ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.273 by root, Mon Nov 3 14:27:06 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
159# include <io.h>
116# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 161# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
120# endif 164# endif
121#endif 165#endif
122 166
123/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
124 168
125#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
126# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
127#endif 175#endif
128 176
129#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
131#endif 187#endif
132 188
133#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
135#endif 191#endif
141# define EV_USE_POLL 1 197# define EV_USE_POLL 1
142# endif 198# endif
143#endif 199#endif
144 200
145#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
146# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
147#endif 207#endif
148 208
149#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
151#endif 211#endif
152 212
153#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 214# define EV_USE_PORT 0
155#endif 215#endif
156 216
157/**/ 217#ifndef EV_USE_INOTIFY
158 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 219# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 220# else
161# undef EV_USE_POLL 221# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 268
165#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
168#endif 272#endif
170#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
173#endif 277#endif
174 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
175#if EV_SELECT_IS_WINSOCKET 301#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 302# include <winsock.h>
177#endif 303#endif
178 304
305#if EV_USE_EVENTFD
306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h>
308# ifdef __cplusplus
309extern "C" {
310# endif
311int eventfd (unsigned int initval, int flags);
312# ifdef __cplusplus
313}
314# endif
315#endif
316
179/**/ 317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
324
325/*
326 * This is used to avoid floating point rounding problems.
327 * It is added to ev_rt_now when scheduling periodics
328 * to ensure progress, time-wise, even when rounding
329 * errors are against us.
330 * This value is good at least till the year 4000.
331 * Better solutions welcome.
332 */
333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 334
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 338
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 339#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 340# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 341# define noinline __attribute__ ((noinline))
195#else 342#else
196# define expect(expr,value) (expr) 343# define expect(expr,value) (expr)
197# define inline static 344# define noinline
345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
346# define inline
347# endif
198#endif 348#endif
199 349
200#define expect_false(expr) expect ((expr) != 0, 0) 350#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 351#define expect_true(expr) expect ((expr) != 0, 1)
352#define inline_size static inline
353
354#if EV_MINIMAL
355# define inline_speed static noinline
356#else
357# define inline_speed static inline
358#endif
202 359
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 360#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 361#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
205 362
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 363#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 364#define EMPTY2(a,b) /* used to suppress some warnings */
208 365
209typedef struct ev_watcher *W; 366typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
212 369
370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
373#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
377#endif
214 378
215#ifdef _WIN32 379#ifdef _WIN32
216# include "ev_win32.c" 380# include "ev_win32.c"
217#endif 381#endif
218 382
219/*****************************************************************************/ 383/*****************************************************************************/
220 384
221static void (*syserr_cb)(const char *msg); 385static void (*syserr_cb)(const char *msg);
222 386
387void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 388ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 389{
225 syserr_cb = cb; 390 syserr_cb = cb;
226} 391}
227 392
228static void 393static void noinline
229syserr (const char *msg) 394ev_syserr (const char *msg)
230{ 395{
231 if (!msg) 396 if (!msg)
232 msg = "(libev) system error"; 397 msg = "(libev) system error";
233 398
234 if (syserr_cb) 399 if (syserr_cb)
238 perror (msg); 403 perror (msg);
239 abort (); 404 abort ();
240 } 405 }
241} 406}
242 407
408static void *
409ev_realloc_emul (void *ptr, long size)
410{
411 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and
413 * the single unix specification, so work around them here.
414 */
415
416 if (size)
417 return realloc (ptr, size);
418
419 free (ptr);
420 return 0;
421}
422
243static void *(*alloc)(void *ptr, long size); 423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 424
425void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 426ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 427{
247 alloc = cb; 428 alloc = cb;
248} 429}
249 430
250static void * 431inline_speed void *
251ev_realloc (void *ptr, long size) 432ev_realloc (void *ptr, long size)
252{ 433{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 434 ptr = alloc (ptr, size);
254 435
255 if (!ptr && size) 436 if (!ptr && size)
256 { 437 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 439 abort ();
269typedef struct 450typedef struct
270{ 451{
271 WL head; 452 WL head;
272 unsigned char events; 453 unsigned char events;
273 unsigned char reify; 454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
274#if EV_SELECT_IS_WINSOCKET 460#if EV_SELECT_IS_WINSOCKET
275 SOCKET handle; 461 SOCKET handle;
276#endif 462#endif
277} ANFD; 463} ANFD;
278 464
279typedef struct 465typedef struct
280{ 466{
281 W w; 467 W w;
282 int events; 468 int events;
283} ANPENDING; 469} ANPENDING;
470
471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
473typedef struct
474{
475 WL head;
476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
495#endif
284 496
285#if EV_MULTIPLICITY 497#if EV_MULTIPLICITY
286 498
287 struct ev_loop 499 struct ev_loop
288 { 500 {
322 gettimeofday (&tv, 0); 534 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 535 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif 536#endif
325} 537}
326 538
327inline ev_tstamp 539ev_tstamp inline_size
328get_clock (void) 540get_clock (void)
329{ 541{
330#if EV_USE_MONOTONIC 542#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 543 if (expect_true (have_monotonic))
332 { 544 {
345{ 557{
346 return ev_rt_now; 558 return ev_rt_now;
347} 559}
348#endif 560#endif
349 561
350#define array_roundsize(type,n) (((n) | 4) & ~3) 562void
563ev_sleep (ev_tstamp delay)
564{
565 if (delay > 0.)
566 {
567#if EV_USE_NANOSLEEP
568 struct timespec ts;
569
570 ts.tv_sec = (time_t)delay;
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0);
574#elif defined(_WIN32)
575 Sleep ((unsigned long)(delay * 1e3));
576#else
577 struct timeval tv;
578
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
585 select (0, 0, 0, 0, &tv);
586#endif
587 }
588}
589
590/*****************************************************************************/
591
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593
594int inline_size
595array_nextsize (int elem, int cur, int cnt)
596{
597 int ncur = cur + 1;
598
599 do
600 ncur <<= 1;
601 while (cnt > ncur);
602
603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
605 {
606 ncur *= elem;
607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
608 ncur = ncur - sizeof (void *) * 4;
609 ncur /= elem;
610 }
611
612 return ncur;
613}
614
615static noinline void *
616array_realloc (int elem, void *base, int *cur, int cnt)
617{
618 *cur = array_nextsize (elem, *cur, cnt);
619 return ev_realloc (base, elem * *cur);
620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 624
352#define array_needsize(type,base,cur,cnt,init) \ 625#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 626 if (expect_false ((cnt) > (cur))) \
354 { \ 627 { \
355 int newcnt = cur; \ 628 int ocur_ = (cur); \
356 do \ 629 (base) = (type *)array_realloc \
357 { \ 630 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 631 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 632 }
366 633
634#if 0
367#define array_slim(type,stem) \ 635#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 636 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 637 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 638 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 639 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 640 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 641 }
642#endif
374 643
375#define array_free(stem, idx) \ 644#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 645 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
377 646
378/*****************************************************************************/ 647/*****************************************************************************/
379 648
380static void 649void noinline
381anfds_init (ANFD *base, int count)
382{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391}
392
393void
394ev_feed_event (EV_P_ void *w, int revents) 650ev_feed_event (EV_P_ void *w, int revents)
395{ 651{
396 W w_ = (W)w; 652 W w_ = (W)w;
653 int pri = ABSPRI (w_);
397 654
398 if (expect_false (w_->pending)) 655 if (expect_false (w_->pending))
656 pendings [pri][w_->pending - 1].events |= revents;
657 else
399 { 658 {
659 w_->pending = ++pendingcnt [pri];
660 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
661 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 662 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 663 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 664}
409 665
410static void 666void inline_speed
411queue_events (EV_P_ W *events, int eventcnt, int type) 667queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 668{
413 int i; 669 int i;
414 670
415 for (i = 0; i < eventcnt; ++i) 671 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
417} 673}
418 674
419inline void 675/*****************************************************************************/
676
677void inline_speed
420fd_event (EV_P_ int fd, int revents) 678fd_event (EV_P_ int fd, int revents)
421{ 679{
422 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 681 ev_io *w;
424 682
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 683 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 684 {
427 int ev = w->events & revents; 685 int ev = w->events & revents;
428 686
429 if (ev) 687 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 688 ev_feed_event (EV_A_ (W)w, ev);
432} 690}
433 691
434void 692void
435ev_feed_fd_event (EV_P_ int fd, int revents) 693ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 694{
695 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 696 fd_event (EV_A_ fd, revents);
438} 697}
439 698
440/*****************************************************************************/ 699void inline_size
441
442inline void
443fd_reify (EV_P) 700fd_reify (EV_P)
444{ 701{
445 int i; 702 int i;
446 703
447 for (i = 0; i < fdchangecnt; ++i) 704 for (i = 0; i < fdchangecnt; ++i)
448 { 705 {
449 int fd = fdchanges [i]; 706 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 707 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 708 ev_io *w;
452 709
453 int events = 0; 710 unsigned char events = 0;
454 711
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 713 events |= (unsigned char)w->events;
457 714
458#if EV_SELECT_IS_WINSOCKET 715#if EV_SELECT_IS_WINSOCKET
459 if (events) 716 if (events)
460 { 717 {
461 unsigned long argp; 718 unsigned long arg;
719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
462 anfd->handle = _get_osfhandle (fd); 722 anfd->handle = _get_osfhandle (fd);
723 #endif
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
464 } 725 }
465#endif 726#endif
466 727
728 {
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
467 anfd->reify = 0; 732 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events);
737 }
471 } 738 }
472 739
473 fdchangecnt = 0; 740 fdchangecnt = 0;
474} 741}
475 742
476static void 743void inline_size
477fd_change (EV_P_ int fd) 744fd_change (EV_P_ int fd, int flags)
478{ 745{
479 if (expect_false (anfds [fd].reify)) 746 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 747 anfds [fd].reify |= flags;
483 748
749 if (expect_true (!reify))
750 {
484 ++fdchangecnt; 751 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 753 fdchanges [fdchangecnt - 1] = fd;
754 }
487} 755}
488 756
489static void 757void inline_speed
490fd_kill (EV_P_ int fd) 758fd_kill (EV_P_ int fd)
491{ 759{
492 struct ev_io *w; 760 ev_io *w;
493 761
494 while ((w = (struct ev_io *)anfds [fd].head)) 762 while ((w = (ev_io *)anfds [fd].head))
495 { 763 {
496 ev_io_stop (EV_A_ w); 764 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 765 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 766 }
499} 767}
500 768
501inline int 769int inline_size
502fd_valid (int fd) 770fd_valid (int fd)
503{ 771{
504#ifdef _WIN32 772#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 773 return _get_osfhandle (fd) != -1;
506#else 774#else
507 return fcntl (fd, F_GETFD) != -1; 775 return fcntl (fd, F_GETFD) != -1;
508#endif 776#endif
509} 777}
510 778
511/* called on EBADF to verify fds */ 779/* called on EBADF to verify fds */
512static void 780static void noinline
513fd_ebadf (EV_P) 781fd_ebadf (EV_P)
514{ 782{
515 int fd; 783 int fd;
516 784
517 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 786 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 788 fd_kill (EV_A_ fd);
521} 789}
522 790
523/* called on ENOMEM in select/poll to kill some fds and retry */ 791/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 792static void noinline
525fd_enomem (EV_P) 793fd_enomem (EV_P)
526{ 794{
527 int fd; 795 int fd;
528 796
529 for (fd = anfdmax; fd--; ) 797 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 800 fd_kill (EV_A_ fd);
533 return; 801 return;
534 } 802 }
535} 803}
536 804
537/* usually called after fork if method needs to re-arm all fds from scratch */ 805/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 806static void noinline
539fd_rearm_all (EV_P) 807fd_rearm_all (EV_P)
540{ 808{
541 int fd; 809 int fd;
542 810
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 811 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 812 if (anfds [fd].events)
546 { 813 {
547 anfds [fd].events = 0; 814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
548 fd_change (EV_A_ fd); 816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
549 } 817 }
550} 818}
551 819
552/*****************************************************************************/ 820/*****************************************************************************/
553 821
554static void 822/*
555upheap (WT *heap, int k) 823 * the heap functions want a real array index. array index 0 uis guaranteed to not
556{ 824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
557 WT w = heap [k]; 825 * the branching factor of the d-tree.
826 */
558 827
559 while (k && heap [k >> 1]->at > w->at) 828/*
560 { 829 * at the moment we allow libev the luxury of two heaps,
561 heap [k] = heap [k >> 1]; 830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
562 ((W)heap [k])->active = k + 1; 831 * which is more cache-efficient.
563 k >>= 1; 832 * the difference is about 5% with 50000+ watchers.
564 } 833 */
834#if EV_USE_4HEAP
565 835
566 heap [k] = w; 836#define DHEAP 4
567 ((W)heap [k])->active = k + 1; 837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k))
568 840
569} 841/* away from the root */
570 842void inline_speed
571static void
572downheap (WT *heap, int N, int k) 843downheap (ANHE *heap, int N, int k)
573{ 844{
574 WT w = heap [k]; 845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
575 847
576 while (k < (N >> 1)) 848 for (;;)
577 { 849 {
578 int j = k << 1; 850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
579 853
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
581 ++j; 856 {
582 857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
583 if (w->at <= heap [j]->at) 858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
584 break; 870 break;
585 871
872 if (ANHE_at (he) <= minat)
873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
881 heap [k] = he;
882 ev_active (ANHE_w (he)) = k;
883}
884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
892void inline_speed
893downheap (ANHE *heap, int N, int k)
894{
895 ANHE he = heap [k];
896
897 for (;;)
898 {
899 int c = k << 1;
900
901 if (c > N + HEAP0 - 1)
902 break;
903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
586 heap [k] = heap [j]; 910 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (heap [k])) = k;
912
588 k = j; 913 k = c;
589 } 914 }
590 915
591 heap [k] = w; 916 heap [k] = he;
592 ((W)heap [k])->active = k + 1; 917 ev_active (ANHE_w (he)) = k;
593} 918}
919#endif
594 920
595inline void 921/* towards the root */
922void inline_speed
923upheap (ANHE *heap, int k)
924{
925 ANHE he = heap [k];
926
927 for (;;)
928 {
929 int p = HPARENT (k);
930
931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
932 break;
933
934 heap [k] = heap [p];
935 ev_active (ANHE_w (heap [k])) = k;
936 k = p;
937 }
938
939 heap [k] = he;
940 ev_active (ANHE_w (he)) = k;
941}
942
943void inline_size
596adjustheap (WT *heap, int N, int k) 944adjustheap (ANHE *heap, int N, int k)
597{ 945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
598 upheap (heap, k); 947 upheap (heap, k);
948 else
599 downheap (heap, N, k); 949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
600} 962}
601 963
602/*****************************************************************************/ 964/*****************************************************************************/
603 965
604typedef struct 966typedef struct
605{ 967{
606 WL head; 968 WL head;
607 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
608} ANSIG; 970} ANSIG;
609 971
610static ANSIG *signals; 972static ANSIG *signals;
611static int signalmax; 973static int signalmax;
612 974
613static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 976
617static void 977/*****************************************************************************/
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624 978
625 ++base; 979void inline_speed
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 980fd_intern (int fd)
682{ 981{
683#ifdef _WIN32 982#ifdef _WIN32
684 int arg = 1; 983 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
686#else 985#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 986 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 987 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 988#endif
690} 989}
691 990
991static void noinline
992evpipe_init (EV_P)
993{
994 if (!ev_is_active (&pipeev))
995 {
996#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0)
998 {
999 evpipe [0] = -1;
1000 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 }
1003 else
1004#endif
1005 {
1006 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe");
1008
1009 fd_intern (evpipe [0]);
1010 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
1012 }
1013
1014 ev_io_start (EV_A_ &pipeev);
1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 {
1024 int old_errno = errno; /* save errno because write might clobber it */
1025
1026 *flag = 1;
1027
1028#if EV_USE_EVENTFD
1029 if (evfd >= 0)
1030 {
1031 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t));
1033 }
1034 else
1035#endif
1036 write (evpipe [1], &old_errno, 1);
1037
1038 errno = old_errno;
1039 }
1040}
1041
692static void 1042static void
693siginit (EV_P) 1043pipecb (EV_P_ ev_io *iow, int revents)
694{ 1044{
695 fd_intern (sigpipe [0]); 1045#if EV_USE_EVENTFD
696 fd_intern (sigpipe [1]); 1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy;
1055 read (evpipe [0], &dummy, 1);
1056 }
697 1057
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1058 if (gotsig && ev_is_default_loop (EV_A))
699 ev_io_start (EV_A_ &sigev); 1059 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1060 int signum;
1061 gotsig = 0;
1062
1063 for (signum = signalmax; signum--; )
1064 if (signals [signum].gotsig)
1065 ev_feed_signal_event (EV_A_ signum + 1);
1066 }
1067
1068#if EV_ASYNC_ENABLE
1069 if (gotasync)
1070 {
1071 int i;
1072 gotasync = 0;
1073
1074 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent)
1076 {
1077 asyncs [i]->sent = 0;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 }
1080 }
1081#endif
701} 1082}
702 1083
703/*****************************************************************************/ 1084/*****************************************************************************/
704 1085
705static struct ev_child *childs [PID_HASHSIZE]; 1086static void
1087ev_sighandler (int signum)
1088{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return;
1114
1115 signals [signum].gotsig = 0;
1116
1117 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119}
1120
1121/*****************************************************************************/
1122
1123static WL childs [EV_PID_HASHSIZE];
706 1124
707#ifndef _WIN32 1125#ifndef _WIN32
708 1126
709static struct ev_signal childev; 1127static ev_signal childev;
1128
1129#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0
1131#endif
1132
1133void inline_speed
1134child_reap (EV_P_ int chain, int pid, int status)
1135{
1136 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1138
1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 {
1141 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1)))
1143 {
1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1145 w->rpid = pid;
1146 w->rstatus = status;
1147 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1148 }
1149 }
1150}
710 1151
711#ifndef WCONTINUED 1152#ifndef WCONTINUED
712# define WCONTINUED 0 1153# define WCONTINUED 0
713#endif 1154#endif
714 1155
715static void 1156static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1157childcb (EV_P_ ev_signal *sw, int revents)
732{ 1158{
733 int pid, status; 1159 int pid, status;
734 1160
1161 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1162 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1163 if (!WCONTINUED
1164 || errno != EINVAL
1165 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1166 return;
1167
737 /* make sure we are called again until all childs have been reaped */ 1168 /* make sure we are called again until all children have been reaped */
1169 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1171
740 child_reap (EV_A_ sw, pid, pid, status); 1172 child_reap (EV_A_ pid, pid, status);
1173 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1175}
744 1176
745#endif 1177#endif
746 1178
747/*****************************************************************************/ 1179/*****************************************************************************/
773{ 1205{
774 return EV_VERSION_MINOR; 1206 return EV_VERSION_MINOR;
775} 1207}
776 1208
777/* return true if we are running with elevated privileges and should ignore env variables */ 1209/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1210int inline_size
779enable_secure (void) 1211enable_secure (void)
780{ 1212{
781#ifdef _WIN32 1213#ifdef _WIN32
782 return 0; 1214 return 0;
783#else 1215#else
785 || getgid () != getegid (); 1217 || getgid () != getegid ();
786#endif 1218#endif
787} 1219}
788 1220
789unsigned int 1221unsigned int
790ev_method (EV_P) 1222ev_supported_backends (void)
791{ 1223{
792 return method; 1224 unsigned int flags = 0;
793}
794 1225
795static void 1226 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1227 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1228 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1229 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1230 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1231
1232 return flags;
1233}
1234
1235unsigned int
1236ev_recommended_backends (void)
1237{
1238 unsigned int flags = ev_supported_backends ();
1239
1240#ifndef __NetBSD__
1241 /* kqueue is borked on everything but netbsd apparently */
1242 /* it usually doesn't work correctly on anything but sockets and pipes */
1243 flags &= ~EVBACKEND_KQUEUE;
1244#endif
1245#ifdef __APPLE__
1246 // flags &= ~EVBACKEND_KQUEUE; for documentation
1247 flags &= ~EVBACKEND_POLL;
1248#endif
1249
1250 return flags;
1251}
1252
1253unsigned int
1254ev_embeddable_backends (void)
1255{
1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1257
1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */
1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
1263}
1264
1265unsigned int
1266ev_backend (EV_P)
1267{
1268 return backend;
1269}
1270
1271unsigned int
1272ev_loop_count (EV_P)
1273{
1274 return loop_count;
1275}
1276
1277void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{
1280 io_blocktime = interval;
1281}
1282
1283void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 timeout_blocktime = interval;
1287}
1288
1289static void noinline
796loop_init (EV_P_ unsigned int flags) 1290loop_init (EV_P_ unsigned int flags)
797{ 1291{
798 if (!method) 1292 if (!backend)
799 { 1293 {
800#if EV_USE_MONOTONIC 1294#if EV_USE_MONOTONIC
801 { 1295 {
802 struct timespec ts; 1296 struct timespec ts;
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1298 have_monotonic = 1;
805 } 1299 }
806#endif 1300#endif
807 1301
808 ev_rt_now = ev_time (); 1302 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1303 mn_now = get_clock ();
810 now_floor = mn_now; 1304 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1305 rtmn_diff = ev_rt_now - mn_now;
812 1306
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif
1315
1316 /* pid check not overridable via env */
1317#ifndef _WIN32
1318 if (flags & EVFLAG_FORKCHECK)
1319 curpid = getpid ();
1320#endif
1321
1322 if (!(flags & EVFLAG_NOENV)
1323 && !enable_secure ()
1324 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1325 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1326
816 if (!(flags & 0x0000ffff)) 1327 if (!(flags & 0x0000ffffU))
817 flags |= 0x0000ffff; 1328 flags |= ev_recommended_backends ();
818 1329
819 method = 0;
820#if EV_USE_PORT 1330#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1332#endif
823#if EV_USE_KQUEUE 1333#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1334 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1335#endif
826#if EV_USE_EPOLL 1336#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1338#endif
829#if EV_USE_POLL 1339#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1341#endif
832#if EV_USE_SELECT 1342#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1344#endif
835 1345
836 ev_init (&sigev, sigcb); 1346 ev_init (&pipeev, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1347 ev_set_priority (&pipeev, EV_MAXPRI);
838 } 1348 }
839} 1349}
840 1350
841static void 1351static void noinline
842loop_destroy (EV_P) 1352loop_destroy (EV_P)
843{ 1353{
844 int i; 1354 int i;
845 1355
1356 if (ev_is_active (&pipeev))
1357 {
1358 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev);
1360
1361#if EV_USE_EVENTFD
1362 if (evfd >= 0)
1363 close (evfd);
1364#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
1372
1373#if EV_USE_INOTIFY
1374 if (fs_fd >= 0)
1375 close (fs_fd);
1376#endif
1377
1378 if (backend_fd >= 0)
1379 close (backend_fd);
1380
846#if EV_USE_PORT 1381#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1382 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1383#endif
849#if EV_USE_KQUEUE 1384#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1385 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1386#endif
852#if EV_USE_EPOLL 1387#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1388 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1389#endif
855#if EV_USE_POLL 1390#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1391 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1392#endif
858#if EV_USE_SELECT 1393#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1394 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1395#endif
861 1396
862 for (i = NUMPRI; i--; ) 1397 for (i = NUMPRI; i--; )
1398 {
863 array_free (pending, [i]); 1399 array_free (pending, [i]);
1400#if EV_IDLE_ENABLE
1401 array_free (idle, [i]);
1402#endif
1403 }
1404
1405 ev_free (anfds); anfdmax = 0;
864 1406
865 /* have to use the microsoft-never-gets-it-right macro */ 1407 /* have to use the microsoft-never-gets-it-right macro */
866 array_free (fdchange, EMPTY0); 1408 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1409 array_free (timer, EMPTY);
868#if EV_PERIODICS 1410#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1411 array_free (periodic, EMPTY);
870#endif 1412#endif
1413#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1414 array_free (fork, EMPTY);
1415#endif
872 array_free (prepare, EMPTY0); 1416 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1417 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY);
1420#endif
874 1421
875 method = 0; 1422 backend = 0;
876} 1423}
877 1424
878static void 1425#if EV_USE_INOTIFY
1426void inline_size infy_fork (EV_P);
1427#endif
1428
1429void inline_size
879loop_fork (EV_P) 1430loop_fork (EV_P)
880{ 1431{
881#if EV_USE_PORT 1432#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1433 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1434#endif
884#if EV_USE_KQUEUE 1435#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1436 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1437#endif
887#if EV_USE_EPOLL 1438#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1439 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 1440#endif
1441#if EV_USE_INOTIFY
1442 infy_fork (EV_A);
1443#endif
890 1444
891 if (ev_is_active (&sigev)) 1445 if (ev_is_active (&pipeev))
892 { 1446 {
893 /* default loop */ 1447 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
894 1453
895 ev_ref (EV_A); 1454 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 1455 ev_io_stop (EV_A_ &pipeev);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461
1462 if (evpipe [0] >= 0)
1463 {
897 close (sigpipe [0]); 1464 close (evpipe [0]);
898 close (sigpipe [1]); 1465 close (evpipe [1]);
1466 }
899 1467
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A); 1468 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ);
904 } 1471 }
905 1472
906 postfork = 0; 1473 postfork = 0;
907} 1474}
908 1475
909#if EV_MULTIPLICITY 1476#if EV_MULTIPLICITY
1477
910struct ev_loop * 1478struct ev_loop *
911ev_loop_new (unsigned int flags) 1479ev_loop_new (unsigned int flags)
912{ 1480{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914 1482
915 memset (loop, 0, sizeof (struct ev_loop)); 1483 memset (loop, 0, sizeof (struct ev_loop));
916 1484
917 loop_init (EV_A_ flags); 1485 loop_init (EV_A_ flags);
918 1486
919 if (ev_method (EV_A)) 1487 if (ev_backend (EV_A))
920 return loop; 1488 return loop;
921 1489
922 return 0; 1490 return 0;
923} 1491}
924 1492
930} 1498}
931 1499
932void 1500void
933ev_loop_fork (EV_P) 1501ev_loop_fork (EV_P)
934{ 1502{
935 postfork = 1; 1503 postfork = 1; /* must be in line with ev_default_fork */
936} 1504}
937 1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
938#endif 1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
939 1606
940#if EV_MULTIPLICITY 1607#if EV_MULTIPLICITY
941struct ev_loop * 1608struct ev_loop *
942ev_default_loop_init (unsigned int flags) 1609ev_default_loop_init (unsigned int flags)
943#else 1610#else
944int 1611int
945ev_default_loop (unsigned int flags) 1612ev_default_loop (unsigned int flags)
946#endif 1613#endif
947{ 1614{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 1615 if (!ev_default_loop_ptr)
953 { 1616 {
954#if EV_MULTIPLICITY 1617#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
956#else 1619#else
957 ev_default_loop_ptr = 1; 1620 ev_default_loop_ptr = 1;
958#endif 1621#endif
959 1622
960 loop_init (EV_A_ flags); 1623 loop_init (EV_A_ flags);
961 1624
962 if (ev_method (EV_A)) 1625 if (ev_backend (EV_A))
963 { 1626 {
964 siginit (EV_A);
965
966#ifndef _WIN32 1627#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1628 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 1629 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 1630 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1631 ev_unref (EV_A); /* child watcher should not keep loop alive */
982{ 1643{
983#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
984 struct ev_loop *loop = ev_default_loop_ptr; 1645 struct ev_loop *loop = ev_default_loop_ptr;
985#endif 1646#endif
986 1647
1648 ev_default_loop_ptr = 0;
1649
987#ifndef _WIN32 1650#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */ 1651 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev); 1652 ev_signal_stop (EV_A_ &childev);
990#endif 1653#endif
991 1654
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A); 1655 loop_destroy (EV_A);
999} 1656}
1000 1657
1001void 1658void
1002ev_default_fork (void) 1659ev_default_fork (void)
1003{ 1660{
1004#if EV_MULTIPLICITY 1661#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1662 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif 1663#endif
1007 1664
1008 if (method) 1665 postfork = 1; /* must be in line with ev_loop_fork */
1009 postfork = 1;
1010} 1666}
1011 1667
1012/*****************************************************************************/ 1668/*****************************************************************************/
1013 1669
1014static int 1670void
1015any_pending (EV_P) 1671ev_invoke (EV_P_ void *w, int revents)
1016{ 1672{
1017 int pri; 1673 EV_CB_INVOKE ((W)w, revents);
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024} 1674}
1025 1675
1026inline void 1676void inline_speed
1027call_pending (EV_P) 1677call_pending (EV_P)
1028{ 1678{
1029 int pri; 1679 int pri;
1030 1680
1031 for (pri = NUMPRI; pri--; ) 1681 for (pri = NUMPRI; pri--; )
1033 { 1683 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1684 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1685
1036 if (expect_true (p->w)) 1686 if (expect_true (p->w))
1037 { 1687 {
1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1689
1038 p->w->pending = 0; 1690 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1040 } 1693 }
1041 } 1694 }
1042} 1695}
1043 1696
1044inline void 1697#if EV_IDLE_ENABLE
1698void inline_size
1699idle_reify (EV_P)
1700{
1701 if (expect_false (idleall))
1702 {
1703 int pri;
1704
1705 for (pri = NUMPRI; pri--; )
1706 {
1707 if (pendingcnt [pri])
1708 break;
1709
1710 if (idlecnt [pri])
1711 {
1712 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1713 break;
1714 }
1715 }
1716 }
1717}
1718#endif
1719
1720void inline_size
1045timers_reify (EV_P) 1721timers_reify (EV_P)
1046{ 1722{
1723 EV_FREQUENT_CHECK;
1724
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 1726 {
1049 struct ev_timer *w = timers [0]; 1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1050 1728
1051 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1052 1730
1053 /* first reschedule or stop timer */ 1731 /* first reschedule or stop timer */
1054 if (w->repeat) 1732 if (w->repeat)
1055 { 1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 1739
1058 ((WT)w)->at += w->repeat; 1740 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 1741 downheap (timers, timercnt, HEAP0);
1063 } 1742 }
1064 else 1743 else
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 1745
1746 EV_FREQUENT_CHECK;
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1068 } 1748 }
1069} 1749}
1070 1750
1071#if EV_PERIODICS 1751#if EV_PERIODIC_ENABLE
1072inline void 1752void inline_size
1073periodics_reify (EV_P) 1753periodics_reify (EV_P)
1074{ 1754{
1755 EV_FREQUENT_CHECK;
1756
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 1758 {
1077 struct ev_periodic *w = periodics [0]; 1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1078 1760
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 1762
1081 /* first reschedule or stop timer */ 1763 /* first reschedule or stop timer */
1082 if (w->reschedule_cb) 1764 if (w->reschedule_cb)
1083 { 1765 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
1086 downheap ((WT *)periodics, periodiccnt, 0); 1771 downheap (periodics, periodiccnt, HEAP0);
1087 } 1772 }
1088 else if (w->interval) 1773 else if (w->interval)
1089 { 1774 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1092 downheap ((WT *)periodics, periodiccnt, 0); 1790 downheap (periodics, periodiccnt, HEAP0);
1093 } 1791 }
1094 else 1792 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 1794
1795 EV_FREQUENT_CHECK;
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 } 1797 }
1099} 1798}
1100 1799
1101static void 1800static void noinline
1102periodics_reschedule (EV_P) 1801periodics_reschedule (EV_P)
1103{ 1802{
1104 int i; 1803 int i;
1105 1804
1106 /* adjust periodics after time jump */ 1805 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i) 1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1108 { 1807 {
1109 struct ev_periodic *w = periodics [i]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1110 1809
1111 if (w->reschedule_cb) 1810 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval) 1812 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1819}
1820#endif
1821
1822void inline_speed
1823time_update (EV_P_ ev_tstamp max_block)
1824{
1825 int i;
1826
1827#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic))
1115 } 1829 {
1830 ev_tstamp odiff = rtmn_diff;
1116 1831
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock (); 1832 mn_now = get_clock ();
1127 1833
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1835 /* interpolate in the meantime */
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 { 1837 {
1130 ev_rt_now = rtmn_diff + mn_now; 1838 ev_rt_now = rtmn_diff + mn_now;
1131 return 0; 1839 return;
1132 } 1840 }
1133 else 1841
1134 {
1135 now_floor = mn_now; 1842 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 1843 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 1844
1141inline void 1845 /* loop a few times, before making important decisions.
1142time_update (EV_P) 1846 * on the choice of "4": one iteration isn't enough,
1143{ 1847 * in case we get preempted during the calls to
1144 int i; 1848 * ev_time and get_clock. a second call is almost guaranteed
1145 1849 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 1850 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 1851 * in the unlikely event of having been preempted here.
1148 { 1852 */
1149 if (time_update_monotonic (EV_A)) 1853 for (i = 4; --i; )
1150 { 1854 {
1151 ev_tstamp odiff = rtmn_diff; 1855 rtmn_diff = ev_rt_now - mn_now;
1152 1856
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1858 return; /* all is well */
1859
1860 ev_rt_now = ev_time ();
1861 mn_now = get_clock ();
1862 now_floor = mn_now;
1863 }
1864
1865# if EV_PERIODIC_ENABLE
1866 periodics_reschedule (EV_A);
1867# endif
1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870 }
1871 else
1872#endif
1873 {
1874 ev_rt_now = ev_time ();
1875
1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1877 {
1878#if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A);
1880#endif
1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1882 for (i = 0; i < timercnt; ++i)
1154 { 1883 {
1155 rtmn_diff = ev_rt_now - mn_now; 1884 ANHE *he = timers + i + HEAP0;
1156 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1886 ANHE_at_cache (*he);
1158 return; /* all is well */
1159
1160 ev_rt_now = ev_time ();
1161 mn_now = get_clock ();
1162 now_floor = mn_now;
1163 } 1887 }
1164
1165# if EV_PERIODICS
1166 periodics_reschedule (EV_A);
1167# endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 1888 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 1889
1188 mn_now = ev_rt_now; 1890 mn_now = ev_rt_now;
1189 } 1891 }
1190} 1892}
1191 1893
1199ev_unref (EV_P) 1901ev_unref (EV_P)
1200{ 1902{
1201 --activecnt; 1903 --activecnt;
1202} 1904}
1203 1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1204static int loop_done; 1912static int loop_done;
1205 1913
1206void 1914void
1207ev_loop (EV_P_ int flags) 1915ev_loop (EV_P_ int flags)
1208{ 1916{
1209 double block; 1917 loop_done = EVUNLOOP_CANCEL;
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1211 1918
1212 while (activecnt) 1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1920
1921 do
1213 { 1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1927#ifndef _WIN32
1928 if (expect_false (curpid)) /* penalise the forking check even more */
1929 if (expect_false (getpid () != curpid))
1930 {
1931 curpid = getpid ();
1932 postfork = 1;
1933 }
1934#endif
1935
1936#if EV_FORK_ENABLE
1937 /* we might have forked, so queue fork handlers */
1938 if (expect_false (postfork))
1939 if (forkcnt)
1940 {
1941 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1942 call_pending (EV_A);
1943 }
1944#endif
1945
1214 /* queue check watchers (and execute them) */ 1946 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 1947 if (expect_false (preparecnt))
1216 { 1948 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 1950 call_pending (EV_A);
1219 } 1951 }
1220 1952
1953 if (expect_false (!activecnt))
1954 break;
1955
1221 /* we might have forked, so reify kernel state if necessary */ 1956 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 1957 if (expect_false (postfork))
1223 loop_fork (EV_A); 1958 loop_fork (EV_A);
1224 1959
1225 /* update fd-related kernel structures */ 1960 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 1961 fd_reify (EV_A);
1227 1962
1228 /* calculate blocking time */ 1963 /* calculate blocking time */
1964 {
1965 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.;
1229 1967
1230 /* we only need this for !monotonic clock or timers, but as we basically 1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 1969 {
1238 ev_rt_now = ev_time (); 1970 /* update time to cancel out callback processing overhead */
1239 mn_now = ev_rt_now; 1971 time_update (EV_A_ 1e100);
1240 }
1241 1972
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
1247 1974
1248 if (timercnt) 1975 if (timercnt)
1249 { 1976 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1251 if (block > to) block = to; 1978 if (waittime > to) waittime = to;
1252 } 1979 }
1253 1980
1254#if EV_PERIODICS 1981#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 1982 if (periodiccnt)
1256 { 1983 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 1985 if (waittime > to) waittime = to;
1259 } 1986 }
1260#endif 1987#endif
1261 1988
1262 if (expect_false (block < 0.)) block = 0.; 1989 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime;
1991
1992 sleeptime = waittime - backend_fudge;
1993
1994 if (expect_true (sleeptime > io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 {
1999 ev_sleep (sleeptime);
2000 waittime -= sleeptime;
2001 }
1263 } 2002 }
1264 2003
1265 method_poll (EV_A_ block); 2004 ++loop_count;
2005 backend_poll (EV_A_ waittime);
1266 2006
1267 /* update ev_rt_now, do magic */ 2007 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2008 time_update (EV_A_ waittime + sleeptime);
2009 }
1269 2010
1270 /* queue pending timers and reschedule them */ 2011 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2012 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2013#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2014 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2015#endif
1275 2016
2017#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2018 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2019 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2020#endif
1279 2021
1280 /* queue check watchers, to be executed first */ 2022 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2023 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 2025
1284 call_pending (EV_A); 2026 call_pending (EV_A);
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2027 }
2028 while (expect_true (
2029 activecnt
2030 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 ));
1289 2033
1290 if (loop_done != 2) 2034 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 2035 loop_done = EVUNLOOP_CANCEL;
1292} 2036}
1293 2037
1294void 2038void
1295ev_unloop (EV_P_ int how) 2039ev_unloop (EV_P_ int how)
1296{ 2040{
1297 loop_done = how; 2041 loop_done = how;
1298} 2042}
1299 2043
1300/*****************************************************************************/ 2044/*****************************************************************************/
1301 2045
1302inline void 2046void inline_size
1303wlist_add (WL *head, WL elem) 2047wlist_add (WL *head, WL elem)
1304{ 2048{
1305 elem->next = *head; 2049 elem->next = *head;
1306 *head = elem; 2050 *head = elem;
1307} 2051}
1308 2052
1309inline void 2053void inline_size
1310wlist_del (WL *head, WL elem) 2054wlist_del (WL *head, WL elem)
1311{ 2055{
1312 while (*head) 2056 while (*head)
1313 { 2057 {
1314 if (*head == elem) 2058 if (*head == elem)
1319 2063
1320 head = &(*head)->next; 2064 head = &(*head)->next;
1321 } 2065 }
1322} 2066}
1323 2067
1324inline void 2068void inline_speed
1325ev_clear_pending (EV_P_ W w) 2069clear_pending (EV_P_ W w)
1326{ 2070{
1327 if (w->pending) 2071 if (w->pending)
1328 { 2072 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2073 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1330 w->pending = 0; 2074 w->pending = 0;
1331 } 2075 }
1332} 2076}
1333 2077
1334inline void 2078int
2079ev_clear_pending (EV_P_ void *w)
2080{
2081 W w_ = (W)w;
2082 int pending = w_->pending;
2083
2084 if (expect_true (pending))
2085 {
2086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2087 w_->pending = 0;
2088 p->w = 0;
2089 return p->events;
2090 }
2091 else
2092 return 0;
2093}
2094
2095void inline_size
2096pri_adjust (EV_P_ W w)
2097{
2098 int pri = w->priority;
2099 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2101 w->priority = pri;
2102}
2103
2104void inline_speed
1335ev_start (EV_P_ W w, int active) 2105ev_start (EV_P_ W w, int active)
1336{ 2106{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2107 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2108 w->active = active;
1341 ev_ref (EV_A); 2109 ev_ref (EV_A);
1342} 2110}
1343 2111
1344inline void 2112void inline_size
1345ev_stop (EV_P_ W w) 2113ev_stop (EV_P_ W w)
1346{ 2114{
1347 ev_unref (EV_A); 2115 ev_unref (EV_A);
1348 w->active = 0; 2116 w->active = 0;
1349} 2117}
1350 2118
1351/*****************************************************************************/ 2119/*****************************************************************************/
1352 2120
1353void 2121void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2122ev_io_start (EV_P_ ev_io *w)
1355{ 2123{
1356 int fd = w->fd; 2124 int fd = w->fd;
1357 2125
1358 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1359 return; 2127 return;
1360 2128
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2131
2132 EV_FREQUENT_CHECK;
1362 2133
1363 ev_start (EV_A_ (W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
1366 2137
1367 fd_change (EV_A_ fd); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1368} 2139 w->events &= ~EV_IOFDSET;
1369 2140
1370void 2141 EV_FREQUENT_CHECK;
2142}
2143
2144void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
1372{ 2146{
1373 ev_clear_pending (EV_A_ (W)w); 2147 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2148 if (expect_false (!ev_is_active (w)))
1375 return; 2149 return;
1376 2150
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2152
2153 EV_FREQUENT_CHECK;
2154
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2156 ev_stop (EV_A_ (W)w);
1381 2157
1382 fd_change (EV_A_ w->fd); 2158 fd_change (EV_A_ w->fd, 1);
1383}
1384 2159
1385void 2160 EV_FREQUENT_CHECK;
2161}
2162
2163void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
1387{ 2165{
1388 if (expect_false (ev_is_active (w))) 2166 if (expect_false (ev_is_active (w)))
1389 return; 2167 return;
1390 2168
1391 ((WT)w)->at += mn_now; 2169 ev_at (w) += mn_now;
1392 2170
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2172
2173 EV_FREQUENT_CHECK;
2174
2175 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
1399 2181
2182 EV_FREQUENT_CHECK;
2183
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2185}
1402 2186
1403void 2187void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2189{
1406 ev_clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1408 return; 2192 return;
1409 2193
2194 EV_FREQUENT_CHECK;
2195
2196 {
2197 int active = ev_active (w);
2198
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2200
2201 --timercnt;
2202
1412 if (expect_true (((W)w)->active < timercnt--)) 2203 if (expect_true (active < timercnt + HEAP0))
1413 { 2204 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2206 adjustheap (timers, timercnt, active);
1416 } 2207 }
2208 }
1417 2209
1418 ((WT)w)->at -= mn_now; 2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now;
1419 2213
1420 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1421} 2215}
1422 2216
1423void 2217void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
1425{ 2219{
2220 EV_FREQUENT_CHECK;
2221
1426 if (ev_is_active (w)) 2222 if (ev_is_active (w))
1427 { 2223 {
1428 if (w->repeat) 2224 if (w->repeat)
1429 { 2225 {
1430 ((WT)w)->at = mn_now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
1432 } 2229 }
1433 else 2230 else
1434 ev_timer_stop (EV_A_ w); 2231 ev_timer_stop (EV_A_ w);
1435 } 2232 }
1436 else if (w->repeat) 2233 else if (w->repeat)
1437 { 2234 {
1438 w->at = w->repeat; 2235 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2236 ev_timer_start (EV_A_ w);
1440 } 2237 }
1441}
1442 2238
2239 EV_FREQUENT_CHECK;
2240}
2241
1443#if EV_PERIODICS 2242#if EV_PERIODIC_ENABLE
1444void 2243void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2245{
1447 if (expect_false (ev_is_active (w))) 2246 if (expect_false (ev_is_active (w)))
1448 return; 2247 return;
1449 2248
1450 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2251 else if (w->interval)
1453 { 2252 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 2256 }
2257 else
2258 ev_at (w) = w->offset;
1458 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w));
1463 2268
2269 EV_FREQUENT_CHECK;
2270
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2272}
1466 2273
1467void 2274void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2276{
1470 ev_clear_pending (EV_A_ (W)w); 2277 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2278 if (expect_false (!ev_is_active (w)))
1472 return; 2279 return;
1473 2280
2281 EV_FREQUENT_CHECK;
2282
2283 {
2284 int active = ev_active (w);
2285
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2287
2288 --periodiccnt;
2289
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2290 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2291 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2293 adjustheap (periodics, periodiccnt, active);
1480 } 2294 }
2295 }
2296
2297 EV_FREQUENT_CHECK;
1481 2298
1482 ev_stop (EV_A_ (W)w); 2299 ev_stop (EV_A_ (W)w);
1483} 2300}
1484 2301
1485void 2302void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2303ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2304{
1488 /* TODO: use adjustheap and recalculation */ 2305 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2306 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2307 ev_periodic_start (EV_A_ w);
1491} 2308}
1492#endif 2309#endif
1493 2310
1494void 2311#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2312# define SA_RESTART 0
2313#endif
2314
2315void noinline
2316ev_signal_start (EV_P_ ev_signal *w)
1496{ 2317{
2318#if EV_MULTIPLICITY
2319 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2320#endif
1497 if (expect_false (ev_is_active (w))) 2321 if (expect_false (ev_is_active (w)))
1498 return; 2322 return;
1499 2323
1500 ev_start (EV_A_ (W)w, ++idlecnt);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1502 idles [idlecnt - 1] = w;
1503}
1504
1505void
1506ev_idle_stop (EV_P_ struct ev_idle *w)
1507{
1508 ev_clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w)))
1510 return;
1511
1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1513 ev_stop (EV_A_ (W)w);
1514}
1515
1516void
1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1518{
1519 if (expect_false (ev_is_active (w)))
1520 return;
1521
1522 ev_start (EV_A_ (W)w, ++preparecnt);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1524 prepares [preparecnt - 1] = w;
1525}
1526
1527void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1529{
1530 ev_clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w)))
1532 return;
1533
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1535 ev_stop (EV_A_ (W)w);
1536}
1537
1538void
1539ev_check_start (EV_P_ struct ev_check *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++checkcnt);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548
1549void
1550ev_check_stop (EV_P_ struct ev_check *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560#ifndef SA_RESTART
1561# define SA_RESTART 0
1562#endif
1563
1564void
1565ev_signal_start (EV_P_ struct ev_signal *w)
1566{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1574 2325
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
2329
2330 {
2331#ifndef _WIN32
2332 sigset_t full, prev;
2333 sigfillset (&full);
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2338
2339#ifndef _WIN32
2340 sigprocmask (SIG_SETMASK, &prev, 0);
2341#endif
2342 }
2343
1575 ev_start (EV_A_ (W)w, 1); 2344 ev_start (EV_A_ (W)w, 1);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2345 wlist_add (&signals [w->signum - 1].head, (WL)w);
1578 2346
1579 if (!((WL)w)->next) 2347 if (!((WL)w)->next)
1580 { 2348 {
1581#if _WIN32 2349#if _WIN32
1582 signal (w->signum, sighandler); 2350 signal (w->signum, ev_sighandler);
1583#else 2351#else
1584 struct sigaction sa; 2352 struct sigaction sa;
1585 sa.sa_handler = sighandler; 2353 sa.sa_handler = ev_sighandler;
1586 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
1589#endif 2357#endif
1590 } 2358 }
1591}
1592 2359
1593void 2360 EV_FREQUENT_CHECK;
2361}
2362
2363void noinline
1594ev_signal_stop (EV_P_ struct ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
1595{ 2365{
1596 ev_clear_pending (EV_A_ (W)w); 2366 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 2367 if (expect_false (!ev_is_active (w)))
1598 return; 2368 return;
1599 2369
2370 EV_FREQUENT_CHECK;
2371
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
1601 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1602 2374
1603 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
1604 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
1605}
1606 2377
2378 EV_FREQUENT_CHECK;
2379}
2380
1607void 2381void
1608ev_child_start (EV_P_ struct ev_child *w) 2382ev_child_start (EV_P_ ev_child *w)
1609{ 2383{
1610#if EV_MULTIPLICITY 2384#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 2386#endif
1613 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1614 return; 2388 return;
1615 2389
2390 EV_FREQUENT_CHECK;
2391
1616 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618}
1619 2394
2395 EV_FREQUENT_CHECK;
2396}
2397
1620void 2398void
1621ev_child_stop (EV_P_ struct ev_child *w) 2399ev_child_stop (EV_P_ ev_child *w)
1622{ 2400{
1623 ev_clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
1625 return; 2403 return;
1626 2404
2405 EV_FREQUENT_CHECK;
2406
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1628 ev_stop (EV_A_ (W)w); 2408 ev_stop (EV_A_ (W)w);
2409
2410 EV_FREQUENT_CHECK;
1629} 2411}
2412
2413#if EV_STAT_ENABLE
2414
2415# ifdef _WIN32
2416# undef lstat
2417# define lstat(a,b) _stati64 (a,b)
2418# endif
2419
2420#define DEF_STAT_INTERVAL 5.0074891
2421#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2422#define MIN_STAT_INTERVAL 0.1074891
2423
2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2425
2426#if EV_USE_INOTIFY
2427# define EV_INOTIFY_BUFSIZE 8192
2428
2429static void noinline
2430infy_add (EV_P_ ev_stat *w)
2431{
2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2433
2434 if (w->wd < 0)
2435 {
2436 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2437 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2438
2439 /* monitor some parent directory for speedup hints */
2440 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2441 /* but an efficiency issue only */
2442 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2443 {
2444 char path [4096];
2445 strcpy (path, w->path);
2446
2447 do
2448 {
2449 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2450 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2451
2452 char *pend = strrchr (path, '/');
2453
2454 if (!pend)
2455 break; /* whoops, no '/', complain to your admin */
2456
2457 *pend = 0;
2458 w->wd = inotify_add_watch (fs_fd, path, mask);
2459 }
2460 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2461 }
2462 }
2463 else
2464 {
2465 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2466
2467 /* now local changes will be tracked by inotify, but remote changes won't */
2468 /* unless the filesystem it known to be local, we therefore still poll */
2469 /* also do poll on <2.6.25, but with normal frequency */
2470 struct statfs sfs;
2471
2472 if (fs_2625 && !statfs (w->path, &sfs))
2473 if (sfs.f_type == 0x1373 /* devfs */
2474 || sfs.f_type == 0xEF53 /* ext2/3 */
2475 || sfs.f_type == 0x3153464a /* jfs */
2476 || sfs.f_type == 0x52654973 /* reiser3 */
2477 || sfs.f_type == 0x01021994 /* tempfs */
2478 || sfs.f_type == 0x58465342 /* xfs */)
2479 return;
2480
2481 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2482 ev_timer_again (EV_A_ &w->timer);
2483 }
2484}
2485
2486static void noinline
2487infy_del (EV_P_ ev_stat *w)
2488{
2489 int slot;
2490 int wd = w->wd;
2491
2492 if (wd < 0)
2493 return;
2494
2495 w->wd = -2;
2496 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2497 wlist_del (&fs_hash [slot].head, (WL)w);
2498
2499 /* remove this watcher, if others are watching it, they will rearm */
2500 inotify_rm_watch (fs_fd, wd);
2501}
2502
2503static void noinline
2504infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2505{
2506 if (slot < 0)
2507 /* overflow, need to check for all hash slots */
2508 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2509 infy_wd (EV_A_ slot, wd, ev);
2510 else
2511 {
2512 WL w_;
2513
2514 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2515 {
2516 ev_stat *w = (ev_stat *)w_;
2517 w_ = w_->next; /* lets us remove this watcher and all before it */
2518
2519 if (w->wd == wd || wd == -1)
2520 {
2521 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2522 {
2523 w->wd = -1;
2524 infy_add (EV_A_ w); /* re-add, no matter what */
2525 }
2526
2527 stat_timer_cb (EV_A_ &w->timer, 0);
2528 }
2529 }
2530 }
2531}
2532
2533static void
2534infy_cb (EV_P_ ev_io *w, int revents)
2535{
2536 char buf [EV_INOTIFY_BUFSIZE];
2537 struct inotify_event *ev = (struct inotify_event *)buf;
2538 int ofs;
2539 int len = read (fs_fd, buf, sizeof (buf));
2540
2541 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2542 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2543}
2544
2545void inline_size
2546check_2625 (EV_P)
2547{
2548 /* kernels < 2.6.25 are borked
2549 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2550 */
2551 struct utsname buf;
2552 int major, minor, micro;
2553
2554 if (uname (&buf))
2555 return;
2556
2557 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2558 return;
2559
2560 if (major < 2
2561 || (major == 2 && minor < 6)
2562 || (major == 2 && minor == 6 && micro < 25))
2563 return;
2564
2565 fs_2625 = 1;
2566}
2567
2568void inline_size
2569infy_init (EV_P)
2570{
2571 if (fs_fd != -2)
2572 return;
2573
2574 fs_fd = -1;
2575
2576 check_2625 (EV_A);
2577
2578 fs_fd = inotify_init ();
2579
2580 if (fs_fd >= 0)
2581 {
2582 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2583 ev_set_priority (&fs_w, EV_MAXPRI);
2584 ev_io_start (EV_A_ &fs_w);
2585 }
2586}
2587
2588void inline_size
2589infy_fork (EV_P)
2590{
2591 int slot;
2592
2593 if (fs_fd < 0)
2594 return;
2595
2596 close (fs_fd);
2597 fs_fd = inotify_init ();
2598
2599 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2600 {
2601 WL w_ = fs_hash [slot].head;
2602 fs_hash [slot].head = 0;
2603
2604 while (w_)
2605 {
2606 ev_stat *w = (ev_stat *)w_;
2607 w_ = w_->next; /* lets us add this watcher */
2608
2609 w->wd = -1;
2610
2611 if (fs_fd >= 0)
2612 infy_add (EV_A_ w); /* re-add, no matter what */
2613 else
2614 ev_timer_again (EV_A_ &w->timer);
2615 }
2616 }
2617}
2618
2619#endif
2620
2621#ifdef _WIN32
2622# define EV_LSTAT(p,b) _stati64 (p, b)
2623#else
2624# define EV_LSTAT(p,b) lstat (p, b)
2625#endif
2626
2627void
2628ev_stat_stat (EV_P_ ev_stat *w)
2629{
2630 if (lstat (w->path, &w->attr) < 0)
2631 w->attr.st_nlink = 0;
2632 else if (!w->attr.st_nlink)
2633 w->attr.st_nlink = 1;
2634}
2635
2636static void noinline
2637stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2638{
2639 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2640
2641 /* we copy this here each the time so that */
2642 /* prev has the old value when the callback gets invoked */
2643 w->prev = w->attr;
2644 ev_stat_stat (EV_A_ w);
2645
2646 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2647 if (
2648 w->prev.st_dev != w->attr.st_dev
2649 || w->prev.st_ino != w->attr.st_ino
2650 || w->prev.st_mode != w->attr.st_mode
2651 || w->prev.st_nlink != w->attr.st_nlink
2652 || w->prev.st_uid != w->attr.st_uid
2653 || w->prev.st_gid != w->attr.st_gid
2654 || w->prev.st_rdev != w->attr.st_rdev
2655 || w->prev.st_size != w->attr.st_size
2656 || w->prev.st_atime != w->attr.st_atime
2657 || w->prev.st_mtime != w->attr.st_mtime
2658 || w->prev.st_ctime != w->attr.st_ctime
2659 ) {
2660 #if EV_USE_INOTIFY
2661 if (fs_fd >= 0)
2662 {
2663 infy_del (EV_A_ w);
2664 infy_add (EV_A_ w);
2665 ev_stat_stat (EV_A_ w); /* avoid race... */
2666 }
2667 #endif
2668
2669 ev_feed_event (EV_A_ w, EV_STAT);
2670 }
2671}
2672
2673void
2674ev_stat_start (EV_P_ ev_stat *w)
2675{
2676 if (expect_false (ev_is_active (w)))
2677 return;
2678
2679 ev_stat_stat (EV_A_ w);
2680
2681 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2682 w->interval = MIN_STAT_INTERVAL;
2683
2684 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2685 ev_set_priority (&w->timer, ev_priority (w));
2686
2687#if EV_USE_INOTIFY
2688 infy_init (EV_A);
2689
2690 if (fs_fd >= 0)
2691 infy_add (EV_A_ w);
2692 else
2693#endif
2694 ev_timer_again (EV_A_ &w->timer);
2695
2696 ev_start (EV_A_ (W)w, 1);
2697
2698 EV_FREQUENT_CHECK;
2699}
2700
2701void
2702ev_stat_stop (EV_P_ ev_stat *w)
2703{
2704 clear_pending (EV_A_ (W)w);
2705 if (expect_false (!ev_is_active (w)))
2706 return;
2707
2708 EV_FREQUENT_CHECK;
2709
2710#if EV_USE_INOTIFY
2711 infy_del (EV_A_ w);
2712#endif
2713 ev_timer_stop (EV_A_ &w->timer);
2714
2715 ev_stop (EV_A_ (W)w);
2716
2717 EV_FREQUENT_CHECK;
2718}
2719#endif
2720
2721#if EV_IDLE_ENABLE
2722void
2723ev_idle_start (EV_P_ ev_idle *w)
2724{
2725 if (expect_false (ev_is_active (w)))
2726 return;
2727
2728 pri_adjust (EV_A_ (W)w);
2729
2730 EV_FREQUENT_CHECK;
2731
2732 {
2733 int active = ++idlecnt [ABSPRI (w)];
2734
2735 ++idleall;
2736 ev_start (EV_A_ (W)w, active);
2737
2738 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2739 idles [ABSPRI (w)][active - 1] = w;
2740 }
2741
2742 EV_FREQUENT_CHECK;
2743}
2744
2745void
2746ev_idle_stop (EV_P_ ev_idle *w)
2747{
2748 clear_pending (EV_A_ (W)w);
2749 if (expect_false (!ev_is_active (w)))
2750 return;
2751
2752 EV_FREQUENT_CHECK;
2753
2754 {
2755 int active = ev_active (w);
2756
2757 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2758 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2759
2760 ev_stop (EV_A_ (W)w);
2761 --idleall;
2762 }
2763
2764 EV_FREQUENT_CHECK;
2765}
2766#endif
2767
2768void
2769ev_prepare_start (EV_P_ ev_prepare *w)
2770{
2771 if (expect_false (ev_is_active (w)))
2772 return;
2773
2774 EV_FREQUENT_CHECK;
2775
2776 ev_start (EV_A_ (W)w, ++preparecnt);
2777 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2778 prepares [preparecnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2781}
2782
2783void
2784ev_prepare_stop (EV_P_ ev_prepare *w)
2785{
2786 clear_pending (EV_A_ (W)w);
2787 if (expect_false (!ev_is_active (w)))
2788 return;
2789
2790 EV_FREQUENT_CHECK;
2791
2792 {
2793 int active = ev_active (w);
2794
2795 prepares [active - 1] = prepares [--preparecnt];
2796 ev_active (prepares [active - 1]) = active;
2797 }
2798
2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2802}
2803
2804void
2805ev_check_start (EV_P_ ev_check *w)
2806{
2807 if (expect_false (ev_is_active (w)))
2808 return;
2809
2810 EV_FREQUENT_CHECK;
2811
2812 ev_start (EV_A_ (W)w, ++checkcnt);
2813 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2814 checks [checkcnt - 1] = w;
2815
2816 EV_FREQUENT_CHECK;
2817}
2818
2819void
2820ev_check_stop (EV_P_ ev_check *w)
2821{
2822 clear_pending (EV_A_ (W)w);
2823 if (expect_false (!ev_is_active (w)))
2824 return;
2825
2826 EV_FREQUENT_CHECK;
2827
2828 {
2829 int active = ev_active (w);
2830
2831 checks [active - 1] = checks [--checkcnt];
2832 ev_active (checks [active - 1]) = active;
2833 }
2834
2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2838}
2839
2840#if EV_EMBED_ENABLE
2841void noinline
2842ev_embed_sweep (EV_P_ ev_embed *w)
2843{
2844 ev_loop (w->other, EVLOOP_NONBLOCK);
2845}
2846
2847static void
2848embed_io_cb (EV_P_ ev_io *io, int revents)
2849{
2850 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2851
2852 if (ev_cb (w))
2853 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2854 else
2855 ev_loop (w->other, EVLOOP_NONBLOCK);
2856}
2857
2858static void
2859embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2860{
2861 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2862
2863 {
2864 struct ev_loop *loop = w->other;
2865
2866 while (fdchangecnt)
2867 {
2868 fd_reify (EV_A);
2869 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2870 }
2871 }
2872}
2873
2874static void
2875embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2876{
2877 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2878
2879 {
2880 struct ev_loop *loop = w->other;
2881
2882 ev_loop_fork (EV_A);
2883 }
2884}
2885
2886#if 0
2887static void
2888embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2889{
2890 ev_idle_stop (EV_A_ idle);
2891}
2892#endif
2893
2894void
2895ev_embed_start (EV_P_ ev_embed *w)
2896{
2897 if (expect_false (ev_is_active (w)))
2898 return;
2899
2900 {
2901 struct ev_loop *loop = w->other;
2902 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2903 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2904 }
2905
2906 EV_FREQUENT_CHECK;
2907
2908 ev_set_priority (&w->io, ev_priority (w));
2909 ev_io_start (EV_A_ &w->io);
2910
2911 ev_prepare_init (&w->prepare, embed_prepare_cb);
2912 ev_set_priority (&w->prepare, EV_MINPRI);
2913 ev_prepare_start (EV_A_ &w->prepare);
2914
2915 ev_fork_init (&w->fork, embed_fork_cb);
2916 ev_fork_start (EV_A_ &w->fork);
2917
2918 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2919
2920 ev_start (EV_A_ (W)w, 1);
2921
2922 EV_FREQUENT_CHECK;
2923}
2924
2925void
2926ev_embed_stop (EV_P_ ev_embed *w)
2927{
2928 clear_pending (EV_A_ (W)w);
2929 if (expect_false (!ev_is_active (w)))
2930 return;
2931
2932 EV_FREQUENT_CHECK;
2933
2934 ev_io_stop (EV_A_ &w->io);
2935 ev_prepare_stop (EV_A_ &w->prepare);
2936 ev_fork_stop (EV_A_ &w->fork);
2937
2938 EV_FREQUENT_CHECK;
2939}
2940#endif
2941
2942#if EV_FORK_ENABLE
2943void
2944ev_fork_start (EV_P_ ev_fork *w)
2945{
2946 if (expect_false (ev_is_active (w)))
2947 return;
2948
2949 EV_FREQUENT_CHECK;
2950
2951 ev_start (EV_A_ (W)w, ++forkcnt);
2952 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2953 forks [forkcnt - 1] = w;
2954
2955 EV_FREQUENT_CHECK;
2956}
2957
2958void
2959ev_fork_stop (EV_P_ ev_fork *w)
2960{
2961 clear_pending (EV_A_ (W)w);
2962 if (expect_false (!ev_is_active (w)))
2963 return;
2964
2965 EV_FREQUENT_CHECK;
2966
2967 {
2968 int active = ev_active (w);
2969
2970 forks [active - 1] = forks [--forkcnt];
2971 ev_active (forks [active - 1]) = active;
2972 }
2973
2974 ev_stop (EV_A_ (W)w);
2975
2976 EV_FREQUENT_CHECK;
2977}
2978#endif
2979
2980#if EV_ASYNC_ENABLE
2981void
2982ev_async_start (EV_P_ ev_async *w)
2983{
2984 if (expect_false (ev_is_active (w)))
2985 return;
2986
2987 evpipe_init (EV_A);
2988
2989 EV_FREQUENT_CHECK;
2990
2991 ev_start (EV_A_ (W)w, ++asynccnt);
2992 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2993 asyncs [asynccnt - 1] = w;
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_stop (EV_P_ ev_async *w)
3000{
3001 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 {
3008 int active = ev_active (w);
3009
3010 asyncs [active - 1] = asyncs [--asynccnt];
3011 ev_active (asyncs [active - 1]) = active;
3012 }
3013
3014 ev_stop (EV_A_ (W)w);
3015
3016 EV_FREQUENT_CHECK;
3017}
3018
3019void
3020ev_async_send (EV_P_ ev_async *w)
3021{
3022 w->sent = 1;
3023 evpipe_write (EV_A_ &gotasync);
3024}
3025#endif
1630 3026
1631/*****************************************************************************/ 3027/*****************************************************************************/
1632 3028
1633struct ev_once 3029struct ev_once
1634{ 3030{
1635 struct ev_io io; 3031 ev_io io;
1636 struct ev_timer to; 3032 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3033 void (*cb)(int revents, void *arg);
1638 void *arg; 3034 void *arg;
1639}; 3035};
1640 3036
1641static void 3037static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3038once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3039{
1644 void (*cb)(int revents, void *arg) = once->cb; 3040 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3041 void *arg = once->arg;
1646 3042
1647 ev_io_stop (EV_A_ &once->io); 3043 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3044 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3045 ev_free (once);
1650 3046
1651 cb (revents, arg); 3047 cb (revents, arg);
1652} 3048}
1653 3049
1654static void 3050static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3051once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3052{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3053 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3054
3055 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3056}
1659 3057
1660static void 3058static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3059once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3060{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3061 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3062
3063 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3064}
1665 3065
1666void 3066void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3067ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3068{
1690 ev_timer_set (&once->to, timeout, 0.); 3090 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3091 ev_timer_start (EV_A_ &once->to);
1692 } 3092 }
1693} 3093}
1694 3094
3095#if EV_MULTIPLICITY
3096 #include "ev_wrap.h"
3097#endif
3098
1695#ifdef __cplusplus 3099#ifdef __cplusplus
1696} 3100}
1697#endif 3101#endif
1698 3102

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines