { 1641 {
964 siginit (EV_A);
965
966#ifndef _WIN32 1642#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1643 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 1644 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 1645 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1646 ev_unref (EV_A); /* child watcher should not keep loop alive */
987#ifndef _WIN32 1663#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */ 1664 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev); 1665 ev_signal_stop (EV_A_ &childev);
990#endif 1666#endif
991 1667
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A); 1668 loop_destroy (EV_A);
999} 1669}
1000 1670
1001void 1671void
1002ev_default_fork (void) 1672ev_default_fork (void)
1003{ 1673{
1004#if EV_MULTIPLICITY 1674#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1675 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif 1676#endif
1007 1677
1008 if (method) 1678 if (backend)
1009 postfork = 1; 1679 postfork = 1; /* must be in line with ev_loop_fork */
1010} 1680}
1011 1681
1012/*****************************************************************************/ 1682/*****************************************************************************/
1013 1683
1014static int 1684void
1015any_pending (EV_P) 1685ev_invoke (EV_P_ void *w, int revents)
1016{ 1686{
1017 int pri; 1687 EV_CB_INVOKE ((W)w, revents);
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024} 1688}
1025 1689
1026inline void 1690void inline_speed
1027call_pending (EV_P) 1691call_pending (EV_P)
1028{ 1692{
1029 int pri; 1693 int pri;
1030 1694
1031 for (pri = NUMPRI; pri--; ) 1695 for (pri = NUMPRI; pri--; )
1033 { 1697 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1698 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1699
1036 if (expect_true (p->w)) 1700 if (expect_true (p->w))
1037 { 1701 {
1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1703
1038 p->w->pending = 0; 1704 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 1705 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK;
1040 } 1707 }
1041 } 1708 }
1042} 1709}
1043 1710
1044inline void 1711#if EV_IDLE_ENABLE
1712void inline_size
1713idle_reify (EV_P)
1714{
1715 if (expect_false (idleall))
1716 {
1717 int pri;
1718
1719 for (pri = NUMPRI; pri--; )
1720 {
1721 if (pendingcnt [pri])
1722 break;
1723
1724 if (idlecnt [pri])
1725 {
1726 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1727 break;
1728 }
1729 }
1730 }
1731}
1732#endif
1733
1734void inline_size
1045timers_reify (EV_P) 1735timers_reify (EV_P)
1046{ 1736{
1737 EV_FREQUENT_CHECK;
1738
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 1740 {
1049 struct ev_timer *w = timers [0]; 1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1050 1742
1051 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1052 1744
1053 /* first reschedule or stop timer */ 1745 /* first reschedule or stop timer */
1054 if (w->repeat) 1746 if (w->repeat)
1055 { 1747 {
1748 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now;
1751
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 1753
1058 ((WT)w)->at += w->repeat; 1754 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 1755 downheap (timers, timercnt, HEAP0);
1063 } 1756 }
1064 else 1757 else
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 1759
1760 EV_FREQUENT_CHECK;
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1068 } 1762 }
1069} 1763}
1070 1764
1071#if EV_PERIODICS 1765#if EV_PERIODIC_ENABLE
1072inline void 1766void inline_size
1073periodics_reify (EV_P) 1767periodics_reify (EV_P)
1074{ 1768{
1769 EV_FREQUENT_CHECK;
1770
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 1772 {
1077 struct ev_periodic *w = periodics [0]; 1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1078 1774
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 1776
1081 /* first reschedule or stop timer */ 1777 /* first reschedule or stop timer */
1082 if (w->reschedule_cb) 1778 if (w->reschedule_cb)
1083 { 1779 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1086 downheap ((WT *)periodics, periodiccnt, 0); 1785 downheap (periodics, periodiccnt, HEAP0);
1087 } 1786 }
1088 else if (w->interval) 1787 else if (w->interval)
1089 { 1788 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1092 downheap ((WT *)periodics, periodiccnt, 0); 1804 downheap (periodics, periodiccnt, HEAP0);
1093 } 1805 }
1094 else 1806 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 1808
1809 EV_FREQUENT_CHECK;
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 } 1811 }
1099} 1812}
1100 1813
1101static void 1814static void noinline
1102periodics_reschedule (EV_P) 1815periodics_reschedule (EV_P)
1103{ 1816{
1104 int i; 1817 int i;
1105 1818
1106 /* adjust periodics after time jump */ 1819 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i) 1820 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1108 { 1821 {
1109 struct ev_periodic *w = periodics [i]; 1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1110 1823
1111 if (w->reschedule_cb) 1824 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval) 1826 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1828
1829 ANHE_at_cache (periodics [i]);
1830 }
1831
1832 reheap (periodics, periodiccnt);
1833}
1834#endif
1835
1836void inline_speed
1837time_update (EV_P_ ev_tstamp max_block)
1838{
1839 int i;
1840
1841#if EV_USE_MONOTONIC
1842 if (expect_true (have_monotonic))
1115 } 1843 {
1844 ev_tstamp odiff = rtmn_diff;
1116 1845
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock (); 1846 mn_now = get_clock ();
1127 1847
1848 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1849 /* interpolate in the meantime */
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1850 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 { 1851 {
1130 ev_rt_now = rtmn_diff + mn_now; 1852 ev_rt_now = rtmn_diff + mn_now;
1131 return 0; 1853 return;
1132 } 1854 }
1133 else 1855
1134 {
1135 now_floor = mn_now; 1856 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 1857 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 1858
1141inline void 1859 /* loop a few times, before making important decisions.
1142time_update (EV_P) 1860 * on the choice of "4": one iteration isn't enough,
1143{ 1861 * in case we get preempted during the calls to
1144 int i; 1862 * ev_time and get_clock. a second call is almost guaranteed
1145 1863 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 1864 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 1865 * in the unlikely event of having been preempted here.
1148 { 1866 */
1149 if (time_update_monotonic (EV_A)) 1867 for (i = 4; --i; )
1150 { 1868 {
1151 ev_tstamp odiff = rtmn_diff; 1869 rtmn_diff = ev_rt_now - mn_now;
1152 1870
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1872 return; /* all is well */
1873
1874 ev_rt_now = ev_time ();
1875 mn_now = get_clock ();
1876 now_floor = mn_now;
1877 }
1878
1879# if EV_PERIODIC_ENABLE
1880 periodics_reschedule (EV_A);
1881# endif
1882 /* no timer adjustment, as the monotonic clock doesn't jump */
1883 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1884 }
1885 else
1886#endif
1887 {
1888 ev_rt_now = ev_time ();
1889
1890 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1891 {
1892#if EV_PERIODIC_ENABLE
1893 periodics_reschedule (EV_A);
1894#endif
1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1896 for (i = 0; i < timercnt; ++i)
1154 { 1897 {
1155 rtmn_diff = ev_rt_now - mn_now; 1898 ANHE *he = timers + i + HEAP0;
1156 1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1900 ANHE_at_cache (*he);
1158 return; /* all is well */
1159
1160 ev_rt_now = ev_time ();
1161 mn_now = get_clock ();
1162 now_floor = mn_now;
1163 } 1901 }
1164
1165# if EV_PERIODICS
1166 periodics_reschedule (EV_A);
1167# endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 1902 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 1903
1188 mn_now = ev_rt_now; 1904 mn_now = ev_rt_now;
1189 } 1905 }
1190} 1906}
1191 1907
1199ev_unref (EV_P) 1915ev_unref (EV_P)
1200{ 1916{
1201 --activecnt; 1917 --activecnt;
1202} 1918}
1203 1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1204static int loop_done; 1926static int loop_done;
1205 1927
1206void 1928void
1207ev_loop (EV_P_ int flags) 1929ev_loop (EV_P_ int flags)
1208{ 1930{
1209 double block; 1931 loop_done = EVUNLOOP_CANCEL;
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1211 1932
1212 while (activecnt) 1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1934
1935 do
1213 { 1936 {
1937#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A);
1939#endif
1940
1941#ifndef _WIN32
1942 if (expect_false (curpid)) /* penalise the forking check even more */
1943 if (expect_false (getpid () != curpid))
1944 {
1945 curpid = getpid ();
1946 postfork = 1;
1947 }
1948#endif
1949
1950#if EV_FORK_ENABLE
1951 /* we might have forked, so queue fork handlers */
1952 if (expect_false (postfork))
1953 if (forkcnt)
1954 {
1955 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1956 call_pending (EV_A);
1957 }
1958#endif
1959
1214 /* queue check watchers (and execute them) */ 1960 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 1961 if (expect_false (preparecnt))
1216 { 1962 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1963 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 1964 call_pending (EV_A);
1219 } 1965 }
1220 1966
1967 if (expect_false (!activecnt))
1968 break;
1969
1221 /* we might have forked, so reify kernel state if necessary */ 1970 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 1971 if (expect_false (postfork))
1223 loop_fork (EV_A); 1972 loop_fork (EV_A);
1224 1973
1225 /* update fd-related kernel structures */ 1974 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 1975 fd_reify (EV_A);
1227 1976
1228 /* calculate blocking time */ 1977 /* calculate blocking time */
1978 {
1979 ev_tstamp waittime = 0.;
1980 ev_tstamp sleeptime = 0.;
1229 1981
1230 /* we only need this for !monotonic clock or timers, but as we basically 1982 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 1983 {
1238 ev_rt_now = ev_time (); 1984 /* update time to cancel out callback processing overhead */
1239 mn_now = ev_rt_now; 1985 time_update (EV_A_ 1e100);
1240 }
1241 1986
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 1987 waittime = MAX_BLOCKTIME;
1247 1988
1248 if (timercnt) 1989 if (timercnt)
1249 { 1990 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1251 if (block > to) block = to; 1992 if (waittime > to) waittime = to;
1252 } 1993 }
1253 1994
1254#if EV_PERIODICS 1995#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 1996 if (periodiccnt)
1256 { 1997 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 1999 if (waittime > to) waittime = to;
1259 } 2000 }
1260#endif 2001#endif
1261 2002
1262 if (expect_false (block < 0.)) block = 0.; 2003 if (expect_false (waittime < timeout_blocktime))
2004 waittime = timeout_blocktime;
2005
2006 sleeptime = waittime - backend_fudge;
2007
2008 if (expect_true (sleeptime > io_blocktime))
2009 sleeptime = io_blocktime;
2010
2011 if (sleeptime)
2012 {
2013 ev_sleep (sleeptime);
2014 waittime -= sleeptime;
2015 }
1263 } 2016 }
1264 2017
1265 method_poll (EV_A_ block); 2018 ++loop_count;
2019 backend_poll (EV_A_ waittime);
1266 2020
1267 /* update ev_rt_now, do magic */ 2021 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2022 time_update (EV_A_ waittime + sleeptime);
2023 }
1269 2024
1270 /* queue pending timers and reschedule them */ 2025 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2026 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2027#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2028 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2029#endif
1275 2030
2031#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2032 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2033 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2034#endif
1279 2035
1280 /* queue check watchers, to be executed first */ 2036 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2037 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2038 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 2039
1284 call_pending (EV_A); 2040 call_pending (EV_A);
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2041 }
2042 while (expect_true (
2043 activecnt
2044 && !loop_done
2045 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2046 ));
1289 2047
1290 if (loop_done != 2) 2048 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 2049 loop_done = EVUNLOOP_CANCEL;
1292} 2050}
1293 2051
1294void 2052void
1295ev_unloop (EV_P_ int how) 2053ev_unloop (EV_P_ int how)
1296{ 2054{
1297 loop_done = how; 2055 loop_done = how;
1298} 2056}
1299 2057
1300/*****************************************************************************/ 2058/*****************************************************************************/
1301 2059
1302inline void 2060void inline_size
1303wlist_add (WL *head, WL elem) 2061wlist_add (WL *head, WL elem)
1304{ 2062{
1305 elem->next = *head; 2063 elem->next = *head;
1306 *head = elem; 2064 *head = elem;
1307} 2065}
1308 2066
1309inline void 2067void inline_size
1310wlist_del (WL *head, WL elem) 2068wlist_del (WL *head, WL elem)
1311{ 2069{
1312 while (*head) 2070 while (*head)
1313 { 2071 {
1314 if (*head == elem) 2072 if (*head == elem)
1319 2077
1320 head = &(*head)->next; 2078 head = &(*head)->next;
1321 } 2079 }
1322} 2080}
1323 2081
1324inline void 2082void inline_speed
1325ev_clear_pending (EV_P_ W w) 2083clear_pending (EV_P_ W w)
1326{ 2084{
1327 if (w->pending) 2085 if (w->pending)
1328 { 2086 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2087 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1330 w->pending = 0; 2088 w->pending = 0;
1331 } 2089 }
1332} 2090}
1333 2091
1334inline void 2092int
2093ev_clear_pending (EV_P_ void *w)
2094{
2095 W w_ = (W)w;
2096 int pending = w_->pending;
2097
2098 if (expect_true (pending))
2099 {
2100 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2101 w_->pending = 0;
2102 p->w = 0;
2103 return p->events;
2104 }
2105 else
2106 return 0;
2107}
2108
2109void inline_size
2110pri_adjust (EV_P_ W w)
2111{
2112 int pri = w->priority;
2113 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2114 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2115 w->priority = pri;
2116}
2117
2118void inline_speed
1335ev_start (EV_P_ W w, int active) 2119ev_start (EV_P_ W w, int active)
1336{ 2120{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2121 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2122 w->active = active;
1341 ev_ref (EV_A); 2123 ev_ref (EV_A);
1342} 2124}
1343 2125
1344inline void 2126void inline_size
1345ev_stop (EV_P_ W w) 2127ev_stop (EV_P_ W w)
1346{ 2128{
1347 ev_unref (EV_A); 2129 ev_unref (EV_A);
1348 w->active = 0; 2130 w->active = 0;
1349} 2131}
1350 2132
1351/*****************************************************************************/ 2133/*****************************************************************************/
1352 2134
1353void 2135void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2136ev_io_start (EV_P_ ev_io *w)
1355{ 2137{
1356 int fd = w->fd; 2138 int fd = w->fd;
1357 2139
1358 if (expect_false (ev_is_active (w))) 2140 if (expect_false (ev_is_active (w)))
1359 return; 2141 return;
1360 2142
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2143 assert (("ev_io_start called with negative fd", fd >= 0));
1362 2144
2145 EV_FREQUENT_CHECK;
2146
1363 ev_start (EV_A_ (W)w, 1); 2147 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2149 wlist_add (&anfds[fd].head, (WL)w);
1366 2150
1367 fd_change (EV_A_ fd); 2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1368} 2152 w->events &= ~EV_IOFDSET;
1369 2153
1370void 2154 EV_FREQUENT_CHECK;
2155}
2156
2157void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2158ev_io_stop (EV_P_ ev_io *w)
1372{ 2159{
1373 ev_clear_pending (EV_A_ (W)w); 2160 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2161 if (expect_false (!ev_is_active (w)))
1375 return; 2162 return;
1376 2163
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2165
2166 EV_FREQUENT_CHECK;
2167
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2168 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2169 ev_stop (EV_A_ (W)w);
1381 2170
1382 fd_change (EV_A_ w->fd); 2171 fd_change (EV_A_ w->fd, 1);
1383}
1384 2172
1385void 2173 EV_FREQUENT_CHECK;
2174}
2175
2176void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2177ev_timer_start (EV_P_ ev_timer *w)
1387{ 2178{
1388 if (expect_false (ev_is_active (w))) 2179 if (expect_false (ev_is_active (w)))
1389 return; 2180 return;
1390 2181
1391 ((WT)w)->at += mn_now; 2182 ev_at (w) += mn_now;
1392 2183
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2185
2186 EV_FREQUENT_CHECK;
2187
2188 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2191 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2192 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w));
1399 2194
2195 EV_FREQUENT_CHECK;
2196
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2198}
1402 2199
1403void 2200void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2201ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2202{
1406 ev_clear_pending (EV_A_ (W)w); 2203 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2204 if (expect_false (!ev_is_active (w)))
1408 return; 2205 return;
1409 2206
2207 EV_FREQUENT_CHECK;
2208
2209 {
2210 int active = ev_active (w);
2211
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2213
2214 --timercnt;
2215
1412 if (expect_true (((W)w)->active < timercnt--)) 2216 if (expect_true (active < timercnt + HEAP0))
1413 { 2217 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2218 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2219 adjustheap (timers, timercnt, active);
1416 } 2220 }
2221 }
1417 2222
1418 ((WT)w)->at -= mn_now; 2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now;
1419 2226
1420 ev_stop (EV_A_ (W)w); 2227 ev_stop (EV_A_ (W)w);
1421} 2228}
1422 2229
1423void 2230void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2231ev_timer_again (EV_P_ ev_timer *w)
1425{ 2232{
2233 EV_FREQUENT_CHECK;
2234
1426 if (ev_is_active (w)) 2235 if (ev_is_active (w))
1427 { 2236 {
1428 if (w->repeat) 2237 if (w->repeat)
1429 { 2238 {
1430 ((WT)w)->at = mn_now + w->repeat; 2239 ev_at (w) = mn_now + w->repeat;
2240 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2241 adjustheap (timers, timercnt, ev_active (w));
1432 } 2242 }
1433 else 2243 else
1434 ev_timer_stop (EV_A_ w); 2244 ev_timer_stop (EV_A_ w);
1435 } 2245 }
1436 else if (w->repeat) 2246 else if (w->repeat)
1437 { 2247 {
1438 w->at = w->repeat; 2248 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2249 ev_timer_start (EV_A_ w);
1440 } 2250 }
1441}
1442 2251
2252 EV_FREQUENT_CHECK;
2253}
2254
1443#if EV_PERIODICS 2255#if EV_PERIODIC_ENABLE
1444void 2256void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2257ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2258{
1447 if (expect_false (ev_is_active (w))) 2259 if (expect_false (ev_is_active (w)))
1448 return; 2260 return;
1449 2261
1450 if (w->reschedule_cb) 2262 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2264 else if (w->interval)
1453 { 2265 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2267 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 2269 }
2270 else
2271 ev_at (w) = w->offset;
1458 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2278 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2279 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w));
1463 2281
2282 EV_FREQUENT_CHECK;
2283
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2285}
1466 2286
1467void 2287void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2288ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2289{
1470 ev_clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2291 if (expect_false (!ev_is_active (w)))
1472 return; 2292 return;
1473 2293
2294 EV_FREQUENT_CHECK;
2295
2296 {
2297 int active = ev_active (w);
2298
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2300
2301 --periodiccnt;
2302
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2303 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2304 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2305 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2306 adjustheap (periodics, periodiccnt, active);
1480 } 2307 }
2308 }
2309
2310 EV_FREQUENT_CHECK;
1481 2311
1482 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1483} 2313}
1484 2314
1485void 2315void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2316ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2317{
1488 /* TODO: use adjustheap and recalculation */ 2318 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2319 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2320 ev_periodic_start (EV_A_ w);
1491} 2321}
1492#endif 2322#endif
1493 2323
1494void 2324#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2325# define SA_RESTART 0
2326#endif
2327
2328void noinline
2329ev_signal_start (EV_P_ ev_signal *w)
1496{ 2330{
2331#if EV_MULTIPLICITY
2332 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2333#endif
1497 if (expect_false (ev_is_active (w))) 2334 if (expect_false (ev_is_active (w)))
1498 return; 2335 return;
1499 2336
1500 ev_start (EV_A_ (W)w, ++idlecnt);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1502 idles [idlecnt - 1] = w;
1503}
1504
1505void
1506ev_idle_stop (EV_P_ struct ev_idle *w)
1507{
1508 ev_clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w)))
1510 return;
1511
1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1513 ev_stop (EV_A_ (W)w);
1514}
1515
1516void
1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1518{
1519 if (expect_false (ev_is_active (w)))
1520 return;
1521
1522 ev_start (EV_A_ (W)w, ++preparecnt);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1524 prepares [preparecnt - 1] = w;
1525}
1526
1527void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1529{
1530 ev_clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w)))
1532 return;
1533
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1535 ev_stop (EV_A_ (W)w);
1536}
1537
1538void
1539ev_check_start (EV_P_ struct ev_check *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++checkcnt);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548
1549void
1550ev_check_stop (EV_P_ struct ev_check *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560#ifndef SA_RESTART
1561# define SA_RESTART 0
1562#endif
1563
1564void
1565ev_signal_start (EV_P_ struct ev_signal *w)
1566{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1574 2338
2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK;
2342
2343 {
2344#ifndef _WIN32
2345 sigset_t full, prev;
2346 sigfillset (&full);
2347 sigprocmask (SIG_SETMASK, &full, &prev);
2348#endif
2349
2350 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2351
2352#ifndef _WIN32
2353 sigprocmask (SIG_SETMASK, &prev, 0);
2354#endif
2355 }
2356
1575 ev_start (EV_A_ (W)w, 1); 2357 ev_start (EV_A_ (W)w, 1);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2358 wlist_add (&signals [w->signum - 1].head, (WL)w);
1578 2359
1579 if (!((WL)w)->next) 2360 if (!((WL)w)->next)
1580 { 2361 {
1581#if _WIN32 2362#if _WIN32
1582 signal (w->signum, sighandler); 2363 signal (w->signum, ev_sighandler);
1583#else 2364#else
1584 struct sigaction sa; 2365 struct sigaction sa;
1585 sa.sa_handler = sighandler; 2366 sa.sa_handler = ev_sighandler;
1586 sigfillset (&sa.sa_mask); 2367 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0); 2369 sigaction (w->signum, &sa, 0);
1589#endif 2370#endif
1590 } 2371 }
1591}
1592 2372
1593void 2373 EV_FREQUENT_CHECK;
2374}
2375
2376void noinline
1594ev_signal_stop (EV_P_ struct ev_signal *w) 2377ev_signal_stop (EV_P_ ev_signal *w)
1595{ 2378{
1596 ev_clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2380 if (expect_false (!ev_is_active (w)))
1598 return; 2381 return;
1599 2382
2383 EV_FREQUENT_CHECK;
2384
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2385 wlist_del (&signals [w->signum - 1].head, (WL)w);
1601 ev_stop (EV_A_ (W)w); 2386 ev_stop (EV_A_ (W)w);
1602 2387
1603 if (!signals [w->signum - 1].head) 2388 if (!signals [w->signum - 1].head)
1604 signal (w->signum, SIG_DFL); 2389 signal (w->signum, SIG_DFL);
1605}
1606 2390
2391 EV_FREQUENT_CHECK;
2392}
2393
1607void 2394void
1608ev_child_start (EV_P_ struct ev_child *w) 2395ev_child_start (EV_P_ ev_child *w)
1609{ 2396{
1610#if EV_MULTIPLICITY 2397#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 2399#endif
1613 if (expect_false (ev_is_active (w))) 2400 if (expect_false (ev_is_active (w)))
1614 return; 2401 return;
1615 2402
2403 EV_FREQUENT_CHECK;
2404
1616 ev_start (EV_A_ (W)w, 1); 2405 ev_start (EV_A_ (W)w, 1);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618}
1619 2407
2408 EV_FREQUENT_CHECK;
2409}
2410
1620void 2411void
1621ev_child_stop (EV_P_ struct ev_child *w) 2412ev_child_stop (EV_P_ ev_child *w)
1622{ 2413{
1623 ev_clear_pending (EV_A_ (W)w); 2414 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2415 if (expect_false (!ev_is_active (w)))
1625 return; 2416 return;
1626 2417
2418 EV_FREQUENT_CHECK;
2419
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1628 ev_stop (EV_A_ (W)w); 2421 ev_stop (EV_A_ (W)w);
2422
2423 EV_FREQUENT_CHECK;
1629} 2424}
2425
2426#if EV_STAT_ENABLE
2427
2428# ifdef _WIN32
2429# undef lstat
2430# define lstat(a,b) _stati64 (a,b)
2431# endif
2432
2433#define DEF_STAT_INTERVAL 5.0074891
2434#define MIN_STAT_INTERVAL 0.1074891
2435
2436static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2437
2438#if EV_USE_INOTIFY
2439# define EV_INOTIFY_BUFSIZE 8192
2440
2441static void noinline
2442infy_add (EV_P_ ev_stat *w)
2443{
2444 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2445
2446 if (w->wd < 0)
2447 {
2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2449
2450 /* monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */
2452 /* but an efficiency issue only */
2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2454 {
2455 char path [4096];
2456 strcpy (path, w->path);
2457
2458 do
2459 {
2460 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2461 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2462
2463 char *pend = strrchr (path, '/');
2464
2465 if (!pend)
2466 break; /* whoops, no '/', complain to your admin */
2467
2468 *pend = 0;
2469 w->wd = inotify_add_watch (fs_fd, path, mask);
2470 }
2471 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2472 }
2473 }
2474 else
2475 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2476
2477 if (w->wd >= 0)
2478 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2479}
2480
2481static void noinline
2482infy_del (EV_P_ ev_stat *w)
2483{
2484 int slot;
2485 int wd = w->wd;
2486
2487 if (wd < 0)
2488 return;
2489
2490 w->wd = -2;
2491 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2492 wlist_del (&fs_hash [slot].head, (WL)w);
2493
2494 /* remove this watcher, if others are watching it, they will rearm */
2495 inotify_rm_watch (fs_fd, wd);
2496}
2497
2498static void noinline
2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2500{
2501 if (slot < 0)
2502 /* overflow, need to check for all hash slots */
2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2504 infy_wd (EV_A_ slot, wd, ev);
2505 else
2506 {
2507 WL w_;
2508
2509 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2510 {
2511 ev_stat *w = (ev_stat *)w_;
2512 w_ = w_->next; /* lets us remove this watcher and all before it */
2513
2514 if (w->wd == wd || wd == -1)
2515 {
2516 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2517 {
2518 w->wd = -1;
2519 infy_add (EV_A_ w); /* re-add, no matter what */
2520 }
2521
2522 stat_timer_cb (EV_A_ &w->timer, 0);
2523 }
2524 }
2525 }
2526}
2527
2528static void
2529infy_cb (EV_P_ ev_io *w, int revents)
2530{
2531 char buf [EV_INOTIFY_BUFSIZE];
2532 struct inotify_event *ev = (struct inotify_event *)buf;
2533 int ofs;
2534 int len = read (fs_fd, buf, sizeof (buf));
2535
2536 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2537 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2538}
2539
2540void inline_size
2541infy_init (EV_P)
2542{
2543 if (fs_fd != -2)
2544 return;
2545
2546 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */
2549 {
2550 struct utsname buf;
2551 int major, minor, micro;
2552
2553 fs_fd = -1;
2554
2555 if (uname (&buf))
2556 return;
2557
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2567 fs_fd = inotify_init ();
2568
2569 if (fs_fd >= 0)
2570 {
2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2572 ev_set_priority (&fs_w, EV_MAXPRI);
2573 ev_io_start (EV_A_ &fs_w);
2574 }
2575}
2576
2577void inline_size
2578infy_fork (EV_P)
2579{
2580 int slot;
2581
2582 if (fs_fd < 0)
2583 return;
2584
2585 close (fs_fd);
2586 fs_fd = inotify_init ();
2587
2588 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2589 {
2590 WL w_ = fs_hash [slot].head;
2591 fs_hash [slot].head = 0;
2592
2593 while (w_)
2594 {
2595 ev_stat *w = (ev_stat *)w_;
2596 w_ = w_->next; /* lets us add this watcher */
2597
2598 w->wd = -1;
2599
2600 if (fs_fd >= 0)
2601 infy_add (EV_A_ w); /* re-add, no matter what */
2602 else
2603 ev_timer_start (EV_A_ &w->timer);
2604 }
2605 }
2606}
2607
2608#endif
2609
2610#ifdef _WIN32
2611# define EV_LSTAT(p,b) _stati64 (p, b)
2612#else
2613# define EV_LSTAT(p,b) lstat (p, b)
2614#endif
2615
2616void
2617ev_stat_stat (EV_P_ ev_stat *w)
2618{
2619 if (lstat (w->path, &w->attr) < 0)
2620 w->attr.st_nlink = 0;
2621 else if (!w->attr.st_nlink)
2622 w->attr.st_nlink = 1;
2623}
2624
2625static void noinline
2626stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2627{
2628 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2629
2630 /* we copy this here each the time so that */
2631 /* prev has the old value when the callback gets invoked */
2632 w->prev = w->attr;
2633 ev_stat_stat (EV_A_ w);
2634
2635 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2636 if (
2637 w->prev.st_dev != w->attr.st_dev
2638 || w->prev.st_ino != w->attr.st_ino
2639 || w->prev.st_mode != w->attr.st_mode
2640 || w->prev.st_nlink != w->attr.st_nlink
2641 || w->prev.st_uid != w->attr.st_uid
2642 || w->prev.st_gid != w->attr.st_gid
2643 || w->prev.st_rdev != w->attr.st_rdev
2644 || w->prev.st_size != w->attr.st_size
2645 || w->prev.st_atime != w->attr.st_atime
2646 || w->prev.st_mtime != w->attr.st_mtime
2647 || w->prev.st_ctime != w->attr.st_ctime
2648 ) {
2649 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0)
2651 {
2652 infy_del (EV_A_ w);
2653 infy_add (EV_A_ w);
2654 ev_stat_stat (EV_A_ w); /* avoid race... */
2655 }
2656 #endif
2657
2658 ev_feed_event (EV_A_ w, EV_STAT);
2659 }
2660}
2661
2662void
2663ev_stat_start (EV_P_ ev_stat *w)
2664{
2665 if (expect_false (ev_is_active (w)))
2666 return;
2667
2668 /* since we use memcmp, we need to clear any padding data etc. */
2669 memset (&w->prev, 0, sizeof (ev_statdata));
2670 memset (&w->attr, 0, sizeof (ev_statdata));
2671
2672 ev_stat_stat (EV_A_ w);
2673
2674 if (w->interval < MIN_STAT_INTERVAL)
2675 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2676
2677 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2678 ev_set_priority (&w->timer, ev_priority (w));
2679
2680#if EV_USE_INOTIFY
2681 infy_init (EV_A);
2682
2683 if (fs_fd >= 0)
2684 infy_add (EV_A_ w);
2685 else
2686#endif
2687 ev_timer_start (EV_A_ &w->timer);
2688
2689 ev_start (EV_A_ (W)w, 1);
2690
2691 EV_FREQUENT_CHECK;
2692}
2693
2694void
2695ev_stat_stop (EV_P_ ev_stat *w)
2696{
2697 clear_pending (EV_A_ (W)w);
2698 if (expect_false (!ev_is_active (w)))
2699 return;
2700
2701 EV_FREQUENT_CHECK;
2702
2703#if EV_USE_INOTIFY
2704 infy_del (EV_A_ w);
2705#endif
2706 ev_timer_stop (EV_A_ &w->timer);
2707
2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
2711}
2712#endif
2713
2714#if EV_IDLE_ENABLE
2715void
2716ev_idle_start (EV_P_ ev_idle *w)
2717{
2718 if (expect_false (ev_is_active (w)))
2719 return;
2720
2721 pri_adjust (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2724
2725 {
2726 int active = ++idlecnt [ABSPRI (w)];
2727
2728 ++idleall;
2729 ev_start (EV_A_ (W)w, active);
2730
2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2732 idles [ABSPRI (w)][active - 1] = w;
2733 }
2734
2735 EV_FREQUENT_CHECK;
2736}
2737
2738void
2739ev_idle_stop (EV_P_ ev_idle *w)
2740{
2741 clear_pending (EV_A_ (W)w);
2742 if (expect_false (!ev_is_active (w)))
2743 return;
2744
2745 EV_FREQUENT_CHECK;
2746
2747 {
2748 int active = ev_active (w);
2749
2750 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2751 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2752
2753 ev_stop (EV_A_ (W)w);
2754 --idleall;
2755 }
2756
2757 EV_FREQUENT_CHECK;
2758}
2759#endif
2760
2761void
2762ev_prepare_start (EV_P_ ev_prepare *w)
2763{
2764 if (expect_false (ev_is_active (w)))
2765 return;
2766
2767 EV_FREQUENT_CHECK;
2768
2769 ev_start (EV_A_ (W)w, ++preparecnt);
2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2771 prepares [preparecnt - 1] = w;
2772
2773 EV_FREQUENT_CHECK;
2774}
2775
2776void
2777ev_prepare_stop (EV_P_ ev_prepare *w)
2778{
2779 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w)))
2781 return;
2782
2783 EV_FREQUENT_CHECK;
2784
2785 {
2786 int active = ev_active (w);
2787
2788 prepares [active - 1] = prepares [--preparecnt];
2789 ev_active (prepares [active - 1]) = active;
2790 }
2791
2792 ev_stop (EV_A_ (W)w);
2793
2794 EV_FREQUENT_CHECK;
2795}
2796
2797void
2798ev_check_start (EV_P_ ev_check *w)
2799{
2800 if (expect_false (ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 ev_start (EV_A_ (W)w, ++checkcnt);
2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2807 checks [checkcnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2810}
2811
2812void
2813ev_check_stop (EV_P_ ev_check *w)
2814{
2815 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w)))
2817 return;
2818
2819 EV_FREQUENT_CHECK;
2820
2821 {
2822 int active = ev_active (w);
2823
2824 checks [active - 1] = checks [--checkcnt];
2825 ev_active (checks [active - 1]) = active;
2826 }
2827
2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2831}
2832
2833#if EV_EMBED_ENABLE
2834void noinline
2835ev_embed_sweep (EV_P_ ev_embed *w)
2836{
2837 ev_loop (w->other, EVLOOP_NONBLOCK);
2838}
2839
2840static void
2841embed_io_cb (EV_P_ ev_io *io, int revents)
2842{
2843 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2844
2845 if (ev_cb (w))
2846 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2847 else
2848 ev_loop (w->other, EVLOOP_NONBLOCK);
2849}
2850
2851static void
2852embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 while (fdchangecnt)
2860 {
2861 fd_reify (EV_A);
2862 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2863 }
2864 }
2865}
2866
2867static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871
2872 {
2873 struct ev_loop *loop = w->other;
2874
2875 ev_loop_fork (EV_A);
2876 }
2877}
2878
2879#if 0
2880static void
2881embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2882{
2883 ev_idle_stop (EV_A_ idle);
2884}
2885#endif
2886
2887void
2888ev_embed_start (EV_P_ ev_embed *w)
2889{
2890 if (expect_false (ev_is_active (w)))
2891 return;
2892
2893 {
2894 struct ev_loop *loop = w->other;
2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2897 }
2898
2899 EV_FREQUENT_CHECK;
2900
2901 ev_set_priority (&w->io, ev_priority (w));
2902 ev_io_start (EV_A_ &w->io);
2903
2904 ev_prepare_init (&w->prepare, embed_prepare_cb);
2905 ev_set_priority (&w->prepare, EV_MINPRI);
2906 ev_prepare_start (EV_A_ &w->prepare);
2907
2908 ev_fork_init (&w->fork, embed_fork_cb);
2909 ev_fork_start (EV_A_ &w->fork);
2910
2911 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2912
2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2916}
2917
2918void
2919ev_embed_stop (EV_P_ ev_embed *w)
2920{
2921 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 ev_io_stop (EV_A_ &w->io);
2928 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork);
2930
2931 EV_FREQUENT_CHECK;
2932}
2933#endif
2934
2935#if EV_FORK_ENABLE
2936void
2937ev_fork_start (EV_P_ ev_fork *w)
2938{
2939 if (expect_false (ev_is_active (w)))
2940 return;
2941
2942 EV_FREQUENT_CHECK;
2943
2944 ev_start (EV_A_ (W)w, ++forkcnt);
2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2946 forks [forkcnt - 1] = w;
2947
2948 EV_FREQUENT_CHECK;
2949}
2950
2951void
2952ev_fork_stop (EV_P_ ev_fork *w)
2953{
2954 clear_pending (EV_A_ (W)w);
2955 if (expect_false (!ev_is_active (w)))
2956 return;
2957
2958 EV_FREQUENT_CHECK;
2959
2960 {
2961 int active = ev_active (w);
2962
2963 forks [active - 1] = forks [--forkcnt];
2964 ev_active (forks [active - 1]) = active;
2965 }
2966
2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_ASYNC_ENABLE
2974void
2975ev_async_start (EV_P_ ev_async *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++asynccnt);
2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2986 asyncs [asynccnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989}
2990
2991void
2992ev_async_stop (EV_P_ ev_async *w)
2993{
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 asyncs [active - 1] = asyncs [--asynccnt];
3004 ev_active (asyncs [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012void
3013ev_async_send (EV_P_ ev_async *w)
3014{
3015 w->sent = 1;
3016 evpipe_write (EV_A_ &gotasync);
3017}
3018#endif
1630 3019
1631/*****************************************************************************/ 3020/*****************************************************************************/
1632 3021
1633struct ev_once 3022struct ev_once
1634{ 3023{
1635 struct ev_io io; 3024 ev_io io;
1636 struct ev_timer to; 3025 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3026 void (*cb)(int revents, void *arg);
1638 void *arg; 3027 void *arg;
1639}; 3028};
1640 3029
1641static void 3030static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3031once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3032{
1644 void (*cb)(int revents, void *arg) = once->cb; 3033 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3034 void *arg = once->arg;
1646 3035
1647 ev_io_stop (EV_A_ &once->io); 3036 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3037 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3038 ev_free (once);
1650 3039
1651 cb (revents, arg); 3040 cb (revents, arg);
1652} 3041}
1653 3042
1654static void 3043static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3044once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3045{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3047
3048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3049}
1659 3050
1660static void 3051static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3052once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3053{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3055
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3057}
1665 3058
1666void 3059void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3061{
1690 ev_timer_set (&once->to, timeout, 0.); 3083 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3084 ev_timer_start (EV_A_ &once->to);
1692 } 3085 }
1693} 3086}
1694 3087
3088#if EV_MULTIPLICITY
3089 #include "ev_wrap.h"
3090#endif
3091
1695#ifdef __cplusplus 3092#ifdef __cplusplus
1696} 3093}
1697#endif 3094#endif
1698 3095

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines