ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.346 by root, Thu Oct 14 05:07:04 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
46# else 73# else
47# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
49# endif 76# endif
50# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
52# endif 79# endif
53# endif 80# endif
54 81
82# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 83# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 85# endif
86# else
87# undef EV_USE_NANOSLEEP
88# define EV_USE_NANOSLEEP 0
61# endif 89# endif
62 90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 92# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 93# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
98# endif
99
100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
104# else
105# undef EV_USE_POLL
106# define EV_USE_POLL 0
69# endif 107# endif
70 108
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
74# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
77# endif 116# endif
78 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
85# endif 125# endif
86 126
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
90# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
93# endif 134# endif
94 135
136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137# ifndef EV_USE_INOTIFY
138# define EV_USE_INOTIFY EV_FEATURE_OS
139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
143# endif
144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
95#endif 163#endif
96 164
97#include <math.h> 165#include <math.h>
98#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
99#include <fcntl.h> 168#include <fcntl.h>
100#include <stddef.h> 169#include <stddef.h>
101 170
102#include <stdio.h> 171#include <stdio.h>
103 172
104#include <assert.h> 173#include <assert.h>
105#include <errno.h> 174#include <errno.h>
106#include <sys/types.h> 175#include <sys/types.h>
107#include <time.h> 176#include <time.h>
177#include <limits.h>
108 178
109#include <signal.h> 179#include <signal.h>
110 180
181#ifdef EV_H
182# include EV_H
183#else
184# include "ev.h"
185#endif
186
111#ifndef _WIN32 187#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 188# include <sys/time.h>
114# include <sys/wait.h> 189# include <sys/wait.h>
190# include <unistd.h>
115#else 191#else
192# include <io.h>
116# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 194# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
120# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
121#endif 244# endif
122 245#endif
123/**/
124 246
125#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
126# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
127#endif 253#endif
128 254
129#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257#endif
258
259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
263# define EV_USE_NANOSLEEP 0
264# endif
131#endif 265#endif
132 266
133#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 269#endif
136 270
137#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
138# ifdef _WIN32 272# ifdef _WIN32
139# define EV_USE_POLL 0 273# define EV_USE_POLL 0
140# else 274# else
141# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 276# endif
143#endif 277#endif
144 278
145#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
146# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
147#endif 285#endif
148 286
149#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
151#endif 289#endif
152 290
153#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 292# define EV_USE_PORT 0
155#endif 293#endif
156 294
157/**/ 295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
299# define EV_USE_INOTIFY 0
300# endif
301#endif
158 302
159/* darwin simply cannot be helped */ 303#ifndef EV_PID_HASHSIZE
160#ifdef __APPLE__ 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
314# else
315# define EV_USE_EVENTFD 0
316# endif
317#endif
318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
161# undef EV_USE_POLL 363# undef EV_USE_POLL
162# undef EV_USE_KQUEUE 364# define EV_USE_POLL 0
163#endif 365#endif
164 366
165#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
170#ifndef CLOCK_REALTIME 372#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 373# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 374# define EV_USE_REALTIME 0
173#endif 375#endif
174 376
377#if !EV_STAT_ENABLE
378# undef EV_USE_INOTIFY
379# define EV_USE_INOTIFY 0
380#endif
381
382#if !EV_USE_NANOSLEEP
383# ifndef _WIN32
384# include <sys/select.h>
385# endif
386#endif
387
388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
397#endif
398
175#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 400# include <winsock.h>
177#endif 401#endif
178 402
403#if EV_USE_EVENTFD
404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
453
179/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to avoid floating point rounding problems.
464 * It is added to ev_rt_now when scheduling periodics
465 * to ensure progress, time-wise, even when rounding
466 * errors are against us.
467 * This value is good at least till the year 4000.
468 * Better solutions welcome.
469 */
470#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 471
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
185 474
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 475#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 476# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 477# define noinline __attribute__ ((noinline))
195#else 478#else
196# define expect(expr,value) (expr) 479# define expect(expr,value) (expr)
197# define inline static 480# define noinline
481# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
482# define inline
483# endif
198#endif 484#endif
199 485
200#define expect_false(expr) expect ((expr) != 0, 0) 486#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 487#define expect_true(expr) expect ((expr) != 0, 1)
488#define inline_size static inline
202 489
490#if EV_FEATURE_CODE
491# define inline_speed static inline
492#else
493# define inline_speed static noinline
494#endif
495
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 496#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498#if EV_MINPRI == EV_MAXPRI
499# define ABSPRI(w) (((W)w), 0)
500#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 501# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502#endif
205 503
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 504#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 505#define EMPTY2(a,b) /* used to suppress some warnings */
208 506
209typedef struct ev_watcher *W; 507typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 508typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 509typedef ev_watcher_time *WT;
212 510
511#define ev_active(w) ((W)(w))->active
512#define ev_at(w) ((WT)(w))->at
513
514#if EV_USE_REALTIME
515/* sig_atomic_t is used to avoid per-thread variables or locking but still */
516/* giving it a reasonably high chance of working on typical architectures */
517static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518#endif
519
520#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 521static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522#endif
523
524#ifndef EV_FD_TO_WIN32_HANDLE
525# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526#endif
527#ifndef EV_WIN32_HANDLE_TO_FD
528# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529#endif
530#ifndef EV_WIN32_CLOSE_FD
531# define EV_WIN32_CLOSE_FD(fd) close (fd)
532#endif
214 533
215#ifdef _WIN32 534#ifdef _WIN32
216# include "ev_win32.c" 535# include "ev_win32.c"
217#endif 536#endif
218 537
219/*****************************************************************************/ 538/*****************************************************************************/
220 539
540#if EV_AVOID_STDIO
541static void noinline
542ev_printerr (const char *msg)
543{
544 write (STDERR_FILENO, msg, strlen (msg));
545}
546#endif
547
221static void (*syserr_cb)(const char *msg); 548static void (*syserr_cb)(const char *msg);
222 549
550void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 551ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 552{
225 syserr_cb = cb; 553 syserr_cb = cb;
226} 554}
227 555
228static void 556static void noinline
229syserr (const char *msg) 557ev_syserr (const char *msg)
230{ 558{
231 if (!msg) 559 if (!msg)
232 msg = "(libev) system error"; 560 msg = "(libev) system error";
233 561
234 if (syserr_cb) 562 if (syserr_cb)
235 syserr_cb (msg); 563 syserr_cb (msg);
236 else 564 else
237 { 565 {
566#if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573#else
238 perror (msg); 574 perror (msg);
575#endif
239 abort (); 576 abort ();
240 } 577 }
241} 578}
242 579
580static void *
581ev_realloc_emul (void *ptr, long size)
582{
583#if __GLIBC__
584 return realloc (ptr, size);
585#else
586 /* some systems, notably openbsd and darwin, fail to properly
587 * implement realloc (x, 0) (as required by both ansi c-89 and
588 * the single unix specification, so work around them here.
589 */
590
591 if (size)
592 return realloc (ptr, size);
593
594 free (ptr);
595 return 0;
596#endif
597}
598
243static void *(*alloc)(void *ptr, long size); 599static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 600
601void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 602ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 603{
247 alloc = cb; 604 alloc = cb;
248} 605}
249 606
250static void * 607inline_speed void *
251ev_realloc (void *ptr, long size) 608ev_realloc (void *ptr, long size)
252{ 609{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 610 ptr = alloc (ptr, size);
254 611
255 if (!ptr && size) 612 if (!ptr && size)
256 { 613 {
614#if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616#else
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618#endif
258 abort (); 619 abort ();
259 } 620 }
260 621
261 return ptr; 622 return ptr;
262} 623}
264#define ev_malloc(size) ev_realloc (0, (size)) 625#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 626#define ev_free(ptr) ev_realloc ((ptr), 0)
266 627
267/*****************************************************************************/ 628/*****************************************************************************/
268 629
630/* set in reify when reification needed */
631#define EV_ANFD_REIFY 1
632
633/* file descriptor info structure */
269typedef struct 634typedef struct
270{ 635{
271 WL head; 636 WL head;
272 unsigned char events; 637 unsigned char events; /* the events watched for */
638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 640 unsigned char unused;
641#if EV_USE_EPOLL
642 unsigned int egen; /* generation counter to counter epoll bugs */
643#endif
274#if EV_SELECT_IS_WINSOCKET 644#if EV_SELECT_IS_WINSOCKET
275 SOCKET handle; 645 SOCKET handle;
276#endif 646#endif
277} ANFD; 647} ANFD;
278 648
649/* stores the pending event set for a given watcher */
279typedef struct 650typedef struct
280{ 651{
281 W w; 652 W w;
282 int events; 653 int events; /* the pending event set for the given watcher */
283} ANPENDING; 654} ANPENDING;
655
656#if EV_USE_INOTIFY
657/* hash table entry per inotify-id */
658typedef struct
659{
660 WL head;
661} ANFS;
662#endif
663
664/* Heap Entry */
665#if EV_HEAP_CACHE_AT
666 /* a heap element */
667 typedef struct {
668 ev_tstamp at;
669 WT w;
670 } ANHE;
671
672 #define ANHE_w(he) (he).w /* access watcher, read-write */
673 #define ANHE_at(he) (he).at /* access cached at, read-only */
674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
675#else
676 /* a heap element */
677 typedef WT ANHE;
678
679 #define ANHE_w(he) (he)
680 #define ANHE_at(he) (he)->at
681 #define ANHE_at_cache(he)
682#endif
284 683
285#if EV_MULTIPLICITY 684#if EV_MULTIPLICITY
286 685
287 struct ev_loop 686 struct ev_loop
288 { 687 {
306 705
307 static int ev_default_loop_ptr; 706 static int ev_default_loop_ptr;
308 707
309#endif 708#endif
310 709
710#if EV_FEATURE_API
711# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713# define EV_INVOKE_PENDING invoke_cb (EV_A)
714#else
715# define EV_RELEASE_CB (void)0
716# define EV_ACQUIRE_CB (void)0
717# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718#endif
719
720#define EVUNLOOP_RECURSE 0x80
721
311/*****************************************************************************/ 722/*****************************************************************************/
312 723
724#ifndef EV_HAVE_EV_TIME
313ev_tstamp 725ev_tstamp
314ev_time (void) 726ev_time (void)
315{ 727{
316#if EV_USE_REALTIME 728#if EV_USE_REALTIME
729 if (expect_true (have_realtime))
730 {
317 struct timespec ts; 731 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 732 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 733 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 734 }
735#endif
736
321 struct timeval tv; 737 struct timeval tv;
322 gettimeofday (&tv, 0); 738 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 739 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 740}
741#endif
326 742
327inline ev_tstamp 743inline_size ev_tstamp
328get_clock (void) 744get_clock (void)
329{ 745{
330#if EV_USE_MONOTONIC 746#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 747 if (expect_true (have_monotonic))
332 { 748 {
345{ 761{
346 return ev_rt_now; 762 return ev_rt_now;
347} 763}
348#endif 764#endif
349 765
350#define array_roundsize(type,n) (((n) | 4) & ~3) 766void
767ev_sleep (ev_tstamp delay)
768{
769 if (delay > 0.)
770 {
771#if EV_USE_NANOSLEEP
772 struct timespec ts;
773
774 ts.tv_sec = (time_t)delay;
775 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
776
777 nanosleep (&ts, 0);
778#elif defined(_WIN32)
779 Sleep ((unsigned long)(delay * 1e3));
780#else
781 struct timeval tv;
782
783 tv.tv_sec = (time_t)delay;
784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
785
786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 /* something not guaranteed by newer posix versions, but guaranteed */
788 /* by older ones */
789 select (0, 0, 0, 0, &tv);
790#endif
791 }
792}
793
794/*****************************************************************************/
795
796#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
797
798/* find a suitable new size for the given array, */
799/* hopefully by rounding to a nice-to-malloc size */
800inline_size int
801array_nextsize (int elem, int cur, int cnt)
802{
803 int ncur = cur + 1;
804
805 do
806 ncur <<= 1;
807 while (cnt > ncur);
808
809 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
810 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
811 {
812 ncur *= elem;
813 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
814 ncur = ncur - sizeof (void *) * 4;
815 ncur /= elem;
816 }
817
818 return ncur;
819}
820
821static noinline void *
822array_realloc (int elem, void *base, int *cur, int cnt)
823{
824 *cur = array_nextsize (elem, *cur, cnt);
825 return ev_realloc (base, elem * *cur);
826}
827
828#define array_init_zero(base,count) \
829 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 830
352#define array_needsize(type,base,cur,cnt,init) \ 831#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 832 if (expect_false ((cnt) > (cur))) \
354 { \ 833 { \
355 int newcnt = cur; \ 834 int ocur_ = (cur); \
356 do \ 835 (base) = (type *)array_realloc \
357 { \ 836 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 837 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 838 }
366 839
840#if 0
367#define array_slim(type,stem) \ 841#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 842 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 843 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 844 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 845 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 846 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 847 }
848#endif
374 849
375#define array_free(stem, idx) \ 850#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 852
378/*****************************************************************************/ 853/*****************************************************************************/
379 854
380static void 855/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 856static void noinline
857pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 858{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 859}
392 860
393void 861void noinline
394ev_feed_event (EV_P_ void *w, int revents) 862ev_feed_event (EV_P_ void *w, int revents)
395{ 863{
396 W w_ = (W)w; 864 W w_ = (W)w;
865 int pri = ABSPRI (w_);
397 866
398 if (expect_false (w_->pending)) 867 if (expect_false (w_->pending))
868 pendings [pri][w_->pending - 1].events |= revents;
869 else
399 { 870 {
871 w_->pending = ++pendingcnt [pri];
872 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
873 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 874 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 875 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 876}
409 877
410static void 878inline_speed void
879feed_reverse (EV_P_ W w)
880{
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883}
884
885inline_size void
886feed_reverse_done (EV_P_ int revents)
887{
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891}
892
893inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 894queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 895{
413 int i; 896 int i;
414 897
415 for (i = 0; i < eventcnt; ++i) 898 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 899 ev_feed_event (EV_A_ events [i], type);
417} 900}
418 901
902/*****************************************************************************/
903
419inline void 904inline_speed void
420fd_event (EV_P_ int fd, int revents) 905fd_event_nocheck (EV_P_ int fd, int revents)
421{ 906{
422 ANFD *anfd = anfds + fd; 907 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 908 ev_io *w;
424 909
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 911 {
427 int ev = w->events & revents; 912 int ev = w->events & revents;
428 913
429 if (ev) 914 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 915 ev_feed_event (EV_A_ (W)w, ev);
431 } 916 }
432} 917}
433 918
919/* do not submit kernel events for fds that have reify set */
920/* because that means they changed while we were polling for new events */
921inline_speed void
922fd_event (EV_P_ int fd, int revents)
923{
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928}
929
434void 930void
435ev_feed_fd_event (EV_P_ int fd, int revents) 931ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 932{
933 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 934 fd_event_nocheck (EV_A_ fd, revents);
438} 935}
439 936
440/*****************************************************************************/ 937/* make sure the external fd watch events are in-sync */
441 938/* with the kernel/libev internal state */
442inline void 939inline_size void
443fd_reify (EV_P) 940fd_reify (EV_P)
444{ 941{
445 int i; 942 int i;
446 943
447 for (i = 0; i < fdchangecnt; ++i) 944 for (i = 0; i < fdchangecnt; ++i)
448 { 945 {
449 int fd = fdchanges [i]; 946 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 947 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 948 ev_io *w;
452 949
453 int events = 0; 950 unsigned char events = 0;
454 951
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 952 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 953 events |= (unsigned char)w->events;
457 954
458#if EV_SELECT_IS_WINSOCKET 955#if EV_SELECT_IS_WINSOCKET
459 if (events) 956 if (events)
460 { 957 {
461 unsigned long argp; 958 unsigned long arg;
462 anfd->handle = _get_osfhandle (fd); 959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
464 } 961 }
465#endif 962#endif
466 963
964 {
965 unsigned char o_events = anfd->events;
966 unsigned char o_reify = anfd->reify;
967
467 anfd->reify = 0; 968 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 969 anfd->events = events;
970
971 if (o_events != events || o_reify & EV__IOFDSET)
972 backend_modify (EV_A_ fd, o_events, events);
973 }
471 } 974 }
472 975
473 fdchangecnt = 0; 976 fdchangecnt = 0;
474} 977}
475 978
476static void 979/* something about the given fd changed */
980inline_size void
477fd_change (EV_P_ int fd) 981fd_change (EV_P_ int fd, int flags)
478{ 982{
479 if (expect_false (anfds [fd].reify)) 983 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 984 anfds [fd].reify |= flags;
483 985
986 if (expect_true (!reify))
987 {
484 ++fdchangecnt; 988 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 990 fdchanges [fdchangecnt - 1] = fd;
991 }
487} 992}
488 993
489static void 994/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995inline_speed void
490fd_kill (EV_P_ int fd) 996fd_kill (EV_P_ int fd)
491{ 997{
492 struct ev_io *w; 998 ev_io *w;
493 999
494 while ((w = (struct ev_io *)anfds [fd].head)) 1000 while ((w = (ev_io *)anfds [fd].head))
495 { 1001 {
496 ev_io_stop (EV_A_ w); 1002 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 1004 }
499} 1005}
500 1006
1007/* check whether the given fd is actually valid, for error recovery */
501inline int 1008inline_size int
502fd_valid (int fd) 1009fd_valid (int fd)
503{ 1010{
504#ifdef _WIN32 1011#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
506#else 1013#else
507 return fcntl (fd, F_GETFD) != -1; 1014 return fcntl (fd, F_GETFD) != -1;
508#endif 1015#endif
509} 1016}
510 1017
511/* called on EBADF to verify fds */ 1018/* called on EBADF to verify fds */
512static void 1019static void noinline
513fd_ebadf (EV_P) 1020fd_ebadf (EV_P)
514{ 1021{
515 int fd; 1022 int fd;
516 1023
517 for (fd = 0; fd < anfdmax; ++fd) 1024 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1025 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 1026 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 1027 fd_kill (EV_A_ fd);
521} 1028}
522 1029
523/* called on ENOMEM in select/poll to kill some fds and retry */ 1030/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 1031static void noinline
525fd_enomem (EV_P) 1032fd_enomem (EV_P)
526{ 1033{
527 int fd; 1034 int fd;
528 1035
529 for (fd = anfdmax; fd--; ) 1036 for (fd = anfdmax; fd--; )
530 if (anfds [fd].events) 1037 if (anfds [fd].events)
531 { 1038 {
532 fd_kill (EV_A_ fd); 1039 fd_kill (EV_A_ fd);
533 return; 1040 break;
534 } 1041 }
535} 1042}
536 1043
537/* usually called after fork if method needs to re-arm all fds from scratch */ 1044/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 1045static void noinline
539fd_rearm_all (EV_P) 1046fd_rearm_all (EV_P)
540{ 1047{
541 int fd; 1048 int fd;
542 1049
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 1050 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 1051 if (anfds [fd].events)
546 { 1052 {
547 anfds [fd].events = 0; 1053 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 1054 anfds [fd].emask = 0;
1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
549 } 1056 }
550} 1057}
551 1058
552/*****************************************************************************/ 1059/* used to prepare libev internal fd's */
553 1060/* this is not fork-safe */
554static void
555upheap (WT *heap, int k)
556{
557 WT w = heap [k];
558
559 while (k && heap [k >> 1]->at > w->at)
560 {
561 heap [k] = heap [k >> 1];
562 ((W)heap [k])->active = k + 1;
563 k >>= 1;
564 }
565
566 heap [k] = w;
567 ((W)heap [k])->active = k + 1;
568
569}
570
571static void
572downheap (WT *heap, int N, int k)
573{
574 WT w = heap [k];
575
576 while (k < (N >> 1))
577 {
578 int j = k << 1;
579
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break;
585
586 heap [k] = heap [j];
587 ((W)heap [k])->active = k + 1;
588 k = j;
589 }
590
591 heap [k] = w;
592 ((W)heap [k])->active = k + 1;
593}
594
595inline void 1061inline_speed void
596adjustheap (WT *heap, int N, int k)
597{
598 upheap (heap, k);
599 downheap (heap, N, k);
600}
601
602/*****************************************************************************/
603
604typedef struct
605{
606 WL head;
607 sig_atomic_t volatile gotsig;
608} ANSIG;
609
610static ANSIG *signals;
611static int signalmax;
612
613static int sigpipe [2];
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616
617static void
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624
625 ++base;
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1062fd_intern (int fd)
682{ 1063{
683#ifdef _WIN32 1064#ifdef _WIN32
684 int arg = 1; 1065 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
686#else 1067#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1069 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1070#endif
690} 1071}
691 1072
1073/*****************************************************************************/
1074
1075/*
1076 * the heap functions want a real array index. array index 0 is guaranteed to not
1077 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1078 * the branching factor of the d-tree.
1079 */
1080
1081/*
1082 * at the moment we allow libev the luxury of two heaps,
1083 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1084 * which is more cache-efficient.
1085 * the difference is about 5% with 50000+ watchers.
1086 */
1087#if EV_USE_4HEAP
1088
1089#define DHEAP 4
1090#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1091#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1092#define UPHEAP_DONE(p,k) ((p) == (k))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099 ANHE *E = heap + N + HEAP0;
1100
1101 for (;;)
1102 {
1103 ev_tstamp minat;
1104 ANHE *minpos;
1105 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1106
1107 /* find minimum child */
1108 if (expect_true (pos + DHEAP - 1 < E))
1109 {
1110 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1114 }
1115 else if (pos < E)
1116 {
1117 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1118 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1119 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1120 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1121 }
1122 else
1123 break;
1124
1125 if (ANHE_at (he) <= minat)
1126 break;
1127
1128 heap [k] = *minpos;
1129 ev_active (ANHE_w (*minpos)) = k;
1130
1131 k = minpos - heap;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138#else /* 4HEAP */
1139
1140#define HEAP0 1
1141#define HPARENT(k) ((k) >> 1)
1142#define UPHEAP_DONE(p,k) (!(p))
1143
1144/* away from the root */
1145inline_speed void
1146downheap (ANHE *heap, int N, int k)
1147{
1148 ANHE he = heap [k];
1149
1150 for (;;)
1151 {
1152 int c = k << 1;
1153
1154 if (c >= N + HEAP0)
1155 break;
1156
1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1158 ? 1 : 0;
1159
1160 if (ANHE_at (he) <= ANHE_at (heap [c]))
1161 break;
1162
1163 heap [k] = heap [c];
1164 ev_active (ANHE_w (heap [k])) = k;
1165
1166 k = c;
1167 }
1168
1169 heap [k] = he;
1170 ev_active (ANHE_w (he)) = k;
1171}
1172#endif
1173
1174/* towards the root */
1175inline_speed void
1176upheap (ANHE *heap, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int p = HPARENT (k);
1183
1184 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1185 break;
1186
1187 heap [k] = heap [p];
1188 ev_active (ANHE_w (heap [k])) = k;
1189 k = p;
1190 }
1191
1192 heap [k] = he;
1193 ev_active (ANHE_w (he)) = k;
1194}
1195
1196/* move an element suitably so it is in a correct place */
1197inline_size void
1198adjustheap (ANHE *heap, int N, int k)
1199{
1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1201 upheap (heap, k);
1202 else
1203 downheap (heap, N, k);
1204}
1205
1206/* rebuild the heap: this function is used only once and executed rarely */
1207inline_size void
1208reheap (ANHE *heap, int N)
1209{
1210 int i;
1211
1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1213 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1214 for (i = 0; i < N; ++i)
1215 upheap (heap, i + HEAP0);
1216}
1217
1218/*****************************************************************************/
1219
1220/* associate signal watchers to a signal signal */
1221typedef struct
1222{
1223 EV_ATOMIC_T pending;
1224#if EV_MULTIPLICITY
1225 EV_P;
1226#endif
1227 WL head;
1228} ANSIG;
1229
1230static ANSIG signals [EV_NSIG - 1];
1231
1232/*****************************************************************************/
1233
1234#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1235
1236static void noinline
1237evpipe_init (EV_P)
1238{
1239 if (!ev_is_active (&pipe_w))
1240 {
1241# if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
1247 {
1248 evpipe [0] = -1;
1249 fd_intern (evfd); /* doing it twice doesn't hurt */
1250 ev_io_set (&pipe_w, evfd, EV_READ);
1251 }
1252 else
1253# endif
1254 {
1255 while (pipe (evpipe))
1256 ev_syserr ("(libev) error creating signal/async pipe");
1257
1258 fd_intern (evpipe [0]);
1259 fd_intern (evpipe [1]);
1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1261 }
1262
1263 ev_io_start (EV_A_ &pipe_w);
1264 ev_unref (EV_A); /* watcher should not keep loop alive */
1265 }
1266}
1267
1268inline_size void
1269evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1270{
1271 if (!*flag)
1272 {
1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1275
1276 *flag = 1;
1277
1278#if EV_USE_EVENTFD
1279 if (evfd >= 0)
1280 {
1281 uint64_t counter = 1;
1282 write (evfd, &counter, sizeof (uint64_t));
1283 }
1284 else
1285#endif
1286 /* win32 people keep sending patches that change this write() to send() */
1287 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1288 /* so when you think this write should be a send instead, please find out */
1289 /* where your send() is from - it's definitely not the microsoft send, and */
1290 /* tell me. thank you. */
1291 write (evpipe [1], &dummy, 1);
1292
1293 errno = old_errno;
1294 }
1295}
1296
1297/* called whenever the libev signal pipe */
1298/* got some events (signal, async) */
692static void 1299static void
693siginit (EV_P) 1300pipecb (EV_P_ ev_io *iow, int revents)
694{ 1301{
695 fd_intern (sigpipe [0]); 1302 int i;
696 fd_intern (sigpipe [1]);
697 1303
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1304#if EV_USE_EVENTFD
699 ev_io_start (EV_A_ &sigev); 1305 if (evfd >= 0)
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1306 {
1307 uint64_t counter;
1308 read (evfd, &counter, sizeof (uint64_t));
1309 }
1310 else
1311#endif
1312 {
1313 char dummy;
1314 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1315 read (evpipe [0], &dummy, 1);
1316 }
1317
1318 if (sig_pending)
1319 {
1320 sig_pending = 0;
1321
1322 for (i = EV_NSIG - 1; i--; )
1323 if (expect_false (signals [i].pending))
1324 ev_feed_signal_event (EV_A_ i + 1);
1325 }
1326
1327#if EV_ASYNC_ENABLE
1328 if (async_pending)
1329 {
1330 async_pending = 0;
1331
1332 for (i = asynccnt; i--; )
1333 if (asyncs [i]->sent)
1334 {
1335 asyncs [i]->sent = 0;
1336 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1337 }
1338 }
1339#endif
701} 1340}
702 1341
703/*****************************************************************************/ 1342/*****************************************************************************/
704 1343
705static struct ev_child *childs [PID_HASHSIZE]; 1344static void
1345ev_sighandler (int signum)
1346{
1347#if EV_MULTIPLICITY
1348 EV_P = signals [signum - 1].loop;
1349#endif
706 1350
707#ifndef _WIN32 1351#ifdef _WIN32
1352 signal (signum, ev_sighandler);
1353#endif
708 1354
1355 signals [signum - 1].pending = 1;
1356 evpipe_write (EV_A_ &sig_pending);
1357}
1358
1359void noinline
1360ev_feed_signal_event (EV_P_ int signum)
1361{
1362 WL w;
1363
1364 if (expect_false (signum <= 0 || signum > EV_NSIG))
1365 return;
1366
1367 --signum;
1368
1369#if EV_MULTIPLICITY
1370 /* it is permissible to try to feed a signal to the wrong loop */
1371 /* or, likely more useful, feeding a signal nobody is waiting for */
1372
1373 if (expect_false (signals [signum].loop != EV_A))
1374 return;
1375#endif
1376
1377 signals [signum].pending = 0;
1378
1379 for (w = signals [signum].head; w; w = w->next)
1380 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1381}
1382
1383#if EV_USE_SIGNALFD
1384static void
1385sigfdcb (EV_P_ ev_io *iow, int revents)
1386{
1387 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1388
1389 for (;;)
1390 {
1391 ssize_t res = read (sigfd, si, sizeof (si));
1392
1393 /* not ISO-C, as res might be -1, but works with SuS */
1394 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1395 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1396
1397 if (res < (ssize_t)sizeof (si))
1398 break;
1399 }
1400}
1401#endif
1402
1403#endif
1404
1405/*****************************************************************************/
1406
1407#if EV_CHILD_ENABLE
1408static WL childs [EV_PID_HASHSIZE];
1409
709static struct ev_signal childev; 1410static ev_signal childev;
1411
1412#ifndef WIFCONTINUED
1413# define WIFCONTINUED(status) 0
1414#endif
1415
1416/* handle a single child status event */
1417inline_speed void
1418child_reap (EV_P_ int chain, int pid, int status)
1419{
1420 ev_child *w;
1421 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1422
1423 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1424 {
1425 if ((w->pid == pid || !w->pid)
1426 && (!traced || (w->flags & 1)))
1427 {
1428 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1429 w->rpid = pid;
1430 w->rstatus = status;
1431 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1432 }
1433 }
1434}
710 1435
711#ifndef WCONTINUED 1436#ifndef WCONTINUED
712# define WCONTINUED 0 1437# define WCONTINUED 0
713#endif 1438#endif
714 1439
1440/* called on sigchld etc., calls waitpid */
715static void 1441static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1442childcb (EV_P_ ev_signal *sw, int revents)
732{ 1443{
733 int pid, status; 1444 int pid, status;
734 1445
1446 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1447 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1448 if (!WCONTINUED
1449 || errno != EINVAL
1450 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1451 return;
1452
737 /* make sure we are called again until all childs have been reaped */ 1453 /* make sure we are called again until all children have been reaped */
1454 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1455 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1456
740 child_reap (EV_A_ sw, pid, pid, status); 1457 child_reap (EV_A_ pid, pid, status);
1458 if ((EV_PID_HASHSIZE) > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1459 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1460}
744 1461
745#endif 1462#endif
746 1463
747/*****************************************************************************/ 1464/*****************************************************************************/
773{ 1490{
774 return EV_VERSION_MINOR; 1491 return EV_VERSION_MINOR;
775} 1492}
776 1493
777/* return true if we are running with elevated privileges and should ignore env variables */ 1494/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1495int inline_size
779enable_secure (void) 1496enable_secure (void)
780{ 1497{
781#ifdef _WIN32 1498#ifdef _WIN32
782 return 0; 1499 return 0;
783#else 1500#else
785 || getgid () != getegid (); 1502 || getgid () != getegid ();
786#endif 1503#endif
787} 1504}
788 1505
789unsigned int 1506unsigned int
1507ev_supported_backends (void)
1508{
1509 unsigned int flags = 0;
1510
1511 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1512 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1513 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1514 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1515 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1516
1517 return flags;
1518}
1519
1520unsigned int
1521ev_recommended_backends (void)
1522{
1523 unsigned int flags = ev_supported_backends ();
1524
1525#ifndef __NetBSD__
1526 /* kqueue is borked on everything but netbsd apparently */
1527 /* it usually doesn't work correctly on anything but sockets and pipes */
1528 flags &= ~EVBACKEND_KQUEUE;
1529#endif
1530#ifdef __APPLE__
1531 /* only select works correctly on that "unix-certified" platform */
1532 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1533 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1534#endif
1535#ifdef __FreeBSD__
1536 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1537#endif
1538
1539 return flags;
1540}
1541
1542unsigned int
1543ev_embeddable_backends (void)
1544{
1545 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1546
1547 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1548 /* please fix it and tell me how to detect the fix */
1549 flags &= ~EVBACKEND_EPOLL;
1550
1551 return flags;
1552}
1553
1554unsigned int
1555ev_backend (EV_P)
1556{
1557 return backend;
1558}
1559
1560#if EV_FEATURE_API
1561unsigned int
1562ev_iteration (EV_P)
1563{
1564 return loop_count;
1565}
1566
1567unsigned int
790ev_method (EV_P) 1568ev_depth (EV_P)
791{ 1569{
792 return method; 1570 return loop_depth;
793} 1571}
794 1572
795static void 1573void
1574ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1575{
1576 io_blocktime = interval;
1577}
1578
1579void
1580ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1581{
1582 timeout_blocktime = interval;
1583}
1584
1585void
1586ev_set_userdata (EV_P_ void *data)
1587{
1588 userdata = data;
1589}
1590
1591void *
1592ev_userdata (EV_P)
1593{
1594 return userdata;
1595}
1596
1597void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1598{
1599 invoke_cb = invoke_pending_cb;
1600}
1601
1602void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1603{
1604 release_cb = release;
1605 acquire_cb = acquire;
1606}
1607#endif
1608
1609/* initialise a loop structure, must be zero-initialised */
1610static void noinline
796loop_init (EV_P_ unsigned int flags) 1611loop_init (EV_P_ unsigned int flags)
797{ 1612{
798 if (!method) 1613 if (!backend)
799 { 1614 {
1615#if EV_USE_REALTIME
1616 if (!have_realtime)
1617 {
1618 struct timespec ts;
1619
1620 if (!clock_gettime (CLOCK_REALTIME, &ts))
1621 have_realtime = 1;
1622 }
1623#endif
1624
800#if EV_USE_MONOTONIC 1625#if EV_USE_MONOTONIC
1626 if (!have_monotonic)
801 { 1627 {
802 struct timespec ts; 1628 struct timespec ts;
1629
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1630 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1631 have_monotonic = 1;
805 } 1632 }
806#endif 1633#endif
807 1634
808 ev_rt_now = ev_time (); 1635 /* pid check not overridable via env */
809 mn_now = get_clock (); 1636#ifndef _WIN32
810 now_floor = mn_now; 1637 if (flags & EVFLAG_FORKCHECK)
811 rtmn_diff = ev_rt_now - mn_now; 1638 curpid = getpid ();
1639#endif
812 1640
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1641 if (!(flags & EVFLAG_NOENV)
1642 && !enable_secure ()
1643 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 1644 flags = atoi (getenv ("LIBEV_FLAGS"));
815 1645
1646 ev_rt_now = ev_time ();
1647 mn_now = get_clock ();
1648 now_floor = mn_now;
1649 rtmn_diff = ev_rt_now - mn_now;
1650#if EV_FEATURE_API
1651 invoke_cb = ev_invoke_pending;
1652#endif
1653
1654 io_blocktime = 0.;
1655 timeout_blocktime = 0.;
1656 backend = 0;
1657 backend_fd = -1;
1658 sig_pending = 0;
1659#if EV_ASYNC_ENABLE
1660 async_pending = 0;
1661#endif
1662#if EV_USE_INOTIFY
1663 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1664#endif
1665#if EV_USE_SIGNALFD
1666 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1667#endif
1668
816 if (!(flags & 0x0000ffff)) 1669 if (!(flags & 0x0000ffffU))
817 flags |= 0x0000ffff; 1670 flags |= ev_recommended_backends ();
818 1671
819 method = 0;
820#if EV_USE_PORT 1672#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1673 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 1674#endif
823#if EV_USE_KQUEUE 1675#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1676 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 1677#endif
826#if EV_USE_EPOLL 1678#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1679 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 1680#endif
829#if EV_USE_POLL 1681#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1682 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 1683#endif
832#if EV_USE_SELECT 1684#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1685 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 1686#endif
835 1687
1688 ev_prepare_init (&pending_w, pendingcb);
1689
1690#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
836 ev_init (&sigev, sigcb); 1691 ev_init (&pipe_w, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 1692 ev_set_priority (&pipe_w, EV_MAXPRI);
1693#endif
838 } 1694 }
839} 1695}
840 1696
841static void 1697/* free up a loop structure */
1698static void noinline
842loop_destroy (EV_P) 1699loop_destroy (EV_P)
843{ 1700{
844 int i; 1701 int i;
845 1702
1703 if (ev_is_active (&pipe_w))
1704 {
1705 /*ev_ref (EV_A);*/
1706 /*ev_io_stop (EV_A_ &pipe_w);*/
1707
1708#if EV_USE_EVENTFD
1709 if (evfd >= 0)
1710 close (evfd);
1711#endif
1712
1713 if (evpipe [0] >= 0)
1714 {
1715 EV_WIN32_CLOSE_FD (evpipe [0]);
1716 EV_WIN32_CLOSE_FD (evpipe [1]);
1717 }
1718 }
1719
1720#if EV_USE_SIGNALFD
1721 if (ev_is_active (&sigfd_w))
1722 close (sigfd);
1723#endif
1724
1725#if EV_USE_INOTIFY
1726 if (fs_fd >= 0)
1727 close (fs_fd);
1728#endif
1729
1730 if (backend_fd >= 0)
1731 close (backend_fd);
1732
846#if EV_USE_PORT 1733#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1734 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 1735#endif
849#if EV_USE_KQUEUE 1736#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1737 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 1738#endif
852#if EV_USE_EPOLL 1739#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1740 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 1741#endif
855#if EV_USE_POLL 1742#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1743 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 1744#endif
858#if EV_USE_SELECT 1745#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1746 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 1747#endif
861 1748
862 for (i = NUMPRI; i--; ) 1749 for (i = NUMPRI; i--; )
1750 {
863 array_free (pending, [i]); 1751 array_free (pending, [i]);
1752#if EV_IDLE_ENABLE
1753 array_free (idle, [i]);
1754#endif
1755 }
1756
1757 ev_free (anfds); anfds = 0; anfdmax = 0;
864 1758
865 /* have to use the microsoft-never-gets-it-right macro */ 1759 /* have to use the microsoft-never-gets-it-right macro */
1760 array_free (rfeed, EMPTY);
866 array_free (fdchange, EMPTY0); 1761 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 1762 array_free (timer, EMPTY);
868#if EV_PERIODICS 1763#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 1764 array_free (periodic, EMPTY);
870#endif 1765#endif
1766#if EV_FORK_ENABLE
871 array_free (idle, EMPTY0); 1767 array_free (fork, EMPTY);
1768#endif
872 array_free (prepare, EMPTY0); 1769 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 1770 array_free (check, EMPTY);
1771#if EV_ASYNC_ENABLE
1772 array_free (async, EMPTY);
1773#endif
874 1774
875 method = 0; 1775 backend = 0;
876} 1776}
877 1777
878static void 1778#if EV_USE_INOTIFY
1779inline_size void infy_fork (EV_P);
1780#endif
1781
1782inline_size void
879loop_fork (EV_P) 1783loop_fork (EV_P)
880{ 1784{
881#if EV_USE_PORT 1785#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1786 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 1787#endif
884#if EV_USE_KQUEUE 1788#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1789 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 1790#endif
887#if EV_USE_EPOLL 1791#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1792 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 1793#endif
1794#if EV_USE_INOTIFY
1795 infy_fork (EV_A);
1796#endif
890 1797
891 if (ev_is_active (&sigev)) 1798 if (ev_is_active (&pipe_w))
892 { 1799 {
893 /* default loop */ 1800 /* this "locks" the handlers against writing to the pipe */
1801 /* while we modify the fd vars */
1802 sig_pending = 1;
1803#if EV_ASYNC_ENABLE
1804 async_pending = 1;
1805#endif
894 1806
895 ev_ref (EV_A); 1807 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 1808 ev_io_stop (EV_A_ &pipe_w);
897 close (sigpipe [0]);
898 close (sigpipe [1]);
899 1809
900 while (pipe (sigpipe)) 1810#if EV_USE_EVENTFD
901 syserr ("(libev) error creating pipe"); 1811 if (evfd >= 0)
1812 close (evfd);
1813#endif
902 1814
1815 if (evpipe [0] >= 0)
1816 {
1817 EV_WIN32_CLOSE_FD (evpipe [0]);
1818 EV_WIN32_CLOSE_FD (evpipe [1]);
1819 }
1820
1821#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
903 siginit (EV_A); 1822 evpipe_init (EV_A);
1823 /* now iterate over everything, in case we missed something */
1824 pipecb (EV_A_ &pipe_w, EV_READ);
1825#endif
904 } 1826 }
905 1827
906 postfork = 0; 1828 postfork = 0;
907} 1829}
908 1830
909#if EV_MULTIPLICITY 1831#if EV_MULTIPLICITY
1832
910struct ev_loop * 1833struct ev_loop *
911ev_loop_new (unsigned int flags) 1834ev_loop_new (unsigned int flags)
912{ 1835{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1836 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914 1837
915 memset (loop, 0, sizeof (struct ev_loop)); 1838 memset (EV_A, 0, sizeof (struct ev_loop));
916
917 loop_init (EV_A_ flags); 1839 loop_init (EV_A_ flags);
918 1840
919 if (ev_method (EV_A)) 1841 if (ev_backend (EV_A))
920 return loop; 1842 return EV_A;
921 1843
922 return 0; 1844 return 0;
923} 1845}
924 1846
925void 1847void
930} 1852}
931 1853
932void 1854void
933ev_loop_fork (EV_P) 1855ev_loop_fork (EV_P)
934{ 1856{
935 postfork = 1; 1857 postfork = 1; /* must be in line with ev_default_fork */
936} 1858}
1859#endif /* multiplicity */
937 1860
1861#if EV_VERIFY
1862static void noinline
1863verify_watcher (EV_P_ W w)
1864{
1865 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1866
1867 if (w->pending)
1868 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1869}
1870
1871static void noinline
1872verify_heap (EV_P_ ANHE *heap, int N)
1873{
1874 int i;
1875
1876 for (i = HEAP0; i < N + HEAP0; ++i)
1877 {
1878 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1879 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1880 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1881
1882 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1883 }
1884}
1885
1886static void noinline
1887array_verify (EV_P_ W *ws, int cnt)
1888{
1889 while (cnt--)
1890 {
1891 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1892 verify_watcher (EV_A_ ws [cnt]);
1893 }
1894}
1895#endif
1896
1897#if EV_FEATURE_API
1898void
1899ev_verify (EV_P)
1900{
1901#if EV_VERIFY
1902 int i;
1903 WL w;
1904
1905 assert (activecnt >= -1);
1906
1907 assert (fdchangemax >= fdchangecnt);
1908 for (i = 0; i < fdchangecnt; ++i)
1909 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1910
1911 assert (anfdmax >= 0);
1912 for (i = 0; i < anfdmax; ++i)
1913 for (w = anfds [i].head; w; w = w->next)
1914 {
1915 verify_watcher (EV_A_ (W)w);
1916 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1917 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1918 }
1919
1920 assert (timermax >= timercnt);
1921 verify_heap (EV_A_ timers, timercnt);
1922
1923#if EV_PERIODIC_ENABLE
1924 assert (periodicmax >= periodiccnt);
1925 verify_heap (EV_A_ periodics, periodiccnt);
1926#endif
1927
1928 for (i = NUMPRI; i--; )
1929 {
1930 assert (pendingmax [i] >= pendingcnt [i]);
1931#if EV_IDLE_ENABLE
1932 assert (idleall >= 0);
1933 assert (idlemax [i] >= idlecnt [i]);
1934 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1935#endif
1936 }
1937
1938#if EV_FORK_ENABLE
1939 assert (forkmax >= forkcnt);
1940 array_verify (EV_A_ (W *)forks, forkcnt);
1941#endif
1942
1943#if EV_ASYNC_ENABLE
1944 assert (asyncmax >= asynccnt);
1945 array_verify (EV_A_ (W *)asyncs, asynccnt);
1946#endif
1947
1948#if EV_PREPARE_ENABLE
1949 assert (preparemax >= preparecnt);
1950 array_verify (EV_A_ (W *)prepares, preparecnt);
1951#endif
1952
1953#if EV_CHECK_ENABLE
1954 assert (checkmax >= checkcnt);
1955 array_verify (EV_A_ (W *)checks, checkcnt);
1956#endif
1957
1958# if 0
1959#if EV_CHILD_ENABLE
1960 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1961 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1962#endif
1963# endif
1964#endif
1965}
938#endif 1966#endif
939 1967
940#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
941struct ev_loop * 1969struct ev_loop *
942ev_default_loop_init (unsigned int flags) 1970ev_default_loop_init (unsigned int flags)
943#else 1971#else
944int 1972int
945ev_default_loop (unsigned int flags) 1973ev_default_loop (unsigned int flags)
946#endif 1974#endif
947{ 1975{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 1976 if (!ev_default_loop_ptr)
953 { 1977 {
954#if EV_MULTIPLICITY 1978#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1979 EV_P = ev_default_loop_ptr = &default_loop_struct;
956#else 1980#else
957 ev_default_loop_ptr = 1; 1981 ev_default_loop_ptr = 1;
958#endif 1982#endif
959 1983
960 loop_init (EV_A_ flags); 1984 loop_init (EV_A_ flags);
961 1985
962 if (ev_method (EV_A)) 1986 if (ev_backend (EV_A))
963 { 1987 {
964 siginit (EV_A); 1988#if EV_CHILD_ENABLE
965
966#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 1989 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 1990 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 1991 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1992 ev_unref (EV_A); /* child watcher should not keep loop alive */
971#endif 1993#endif
979 2001
980void 2002void
981ev_default_destroy (void) 2003ev_default_destroy (void)
982{ 2004{
983#if EV_MULTIPLICITY 2005#if EV_MULTIPLICITY
984 struct ev_loop *loop = ev_default_loop_ptr; 2006 EV_P = ev_default_loop_ptr;
985#endif 2007#endif
986 2008
987#ifndef _WIN32 2009 ev_default_loop_ptr = 0;
2010
2011#if EV_CHILD_ENABLE
988 ev_ref (EV_A); /* child watcher */ 2012 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev); 2013 ev_signal_stop (EV_A_ &childev);
990#endif 2014#endif
991 2015
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A); 2016 loop_destroy (EV_A);
999} 2017}
1000 2018
1001void 2019void
1002ev_default_fork (void) 2020ev_default_fork (void)
1003{ 2021{
1004#if EV_MULTIPLICITY 2022#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr; 2023 EV_P = ev_default_loop_ptr;
1006#endif 2024#endif
1007 2025
1008 if (method) 2026 postfork = 1; /* must be in line with ev_loop_fork */
1009 postfork = 1;
1010} 2027}
1011 2028
1012/*****************************************************************************/ 2029/*****************************************************************************/
1013 2030
1014static int 2031void
1015any_pending (EV_P) 2032ev_invoke (EV_P_ void *w, int revents)
2033{
2034 EV_CB_INVOKE ((W)w, revents);
2035}
2036
2037unsigned int
2038ev_pending_count (EV_P)
1016{ 2039{
1017 int pri; 2040 int pri;
2041 unsigned int count = 0;
1018 2042
1019 for (pri = NUMPRI; pri--; ) 2043 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri]) 2044 count += pendingcnt [pri];
1021 return 1;
1022 2045
1023 return 0; 2046 return count;
1024} 2047}
1025 2048
1026inline void 2049void noinline
1027call_pending (EV_P) 2050ev_invoke_pending (EV_P)
1028{ 2051{
1029 int pri; 2052 int pri;
1030 2053
1031 for (pri = NUMPRI; pri--; ) 2054 for (pri = NUMPRI; pri--; )
1032 while (pendingcnt [pri]) 2055 while (pendingcnt [pri])
1033 { 2056 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2057 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 2058
1036 if (expect_true (p->w)) 2059 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1037 { 2060 /* ^ this is no longer true, as pending_w could be here */
2061
1038 p->w->pending = 0; 2062 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 2063 EV_CB_INVOKE (p->w, p->events);
1040 } 2064 EV_FREQUENT_CHECK;
1041 } 2065 }
1042} 2066}
1043 2067
2068#if EV_IDLE_ENABLE
2069/* make idle watchers pending. this handles the "call-idle */
2070/* only when higher priorities are idle" logic */
1044inline void 2071inline_size void
2072idle_reify (EV_P)
2073{
2074 if (expect_false (idleall))
2075 {
2076 int pri;
2077
2078 for (pri = NUMPRI; pri--; )
2079 {
2080 if (pendingcnt [pri])
2081 break;
2082
2083 if (idlecnt [pri])
2084 {
2085 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2086 break;
2087 }
2088 }
2089 }
2090}
2091#endif
2092
2093/* make timers pending */
2094inline_size void
1045timers_reify (EV_P) 2095timers_reify (EV_P)
1046{ 2096{
2097 EV_FREQUENT_CHECK;
2098
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 2099 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 2100 {
1049 struct ev_timer *w = timers [0]; 2101 do
1050
1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1052
1053 /* first reschedule or stop timer */
1054 if (w->repeat)
1055 { 2102 {
2103 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2104
2105 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2106
2107 /* first reschedule or stop timer */
2108 if (w->repeat)
2109 {
2110 ev_at (w) += w->repeat;
2111 if (ev_at (w) < mn_now)
2112 ev_at (w) = mn_now;
2113
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2114 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 2115
1058 ((WT)w)->at += w->repeat; 2116 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 2117 downheap (timers, timercnt, HEAP0);
2118 }
2119 else
2120 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2121
2122 EV_FREQUENT_CHECK;
2123 feed_reverse (EV_A_ (W)w);
1063 } 2124 }
1064 else 2125 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 2126
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2127 feed_reverse_done (EV_A_ EV_TIMER);
1068 } 2128 }
1069} 2129}
1070 2130
1071#if EV_PERIODICS 2131#if EV_PERIODIC_ENABLE
2132/* make periodics pending */
1072inline void 2133inline_size void
1073periodics_reify (EV_P) 2134periodics_reify (EV_P)
1074{ 2135{
2136 EV_FREQUENT_CHECK;
2137
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2138 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 2139 {
1077 struct ev_periodic *w = periodics [0]; 2140 int feed_count = 0;
1078 2141
2142 do
2143 {
2144 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2145
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2146 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 2147
1081 /* first reschedule or stop timer */ 2148 /* first reschedule or stop timer */
2149 if (w->reschedule_cb)
2150 {
2151 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2152
2153 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2154
2155 ANHE_at_cache (periodics [HEAP0]);
2156 downheap (periodics, periodiccnt, HEAP0);
2157 }
2158 else if (w->interval)
2159 {
2160 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2161 /* if next trigger time is not sufficiently in the future, put it there */
2162 /* this might happen because of floating point inexactness */
2163 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2164 {
2165 ev_at (w) += w->interval;
2166
2167 /* if interval is unreasonably low we might still have a time in the past */
2168 /* so correct this. this will make the periodic very inexact, but the user */
2169 /* has effectively asked to get triggered more often than possible */
2170 if (ev_at (w) < ev_rt_now)
2171 ev_at (w) = ev_rt_now;
2172 }
2173
2174 ANHE_at_cache (periodics [HEAP0]);
2175 downheap (periodics, periodiccnt, HEAP0);
2176 }
2177 else
2178 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2179
2180 EV_FREQUENT_CHECK;
2181 feed_reverse (EV_A_ (W)w);
2182 }
2183 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2184
2185 feed_reverse_done (EV_A_ EV_PERIODIC);
2186 }
2187}
2188
2189/* simply recalculate all periodics */
2190/* TODO: maybe ensure that at least one event happens when jumping forward? */
2191static void noinline
2192periodics_reschedule (EV_P)
2193{
2194 int i;
2195
2196 /* adjust periodics after time jump */
2197 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2198 {
2199 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2200
1082 if (w->reschedule_cb) 2201 if (w->reschedule_cb)
2202 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2203 else if (w->interval)
2204 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2205
2206 ANHE_at_cache (periodics [i]);
2207 }
2208
2209 reheap (periodics, periodiccnt);
2210}
2211#endif
2212
2213/* adjust all timers by a given offset */
2214static void noinline
2215timers_reschedule (EV_P_ ev_tstamp adjust)
2216{
2217 int i;
2218
2219 for (i = 0; i < timercnt; ++i)
2220 {
2221 ANHE *he = timers + i + HEAP0;
2222 ANHE_w (*he)->at += adjust;
2223 ANHE_at_cache (*he);
2224 }
2225}
2226
2227/* fetch new monotonic and realtime times from the kernel */
2228/* also detect if there was a timejump, and act accordingly */
2229inline_speed void
2230time_update (EV_P_ ev_tstamp max_block)
2231{
2232#if EV_USE_MONOTONIC
2233 if (expect_true (have_monotonic))
2234 {
2235 int i;
2236 ev_tstamp odiff = rtmn_diff;
2237
2238 mn_now = get_clock ();
2239
2240 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2241 /* interpolate in the meantime */
2242 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 2243 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2244 ev_rt_now = rtmn_diff + mn_now;
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2245 return;
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 } 2246 }
1088 else if (w->interval)
1089 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0);
1093 }
1094 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 2247
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 }
1099}
1100
1101static void
1102periodics_reschedule (EV_P)
1103{
1104 int i;
1105
1106 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i)
1108 {
1109 struct ev_periodic *w = periodics [i];
1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock ();
1127
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 {
1130 ev_rt_now = rtmn_diff + mn_now;
1131 return 0;
1132 }
1133 else
1134 {
1135 now_floor = mn_now; 2248 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 2249 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 2250
1141inline void 2251 /* loop a few times, before making important decisions.
1142time_update (EV_P) 2252 * on the choice of "4": one iteration isn't enough,
1143{ 2253 * in case we get preempted during the calls to
1144 int i; 2254 * ev_time and get_clock. a second call is almost guaranteed
1145 2255 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 2256 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 2257 * in the unlikely event of having been preempted here.
1148 { 2258 */
1149 if (time_update_monotonic (EV_A)) 2259 for (i = 4; --i; )
1150 { 2260 {
1151 ev_tstamp odiff = rtmn_diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 2261 rtmn_diff = ev_rt_now - mn_now;
1156 2262
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2263 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1158 return; /* all is well */ 2264 return; /* all is well */
1159 2265
1160 ev_rt_now = ev_time (); 2266 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 2267 mn_now = get_clock ();
1162 now_floor = mn_now; 2268 now_floor = mn_now;
1163 } 2269 }
1164 2270
2271 /* no timer adjustment, as the monotonic clock doesn't jump */
2272 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1165# if EV_PERIODICS 2273# if EV_PERIODIC_ENABLE
2274 periodics_reschedule (EV_A);
2275# endif
2276 }
2277 else
2278#endif
2279 {
2280 ev_rt_now = ev_time ();
2281
2282 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2283 {
2284 /* adjust timers. this is easy, as the offset is the same for all of them */
2285 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2286#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 2287 periodics_reschedule (EV_A);
1167# endif 2288#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 2289 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 2290
1188 mn_now = ev_rt_now; 2291 mn_now = ev_rt_now;
1189 } 2292 }
1190} 2293}
1191 2294
1192void 2295void
1193ev_ref (EV_P)
1194{
1195 ++activecnt;
1196}
1197
1198void
1199ev_unref (EV_P)
1200{
1201 --activecnt;
1202}
1203
1204static int loop_done;
1205
1206void
1207ev_loop (EV_P_ int flags) 2296ev_loop (EV_P_ int flags)
1208{ 2297{
1209 double block; 2298#if EV_FEATURE_API
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2299 ++loop_depth;
2300#endif
1211 2301
1212 while (activecnt) 2302 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2303
2304 loop_done = EVUNLOOP_CANCEL;
2305
2306 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2307
2308 do
1213 { 2309 {
2310#if EV_VERIFY >= 2
2311 ev_verify (EV_A);
2312#endif
2313
2314#ifndef _WIN32
2315 if (expect_false (curpid)) /* penalise the forking check even more */
2316 if (expect_false (getpid () != curpid))
2317 {
2318 curpid = getpid ();
2319 postfork = 1;
2320 }
2321#endif
2322
2323#if EV_FORK_ENABLE
2324 /* we might have forked, so queue fork handlers */
2325 if (expect_false (postfork))
2326 if (forkcnt)
2327 {
2328 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2329 EV_INVOKE_PENDING;
2330 }
2331#endif
2332
2333#if EV_PREPARE_ENABLE
1214 /* queue check watchers (and execute them) */ 2334 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 2335 if (expect_false (preparecnt))
1216 { 2336 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2337 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 2338 EV_INVOKE_PENDING;
1219 } 2339 }
2340#endif
2341
2342 if (expect_false (loop_done))
2343 break;
1220 2344
1221 /* we might have forked, so reify kernel state if necessary */ 2345 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 2346 if (expect_false (postfork))
1223 loop_fork (EV_A); 2347 loop_fork (EV_A);
1224 2348
1225 /* update fd-related kernel structures */ 2349 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 2350 fd_reify (EV_A);
1227 2351
1228 /* calculate blocking time */ 2352 /* calculate blocking time */
2353 {
2354 ev_tstamp waittime = 0.;
2355 ev_tstamp sleeptime = 0.;
1229 2356
1230 /* we only need this for !monotonic clock or timers, but as we basically 2357 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1231 always have timers, we just calculate it always */
1232#if EV_USE_MONOTONIC
1233 if (expect_true (have_monotonic))
1234 time_update_monotonic (EV_A);
1235 else
1236#endif
1237 { 2358 {
1238 ev_rt_now = ev_time (); 2359 /* remember old timestamp for io_blocktime calculation */
1239 mn_now = ev_rt_now; 2360 ev_tstamp prev_mn_now = mn_now;
1240 }
1241 2361
1242 if (flags & EVLOOP_NONBLOCK || idlecnt) 2362 /* update time to cancel out callback processing overhead */
1243 block = 0.; 2363 time_update (EV_A_ 1e100);
1244 else 2364
1245 {
1246 block = MAX_BLOCKTIME; 2365 waittime = MAX_BLOCKTIME;
1247 2366
1248 if (timercnt) 2367 if (timercnt)
1249 { 2368 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2369 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1251 if (block > to) block = to; 2370 if (waittime > to) waittime = to;
1252 } 2371 }
1253 2372
1254#if EV_PERIODICS 2373#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 2374 if (periodiccnt)
1256 { 2375 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2376 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1258 if (block > to) block = to; 2377 if (waittime > to) waittime = to;
1259 } 2378 }
1260#endif 2379#endif
1261 2380
1262 if (expect_false (block < 0.)) block = 0.; 2381 /* don't let timeouts decrease the waittime below timeout_blocktime */
2382 if (expect_false (waittime < timeout_blocktime))
2383 waittime = timeout_blocktime;
2384
2385 /* extra check because io_blocktime is commonly 0 */
2386 if (expect_false (io_blocktime))
2387 {
2388 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2389
2390 if (sleeptime > waittime - backend_fudge)
2391 sleeptime = waittime - backend_fudge;
2392
2393 if (expect_true (sleeptime > 0.))
2394 {
2395 ev_sleep (sleeptime);
2396 waittime -= sleeptime;
2397 }
2398 }
1263 } 2399 }
1264 2400
1265 method_poll (EV_A_ block); 2401#if EV_FEATURE_API
2402 ++loop_count;
2403#endif
2404 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2405 backend_poll (EV_A_ waittime);
2406 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1266 2407
1267 /* update ev_rt_now, do magic */ 2408 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2409 time_update (EV_A_ waittime + sleeptime);
2410 }
1269 2411
1270 /* queue pending timers and reschedule them */ 2412 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2413 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2414#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2415 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2416#endif
1275 2417
2418#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2419 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2420 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2421#endif
1279 2422
2423#if EV_CHECK_ENABLE
1280 /* queue check watchers, to be executed first */ 2424 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2425 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2426 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2427#endif
1283 2428
1284 call_pending (EV_A); 2429 EV_INVOKE_PENDING;
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2430 }
2431 while (expect_true (
2432 activecnt
2433 && !loop_done
2434 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2435 ));
1289 2436
1290 if (loop_done != 2) 2437 if (loop_done == EVUNLOOP_ONE)
1291 loop_done = 0; 2438 loop_done = EVUNLOOP_CANCEL;
2439
2440#if EV_FEATURE_API
2441 --loop_depth;
2442#endif
1292} 2443}
1293 2444
1294void 2445void
1295ev_unloop (EV_P_ int how) 2446ev_unloop (EV_P_ int how)
1296{ 2447{
1297 loop_done = how; 2448 loop_done = how;
1298} 2449}
1299 2450
2451void
2452ev_ref (EV_P)
2453{
2454 ++activecnt;
2455}
2456
2457void
2458ev_unref (EV_P)
2459{
2460 --activecnt;
2461}
2462
2463void
2464ev_now_update (EV_P)
2465{
2466 time_update (EV_A_ 1e100);
2467}
2468
2469void
2470ev_suspend (EV_P)
2471{
2472 ev_now_update (EV_A);
2473}
2474
2475void
2476ev_resume (EV_P)
2477{
2478 ev_tstamp mn_prev = mn_now;
2479
2480 ev_now_update (EV_A);
2481 timers_reschedule (EV_A_ mn_now - mn_prev);
2482#if EV_PERIODIC_ENABLE
2483 /* TODO: really do this? */
2484 periodics_reschedule (EV_A);
2485#endif
2486}
2487
1300/*****************************************************************************/ 2488/*****************************************************************************/
2489/* singly-linked list management, used when the expected list length is short */
1301 2490
1302inline void 2491inline_size void
1303wlist_add (WL *head, WL elem) 2492wlist_add (WL *head, WL elem)
1304{ 2493{
1305 elem->next = *head; 2494 elem->next = *head;
1306 *head = elem; 2495 *head = elem;
1307} 2496}
1308 2497
1309inline void 2498inline_size void
1310wlist_del (WL *head, WL elem) 2499wlist_del (WL *head, WL elem)
1311{ 2500{
1312 while (*head) 2501 while (*head)
1313 { 2502 {
1314 if (*head == elem) 2503 if (expect_true (*head == elem))
1315 { 2504 {
1316 *head = elem->next; 2505 *head = elem->next;
1317 return; 2506 break;
1318 } 2507 }
1319 2508
1320 head = &(*head)->next; 2509 head = &(*head)->next;
1321 } 2510 }
1322} 2511}
1323 2512
2513/* internal, faster, version of ev_clear_pending */
1324inline void 2514inline_speed void
1325ev_clear_pending (EV_P_ W w) 2515clear_pending (EV_P_ W w)
1326{ 2516{
1327 if (w->pending) 2517 if (w->pending)
1328 { 2518 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2519 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1330 w->pending = 0; 2520 w->pending = 0;
1331 } 2521 }
1332} 2522}
1333 2523
2524int
2525ev_clear_pending (EV_P_ void *w)
2526{
2527 W w_ = (W)w;
2528 int pending = w_->pending;
2529
2530 if (expect_true (pending))
2531 {
2532 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2533 p->w = (W)&pending_w;
2534 w_->pending = 0;
2535 return p->events;
2536 }
2537 else
2538 return 0;
2539}
2540
1334inline void 2541inline_size void
2542pri_adjust (EV_P_ W w)
2543{
2544 int pri = ev_priority (w);
2545 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2546 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2547 ev_set_priority (w, pri);
2548}
2549
2550inline_speed void
1335ev_start (EV_P_ W w, int active) 2551ev_start (EV_P_ W w, int active)
1336{ 2552{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2553 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2554 w->active = active;
1341 ev_ref (EV_A); 2555 ev_ref (EV_A);
1342} 2556}
1343 2557
1344inline void 2558inline_size void
1345ev_stop (EV_P_ W w) 2559ev_stop (EV_P_ W w)
1346{ 2560{
1347 ev_unref (EV_A); 2561 ev_unref (EV_A);
1348 w->active = 0; 2562 w->active = 0;
1349} 2563}
1350 2564
1351/*****************************************************************************/ 2565/*****************************************************************************/
1352 2566
1353void 2567void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2568ev_io_start (EV_P_ ev_io *w)
1355{ 2569{
1356 int fd = w->fd; 2570 int fd = w->fd;
1357 2571
1358 if (expect_false (ev_is_active (w))) 2572 if (expect_false (ev_is_active (w)))
1359 return; 2573 return;
1360 2574
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2575 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2576 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2577
2578 EV_FREQUENT_CHECK;
1362 2579
1363 ev_start (EV_A_ (W)w, 1); 2580 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2581 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2582 wlist_add (&anfds[fd].head, (WL)w);
1366 2583
1367 fd_change (EV_A_ fd); 2584 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1368} 2585 w->events &= ~EV__IOFDSET;
1369 2586
1370void 2587 EV_FREQUENT_CHECK;
2588}
2589
2590void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2591ev_io_stop (EV_P_ ev_io *w)
1372{ 2592{
1373 ev_clear_pending (EV_A_ (W)w); 2593 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2594 if (expect_false (!ev_is_active (w)))
1375 return; 2595 return;
1376 2596
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2597 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2598
2599 EV_FREQUENT_CHECK;
2600
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2601 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
1381 2603
1382 fd_change (EV_A_ w->fd); 2604 fd_change (EV_A_ w->fd, 1);
1383}
1384 2605
1385void 2606 EV_FREQUENT_CHECK;
2607}
2608
2609void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2610ev_timer_start (EV_P_ ev_timer *w)
1387{ 2611{
1388 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
1389 return; 2613 return;
1390 2614
1391 ((WT)w)->at += mn_now; 2615 ev_at (w) += mn_now;
1392 2616
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2617 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2618
2619 EV_FREQUENT_CHECK;
2620
2621 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2622 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2623 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2624 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2625 ANHE_at_cache (timers [ev_active (w)]);
2626 upheap (timers, ev_active (w));
1399 2627
2628 EV_FREQUENT_CHECK;
2629
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2630 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2631}
1402 2632
1403void 2633void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2634ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2635{
1406 ev_clear_pending (EV_A_ (W)w); 2636 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2637 if (expect_false (!ev_is_active (w)))
1408 return; 2638 return;
1409 2639
2640 EV_FREQUENT_CHECK;
2641
2642 {
2643 int active = ev_active (w);
2644
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2645 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2646
2647 --timercnt;
2648
1412 if (expect_true (((W)w)->active < timercnt--)) 2649 if (expect_true (active < timercnt + HEAP0))
1413 { 2650 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2651 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2652 adjustheap (timers, timercnt, active);
1416 } 2653 }
2654 }
1417 2655
1418 ((WT)w)->at -= mn_now; 2656 ev_at (w) -= mn_now;
1419 2657
1420 ev_stop (EV_A_ (W)w); 2658 ev_stop (EV_A_ (W)w);
1421}
1422 2659
1423void 2660 EV_FREQUENT_CHECK;
2661}
2662
2663void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2664ev_timer_again (EV_P_ ev_timer *w)
1425{ 2665{
2666 EV_FREQUENT_CHECK;
2667
1426 if (ev_is_active (w)) 2668 if (ev_is_active (w))
1427 { 2669 {
1428 if (w->repeat) 2670 if (w->repeat)
1429 { 2671 {
1430 ((WT)w)->at = mn_now + w->repeat; 2672 ev_at (w) = mn_now + w->repeat;
2673 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2674 adjustheap (timers, timercnt, ev_active (w));
1432 } 2675 }
1433 else 2676 else
1434 ev_timer_stop (EV_A_ w); 2677 ev_timer_stop (EV_A_ w);
1435 } 2678 }
1436 else if (w->repeat) 2679 else if (w->repeat)
1437 { 2680 {
1438 w->at = w->repeat; 2681 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2682 ev_timer_start (EV_A_ w);
1440 } 2683 }
1441}
1442 2684
2685 EV_FREQUENT_CHECK;
2686}
2687
2688ev_tstamp
2689ev_timer_remaining (EV_P_ ev_timer *w)
2690{
2691 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2692}
2693
1443#if EV_PERIODICS 2694#if EV_PERIODIC_ENABLE
1444void 2695void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2696ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2697{
1447 if (expect_false (ev_is_active (w))) 2698 if (expect_false (ev_is_active (w)))
1448 return; 2699 return;
1449 2700
1450 if (w->reschedule_cb) 2701 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2702 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2703 else if (w->interval)
1453 { 2704 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2705 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2706 /* this formula differs from the one in periodic_reify because we do not always round up */
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2707 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1457 } 2708 }
2709 else
2710 ev_at (w) = w->offset;
1458 2711
2712 EV_FREQUENT_CHECK;
2713
2714 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2715 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2716 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2717 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2718 ANHE_at_cache (periodics [ev_active (w)]);
2719 upheap (periodics, ev_active (w));
1463 2720
2721 EV_FREQUENT_CHECK;
2722
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2723 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2724}
1466 2725
1467void 2726void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2727ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2728{
1470 ev_clear_pending (EV_A_ (W)w); 2729 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2730 if (expect_false (!ev_is_active (w)))
1472 return; 2731 return;
1473 2732
2733 EV_FREQUENT_CHECK;
2734
2735 {
2736 int active = ev_active (w);
2737
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2738 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2739
2740 --periodiccnt;
2741
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2742 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2743 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2744 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2745 adjustheap (periodics, periodiccnt, active);
1480 } 2746 }
2747 }
1481 2748
1482 ev_stop (EV_A_ (W)w); 2749 ev_stop (EV_A_ (W)w);
1483}
1484 2750
1485void 2751 EV_FREQUENT_CHECK;
2752}
2753
2754void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2755ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2756{
1488 /* TODO: use adjustheap and recalculation */ 2757 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2758 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2759 ev_periodic_start (EV_A_ w);
1491} 2760}
1492#endif 2761#endif
1493 2762
1494void 2763#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2764# define SA_RESTART 0
2765#endif
2766
2767#if EV_SIGNAL_ENABLE
2768
2769void noinline
2770ev_signal_start (EV_P_ ev_signal *w)
1496{ 2771{
1497 if (expect_false (ev_is_active (w))) 2772 if (expect_false (ev_is_active (w)))
1498 return; 2773 return;
1499 2774
2775 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2776
2777#if EV_MULTIPLICITY
2778 assert (("libev: a signal must not be attached to two different loops",
2779 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2780
2781 signals [w->signum - 1].loop = EV_A;
2782#endif
2783
2784 EV_FREQUENT_CHECK;
2785
2786#if EV_USE_SIGNALFD
2787 if (sigfd == -2)
2788 {
2789 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2790 if (sigfd < 0 && errno == EINVAL)
2791 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2792
2793 if (sigfd >= 0)
2794 {
2795 fd_intern (sigfd); /* doing it twice will not hurt */
2796
2797 sigemptyset (&sigfd_set);
2798
2799 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2800 ev_set_priority (&sigfd_w, EV_MAXPRI);
2801 ev_io_start (EV_A_ &sigfd_w);
2802 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2803 }
2804 }
2805
2806 if (sigfd >= 0)
2807 {
2808 /* TODO: check .head */
2809 sigaddset (&sigfd_set, w->signum);
2810 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2811
2812 signalfd (sigfd, &sigfd_set, 0);
2813 }
2814#endif
2815
1500 ev_start (EV_A_ (W)w, ++idlecnt); 2816 ev_start (EV_A_ (W)w, 1);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2817 wlist_add (&signals [w->signum - 1].head, (WL)w);
1502 idles [idlecnt - 1] = w;
1503}
1504 2818
1505void 2819 if (!((WL)w)->next)
1506ev_idle_stop (EV_P_ struct ev_idle *w) 2820# if EV_USE_SIGNALFD
2821 if (sigfd < 0) /*TODO*/
2822# endif
2823 {
2824# ifdef _WIN32
2825 evpipe_init (EV_A);
2826
2827 signal (w->signum, ev_sighandler);
2828# else
2829 struct sigaction sa;
2830
2831 evpipe_init (EV_A);
2832
2833 sa.sa_handler = ev_sighandler;
2834 sigfillset (&sa.sa_mask);
2835 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2836 sigaction (w->signum, &sa, 0);
2837
2838 sigemptyset (&sa.sa_mask);
2839 sigaddset (&sa.sa_mask, w->signum);
2840 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2841#endif
2842 }
2843
2844 EV_FREQUENT_CHECK;
2845}
2846
2847void noinline
2848ev_signal_stop (EV_P_ ev_signal *w)
1507{ 2849{
1508 ev_clear_pending (EV_A_ (W)w); 2850 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 2851 if (expect_false (!ev_is_active (w)))
1510 return; 2852 return;
1511 2853
1512 idles [((W)w)->active - 1] = idles [--idlecnt]; 2854 EV_FREQUENT_CHECK;
2855
2856 wlist_del (&signals [w->signum - 1].head, (WL)w);
1513 ev_stop (EV_A_ (W)w); 2857 ev_stop (EV_A_ (W)w);
1514}
1515 2858
2859 if (!signals [w->signum - 1].head)
2860 {
2861#if EV_MULTIPLICITY
2862 signals [w->signum - 1].loop = 0; /* unattach from signal */
2863#endif
2864#if EV_USE_SIGNALFD
2865 if (sigfd >= 0)
2866 {
2867 sigset_t ss;
2868
2869 sigemptyset (&ss);
2870 sigaddset (&ss, w->signum);
2871 sigdelset (&sigfd_set, w->signum);
2872
2873 signalfd (sigfd, &sigfd_set, 0);
2874 sigprocmask (SIG_UNBLOCK, &ss, 0);
2875 }
2876 else
2877#endif
2878 signal (w->signum, SIG_DFL);
2879 }
2880
2881 EV_FREQUENT_CHECK;
2882}
2883
2884#endif
2885
2886#if EV_CHILD_ENABLE
2887
1516void 2888void
1517ev_prepare_start (EV_P_ struct ev_prepare *w) 2889ev_child_start (EV_P_ ev_child *w)
1518{ 2890{
2891#if EV_MULTIPLICITY
2892 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2893#endif
1519 if (expect_false (ev_is_active (w))) 2894 if (expect_false (ev_is_active (w)))
1520 return; 2895 return;
1521 2896
2897 EV_FREQUENT_CHECK;
2898
1522 ev_start (EV_A_ (W)w, ++preparecnt); 2899 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2900 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1524 prepares [preparecnt - 1] = w;
1525}
1526 2901
2902 EV_FREQUENT_CHECK;
2903}
2904
1527void 2905void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w) 2906ev_child_stop (EV_P_ ev_child *w)
1529{ 2907{
1530 ev_clear_pending (EV_A_ (W)w); 2908 clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w))) 2909 if (expect_false (!ev_is_active (w)))
1532 return; 2910 return;
1533 2911
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2912 EV_FREQUENT_CHECK;
2913
2914 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1535 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
1536}
1537 2916
2917 EV_FREQUENT_CHECK;
2918}
2919
2920#endif
2921
2922#if EV_STAT_ENABLE
2923
2924# ifdef _WIN32
2925# undef lstat
2926# define lstat(a,b) _stati64 (a,b)
2927# endif
2928
2929#define DEF_STAT_INTERVAL 5.0074891
2930#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2931#define MIN_STAT_INTERVAL 0.1074891
2932
2933static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2934
2935#if EV_USE_INOTIFY
2936
2937/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2938# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2939
2940static void noinline
2941infy_add (EV_P_ ev_stat *w)
2942{
2943 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2944
2945 if (w->wd >= 0)
2946 {
2947 struct statfs sfs;
2948
2949 /* now local changes will be tracked by inotify, but remote changes won't */
2950 /* unless the filesystem is known to be local, we therefore still poll */
2951 /* also do poll on <2.6.25, but with normal frequency */
2952
2953 if (!fs_2625)
2954 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2955 else if (!statfs (w->path, &sfs)
2956 && (sfs.f_type == 0x1373 /* devfs */
2957 || sfs.f_type == 0xEF53 /* ext2/3 */
2958 || sfs.f_type == 0x3153464a /* jfs */
2959 || sfs.f_type == 0x52654973 /* reiser3 */
2960 || sfs.f_type == 0x01021994 /* tempfs */
2961 || sfs.f_type == 0x58465342 /* xfs */))
2962 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2963 else
2964 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2965 }
2966 else
2967 {
2968 /* can't use inotify, continue to stat */
2969 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2970
2971 /* if path is not there, monitor some parent directory for speedup hints */
2972 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2973 /* but an efficiency issue only */
2974 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2975 {
2976 char path [4096];
2977 strcpy (path, w->path);
2978
2979 do
2980 {
2981 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2982 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2983
2984 char *pend = strrchr (path, '/');
2985
2986 if (!pend || pend == path)
2987 break;
2988
2989 *pend = 0;
2990 w->wd = inotify_add_watch (fs_fd, path, mask);
2991 }
2992 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2993 }
2994 }
2995
2996 if (w->wd >= 0)
2997 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2998
2999 /* now re-arm timer, if required */
3000 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3001 ev_timer_again (EV_A_ &w->timer);
3002 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3003}
3004
3005static void noinline
3006infy_del (EV_P_ ev_stat *w)
3007{
3008 int slot;
3009 int wd = w->wd;
3010
3011 if (wd < 0)
3012 return;
3013
3014 w->wd = -2;
3015 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3016 wlist_del (&fs_hash [slot].head, (WL)w);
3017
3018 /* remove this watcher, if others are watching it, they will rearm */
3019 inotify_rm_watch (fs_fd, wd);
3020}
3021
3022static void noinline
3023infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3024{
3025 if (slot < 0)
3026 /* overflow, need to check for all hash slots */
3027 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3028 infy_wd (EV_A_ slot, wd, ev);
3029 else
3030 {
3031 WL w_;
3032
3033 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3034 {
3035 ev_stat *w = (ev_stat *)w_;
3036 w_ = w_->next; /* lets us remove this watcher and all before it */
3037
3038 if (w->wd == wd || wd == -1)
3039 {
3040 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3041 {
3042 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3043 w->wd = -1;
3044 infy_add (EV_A_ w); /* re-add, no matter what */
3045 }
3046
3047 stat_timer_cb (EV_A_ &w->timer, 0);
3048 }
3049 }
3050 }
3051}
3052
3053static void
3054infy_cb (EV_P_ ev_io *w, int revents)
3055{
3056 char buf [EV_INOTIFY_BUFSIZE];
3057 int ofs;
3058 int len = read (fs_fd, buf, sizeof (buf));
3059
3060 for (ofs = 0; ofs < len; )
3061 {
3062 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3063 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3064 ofs += sizeof (struct inotify_event) + ev->len;
3065 }
3066}
3067
3068inline_size unsigned int
3069ev_linux_version (void)
3070{
3071 struct utsname buf;
3072 unsigned int v;
3073 int i;
3074 char *p = buf.release;
3075
3076 if (uname (&buf))
3077 return 0;
3078
3079 for (i = 3+1; --i; )
3080 {
3081 unsigned int c = 0;
3082
3083 for (;;)
3084 {
3085 if (*p >= '0' && *p <= '9')
3086 c = c * 10 + *p++ - '0';
3087 else
3088 {
3089 p += *p == '.';
3090 break;
3091 }
3092 }
3093
3094 v = (v << 8) | c;
3095 }
3096
3097 return v;
3098}
3099
3100inline_size void
3101ev_check_2625 (EV_P)
3102{
3103 /* kernels < 2.6.25 are borked
3104 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3105 */
3106 if (ev_linux_version () < 0x020619)
3107 return;
3108
3109 fs_2625 = 1;
3110}
3111
3112inline_size int
3113infy_newfd (void)
3114{
3115#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3116 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3117 if (fd >= 0)
3118 return fd;
3119#endif
3120 return inotify_init ();
3121}
3122
3123inline_size void
3124infy_init (EV_P)
3125{
3126 if (fs_fd != -2)
3127 return;
3128
3129 fs_fd = -1;
3130
3131 ev_check_2625 (EV_A);
3132
3133 fs_fd = infy_newfd ();
3134
3135 if (fs_fd >= 0)
3136 {
3137 fd_intern (fs_fd);
3138 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3139 ev_set_priority (&fs_w, EV_MAXPRI);
3140 ev_io_start (EV_A_ &fs_w);
3141 ev_unref (EV_A);
3142 }
3143}
3144
3145inline_size void
3146infy_fork (EV_P)
3147{
3148 int slot;
3149
3150 if (fs_fd < 0)
3151 return;
3152
3153 ev_ref (EV_A);
3154 ev_io_stop (EV_A_ &fs_w);
3155 close (fs_fd);
3156 fs_fd = infy_newfd ();
3157
3158 if (fs_fd >= 0)
3159 {
3160 fd_intern (fs_fd);
3161 ev_io_set (&fs_w, fs_fd, EV_READ);
3162 ev_io_start (EV_A_ &fs_w);
3163 ev_unref (EV_A);
3164 }
3165
3166 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3167 {
3168 WL w_ = fs_hash [slot].head;
3169 fs_hash [slot].head = 0;
3170
3171 while (w_)
3172 {
3173 ev_stat *w = (ev_stat *)w_;
3174 w_ = w_->next; /* lets us add this watcher */
3175
3176 w->wd = -1;
3177
3178 if (fs_fd >= 0)
3179 infy_add (EV_A_ w); /* re-add, no matter what */
3180 else
3181 {
3182 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3183 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3184 ev_timer_again (EV_A_ &w->timer);
3185 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3186 }
3187 }
3188 }
3189}
3190
3191#endif
3192
3193#ifdef _WIN32
3194# define EV_LSTAT(p,b) _stati64 (p, b)
3195#else
3196# define EV_LSTAT(p,b) lstat (p, b)
3197#endif
3198
1538void 3199void
1539ev_check_start (EV_P_ struct ev_check *w) 3200ev_stat_stat (EV_P_ ev_stat *w)
3201{
3202 if (lstat (w->path, &w->attr) < 0)
3203 w->attr.st_nlink = 0;
3204 else if (!w->attr.st_nlink)
3205 w->attr.st_nlink = 1;
3206}
3207
3208static void noinline
3209stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3210{
3211 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3212
3213 ev_statdata prev = w->attr;
3214 ev_stat_stat (EV_A_ w);
3215
3216 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3217 if (
3218 prev.st_dev != w->attr.st_dev
3219 || prev.st_ino != w->attr.st_ino
3220 || prev.st_mode != w->attr.st_mode
3221 || prev.st_nlink != w->attr.st_nlink
3222 || prev.st_uid != w->attr.st_uid
3223 || prev.st_gid != w->attr.st_gid
3224 || prev.st_rdev != w->attr.st_rdev
3225 || prev.st_size != w->attr.st_size
3226 || prev.st_atime != w->attr.st_atime
3227 || prev.st_mtime != w->attr.st_mtime
3228 || prev.st_ctime != w->attr.st_ctime
3229 ) {
3230 /* we only update w->prev on actual differences */
3231 /* in case we test more often than invoke the callback, */
3232 /* to ensure that prev is always different to attr */
3233 w->prev = prev;
3234
3235 #if EV_USE_INOTIFY
3236 if (fs_fd >= 0)
3237 {
3238 infy_del (EV_A_ w);
3239 infy_add (EV_A_ w);
3240 ev_stat_stat (EV_A_ w); /* avoid race... */
3241 }
3242 #endif
3243
3244 ev_feed_event (EV_A_ w, EV_STAT);
3245 }
3246}
3247
3248void
3249ev_stat_start (EV_P_ ev_stat *w)
1540{ 3250{
1541 if (expect_false (ev_is_active (w))) 3251 if (expect_false (ev_is_active (w)))
1542 return; 3252 return;
1543 3253
3254 ev_stat_stat (EV_A_ w);
3255
3256 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3257 w->interval = MIN_STAT_INTERVAL;
3258
3259 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3260 ev_set_priority (&w->timer, ev_priority (w));
3261
3262#if EV_USE_INOTIFY
3263 infy_init (EV_A);
3264
3265 if (fs_fd >= 0)
3266 infy_add (EV_A_ w);
3267 else
3268#endif
3269 {
3270 ev_timer_again (EV_A_ &w->timer);
3271 ev_unref (EV_A);
3272 }
3273
1544 ev_start (EV_A_ (W)w, ++checkcnt); 3274 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548 3275
3276 EV_FREQUENT_CHECK;
3277}
3278
1549void 3279void
1550ev_check_stop (EV_P_ struct ev_check *w) 3280ev_stat_stop (EV_P_ ev_stat *w)
1551{ 3281{
1552 ev_clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
1554 return; 3284 return;
1555 3285
1556 checks [((W)w)->active - 1] = checks [--checkcnt]; 3286 EV_FREQUENT_CHECK;
3287
3288#if EV_USE_INOTIFY
3289 infy_del (EV_A_ w);
3290#endif
3291
3292 if (ev_is_active (&w->timer))
3293 {
3294 ev_ref (EV_A);
3295 ev_timer_stop (EV_A_ &w->timer);
3296 }
3297
1557 ev_stop (EV_A_ (W)w); 3298 ev_stop (EV_A_ (W)w);
1558}
1559 3299
1560#ifndef SA_RESTART 3300 EV_FREQUENT_CHECK;
1561# define SA_RESTART 0 3301}
1562#endif 3302#endif
1563 3303
3304#if EV_IDLE_ENABLE
1564void 3305void
1565ev_signal_start (EV_P_ struct ev_signal *w) 3306ev_idle_start (EV_P_ ev_idle *w)
1566{ 3307{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w))) 3308 if (expect_false (ev_is_active (w)))
1571 return; 3309 return;
1572 3310
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3311 pri_adjust (EV_A_ (W)w);
1574 3312
3313 EV_FREQUENT_CHECK;
3314
3315 {
3316 int active = ++idlecnt [ABSPRI (w)];
3317
3318 ++idleall;
1575 ev_start (EV_A_ (W)w, 1); 3319 ev_start (EV_A_ (W)w, active);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1578 3320
1579 if (!((WL)w)->next) 3321 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1580 { 3322 idles [ABSPRI (w)][active - 1] = w;
1581#if _WIN32
1582 signal (w->signum, sighandler);
1583#else
1584 struct sigaction sa;
1585 sa.sa_handler = sighandler;
1586 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0);
1589#endif
1590 } 3323 }
1591}
1592 3324
3325 EV_FREQUENT_CHECK;
3326}
3327
1593void 3328void
1594ev_signal_stop (EV_P_ struct ev_signal *w) 3329ev_idle_stop (EV_P_ ev_idle *w)
1595{ 3330{
1596 ev_clear_pending (EV_A_ (W)w); 3331 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3332 if (expect_false (!ev_is_active (w)))
1598 return; 3333 return;
1599 3334
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3335 EV_FREQUENT_CHECK;
3336
3337 {
3338 int active = ev_active (w);
3339
3340 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3341 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3342
1601 ev_stop (EV_A_ (W)w); 3343 ev_stop (EV_A_ (W)w);
3344 --idleall;
3345 }
1602 3346
1603 if (!signals [w->signum - 1].head) 3347 EV_FREQUENT_CHECK;
1604 signal (w->signum, SIG_DFL);
1605} 3348}
1606
1607void
1608ev_child_start (EV_P_ struct ev_child *w)
1609{
1610#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 3349#endif
3350
3351#if EV_PREPARE_ENABLE
3352void
3353ev_prepare_start (EV_P_ ev_prepare *w)
3354{
1613 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
1614 return; 3356 return;
1615 3357
3358 EV_FREQUENT_CHECK;
3359
1616 ev_start (EV_A_ (W)w, 1); 3360 ev_start (EV_A_ (W)w, ++preparecnt);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3361 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1618} 3362 prepares [preparecnt - 1] = w;
1619 3363
3364 EV_FREQUENT_CHECK;
3365}
3366
1620void 3367void
1621ev_child_stop (EV_P_ struct ev_child *w) 3368ev_prepare_stop (EV_P_ ev_prepare *w)
1622{ 3369{
1623 ev_clear_pending (EV_A_ (W)w); 3370 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 3371 if (expect_false (!ev_is_active (w)))
1625 return; 3372 return;
1626 3373
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3374 EV_FREQUENT_CHECK;
3375
3376 {
3377 int active = ev_active (w);
3378
3379 prepares [active - 1] = prepares [--preparecnt];
3380 ev_active (prepares [active - 1]) = active;
3381 }
3382
1628 ev_stop (EV_A_ (W)w); 3383 ev_stop (EV_A_ (W)w);
3384
3385 EV_FREQUENT_CHECK;
1629} 3386}
3387#endif
3388
3389#if EV_CHECK_ENABLE
3390void
3391ev_check_start (EV_P_ ev_check *w)
3392{
3393 if (expect_false (ev_is_active (w)))
3394 return;
3395
3396 EV_FREQUENT_CHECK;
3397
3398 ev_start (EV_A_ (W)w, ++checkcnt);
3399 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3400 checks [checkcnt - 1] = w;
3401
3402 EV_FREQUENT_CHECK;
3403}
3404
3405void
3406ev_check_stop (EV_P_ ev_check *w)
3407{
3408 clear_pending (EV_A_ (W)w);
3409 if (expect_false (!ev_is_active (w)))
3410 return;
3411
3412 EV_FREQUENT_CHECK;
3413
3414 {
3415 int active = ev_active (w);
3416
3417 checks [active - 1] = checks [--checkcnt];
3418 ev_active (checks [active - 1]) = active;
3419 }
3420
3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
3424}
3425#endif
3426
3427#if EV_EMBED_ENABLE
3428void noinline
3429ev_embed_sweep (EV_P_ ev_embed *w)
3430{
3431 ev_loop (w->other, EVLOOP_NONBLOCK);
3432}
3433
3434static void
3435embed_io_cb (EV_P_ ev_io *io, int revents)
3436{
3437 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3438
3439 if (ev_cb (w))
3440 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3441 else
3442 ev_loop (w->other, EVLOOP_NONBLOCK);
3443}
3444
3445static void
3446embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3447{
3448 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3449
3450 {
3451 EV_P = w->other;
3452
3453 while (fdchangecnt)
3454 {
3455 fd_reify (EV_A);
3456 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3457 }
3458 }
3459}
3460
3461static void
3462embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3463{
3464 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3465
3466 ev_embed_stop (EV_A_ w);
3467
3468 {
3469 EV_P = w->other;
3470
3471 ev_loop_fork (EV_A);
3472 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3473 }
3474
3475 ev_embed_start (EV_A_ w);
3476}
3477
3478#if 0
3479static void
3480embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3481{
3482 ev_idle_stop (EV_A_ idle);
3483}
3484#endif
3485
3486void
3487ev_embed_start (EV_P_ ev_embed *w)
3488{
3489 if (expect_false (ev_is_active (w)))
3490 return;
3491
3492 {
3493 EV_P = w->other;
3494 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3495 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3496 }
3497
3498 EV_FREQUENT_CHECK;
3499
3500 ev_set_priority (&w->io, ev_priority (w));
3501 ev_io_start (EV_A_ &w->io);
3502
3503 ev_prepare_init (&w->prepare, embed_prepare_cb);
3504 ev_set_priority (&w->prepare, EV_MINPRI);
3505 ev_prepare_start (EV_A_ &w->prepare);
3506
3507 ev_fork_init (&w->fork, embed_fork_cb);
3508 ev_fork_start (EV_A_ &w->fork);
3509
3510 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3511
3512 ev_start (EV_A_ (W)w, 1);
3513
3514 EV_FREQUENT_CHECK;
3515}
3516
3517void
3518ev_embed_stop (EV_P_ ev_embed *w)
3519{
3520 clear_pending (EV_A_ (W)w);
3521 if (expect_false (!ev_is_active (w)))
3522 return;
3523
3524 EV_FREQUENT_CHECK;
3525
3526 ev_io_stop (EV_A_ &w->io);
3527 ev_prepare_stop (EV_A_ &w->prepare);
3528 ev_fork_stop (EV_A_ &w->fork);
3529
3530 ev_stop (EV_A_ (W)w);
3531
3532 EV_FREQUENT_CHECK;
3533}
3534#endif
3535
3536#if EV_FORK_ENABLE
3537void
3538ev_fork_start (EV_P_ ev_fork *w)
3539{
3540 if (expect_false (ev_is_active (w)))
3541 return;
3542
3543 EV_FREQUENT_CHECK;
3544
3545 ev_start (EV_A_ (W)w, ++forkcnt);
3546 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3547 forks [forkcnt - 1] = w;
3548
3549 EV_FREQUENT_CHECK;
3550}
3551
3552void
3553ev_fork_stop (EV_P_ ev_fork *w)
3554{
3555 clear_pending (EV_A_ (W)w);
3556 if (expect_false (!ev_is_active (w)))
3557 return;
3558
3559 EV_FREQUENT_CHECK;
3560
3561 {
3562 int active = ev_active (w);
3563
3564 forks [active - 1] = forks [--forkcnt];
3565 ev_active (forks [active - 1]) = active;
3566 }
3567
3568 ev_stop (EV_A_ (W)w);
3569
3570 EV_FREQUENT_CHECK;
3571}
3572#endif
3573
3574#if EV_ASYNC_ENABLE
3575void
3576ev_async_start (EV_P_ ev_async *w)
3577{
3578 if (expect_false (ev_is_active (w)))
3579 return;
3580
3581 evpipe_init (EV_A);
3582
3583 EV_FREQUENT_CHECK;
3584
3585 ev_start (EV_A_ (W)w, ++asynccnt);
3586 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3587 asyncs [asynccnt - 1] = w;
3588
3589 EV_FREQUENT_CHECK;
3590}
3591
3592void
3593ev_async_stop (EV_P_ ev_async *w)
3594{
3595 clear_pending (EV_A_ (W)w);
3596 if (expect_false (!ev_is_active (w)))
3597 return;
3598
3599 EV_FREQUENT_CHECK;
3600
3601 {
3602 int active = ev_active (w);
3603
3604 asyncs [active - 1] = asyncs [--asynccnt];
3605 ev_active (asyncs [active - 1]) = active;
3606 }
3607
3608 ev_stop (EV_A_ (W)w);
3609
3610 EV_FREQUENT_CHECK;
3611}
3612
3613void
3614ev_async_send (EV_P_ ev_async *w)
3615{
3616 w->sent = 1;
3617 evpipe_write (EV_A_ &async_pending);
3618}
3619#endif
1630 3620
1631/*****************************************************************************/ 3621/*****************************************************************************/
1632 3622
1633struct ev_once 3623struct ev_once
1634{ 3624{
1635 struct ev_io io; 3625 ev_io io;
1636 struct ev_timer to; 3626 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3627 void (*cb)(int revents, void *arg);
1638 void *arg; 3628 void *arg;
1639}; 3629};
1640 3630
1641static void 3631static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3632once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3633{
1644 void (*cb)(int revents, void *arg) = once->cb; 3634 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3635 void *arg = once->arg;
1646 3636
1647 ev_io_stop (EV_A_ &once->io); 3637 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3638 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3639 ev_free (once);
1650 3640
1651 cb (revents, arg); 3641 cb (revents, arg);
1652} 3642}
1653 3643
1654static void 3644static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3645once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3646{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3647 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3648
3649 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3650}
1659 3651
1660static void 3652static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3653once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3654{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3655 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3656
3657 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3658}
1665 3659
1666void 3660void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3661ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3662{
1669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3663 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1670 3664
1671 if (expect_false (!once)) 3665 if (expect_false (!once))
1672 { 3666 {
1673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3667 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1674 return; 3668 return;
1675 } 3669 }
1676 3670
1677 once->cb = cb; 3671 once->cb = cb;
1678 once->arg = arg; 3672 once->arg = arg;
1690 ev_timer_set (&once->to, timeout, 0.); 3684 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3685 ev_timer_start (EV_A_ &once->to);
1692 } 3686 }
1693} 3687}
1694 3688
3689/*****************************************************************************/
3690
3691#if EV_WALK_ENABLE
3692void
3693ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3694{
3695 int i, j;
3696 ev_watcher_list *wl, *wn;
3697
3698 if (types & (EV_IO | EV_EMBED))
3699 for (i = 0; i < anfdmax; ++i)
3700 for (wl = anfds [i].head; wl; )
3701 {
3702 wn = wl->next;
3703
3704#if EV_EMBED_ENABLE
3705 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3706 {
3707 if (types & EV_EMBED)
3708 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3709 }
3710 else
3711#endif
3712#if EV_USE_INOTIFY
3713 if (ev_cb ((ev_io *)wl) == infy_cb)
3714 ;
3715 else
3716#endif
3717 if ((ev_io *)wl != &pipe_w)
3718 if (types & EV_IO)
3719 cb (EV_A_ EV_IO, wl);
3720
3721 wl = wn;
3722 }
3723
3724 if (types & (EV_TIMER | EV_STAT))
3725 for (i = timercnt + HEAP0; i-- > HEAP0; )
3726#if EV_STAT_ENABLE
3727 /*TODO: timer is not always active*/
3728 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3729 {
3730 if (types & EV_STAT)
3731 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3732 }
3733 else
3734#endif
3735 if (types & EV_TIMER)
3736 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3737
3738#if EV_PERIODIC_ENABLE
3739 if (types & EV_PERIODIC)
3740 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3741 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3742#endif
3743
3744#if EV_IDLE_ENABLE
3745 if (types & EV_IDLE)
3746 for (j = NUMPRI; i--; )
3747 for (i = idlecnt [j]; i--; )
3748 cb (EV_A_ EV_IDLE, idles [j][i]);
3749#endif
3750
3751#if EV_FORK_ENABLE
3752 if (types & EV_FORK)
3753 for (i = forkcnt; i--; )
3754 if (ev_cb (forks [i]) != embed_fork_cb)
3755 cb (EV_A_ EV_FORK, forks [i]);
3756#endif
3757
3758#if EV_ASYNC_ENABLE
3759 if (types & EV_ASYNC)
3760 for (i = asynccnt; i--; )
3761 cb (EV_A_ EV_ASYNC, asyncs [i]);
3762#endif
3763
3764#if EV_PREPARE_ENABLE
3765 if (types & EV_PREPARE)
3766 for (i = preparecnt; i--; )
3767# if EV_EMBED_ENABLE
3768 if (ev_cb (prepares [i]) != embed_prepare_cb)
3769# endif
3770 cb (EV_A_ EV_PREPARE, prepares [i]);
3771#endif
3772
3773#if EV_CHECK_ENABLE
3774 if (types & EV_CHECK)
3775 for (i = checkcnt; i--; )
3776 cb (EV_A_ EV_CHECK, checks [i]);
3777#endif
3778
3779#if EV_SIGNAL_ENABLE
3780 if (types & EV_SIGNAL)
3781 for (i = 0; i < EV_NSIG - 1; ++i)
3782 for (wl = signals [i].head; wl; )
3783 {
3784 wn = wl->next;
3785 cb (EV_A_ EV_SIGNAL, wl);
3786 wl = wn;
3787 }
3788#endif
3789
3790#if EV_CHILD_ENABLE
3791 if (types & EV_CHILD)
3792 for (i = (EV_PID_HASHSIZE); i--; )
3793 for (wl = childs [i]; wl; )
3794 {
3795 wn = wl->next;
3796 cb (EV_A_ EV_CHILD, wl);
3797 wl = wn;
3798 }
3799#endif
3800/* EV_STAT 0x00001000 /* stat data changed */
3801/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3802}
3803#endif
3804
3805#if EV_MULTIPLICITY
3806 #include "ev_wrap.h"
3807#endif
3808
1695#ifdef __cplusplus 3809#ifdef __cplusplus
1696} 3810}
1697#endif 3811#endif
1698 3812

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines