ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.314 by root, Wed Aug 26 17:31:20 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
46# else 73# else
47# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
49# endif 76# endif
50# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
52# endif 79# endif
53# endif 80# endif
54 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
55# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
57# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
58# else 93# else
59# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
90# else 125# else
91# define EV_USE_PORT 0 126# define EV_USE_PORT 0
92# endif 127# endif
93# endif 128# endif
94 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
95#endif 154#endif
96 155
97#include <math.h> 156#include <math.h>
98#include <stdlib.h> 157#include <stdlib.h>
99#include <fcntl.h> 158#include <fcntl.h>
106#include <sys/types.h> 165#include <sys/types.h>
107#include <time.h> 166#include <time.h>
108 167
109#include <signal.h> 168#include <signal.h>
110 169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
111#ifndef _WIN32 176#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 177# include <sys/time.h>
114# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
115#else 180#else
181# include <io.h>
116# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 183# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
120# endif 186# endif
121#endif 187#endif
122 188
123/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
124 225
125#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
126# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
127#endif 232#endif
128 233
129#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
131#endif 244#endif
132 245
133#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
135#endif 248#endif
141# define EV_USE_POLL 1 254# define EV_USE_POLL 1
142# endif 255# endif
143#endif 256#endif
144 257
145#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
146# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
147#endif 264#endif
148 265
149#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
151#endif 268#endif
152 269
153#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 271# define EV_USE_PORT 0
155#endif 272#endif
156 273
157/**/ 274#ifndef EV_USE_INOTIFY
158 275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 276# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 277# else
161# undef EV_USE_POLL 278# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 279# endif
280#endif
281
282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 347
165#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
168#endif 351#endif
170#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
173#endif 356#endif
174 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
175#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 381# include <winsock.h>
177#endif 382#endif
178 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
179/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
442
443/*
444 * This is used to avoid floating point rounding problems.
445 * It is added to ev_rt_now when scheduling periodics
446 * to ensure progress, time-wise, even when rounding
447 * errors are against us.
448 * This value is good at least till the year 4000.
449 * Better solutions welcome.
450 */
451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 452
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 455/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 456
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 457#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 459# define noinline __attribute__ ((noinline))
195#else 460#else
196# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
197# define inline static 462# define noinline
463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464# define inline
465# endif
198#endif 466#endif
199 467
200#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 469#define expect_true(expr) expect ((expr) != 0, 1)
470#define inline_size static inline
202 471
472#if EV_MINIMAL
473# define inline_speed static noinline
474#else
475# define inline_speed static inline
476#endif
477
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
205 485
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
208 488
209typedef struct ev_watcher *W; 489typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
212 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
214 515
215#ifdef _WIN32 516#ifdef _WIN32
216# include "ev_win32.c" 517# include "ev_win32.c"
217#endif 518#endif
218 519
219/*****************************************************************************/ 520/*****************************************************************************/
220 521
221static void (*syserr_cb)(const char *msg); 522static void (*syserr_cb)(const char *msg);
222 523
524void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 525ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 526{
225 syserr_cb = cb; 527 syserr_cb = cb;
226} 528}
227 529
228static void 530static void noinline
229syserr (const char *msg) 531ev_syserr (const char *msg)
230{ 532{
231 if (!msg) 533 if (!msg)
232 msg = "(libev) system error"; 534 msg = "(libev) system error";
233 535
234 if (syserr_cb) 536 if (syserr_cb)
238 perror (msg); 540 perror (msg);
239 abort (); 541 abort ();
240 } 542 }
241} 543}
242 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
243static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 561
562void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 564{
247 alloc = cb; 565 alloc = cb;
248} 566}
249 567
250static void * 568inline_speed void *
251ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
252{ 570{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
254 572
255 if (!ptr && size) 573 if (!ptr && size)
256 { 574 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 576 abort ();
264#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
266 584
267/*****************************************************************************/ 585/*****************************************************************************/
268 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
269typedef struct 591typedef struct
270{ 592{
271 WL head; 593 WL head;
272 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
274#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
275 SOCKET handle; 602 SOCKET handle;
276#endif 603#endif
277} ANFD; 604} ANFD;
278 605
606/* stores the pending event set for a given watcher */
279typedef struct 607typedef struct
280{ 608{
281 W w; 609 W w;
282 int events; 610 int events; /* the pending event set for the given watcher */
283} ANPENDING; 611} ANPENDING;
612
613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
615typedef struct
616{
617 WL head;
618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
639#endif
284 640
285#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
286 642
287 struct ev_loop 643 struct ev_loop
288 { 644 {
306 662
307 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
308 664
309#endif 665#endif
310 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
311/*****************************************************************************/ 679/*****************************************************************************/
312 680
681#ifndef EV_HAVE_EV_TIME
313ev_tstamp 682ev_tstamp
314ev_time (void) 683ev_time (void)
315{ 684{
316#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
317 struct timespec ts; 688 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 691 }
692#endif
693
321 struct timeval tv; 694 struct timeval tv;
322 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 697}
698#endif
326 699
327inline ev_tstamp 700inline_size ev_tstamp
328get_clock (void) 701get_clock (void)
329{ 702{
330#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
332 { 705 {
345{ 718{
346 return ev_rt_now; 719 return ev_rt_now;
347} 720}
348#endif 721#endif
349 722
350#define array_roundsize(type,n) (((n) | 4) & ~3) 723void
724ev_sleep (ev_tstamp delay)
725{
726 if (delay > 0.)
727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
750
751/*****************************************************************************/
752
753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
758array_nextsize (int elem, int cur, int cnt)
759{
760 int ncur = cur + 1;
761
762 do
763 ncur <<= 1;
764 while (cnt > ncur);
765
766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
768 {
769 ncur *= elem;
770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
771 ncur = ncur - sizeof (void *) * 4;
772 ncur /= elem;
773 }
774
775 return ncur;
776}
777
778static noinline void *
779array_realloc (int elem, void *base, int *cur, int cnt)
780{
781 *cur = array_nextsize (elem, *cur, cnt);
782 return ev_realloc (base, elem * *cur);
783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 787
352#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 789 if (expect_false ((cnt) > (cur))) \
354 { \ 790 { \
355 int newcnt = cur; \ 791 int ocur_ = (cur); \
356 do \ 792 (base) = (type *)array_realloc \
357 { \ 793 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 794 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 795 }
366 796
797#if 0
367#define array_slim(type,stem) \ 798#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 799 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 800 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 801 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 802 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 804 }
805#endif
374 806
375#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 809
378/*****************************************************************************/ 810/*****************************************************************************/
379 811
380static void 812/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 815{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 816}
392 817
393void 818void noinline
394ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
395{ 820{
396 W w_ = (W)w; 821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
397 823
398 if (expect_false (w_->pending)) 824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
399 { 827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 831 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 832 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 833}
409 834
410static void 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 852{
413 int i; 853 int i;
414 854
415 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
417} 857}
418 858
859/*****************************************************************************/
860
419inline void 861inline_speed void
420fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
421{ 863{
422 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 865 ev_io *w;
424 866
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 868 {
427 int ev = w->events & revents; 869 int ev = w->events & revents;
428 870
429 if (ev) 871 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
431 } 873 }
432} 874}
433 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
434void 887void
435ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 889{
890 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
438} 892}
439 893
440/*****************************************************************************/ 894/* make sure the external fd watch events are in-sync */
441 895/* with the kernel/libev internal state */
442inline void 896inline_size void
443fd_reify (EV_P) 897fd_reify (EV_P)
444{ 898{
445 int i; 899 int i;
446 900
447 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
448 { 902 {
449 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 905 ev_io *w;
452 906
453 int events = 0; 907 unsigned char events = 0;
454 908
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 910 events |= (unsigned char)w->events;
457 911
458#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
459 if (events) 913 if (events)
460 { 914 {
461 unsigned long argp; 915 unsigned long arg;
462 anfd->handle = _get_osfhandle (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
464 } 918 }
465#endif 919#endif
466 920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
467 anfd->reify = 0; 925 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
471 } 931 }
472 932
473 fdchangecnt = 0; 933 fdchangecnt = 0;
474} 934}
475 935
476static void 936/* something about the given fd changed */
937inline_size void
477fd_change (EV_P_ int fd) 938fd_change (EV_P_ int fd, int flags)
478{ 939{
479 if (expect_false (anfds [fd].reify)) 940 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
483 942
943 if (expect_true (!reify))
944 {
484 ++fdchangecnt; 945 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
487} 949}
488 950
489static void 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
490fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
491{ 954{
492 struct ev_io *w; 955 ev_io *w;
493 956
494 while ((w = (struct ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
495 { 958 {
496 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 961 }
499} 962}
500 963
964/* check whether the given fd is atcually valid, for error recovery */
501inline int 965inline_size int
502fd_valid (int fd) 966fd_valid (int fd)
503{ 967{
504#ifdef _WIN32 968#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
506#else 970#else
507 return fcntl (fd, F_GETFD) != -1; 971 return fcntl (fd, F_GETFD) != -1;
508#endif 972#endif
509} 973}
510 974
511/* called on EBADF to verify fds */ 975/* called on EBADF to verify fds */
512static void 976static void noinline
513fd_ebadf (EV_P) 977fd_ebadf (EV_P)
514{ 978{
515 int fd; 979 int fd;
516 980
517 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 982 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
521} 985}
522 986
523/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 988static void noinline
525fd_enomem (EV_P) 989fd_enomem (EV_P)
526{ 990{
527 int fd; 991 int fd;
528 992
529 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
530 if (anfds [fd].events) 994 if (anfds [fd].events)
531 { 995 {
532 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
533 return; 997 break;
534 } 998 }
535} 999}
536 1000
537/* usually called after fork if method needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 1002static void noinline
539fd_rearm_all (EV_P) 1003fd_rearm_all (EV_P)
540{ 1004{
541 int fd; 1005 int fd;
542 1006
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 1008 if (anfds [fd].events)
546 { 1009 {
547 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
549 } 1013 }
550} 1014}
551 1015
552/*****************************************************************************/ 1016/*****************************************************************************/
553 1017
554static void 1018/*
555upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
556{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
557 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
558 1023
559 while (k && heap [k >> 1]->at > w->at) 1024/*
560 { 1025 * at the moment we allow libev the luxury of two heaps,
561 heap [k] = heap [k >> 1]; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
562 ((W)heap [k])->active = k + 1; 1027 * which is more cache-efficient.
563 k >>= 1; 1028 * the difference is about 5% with 50000+ watchers.
564 } 1029 */
1030#if EV_USE_4HEAP
565 1031
566 heap [k] = w; 1032#define DHEAP 4
567 ((W)heap [k])->active = k + 1; 1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
568 1036
569} 1037/* away from the root */
570 1038inline_speed void
571static void
572downheap (WT *heap, int N, int k) 1039downheap (ANHE *heap, int N, int k)
573{ 1040{
574 WT w = heap [k]; 1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
575 1043
576 while (k < (N >> 1)) 1044 for (;;)
577 { 1045 {
578 int j = k << 1; 1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
579 1049
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
581 ++j; 1052 {
582 1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
583 if (w->at <= heap [j]->at) 1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
584 break; 1066 break;
585 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
586 heap [k] = heap [j]; 1106 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 1107 ev_active (ANHE_w (heap [k])) = k;
1108
588 k = j; 1109 k = c;
589 } 1110 }
590 1111
591 heap [k] = w; 1112 heap [k] = he;
592 ((W)heap [k])->active = k + 1; 1113 ev_active (ANHE_w (he)) = k;
593} 1114}
1115#endif
594 1116
1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
595inline void 1140inline_size void
596adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
597{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
598 upheap (heap, k); 1144 upheap (heap, k);
1145 else
599 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
600} 1159}
601 1160
602/*****************************************************************************/ 1161/*****************************************************************************/
603 1162
1163/* associate signal watchers to a signal signal */
604typedef struct 1164typedef struct
605{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
606 WL head; 1170 WL head;
607 sig_atomic_t volatile gotsig;
608} ANSIG; 1171} ANSIG;
609 1172
610static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
611static int signalmax;
612 1174
613static int sigpipe [2]; 1175/*****************************************************************************/
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 1176
617static void 1177/* used to prepare libev internal fd's */
618signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
619{ 1179inline_speed void
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624
625 ++base;
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1180fd_intern (int fd)
682{ 1181{
683#ifdef _WIN32 1182#ifdef _WIN32
684 int arg = 1; 1183 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
686#else 1185#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1188#endif
690} 1189}
691 1190
1191static void noinline
1192evpipe_init (EV_P)
1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
1213 fd_intern (evpipe [0]);
1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
1217
1218 ev_io_start (EV_A_ &pipe_w);
1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
692static void 1248static void
693siginit (EV_P) 1249pipecb (EV_P_ ev_io *iow, int revents)
694{ 1250{
695 fd_intern (sigpipe [0]); 1251 int i;
696 fd_intern (sigpipe [1]);
697 1252
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1253#if EV_USE_EVENTFD
699 ev_io_start (EV_A_ &sigev); 1254 if (evfd >= 0)
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
701} 1288}
702 1289
703/*****************************************************************************/ 1290/*****************************************************************************/
704 1291
705static struct ev_child *childs [PID_HASHSIZE]; 1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#if _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
1353static WL childs [EV_PID_HASHSIZE];
706 1354
707#ifndef _WIN32 1355#ifndef _WIN32
708 1356
709static struct ev_signal childev; 1357static ev_signal childev;
1358
1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
1365child_reap (EV_P_ int chain, int pid, int status)
1366{
1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1369
1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
1374 {
1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1376 w->rpid = pid;
1377 w->rstatus = status;
1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1379 }
1380 }
1381}
710 1382
711#ifndef WCONTINUED 1383#ifndef WCONTINUED
712# define WCONTINUED 0 1384# define WCONTINUED 0
713#endif 1385#endif
714 1386
1387/* called on sigchld etc., calls waitpid */
715static void 1388static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
732{ 1390{
733 int pid, status; 1391 int pid, status;
734 1392
1393 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1394 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1395 if (!WCONTINUED
1396 || errno != EINVAL
1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1398 return;
1399
737 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
1401 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1403
740 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
1405 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1407}
744 1408
745#endif 1409#endif
746 1410
747/*****************************************************************************/ 1411/*****************************************************************************/
773{ 1437{
774 return EV_VERSION_MINOR; 1438 return EV_VERSION_MINOR;
775} 1439}
776 1440
777/* return true if we are running with elevated privileges and should ignore env variables */ 1441/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1442int inline_size
779enable_secure (void) 1443enable_secure (void)
780{ 1444{
781#ifdef _WIN32 1445#ifdef _WIN32
782 return 0; 1446 return 0;
783#else 1447#else
785 || getgid () != getegid (); 1449 || getgid () != getegid ();
786#endif 1450#endif
787} 1451}
788 1452
789unsigned int 1453unsigned int
790ev_method (EV_P) 1454ev_supported_backends (void)
791{ 1455{
792 return method; 1456 unsigned int flags = 0;
793}
794 1457
795static void 1458 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1459 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1460 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1461 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1462 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1463
1464 return flags;
1465}
1466
1467unsigned int
1468ev_recommended_backends (void)
1469{
1470 unsigned int flags = ev_supported_backends ();
1471
1472#ifndef __NetBSD__
1473 /* kqueue is borked on everything but netbsd apparently */
1474 /* it usually doesn't work correctly on anything but sockets and pipes */
1475 flags &= ~EVBACKEND_KQUEUE;
1476#endif
1477#ifdef __APPLE__
1478 /* only select works correctly on that "unix-certified" platform */
1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1481#endif
1482
1483 return flags;
1484}
1485
1486unsigned int
1487ev_embeddable_backends (void)
1488{
1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1490
1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
1496}
1497
1498unsigned int
1499ev_backend (EV_P)
1500{
1501 return backend;
1502}
1503
1504#if EV_MINIMAL < 2
1505unsigned int
1506ev_loop_count (EV_P)
1507{
1508 return loop_count;
1509}
1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
1554static void noinline
796loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
797{ 1556{
798 if (!method) 1557 if (!backend)
799 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
800#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
801 { 1571 {
802 struct timespec ts; 1572 struct timespec ts;
1573
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1575 have_monotonic = 1;
805 } 1576 }
806#endif 1577#endif
807 1578
808 ev_rt_now = ev_time (); 1579 /* pid check not overridable via env */
809 mn_now = get_clock (); 1580#ifndef _WIN32
810 now_floor = mn_now; 1581 if (flags & EVFLAG_FORKCHECK)
811 rtmn_diff = ev_rt_now - mn_now; 1582 curpid = getpid ();
1583#endif
812 1584
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1585 if (!(flags & EVFLAG_NOENV)
1586 && !enable_secure ()
1587 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1588 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1611#endif
1612
816 if (!(flags & 0x0000ffff)) 1613 if (!(flags & 0x0000ffffU))
817 flags |= 0x0000ffff; 1614 flags |= ev_recommended_backends ();
818 1615
819 method = 0;
820#if EV_USE_PORT 1616#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1618#endif
823#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1620 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1621#endif
826#if EV_USE_EPOLL 1622#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1623 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1624#endif
829#if EV_USE_POLL 1625#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1626 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1627#endif
832#if EV_USE_SELECT 1628#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1630#endif
835 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
836 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
838 } 1636 }
839} 1637}
840 1638
841static void 1639/* free up a loop structure */
1640static void noinline
842loop_destroy (EV_P) 1641loop_destroy (EV_P)
843{ 1642{
844 int i; 1643 int i;
845 1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 {
1665 /*ev_ref (EV_A);*/
1666 /*ev_io_stop (EV_A_ &sigfd_w);*/
1667
1668 close (sigfd);
1669 }
1670#endif
1671
1672#if EV_USE_INOTIFY
1673 if (fs_fd >= 0)
1674 close (fs_fd);
1675#endif
1676
1677 if (backend_fd >= 0)
1678 close (backend_fd);
1679
846#if EV_USE_PORT 1680#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1681 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1682#endif
849#if EV_USE_KQUEUE 1683#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1684 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1685#endif
852#if EV_USE_EPOLL 1686#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1687 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1688#endif
855#if EV_USE_POLL 1689#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1690 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1691#endif
858#if EV_USE_SELECT 1692#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1693 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1694#endif
861 1695
862 for (i = NUMPRI; i--; ) 1696 for (i = NUMPRI; i--; )
1697 {
863 array_free (pending, [i]); 1698 array_free (pending, [i]);
1699#if EV_IDLE_ENABLE
1700 array_free (idle, [i]);
1701#endif
1702 }
1703
1704 ev_free (anfds); anfds = 0; anfdmax = 0;
864 1705
865 /* have to use the microsoft-never-gets-it-right macro */ 1706 /* have to use the microsoft-never-gets-it-right macro */
1707 array_free (rfeed, EMPTY);
866 array_free (fdchange, EMPTY0); 1708 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1709 array_free (timer, EMPTY);
868#if EV_PERIODICS 1710#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1711 array_free (periodic, EMPTY);
870#endif 1712#endif
1713#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1714 array_free (fork, EMPTY);
1715#endif
872 array_free (prepare, EMPTY0); 1716 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1717 array_free (check, EMPTY);
1718#if EV_ASYNC_ENABLE
1719 array_free (async, EMPTY);
1720#endif
874 1721
875 method = 0; 1722 backend = 0;
876} 1723}
877 1724
878static void 1725#if EV_USE_INOTIFY
1726inline_size void infy_fork (EV_P);
1727#endif
1728
1729inline_size void
879loop_fork (EV_P) 1730loop_fork (EV_P)
880{ 1731{
881#if EV_USE_PORT 1732#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1733 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1734#endif
884#if EV_USE_KQUEUE 1735#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1736 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1737#endif
887#if EV_USE_EPOLL 1738#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1739 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 1740#endif
1741#if EV_USE_INOTIFY
1742 infy_fork (EV_A);
1743#endif
890 1744
891 if (ev_is_active (&sigev)) 1745 if (ev_is_active (&pipe_w))
892 { 1746 {
893 /* default loop */ 1747 /* this "locks" the handlers against writing to the pipe */
1748 /* while we modify the fd vars */
1749 sig_pending = 1;
1750#if EV_ASYNC_ENABLE
1751 async_pending = 1;
1752#endif
894 1753
895 ev_ref (EV_A); 1754 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 1755 ev_io_stop (EV_A_ &pipe_w);
897 close (sigpipe [0]);
898 close (sigpipe [1]);
899 1756
900 while (pipe (sigpipe)) 1757#if EV_USE_EVENTFD
901 syserr ("(libev) error creating pipe"); 1758 if (evfd >= 0)
1759 close (evfd);
1760#endif
902 1761
1762 if (evpipe [0] >= 0)
1763 {
1764 EV_WIN32_CLOSE_FD (evpipe [0]);
1765 EV_WIN32_CLOSE_FD (evpipe [1]);
1766 }
1767
903 siginit (EV_A); 1768 evpipe_init (EV_A);
1769 /* now iterate over everything, in case we missed something */
1770 pipecb (EV_A_ &pipe_w, EV_READ);
904 } 1771 }
905 1772
906 postfork = 0; 1773 postfork = 0;
907} 1774}
908 1775
909#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1777
910struct ev_loop * 1778struct ev_loop *
911ev_loop_new (unsigned int flags) 1779ev_loop_new (unsigned int flags)
912{ 1780{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1781 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914 1782
915 memset (loop, 0, sizeof (struct ev_loop)); 1783 memset (EV_A, 0, sizeof (struct ev_loop));
916
917 loop_init (EV_A_ flags); 1784 loop_init (EV_A_ flags);
918 1785
919 if (ev_method (EV_A)) 1786 if (ev_backend (EV_A))
920 return loop; 1787 return EV_A;
921 1788
922 return 0; 1789 return 0;
923} 1790}
924 1791
925void 1792void
930} 1797}
931 1798
932void 1799void
933ev_loop_fork (EV_P) 1800ev_loop_fork (EV_P)
934{ 1801{
935 postfork = 1; 1802 postfork = 1; /* must be in line with ev_default_fork */
936} 1803}
1804#endif /* multiplicity */
937 1805
1806#if EV_VERIFY
1807static void noinline
1808verify_watcher (EV_P_ W w)
1809{
1810 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1811
1812 if (w->pending)
1813 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1814}
1815
1816static void noinline
1817verify_heap (EV_P_ ANHE *heap, int N)
1818{
1819 int i;
1820
1821 for (i = HEAP0; i < N + HEAP0; ++i)
1822 {
1823 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1824 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1825 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1826
1827 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1828 }
1829}
1830
1831static void noinline
1832array_verify (EV_P_ W *ws, int cnt)
1833{
1834 while (cnt--)
1835 {
1836 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1837 verify_watcher (EV_A_ ws [cnt]);
1838 }
1839}
1840#endif
1841
1842#if EV_MINIMAL < 2
1843void
1844ev_loop_verify (EV_P)
1845{
1846#if EV_VERIFY
1847 int i;
1848 WL w;
1849
1850 assert (activecnt >= -1);
1851
1852 assert (fdchangemax >= fdchangecnt);
1853 for (i = 0; i < fdchangecnt; ++i)
1854 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1855
1856 assert (anfdmax >= 0);
1857 for (i = 0; i < anfdmax; ++i)
1858 for (w = anfds [i].head; w; w = w->next)
1859 {
1860 verify_watcher (EV_A_ (W)w);
1861 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1862 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1863 }
1864
1865 assert (timermax >= timercnt);
1866 verify_heap (EV_A_ timers, timercnt);
1867
1868#if EV_PERIODIC_ENABLE
1869 assert (periodicmax >= periodiccnt);
1870 verify_heap (EV_A_ periodics, periodiccnt);
1871#endif
1872
1873 for (i = NUMPRI; i--; )
1874 {
1875 assert (pendingmax [i] >= pendingcnt [i]);
1876#if EV_IDLE_ENABLE
1877 assert (idleall >= 0);
1878 assert (idlemax [i] >= idlecnt [i]);
1879 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1880#endif
1881 }
1882
1883#if EV_FORK_ENABLE
1884 assert (forkmax >= forkcnt);
1885 array_verify (EV_A_ (W *)forks, forkcnt);
1886#endif
1887
1888#if EV_ASYNC_ENABLE
1889 assert (asyncmax >= asynccnt);
1890 array_verify (EV_A_ (W *)asyncs, asynccnt);
1891#endif
1892
1893 assert (preparemax >= preparecnt);
1894 array_verify (EV_A_ (W *)prepares, preparecnt);
1895
1896 assert (checkmax >= checkcnt);
1897 array_verify (EV_A_ (W *)checks, checkcnt);
1898
1899# if 0
1900 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1901 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1902# endif
1903#endif
1904}
938#endif 1905#endif
939 1906
940#if EV_MULTIPLICITY 1907#if EV_MULTIPLICITY
941struct ev_loop * 1908struct ev_loop *
942ev_default_loop_init (unsigned int flags) 1909ev_default_loop_init (unsigned int flags)
943#else 1910#else
944int 1911int
945ev_default_loop (unsigned int flags) 1912ev_default_loop (unsigned int flags)
946#endif 1913#endif
947{ 1914{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 1915 if (!ev_default_loop_ptr)
953 { 1916 {
954#if EV_MULTIPLICITY 1917#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1918 EV_P = ev_default_loop_ptr = &default_loop_struct;
956#else 1919#else
957 ev_default_loop_ptr = 1; 1920 ev_default_loop_ptr = 1;
958#endif 1921#endif
959 1922
960 loop_init (EV_A_ flags); 1923 loop_init (EV_A_ flags);
961 1924
962 if (ev_method (EV_A)) 1925 if (ev_backend (EV_A))
963 { 1926 {
964 siginit (EV_A);
965
966#ifndef _WIN32 1927#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1928 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 1929 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 1930 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1931 ev_unref (EV_A); /* child watcher should not keep loop alive */
979 1940
980void 1941void
981ev_default_destroy (void) 1942ev_default_destroy (void)
982{ 1943{
983#if EV_MULTIPLICITY 1944#if EV_MULTIPLICITY
984 struct ev_loop *loop = ev_default_loop_ptr; 1945 EV_P = ev_default_loop_ptr;
985#endif 1946#endif
1947
1948 ev_default_loop_ptr = 0;
986 1949
987#ifndef _WIN32 1950#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */ 1951 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev); 1952 ev_signal_stop (EV_A_ &childev);
990#endif 1953#endif
991 1954
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A); 1955 loop_destroy (EV_A);
999} 1956}
1000 1957
1001void 1958void
1002ev_default_fork (void) 1959ev_default_fork (void)
1003{ 1960{
1004#if EV_MULTIPLICITY 1961#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 1962 EV_P = ev_default_loop_ptr;
1006#endif 1963#endif
1007 1964
1008 if (method) 1965 postfork = 1; /* must be in line with ev_loop_fork */
1009 postfork = 1;
1010} 1966}
1011 1967
1012/*****************************************************************************/ 1968/*****************************************************************************/
1013 1969
1014static int 1970void
1015any_pending (EV_P) 1971ev_invoke (EV_P_ void *w, int revents)
1972{
1973 EV_CB_INVOKE ((W)w, revents);
1974}
1975
1976unsigned int
1977ev_pending_count (EV_P)
1016{ 1978{
1017 int pri; 1979 int pri;
1980 unsigned int count = 0;
1018 1981
1019 for (pri = NUMPRI; pri--; ) 1982 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri]) 1983 count += pendingcnt [pri];
1021 return 1;
1022 1984
1023 return 0; 1985 return count;
1024} 1986}
1025 1987
1026inline void 1988void noinline
1027call_pending (EV_P) 1989ev_invoke_pending (EV_P)
1028{ 1990{
1029 int pri; 1991 int pri;
1030 1992
1031 for (pri = NUMPRI; pri--; ) 1993 for (pri = NUMPRI; pri--; )
1032 while (pendingcnt [pri]) 1994 while (pendingcnt [pri])
1033 { 1995 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1996 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 1997
1036 if (expect_true (p->w)) 1998 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1037 { 1999 /* ^ this is no longer true, as pending_w could be here */
2000
1038 p->w->pending = 0; 2001 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 2002 EV_CB_INVOKE (p->w, p->events);
1040 } 2003 EV_FREQUENT_CHECK;
1041 } 2004 }
1042} 2005}
1043 2006
2007#if EV_IDLE_ENABLE
2008/* make idle watchers pending. this handles the "call-idle */
2009/* only when higher priorities are idle" logic */
1044inline void 2010inline_size void
2011idle_reify (EV_P)
2012{
2013 if (expect_false (idleall))
2014 {
2015 int pri;
2016
2017 for (pri = NUMPRI; pri--; )
2018 {
2019 if (pendingcnt [pri])
2020 break;
2021
2022 if (idlecnt [pri])
2023 {
2024 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2025 break;
2026 }
2027 }
2028 }
2029}
2030#endif
2031
2032/* make timers pending */
2033inline_size void
1045timers_reify (EV_P) 2034timers_reify (EV_P)
1046{ 2035{
2036 EV_FREQUENT_CHECK;
2037
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 2038 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 2039 {
1049 struct ev_timer *w = timers [0]; 2040 do
1050
1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1052
1053 /* first reschedule or stop timer */
1054 if (w->repeat)
1055 { 2041 {
2042 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2043
2044 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2045
2046 /* first reschedule or stop timer */
2047 if (w->repeat)
2048 {
2049 ev_at (w) += w->repeat;
2050 if (ev_at (w) < mn_now)
2051 ev_at (w) = mn_now;
2052
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2053 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 2054
1058 ((WT)w)->at += w->repeat; 2055 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 2056 downheap (timers, timercnt, HEAP0);
2057 }
2058 else
2059 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2060
2061 EV_FREQUENT_CHECK;
2062 feed_reverse (EV_A_ (W)w);
1063 } 2063 }
1064 else 2064 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 2065
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2066 feed_reverse_done (EV_A_ EV_TIMEOUT);
1068 } 2067 }
1069} 2068}
1070 2069
1071#if EV_PERIODICS 2070#if EV_PERIODIC_ENABLE
2071/* make periodics pending */
1072inline void 2072inline_size void
1073periodics_reify (EV_P) 2073periodics_reify (EV_P)
1074{ 2074{
2075 EV_FREQUENT_CHECK;
2076
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2077 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 2078 {
1077 struct ev_periodic *w = periodics [0]; 2079 int feed_count = 0;
1078 2080
2081 do
2082 {
2083 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2084
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2085 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 2086
1081 /* first reschedule or stop timer */ 2087 /* first reschedule or stop timer */
2088 if (w->reschedule_cb)
2089 {
2090 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2091
2092 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2093
2094 ANHE_at_cache (periodics [HEAP0]);
2095 downheap (periodics, periodiccnt, HEAP0);
2096 }
2097 else if (w->interval)
2098 {
2099 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2100 /* if next trigger time is not sufficiently in the future, put it there */
2101 /* this might happen because of floating point inexactness */
2102 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2103 {
2104 ev_at (w) += w->interval;
2105
2106 /* if interval is unreasonably low we might still have a time in the past */
2107 /* so correct this. this will make the periodic very inexact, but the user */
2108 /* has effectively asked to get triggered more often than possible */
2109 if (ev_at (w) < ev_rt_now)
2110 ev_at (w) = ev_rt_now;
2111 }
2112
2113 ANHE_at_cache (periodics [HEAP0]);
2114 downheap (periodics, periodiccnt, HEAP0);
2115 }
2116 else
2117 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2118
2119 EV_FREQUENT_CHECK;
2120 feed_reverse (EV_A_ (W)w);
2121 }
2122 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2123
2124 feed_reverse_done (EV_A_ EV_PERIODIC);
2125 }
2126}
2127
2128/* simply recalculate all periodics */
2129/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2130static void noinline
2131periodics_reschedule (EV_P)
2132{
2133 int i;
2134
2135 /* adjust periodics after time jump */
2136 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2137 {
2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2139
1082 if (w->reschedule_cb) 2140 if (w->reschedule_cb)
2141 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2142 else if (w->interval)
2143 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2144
2145 ANHE_at_cache (periodics [i]);
2146 }
2147
2148 reheap (periodics, periodiccnt);
2149}
2150#endif
2151
2152/* adjust all timers by a given offset */
2153static void noinline
2154timers_reschedule (EV_P_ ev_tstamp adjust)
2155{
2156 int i;
2157
2158 for (i = 0; i < timercnt; ++i)
2159 {
2160 ANHE *he = timers + i + HEAP0;
2161 ANHE_w (*he)->at += adjust;
2162 ANHE_at_cache (*he);
2163 }
2164}
2165
2166/* fetch new monotonic and realtime times from the kernel */
2167/* also detetc if there was a timejump, and act accordingly */
2168inline_speed void
2169time_update (EV_P_ ev_tstamp max_block)
2170{
2171#if EV_USE_MONOTONIC
2172 if (expect_true (have_monotonic))
2173 {
2174 int i;
2175 ev_tstamp odiff = rtmn_diff;
2176
2177 mn_now = get_clock ();
2178
2179 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2180 /* interpolate in the meantime */
2181 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 2182 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2183 ev_rt_now = rtmn_diff + mn_now;
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2184 return;
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 } 2185 }
1088 else if (w->interval)
1089 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0);
1093 }
1094 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 2186
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 }
1099}
1100
1101static void
1102periodics_reschedule (EV_P)
1103{
1104 int i;
1105
1106 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i)
1108 {
1109 struct ev_periodic *w = periodics [i];
1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock ();
1127
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 {
1130 ev_rt_now = rtmn_diff + mn_now;
1131 return 0;
1132 }
1133 else
1134 {
1135 now_floor = mn_now; 2187 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 2188 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 2189
1141inline void 2190 /* loop a few times, before making important decisions.
1142time_update (EV_P) 2191 * on the choice of "4": one iteration isn't enough,
1143{ 2192 * in case we get preempted during the calls to
1144 int i; 2193 * ev_time and get_clock. a second call is almost guaranteed
1145 2194 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 2195 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 2196 * in the unlikely event of having been preempted here.
1148 { 2197 */
1149 if (time_update_monotonic (EV_A)) 2198 for (i = 4; --i; )
1150 { 2199 {
1151 ev_tstamp odiff = rtmn_diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 2200 rtmn_diff = ev_rt_now - mn_now;
1156 2201
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2202 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1158 return; /* all is well */ 2203 return; /* all is well */
1159 2204
1160 ev_rt_now = ev_time (); 2205 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 2206 mn_now = get_clock ();
1162 now_floor = mn_now; 2207 now_floor = mn_now;
1163 } 2208 }
1164 2209
2210 /* no timer adjustment, as the monotonic clock doesn't jump */
2211 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1165# if EV_PERIODICS 2212# if EV_PERIODIC_ENABLE
2213 periodics_reschedule (EV_A);
2214# endif
2215 }
2216 else
2217#endif
2218 {
2219 ev_rt_now = ev_time ();
2220
2221 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2222 {
2223 /* adjust timers. this is easy, as the offset is the same for all of them */
2224 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2225#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 2226 periodics_reschedule (EV_A);
1167# endif 2227#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 2228 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 2229
1188 mn_now = ev_rt_now; 2230 mn_now = ev_rt_now;
1189 } 2231 }
1190} 2232}
1191 2233
1192void 2234void
1193ev_ref (EV_P)
1194{
1195 ++activecnt;
1196}
1197
1198void
1199ev_unref (EV_P)
1200{
1201 --activecnt;
1202}
1203
1204static int loop_done;
1205
1206void
1207ev_loop (EV_P_ int flags) 2235ev_loop (EV_P_ int flags)
1208{ 2236{
1209 double block; 2237#if EV_MINIMAL < 2
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2238 ++loop_depth;
2239#endif
1211 2240
1212 while (activecnt) 2241 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2242
2243 loop_done = EVUNLOOP_CANCEL;
2244
2245 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2246
2247 do
1213 { 2248 {
2249#if EV_VERIFY >= 2
2250 ev_loop_verify (EV_A);
2251#endif
2252
2253#ifndef _WIN32
2254 if (expect_false (curpid)) /* penalise the forking check even more */
2255 if (expect_false (getpid () != curpid))
2256 {
2257 curpid = getpid ();
2258 postfork = 1;
2259 }
2260#endif
2261
2262#if EV_FORK_ENABLE
2263 /* we might have forked, so queue fork handlers */
2264 if (expect_false (postfork))
2265 if (forkcnt)
2266 {
2267 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2268 EV_INVOKE_PENDING;
2269 }
2270#endif
2271
1214 /* queue check watchers (and execute them) */ 2272 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 2273 if (expect_false (preparecnt))
1216 { 2274 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2275 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 2276 EV_INVOKE_PENDING;
1219 } 2277 }
2278
2279 if (expect_false (loop_done))
2280 break;
1220 2281
1221 /* we might have forked, so reify kernel state if necessary */ 2282 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 2283 if (expect_false (postfork))
1223 loop_fork (EV_A); 2284 loop_fork (EV_A);
1224 2285
1225 /* update fd-related kernel structures */ 2286 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 2287 fd_reify (EV_A);
1227 2288
1228 /* calculate blocking time */ 2289 /* calculate blocking time */
2290 {
2291 ev_tstamp waittime = 0.;
2292 ev_tstamp sleeptime = 0.;
1229 2293
1230 /* we only need this for !monotonic clock or timers, but as we basically 2294 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 2295 {
1238 ev_rt_now = ev_time (); 2296 /* remember old timestamp for io_blocktime calculation */
1239 mn_now = ev_rt_now; 2297 ev_tstamp prev_mn_now = mn_now;
1240 }
1241 2298
1242 if (flags & EVLOOP_NONBLOCK || idlecnt) 2299 /* update time to cancel out callback processing overhead */
1243 block = 0.; 2300 time_update (EV_A_ 1e100);
1244 else 2301
1245 {
1246 block = MAX_BLOCKTIME; 2302 waittime = MAX_BLOCKTIME;
1247 2303
1248 if (timercnt) 2304 if (timercnt)
1249 { 2305 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2306 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1251 if (block > to) block = to; 2307 if (waittime > to) waittime = to;
1252 } 2308 }
1253 2309
1254#if EV_PERIODICS 2310#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 2311 if (periodiccnt)
1256 { 2312 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2313 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 2314 if (waittime > to) waittime = to;
1259 } 2315 }
1260#endif 2316#endif
1261 2317
1262 if (expect_false (block < 0.)) block = 0.; 2318 /* don't let timeouts decrease the waittime below timeout_blocktime */
2319 if (expect_false (waittime < timeout_blocktime))
2320 waittime = timeout_blocktime;
2321
2322 /* extra check because io_blocktime is commonly 0 */
2323 if (expect_false (io_blocktime))
2324 {
2325 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2326
2327 if (sleeptime > waittime - backend_fudge)
2328 sleeptime = waittime - backend_fudge;
2329
2330 if (expect_true (sleeptime > 0.))
2331 {
2332 ev_sleep (sleeptime);
2333 waittime -= sleeptime;
2334 }
2335 }
1263 } 2336 }
1264 2337
1265 method_poll (EV_A_ block); 2338#if EV_MINIMAL < 2
2339 ++loop_count;
2340#endif
2341 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2342 backend_poll (EV_A_ waittime);
2343 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1266 2344
1267 /* update ev_rt_now, do magic */ 2345 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2346 time_update (EV_A_ waittime + sleeptime);
2347 }
1269 2348
1270 /* queue pending timers and reschedule them */ 2349 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2350 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2351#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2352 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2353#endif
1275 2354
2355#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2356 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2357 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2358#endif
1279 2359
1280 /* queue check watchers, to be executed first */ 2360 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2361 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2362 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1283 2363
1284 call_pending (EV_A); 2364 EV_INVOKE_PENDING;
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2365 }
2366 while (expect_true (
2367 activecnt
2368 && !loop_done
2369 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2370 ));
1289 2371
1290 if (loop_done != 2) 2372 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 2373 loop_done = EVUNLOOP_CANCEL;
2374
2375#if EV_MINIMAL < 2
2376 --loop_depth;
2377#endif
1292} 2378}
1293 2379
1294void 2380void
1295ev_unloop (EV_P_ int how) 2381ev_unloop (EV_P_ int how)
1296{ 2382{
1297 loop_done = how; 2383 loop_done = how;
1298} 2384}
1299 2385
2386void
2387ev_ref (EV_P)
2388{
2389 ++activecnt;
2390}
2391
2392void
2393ev_unref (EV_P)
2394{
2395 --activecnt;
2396}
2397
2398void
2399ev_now_update (EV_P)
2400{
2401 time_update (EV_A_ 1e100);
2402}
2403
2404void
2405ev_suspend (EV_P)
2406{
2407 ev_now_update (EV_A);
2408}
2409
2410void
2411ev_resume (EV_P)
2412{
2413 ev_tstamp mn_prev = mn_now;
2414
2415 ev_now_update (EV_A);
2416 timers_reschedule (EV_A_ mn_now - mn_prev);
2417#if EV_PERIODIC_ENABLE
2418 /* TODO: really do this? */
2419 periodics_reschedule (EV_A);
2420#endif
2421}
2422
1300/*****************************************************************************/ 2423/*****************************************************************************/
2424/* singly-linked list management, used when the expected list length is short */
1301 2425
1302inline void 2426inline_size void
1303wlist_add (WL *head, WL elem) 2427wlist_add (WL *head, WL elem)
1304{ 2428{
1305 elem->next = *head; 2429 elem->next = *head;
1306 *head = elem; 2430 *head = elem;
1307} 2431}
1308 2432
1309inline void 2433inline_size void
1310wlist_del (WL *head, WL elem) 2434wlist_del (WL *head, WL elem)
1311{ 2435{
1312 while (*head) 2436 while (*head)
1313 { 2437 {
1314 if (*head == elem) 2438 if (expect_true (*head == elem))
1315 { 2439 {
1316 *head = elem->next; 2440 *head = elem->next;
1317 return; 2441 break;
1318 } 2442 }
1319 2443
1320 head = &(*head)->next; 2444 head = &(*head)->next;
1321 } 2445 }
1322} 2446}
1323 2447
2448/* internal, faster, version of ev_clear_pending */
1324inline void 2449inline_speed void
1325ev_clear_pending (EV_P_ W w) 2450clear_pending (EV_P_ W w)
1326{ 2451{
1327 if (w->pending) 2452 if (w->pending)
1328 { 2453 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2454 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1330 w->pending = 0; 2455 w->pending = 0;
1331 } 2456 }
1332} 2457}
1333 2458
2459int
2460ev_clear_pending (EV_P_ void *w)
2461{
2462 W w_ = (W)w;
2463 int pending = w_->pending;
2464
2465 if (expect_true (pending))
2466 {
2467 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2468 p->w = (W)&pending_w;
2469 w_->pending = 0;
2470 return p->events;
2471 }
2472 else
2473 return 0;
2474}
2475
1334inline void 2476inline_size void
2477pri_adjust (EV_P_ W w)
2478{
2479 int pri = ev_priority (w);
2480 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2481 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2482 ev_set_priority (w, pri);
2483}
2484
2485inline_speed void
1335ev_start (EV_P_ W w, int active) 2486ev_start (EV_P_ W w, int active)
1336{ 2487{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2488 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2489 w->active = active;
1341 ev_ref (EV_A); 2490 ev_ref (EV_A);
1342} 2491}
1343 2492
1344inline void 2493inline_size void
1345ev_stop (EV_P_ W w) 2494ev_stop (EV_P_ W w)
1346{ 2495{
1347 ev_unref (EV_A); 2496 ev_unref (EV_A);
1348 w->active = 0; 2497 w->active = 0;
1349} 2498}
1350 2499
1351/*****************************************************************************/ 2500/*****************************************************************************/
1352 2501
1353void 2502void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2503ev_io_start (EV_P_ ev_io *w)
1355{ 2504{
1356 int fd = w->fd; 2505 int fd = w->fd;
1357 2506
1358 if (expect_false (ev_is_active (w))) 2507 if (expect_false (ev_is_active (w)))
1359 return; 2508 return;
1360 2509
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2510 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2511 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2512
2513 EV_FREQUENT_CHECK;
1362 2514
1363 ev_start (EV_A_ (W)w, 1); 2515 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2516 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2517 wlist_add (&anfds[fd].head, (WL)w);
1366 2518
1367 fd_change (EV_A_ fd); 2519 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1368} 2520 w->events &= ~EV__IOFDSET;
1369 2521
1370void 2522 EV_FREQUENT_CHECK;
2523}
2524
2525void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2526ev_io_stop (EV_P_ ev_io *w)
1372{ 2527{
1373 ev_clear_pending (EV_A_ (W)w); 2528 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2529 if (expect_false (!ev_is_active (w)))
1375 return; 2530 return;
1376 2531
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2532 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2533
2534 EV_FREQUENT_CHECK;
2535
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2536 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2537 ev_stop (EV_A_ (W)w);
1381 2538
1382 fd_change (EV_A_ w->fd); 2539 fd_change (EV_A_ w->fd, 1);
1383}
1384 2540
1385void 2541 EV_FREQUENT_CHECK;
2542}
2543
2544void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2545ev_timer_start (EV_P_ ev_timer *w)
1387{ 2546{
1388 if (expect_false (ev_is_active (w))) 2547 if (expect_false (ev_is_active (w)))
1389 return; 2548 return;
1390 2549
1391 ((WT)w)->at += mn_now; 2550 ev_at (w) += mn_now;
1392 2551
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2552 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2553
2554 EV_FREQUENT_CHECK;
2555
2556 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2557 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2558 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2559 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2560 ANHE_at_cache (timers [ev_active (w)]);
2561 upheap (timers, ev_active (w));
1399 2562
2563 EV_FREQUENT_CHECK;
2564
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2565 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2566}
1402 2567
1403void 2568void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2569ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2570{
1406 ev_clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2572 if (expect_false (!ev_is_active (w)))
1408 return; 2573 return;
1409 2574
2575 EV_FREQUENT_CHECK;
2576
2577 {
2578 int active = ev_active (w);
2579
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2580 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2581
2582 --timercnt;
2583
1412 if (expect_true (((W)w)->active < timercnt--)) 2584 if (expect_true (active < timercnt + HEAP0))
1413 { 2585 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2586 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2587 adjustheap (timers, timercnt, active);
1416 } 2588 }
2589 }
1417 2590
1418 ((WT)w)->at -= mn_now; 2591 EV_FREQUENT_CHECK;
2592
2593 ev_at (w) -= mn_now;
1419 2594
1420 ev_stop (EV_A_ (W)w); 2595 ev_stop (EV_A_ (W)w);
1421} 2596}
1422 2597
1423void 2598void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2599ev_timer_again (EV_P_ ev_timer *w)
1425{ 2600{
2601 EV_FREQUENT_CHECK;
2602
1426 if (ev_is_active (w)) 2603 if (ev_is_active (w))
1427 { 2604 {
1428 if (w->repeat) 2605 if (w->repeat)
1429 { 2606 {
1430 ((WT)w)->at = mn_now + w->repeat; 2607 ev_at (w) = mn_now + w->repeat;
2608 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2609 adjustheap (timers, timercnt, ev_active (w));
1432 } 2610 }
1433 else 2611 else
1434 ev_timer_stop (EV_A_ w); 2612 ev_timer_stop (EV_A_ w);
1435 } 2613 }
1436 else if (w->repeat) 2614 else if (w->repeat)
1437 { 2615 {
1438 w->at = w->repeat; 2616 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2617 ev_timer_start (EV_A_ w);
1440 } 2618 }
1441}
1442 2619
2620 EV_FREQUENT_CHECK;
2621}
2622
2623ev_tstamp
2624ev_timer_remaining (EV_P_ ev_timer *w)
2625{
2626 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2627}
2628
1443#if EV_PERIODICS 2629#if EV_PERIODIC_ENABLE
1444void 2630void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2631ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2632{
1447 if (expect_false (ev_is_active (w))) 2633 if (expect_false (ev_is_active (w)))
1448 return; 2634 return;
1449 2635
1450 if (w->reschedule_cb) 2636 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2637 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2638 else if (w->interval)
1453 { 2639 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2640 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2641 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 2643 }
2644 else
2645 ev_at (w) = w->offset;
1458 2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2650 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2651 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2652 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2653 ANHE_at_cache (periodics [ev_active (w)]);
2654 upheap (periodics, ev_active (w));
1463 2655
2656 EV_FREQUENT_CHECK;
2657
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2658 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2659}
1466 2660
1467void 2661void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2662ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2663{
1470 ev_clear_pending (EV_A_ (W)w); 2664 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2665 if (expect_false (!ev_is_active (w)))
1472 return; 2666 return;
1473 2667
2668 EV_FREQUENT_CHECK;
2669
2670 {
2671 int active = ev_active (w);
2672
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2673 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2674
2675 --periodiccnt;
2676
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2677 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2678 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2679 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2680 adjustheap (periodics, periodiccnt, active);
1480 } 2681 }
2682 }
2683
2684 EV_FREQUENT_CHECK;
1481 2685
1482 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
1483} 2687}
1484 2688
1485void 2689void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2690ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2691{
1488 /* TODO: use adjustheap and recalculation */ 2692 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2693 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2694 ev_periodic_start (EV_A_ w);
1491} 2695}
1492#endif 2696#endif
1493 2697
1494void 2698#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2699# define SA_RESTART 0
2700#endif
2701
2702void noinline
2703ev_signal_start (EV_P_ ev_signal *w)
1496{ 2704{
1497 if (expect_false (ev_is_active (w))) 2705 if (expect_false (ev_is_active (w)))
1498 return; 2706 return;
1499 2707
2708 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2709
2710#if EV_MULTIPLICITY
2711 assert (("libev: a signal must not be attached to two different loops",
2712 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2713
2714 signals [w->signum - 1].loop = EV_A;
2715#endif
2716
2717 EV_FREQUENT_CHECK;
2718
2719#if EV_USE_SIGNALFD
2720 if (sigfd == -2)
2721 {
2722 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2723 if (sigfd < 0 && errno == EINVAL)
2724 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2725
2726 if (sigfd >= 0)
2727 {
2728 fd_intern (sigfd); /* doing it twice will not hurt */
2729
2730 sigemptyset (&sigfd_set);
2731
2732 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2733 ev_set_priority (&sigfd_w, EV_MAXPRI);
2734 ev_io_start (EV_A_ &sigfd_w);
2735 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2736 }
2737 }
2738
2739 if (sigfd >= 0)
2740 {
2741 /* TODO: check .head */
2742 sigaddset (&sigfd_set, w->signum);
2743 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2744
2745 signalfd (sigfd, &sigfd_set, 0);
2746 }
2747#endif
2748
1500 ev_start (EV_A_ (W)w, ++idlecnt); 2749 ev_start (EV_A_ (W)w, 1);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2750 wlist_add (&signals [w->signum - 1].head, (WL)w);
1502 idles [idlecnt - 1] = w;
1503}
1504 2751
1505void 2752 if (!((WL)w)->next)
1506ev_idle_stop (EV_P_ struct ev_idle *w) 2753# if EV_USE_SIGNALFD
2754 if (sigfd < 0) /*TODO*/
2755# endif
2756 {
2757# if _WIN32
2758 signal (w->signum, ev_sighandler);
2759# else
2760 struct sigaction sa;
2761
2762 evpipe_init (EV_A);
2763
2764 sa.sa_handler = ev_sighandler;
2765 sigfillset (&sa.sa_mask);
2766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2767 sigaction (w->signum, &sa, 0);
2768
2769 sigemptyset (&sa.sa_mask);
2770 sigaddset (&sa.sa_mask, w->signum);
2771 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2772#endif
2773 }
2774
2775 EV_FREQUENT_CHECK;
2776}
2777
2778void noinline
2779ev_signal_stop (EV_P_ ev_signal *w)
1507{ 2780{
1508 ev_clear_pending (EV_A_ (W)w); 2781 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 2782 if (expect_false (!ev_is_active (w)))
1510 return; 2783 return;
1511 2784
1512 idles [((W)w)->active - 1] = idles [--idlecnt]; 2785 EV_FREQUENT_CHECK;
2786
2787 wlist_del (&signals [w->signum - 1].head, (WL)w);
1513 ev_stop (EV_A_ (W)w); 2788 ev_stop (EV_A_ (W)w);
1514}
1515 2789
2790 if (!signals [w->signum - 1].head)
2791 {
2792#if EV_MULTIPLICITY
2793 signals [w->signum - 1].loop = 0; /* unattach from signal */
2794#endif
2795#if EV_USE_SIGNALFD
2796 if (sigfd >= 0)
2797 {
2798 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2799 sigdelset (&sigfd_set, w->signum);
2800 signalfd (sigfd, &sigfd_set, 0);
2801 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2802 /*TODO: maybe unblock signal? */
2803 }
2804 else
2805#endif
2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
2810}
2811
1516void 2812void
1517ev_prepare_start (EV_P_ struct ev_prepare *w) 2813ev_child_start (EV_P_ ev_child *w)
1518{ 2814{
2815#if EV_MULTIPLICITY
2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2817#endif
1519 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1520 return; 2819 return;
1521 2820
2821 EV_FREQUENT_CHECK;
2822
1522 ev_start (EV_A_ (W)w, ++preparecnt); 2823 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1524 prepares [preparecnt - 1] = w;
1525}
1526 2825
2826 EV_FREQUENT_CHECK;
2827}
2828
1527void 2829void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w) 2830ev_child_stop (EV_P_ ev_child *w)
1529{ 2831{
1530 ev_clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
1532 return; 2834 return;
1533 2835
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2836 EV_FREQUENT_CHECK;
2837
2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1535 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
1536}
1537 2840
2841 EV_FREQUENT_CHECK;
2842}
2843
2844#if EV_STAT_ENABLE
2845
2846# ifdef _WIN32
2847# undef lstat
2848# define lstat(a,b) _stati64 (a,b)
2849# endif
2850
2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2853#define MIN_STAT_INTERVAL 0.1074891
2854
2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2856
2857#if EV_USE_INOTIFY
2858# define EV_INOTIFY_BUFSIZE 8192
2859
2860static void noinline
2861infy_add (EV_P_ ev_stat *w)
2862{
2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2864
2865 if (w->wd < 0)
2866 {
2867 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2868 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2869
2870 /* monitor some parent directory for speedup hints */
2871 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2872 /* but an efficiency issue only */
2873 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2874 {
2875 char path [4096];
2876 strcpy (path, w->path);
2877
2878 do
2879 {
2880 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2881 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2882
2883 char *pend = strrchr (path, '/');
2884
2885 if (!pend || pend == path)
2886 break;
2887
2888 *pend = 0;
2889 w->wd = inotify_add_watch (fs_fd, path, mask);
2890 }
2891 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2892 }
2893 }
2894
2895 if (w->wd >= 0)
2896 {
2897 struct statfs sfs;
2898
2899 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2900
2901 /* now local changes will be tracked by inotify, but remote changes won't */
2902 /* unless the filesystem it known to be local, we therefore still poll */
2903 /* also do poll on <2.6.25, but with normal frequency */
2904
2905 if (fs_2625 && !statfs (w->path, &sfs))
2906 if (sfs.f_type == 0x1373 /* devfs */
2907 || sfs.f_type == 0xEF53 /* ext2/3 */
2908 || sfs.f_type == 0x3153464a /* jfs */
2909 || sfs.f_type == 0x52654973 /* reiser3 */
2910 || sfs.f_type == 0x01021994 /* tempfs */
2911 || sfs.f_type == 0x58465342 /* xfs */)
2912 return;
2913
2914 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2915 ev_timer_again (EV_A_ &w->timer);
2916 }
2917}
2918
2919static void noinline
2920infy_del (EV_P_ ev_stat *w)
2921{
2922 int slot;
2923 int wd = w->wd;
2924
2925 if (wd < 0)
2926 return;
2927
2928 w->wd = -2;
2929 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2930 wlist_del (&fs_hash [slot].head, (WL)w);
2931
2932 /* remove this watcher, if others are watching it, they will rearm */
2933 inotify_rm_watch (fs_fd, wd);
2934}
2935
2936static void noinline
2937infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2938{
2939 if (slot < 0)
2940 /* overflow, need to check for all hash slots */
2941 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2942 infy_wd (EV_A_ slot, wd, ev);
2943 else
2944 {
2945 WL w_;
2946
2947 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2948 {
2949 ev_stat *w = (ev_stat *)w_;
2950 w_ = w_->next; /* lets us remove this watcher and all before it */
2951
2952 if (w->wd == wd || wd == -1)
2953 {
2954 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2955 {
2956 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2957 w->wd = -1;
2958 infy_add (EV_A_ w); /* re-add, no matter what */
2959 }
2960
2961 stat_timer_cb (EV_A_ &w->timer, 0);
2962 }
2963 }
2964 }
2965}
2966
2967static void
2968infy_cb (EV_P_ ev_io *w, int revents)
2969{
2970 char buf [EV_INOTIFY_BUFSIZE];
2971 struct inotify_event *ev = (struct inotify_event *)buf;
2972 int ofs;
2973 int len = read (fs_fd, buf, sizeof (buf));
2974
2975 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2976 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2977}
2978
2979inline_size void
2980check_2625 (EV_P)
2981{
2982 /* kernels < 2.6.25 are borked
2983 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2984 */
2985 struct utsname buf;
2986 int major, minor, micro;
2987
2988 if (uname (&buf))
2989 return;
2990
2991 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2992 return;
2993
2994 if (major < 2
2995 || (major == 2 && minor < 6)
2996 || (major == 2 && minor == 6 && micro < 25))
2997 return;
2998
2999 fs_2625 = 1;
3000}
3001
3002inline_size void
3003infy_init (EV_P)
3004{
3005 if (fs_fd != -2)
3006 return;
3007
3008 fs_fd = -1;
3009
3010 check_2625 (EV_A);
3011
3012 fs_fd = inotify_init ();
3013
3014 if (fs_fd >= 0)
3015 {
3016 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3017 ev_set_priority (&fs_w, EV_MAXPRI);
3018 ev_io_start (EV_A_ &fs_w);
3019 }
3020}
3021
3022inline_size void
3023infy_fork (EV_P)
3024{
3025 int slot;
3026
3027 if (fs_fd < 0)
3028 return;
3029
3030 close (fs_fd);
3031 fs_fd = inotify_init ();
3032
3033 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3034 {
3035 WL w_ = fs_hash [slot].head;
3036 fs_hash [slot].head = 0;
3037
3038 while (w_)
3039 {
3040 ev_stat *w = (ev_stat *)w_;
3041 w_ = w_->next; /* lets us add this watcher */
3042
3043 w->wd = -1;
3044
3045 if (fs_fd >= 0)
3046 infy_add (EV_A_ w); /* re-add, no matter what */
3047 else
3048 ev_timer_again (EV_A_ &w->timer);
3049 }
3050 }
3051}
3052
3053#endif
3054
3055#ifdef _WIN32
3056# define EV_LSTAT(p,b) _stati64 (p, b)
3057#else
3058# define EV_LSTAT(p,b) lstat (p, b)
3059#endif
3060
1538void 3061void
1539ev_check_start (EV_P_ struct ev_check *w) 3062ev_stat_stat (EV_P_ ev_stat *w)
3063{
3064 if (lstat (w->path, &w->attr) < 0)
3065 w->attr.st_nlink = 0;
3066 else if (!w->attr.st_nlink)
3067 w->attr.st_nlink = 1;
3068}
3069
3070static void noinline
3071stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3072{
3073 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3074
3075 /* we copy this here each the time so that */
3076 /* prev has the old value when the callback gets invoked */
3077 w->prev = w->attr;
3078 ev_stat_stat (EV_A_ w);
3079
3080 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3081 if (
3082 w->prev.st_dev != w->attr.st_dev
3083 || w->prev.st_ino != w->attr.st_ino
3084 || w->prev.st_mode != w->attr.st_mode
3085 || w->prev.st_nlink != w->attr.st_nlink
3086 || w->prev.st_uid != w->attr.st_uid
3087 || w->prev.st_gid != w->attr.st_gid
3088 || w->prev.st_rdev != w->attr.st_rdev
3089 || w->prev.st_size != w->attr.st_size
3090 || w->prev.st_atime != w->attr.st_atime
3091 || w->prev.st_mtime != w->attr.st_mtime
3092 || w->prev.st_ctime != w->attr.st_ctime
3093 ) {
3094 #if EV_USE_INOTIFY
3095 if (fs_fd >= 0)
3096 {
3097 infy_del (EV_A_ w);
3098 infy_add (EV_A_ w);
3099 ev_stat_stat (EV_A_ w); /* avoid race... */
3100 }
3101 #endif
3102
3103 ev_feed_event (EV_A_ w, EV_STAT);
3104 }
3105}
3106
3107void
3108ev_stat_start (EV_P_ ev_stat *w)
1540{ 3109{
1541 if (expect_false (ev_is_active (w))) 3110 if (expect_false (ev_is_active (w)))
1542 return; 3111 return;
1543 3112
3113 ev_stat_stat (EV_A_ w);
3114
3115 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3116 w->interval = MIN_STAT_INTERVAL;
3117
3118 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3119 ev_set_priority (&w->timer, ev_priority (w));
3120
3121#if EV_USE_INOTIFY
3122 infy_init (EV_A);
3123
3124 if (fs_fd >= 0)
3125 infy_add (EV_A_ w);
3126 else
3127#endif
3128 ev_timer_again (EV_A_ &w->timer);
3129
1544 ev_start (EV_A_ (W)w, ++checkcnt); 3130 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548 3131
3132 EV_FREQUENT_CHECK;
3133}
3134
1549void 3135void
1550ev_check_stop (EV_P_ struct ev_check *w) 3136ev_stat_stop (EV_P_ ev_stat *w)
1551{ 3137{
1552 ev_clear_pending (EV_A_ (W)w); 3138 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 3139 if (expect_false (!ev_is_active (w)))
1554 return; 3140 return;
1555 3141
1556 checks [((W)w)->active - 1] = checks [--checkcnt]; 3142 EV_FREQUENT_CHECK;
3143
3144#if EV_USE_INOTIFY
3145 infy_del (EV_A_ w);
3146#endif
3147 ev_timer_stop (EV_A_ &w->timer);
3148
1557 ev_stop (EV_A_ (W)w); 3149 ev_stop (EV_A_ (W)w);
1558}
1559 3150
1560#ifndef SA_RESTART 3151 EV_FREQUENT_CHECK;
1561# define SA_RESTART 0 3152}
1562#endif 3153#endif
1563 3154
3155#if EV_IDLE_ENABLE
1564void 3156void
1565ev_signal_start (EV_P_ struct ev_signal *w) 3157ev_idle_start (EV_P_ ev_idle *w)
1566{ 3158{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w))) 3159 if (expect_false (ev_is_active (w)))
1571 return; 3160 return;
1572 3161
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3162 pri_adjust (EV_A_ (W)w);
1574 3163
3164 EV_FREQUENT_CHECK;
3165
3166 {
3167 int active = ++idlecnt [ABSPRI (w)];
3168
3169 ++idleall;
1575 ev_start (EV_A_ (W)w, 1); 3170 ev_start (EV_A_ (W)w, active);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1578 3171
1579 if (!((WL)w)->next) 3172 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1580 { 3173 idles [ABSPRI (w)][active - 1] = w;
1581#if _WIN32
1582 signal (w->signum, sighandler);
1583#else
1584 struct sigaction sa;
1585 sa.sa_handler = sighandler;
1586 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0);
1589#endif
1590 } 3174 }
1591}
1592 3175
3176 EV_FREQUENT_CHECK;
3177}
3178
1593void 3179void
1594ev_signal_stop (EV_P_ struct ev_signal *w) 3180ev_idle_stop (EV_P_ ev_idle *w)
1595{ 3181{
1596 ev_clear_pending (EV_A_ (W)w); 3182 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3183 if (expect_false (!ev_is_active (w)))
1598 return; 3184 return;
1599 3185
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3186 EV_FREQUENT_CHECK;
3187
3188 {
3189 int active = ev_active (w);
3190
3191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3192 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3193
1601 ev_stop (EV_A_ (W)w); 3194 ev_stop (EV_A_ (W)w);
3195 --idleall;
3196 }
1602 3197
1603 if (!signals [w->signum - 1].head) 3198 EV_FREQUENT_CHECK;
1604 signal (w->signum, SIG_DFL);
1605} 3199}
1606
1607void
1608ev_child_start (EV_P_ struct ev_child *w)
1609{
1610#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 3200#endif
3201
3202void
3203ev_prepare_start (EV_P_ ev_prepare *w)
3204{
1613 if (expect_false (ev_is_active (w))) 3205 if (expect_false (ev_is_active (w)))
1614 return; 3206 return;
1615 3207
3208 EV_FREQUENT_CHECK;
3209
1616 ev_start (EV_A_ (W)w, 1); 3210 ev_start (EV_A_ (W)w, ++preparecnt);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3211 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1618} 3212 prepares [preparecnt - 1] = w;
1619 3213
3214 EV_FREQUENT_CHECK;
3215}
3216
1620void 3217void
1621ev_child_stop (EV_P_ struct ev_child *w) 3218ev_prepare_stop (EV_P_ ev_prepare *w)
1622{ 3219{
1623 ev_clear_pending (EV_A_ (W)w); 3220 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 3221 if (expect_false (!ev_is_active (w)))
1625 return; 3222 return;
1626 3223
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3224 EV_FREQUENT_CHECK;
3225
3226 {
3227 int active = ev_active (w);
3228
3229 prepares [active - 1] = prepares [--preparecnt];
3230 ev_active (prepares [active - 1]) = active;
3231 }
3232
1628 ev_stop (EV_A_ (W)w); 3233 ev_stop (EV_A_ (W)w);
3234
3235 EV_FREQUENT_CHECK;
1629} 3236}
3237
3238void
3239ev_check_start (EV_P_ ev_check *w)
3240{
3241 if (expect_false (ev_is_active (w)))
3242 return;
3243
3244 EV_FREQUENT_CHECK;
3245
3246 ev_start (EV_A_ (W)w, ++checkcnt);
3247 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3248 checks [checkcnt - 1] = w;
3249
3250 EV_FREQUENT_CHECK;
3251}
3252
3253void
3254ev_check_stop (EV_P_ ev_check *w)
3255{
3256 clear_pending (EV_A_ (W)w);
3257 if (expect_false (!ev_is_active (w)))
3258 return;
3259
3260 EV_FREQUENT_CHECK;
3261
3262 {
3263 int active = ev_active (w);
3264
3265 checks [active - 1] = checks [--checkcnt];
3266 ev_active (checks [active - 1]) = active;
3267 }
3268
3269 ev_stop (EV_A_ (W)w);
3270
3271 EV_FREQUENT_CHECK;
3272}
3273
3274#if EV_EMBED_ENABLE
3275void noinline
3276ev_embed_sweep (EV_P_ ev_embed *w)
3277{
3278 ev_loop (w->other, EVLOOP_NONBLOCK);
3279}
3280
3281static void
3282embed_io_cb (EV_P_ ev_io *io, int revents)
3283{
3284 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3285
3286 if (ev_cb (w))
3287 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3288 else
3289 ev_loop (w->other, EVLOOP_NONBLOCK);
3290}
3291
3292static void
3293embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3294{
3295 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3296
3297 {
3298 EV_P = w->other;
3299
3300 while (fdchangecnt)
3301 {
3302 fd_reify (EV_A);
3303 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3304 }
3305 }
3306}
3307
3308static void
3309embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3310{
3311 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3312
3313 ev_embed_stop (EV_A_ w);
3314
3315 {
3316 EV_P = w->other;
3317
3318 ev_loop_fork (EV_A);
3319 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3320 }
3321
3322 ev_embed_start (EV_A_ w);
3323}
3324
3325#if 0
3326static void
3327embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3328{
3329 ev_idle_stop (EV_A_ idle);
3330}
3331#endif
3332
3333void
3334ev_embed_start (EV_P_ ev_embed *w)
3335{
3336 if (expect_false (ev_is_active (w)))
3337 return;
3338
3339 {
3340 EV_P = w->other;
3341 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3342 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3343 }
3344
3345 EV_FREQUENT_CHECK;
3346
3347 ev_set_priority (&w->io, ev_priority (w));
3348 ev_io_start (EV_A_ &w->io);
3349
3350 ev_prepare_init (&w->prepare, embed_prepare_cb);
3351 ev_set_priority (&w->prepare, EV_MINPRI);
3352 ev_prepare_start (EV_A_ &w->prepare);
3353
3354 ev_fork_init (&w->fork, embed_fork_cb);
3355 ev_fork_start (EV_A_ &w->fork);
3356
3357 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3358
3359 ev_start (EV_A_ (W)w, 1);
3360
3361 EV_FREQUENT_CHECK;
3362}
3363
3364void
3365ev_embed_stop (EV_P_ ev_embed *w)
3366{
3367 clear_pending (EV_A_ (W)w);
3368 if (expect_false (!ev_is_active (w)))
3369 return;
3370
3371 EV_FREQUENT_CHECK;
3372
3373 ev_io_stop (EV_A_ &w->io);
3374 ev_prepare_stop (EV_A_ &w->prepare);
3375 ev_fork_stop (EV_A_ &w->fork);
3376
3377 EV_FREQUENT_CHECK;
3378}
3379#endif
3380
3381#if EV_FORK_ENABLE
3382void
3383ev_fork_start (EV_P_ ev_fork *w)
3384{
3385 if (expect_false (ev_is_active (w)))
3386 return;
3387
3388 EV_FREQUENT_CHECK;
3389
3390 ev_start (EV_A_ (W)w, ++forkcnt);
3391 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3392 forks [forkcnt - 1] = w;
3393
3394 EV_FREQUENT_CHECK;
3395}
3396
3397void
3398ev_fork_stop (EV_P_ ev_fork *w)
3399{
3400 clear_pending (EV_A_ (W)w);
3401 if (expect_false (!ev_is_active (w)))
3402 return;
3403
3404 EV_FREQUENT_CHECK;
3405
3406 {
3407 int active = ev_active (w);
3408
3409 forks [active - 1] = forks [--forkcnt];
3410 ev_active (forks [active - 1]) = active;
3411 }
3412
3413 ev_stop (EV_A_ (W)w);
3414
3415 EV_FREQUENT_CHECK;
3416}
3417#endif
3418
3419#if EV_ASYNC_ENABLE
3420void
3421ev_async_start (EV_P_ ev_async *w)
3422{
3423 if (expect_false (ev_is_active (w)))
3424 return;
3425
3426 evpipe_init (EV_A);
3427
3428 EV_FREQUENT_CHECK;
3429
3430 ev_start (EV_A_ (W)w, ++asynccnt);
3431 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3432 asyncs [asynccnt - 1] = w;
3433
3434 EV_FREQUENT_CHECK;
3435}
3436
3437void
3438ev_async_stop (EV_P_ ev_async *w)
3439{
3440 clear_pending (EV_A_ (W)w);
3441 if (expect_false (!ev_is_active (w)))
3442 return;
3443
3444 EV_FREQUENT_CHECK;
3445
3446 {
3447 int active = ev_active (w);
3448
3449 asyncs [active - 1] = asyncs [--asynccnt];
3450 ev_active (asyncs [active - 1]) = active;
3451 }
3452
3453 ev_stop (EV_A_ (W)w);
3454
3455 EV_FREQUENT_CHECK;
3456}
3457
3458void
3459ev_async_send (EV_P_ ev_async *w)
3460{
3461 w->sent = 1;
3462 evpipe_write (EV_A_ &async_pending);
3463}
3464#endif
1630 3465
1631/*****************************************************************************/ 3466/*****************************************************************************/
1632 3467
1633struct ev_once 3468struct ev_once
1634{ 3469{
1635 struct ev_io io; 3470 ev_io io;
1636 struct ev_timer to; 3471 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3472 void (*cb)(int revents, void *arg);
1638 void *arg; 3473 void *arg;
1639}; 3474};
1640 3475
1641static void 3476static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3477once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3478{
1644 void (*cb)(int revents, void *arg) = once->cb; 3479 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3480 void *arg = once->arg;
1646 3481
1647 ev_io_stop (EV_A_ &once->io); 3482 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3483 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3484 ev_free (once);
1650 3485
1651 cb (revents, arg); 3486 cb (revents, arg);
1652} 3487}
1653 3488
1654static void 3489static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3490once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3491{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3492 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3493
3494 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3495}
1659 3496
1660static void 3497static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3498once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3499{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3500 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3501
3502 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3503}
1665 3504
1666void 3505void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3506ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3507{
1690 ev_timer_set (&once->to, timeout, 0.); 3529 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3530 ev_timer_start (EV_A_ &once->to);
1692 } 3531 }
1693} 3532}
1694 3533
3534/*****************************************************************************/
3535
3536#if EV_WALK_ENABLE
3537void
3538ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3539{
3540 int i, j;
3541 ev_watcher_list *wl, *wn;
3542
3543 if (types & (EV_IO | EV_EMBED))
3544 for (i = 0; i < anfdmax; ++i)
3545 for (wl = anfds [i].head; wl; )
3546 {
3547 wn = wl->next;
3548
3549#if EV_EMBED_ENABLE
3550 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3551 {
3552 if (types & EV_EMBED)
3553 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3554 }
3555 else
3556#endif
3557#if EV_USE_INOTIFY
3558 if (ev_cb ((ev_io *)wl) == infy_cb)
3559 ;
3560 else
3561#endif
3562 if ((ev_io *)wl != &pipe_w)
3563 if (types & EV_IO)
3564 cb (EV_A_ EV_IO, wl);
3565
3566 wl = wn;
3567 }
3568
3569 if (types & (EV_TIMER | EV_STAT))
3570 for (i = timercnt + HEAP0; i-- > HEAP0; )
3571#if EV_STAT_ENABLE
3572 /*TODO: timer is not always active*/
3573 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3574 {
3575 if (types & EV_STAT)
3576 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3577 }
3578 else
3579#endif
3580 if (types & EV_TIMER)
3581 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3582
3583#if EV_PERIODIC_ENABLE
3584 if (types & EV_PERIODIC)
3585 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3586 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3587#endif
3588
3589#if EV_IDLE_ENABLE
3590 if (types & EV_IDLE)
3591 for (j = NUMPRI; i--; )
3592 for (i = idlecnt [j]; i--; )
3593 cb (EV_A_ EV_IDLE, idles [j][i]);
3594#endif
3595
3596#if EV_FORK_ENABLE
3597 if (types & EV_FORK)
3598 for (i = forkcnt; i--; )
3599 if (ev_cb (forks [i]) != embed_fork_cb)
3600 cb (EV_A_ EV_FORK, forks [i]);
3601#endif
3602
3603#if EV_ASYNC_ENABLE
3604 if (types & EV_ASYNC)
3605 for (i = asynccnt; i--; )
3606 cb (EV_A_ EV_ASYNC, asyncs [i]);
3607#endif
3608
3609 if (types & EV_PREPARE)
3610 for (i = preparecnt; i--; )
3611#if EV_EMBED_ENABLE
3612 if (ev_cb (prepares [i]) != embed_prepare_cb)
3613#endif
3614 cb (EV_A_ EV_PREPARE, prepares [i]);
3615
3616 if (types & EV_CHECK)
3617 for (i = checkcnt; i--; )
3618 cb (EV_A_ EV_CHECK, checks [i]);
3619
3620 if (types & EV_SIGNAL)
3621 for (i = 0; i < EV_NSIG - 1; ++i)
3622 for (wl = signals [i].head; wl; )
3623 {
3624 wn = wl->next;
3625 cb (EV_A_ EV_SIGNAL, wl);
3626 wl = wn;
3627 }
3628
3629 if (types & EV_CHILD)
3630 for (i = EV_PID_HASHSIZE; i--; )
3631 for (wl = childs [i]; wl; )
3632 {
3633 wn = wl->next;
3634 cb (EV_A_ EV_CHILD, wl);
3635 wl = wn;
3636 }
3637/* EV_STAT 0x00001000 /* stat data changed */
3638/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3639}
3640#endif
3641
3642#if EV_MULTIPLICITY
3643 #include "ev_wrap.h"
3644#endif
3645
1695#ifdef __cplusplus 3646#ifdef __cplusplus
1696} 3647}
1697#endif 3648#endif
1698 3649

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines