ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.304 by root, Sun Jul 19 03:12:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
46# else 73# else
47# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
49# endif 76# endif
50# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
52# endif 87# endif
53# endif 88# endif
54 89
55# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 125# else
91# define EV_USE_PORT 0 126# define EV_USE_PORT 0
92# endif 127# endif
93# endif 128# endif
94 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
95#endif 154#endif
96 155
97#include <math.h> 156#include <math.h>
98#include <stdlib.h> 157#include <stdlib.h>
99#include <fcntl.h> 158#include <fcntl.h>
106#include <sys/types.h> 165#include <sys/types.h>
107#include <time.h> 166#include <time.h>
108 167
109#include <signal.h> 168#include <signal.h>
110 169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
111#ifndef _WIN32 176#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 177# include <sys/time.h>
114# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
115#else 180#else
181# include <io.h>
116# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 183# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
120# endif 186# endif
121#endif 187#endif
122 188
123/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
124 198
125#ifndef EV_USE_MONOTONIC 199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
201# define EV_USE_MONOTONIC 1
202# else
126# define EV_USE_MONOTONIC 0 203# define EV_USE_MONOTONIC 0
204# endif
127#endif 205#endif
128 206
129#ifndef EV_USE_REALTIME 207#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
209#endif
210
211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
215# define EV_USE_NANOSLEEP 0
216# endif
131#endif 217#endif
132 218
133#ifndef EV_USE_SELECT 219#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 220# define EV_USE_SELECT 1
135#endif 221#endif
141# define EV_USE_POLL 1 227# define EV_USE_POLL 1
142# endif 228# endif
143#endif 229#endif
144 230
145#ifndef EV_USE_EPOLL 231#ifndef EV_USE_EPOLL
232# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
233# define EV_USE_EPOLL 1
234# else
146# define EV_USE_EPOLL 0 235# define EV_USE_EPOLL 0
236# endif
147#endif 237#endif
148 238
149#ifndef EV_USE_KQUEUE 239#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 240# define EV_USE_KQUEUE 0
151#endif 241#endif
152 242
153#ifndef EV_USE_PORT 243#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 244# define EV_USE_PORT 0
155#endif 245#endif
156 246
157/**/ 247#ifndef EV_USE_INOTIFY
158 248# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 249# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 250# else
161# undef EV_USE_POLL 251# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 252# endif
253#endif
254
255#ifndef EV_PID_HASHSIZE
256# if EV_MINIMAL
257# define EV_PID_HASHSIZE 1
258# else
259# define EV_PID_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_INOTIFY_HASHSIZE
264# if EV_MINIMAL
265# define EV_INOTIFY_HASHSIZE 1
266# else
267# define EV_INOTIFY_HASHSIZE 16
268# endif
269#endif
270
271#ifndef EV_USE_EVENTFD
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
273# define EV_USE_EVENTFD 1
274# else
275# define EV_USE_EVENTFD 0
276# endif
277#endif
278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
297#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL
299#endif
300
301#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
317#endif
318
319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 320
165#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 322# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 323# define EV_USE_MONOTONIC 0
168#endif 324#endif
170#ifndef CLOCK_REALTIME 326#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 327# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 328# define EV_USE_REALTIME 0
173#endif 329#endif
174 330
331#if !EV_STAT_ENABLE
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334#endif
335
336#if !EV_USE_NANOSLEEP
337# ifndef _WIN32
338# include <sys/select.h>
339# endif
340#endif
341
342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
351#endif
352
175#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 354# include <winsock.h>
177#endif 355#endif
178 356
357#if EV_USE_EVENTFD
358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
366# ifdef __cplusplus
367extern "C" {
368# endif
369int eventfd (unsigned int initval, int flags);
370# ifdef __cplusplus
371}
372# endif
373#endif
374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
377#endif
378
179/**/ 379/**/
380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
386
387/*
388 * This is used to avoid floating point rounding problems.
389 * It is added to ev_rt_now when scheduling periodics
390 * to ensure progress, time-wise, even when rounding
391 * errors are against us.
392 * This value is good at least till the year 4000.
393 * Better solutions welcome.
394 */
395#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 396
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 397#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 398#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 399/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 400
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 401#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 402# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 403# define noinline __attribute__ ((noinline))
195#else 404#else
196# define expect(expr,value) (expr) 405# define expect(expr,value) (expr)
197# define inline static 406# define noinline
407# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
408# define inline
409# endif
198#endif 410#endif
199 411
200#define expect_false(expr) expect ((expr) != 0, 0) 412#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 413#define expect_true(expr) expect ((expr) != 0, 1)
414#define inline_size static inline
202 415
416#if EV_MINIMAL
417# define inline_speed static noinline
418#else
419# define inline_speed static inline
420#endif
421
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
205 429
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 431#define EMPTY2(a,b) /* used to suppress some warnings */
208 432
209typedef struct ev_watcher *W; 433typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 434typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
212 436
437#define ev_active(w) ((W)(w))->active
438#define ev_at(w) ((WT)(w))->at
439
440#if EV_USE_REALTIME
441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
448#endif
214 449
215#ifdef _WIN32 450#ifdef _WIN32
216# include "ev_win32.c" 451# include "ev_win32.c"
217#endif 452#endif
218 453
219/*****************************************************************************/ 454/*****************************************************************************/
220 455
221static void (*syserr_cb)(const char *msg); 456static void (*syserr_cb)(const char *msg);
222 457
458void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 459ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 460{
225 syserr_cb = cb; 461 syserr_cb = cb;
226} 462}
227 463
228static void 464static void noinline
229syserr (const char *msg) 465ev_syserr (const char *msg)
230{ 466{
231 if (!msg) 467 if (!msg)
232 msg = "(libev) system error"; 468 msg = "(libev) system error";
233 469
234 if (syserr_cb) 470 if (syserr_cb)
238 perror (msg); 474 perror (msg);
239 abort (); 475 abort ();
240 } 476 }
241} 477}
242 478
479static void *
480ev_realloc_emul (void *ptr, long size)
481{
482 /* some systems, notably openbsd and darwin, fail to properly
483 * implement realloc (x, 0) (as required by both ansi c-98 and
484 * the single unix specification, so work around them here.
485 */
486
487 if (size)
488 return realloc (ptr, size);
489
490 free (ptr);
491 return 0;
492}
493
243static void *(*alloc)(void *ptr, long size); 494static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 495
496void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 497ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 498{
247 alloc = cb; 499 alloc = cb;
248} 500}
249 501
250static void * 502inline_speed void *
251ev_realloc (void *ptr, long size) 503ev_realloc (void *ptr, long size)
252{ 504{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 505 ptr = alloc (ptr, size);
254 506
255 if (!ptr && size) 507 if (!ptr && size)
256 { 508 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 509 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 510 abort ();
264#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
266 518
267/*****************************************************************************/ 519/*****************************************************************************/
268 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
269typedef struct 525typedef struct
270{ 526{
271 WL head; 527 WL head;
272 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
274#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
275 SOCKET handle; 536 SOCKET handle;
276#endif 537#endif
277} ANFD; 538} ANFD;
278 539
540/* stores the pending event set for a given watcher */
279typedef struct 541typedef struct
280{ 542{
281 W w; 543 W w;
282 int events; 544 int events; /* the pending event set for the given watcher */
283} ANPENDING; 545} ANPENDING;
546
547#if EV_USE_INOTIFY
548/* hash table entry per inotify-id */
549typedef struct
550{
551 WL head;
552} ANFS;
553#endif
554
555/* Heap Entry */
556#if EV_HEAP_CACHE_AT
557 /* a heap element */
558 typedef struct {
559 ev_tstamp at;
560 WT w;
561 } ANHE;
562
563 #define ANHE_w(he) (he).w /* access watcher, read-write */
564 #define ANHE_at(he) (he).at /* access cached at, read-only */
565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566#else
567 /* a heap element */
568 typedef WT ANHE;
569
570 #define ANHE_w(he) (he)
571 #define ANHE_at(he) (he)->at
572 #define ANHE_at_cache(he)
573#endif
284 574
285#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
286 576
287 struct ev_loop 577 struct ev_loop
288 { 578 {
306 596
307 static int ev_default_loop_ptr; 597 static int ev_default_loop_ptr;
308 598
309#endif 599#endif
310 600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
612
311/*****************************************************************************/ 613/*****************************************************************************/
312 614
615#ifndef EV_HAVE_EV_TIME
313ev_tstamp 616ev_tstamp
314ev_time (void) 617ev_time (void)
315{ 618{
316#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
317 struct timespec ts; 622 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 625 }
626#endif
627
321 struct timeval tv; 628 struct timeval tv;
322 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 631}
632#endif
326 633
327inline ev_tstamp 634inline_size ev_tstamp
328get_clock (void) 635get_clock (void)
329{ 636{
330#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
332 { 639 {
345{ 652{
346 return ev_rt_now; 653 return ev_rt_now;
347} 654}
348#endif 655#endif
349 656
350#define array_roundsize(type,n) (((n) | 4) & ~3) 657void
658ev_sleep (ev_tstamp delay)
659{
660 if (delay > 0.)
661 {
662#if EV_USE_NANOSLEEP
663 struct timespec ts;
664
665 ts.tv_sec = (time_t)delay;
666 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
667
668 nanosleep (&ts, 0);
669#elif defined(_WIN32)
670 Sleep ((unsigned long)(delay * 1e3));
671#else
672 struct timeval tv;
673
674 tv.tv_sec = (time_t)delay;
675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
680 select (0, 0, 0, 0, &tv);
681#endif
682 }
683}
684
685/*****************************************************************************/
686
687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688
689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
692array_nextsize (int elem, int cur, int cnt)
693{
694 int ncur = cur + 1;
695
696 do
697 ncur <<= 1;
698 while (cnt > ncur);
699
700 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
701 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
702 {
703 ncur *= elem;
704 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
705 ncur = ncur - sizeof (void *) * 4;
706 ncur /= elem;
707 }
708
709 return ncur;
710}
711
712static noinline void *
713array_realloc (int elem, void *base, int *cur, int cnt)
714{
715 *cur = array_nextsize (elem, *cur, cnt);
716 return ev_realloc (base, elem * *cur);
717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 721
352#define array_needsize(type,base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 723 if (expect_false ((cnt) > (cur))) \
354 { \ 724 { \
355 int newcnt = cur; \ 725 int ocur_ = (cur); \
356 do \ 726 (base) = (type *)array_realloc \
357 { \ 727 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 728 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 729 }
366 730
731#if 0
367#define array_slim(type,stem) \ 732#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 733 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 734 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 735 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 736 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 738 }
739#endif
374 740
375#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 743
378/*****************************************************************************/ 744/*****************************************************************************/
379 745
380static void 746/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 749{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 750}
392 751
393void 752void noinline
394ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
395{ 754{
396 W w_ = (W)w; 755 W w_ = (W)w;
756 int pri = ABSPRI (w_);
397 757
398 if (expect_false (w_->pending)) 758 if (expect_false (w_->pending))
759 pendings [pri][w_->pending - 1].events |= revents;
760 else
399 { 761 {
762 w_->pending = ++pendingcnt [pri];
763 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
764 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 765 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 766 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 767}
409 768
410static void 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 786{
413 int i; 787 int i;
414 788
415 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
417} 791}
418 792
793/*****************************************************************************/
794
419inline void 795inline_speed void
420fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
421{ 797{
422 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 799 ev_io *w;
424 800
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 802 {
427 int ev = w->events & revents; 803 int ev = w->events & revents;
428 804
429 if (ev) 805 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
431 } 807 }
432} 808}
433 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
434void 821void
435ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 823{
824 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
438} 826}
439 827
440/*****************************************************************************/ 828/* make sure the external fd watch events are in-sync */
441 829/* with the kernel/libev internal state */
442inline void 830inline_size void
443fd_reify (EV_P) 831fd_reify (EV_P)
444{ 832{
445 int i; 833 int i;
446 834
447 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
448 { 836 {
449 int fd = fdchanges [i]; 837 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 838 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 839 ev_io *w;
452 840
453 int events = 0; 841 unsigned char events = 0;
454 842
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 843 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 844 events |= (unsigned char)w->events;
457 845
458#if EV_SELECT_IS_WINSOCKET 846#if EV_SELECT_IS_WINSOCKET
459 if (events) 847 if (events)
460 { 848 {
461 unsigned long argp; 849 unsigned long arg;
850 #ifdef EV_FD_TO_WIN32_HANDLE
851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
852 #else
462 anfd->handle = _get_osfhandle (fd); 853 anfd->handle = _get_osfhandle (fd);
854 #endif
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
464 } 856 }
465#endif 857#endif
466 858
859 {
860 unsigned char o_events = anfd->events;
861 unsigned char o_reify = anfd->reify;
862
467 anfd->reify = 0; 863 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 864 anfd->events = events;
865
866 if (o_events != events || o_reify & EV__IOFDSET)
867 backend_modify (EV_A_ fd, o_events, events);
868 }
471 } 869 }
472 870
473 fdchangecnt = 0; 871 fdchangecnt = 0;
474} 872}
475 873
476static void 874/* something about the given fd changed */
875inline_size void
477fd_change (EV_P_ int fd) 876fd_change (EV_P_ int fd, int flags)
478{ 877{
479 if (expect_false (anfds [fd].reify)) 878 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 879 anfds [fd].reify |= flags;
483 880
881 if (expect_true (!reify))
882 {
484 ++fdchangecnt; 883 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
886 }
487} 887}
488 888
489static void 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
490fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
491{ 892{
492 struct ev_io *w; 893 ev_io *w;
493 894
494 while ((w = (struct ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
495 { 896 {
496 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 899 }
499} 900}
500 901
902/* check whether the given fd is atcually valid, for error recovery */
501inline int 903inline_size int
502fd_valid (int fd) 904fd_valid (int fd)
503{ 905{
504#ifdef _WIN32 906#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
506#else 908#else
507 return fcntl (fd, F_GETFD) != -1; 909 return fcntl (fd, F_GETFD) != -1;
508#endif 910#endif
509} 911}
510 912
511/* called on EBADF to verify fds */ 913/* called on EBADF to verify fds */
512static void 914static void noinline
513fd_ebadf (EV_P) 915fd_ebadf (EV_P)
514{ 916{
515 int fd; 917 int fd;
516 918
517 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 920 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
521} 923}
522 924
523/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 926static void noinline
525fd_enomem (EV_P) 927fd_enomem (EV_P)
526{ 928{
527 int fd; 929 int fd;
528 930
529 for (fd = anfdmax; fd--; ) 931 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 934 fd_kill (EV_A_ fd);
533 return; 935 return;
534 } 936 }
535} 937}
536 938
537/* usually called after fork if method needs to re-arm all fds from scratch */ 939/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 940static void noinline
539fd_rearm_all (EV_P) 941fd_rearm_all (EV_P)
540{ 942{
541 int fd; 943 int fd;
542 944
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 946 if (anfds [fd].events)
546 { 947 {
547 anfds [fd].events = 0; 948 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 949 anfds [fd].emask = 0;
950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
549 } 951 }
550} 952}
551 953
552/*****************************************************************************/ 954/*****************************************************************************/
553 955
554static void 956/*
555upheap (WT *heap, int k) 957 * the heap functions want a real array index. array index 0 uis guaranteed to not
556{ 958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
557 WT w = heap [k]; 959 * the branching factor of the d-tree.
960 */
558 961
559 while (k && heap [k >> 1]->at > w->at) 962/*
560 { 963 * at the moment we allow libev the luxury of two heaps,
561 heap [k] = heap [k >> 1]; 964 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
562 ((W)heap [k])->active = k + 1; 965 * which is more cache-efficient.
563 k >>= 1; 966 * the difference is about 5% with 50000+ watchers.
564 } 967 */
968#if EV_USE_4HEAP
565 969
566 heap [k] = w; 970#define DHEAP 4
567 ((W)heap [k])->active = k + 1; 971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973#define UPHEAP_DONE(p,k) ((p) == (k))
568 974
569} 975/* away from the root */
570 976inline_speed void
571static void
572downheap (WT *heap, int N, int k) 977downheap (ANHE *heap, int N, int k)
573{ 978{
574 WT w = heap [k]; 979 ANHE he = heap [k];
980 ANHE *E = heap + N + HEAP0;
575 981
576 while (k < (N >> 1)) 982 for (;;)
577 { 983 {
578 int j = k << 1; 984 ev_tstamp minat;
985 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
579 987
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 988 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E))
581 ++j; 990 {
582 991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
583 if (w->at <= heap [j]->at) 992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 }
996 else if (pos < E)
997 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 }
1003 else
584 break; 1004 break;
585 1005
1006 if (ANHE_at (he) <= minat)
1007 break;
1008
1009 heap [k] = *minpos;
1010 ev_active (ANHE_w (*minpos)) = k;
1011
1012 k = minpos - heap;
1013 }
1014
1015 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k;
1017}
1018
1019#else /* 4HEAP */
1020
1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
1024
1025/* away from the root */
1026inline_speed void
1027downheap (ANHE *heap, int N, int k)
1028{
1029 ANHE he = heap [k];
1030
1031 for (;;)
1032 {
1033 int c = k << 1;
1034
1035 if (c > N + HEAP0 - 1)
1036 break;
1037
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0;
1040
1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
1042 break;
1043
586 heap [k] = heap [j]; 1044 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 1045 ev_active (ANHE_w (heap [k])) = k;
1046
588 k = j; 1047 k = c;
589 } 1048 }
590 1049
591 heap [k] = w; 1050 heap [k] = he;
592 ((W)heap [k])->active = k + 1; 1051 ev_active (ANHE_w (he)) = k;
593} 1052}
1053#endif
594 1054
1055/* towards the root */
1056inline_speed void
1057upheap (ANHE *heap, int k)
1058{
1059 ANHE he = heap [k];
1060
1061 for (;;)
1062 {
1063 int p = HPARENT (k);
1064
1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 break;
1067
1068 heap [k] = heap [p];
1069 ev_active (ANHE_w (heap [k])) = k;
1070 k = p;
1071 }
1072
1073 heap [k] = he;
1074 ev_active (ANHE_w (he)) = k;
1075}
1076
1077/* move an element suitably so it is in a correct place */
595inline void 1078inline_size void
596adjustheap (WT *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
597{ 1080{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
598 upheap (heap, k); 1082 upheap (heap, k);
1083 else
599 downheap (heap, N, k); 1084 downheap (heap, N, k);
1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
1096 upheap (heap, i + HEAP0);
600} 1097}
601 1098
602/*****************************************************************************/ 1099/*****************************************************************************/
603 1100
1101/* associate signal watchers to a signal signal */
604typedef struct 1102typedef struct
605{ 1103{
606 WL head; 1104 WL head;
607 sig_atomic_t volatile gotsig; 1105 EV_ATOMIC_T gotsig;
608} ANSIG; 1106} ANSIG;
609 1107
610static ANSIG *signals; 1108static ANSIG *signals;
611static int signalmax; 1109static int signalmax;
612 1110
613static int sigpipe [2]; 1111static EV_ATOMIC_T gotsig;
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 1112
617static void 1113/*****************************************************************************/
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624 1114
625 ++base; 1115/* used to prepare libev internal fd's */
626 } 1116/* this is not fork-safe */
627} 1117inline_speed void
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1118fd_intern (int fd)
682{ 1119{
683#ifdef _WIN32 1120#ifdef _WIN32
684 int arg = 1; 1121 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
686#else 1123#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1125 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1126#endif
690} 1127}
691 1128
1129static void noinline
1130evpipe_init (EV_P)
1131{
1132 if (!ev_is_active (&pipe_w))
1133 {
1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
1140 {
1141 evpipe [0] = -1;
1142 fd_intern (evfd); /* doing it twice doesn't hurt */
1143 ev_io_set (&pipe_w, evfd, EV_READ);
1144 }
1145 else
1146#endif
1147 {
1148 while (pipe (evpipe))
1149 ev_syserr ("(libev) error creating signal/async pipe");
1150
1151 fd_intern (evpipe [0]);
1152 fd_intern (evpipe [1]);
1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1154 }
1155
1156 ev_io_start (EV_A_ &pipe_w);
1157 ev_unref (EV_A); /* watcher should not keep loop alive */
1158 }
1159}
1160
1161inline_size void
1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1163{
1164 if (!*flag)
1165 {
1166 int old_errno = errno; /* save errno because write might clobber it */
1167
1168 *flag = 1;
1169
1170#if EV_USE_EVENTFD
1171 if (evfd >= 0)
1172 {
1173 uint64_t counter = 1;
1174 write (evfd, &counter, sizeof (uint64_t));
1175 }
1176 else
1177#endif
1178 write (evpipe [1], &old_errno, 1);
1179
1180 errno = old_errno;
1181 }
1182}
1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
692static void 1186static void
693siginit (EV_P) 1187pipecb (EV_P_ ev_io *iow, int revents)
694{ 1188{
695 fd_intern (sigpipe [0]); 1189#if EV_USE_EVENTFD
696 fd_intern (sigpipe [1]); 1190 if (evfd >= 0)
1191 {
1192 uint64_t counter;
1193 read (evfd, &counter, sizeof (uint64_t));
1194 }
1195 else
1196#endif
1197 {
1198 char dummy;
1199 read (evpipe [0], &dummy, 1);
1200 }
697 1201
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1202 if (gotsig && ev_is_default_loop (EV_A))
699 ev_io_start (EV_A_ &sigev); 1203 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1204 int signum;
1205 gotsig = 0;
1206
1207 for (signum = signalmax; signum--; )
1208 if (signals [signum].gotsig)
1209 ev_feed_signal_event (EV_A_ signum + 1);
1210 }
1211
1212#if EV_ASYNC_ENABLE
1213 if (gotasync)
1214 {
1215 int i;
1216 gotasync = 0;
1217
1218 for (i = asynccnt; i--; )
1219 if (asyncs [i]->sent)
1220 {
1221 asyncs [i]->sent = 0;
1222 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1223 }
1224 }
1225#endif
701} 1226}
702 1227
703/*****************************************************************************/ 1228/*****************************************************************************/
704 1229
705static struct ev_child *childs [PID_HASHSIZE]; 1230static void
1231ev_sighandler (int signum)
1232{
1233#if EV_MULTIPLICITY
1234 struct ev_loop *loop = &default_loop_struct;
1235#endif
1236
1237#if _WIN32
1238 signal (signum, ev_sighandler);
1239#endif
1240
1241 signals [signum - 1].gotsig = 1;
1242 evpipe_write (EV_A_ &gotsig);
1243}
1244
1245void noinline
1246ev_feed_signal_event (EV_P_ int signum)
1247{
1248 WL w;
1249
1250#if EV_MULTIPLICITY
1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1252#endif
1253
1254 --signum;
1255
1256 if (signum < 0 || signum >= signalmax)
1257 return;
1258
1259 signals [signum].gotsig = 0;
1260
1261 for (w = signals [signum].head; w; w = w->next)
1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1263}
1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
1285/*****************************************************************************/
1286
1287static WL childs [EV_PID_HASHSIZE];
706 1288
707#ifndef _WIN32 1289#ifndef _WIN32
708 1290
709static struct ev_signal childev; 1291static ev_signal childev;
1292
1293#ifndef WIFCONTINUED
1294# define WIFCONTINUED(status) 0
1295#endif
1296
1297/* handle a single child status event */
1298inline_speed void
1299child_reap (EV_P_ int chain, int pid, int status)
1300{
1301 ev_child *w;
1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1303
1304 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1305 {
1306 if ((w->pid == pid || !w->pid)
1307 && (!traced || (w->flags & 1)))
1308 {
1309 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1310 w->rpid = pid;
1311 w->rstatus = status;
1312 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1313 }
1314 }
1315}
710 1316
711#ifndef WCONTINUED 1317#ifndef WCONTINUED
712# define WCONTINUED 0 1318# define WCONTINUED 0
713#endif 1319#endif
714 1320
1321/* called on sigchld etc., calls waitpid */
715static void 1322static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
732{ 1324{
733 int pid, status; 1325 int pid, status;
734 1326
1327 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1328 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1329 if (!WCONTINUED
1330 || errno != EINVAL
1331 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1332 return;
1333
737 /* make sure we are called again until all childs have been reaped */ 1334 /* make sure we are called again until all children have been reaped */
1335 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1336 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1337
740 child_reap (EV_A_ sw, pid, pid, status); 1338 child_reap (EV_A_ pid, pid, status);
1339 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1340 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1341}
744 1342
745#endif 1343#endif
746 1344
747/*****************************************************************************/ 1345/*****************************************************************************/
773{ 1371{
774 return EV_VERSION_MINOR; 1372 return EV_VERSION_MINOR;
775} 1373}
776 1374
777/* return true if we are running with elevated privileges and should ignore env variables */ 1375/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1376int inline_size
779enable_secure (void) 1377enable_secure (void)
780{ 1378{
781#ifdef _WIN32 1379#ifdef _WIN32
782 return 0; 1380 return 0;
783#else 1381#else
785 || getgid () != getegid (); 1383 || getgid () != getegid ();
786#endif 1384#endif
787} 1385}
788 1386
789unsigned int 1387unsigned int
790ev_method (EV_P) 1388ev_supported_backends (void)
791{ 1389{
792 return method; 1390 unsigned int flags = 0;
793}
794 1391
795static void 1392 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1393 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1394 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1395 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1396 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1397
1398 return flags;
1399}
1400
1401unsigned int
1402ev_recommended_backends (void)
1403{
1404 unsigned int flags = ev_supported_backends ();
1405
1406#ifndef __NetBSD__
1407 /* kqueue is borked on everything but netbsd apparently */
1408 /* it usually doesn't work correctly on anything but sockets and pipes */
1409 flags &= ~EVBACKEND_KQUEUE;
1410#endif
1411#ifdef __APPLE__
1412 /* only select works correctly on that "unix-certified" platform */
1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1415#endif
1416
1417 return flags;
1418}
1419
1420unsigned int
1421ev_embeddable_backends (void)
1422{
1423 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1424
1425 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1426 /* please fix it and tell me how to detect the fix */
1427 flags &= ~EVBACKEND_EPOLL;
1428
1429 return flags;
1430}
1431
1432unsigned int
1433ev_backend (EV_P)
1434{
1435 return backend;
1436}
1437
1438#if EV_MINIMAL < 2
1439unsigned int
1440ev_loop_count (EV_P)
1441{
1442 return loop_count;
1443}
1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1451void
1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1453{
1454 io_blocktime = interval;
1455}
1456
1457void
1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1459{
1460 timeout_blocktime = interval;
1461}
1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1488static void noinline
796loop_init (EV_P_ unsigned int flags) 1489loop_init (EV_P_ unsigned int flags)
797{ 1490{
798 if (!method) 1491 if (!backend)
799 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
800#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
801 { 1505 {
802 struct timespec ts; 1506 struct timespec ts;
1507
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1509 have_monotonic = 1;
805 } 1510 }
806#endif 1511#endif
807 1512
808 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1514 mn_now = get_clock ();
810 now_floor = mn_now; 1515 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
812 1520
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1521 io_blocktime = 0.;
1522 timeout_blocktime = 0.;
1523 backend = 0;
1524 backend_fd = -1;
1525 gotasync = 0;
1526#if EV_USE_INOTIFY
1527 fs_fd = -2;
1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1532
1533 /* pid check not overridable via env */
1534#ifndef _WIN32
1535 if (flags & EVFLAG_FORKCHECK)
1536 curpid = getpid ();
1537#endif
1538
1539 if (!(flags & EVFLAG_NOENV)
1540 && !enable_secure ()
1541 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1542 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1543
816 if (!(flags & 0x0000ffff)) 1544 if (!(flags & 0x0000ffffU))
817 flags |= 0x0000ffff; 1545 flags |= ev_recommended_backends ();
818 1546
819 method = 0;
820#if EV_USE_PORT 1547#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1548 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1549#endif
823#if EV_USE_KQUEUE 1550#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1551 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1552#endif
826#if EV_USE_EPOLL 1553#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1554 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1555#endif
829#if EV_USE_POLL 1556#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1557 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1558#endif
832#if EV_USE_SELECT 1559#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1561#endif
835 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
836 ev_init (&sigev, sigcb); 1565 ev_init (&pipe_w, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
838 } 1567 }
839} 1568}
840 1569
841static void 1570/* free up a loop structure */
1571static void noinline
842loop_destroy (EV_P) 1572loop_destroy (EV_P)
843{ 1573{
844 int i; 1574 int i;
845 1575
1576 if (ev_is_active (&pipe_w))
1577 {
1578 /*ev_ref (EV_A);*/
1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1580
1581#if EV_USE_EVENTFD
1582 if (evfd >= 0)
1583 close (evfd);
1584#endif
1585
1586 if (evpipe [0] >= 0)
1587 {
1588 close (evpipe [0]);
1589 close (evpipe [1]);
1590 }
1591 }
1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1602
1603#if EV_USE_INOTIFY
1604 if (fs_fd >= 0)
1605 close (fs_fd);
1606#endif
1607
1608 if (backend_fd >= 0)
1609 close (backend_fd);
1610
846#if EV_USE_PORT 1611#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1612 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1613#endif
849#if EV_USE_KQUEUE 1614#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1615 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1616#endif
852#if EV_USE_EPOLL 1617#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1618 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1619#endif
855#if EV_USE_POLL 1620#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1621 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1622#endif
858#if EV_USE_SELECT 1623#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1624 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1625#endif
861 1626
862 for (i = NUMPRI; i--; ) 1627 for (i = NUMPRI; i--; )
1628 {
863 array_free (pending, [i]); 1629 array_free (pending, [i]);
1630#if EV_IDLE_ENABLE
1631 array_free (idle, [i]);
1632#endif
1633 }
1634
1635 ev_free (anfds); anfdmax = 0;
864 1636
865 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
866 array_free (fdchange, EMPTY0); 1639 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1640 array_free (timer, EMPTY);
868#if EV_PERIODICS 1641#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1642 array_free (periodic, EMPTY);
870#endif 1643#endif
1644#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1645 array_free (fork, EMPTY);
1646#endif
872 array_free (prepare, EMPTY0); 1647 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1648 array_free (check, EMPTY);
1649#if EV_ASYNC_ENABLE
1650 array_free (async, EMPTY);
1651#endif
874 1652
875 method = 0; 1653 backend = 0;
876} 1654}
877 1655
878static void 1656#if EV_USE_INOTIFY
1657inline_size void infy_fork (EV_P);
1658#endif
1659
1660inline_size void
879loop_fork (EV_P) 1661loop_fork (EV_P)
880{ 1662{
881#if EV_USE_PORT 1663#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1665#endif
884#if EV_USE_KQUEUE 1666#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1667 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1668#endif
887#if EV_USE_EPOLL 1669#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1670 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 1671#endif
1672#if EV_USE_INOTIFY
1673 infy_fork (EV_A);
1674#endif
890 1675
891 if (ev_is_active (&sigev)) 1676 if (ev_is_active (&pipe_w))
892 { 1677 {
893 /* default loop */ 1678 /* this "locks" the handlers against writing to the pipe */
1679 /* while we modify the fd vars */
1680 gotsig = 1;
1681#if EV_ASYNC_ENABLE
1682 gotasync = 1;
1683#endif
894 1684
895 ev_ref (EV_A); 1685 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 1686 ev_io_stop (EV_A_ &pipe_w);
1687
1688#if EV_USE_EVENTFD
1689 if (evfd >= 0)
1690 close (evfd);
1691#endif
1692
1693 if (evpipe [0] >= 0)
1694 {
897 close (sigpipe [0]); 1695 close (evpipe [0]);
898 close (sigpipe [1]); 1696 close (evpipe [1]);
1697 }
899 1698
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A); 1699 evpipe_init (EV_A);
1700 /* now iterate over everything, in case we missed something */
1701 pipecb (EV_A_ &pipe_w, EV_READ);
904 } 1702 }
905 1703
906 postfork = 0; 1704 postfork = 0;
907} 1705}
908 1706
909#if EV_MULTIPLICITY 1707#if EV_MULTIPLICITY
1708
910struct ev_loop * 1709struct ev_loop *
911ev_loop_new (unsigned int flags) 1710ev_loop_new (unsigned int flags)
912{ 1711{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914 1713
915 memset (loop, 0, sizeof (struct ev_loop)); 1714 memset (loop, 0, sizeof (struct ev_loop));
916
917 loop_init (EV_A_ flags); 1715 loop_init (EV_A_ flags);
918 1716
919 if (ev_method (EV_A)) 1717 if (ev_backend (EV_A))
920 return loop; 1718 return loop;
921 1719
922 return 0; 1720 return 0;
923} 1721}
924 1722
930} 1728}
931 1729
932void 1730void
933ev_loop_fork (EV_P) 1731ev_loop_fork (EV_P)
934{ 1732{
935 postfork = 1; 1733 postfork = 1; /* must be in line with ev_default_fork */
936} 1734}
1735#endif /* multiplicity */
937 1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
1790 {
1791 verify_watcher (EV_A_ (W)w);
1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 }
1795
1796 assert (timermax >= timercnt);
1797 verify_heap (EV_A_ timers, timercnt);
1798
1799#if EV_PERIODIC_ENABLE
1800 assert (periodicmax >= periodiccnt);
1801 verify_heap (EV_A_ periodics, periodiccnt);
1802#endif
1803
1804 for (i = NUMPRI; i--; )
1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
1813
1814#if EV_FORK_ENABLE
1815 assert (forkmax >= forkcnt);
1816 array_verify (EV_A_ (W *)forks, forkcnt);
1817#endif
1818
1819#if EV_ASYNC_ENABLE
1820 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
1823
1824 assert (preparemax >= preparecnt);
1825 array_verify (EV_A_ (W *)prepares, preparecnt);
1826
1827 assert (checkmax >= checkcnt);
1828 array_verify (EV_A_ (W *)checks, checkcnt);
1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1833# endif
1834#endif
1835}
938#endif 1836#endif
939 1837
940#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
941struct ev_loop * 1839struct ev_loop *
942ev_default_loop_init (unsigned int flags) 1840ev_default_loop_init (unsigned int flags)
943#else 1841#else
944int 1842int
945ev_default_loop (unsigned int flags) 1843ev_default_loop (unsigned int flags)
946#endif 1844#endif
947{ 1845{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 1846 if (!ev_default_loop_ptr)
953 { 1847 {
954#if EV_MULTIPLICITY 1848#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1849 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
956#else 1850#else
957 ev_default_loop_ptr = 1; 1851 ev_default_loop_ptr = 1;
958#endif 1852#endif
959 1853
960 loop_init (EV_A_ flags); 1854 loop_init (EV_A_ flags);
961 1855
962 if (ev_method (EV_A)) 1856 if (ev_backend (EV_A))
963 { 1857 {
964 siginit (EV_A);
965
966#ifndef _WIN32 1858#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1859 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 1860 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 1861 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1862 ev_unref (EV_A); /* child watcher should not keep loop alive */
982{ 1874{
983#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
984 struct ev_loop *loop = ev_default_loop_ptr; 1876 struct ev_loop *loop = ev_default_loop_ptr;
985#endif 1877#endif
986 1878
1879 ev_default_loop_ptr = 0;
1880
987#ifndef _WIN32 1881#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
990#endif 1884#endif
991 1885
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A); 1886 loop_destroy (EV_A);
999} 1887}
1000 1888
1001void 1889void
1002ev_default_fork (void) 1890ev_default_fork (void)
1003{ 1891{
1004#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1893 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif 1894#endif
1007 1895
1008 if (method) 1896 postfork = 1; /* must be in line with ev_loop_fork */
1009 postfork = 1;
1010} 1897}
1011 1898
1012/*****************************************************************************/ 1899/*****************************************************************************/
1013 1900
1014static int 1901void
1015any_pending (EV_P) 1902ev_invoke (EV_P_ void *w, int revents)
1903{
1904 EV_CB_INVOKE ((W)w, revents);
1905}
1906
1907unsigned int
1908ev_pending_count (EV_P)
1016{ 1909{
1017 int pri; 1910 int pri;
1911 unsigned int count = 0;
1018 1912
1019 for (pri = NUMPRI; pri--; ) 1913 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri]) 1914 count += pendingcnt [pri];
1021 return 1;
1022 1915
1023 return 0; 1916 return count;
1024} 1917}
1025 1918
1026inline void 1919void noinline
1027call_pending (EV_P) 1920ev_invoke_pending (EV_P)
1028{ 1921{
1029 int pri; 1922 int pri;
1030 1923
1031 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
1032 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
1033 { 1926 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1928
1036 if (expect_true (p->w)) 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1037 { 1930 /* ^ this is no longer true, as pending_w could be here */
1931
1038 p->w->pending = 0; 1932 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
1040 } 1934 EV_FREQUENT_CHECK;
1041 } 1935 }
1042} 1936}
1043 1937
1938#if EV_IDLE_ENABLE
1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1044inline void 1941inline_size void
1942idle_reify (EV_P)
1943{
1944 if (expect_false (idleall))
1945 {
1946 int pri;
1947
1948 for (pri = NUMPRI; pri--; )
1949 {
1950 if (pendingcnt [pri])
1951 break;
1952
1953 if (idlecnt [pri])
1954 {
1955 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1956 break;
1957 }
1958 }
1959 }
1960}
1961#endif
1962
1963/* make timers pending */
1964inline_size void
1045timers_reify (EV_P) 1965timers_reify (EV_P)
1046{ 1966{
1967 EV_FREQUENT_CHECK;
1968
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 1970 {
1049 struct ev_timer *w = timers [0]; 1971 do
1050
1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1052
1053 /* first reschedule or stop timer */
1054 if (w->repeat)
1055 { 1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1980 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now;
1983
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 1985
1058 ((WT)w)->at += w->repeat; 1986 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1063 } 1994 }
1064 else 1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 1996
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1068 } 1998 }
1069} 1999}
1070 2000
1071#if EV_PERIODICS 2001#if EV_PERIODIC_ENABLE
2002/* make periodics pending */
1072inline void 2003inline_size void
1073periodics_reify (EV_P) 2004periodics_reify (EV_P)
1074{ 2005{
2006 EV_FREQUENT_CHECK;
2007
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 2009 {
1077 struct ev_periodic *w = periodics [0]; 2010 int feed_count = 0;
1078 2011
2012 do
2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 2017
1081 /* first reschedule or stop timer */ 2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022
2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024
2025 ANHE_at_cache (periodics [HEAP0]);
2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
2052 }
2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2054
2055 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 }
2057}
2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2061static void noinline
2062periodics_reschedule (EV_P)
2063{
2064 int i;
2065
2066 /* adjust periodics after time jump */
2067 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2068 {
2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070
1082 if (w->reschedule_cb) 2071 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075
2076 ANHE_at_cache (periodics [i]);
2077 }
2078
2079 reheap (periodics, periodiccnt);
2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
2100time_update (EV_P_ ev_tstamp max_block)
2101{
2102#if EV_USE_MONOTONIC
2103 if (expect_true (have_monotonic))
2104 {
2105 int i;
2106 ev_tstamp odiff = rtmn_diff;
2107
2108 mn_now = get_clock ();
2109
2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2111 /* interpolate in the meantime */
2112 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 2113 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2114 ev_rt_now = rtmn_diff + mn_now;
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2115 return;
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 } 2116 }
1088 else if (w->interval)
1089 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0);
1093 }
1094 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 2117
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 }
1099}
1100
1101static void
1102periodics_reschedule (EV_P)
1103{
1104 int i;
1105
1106 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i)
1108 {
1109 struct ev_periodic *w = periodics [i];
1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock ();
1127
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 {
1130 ev_rt_now = rtmn_diff + mn_now;
1131 return 0;
1132 }
1133 else
1134 {
1135 now_floor = mn_now; 2118 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 2119 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 2120
1141inline void 2121 /* loop a few times, before making important decisions.
1142time_update (EV_P) 2122 * on the choice of "4": one iteration isn't enough,
1143{ 2123 * in case we get preempted during the calls to
1144 int i; 2124 * ev_time and get_clock. a second call is almost guaranteed
1145 2125 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 2126 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 2127 * in the unlikely event of having been preempted here.
1148 { 2128 */
1149 if (time_update_monotonic (EV_A)) 2129 for (i = 4; --i; )
1150 { 2130 {
1151 ev_tstamp odiff = rtmn_diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 2131 rtmn_diff = ev_rt_now - mn_now;
1156 2132
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1158 return; /* all is well */ 2134 return; /* all is well */
1159 2135
1160 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 2137 mn_now = get_clock ();
1162 now_floor = mn_now; 2138 now_floor = mn_now;
1163 } 2139 }
1164 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1165# if EV_PERIODICS 2143# if EV_PERIODIC_ENABLE
2144 periodics_reschedule (EV_A);
2145# endif
2146 }
2147 else
2148#endif
2149 {
2150 ev_rt_now = ev_time ();
2151
2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2156#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1167# endif 2158#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 2159 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 2160
1188 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1189 } 2162 }
1190} 2163}
1191 2164
1192void 2165void
1193ev_ref (EV_P)
1194{
1195 ++activecnt;
1196}
1197
1198void
1199ev_unref (EV_P)
1200{
1201 --activecnt;
1202}
1203
1204static int loop_done;
1205
1206void
1207ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1208{ 2167{
1209 double block; 2168#if EV_MINIMAL < 2
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2169 ++loop_depth;
2170#endif
1211 2171
1212 while (activecnt) 2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
2174 loop_done = EVUNLOOP_CANCEL;
2175
2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2177
2178 do
1213 { 2179 {
2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
2184#ifndef _WIN32
2185 if (expect_false (curpid)) /* penalise the forking check even more */
2186 if (expect_false (getpid () != curpid))
2187 {
2188 curpid = getpid ();
2189 postfork = 1;
2190 }
2191#endif
2192
2193#if EV_FORK_ENABLE
2194 /* we might have forked, so queue fork handlers */
2195 if (expect_false (postfork))
2196 if (forkcnt)
2197 {
2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2199 EV_INVOKE_PENDING;
2200 }
2201#endif
2202
1214 /* queue check watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1216 { 2205 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1219 } 2208 }
2209
2210 if (expect_false (loop_done))
2211 break;
1220 2212
1221 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1223 loop_fork (EV_A); 2215 loop_fork (EV_A);
1224 2216
1225 /* update fd-related kernel structures */ 2217 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 2218 fd_reify (EV_A);
1227 2219
1228 /* calculate blocking time */ 2220 /* calculate blocking time */
2221 {
2222 ev_tstamp waittime = 0.;
2223 ev_tstamp sleeptime = 0.;
1229 2224
1230 /* we only need this for !monotonic clock or timers, but as we basically 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 2226 {
1238 ev_rt_now = ev_time (); 2227 /* remember old timestamp for io_blocktime calculation */
1239 mn_now = ev_rt_now; 2228 ev_tstamp prev_mn_now = mn_now;
1240 }
1241 2229
1242 if (flags & EVLOOP_NONBLOCK || idlecnt) 2230 /* update time to cancel out callback processing overhead */
1243 block = 0.; 2231 time_update (EV_A_ 1e100);
1244 else 2232
1245 {
1246 block = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1247 2234
1248 if (timercnt) 2235 if (timercnt)
1249 { 2236 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1251 if (block > to) block = to; 2238 if (waittime > to) waittime = to;
1252 } 2239 }
1253 2240
1254#if EV_PERIODICS 2241#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 2242 if (periodiccnt)
1256 { 2243 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 2245 if (waittime > to) waittime = to;
1259 } 2246 }
1260#endif 2247#endif
1261 2248
1262 if (expect_false (block < 0.)) block = 0.; 2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
2250 if (expect_false (waittime < timeout_blocktime))
2251 waittime = timeout_blocktime;
2252
2253 /* extra check because io_blocktime is commonly 0 */
2254 if (expect_false (io_blocktime))
2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
2263 ev_sleep (sleeptime);
2264 waittime -= sleeptime;
2265 }
2266 }
1263 } 2267 }
1264 2268
1265 method_poll (EV_A_ block); 2269#if EV_MINIMAL < 2
2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1266 2275
1267 /* update ev_rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2277 time_update (EV_A_ waittime + sleeptime);
2278 }
1269 2279
1270 /* queue pending timers and reschedule them */ 2280 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2281 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2282#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2283 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2284#endif
1275 2285
2286#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2287 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2288 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2289#endif
1279 2290
1280 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2292 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 2294
1284 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2296 }
2297 while (expect_true (
2298 activecnt
2299 && !loop_done
2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2301 ));
1289 2302
1290 if (loop_done != 2) 2303 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1292} 2309}
1293 2310
1294void 2311void
1295ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1296{ 2313{
1297 loop_done = how; 2314 loop_done = how;
1298} 2315}
1299 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1300/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1301 2356
1302inline void 2357inline_size void
1303wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1304{ 2359{
1305 elem->next = *head; 2360 elem->next = *head;
1306 *head = elem; 2361 *head = elem;
1307} 2362}
1308 2363
1309inline void 2364inline_size void
1310wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1311{ 2366{
1312 while (*head) 2367 while (*head)
1313 { 2368 {
1314 if (*head == elem) 2369 if (*head == elem)
1319 2374
1320 head = &(*head)->next; 2375 head = &(*head)->next;
1321 } 2376 }
1322} 2377}
1323 2378
2379/* internal, faster, version of ev_clear_pending */
1324inline void 2380inline_speed void
1325ev_clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1326{ 2382{
1327 if (w->pending) 2383 if (w->pending)
1328 { 2384 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1330 w->pending = 0; 2386 w->pending = 0;
1331 } 2387 }
1332} 2388}
1333 2389
2390int
2391ev_clear_pending (EV_P_ void *w)
2392{
2393 W w_ = (W)w;
2394 int pending = w_->pending;
2395
2396 if (expect_true (pending))
2397 {
2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
2400 w_->pending = 0;
2401 return p->events;
2402 }
2403 else
2404 return 0;
2405}
2406
1334inline void 2407inline_size void
2408pri_adjust (EV_P_ W w)
2409{
2410 int pri = ev_priority (w);
2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2413 ev_set_priority (w, pri);
2414}
2415
2416inline_speed void
1335ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1336{ 2418{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2419 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2420 w->active = active;
1341 ev_ref (EV_A); 2421 ev_ref (EV_A);
1342} 2422}
1343 2423
1344inline void 2424inline_size void
1345ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1346{ 2426{
1347 ev_unref (EV_A); 2427 ev_unref (EV_A);
1348 w->active = 0; 2428 w->active = 0;
1349} 2429}
1350 2430
1351/*****************************************************************************/ 2431/*****************************************************************************/
1352 2432
1353void 2433void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2434ev_io_start (EV_P_ ev_io *w)
1355{ 2435{
1356 int fd = w->fd; 2436 int fd = w->fd;
1357 2437
1358 if (expect_false (ev_is_active (w))) 2438 if (expect_false (ev_is_active (w)))
1359 return; 2439 return;
1360 2440
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
1362 2445
1363 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
1366 2449
1367 fd_change (EV_A_ fd); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1368} 2451 w->events &= ~EV__IOFDSET;
1369 2452
1370void 2453 EV_FREQUENT_CHECK;
2454}
2455
2456void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2457ev_io_stop (EV_P_ ev_io *w)
1372{ 2458{
1373 ev_clear_pending (EV_A_ (W)w); 2459 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2460 if (expect_false (!ev_is_active (w)))
1375 return; 2461 return;
1376 2462
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2464
2465 EV_FREQUENT_CHECK;
2466
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2467 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2468 ev_stop (EV_A_ (W)w);
1381 2469
1382 fd_change (EV_A_ w->fd); 2470 fd_change (EV_A_ w->fd, 1);
1383}
1384 2471
1385void 2472 EV_FREQUENT_CHECK;
2473}
2474
2475void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2476ev_timer_start (EV_P_ ev_timer *w)
1387{ 2477{
1388 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
1389 return; 2479 return;
1390 2480
1391 ((WT)w)->at += mn_now; 2481 ev_at (w) += mn_now;
1392 2482
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2491 ANHE_at_cache (timers [ev_active (w)]);
2492 upheap (timers, ev_active (w));
1399 2493
2494 EV_FREQUENT_CHECK;
2495
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2497}
1402 2498
1403void 2499void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2500ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2501{
1406 ev_clear_pending (EV_A_ (W)w); 2502 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2503 if (expect_false (!ev_is_active (w)))
1408 return; 2504 return;
1409 2505
2506 EV_FREQUENT_CHECK;
2507
2508 {
2509 int active = ev_active (w);
2510
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2512
2513 --timercnt;
2514
1412 if (expect_true (((W)w)->active < timercnt--)) 2515 if (expect_true (active < timercnt + HEAP0))
1413 { 2516 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2517 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2518 adjustheap (timers, timercnt, active);
1416 } 2519 }
2520 }
1417 2521
1418 ((WT)w)->at -= mn_now; 2522 EV_FREQUENT_CHECK;
2523
2524 ev_at (w) -= mn_now;
1419 2525
1420 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
1421} 2527}
1422 2528
1423void 2529void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2530ev_timer_again (EV_P_ ev_timer *w)
1425{ 2531{
2532 EV_FREQUENT_CHECK;
2533
1426 if (ev_is_active (w)) 2534 if (ev_is_active (w))
1427 { 2535 {
1428 if (w->repeat) 2536 if (w->repeat)
1429 { 2537 {
1430 ((WT)w)->at = mn_now + w->repeat; 2538 ev_at (w) = mn_now + w->repeat;
2539 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2540 adjustheap (timers, timercnt, ev_active (w));
1432 } 2541 }
1433 else 2542 else
1434 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
1435 } 2544 }
1436 else if (w->repeat) 2545 else if (w->repeat)
1437 { 2546 {
1438 w->at = w->repeat; 2547 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
1440 } 2549 }
1441}
1442 2550
2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2558}
2559
1443#if EV_PERIODICS 2560#if EV_PERIODIC_ENABLE
1444void 2561void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2563{
1447 if (expect_false (ev_is_active (w))) 2564 if (expect_false (ev_is_active (w)))
1448 return; 2565 return;
1449 2566
1450 if (w->reschedule_cb) 2567 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2569 else if (w->interval)
1453 { 2570 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 2574 }
2575 else
2576 ev_at (w) = w->offset;
1458 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w));
1463 2586
2587 EV_FREQUENT_CHECK;
2588
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2590}
1466 2591
1467void 2592void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2594{
1470 ev_clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1472 return; 2597 return;
1473 2598
2599 EV_FREQUENT_CHECK;
2600
2601 {
2602 int active = ev_active (w);
2603
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2605
2606 --periodiccnt;
2607
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2608 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2609 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2611 adjustheap (periodics, periodiccnt, active);
1480 } 2612 }
2613 }
2614
2615 EV_FREQUENT_CHECK;
1481 2616
1482 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1483} 2618}
1484 2619
1485void 2620void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2621ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2622{
1488 /* TODO: use adjustheap and recalculation */ 2623 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2624 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2625 ev_periodic_start (EV_A_ w);
1491} 2626}
1492#endif 2627#endif
1493 2628
1494void 2629#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2630# define SA_RESTART 0
2631#endif
2632
2633void noinline
2634ev_signal_start (EV_P_ ev_signal *w)
1496{ 2635{
2636#if EV_MULTIPLICITY
2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2638#endif
1497 if (expect_false (ev_is_active (w))) 2639 if (expect_false (ev_is_active (w)))
1498 return; 2640 return;
1499 2641
2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2676 evpipe_init (EV_A);
2677
2678 {
2679#ifndef _WIN32
2680 sigset_t full, prev;
2681 sigfillset (&full);
2682 sigprocmask (SIG_SETMASK, &full, &prev);
2683#endif
2684
2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2686
2687#ifndef _WIN32
2688# if EV_USE_SIGNALFD
2689 if (sigfd < 0)/*TODO*/
2690# endif
2691 sigdelset (&prev, w->signum);
2692 sigprocmask (SIG_SETMASK, &prev, 0);
2693#endif
2694 }
2695
1500 ev_start (EV_A_ (W)w, ++idlecnt); 2696 ev_start (EV_A_ (W)w, 1);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2697 wlist_add (&signals [w->signum - 1].head, (WL)w);
1502 idles [idlecnt - 1] = w;
1503}
1504 2698
1505void 2699 if (!((WL)w)->next)
1506ev_idle_stop (EV_P_ struct ev_idle *w) 2700 {
2701#if _WIN32
2702 signal (w->signum, ev_sighandler);
2703#else
2704# if EV_USE_SIGNALFD
2705 if (sigfd < 0) /*TODO*/
2706# endif
2707 {
2708 struct sigaction sa = { };
2709 sa.sa_handler = ev_sighandler;
2710 sigfillset (&sa.sa_mask);
2711 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2712 sigaction (w->signum, &sa, 0);
2713 }
2714#endif
2715 }
2716
2717 EV_FREQUENT_CHECK;
2718}
2719
2720void noinline
2721ev_signal_stop (EV_P_ ev_signal *w)
1507{ 2722{
1508 ev_clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 2724 if (expect_false (!ev_is_active (w)))
1510 return; 2725 return;
1511 2726
1512 idles [((W)w)->active - 1] = idles [--idlecnt]; 2727 EV_FREQUENT_CHECK;
2728
2729 wlist_del (&signals [w->signum - 1].head, (WL)w);
1513 ev_stop (EV_A_ (W)w); 2730 ev_stop (EV_A_ (W)w);
1514}
1515 2731
2732 if (!signals [w->signum - 1].head)
2733#if EV_USE_SIGNALFD
2734 if (sigfd >= 0)
2735 {
2736 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2737 sigdelset (&sigfd_set, w->signum);
2738 signalfd (sigfd, &sigfd_set, 0);
2739 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2740 /*TODO: maybe unblock signal? */
2741 }
2742 else
2743#endif
2744 signal (w->signum, SIG_DFL);
2745
2746 EV_FREQUENT_CHECK;
2747}
2748
1516void 2749void
1517ev_prepare_start (EV_P_ struct ev_prepare *w) 2750ev_child_start (EV_P_ ev_child *w)
1518{ 2751{
2752#if EV_MULTIPLICITY
2753 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2754#endif
1519 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
1520 return; 2756 return;
1521 2757
2758 EV_FREQUENT_CHECK;
2759
1522 ev_start (EV_A_ (W)w, ++preparecnt); 2760 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2761 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1524 prepares [preparecnt - 1] = w;
1525}
1526 2762
2763 EV_FREQUENT_CHECK;
2764}
2765
1527void 2766void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w) 2767ev_child_stop (EV_P_ ev_child *w)
1529{ 2768{
1530 ev_clear_pending (EV_A_ (W)w); 2769 clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w))) 2770 if (expect_false (!ev_is_active (w)))
1532 return; 2771 return;
1533 2772
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2773 EV_FREQUENT_CHECK;
2774
2775 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1535 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
1536}
1537 2777
2778 EV_FREQUENT_CHECK;
2779}
2780
2781#if EV_STAT_ENABLE
2782
2783# ifdef _WIN32
2784# undef lstat
2785# define lstat(a,b) _stati64 (a,b)
2786# endif
2787
2788#define DEF_STAT_INTERVAL 5.0074891
2789#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2790#define MIN_STAT_INTERVAL 0.1074891
2791
2792static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2793
2794#if EV_USE_INOTIFY
2795# define EV_INOTIFY_BUFSIZE 8192
2796
2797static void noinline
2798infy_add (EV_P_ ev_stat *w)
2799{
2800 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2801
2802 if (w->wd < 0)
2803 {
2804 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2805 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2806
2807 /* monitor some parent directory for speedup hints */
2808 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2809 /* but an efficiency issue only */
2810 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2811 {
2812 char path [4096];
2813 strcpy (path, w->path);
2814
2815 do
2816 {
2817 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2818 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2819
2820 char *pend = strrchr (path, '/');
2821
2822 if (!pend || pend == path)
2823 break;
2824
2825 *pend = 0;
2826 w->wd = inotify_add_watch (fs_fd, path, mask);
2827 }
2828 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2829 }
2830 }
2831
2832 if (w->wd >= 0)
2833 {
2834 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2835
2836 /* now local changes will be tracked by inotify, but remote changes won't */
2837 /* unless the filesystem it known to be local, we therefore still poll */
2838 /* also do poll on <2.6.25, but with normal frequency */
2839 struct statfs sfs;
2840
2841 if (fs_2625 && !statfs (w->path, &sfs))
2842 if (sfs.f_type == 0x1373 /* devfs */
2843 || sfs.f_type == 0xEF53 /* ext2/3 */
2844 || sfs.f_type == 0x3153464a /* jfs */
2845 || sfs.f_type == 0x52654973 /* reiser3 */
2846 || sfs.f_type == 0x01021994 /* tempfs */
2847 || sfs.f_type == 0x58465342 /* xfs */)
2848 return;
2849
2850 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2851 ev_timer_again (EV_A_ &w->timer);
2852 }
2853}
2854
2855static void noinline
2856infy_del (EV_P_ ev_stat *w)
2857{
2858 int slot;
2859 int wd = w->wd;
2860
2861 if (wd < 0)
2862 return;
2863
2864 w->wd = -2;
2865 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2866 wlist_del (&fs_hash [slot].head, (WL)w);
2867
2868 /* remove this watcher, if others are watching it, they will rearm */
2869 inotify_rm_watch (fs_fd, wd);
2870}
2871
2872static void noinline
2873infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2874{
2875 if (slot < 0)
2876 /* overflow, need to check for all hash slots */
2877 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2878 infy_wd (EV_A_ slot, wd, ev);
2879 else
2880 {
2881 WL w_;
2882
2883 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2884 {
2885 ev_stat *w = (ev_stat *)w_;
2886 w_ = w_->next; /* lets us remove this watcher and all before it */
2887
2888 if (w->wd == wd || wd == -1)
2889 {
2890 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2891 {
2892 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2893 w->wd = -1;
2894 infy_add (EV_A_ w); /* re-add, no matter what */
2895 }
2896
2897 stat_timer_cb (EV_A_ &w->timer, 0);
2898 }
2899 }
2900 }
2901}
2902
2903static void
2904infy_cb (EV_P_ ev_io *w, int revents)
2905{
2906 char buf [EV_INOTIFY_BUFSIZE];
2907 struct inotify_event *ev = (struct inotify_event *)buf;
2908 int ofs;
2909 int len = read (fs_fd, buf, sizeof (buf));
2910
2911 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2912 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2913}
2914
2915inline_size void
2916check_2625 (EV_P)
2917{
2918 /* kernels < 2.6.25 are borked
2919 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2920 */
2921 struct utsname buf;
2922 int major, minor, micro;
2923
2924 if (uname (&buf))
2925 return;
2926
2927 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2928 return;
2929
2930 if (major < 2
2931 || (major == 2 && minor < 6)
2932 || (major == 2 && minor == 6 && micro < 25))
2933 return;
2934
2935 fs_2625 = 1;
2936}
2937
2938inline_size void
2939infy_init (EV_P)
2940{
2941 if (fs_fd != -2)
2942 return;
2943
2944 fs_fd = -1;
2945
2946 check_2625 (EV_A);
2947
2948 fs_fd = inotify_init ();
2949
2950 if (fs_fd >= 0)
2951 {
2952 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2953 ev_set_priority (&fs_w, EV_MAXPRI);
2954 ev_io_start (EV_A_ &fs_w);
2955 }
2956}
2957
2958inline_size void
2959infy_fork (EV_P)
2960{
2961 int slot;
2962
2963 if (fs_fd < 0)
2964 return;
2965
2966 close (fs_fd);
2967 fs_fd = inotify_init ();
2968
2969 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2970 {
2971 WL w_ = fs_hash [slot].head;
2972 fs_hash [slot].head = 0;
2973
2974 while (w_)
2975 {
2976 ev_stat *w = (ev_stat *)w_;
2977 w_ = w_->next; /* lets us add this watcher */
2978
2979 w->wd = -1;
2980
2981 if (fs_fd >= 0)
2982 infy_add (EV_A_ w); /* re-add, no matter what */
2983 else
2984 ev_timer_again (EV_A_ &w->timer);
2985 }
2986 }
2987}
2988
2989#endif
2990
2991#ifdef _WIN32
2992# define EV_LSTAT(p,b) _stati64 (p, b)
2993#else
2994# define EV_LSTAT(p,b) lstat (p, b)
2995#endif
2996
1538void 2997void
1539ev_check_start (EV_P_ struct ev_check *w) 2998ev_stat_stat (EV_P_ ev_stat *w)
2999{
3000 if (lstat (w->path, &w->attr) < 0)
3001 w->attr.st_nlink = 0;
3002 else if (!w->attr.st_nlink)
3003 w->attr.st_nlink = 1;
3004}
3005
3006static void noinline
3007stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3008{
3009 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3010
3011 /* we copy this here each the time so that */
3012 /* prev has the old value when the callback gets invoked */
3013 w->prev = w->attr;
3014 ev_stat_stat (EV_A_ w);
3015
3016 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3017 if (
3018 w->prev.st_dev != w->attr.st_dev
3019 || w->prev.st_ino != w->attr.st_ino
3020 || w->prev.st_mode != w->attr.st_mode
3021 || w->prev.st_nlink != w->attr.st_nlink
3022 || w->prev.st_uid != w->attr.st_uid
3023 || w->prev.st_gid != w->attr.st_gid
3024 || w->prev.st_rdev != w->attr.st_rdev
3025 || w->prev.st_size != w->attr.st_size
3026 || w->prev.st_atime != w->attr.st_atime
3027 || w->prev.st_mtime != w->attr.st_mtime
3028 || w->prev.st_ctime != w->attr.st_ctime
3029 ) {
3030 #if EV_USE_INOTIFY
3031 if (fs_fd >= 0)
3032 {
3033 infy_del (EV_A_ w);
3034 infy_add (EV_A_ w);
3035 ev_stat_stat (EV_A_ w); /* avoid race... */
3036 }
3037 #endif
3038
3039 ev_feed_event (EV_A_ w, EV_STAT);
3040 }
3041}
3042
3043void
3044ev_stat_start (EV_P_ ev_stat *w)
1540{ 3045{
1541 if (expect_false (ev_is_active (w))) 3046 if (expect_false (ev_is_active (w)))
1542 return; 3047 return;
1543 3048
3049 ev_stat_stat (EV_A_ w);
3050
3051 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3052 w->interval = MIN_STAT_INTERVAL;
3053
3054 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3055 ev_set_priority (&w->timer, ev_priority (w));
3056
3057#if EV_USE_INOTIFY
3058 infy_init (EV_A);
3059
3060 if (fs_fd >= 0)
3061 infy_add (EV_A_ w);
3062 else
3063#endif
3064 ev_timer_again (EV_A_ &w->timer);
3065
1544 ev_start (EV_A_ (W)w, ++checkcnt); 3066 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548 3067
3068 EV_FREQUENT_CHECK;
3069}
3070
1549void 3071void
1550ev_check_stop (EV_P_ struct ev_check *w) 3072ev_stat_stop (EV_P_ ev_stat *w)
1551{ 3073{
1552 ev_clear_pending (EV_A_ (W)w); 3074 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 3075 if (expect_false (!ev_is_active (w)))
1554 return; 3076 return;
1555 3077
1556 checks [((W)w)->active - 1] = checks [--checkcnt]; 3078 EV_FREQUENT_CHECK;
3079
3080#if EV_USE_INOTIFY
3081 infy_del (EV_A_ w);
3082#endif
3083 ev_timer_stop (EV_A_ &w->timer);
3084
1557 ev_stop (EV_A_ (W)w); 3085 ev_stop (EV_A_ (W)w);
1558}
1559 3086
1560#ifndef SA_RESTART 3087 EV_FREQUENT_CHECK;
1561# define SA_RESTART 0 3088}
1562#endif 3089#endif
1563 3090
3091#if EV_IDLE_ENABLE
1564void 3092void
1565ev_signal_start (EV_P_ struct ev_signal *w) 3093ev_idle_start (EV_P_ ev_idle *w)
1566{ 3094{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w))) 3095 if (expect_false (ev_is_active (w)))
1571 return; 3096 return;
1572 3097
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3098 pri_adjust (EV_A_ (W)w);
1574 3099
3100 EV_FREQUENT_CHECK;
3101
3102 {
3103 int active = ++idlecnt [ABSPRI (w)];
3104
3105 ++idleall;
1575 ev_start (EV_A_ (W)w, 1); 3106 ev_start (EV_A_ (W)w, active);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1578 3107
1579 if (!((WL)w)->next) 3108 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1580 { 3109 idles [ABSPRI (w)][active - 1] = w;
1581#if _WIN32
1582 signal (w->signum, sighandler);
1583#else
1584 struct sigaction sa;
1585 sa.sa_handler = sighandler;
1586 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0);
1589#endif
1590 } 3110 }
1591}
1592 3111
3112 EV_FREQUENT_CHECK;
3113}
3114
1593void 3115void
1594ev_signal_stop (EV_P_ struct ev_signal *w) 3116ev_idle_stop (EV_P_ ev_idle *w)
1595{ 3117{
1596 ev_clear_pending (EV_A_ (W)w); 3118 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3119 if (expect_false (!ev_is_active (w)))
1598 return; 3120 return;
1599 3121
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3122 EV_FREQUENT_CHECK;
3123
3124 {
3125 int active = ev_active (w);
3126
3127 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3128 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3129
1601 ev_stop (EV_A_ (W)w); 3130 ev_stop (EV_A_ (W)w);
3131 --idleall;
3132 }
1602 3133
1603 if (!signals [w->signum - 1].head) 3134 EV_FREQUENT_CHECK;
1604 signal (w->signum, SIG_DFL);
1605} 3135}
1606
1607void
1608ev_child_start (EV_P_ struct ev_child *w)
1609{
1610#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 3136#endif
3137
3138void
3139ev_prepare_start (EV_P_ ev_prepare *w)
3140{
1613 if (expect_false (ev_is_active (w))) 3141 if (expect_false (ev_is_active (w)))
1614 return; 3142 return;
1615 3143
3144 EV_FREQUENT_CHECK;
3145
1616 ev_start (EV_A_ (W)w, 1); 3146 ev_start (EV_A_ (W)w, ++preparecnt);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3147 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1618} 3148 prepares [preparecnt - 1] = w;
1619 3149
3150 EV_FREQUENT_CHECK;
3151}
3152
1620void 3153void
1621ev_child_stop (EV_P_ struct ev_child *w) 3154ev_prepare_stop (EV_P_ ev_prepare *w)
1622{ 3155{
1623 ev_clear_pending (EV_A_ (W)w); 3156 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 3157 if (expect_false (!ev_is_active (w)))
1625 return; 3158 return;
1626 3159
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3160 EV_FREQUENT_CHECK;
3161
3162 {
3163 int active = ev_active (w);
3164
3165 prepares [active - 1] = prepares [--preparecnt];
3166 ev_active (prepares [active - 1]) = active;
3167 }
3168
1628 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
3170
3171 EV_FREQUENT_CHECK;
1629} 3172}
3173
3174void
3175ev_check_start (EV_P_ ev_check *w)
3176{
3177 if (expect_false (ev_is_active (w)))
3178 return;
3179
3180 EV_FREQUENT_CHECK;
3181
3182 ev_start (EV_A_ (W)w, ++checkcnt);
3183 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3184 checks [checkcnt - 1] = w;
3185
3186 EV_FREQUENT_CHECK;
3187}
3188
3189void
3190ev_check_stop (EV_P_ ev_check *w)
3191{
3192 clear_pending (EV_A_ (W)w);
3193 if (expect_false (!ev_is_active (w)))
3194 return;
3195
3196 EV_FREQUENT_CHECK;
3197
3198 {
3199 int active = ev_active (w);
3200
3201 checks [active - 1] = checks [--checkcnt];
3202 ev_active (checks [active - 1]) = active;
3203 }
3204
3205 ev_stop (EV_A_ (W)w);
3206
3207 EV_FREQUENT_CHECK;
3208}
3209
3210#if EV_EMBED_ENABLE
3211void noinline
3212ev_embed_sweep (EV_P_ ev_embed *w)
3213{
3214 ev_loop (w->other, EVLOOP_NONBLOCK);
3215}
3216
3217static void
3218embed_io_cb (EV_P_ ev_io *io, int revents)
3219{
3220 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3221
3222 if (ev_cb (w))
3223 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3224 else
3225 ev_loop (w->other, EVLOOP_NONBLOCK);
3226}
3227
3228static void
3229embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3230{
3231 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3232
3233 {
3234 struct ev_loop *loop = w->other;
3235
3236 while (fdchangecnt)
3237 {
3238 fd_reify (EV_A);
3239 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3240 }
3241 }
3242}
3243
3244static void
3245embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3246{
3247 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3248
3249 ev_embed_stop (EV_A_ w);
3250
3251 {
3252 struct ev_loop *loop = w->other;
3253
3254 ev_loop_fork (EV_A);
3255 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3256 }
3257
3258 ev_embed_start (EV_A_ w);
3259}
3260
3261#if 0
3262static void
3263embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3264{
3265 ev_idle_stop (EV_A_ idle);
3266}
3267#endif
3268
3269void
3270ev_embed_start (EV_P_ ev_embed *w)
3271{
3272 if (expect_false (ev_is_active (w)))
3273 return;
3274
3275 {
3276 struct ev_loop *loop = w->other;
3277 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3278 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3279 }
3280
3281 EV_FREQUENT_CHECK;
3282
3283 ev_set_priority (&w->io, ev_priority (w));
3284 ev_io_start (EV_A_ &w->io);
3285
3286 ev_prepare_init (&w->prepare, embed_prepare_cb);
3287 ev_set_priority (&w->prepare, EV_MINPRI);
3288 ev_prepare_start (EV_A_ &w->prepare);
3289
3290 ev_fork_init (&w->fork, embed_fork_cb);
3291 ev_fork_start (EV_A_ &w->fork);
3292
3293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3294
3295 ev_start (EV_A_ (W)w, 1);
3296
3297 EV_FREQUENT_CHECK;
3298}
3299
3300void
3301ev_embed_stop (EV_P_ ev_embed *w)
3302{
3303 clear_pending (EV_A_ (W)w);
3304 if (expect_false (!ev_is_active (w)))
3305 return;
3306
3307 EV_FREQUENT_CHECK;
3308
3309 ev_io_stop (EV_A_ &w->io);
3310 ev_prepare_stop (EV_A_ &w->prepare);
3311 ev_fork_stop (EV_A_ &w->fork);
3312
3313 EV_FREQUENT_CHECK;
3314}
3315#endif
3316
3317#if EV_FORK_ENABLE
3318void
3319ev_fork_start (EV_P_ ev_fork *w)
3320{
3321 if (expect_false (ev_is_active (w)))
3322 return;
3323
3324 EV_FREQUENT_CHECK;
3325
3326 ev_start (EV_A_ (W)w, ++forkcnt);
3327 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3328 forks [forkcnt - 1] = w;
3329
3330 EV_FREQUENT_CHECK;
3331}
3332
3333void
3334ev_fork_stop (EV_P_ ev_fork *w)
3335{
3336 clear_pending (EV_A_ (W)w);
3337 if (expect_false (!ev_is_active (w)))
3338 return;
3339
3340 EV_FREQUENT_CHECK;
3341
3342 {
3343 int active = ev_active (w);
3344
3345 forks [active - 1] = forks [--forkcnt];
3346 ev_active (forks [active - 1]) = active;
3347 }
3348
3349 ev_stop (EV_A_ (W)w);
3350
3351 EV_FREQUENT_CHECK;
3352}
3353#endif
3354
3355#if EV_ASYNC_ENABLE
3356void
3357ev_async_start (EV_P_ ev_async *w)
3358{
3359 if (expect_false (ev_is_active (w)))
3360 return;
3361
3362 evpipe_init (EV_A);
3363
3364 EV_FREQUENT_CHECK;
3365
3366 ev_start (EV_A_ (W)w, ++asynccnt);
3367 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3368 asyncs [asynccnt - 1] = w;
3369
3370 EV_FREQUENT_CHECK;
3371}
3372
3373void
3374ev_async_stop (EV_P_ ev_async *w)
3375{
3376 clear_pending (EV_A_ (W)w);
3377 if (expect_false (!ev_is_active (w)))
3378 return;
3379
3380 EV_FREQUENT_CHECK;
3381
3382 {
3383 int active = ev_active (w);
3384
3385 asyncs [active - 1] = asyncs [--asynccnt];
3386 ev_active (asyncs [active - 1]) = active;
3387 }
3388
3389 ev_stop (EV_A_ (W)w);
3390
3391 EV_FREQUENT_CHECK;
3392}
3393
3394void
3395ev_async_send (EV_P_ ev_async *w)
3396{
3397 w->sent = 1;
3398 evpipe_write (EV_A_ &gotasync);
3399}
3400#endif
1630 3401
1631/*****************************************************************************/ 3402/*****************************************************************************/
1632 3403
1633struct ev_once 3404struct ev_once
1634{ 3405{
1635 struct ev_io io; 3406 ev_io io;
1636 struct ev_timer to; 3407 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3408 void (*cb)(int revents, void *arg);
1638 void *arg; 3409 void *arg;
1639}; 3410};
1640 3411
1641static void 3412static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3413once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3414{
1644 void (*cb)(int revents, void *arg) = once->cb; 3415 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3416 void *arg = once->arg;
1646 3417
1647 ev_io_stop (EV_A_ &once->io); 3418 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3419 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3420 ev_free (once);
1650 3421
1651 cb (revents, arg); 3422 cb (revents, arg);
1652} 3423}
1653 3424
1654static void 3425static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3426once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3427{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3428 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3429
3430 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3431}
1659 3432
1660static void 3433static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3434once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3435{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3436 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3437
3438 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3439}
1665 3440
1666void 3441void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3442ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3443{
1690 ev_timer_set (&once->to, timeout, 0.); 3465 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3466 ev_timer_start (EV_A_ &once->to);
1692 } 3467 }
1693} 3468}
1694 3469
3470/*****************************************************************************/
3471
3472#if EV_WALK_ENABLE
3473void
3474ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3475{
3476 int i, j;
3477 ev_watcher_list *wl, *wn;
3478
3479 if (types & (EV_IO | EV_EMBED))
3480 for (i = 0; i < anfdmax; ++i)
3481 for (wl = anfds [i].head; wl; )
3482 {
3483 wn = wl->next;
3484
3485#if EV_EMBED_ENABLE
3486 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3487 {
3488 if (types & EV_EMBED)
3489 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3490 }
3491 else
3492#endif
3493#if EV_USE_INOTIFY
3494 if (ev_cb ((ev_io *)wl) == infy_cb)
3495 ;
3496 else
3497#endif
3498 if ((ev_io *)wl != &pipe_w)
3499 if (types & EV_IO)
3500 cb (EV_A_ EV_IO, wl);
3501
3502 wl = wn;
3503 }
3504
3505 if (types & (EV_TIMER | EV_STAT))
3506 for (i = timercnt + HEAP0; i-- > HEAP0; )
3507#if EV_STAT_ENABLE
3508 /*TODO: timer is not always active*/
3509 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3510 {
3511 if (types & EV_STAT)
3512 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3513 }
3514 else
3515#endif
3516 if (types & EV_TIMER)
3517 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3518
3519#if EV_PERIODIC_ENABLE
3520 if (types & EV_PERIODIC)
3521 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3522 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3523#endif
3524
3525#if EV_IDLE_ENABLE
3526 if (types & EV_IDLE)
3527 for (j = NUMPRI; i--; )
3528 for (i = idlecnt [j]; i--; )
3529 cb (EV_A_ EV_IDLE, idles [j][i]);
3530#endif
3531
3532#if EV_FORK_ENABLE
3533 if (types & EV_FORK)
3534 for (i = forkcnt; i--; )
3535 if (ev_cb (forks [i]) != embed_fork_cb)
3536 cb (EV_A_ EV_FORK, forks [i]);
3537#endif
3538
3539#if EV_ASYNC_ENABLE
3540 if (types & EV_ASYNC)
3541 for (i = asynccnt; i--; )
3542 cb (EV_A_ EV_ASYNC, asyncs [i]);
3543#endif
3544
3545 if (types & EV_PREPARE)
3546 for (i = preparecnt; i--; )
3547#if EV_EMBED_ENABLE
3548 if (ev_cb (prepares [i]) != embed_prepare_cb)
3549#endif
3550 cb (EV_A_ EV_PREPARE, prepares [i]);
3551
3552 if (types & EV_CHECK)
3553 for (i = checkcnt; i--; )
3554 cb (EV_A_ EV_CHECK, checks [i]);
3555
3556 if (types & EV_SIGNAL)
3557 for (i = 0; i < signalmax; ++i)
3558 for (wl = signals [i].head; wl; )
3559 {
3560 wn = wl->next;
3561 cb (EV_A_ EV_SIGNAL, wl);
3562 wl = wn;
3563 }
3564
3565 if (types & EV_CHILD)
3566 for (i = EV_PID_HASHSIZE; i--; )
3567 for (wl = childs [i]; wl; )
3568 {
3569 wn = wl->next;
3570 cb (EV_A_ EV_CHILD, wl);
3571 wl = wn;
3572 }
3573/* EV_STAT 0x00001000 /* stat data changed */
3574/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3575}
3576#endif
3577
3578#if EV_MULTIPLICITY
3579 #include "ev_wrap.h"
3580#endif
3581
1695#ifdef __cplusplus 3582#ifdef __cplusplus
1696} 3583}
1697#endif 3584#endif
1698 3585

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines