ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.376 by root, Sat Jun 4 05:33:29 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
84# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
61# endif 91# endif
62 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
69# endif 109# endif
70 110
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
74# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
77# endif 118# endif
78 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
85# endif 127# endif
86 128
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
90# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
93# endif 136# endif
94 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
95#endif 145# endif
96 146
97#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
98#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
99#include <fcntl.h> 169#include <fcntl.h>
100#include <stddef.h> 170#include <stddef.h>
101 171
102#include <stdio.h> 172#include <stdio.h>
103 173
104#include <assert.h> 174#include <assert.h>
105#include <errno.h> 175#include <errno.h>
106#include <sys/types.h> 176#include <sys/types.h>
107#include <time.h> 177#include <time.h>
178#include <limits.h>
108 179
109#include <signal.h> 180#include <signal.h>
110 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
111#ifndef _WIN32 190#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 191# include <sys/time.h>
114# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
115#else 194#else
195# include <io.h>
116# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 197# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
120# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
121#endif 251# endif
122 252#endif
123/**/
124 253
125#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
126# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
127#endif 260#endif
128 261
129#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
131#endif 272#endif
132 273
133#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 276#endif
136 277
137#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
138# ifdef _WIN32 279# ifdef _WIN32
139# define EV_USE_POLL 0 280# define EV_USE_POLL 0
140# else 281# else
141# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 283# endif
143#endif 284#endif
144 285
145#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
146# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
147#endif 292#endif
148 293
149#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
151#endif 296#endif
152 297
153#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 299# define EV_USE_PORT 0
155#endif 300#endif
156 301
157/**/ 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
158 309
159/* darwin simply cannot be helped */ 310#ifndef EV_PID_HASHSIZE
160#ifdef __APPLE__ 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
161# undef EV_USE_POLL 370# undef EV_USE_POLL
162# undef EV_USE_KQUEUE 371# define EV_USE_POLL 0
163#endif 372#endif
164 373
165#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
170#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
173#endif 382#endif
174 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
175#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 407# include <winsock.h>
177#endif 408#endif
178 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
179/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
180 462
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
185 465
186#ifdef EV_H 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
187# include EV_H 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
188#else
189# include "ev.h"
190#endif
191 468
192#if __GNUC__ >= 3 469#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 471# define noinline __attribute__ ((noinline))
195#else 472#else
196# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
197# define inline static 474# define noinline
475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476# define inline
477# endif
198#endif 478#endif
199 479
200#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
482#define inline_size static inline
202 483
484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
487# define inline_speed static noinline
488#endif
489
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
494#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
205 497
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
208 500
209typedef struct ev_watcher *W; 501typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
212 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
514#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
526#endif
214 527
215#ifdef _WIN32 528#ifdef _WIN32
216# include "ev_win32.c" 529# include "ev_win32.c"
217#endif 530#endif
218 531
219/*****************************************************************************/ 532/*****************************************************************************/
220 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
221static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
222 633
634void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 636{
225 syserr_cb = cb; 637 syserr_cb = cb;
226} 638}
227 639
228static void 640static void noinline
229syserr (const char *msg) 641ev_syserr (const char *msg)
230{ 642{
231 if (!msg) 643 if (!msg)
232 msg = "(libev) system error"; 644 msg = "(libev) system error";
233 645
234 if (syserr_cb) 646 if (syserr_cb)
235 syserr_cb (msg); 647 syserr_cb (msg);
236 else 648 else
237 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
238 perror (msg); 656 perror (msg);
657#endif
239 abort (); 658 abort ();
240 } 659 }
241} 660}
242 661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
243static void *(*alloc)(void *ptr, long size); 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 682
683void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 684ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 685{
247 alloc = cb; 686 alloc = cb;
248} 687}
249 688
250static void * 689inline_speed void *
251ev_realloc (void *ptr, long size) 690ev_realloc (void *ptr, long size)
252{ 691{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 692 ptr = alloc (ptr, size);
254 693
255 if (!ptr && size) 694 if (!ptr && size)
256 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
258 abort (); 701 abort ();
259 } 702 }
260 703
261 return ptr; 704 return ptr;
262} 705}
264#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
266 709
267/*****************************************************************************/ 710/*****************************************************************************/
268 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
269typedef struct 716typedef struct
270{ 717{
271 WL head; 718 WL head;
272 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
274#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
275 SOCKET handle; 727 SOCKET handle;
276#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
277} ANFD; 732} ANFD;
278 733
734/* stores the pending event set for a given watcher */
279typedef struct 735typedef struct
280{ 736{
281 W w; 737 W w;
282 int events; 738 int events; /* the pending event set for the given watcher */
283} ANPENDING; 739} ANPENDING;
740
741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
743typedef struct
744{
745 WL head;
746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
767#endif
284 768
285#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
286 770
287 struct ev_loop 771 struct ev_loop
288 { 772 {
306 790
307 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
308 792
309#endif 793#endif
310 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
311/*****************************************************************************/ 807/*****************************************************************************/
312 808
809#ifndef EV_HAVE_EV_TIME
313ev_tstamp 810ev_tstamp
314ev_time (void) 811ev_time (void)
315{ 812{
316#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
317 struct timespec ts; 816 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 819 }
820#endif
821
321 struct timeval tv; 822 struct timeval tv;
322 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 825}
826#endif
326 827
327inline ev_tstamp 828inline_size ev_tstamp
328get_clock (void) 829get_clock (void)
329{ 830{
330#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
332 { 833 {
345{ 846{
346 return ev_rt_now; 847 return ev_rt_now;
347} 848}
348#endif 849#endif
349 850
350#define array_roundsize(type,n) (((n) | 4) & ~3) 851void
852ev_sleep (ev_tstamp delay)
853{
854 if (delay > 0.)
855 {
856#if EV_USE_NANOSLEEP
857 struct timespec ts;
858
859 EV_TS_SET (ts, delay);
860 nanosleep (&ts, 0);
861#elif defined(_WIN32)
862 Sleep ((unsigned long)(delay * 1e3));
863#else
864 struct timeval tv;
865
866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 /* something not guaranteed by newer posix versions, but guaranteed */
868 /* by older ones */
869 EV_TV_SET (tv, delay);
870 select (0, 0, 0, 0, &tv);
871#endif
872 }
873}
874
875/*****************************************************************************/
876
877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878
879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
882array_nextsize (int elem, int cur, int cnt)
883{
884 int ncur = cur + 1;
885
886 do
887 ncur <<= 1;
888 while (cnt > ncur);
889
890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
892 {
893 ncur *= elem;
894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
895 ncur = ncur - sizeof (void *) * 4;
896 ncur /= elem;
897 }
898
899 return ncur;
900}
901
902static noinline void *
903array_realloc (int elem, void *base, int *cur, int cnt)
904{
905 *cur = array_nextsize (elem, *cur, cnt);
906 return ev_realloc (base, elem * *cur);
907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 911
352#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 913 if (expect_false ((cnt) > (cur))) \
354 { \ 914 { \
355 int newcnt = cur; \ 915 int ocur_ = (cur); \
356 do \ 916 (base) = (type *)array_realloc \
357 { \ 917 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 918 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 919 }
366 920
921#if 0
367#define array_slim(type,stem) \ 922#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 923 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 924 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 925 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 926 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 928 }
929#endif
374 930
375#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 933
378/*****************************************************************************/ 934/*****************************************************************************/
379 935
380static void 936/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 939{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 940}
392 941
393void 942void noinline
394ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
395{ 944{
396 W w_ = (W)w; 945 W w_ = (W)w;
946 int pri = ABSPRI (w_);
397 947
398 if (expect_false (w_->pending)) 948 if (expect_false (w_->pending))
949 pendings [pri][w_->pending - 1].events |= revents;
950 else
399 { 951 {
952 w_->pending = ++pendingcnt [pri];
953 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
954 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 955 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 956 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 957}
409 958
410static void 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 976{
413 int i; 977 int i;
414 978
415 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
417} 981}
418 982
983/*****************************************************************************/
984
419inline void 985inline_speed void
420fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
421{ 987{
422 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 989 ev_io *w;
424 990
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 992 {
427 int ev = w->events & revents; 993 int ev = w->events & revents;
428 994
429 if (ev) 995 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
431 } 997 }
432} 998}
433 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
434void 1011void
435ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 1013{
1014 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
438} 1016}
439 1017
440/*****************************************************************************/ 1018/* make sure the external fd watch events are in-sync */
441 1019/* with the kernel/libev internal state */
442inline void 1020inline_size void
443fd_reify (EV_P) 1021fd_reify (EV_P)
444{ 1022{
445 int i; 1023 int i;
446 1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
447 for (i = 0; i < fdchangecnt; ++i) 1026 for (i = 0; i < fdchangecnt; ++i)
448 { 1027 {
449 int fd = fdchanges [i]; 1028 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 1029 ANFD *anfd = anfds + fd;
451 struct ev_io *w;
452 1030
453 int events = 0; 1031 if (anfd->reify & EV__IOFDSET && anfd->head)
454
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
456 events |= w->events;
457
458#if EV_SELECT_IS_WINSOCKET
459 if (events)
460 { 1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
461 unsigned long argp; 1037 unsigned long arg;
462 anfd->handle = _get_osfhandle (fd); 1038
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
464 } 1046 }
1047 }
465#endif 1048#endif
466 1049
1050 for (i = 0; i < fdchangecnt; ++i)
1051 {
1052 int fd = fdchanges [i];
1053 ANFD *anfd = anfds + fd;
1054 ev_io *w;
1055
1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
1058
467 anfd->reify = 0; 1059 anfd->reify = 0;
468 1060
469 method_modify (EV_A_ fd, anfd->events, events); 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1062 {
470 anfd->events = events; 1063 anfd->events = 0;
1064
1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1066 anfd->events |= (unsigned char)w->events;
1067
1068 if (o_events != anfd->events)
1069 o_reify = EV__IOFDSET; /* actually |= */
1070 }
1071
1072 if (o_reify & EV__IOFDSET)
1073 backend_modify (EV_A_ fd, o_events, anfd->events);
471 } 1074 }
472 1075
473 fdchangecnt = 0; 1076 fdchangecnt = 0;
474} 1077}
475 1078
476static void 1079/* something about the given fd changed */
1080inline_size void
477fd_change (EV_P_ int fd) 1081fd_change (EV_P_ int fd, int flags)
478{ 1082{
479 if (expect_false (anfds [fd].reify)) 1083 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 1084 anfds [fd].reify |= flags;
483 1085
1086 if (expect_true (!reify))
1087 {
484 ++fdchangecnt; 1088 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
1091 }
487} 1092}
488 1093
489static void 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
490fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
491{ 1097{
492 struct ev_io *w; 1098 ev_io *w;
493 1099
494 while ((w = (struct ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
495 { 1101 {
496 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 1104 }
499} 1105}
500 1106
1107/* check whether the given fd is actually valid, for error recovery */
501inline int 1108inline_size int
502fd_valid (int fd) 1109fd_valid (int fd)
503{ 1110{
504#ifdef _WIN32 1111#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
506#else 1113#else
507 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
508#endif 1115#endif
509} 1116}
510 1117
511/* called on EBADF to verify fds */ 1118/* called on EBADF to verify fds */
512static void 1119static void noinline
513fd_ebadf (EV_P) 1120fd_ebadf (EV_P)
514{ 1121{
515 int fd; 1122 int fd;
516 1123
517 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1125 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
521} 1128}
522 1129
523/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 1131static void noinline
525fd_enomem (EV_P) 1132fd_enomem (EV_P)
526{ 1133{
527 int fd; 1134 int fd;
528 1135
529 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
530 if (anfds [fd].events) 1137 if (anfds [fd].events)
531 { 1138 {
532 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
533 return; 1140 break;
534 } 1141 }
535} 1142}
536 1143
537/* usually called after fork if method needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 1145static void noinline
539fd_rearm_all (EV_P) 1146fd_rearm_all (EV_P)
540{ 1147{
541 int fd; 1148 int fd;
542 1149
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 1151 if (anfds [fd].events)
546 { 1152 {
547 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 1154 anfds [fd].emask = 0;
1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
549 } 1156 }
550} 1157}
551 1158
552/*****************************************************************************/ 1159/* used to prepare libev internal fd's */
553 1160/* this is not fork-safe */
554static void
555upheap (WT *heap, int k)
556{
557 WT w = heap [k];
558
559 while (k && heap [k >> 1]->at > w->at)
560 {
561 heap [k] = heap [k >> 1];
562 ((W)heap [k])->active = k + 1;
563 k >>= 1;
564 }
565
566 heap [k] = w;
567 ((W)heap [k])->active = k + 1;
568
569}
570
571static void
572downheap (WT *heap, int N, int k)
573{
574 WT w = heap [k];
575
576 while (k < (N >> 1))
577 {
578 int j = k << 1;
579
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break;
585
586 heap [k] = heap [j];
587 ((W)heap [k])->active = k + 1;
588 k = j;
589 }
590
591 heap [k] = w;
592 ((W)heap [k])->active = k + 1;
593}
594
595inline void 1161inline_speed void
596adjustheap (WT *heap, int N, int k)
597{
598 upheap (heap, k);
599 downheap (heap, N, k);
600}
601
602/*****************************************************************************/
603
604typedef struct
605{
606 WL head;
607 sig_atomic_t volatile gotsig;
608} ANSIG;
609
610static ANSIG *signals;
611static int signalmax;
612
613static int sigpipe [2];
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616
617static void
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624
625 ++base;
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1162fd_intern (int fd)
682{ 1163{
683#ifdef _WIN32 1164#ifdef _WIN32
684 int arg = 1; 1165 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
686#else 1167#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1169 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1170#endif
690} 1171}
691 1172
1173/*****************************************************************************/
1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
1336static void noinline
1337evpipe_init (EV_P)
1338{
1339 if (!ev_is_active (&pipe_w))
1340 {
1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
1347 {
1348 evpipe [0] = -1;
1349 fd_intern (evfd); /* doing it twice doesn't hurt */
1350 ev_io_set (&pipe_w, evfd, EV_READ);
1351 }
1352 else
1353# endif
1354 {
1355 while (pipe (evpipe))
1356 ev_syserr ("(libev) error creating signal/async pipe");
1357
1358 fd_intern (evpipe [0]);
1359 fd_intern (evpipe [1]);
1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1361 }
1362
1363 ev_io_start (EV_A_ &pipe_w);
1364 ev_unref (EV_A); /* watcher should not keep loop alive */
1365 }
1366}
1367
1368inline_size void
1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1370{
1371 if (!*flag)
1372 {
1373 int old_errno = errno; /* save errno because write might clobber it */
1374 char dummy;
1375
1376 *flag = 1;
1377
1378#if EV_USE_EVENTFD
1379 if (evfd >= 0)
1380 {
1381 uint64_t counter = 1;
1382 write (evfd, &counter, sizeof (uint64_t));
1383 }
1384 else
1385#endif
1386 /* win32 people keep sending patches that change this write() to send() */
1387 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1388 /* so when you think this write should be a send instead, please find out */
1389 /* where your send() is from - it's definitely not the microsoft send, and */
1390 /* tell me. thank you. */
1391 write (evpipe [1], &dummy, 1);
1392
1393 errno = old_errno;
1394 }
1395}
1396
1397/* called whenever the libev signal pipe */
1398/* got some events (signal, async) */
692static void 1399static void
693siginit (EV_P) 1400pipecb (EV_P_ ev_io *iow, int revents)
694{ 1401{
695 fd_intern (sigpipe [0]); 1402 int i;
696 fd_intern (sigpipe [1]);
697 1403
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1404#if EV_USE_EVENTFD
699 ev_io_start (EV_A_ &sigev); 1405 if (evfd >= 0)
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1406 {
1407 uint64_t counter;
1408 read (evfd, &counter, sizeof (uint64_t));
1409 }
1410 else
1411#endif
1412 {
1413 char dummy;
1414 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1415 read (evpipe [0], &dummy, 1);
1416 }
1417
1418#if EV_SIGNAL_ENABLE
1419 if (sig_pending)
1420 {
1421 sig_pending = 0;
1422
1423 for (i = EV_NSIG - 1; i--; )
1424 if (expect_false (signals [i].pending))
1425 ev_feed_signal_event (EV_A_ i + 1);
1426 }
1427#endif
1428
1429#if EV_ASYNC_ENABLE
1430 if (async_pending)
1431 {
1432 async_pending = 0;
1433
1434 for (i = asynccnt; i--; )
1435 if (asyncs [i]->sent)
1436 {
1437 asyncs [i]->sent = 0;
1438 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1439 }
1440 }
1441#endif
701} 1442}
702 1443
703/*****************************************************************************/ 1444/*****************************************************************************/
704 1445
705static struct ev_child *childs [PID_HASHSIZE]; 1446void
1447ev_feed_signal (int signum)
1448{
1449#if EV_MULTIPLICITY
1450 EV_P = signals [signum - 1].loop;
706 1451
1452 if (!EV_A)
1453 return;
1454#endif
1455
1456 signals [signum - 1].pending = 1;
1457 evpipe_write (EV_A_ &sig_pending);
1458}
1459
1460static void
1461ev_sighandler (int signum)
1462{
707#ifndef _WIN32 1463#ifdef _WIN32
1464 signal (signum, ev_sighandler);
1465#endif
708 1466
1467 ev_feed_signal (signum);
1468}
1469
1470void noinline
1471ev_feed_signal_event (EV_P_ int signum)
1472{
1473 WL w;
1474
1475 if (expect_false (signum <= 0 || signum > EV_NSIG))
1476 return;
1477
1478 --signum;
1479
1480#if EV_MULTIPLICITY
1481 /* it is permissible to try to feed a signal to the wrong loop */
1482 /* or, likely more useful, feeding a signal nobody is waiting for */
1483
1484 if (expect_false (signals [signum].loop != EV_A))
1485 return;
1486#endif
1487
1488 signals [signum].pending = 0;
1489
1490 for (w = signals [signum].head; w; w = w->next)
1491 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1492}
1493
1494#if EV_USE_SIGNALFD
1495static void
1496sigfdcb (EV_P_ ev_io *iow, int revents)
1497{
1498 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1499
1500 for (;;)
1501 {
1502 ssize_t res = read (sigfd, si, sizeof (si));
1503
1504 /* not ISO-C, as res might be -1, but works with SuS */
1505 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1506 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1507
1508 if (res < (ssize_t)sizeof (si))
1509 break;
1510 }
1511}
1512#endif
1513
1514#endif
1515
1516/*****************************************************************************/
1517
1518#if EV_CHILD_ENABLE
1519static WL childs [EV_PID_HASHSIZE];
1520
709static struct ev_signal childev; 1521static ev_signal childev;
1522
1523#ifndef WIFCONTINUED
1524# define WIFCONTINUED(status) 0
1525#endif
1526
1527/* handle a single child status event */
1528inline_speed void
1529child_reap (EV_P_ int chain, int pid, int status)
1530{
1531 ev_child *w;
1532 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1533
1534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1535 {
1536 if ((w->pid == pid || !w->pid)
1537 && (!traced || (w->flags & 1)))
1538 {
1539 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1540 w->rpid = pid;
1541 w->rstatus = status;
1542 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1543 }
1544 }
1545}
710 1546
711#ifndef WCONTINUED 1547#ifndef WCONTINUED
712# define WCONTINUED 0 1548# define WCONTINUED 0
713#endif 1549#endif
714 1550
1551/* called on sigchld etc., calls waitpid */
715static void 1552static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1553childcb (EV_P_ ev_signal *sw, int revents)
732{ 1554{
733 int pid, status; 1555 int pid, status;
734 1556
1557 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1558 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1559 if (!WCONTINUED
1560 || errno != EINVAL
1561 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1562 return;
1563
737 /* make sure we are called again until all childs have been reaped */ 1564 /* make sure we are called again until all children have been reaped */
1565 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1566 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1567
740 child_reap (EV_A_ sw, pid, pid, status); 1568 child_reap (EV_A_ pid, pid, status);
1569 if ((EV_PID_HASHSIZE) > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1570 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1571}
744 1572
745#endif 1573#endif
746 1574
747/*****************************************************************************/ 1575/*****************************************************************************/
748 1576
1577#if EV_USE_IOCP
1578# include "ev_iocp.c"
1579#endif
749#if EV_USE_PORT 1580#if EV_USE_PORT
750# include "ev_port.c" 1581# include "ev_port.c"
751#endif 1582#endif
752#if EV_USE_KQUEUE 1583#if EV_USE_KQUEUE
753# include "ev_kqueue.c" 1584# include "ev_kqueue.c"
773{ 1604{
774 return EV_VERSION_MINOR; 1605 return EV_VERSION_MINOR;
775} 1606}
776 1607
777/* return true if we are running with elevated privileges and should ignore env variables */ 1608/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1609int inline_size
779enable_secure (void) 1610enable_secure (void)
780{ 1611{
781#ifdef _WIN32 1612#ifdef _WIN32
782 return 0; 1613 return 0;
783#else 1614#else
785 || getgid () != getegid (); 1616 || getgid () != getegid ();
786#endif 1617#endif
787} 1618}
788 1619
789unsigned int 1620unsigned int
1621ev_supported_backends (void)
1622{
1623 unsigned int flags = 0;
1624
1625 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1626 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1627 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1628 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1629 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1630
1631 return flags;
1632}
1633
1634unsigned int
1635ev_recommended_backends (void)
1636{
1637 unsigned int flags = ev_supported_backends ();
1638
1639#ifndef __NetBSD__
1640 /* kqueue is borked on everything but netbsd apparently */
1641 /* it usually doesn't work correctly on anything but sockets and pipes */
1642 flags &= ~EVBACKEND_KQUEUE;
1643#endif
1644#ifdef __APPLE__
1645 /* only select works correctly on that "unix-certified" platform */
1646 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1647 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1648#endif
1649#ifdef __FreeBSD__
1650 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1651#endif
1652
1653 return flags;
1654}
1655
1656unsigned int
1657ev_embeddable_backends (void)
1658{
1659 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1660
1661 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1662 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1663 flags &= ~EVBACKEND_EPOLL;
1664
1665 return flags;
1666}
1667
1668unsigned int
1669ev_backend (EV_P)
1670{
1671 return backend;
1672}
1673
1674#if EV_FEATURE_API
1675unsigned int
1676ev_iteration (EV_P)
1677{
1678 return loop_count;
1679}
1680
1681unsigned int
790ev_method (EV_P) 1682ev_depth (EV_P)
791{ 1683{
792 return method; 1684 return loop_depth;
793} 1685}
794 1686
795static void 1687void
1688ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1689{
1690 io_blocktime = interval;
1691}
1692
1693void
1694ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1695{
1696 timeout_blocktime = interval;
1697}
1698
1699void
1700ev_set_userdata (EV_P_ void *data)
1701{
1702 userdata = data;
1703}
1704
1705void *
1706ev_userdata (EV_P)
1707{
1708 return userdata;
1709}
1710
1711void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1712{
1713 invoke_cb = invoke_pending_cb;
1714}
1715
1716void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1717{
1718 release_cb = release;
1719 acquire_cb = acquire;
1720}
1721#endif
1722
1723/* initialise a loop structure, must be zero-initialised */
1724static void noinline
796loop_init (EV_P_ unsigned int flags) 1725loop_init (EV_P_ unsigned int flags)
797{ 1726{
798 if (!method) 1727 if (!backend)
799 { 1728 {
1729 origflags = flags;
1730
1731#if EV_USE_REALTIME
1732 if (!have_realtime)
1733 {
1734 struct timespec ts;
1735
1736 if (!clock_gettime (CLOCK_REALTIME, &ts))
1737 have_realtime = 1;
1738 }
1739#endif
1740
800#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
1742 if (!have_monotonic)
1743 {
1744 struct timespec ts;
1745
1746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1747 have_monotonic = 1;
1748 }
1749#endif
1750
1751 /* pid check not overridable via env */
1752#ifndef _WIN32
1753 if (flags & EVFLAG_FORKCHECK)
1754 curpid = getpid ();
1755#endif
1756
1757 if (!(flags & EVFLAG_NOENV)
1758 && !enable_secure ()
1759 && getenv ("LIBEV_FLAGS"))
1760 flags = atoi (getenv ("LIBEV_FLAGS"));
1761
1762 ev_rt_now = ev_time ();
1763 mn_now = get_clock ();
1764 now_floor = mn_now;
1765 rtmn_diff = ev_rt_now - mn_now;
1766#if EV_FEATURE_API
1767 invoke_cb = ev_invoke_pending;
1768#endif
1769
1770 io_blocktime = 0.;
1771 timeout_blocktime = 0.;
1772 backend = 0;
1773 backend_fd = -1;
1774 sig_pending = 0;
1775#if EV_ASYNC_ENABLE
1776 async_pending = 0;
1777#endif
1778#if EV_USE_INOTIFY
1779 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1780#endif
1781#if EV_USE_SIGNALFD
1782 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1783#endif
1784
1785 if (!(flags & EVBACKEND_MASK))
1786 flags |= ev_recommended_backends ();
1787
1788#if EV_USE_IOCP
1789 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1790#endif
1791#if EV_USE_PORT
1792 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1793#endif
1794#if EV_USE_KQUEUE
1795 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1796#endif
1797#if EV_USE_EPOLL
1798 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1799#endif
1800#if EV_USE_POLL
1801 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1802#endif
1803#if EV_USE_SELECT
1804 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1805#endif
1806
1807 ev_prepare_init (&pending_w, pendingcb);
1808
1809#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1810 ev_init (&pipe_w, pipecb);
1811 ev_set_priority (&pipe_w, EV_MAXPRI);
1812#endif
1813 }
1814}
1815
1816/* free up a loop structure */
1817void
1818ev_loop_destroy (EV_P)
1819{
1820 int i;
1821
1822#if EV_MULTIPLICITY
1823 /* mimic free (0) */
1824 if (!EV_A)
1825 return;
1826#endif
1827
1828#if EV_CLEANUP_ENABLE
1829 /* queue cleanup watchers (and execute them) */
1830 if (expect_false (cleanupcnt))
1831 {
1832 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1833 EV_INVOKE_PENDING;
1834 }
1835#endif
1836
1837#if EV_CHILD_ENABLE
1838 if (ev_is_active (&childev))
1839 {
1840 ev_ref (EV_A); /* child watcher */
1841 ev_signal_stop (EV_A_ &childev);
1842 }
1843#endif
1844
1845 if (ev_is_active (&pipe_w))
1846 {
1847 /*ev_ref (EV_A);*/
1848 /*ev_io_stop (EV_A_ &pipe_w);*/
1849
1850#if EV_USE_EVENTFD
1851 if (evfd >= 0)
1852 close (evfd);
1853#endif
1854
1855 if (evpipe [0] >= 0)
1856 {
1857 EV_WIN32_CLOSE_FD (evpipe [0]);
1858 EV_WIN32_CLOSE_FD (evpipe [1]);
1859 }
1860 }
1861
1862#if EV_USE_SIGNALFD
1863 if (ev_is_active (&sigfd_w))
1864 close (sigfd);
1865#endif
1866
1867#if EV_USE_INOTIFY
1868 if (fs_fd >= 0)
1869 close (fs_fd);
1870#endif
1871
1872 if (backend_fd >= 0)
1873 close (backend_fd);
1874
1875#if EV_USE_IOCP
1876 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1877#endif
1878#if EV_USE_PORT
1879 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1880#endif
1881#if EV_USE_KQUEUE
1882 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1883#endif
1884#if EV_USE_EPOLL
1885 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1886#endif
1887#if EV_USE_POLL
1888 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1889#endif
1890#if EV_USE_SELECT
1891 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1892#endif
1893
1894 for (i = NUMPRI; i--; )
1895 {
1896 array_free (pending, [i]);
1897#if EV_IDLE_ENABLE
1898 array_free (idle, [i]);
1899#endif
1900 }
1901
1902 ev_free (anfds); anfds = 0; anfdmax = 0;
1903
1904 /* have to use the microsoft-never-gets-it-right macro */
1905 array_free (rfeed, EMPTY);
1906 array_free (fdchange, EMPTY);
1907 array_free (timer, EMPTY);
1908#if EV_PERIODIC_ENABLE
1909 array_free (periodic, EMPTY);
1910#endif
1911#if EV_FORK_ENABLE
1912 array_free (fork, EMPTY);
1913#endif
1914#if EV_CLEANUP_ENABLE
1915 array_free (cleanup, EMPTY);
1916#endif
1917 array_free (prepare, EMPTY);
1918 array_free (check, EMPTY);
1919#if EV_ASYNC_ENABLE
1920 array_free (async, EMPTY);
1921#endif
1922
1923 backend = 0;
1924
1925#if EV_MULTIPLICITY
1926 if (ev_is_default_loop (EV_A))
1927#endif
1928 ev_default_loop_ptr = 0;
1929#if EV_MULTIPLICITY
1930 else
1931 ev_free (EV_A);
1932#endif
1933}
1934
1935#if EV_USE_INOTIFY
1936inline_size void infy_fork (EV_P);
1937#endif
1938
1939inline_size void
1940loop_fork (EV_P)
1941{
1942#if EV_USE_PORT
1943 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1944#endif
1945#if EV_USE_KQUEUE
1946 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1947#endif
1948#if EV_USE_EPOLL
1949 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1950#endif
1951#if EV_USE_INOTIFY
1952 infy_fork (EV_A);
1953#endif
1954
1955 if (ev_is_active (&pipe_w))
1956 {
1957 /* this "locks" the handlers against writing to the pipe */
1958 /* while we modify the fd vars */
1959 sig_pending = 1;
1960#if EV_ASYNC_ENABLE
1961 async_pending = 1;
1962#endif
1963
1964 ev_ref (EV_A);
1965 ev_io_stop (EV_A_ &pipe_w);
1966
1967#if EV_USE_EVENTFD
1968 if (evfd >= 0)
1969 close (evfd);
1970#endif
1971
1972 if (evpipe [0] >= 0)
1973 {
1974 EV_WIN32_CLOSE_FD (evpipe [0]);
1975 EV_WIN32_CLOSE_FD (evpipe [1]);
1976 }
1977
1978#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1979 evpipe_init (EV_A);
1980 /* now iterate over everything, in case we missed something */
1981 pipecb (EV_A_ &pipe_w, EV_READ);
1982#endif
1983 }
1984
1985 postfork = 0;
1986}
1987
1988#if EV_MULTIPLICITY
1989
1990struct ev_loop *
1991ev_loop_new (unsigned int flags)
1992{
1993 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1994
1995 memset (EV_A, 0, sizeof (struct ev_loop));
1996 loop_init (EV_A_ flags);
1997
1998 if (ev_backend (EV_A))
1999 return EV_A;
2000
2001 ev_free (EV_A);
2002 return 0;
2003}
2004
2005#endif /* multiplicity */
2006
2007#if EV_VERIFY
2008static void noinline
2009verify_watcher (EV_P_ W w)
2010{
2011 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2012
2013 if (w->pending)
2014 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2015}
2016
2017static void noinline
2018verify_heap (EV_P_ ANHE *heap, int N)
2019{
2020 int i;
2021
2022 for (i = HEAP0; i < N + HEAP0; ++i)
2023 {
2024 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2025 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2026 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2027
2028 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2029 }
2030}
2031
2032static void noinline
2033array_verify (EV_P_ W *ws, int cnt)
2034{
2035 while (cnt--)
2036 {
2037 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2038 verify_watcher (EV_A_ ws [cnt]);
2039 }
2040}
2041#endif
2042
2043#if EV_FEATURE_API
2044void
2045ev_verify (EV_P)
2046{
2047#if EV_VERIFY
2048 int i;
2049 WL w;
2050
2051 assert (activecnt >= -1);
2052
2053 assert (fdchangemax >= fdchangecnt);
2054 for (i = 0; i < fdchangecnt; ++i)
2055 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2056
2057 assert (anfdmax >= 0);
2058 for (i = 0; i < anfdmax; ++i)
2059 for (w = anfds [i].head; w; w = w->next)
801 { 2060 {
802 struct timespec ts; 2061 verify_watcher (EV_A_ (W)w);
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2062 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
804 have_monotonic = 1; 2063 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
805 } 2064 }
806#endif
807 2065
808 ev_rt_now = ev_time (); 2066 assert (timermax >= timercnt);
809 mn_now = get_clock (); 2067 verify_heap (EV_A_ timers, timercnt);
810 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now;
812 2068
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2069#if EV_PERIODIC_ENABLE
814 flags = atoi (getenv ("LIBEV_FLAGS")); 2070 assert (periodicmax >= periodiccnt);
815 2071 verify_heap (EV_A_ periodics, periodiccnt);
816 if (!(flags & 0x0000ffff))
817 flags |= 0x0000ffff;
818
819 method = 0;
820#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
822#endif
823#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
825#endif
826#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
828#endif
829#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
831#endif
832#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
834#endif
835
836 ev_init (&sigev, sigcb);
837 ev_set_priority (&sigev, EV_MAXPRI);
838 }
839}
840
841static void
842loop_destroy (EV_P)
843{
844 int i;
845
846#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
848#endif
849#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
851#endif
852#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
854#endif
855#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
857#endif
858#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
860#endif 2072#endif
861 2073
862 for (i = NUMPRI; i--; ) 2074 for (i = NUMPRI; i--; )
863 array_free (pending, [i]); 2075 {
2076 assert (pendingmax [i] >= pendingcnt [i]);
2077#if EV_IDLE_ENABLE
2078 assert (idleall >= 0);
2079 assert (idlemax [i] >= idlecnt [i]);
2080 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2081#endif
2082 }
864 2083
865 /* have to use the microsoft-never-gets-it-right macro */ 2084#if EV_FORK_ENABLE
866 array_free (fdchange, EMPTY0); 2085 assert (forkmax >= forkcnt);
867 array_free (timer, EMPTY0); 2086 array_verify (EV_A_ (W *)forks, forkcnt);
868#if EV_PERIODICS 2087#endif
869 array_free (periodic, EMPTY0); 2088
2089#if EV_CLEANUP_ENABLE
2090 assert (cleanupmax >= cleanupcnt);
2091 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2092#endif
2093
2094#if EV_ASYNC_ENABLE
2095 assert (asyncmax >= asynccnt);
2096 array_verify (EV_A_ (W *)asyncs, asynccnt);
2097#endif
2098
2099#if EV_PREPARE_ENABLE
2100 assert (preparemax >= preparecnt);
2101 array_verify (EV_A_ (W *)prepares, preparecnt);
2102#endif
2103
2104#if EV_CHECK_ENABLE
2105 assert (checkmax >= checkcnt);
2106 array_verify (EV_A_ (W *)checks, checkcnt);
2107#endif
2108
2109# if 0
2110#if EV_CHILD_ENABLE
2111 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2112 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2113#endif
870#endif 2114# endif
871 array_free (idle, EMPTY0);
872 array_free (prepare, EMPTY0);
873 array_free (check, EMPTY0);
874
875 method = 0;
876}
877
878static void
879loop_fork (EV_P)
880{
881#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A);
883#endif 2115#endif
884#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
886#endif
887#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
889#endif
890
891 if (ev_is_active (&sigev))
892 {
893 /* default loop */
894
895 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev);
897 close (sigpipe [0]);
898 close (sigpipe [1]);
899
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A);
904 }
905
906 postfork = 0;
907} 2116}
2117#endif
908 2118
909#if EV_MULTIPLICITY 2119#if EV_MULTIPLICITY
910struct ev_loop * 2120struct ev_loop *
911ev_loop_new (unsigned int flags)
912{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914
915 memset (loop, 0, sizeof (struct ev_loop));
916
917 loop_init (EV_A_ flags);
918
919 if (ev_method (EV_A))
920 return loop;
921
922 return 0;
923}
924
925void
926ev_loop_destroy (EV_P)
927{
928 loop_destroy (EV_A);
929 ev_free (loop);
930}
931
932void
933ev_loop_fork (EV_P)
934{
935 postfork = 1;
936}
937
938#endif
939
940#if EV_MULTIPLICITY
941struct ev_loop *
942ev_default_loop_init (unsigned int flags)
943#else 2121#else
944int 2122int
2123#endif
945ev_default_loop (unsigned int flags) 2124ev_default_loop (unsigned int flags)
946#endif
947{ 2125{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 2126 if (!ev_default_loop_ptr)
953 { 2127 {
954#if EV_MULTIPLICITY 2128#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2129 EV_P = ev_default_loop_ptr = &default_loop_struct;
956#else 2130#else
957 ev_default_loop_ptr = 1; 2131 ev_default_loop_ptr = 1;
958#endif 2132#endif
959 2133
960 loop_init (EV_A_ flags); 2134 loop_init (EV_A_ flags);
961 2135
962 if (ev_method (EV_A)) 2136 if (ev_backend (EV_A))
963 { 2137 {
964 siginit (EV_A); 2138#if EV_CHILD_ENABLE
965
966#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 2139 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 2140 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 2141 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2142 ev_unref (EV_A); /* child watcher should not keep loop alive */
971#endif 2143#endif
976 2148
977 return ev_default_loop_ptr; 2149 return ev_default_loop_ptr;
978} 2150}
979 2151
980void 2152void
981ev_default_destroy (void) 2153ev_loop_fork (EV_P)
982{ 2154{
983#if EV_MULTIPLICITY 2155 postfork = 1; /* must be in line with ev_default_fork */
984 struct ev_loop *loop = ev_default_loop_ptr;
985#endif
986
987#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev);
990#endif
991
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A);
999}
1000
1001void
1002ev_default_fork (void)
1003{
1004#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif
1007
1008 if (method)
1009 postfork = 1;
1010} 2156}
1011 2157
1012/*****************************************************************************/ 2158/*****************************************************************************/
1013 2159
1014static int 2160void
1015any_pending (EV_P) 2161ev_invoke (EV_P_ void *w, int revents)
2162{
2163 EV_CB_INVOKE ((W)w, revents);
2164}
2165
2166unsigned int
2167ev_pending_count (EV_P)
1016{ 2168{
1017 int pri; 2169 int pri;
2170 unsigned int count = 0;
1018 2171
1019 for (pri = NUMPRI; pri--; ) 2172 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri]) 2173 count += pendingcnt [pri];
1021 return 1;
1022 2174
1023 return 0; 2175 return count;
1024} 2176}
1025 2177
1026inline void 2178void noinline
1027call_pending (EV_P) 2179ev_invoke_pending (EV_P)
1028{ 2180{
1029 int pri; 2181 int pri;
1030 2182
1031 for (pri = NUMPRI; pri--; ) 2183 for (pri = NUMPRI; pri--; )
1032 while (pendingcnt [pri]) 2184 while (pendingcnt [pri])
1033 { 2185 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2186 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035 2187
1036 if (expect_true (p->w))
1037 {
1038 p->w->pending = 0; 2188 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 2189 EV_CB_INVOKE (p->w, p->events);
1040 } 2190 EV_FREQUENT_CHECK;
1041 } 2191 }
1042} 2192}
1043 2193
2194#if EV_IDLE_ENABLE
2195/* make idle watchers pending. this handles the "call-idle */
2196/* only when higher priorities are idle" logic */
1044inline void 2197inline_size void
2198idle_reify (EV_P)
2199{
2200 if (expect_false (idleall))
2201 {
2202 int pri;
2203
2204 for (pri = NUMPRI; pri--; )
2205 {
2206 if (pendingcnt [pri])
2207 break;
2208
2209 if (idlecnt [pri])
2210 {
2211 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2212 break;
2213 }
2214 }
2215 }
2216}
2217#endif
2218
2219/* make timers pending */
2220inline_size void
1045timers_reify (EV_P) 2221timers_reify (EV_P)
1046{ 2222{
2223 EV_FREQUENT_CHECK;
2224
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 2225 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 2226 {
1049 struct ev_timer *w = timers [0]; 2227 do
1050
1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1052
1053 /* first reschedule or stop timer */
1054 if (w->repeat)
1055 { 2228 {
2229 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2230
2231 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2232
2233 /* first reschedule or stop timer */
2234 if (w->repeat)
2235 {
2236 ev_at (w) += w->repeat;
2237 if (ev_at (w) < mn_now)
2238 ev_at (w) = mn_now;
2239
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2240 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 2241
1058 ((WT)w)->at += w->repeat; 2242 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 2243 downheap (timers, timercnt, HEAP0);
2244 }
2245 else
2246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2247
2248 EV_FREQUENT_CHECK;
2249 feed_reverse (EV_A_ (W)w);
1063 } 2250 }
1064 else 2251 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 2252
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2253 feed_reverse_done (EV_A_ EV_TIMER);
2254 }
2255}
2256
2257#if EV_PERIODIC_ENABLE
2258
2259static void noinline
2260periodic_recalc (EV_P_ ev_periodic *w)
2261{
2262 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2263 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2264
2265 /* the above almost always errs on the low side */
2266 while (at <= ev_rt_now)
1068 } 2267 {
1069} 2268 ev_tstamp nat = at + w->interval;
1070 2269
1071#if EV_PERIODICS 2270 /* when resolution fails us, we use ev_rt_now */
2271 if (expect_false (nat == at))
2272 {
2273 at = ev_rt_now;
2274 break;
2275 }
2276
2277 at = nat;
2278 }
2279
2280 ev_at (w) = at;
2281}
2282
2283/* make periodics pending */
1072inline void 2284inline_size void
1073periodics_reify (EV_P) 2285periodics_reify (EV_P)
1074{ 2286{
2287 EV_FREQUENT_CHECK;
2288
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2289 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 2290 {
1077 struct ev_periodic *w = periodics [0]; 2291 int feed_count = 0;
1078 2292
2293 do
2294 {
2295 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2296
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2297 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 2298
1081 /* first reschedule or stop timer */ 2299 /* first reschedule or stop timer */
2300 if (w->reschedule_cb)
2301 {
2302 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2303
2304 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2305
2306 ANHE_at_cache (periodics [HEAP0]);
2307 downheap (periodics, periodiccnt, HEAP0);
2308 }
2309 else if (w->interval)
2310 {
2311 periodic_recalc (EV_A_ w);
2312 ANHE_at_cache (periodics [HEAP0]);
2313 downheap (periodics, periodiccnt, HEAP0);
2314 }
2315 else
2316 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
2320 }
2321 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2322
2323 feed_reverse_done (EV_A_ EV_PERIODIC);
2324 }
2325}
2326
2327/* simply recalculate all periodics */
2328/* TODO: maybe ensure that at least one event happens when jumping forward? */
2329static void noinline
2330periodics_reschedule (EV_P)
2331{
2332 int i;
2333
2334 /* adjust periodics after time jump */
2335 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2336 {
2337 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2338
1082 if (w->reschedule_cb) 2339 if (w->reschedule_cb)
2340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2341 else if (w->interval)
2342 periodic_recalc (EV_A_ w);
2343
2344 ANHE_at_cache (periodics [i]);
2345 }
2346
2347 reheap (periodics, periodiccnt);
2348}
2349#endif
2350
2351/* adjust all timers by a given offset */
2352static void noinline
2353timers_reschedule (EV_P_ ev_tstamp adjust)
2354{
2355 int i;
2356
2357 for (i = 0; i < timercnt; ++i)
2358 {
2359 ANHE *he = timers + i + HEAP0;
2360 ANHE_w (*he)->at += adjust;
2361 ANHE_at_cache (*he);
2362 }
2363}
2364
2365/* fetch new monotonic and realtime times from the kernel */
2366/* also detect if there was a timejump, and act accordingly */
2367inline_speed void
2368time_update (EV_P_ ev_tstamp max_block)
2369{
2370#if EV_USE_MONOTONIC
2371 if (expect_true (have_monotonic))
2372 {
2373 int i;
2374 ev_tstamp odiff = rtmn_diff;
2375
2376 mn_now = get_clock ();
2377
2378 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2379 /* interpolate in the meantime */
2380 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 2381 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2382 ev_rt_now = rtmn_diff + mn_now;
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2383 return;
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 } 2384 }
1088 else if (w->interval)
1089 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0);
1093 }
1094 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 2385
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 }
1099}
1100
1101static void
1102periodics_reschedule (EV_P)
1103{
1104 int i;
1105
1106 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i)
1108 {
1109 struct ev_periodic *w = periodics [i];
1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock ();
1127
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 {
1130 ev_rt_now = rtmn_diff + mn_now;
1131 return 0;
1132 }
1133 else
1134 {
1135 now_floor = mn_now; 2386 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 2387 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 2388
1141inline void 2389 /* loop a few times, before making important decisions.
1142time_update (EV_P) 2390 * on the choice of "4": one iteration isn't enough,
1143{ 2391 * in case we get preempted during the calls to
1144 int i; 2392 * ev_time and get_clock. a second call is almost guaranteed
1145 2393 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 2394 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 2395 * in the unlikely event of having been preempted here.
1148 { 2396 */
1149 if (time_update_monotonic (EV_A)) 2397 for (i = 4; --i; )
1150 { 2398 {
1151 ev_tstamp odiff = rtmn_diff; 2399 ev_tstamp diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 2400 rtmn_diff = ev_rt_now - mn_now;
1156 2401
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2402 diff = odiff - rtmn_diff;
2403
2404 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1158 return; /* all is well */ 2405 return; /* all is well */
1159 2406
1160 ev_rt_now = ev_time (); 2407 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 2408 mn_now = get_clock ();
1162 now_floor = mn_now; 2409 now_floor = mn_now;
1163 } 2410 }
1164 2411
2412 /* no timer adjustment, as the monotonic clock doesn't jump */
2413 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1165# if EV_PERIODICS 2414# if EV_PERIODIC_ENABLE
2415 periodics_reschedule (EV_A);
2416# endif
2417 }
2418 else
2419#endif
2420 {
2421 ev_rt_now = ev_time ();
2422
2423 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2424 {
2425 /* adjust timers. this is easy, as the offset is the same for all of them */
2426 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2427#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1167# endif 2429#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 2430 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 2431
1188 mn_now = ev_rt_now; 2432 mn_now = ev_rt_now;
1189 } 2433 }
1190} 2434}
1191 2435
1192void 2436void
1193ev_ref (EV_P)
1194{
1195 ++activecnt;
1196}
1197
1198void
1199ev_unref (EV_P)
1200{
1201 --activecnt;
1202}
1203
1204static int loop_done;
1205
1206void
1207ev_loop (EV_P_ int flags) 2437ev_run (EV_P_ int flags)
1208{ 2438{
1209 double block; 2439#if EV_FEATURE_API
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2440 ++loop_depth;
2441#endif
1211 2442
1212 while (activecnt) 2443 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2444
2445 loop_done = EVBREAK_CANCEL;
2446
2447 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2448
2449 do
1213 { 2450 {
2451#if EV_VERIFY >= 2
2452 ev_verify (EV_A);
2453#endif
2454
2455#ifndef _WIN32
2456 if (expect_false (curpid)) /* penalise the forking check even more */
2457 if (expect_false (getpid () != curpid))
2458 {
2459 curpid = getpid ();
2460 postfork = 1;
2461 }
2462#endif
2463
2464#if EV_FORK_ENABLE
2465 /* we might have forked, so queue fork handlers */
2466 if (expect_false (postfork))
2467 if (forkcnt)
2468 {
2469 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2470 EV_INVOKE_PENDING;
2471 }
2472#endif
2473
2474#if EV_PREPARE_ENABLE
1214 /* queue check watchers (and execute them) */ 2475 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 2476 if (expect_false (preparecnt))
1216 { 2477 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2478 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 2479 EV_INVOKE_PENDING;
1219 } 2480 }
2481#endif
2482
2483 if (expect_false (loop_done))
2484 break;
1220 2485
1221 /* we might have forked, so reify kernel state if necessary */ 2486 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 2487 if (expect_false (postfork))
1223 loop_fork (EV_A); 2488 loop_fork (EV_A);
1224 2489
1225 /* update fd-related kernel structures */ 2490 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 2491 fd_reify (EV_A);
1227 2492
1228 /* calculate blocking time */ 2493 /* calculate blocking time */
2494 {
2495 ev_tstamp waittime = 0.;
2496 ev_tstamp sleeptime = 0.;
1229 2497
1230 /* we only need this for !monotonic clock or timers, but as we basically 2498 /* remember old timestamp for io_blocktime calculation */
1231 always have timers, we just calculate it always */ 2499 ev_tstamp prev_mn_now = mn_now;
1232#if EV_USE_MONOTONIC 2500
1233 if (expect_true (have_monotonic)) 2501 /* update time to cancel out callback processing overhead */
1234 time_update_monotonic (EV_A); 2502 time_update (EV_A_ 1e100);
1235 else 2503
1236#endif 2504 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1237 { 2505 {
1238 ev_rt_now = ev_time ();
1239 mn_now = ev_rt_now;
1240 }
1241
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 2506 waittime = MAX_BLOCKTIME;
1247 2507
1248 if (timercnt) 2508 if (timercnt)
1249 { 2509 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2510 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_mintime;
1251 if (block > to) block = to; 2511 if (waittime > to) waittime = to;
1252 } 2512 }
1253 2513
1254#if EV_PERIODICS 2514#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 2515 if (periodiccnt)
1256 { 2516 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2517 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_mintime;
1258 if (block > to) block = to; 2518 if (waittime > to) waittime = to;
1259 } 2519 }
1260#endif 2520#endif
1261 2521
1262 if (expect_false (block < 0.)) block = 0.; 2522 /* don't let timeouts decrease the waittime below timeout_blocktime */
2523 if (expect_false (waittime < timeout_blocktime))
2524 waittime = timeout_blocktime;
2525
2526 /* extra check because io_blocktime is commonly 0 */
2527 if (expect_false (io_blocktime))
2528 {
2529 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2530
2531 if (sleeptime > waittime - backend_mintime)
2532 sleeptime = waittime - backend_mintime;
2533
2534 if (expect_true (sleeptime > 0.))
2535 {
2536 ev_sleep (sleeptime);
2537 waittime -= sleeptime;
2538 }
2539 }
1263 } 2540 }
1264 2541
1265 method_poll (EV_A_ block); 2542#if EV_FEATURE_API
2543 ++loop_count;
2544#endif
2545 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2546 backend_poll (EV_A_ waittime);
2547 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1266 2548
1267 /* update ev_rt_now, do magic */ 2549 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 2550 time_update (EV_A_ waittime + sleeptime);
2551 }
1269 2552
1270 /* queue pending timers and reschedule them */ 2553 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 2554 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 2555#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 2556 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 2557#endif
1275 2558
2559#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 2560 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 2561 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2562#endif
1279 2563
2564#if EV_CHECK_ENABLE
1280 /* queue check watchers, to be executed first */ 2565 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 2566 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2567 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2568#endif
1283 2569
1284 call_pending (EV_A); 2570 EV_INVOKE_PENDING;
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 2571 }
2572 while (expect_true (
2573 activecnt
2574 && !loop_done
2575 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2576 ));
1289 2577
1290 if (loop_done != 2) 2578 if (loop_done == EVBREAK_ONE)
1291 loop_done = 0; 2579 loop_done = EVBREAK_CANCEL;
1292}
1293 2580
2581#if EV_FEATURE_API
2582 --loop_depth;
2583#endif
2584}
2585
1294void 2586void
1295ev_unloop (EV_P_ int how) 2587ev_break (EV_P_ int how)
1296{ 2588{
1297 loop_done = how; 2589 loop_done = how;
1298} 2590}
1299 2591
2592void
2593ev_ref (EV_P)
2594{
2595 ++activecnt;
2596}
2597
2598void
2599ev_unref (EV_P)
2600{
2601 --activecnt;
2602}
2603
2604void
2605ev_now_update (EV_P)
2606{
2607 time_update (EV_A_ 1e100);
2608}
2609
2610void
2611ev_suspend (EV_P)
2612{
2613 ev_now_update (EV_A);
2614}
2615
2616void
2617ev_resume (EV_P)
2618{
2619 ev_tstamp mn_prev = mn_now;
2620
2621 ev_now_update (EV_A);
2622 timers_reschedule (EV_A_ mn_now - mn_prev);
2623#if EV_PERIODIC_ENABLE
2624 /* TODO: really do this? */
2625 periodics_reschedule (EV_A);
2626#endif
2627}
2628
1300/*****************************************************************************/ 2629/*****************************************************************************/
2630/* singly-linked list management, used when the expected list length is short */
1301 2631
1302inline void 2632inline_size void
1303wlist_add (WL *head, WL elem) 2633wlist_add (WL *head, WL elem)
1304{ 2634{
1305 elem->next = *head; 2635 elem->next = *head;
1306 *head = elem; 2636 *head = elem;
1307} 2637}
1308 2638
1309inline void 2639inline_size void
1310wlist_del (WL *head, WL elem) 2640wlist_del (WL *head, WL elem)
1311{ 2641{
1312 while (*head) 2642 while (*head)
1313 { 2643 {
1314 if (*head == elem) 2644 if (expect_true (*head == elem))
1315 { 2645 {
1316 *head = elem->next; 2646 *head = elem->next;
1317 return; 2647 break;
1318 } 2648 }
1319 2649
1320 head = &(*head)->next; 2650 head = &(*head)->next;
1321 } 2651 }
1322} 2652}
1323 2653
2654/* internal, faster, version of ev_clear_pending */
1324inline void 2655inline_speed void
1325ev_clear_pending (EV_P_ W w) 2656clear_pending (EV_P_ W w)
1326{ 2657{
1327 if (w->pending) 2658 if (w->pending)
1328 { 2659 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2660 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1330 w->pending = 0; 2661 w->pending = 0;
1331 } 2662 }
1332} 2663}
1333 2664
2665int
2666ev_clear_pending (EV_P_ void *w)
2667{
2668 W w_ = (W)w;
2669 int pending = w_->pending;
2670
2671 if (expect_true (pending))
2672 {
2673 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2674 p->w = (W)&pending_w;
2675 w_->pending = 0;
2676 return p->events;
2677 }
2678 else
2679 return 0;
2680}
2681
1334inline void 2682inline_size void
2683pri_adjust (EV_P_ W w)
2684{
2685 int pri = ev_priority (w);
2686 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2687 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2688 ev_set_priority (w, pri);
2689}
2690
2691inline_speed void
1335ev_start (EV_P_ W w, int active) 2692ev_start (EV_P_ W w, int active)
1336{ 2693{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2694 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 2695 w->active = active;
1341 ev_ref (EV_A); 2696 ev_ref (EV_A);
1342} 2697}
1343 2698
1344inline void 2699inline_size void
1345ev_stop (EV_P_ W w) 2700ev_stop (EV_P_ W w)
1346{ 2701{
1347 ev_unref (EV_A); 2702 ev_unref (EV_A);
1348 w->active = 0; 2703 w->active = 0;
1349} 2704}
1350 2705
1351/*****************************************************************************/ 2706/*****************************************************************************/
1352 2707
1353void 2708void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 2709ev_io_start (EV_P_ ev_io *w)
1355{ 2710{
1356 int fd = w->fd; 2711 int fd = w->fd;
1357 2712
1358 if (expect_false (ev_is_active (w))) 2713 if (expect_false (ev_is_active (w)))
1359 return; 2714 return;
1360 2715
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 2716 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2717 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2718
2719 EV_FREQUENT_CHECK;
1362 2720
1363 ev_start (EV_A_ (W)w, 1); 2721 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2722 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2723 wlist_add (&anfds[fd].head, (WL)w);
1366 2724
1367 fd_change (EV_A_ fd); 2725 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1368} 2726 w->events &= ~EV__IOFDSET;
1369 2727
1370void 2728 EV_FREQUENT_CHECK;
2729}
2730
2731void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 2732ev_io_stop (EV_P_ ev_io *w)
1372{ 2733{
1373 ev_clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
1375 return; 2736 return;
1376 2737
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2738 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 2739
2740 EV_FREQUENT_CHECK;
2741
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2742 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 2743 ev_stop (EV_A_ (W)w);
1381 2744
1382 fd_change (EV_A_ w->fd); 2745 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1383}
1384 2746
1385void 2747 EV_FREQUENT_CHECK;
2748}
2749
2750void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 2751ev_timer_start (EV_P_ ev_timer *w)
1387{ 2752{
1388 if (expect_false (ev_is_active (w))) 2753 if (expect_false (ev_is_active (w)))
1389 return; 2754 return;
1390 2755
1391 ((WT)w)->at += mn_now; 2756 ev_at (w) += mn_now;
1392 2757
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2758 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 2763 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2764 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 2765 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 2766 ANHE_at_cache (timers [ev_active (w)]);
2767 upheap (timers, ev_active (w));
1399 2768
2769 EV_FREQUENT_CHECK;
2770
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2771 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 2772}
1402 2773
1403void 2774void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 2775ev_timer_stop (EV_P_ ev_timer *w)
1405{ 2776{
1406 ev_clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
1408 return; 2779 return;
1409 2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ev_active (w);
2785
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2786 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 2787
2788 --timercnt;
2789
1412 if (expect_true (((W)w)->active < timercnt--)) 2790 if (expect_true (active < timercnt + HEAP0))
1413 { 2791 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 2792 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2793 adjustheap (timers, timercnt, active);
1416 } 2794 }
2795 }
1417 2796
1418 ((WT)w)->at -= mn_now; 2797 ev_at (w) -= mn_now;
1419 2798
1420 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
1421}
1422 2800
1423void 2801 EV_FREQUENT_CHECK;
2802}
2803
2804void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 2805ev_timer_again (EV_P_ ev_timer *w)
1425{ 2806{
2807 EV_FREQUENT_CHECK;
2808
1426 if (ev_is_active (w)) 2809 if (ev_is_active (w))
1427 { 2810 {
1428 if (w->repeat) 2811 if (w->repeat)
1429 { 2812 {
1430 ((WT)w)->at = mn_now + w->repeat; 2813 ev_at (w) = mn_now + w->repeat;
2814 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2815 adjustheap (timers, timercnt, ev_active (w));
1432 } 2816 }
1433 else 2817 else
1434 ev_timer_stop (EV_A_ w); 2818 ev_timer_stop (EV_A_ w);
1435 } 2819 }
1436 else if (w->repeat) 2820 else if (w->repeat)
1437 { 2821 {
1438 w->at = w->repeat; 2822 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 2823 ev_timer_start (EV_A_ w);
1440 } 2824 }
1441}
1442 2825
2826 EV_FREQUENT_CHECK;
2827}
2828
2829ev_tstamp
2830ev_timer_remaining (EV_P_ ev_timer *w)
2831{
2832 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2833}
2834
1443#if EV_PERIODICS 2835#if EV_PERIODIC_ENABLE
1444void 2836void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 2837ev_periodic_start (EV_P_ ev_periodic *w)
1446{ 2838{
1447 if (expect_false (ev_is_active (w))) 2839 if (expect_false (ev_is_active (w)))
1448 return; 2840 return;
1449 2841
1450 if (w->reschedule_cb) 2842 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2843 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 2844 else if (w->interval)
1453 { 2845 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2846 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 2847 periodic_recalc (EV_A_ w);
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1457 } 2848 }
2849 else
2850 ev_at (w) = w->offset;
1458 2851
2852 EV_FREQUENT_CHECK;
2853
2854 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 2855 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2856 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 2857 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 2858 ANHE_at_cache (periodics [ev_active (w)]);
2859 upheap (periodics, ev_active (w));
1463 2860
2861 EV_FREQUENT_CHECK;
2862
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2863 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 2864}
1466 2865
1467void 2866void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 2867ev_periodic_stop (EV_P_ ev_periodic *w)
1469{ 2868{
1470 ev_clear_pending (EV_A_ (W)w); 2869 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 2870 if (expect_false (!ev_is_active (w)))
1472 return; 2871 return;
1473 2872
2873 EV_FREQUENT_CHECK;
2874
2875 {
2876 int active = ev_active (w);
2877
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2878 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 2879
2880 --periodiccnt;
2881
1476 if (expect_true (((W)w)->active < periodiccnt--)) 2882 if (expect_true (active < periodiccnt + HEAP0))
1477 { 2883 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2884 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2885 adjustheap (periodics, periodiccnt, active);
1480 } 2886 }
2887 }
1481 2888
1482 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
1483}
1484 2890
1485void 2891 EV_FREQUENT_CHECK;
2892}
2893
2894void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 2895ev_periodic_again (EV_P_ ev_periodic *w)
1487{ 2896{
1488 /* TODO: use adjustheap and recalculation */ 2897 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 2898 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 2899 ev_periodic_start (EV_A_ w);
1491} 2900}
1492#endif 2901#endif
1493 2902
1494void 2903#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 2904# define SA_RESTART 0
2905#endif
2906
2907#if EV_SIGNAL_ENABLE
2908
2909void noinline
2910ev_signal_start (EV_P_ ev_signal *w)
1496{ 2911{
1497 if (expect_false (ev_is_active (w))) 2912 if (expect_false (ev_is_active (w)))
1498 return; 2913 return;
1499 2914
2915 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2916
2917#if EV_MULTIPLICITY
2918 assert (("libev: a signal must not be attached to two different loops",
2919 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2920
2921 signals [w->signum - 1].loop = EV_A;
2922#endif
2923
2924 EV_FREQUENT_CHECK;
2925
2926#if EV_USE_SIGNALFD
2927 if (sigfd == -2)
2928 {
2929 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2930 if (sigfd < 0 && errno == EINVAL)
2931 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2932
2933 if (sigfd >= 0)
2934 {
2935 fd_intern (sigfd); /* doing it twice will not hurt */
2936
2937 sigemptyset (&sigfd_set);
2938
2939 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2940 ev_set_priority (&sigfd_w, EV_MAXPRI);
2941 ev_io_start (EV_A_ &sigfd_w);
2942 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2943 }
2944 }
2945
2946 if (sigfd >= 0)
2947 {
2948 /* TODO: check .head */
2949 sigaddset (&sigfd_set, w->signum);
2950 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2951
2952 signalfd (sigfd, &sigfd_set, 0);
2953 }
2954#endif
2955
1500 ev_start (EV_A_ (W)w, ++idlecnt); 2956 ev_start (EV_A_ (W)w, 1);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2957 wlist_add (&signals [w->signum - 1].head, (WL)w);
1502 idles [idlecnt - 1] = w;
1503}
1504 2958
1505void 2959 if (!((WL)w)->next)
1506ev_idle_stop (EV_P_ struct ev_idle *w) 2960# if EV_USE_SIGNALFD
2961 if (sigfd < 0) /*TODO*/
2962# endif
2963 {
2964# ifdef _WIN32
2965 evpipe_init (EV_A);
2966
2967 signal (w->signum, ev_sighandler);
2968# else
2969 struct sigaction sa;
2970
2971 evpipe_init (EV_A);
2972
2973 sa.sa_handler = ev_sighandler;
2974 sigfillset (&sa.sa_mask);
2975 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2976 sigaction (w->signum, &sa, 0);
2977
2978 if (origflags & EVFLAG_NOSIGMASK)
2979 {
2980 sigemptyset (&sa.sa_mask);
2981 sigaddset (&sa.sa_mask, w->signum);
2982 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2983 }
2984#endif
2985 }
2986
2987 EV_FREQUENT_CHECK;
2988}
2989
2990void noinline
2991ev_signal_stop (EV_P_ ev_signal *w)
1507{ 2992{
1508 ev_clear_pending (EV_A_ (W)w); 2993 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 2994 if (expect_false (!ev_is_active (w)))
1510 return; 2995 return;
1511 2996
1512 idles [((W)w)->active - 1] = idles [--idlecnt]; 2997 EV_FREQUENT_CHECK;
2998
2999 wlist_del (&signals [w->signum - 1].head, (WL)w);
1513 ev_stop (EV_A_ (W)w); 3000 ev_stop (EV_A_ (W)w);
1514}
1515 3001
3002 if (!signals [w->signum - 1].head)
3003 {
3004#if EV_MULTIPLICITY
3005 signals [w->signum - 1].loop = 0; /* unattach from signal */
3006#endif
3007#if EV_USE_SIGNALFD
3008 if (sigfd >= 0)
3009 {
3010 sigset_t ss;
3011
3012 sigemptyset (&ss);
3013 sigaddset (&ss, w->signum);
3014 sigdelset (&sigfd_set, w->signum);
3015
3016 signalfd (sigfd, &sigfd_set, 0);
3017 sigprocmask (SIG_UNBLOCK, &ss, 0);
3018 }
3019 else
3020#endif
3021 signal (w->signum, SIG_DFL);
3022 }
3023
3024 EV_FREQUENT_CHECK;
3025}
3026
3027#endif
3028
3029#if EV_CHILD_ENABLE
3030
1516void 3031void
1517ev_prepare_start (EV_P_ struct ev_prepare *w) 3032ev_child_start (EV_P_ ev_child *w)
1518{ 3033{
3034#if EV_MULTIPLICITY
3035 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3036#endif
1519 if (expect_false (ev_is_active (w))) 3037 if (expect_false (ev_is_active (w)))
1520 return; 3038 return;
1521 3039
3040 EV_FREQUENT_CHECK;
3041
1522 ev_start (EV_A_ (W)w, ++preparecnt); 3042 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3043 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1524 prepares [preparecnt - 1] = w;
1525}
1526 3044
3045 EV_FREQUENT_CHECK;
3046}
3047
1527void 3048void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w) 3049ev_child_stop (EV_P_ ev_child *w)
1529{ 3050{
1530 ev_clear_pending (EV_A_ (W)w); 3051 clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w))) 3052 if (expect_false (!ev_is_active (w)))
1532 return; 3053 return;
1533 3054
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3055 EV_FREQUENT_CHECK;
3056
3057 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1535 ev_stop (EV_A_ (W)w); 3058 ev_stop (EV_A_ (W)w);
1536}
1537 3059
3060 EV_FREQUENT_CHECK;
3061}
3062
3063#endif
3064
3065#if EV_STAT_ENABLE
3066
3067# ifdef _WIN32
3068# undef lstat
3069# define lstat(a,b) _stati64 (a,b)
3070# endif
3071
3072#define DEF_STAT_INTERVAL 5.0074891
3073#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3074#define MIN_STAT_INTERVAL 0.1074891
3075
3076static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3077
3078#if EV_USE_INOTIFY
3079
3080/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3081# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3082
3083static void noinline
3084infy_add (EV_P_ ev_stat *w)
3085{
3086 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3087
3088 if (w->wd >= 0)
3089 {
3090 struct statfs sfs;
3091
3092 /* now local changes will be tracked by inotify, but remote changes won't */
3093 /* unless the filesystem is known to be local, we therefore still poll */
3094 /* also do poll on <2.6.25, but with normal frequency */
3095
3096 if (!fs_2625)
3097 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3098 else if (!statfs (w->path, &sfs)
3099 && (sfs.f_type == 0x1373 /* devfs */
3100 || sfs.f_type == 0xEF53 /* ext2/3 */
3101 || sfs.f_type == 0x3153464a /* jfs */
3102 || sfs.f_type == 0x52654973 /* reiser3 */
3103 || sfs.f_type == 0x01021994 /* tempfs */
3104 || sfs.f_type == 0x58465342 /* xfs */))
3105 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3106 else
3107 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3108 }
3109 else
3110 {
3111 /* can't use inotify, continue to stat */
3112 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3113
3114 /* if path is not there, monitor some parent directory for speedup hints */
3115 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3116 /* but an efficiency issue only */
3117 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3118 {
3119 char path [4096];
3120 strcpy (path, w->path);
3121
3122 do
3123 {
3124 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3125 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3126
3127 char *pend = strrchr (path, '/');
3128
3129 if (!pend || pend == path)
3130 break;
3131
3132 *pend = 0;
3133 w->wd = inotify_add_watch (fs_fd, path, mask);
3134 }
3135 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3136 }
3137 }
3138
3139 if (w->wd >= 0)
3140 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3141
3142 /* now re-arm timer, if required */
3143 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3144 ev_timer_again (EV_A_ &w->timer);
3145 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3146}
3147
3148static void noinline
3149infy_del (EV_P_ ev_stat *w)
3150{
3151 int slot;
3152 int wd = w->wd;
3153
3154 if (wd < 0)
3155 return;
3156
3157 w->wd = -2;
3158 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3159 wlist_del (&fs_hash [slot].head, (WL)w);
3160
3161 /* remove this watcher, if others are watching it, they will rearm */
3162 inotify_rm_watch (fs_fd, wd);
3163}
3164
3165static void noinline
3166infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3167{
3168 if (slot < 0)
3169 /* overflow, need to check for all hash slots */
3170 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3171 infy_wd (EV_A_ slot, wd, ev);
3172 else
3173 {
3174 WL w_;
3175
3176 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3177 {
3178 ev_stat *w = (ev_stat *)w_;
3179 w_ = w_->next; /* lets us remove this watcher and all before it */
3180
3181 if (w->wd == wd || wd == -1)
3182 {
3183 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3184 {
3185 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3186 w->wd = -1;
3187 infy_add (EV_A_ w); /* re-add, no matter what */
3188 }
3189
3190 stat_timer_cb (EV_A_ &w->timer, 0);
3191 }
3192 }
3193 }
3194}
3195
3196static void
3197infy_cb (EV_P_ ev_io *w, int revents)
3198{
3199 char buf [EV_INOTIFY_BUFSIZE];
3200 int ofs;
3201 int len = read (fs_fd, buf, sizeof (buf));
3202
3203 for (ofs = 0; ofs < len; )
3204 {
3205 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3206 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3207 ofs += sizeof (struct inotify_event) + ev->len;
3208 }
3209}
3210
3211inline_size void
3212ev_check_2625 (EV_P)
3213{
3214 /* kernels < 2.6.25 are borked
3215 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3216 */
3217 if (ev_linux_version () < 0x020619)
3218 return;
3219
3220 fs_2625 = 1;
3221}
3222
3223inline_size int
3224infy_newfd (void)
3225{
3226#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3227 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3228 if (fd >= 0)
3229 return fd;
3230#endif
3231 return inotify_init ();
3232}
3233
3234inline_size void
3235infy_init (EV_P)
3236{
3237 if (fs_fd != -2)
3238 return;
3239
3240 fs_fd = -1;
3241
3242 ev_check_2625 (EV_A);
3243
3244 fs_fd = infy_newfd ();
3245
3246 if (fs_fd >= 0)
3247 {
3248 fd_intern (fs_fd);
3249 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3250 ev_set_priority (&fs_w, EV_MAXPRI);
3251 ev_io_start (EV_A_ &fs_w);
3252 ev_unref (EV_A);
3253 }
3254}
3255
3256inline_size void
3257infy_fork (EV_P)
3258{
3259 int slot;
3260
3261 if (fs_fd < 0)
3262 return;
3263
3264 ev_ref (EV_A);
3265 ev_io_stop (EV_A_ &fs_w);
3266 close (fs_fd);
3267 fs_fd = infy_newfd ();
3268
3269 if (fs_fd >= 0)
3270 {
3271 fd_intern (fs_fd);
3272 ev_io_set (&fs_w, fs_fd, EV_READ);
3273 ev_io_start (EV_A_ &fs_w);
3274 ev_unref (EV_A);
3275 }
3276
3277 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3278 {
3279 WL w_ = fs_hash [slot].head;
3280 fs_hash [slot].head = 0;
3281
3282 while (w_)
3283 {
3284 ev_stat *w = (ev_stat *)w_;
3285 w_ = w_->next; /* lets us add this watcher */
3286
3287 w->wd = -1;
3288
3289 if (fs_fd >= 0)
3290 infy_add (EV_A_ w); /* re-add, no matter what */
3291 else
3292 {
3293 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3294 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3295 ev_timer_again (EV_A_ &w->timer);
3296 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3297 }
3298 }
3299 }
3300}
3301
3302#endif
3303
3304#ifdef _WIN32
3305# define EV_LSTAT(p,b) _stati64 (p, b)
3306#else
3307# define EV_LSTAT(p,b) lstat (p, b)
3308#endif
3309
1538void 3310void
1539ev_check_start (EV_P_ struct ev_check *w) 3311ev_stat_stat (EV_P_ ev_stat *w)
3312{
3313 if (lstat (w->path, &w->attr) < 0)
3314 w->attr.st_nlink = 0;
3315 else if (!w->attr.st_nlink)
3316 w->attr.st_nlink = 1;
3317}
3318
3319static void noinline
3320stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3321{
3322 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3323
3324 ev_statdata prev = w->attr;
3325 ev_stat_stat (EV_A_ w);
3326
3327 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3328 if (
3329 prev.st_dev != w->attr.st_dev
3330 || prev.st_ino != w->attr.st_ino
3331 || prev.st_mode != w->attr.st_mode
3332 || prev.st_nlink != w->attr.st_nlink
3333 || prev.st_uid != w->attr.st_uid
3334 || prev.st_gid != w->attr.st_gid
3335 || prev.st_rdev != w->attr.st_rdev
3336 || prev.st_size != w->attr.st_size
3337 || prev.st_atime != w->attr.st_atime
3338 || prev.st_mtime != w->attr.st_mtime
3339 || prev.st_ctime != w->attr.st_ctime
3340 ) {
3341 /* we only update w->prev on actual differences */
3342 /* in case we test more often than invoke the callback, */
3343 /* to ensure that prev is always different to attr */
3344 w->prev = prev;
3345
3346 #if EV_USE_INOTIFY
3347 if (fs_fd >= 0)
3348 {
3349 infy_del (EV_A_ w);
3350 infy_add (EV_A_ w);
3351 ev_stat_stat (EV_A_ w); /* avoid race... */
3352 }
3353 #endif
3354
3355 ev_feed_event (EV_A_ w, EV_STAT);
3356 }
3357}
3358
3359void
3360ev_stat_start (EV_P_ ev_stat *w)
1540{ 3361{
1541 if (expect_false (ev_is_active (w))) 3362 if (expect_false (ev_is_active (w)))
1542 return; 3363 return;
1543 3364
3365 ev_stat_stat (EV_A_ w);
3366
3367 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3368 w->interval = MIN_STAT_INTERVAL;
3369
3370 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3371 ev_set_priority (&w->timer, ev_priority (w));
3372
3373#if EV_USE_INOTIFY
3374 infy_init (EV_A);
3375
3376 if (fs_fd >= 0)
3377 infy_add (EV_A_ w);
3378 else
3379#endif
3380 {
3381 ev_timer_again (EV_A_ &w->timer);
3382 ev_unref (EV_A);
3383 }
3384
1544 ev_start (EV_A_ (W)w, ++checkcnt); 3385 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1546 checks [checkcnt - 1] = w;
1547}
1548 3386
3387 EV_FREQUENT_CHECK;
3388}
3389
1549void 3390void
1550ev_check_stop (EV_P_ struct ev_check *w) 3391ev_stat_stop (EV_P_ ev_stat *w)
1551{ 3392{
1552 ev_clear_pending (EV_A_ (W)w); 3393 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 3394 if (expect_false (!ev_is_active (w)))
1554 return; 3395 return;
1555 3396
1556 checks [((W)w)->active - 1] = checks [--checkcnt]; 3397 EV_FREQUENT_CHECK;
3398
3399#if EV_USE_INOTIFY
3400 infy_del (EV_A_ w);
3401#endif
3402
3403 if (ev_is_active (&w->timer))
3404 {
3405 ev_ref (EV_A);
3406 ev_timer_stop (EV_A_ &w->timer);
3407 }
3408
1557 ev_stop (EV_A_ (W)w); 3409 ev_stop (EV_A_ (W)w);
1558}
1559 3410
1560#ifndef SA_RESTART 3411 EV_FREQUENT_CHECK;
1561# define SA_RESTART 0 3412}
1562#endif 3413#endif
1563 3414
3415#if EV_IDLE_ENABLE
1564void 3416void
1565ev_signal_start (EV_P_ struct ev_signal *w) 3417ev_idle_start (EV_P_ ev_idle *w)
1566{ 3418{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w))) 3419 if (expect_false (ev_is_active (w)))
1571 return; 3420 return;
1572 3421
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3422 pri_adjust (EV_A_ (W)w);
1574 3423
3424 EV_FREQUENT_CHECK;
3425
3426 {
3427 int active = ++idlecnt [ABSPRI (w)];
3428
3429 ++idleall;
1575 ev_start (EV_A_ (W)w, 1); 3430 ev_start (EV_A_ (W)w, active);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1578 3431
1579 if (!((WL)w)->next) 3432 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1580 { 3433 idles [ABSPRI (w)][active - 1] = w;
1581#if _WIN32
1582 signal (w->signum, sighandler);
1583#else
1584 struct sigaction sa;
1585 sa.sa_handler = sighandler;
1586 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0);
1589#endif
1590 } 3434 }
1591}
1592 3435
3436 EV_FREQUENT_CHECK;
3437}
3438
1593void 3439void
1594ev_signal_stop (EV_P_ struct ev_signal *w) 3440ev_idle_stop (EV_P_ ev_idle *w)
1595{ 3441{
1596 ev_clear_pending (EV_A_ (W)w); 3442 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3443 if (expect_false (!ev_is_active (w)))
1598 return; 3444 return;
1599 3445
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3446 EV_FREQUENT_CHECK;
3447
3448 {
3449 int active = ev_active (w);
3450
3451 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3452 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3453
1601 ev_stop (EV_A_ (W)w); 3454 ev_stop (EV_A_ (W)w);
3455 --idleall;
3456 }
1602 3457
1603 if (!signals [w->signum - 1].head) 3458 EV_FREQUENT_CHECK;
1604 signal (w->signum, SIG_DFL);
1605} 3459}
1606
1607void
1608ev_child_start (EV_P_ struct ev_child *w)
1609{
1610#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif 3460#endif
3461
3462#if EV_PREPARE_ENABLE
3463void
3464ev_prepare_start (EV_P_ ev_prepare *w)
3465{
1613 if (expect_false (ev_is_active (w))) 3466 if (expect_false (ev_is_active (w)))
1614 return; 3467 return;
1615 3468
3469 EV_FREQUENT_CHECK;
3470
1616 ev_start (EV_A_ (W)w, 1); 3471 ev_start (EV_A_ (W)w, ++preparecnt);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3472 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1618} 3473 prepares [preparecnt - 1] = w;
1619 3474
3475 EV_FREQUENT_CHECK;
3476}
3477
1620void 3478void
1621ev_child_stop (EV_P_ struct ev_child *w) 3479ev_prepare_stop (EV_P_ ev_prepare *w)
1622{ 3480{
1623 ev_clear_pending (EV_A_ (W)w); 3481 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 3482 if (expect_false (!ev_is_active (w)))
1625 return; 3483 return;
1626 3484
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3485 EV_FREQUENT_CHECK;
3486
3487 {
3488 int active = ev_active (w);
3489
3490 prepares [active - 1] = prepares [--preparecnt];
3491 ev_active (prepares [active - 1]) = active;
3492 }
3493
1628 ev_stop (EV_A_ (W)w); 3494 ev_stop (EV_A_ (W)w);
3495
3496 EV_FREQUENT_CHECK;
1629} 3497}
3498#endif
3499
3500#if EV_CHECK_ENABLE
3501void
3502ev_check_start (EV_P_ ev_check *w)
3503{
3504 if (expect_false (ev_is_active (w)))
3505 return;
3506
3507 EV_FREQUENT_CHECK;
3508
3509 ev_start (EV_A_ (W)w, ++checkcnt);
3510 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3511 checks [checkcnt - 1] = w;
3512
3513 EV_FREQUENT_CHECK;
3514}
3515
3516void
3517ev_check_stop (EV_P_ ev_check *w)
3518{
3519 clear_pending (EV_A_ (W)w);
3520 if (expect_false (!ev_is_active (w)))
3521 return;
3522
3523 EV_FREQUENT_CHECK;
3524
3525 {
3526 int active = ev_active (w);
3527
3528 checks [active - 1] = checks [--checkcnt];
3529 ev_active (checks [active - 1]) = active;
3530 }
3531
3532 ev_stop (EV_A_ (W)w);
3533
3534 EV_FREQUENT_CHECK;
3535}
3536#endif
3537
3538#if EV_EMBED_ENABLE
3539void noinline
3540ev_embed_sweep (EV_P_ ev_embed *w)
3541{
3542 ev_run (w->other, EVRUN_NOWAIT);
3543}
3544
3545static void
3546embed_io_cb (EV_P_ ev_io *io, int revents)
3547{
3548 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3549
3550 if (ev_cb (w))
3551 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3552 else
3553 ev_run (w->other, EVRUN_NOWAIT);
3554}
3555
3556static void
3557embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3558{
3559 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3560
3561 {
3562 EV_P = w->other;
3563
3564 while (fdchangecnt)
3565 {
3566 fd_reify (EV_A);
3567 ev_run (EV_A_ EVRUN_NOWAIT);
3568 }
3569 }
3570}
3571
3572static void
3573embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3574{
3575 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3576
3577 ev_embed_stop (EV_A_ w);
3578
3579 {
3580 EV_P = w->other;
3581
3582 ev_loop_fork (EV_A);
3583 ev_run (EV_A_ EVRUN_NOWAIT);
3584 }
3585
3586 ev_embed_start (EV_A_ w);
3587}
3588
3589#if 0
3590static void
3591embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3592{
3593 ev_idle_stop (EV_A_ idle);
3594}
3595#endif
3596
3597void
3598ev_embed_start (EV_P_ ev_embed *w)
3599{
3600 if (expect_false (ev_is_active (w)))
3601 return;
3602
3603 {
3604 EV_P = w->other;
3605 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3606 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3607 }
3608
3609 EV_FREQUENT_CHECK;
3610
3611 ev_set_priority (&w->io, ev_priority (w));
3612 ev_io_start (EV_A_ &w->io);
3613
3614 ev_prepare_init (&w->prepare, embed_prepare_cb);
3615 ev_set_priority (&w->prepare, EV_MINPRI);
3616 ev_prepare_start (EV_A_ &w->prepare);
3617
3618 ev_fork_init (&w->fork, embed_fork_cb);
3619 ev_fork_start (EV_A_ &w->fork);
3620
3621 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3622
3623 ev_start (EV_A_ (W)w, 1);
3624
3625 EV_FREQUENT_CHECK;
3626}
3627
3628void
3629ev_embed_stop (EV_P_ ev_embed *w)
3630{
3631 clear_pending (EV_A_ (W)w);
3632 if (expect_false (!ev_is_active (w)))
3633 return;
3634
3635 EV_FREQUENT_CHECK;
3636
3637 ev_io_stop (EV_A_ &w->io);
3638 ev_prepare_stop (EV_A_ &w->prepare);
3639 ev_fork_stop (EV_A_ &w->fork);
3640
3641 ev_stop (EV_A_ (W)w);
3642
3643 EV_FREQUENT_CHECK;
3644}
3645#endif
3646
3647#if EV_FORK_ENABLE
3648void
3649ev_fork_start (EV_P_ ev_fork *w)
3650{
3651 if (expect_false (ev_is_active (w)))
3652 return;
3653
3654 EV_FREQUENT_CHECK;
3655
3656 ev_start (EV_A_ (W)w, ++forkcnt);
3657 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3658 forks [forkcnt - 1] = w;
3659
3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_fork_stop (EV_P_ ev_fork *w)
3665{
3666 clear_pending (EV_A_ (W)w);
3667 if (expect_false (!ev_is_active (w)))
3668 return;
3669
3670 EV_FREQUENT_CHECK;
3671
3672 {
3673 int active = ev_active (w);
3674
3675 forks [active - 1] = forks [--forkcnt];
3676 ev_active (forks [active - 1]) = active;
3677 }
3678
3679 ev_stop (EV_A_ (W)w);
3680
3681 EV_FREQUENT_CHECK;
3682}
3683#endif
3684
3685#if EV_CLEANUP_ENABLE
3686void
3687ev_cleanup_start (EV_P_ ev_cleanup *w)
3688{
3689 if (expect_false (ev_is_active (w)))
3690 return;
3691
3692 EV_FREQUENT_CHECK;
3693
3694 ev_start (EV_A_ (W)w, ++cleanupcnt);
3695 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3696 cleanups [cleanupcnt - 1] = w;
3697
3698 /* cleanup watchers should never keep a refcount on the loop */
3699 ev_unref (EV_A);
3700 EV_FREQUENT_CHECK;
3701}
3702
3703void
3704ev_cleanup_stop (EV_P_ ev_cleanup *w)
3705{
3706 clear_pending (EV_A_ (W)w);
3707 if (expect_false (!ev_is_active (w)))
3708 return;
3709
3710 EV_FREQUENT_CHECK;
3711 ev_ref (EV_A);
3712
3713 {
3714 int active = ev_active (w);
3715
3716 cleanups [active - 1] = cleanups [--cleanupcnt];
3717 ev_active (cleanups [active - 1]) = active;
3718 }
3719
3720 ev_stop (EV_A_ (W)w);
3721
3722 EV_FREQUENT_CHECK;
3723}
3724#endif
3725
3726#if EV_ASYNC_ENABLE
3727void
3728ev_async_start (EV_P_ ev_async *w)
3729{
3730 if (expect_false (ev_is_active (w)))
3731 return;
3732
3733 w->sent = 0;
3734
3735 evpipe_init (EV_A);
3736
3737 EV_FREQUENT_CHECK;
3738
3739 ev_start (EV_A_ (W)w, ++asynccnt);
3740 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3741 asyncs [asynccnt - 1] = w;
3742
3743 EV_FREQUENT_CHECK;
3744}
3745
3746void
3747ev_async_stop (EV_P_ ev_async *w)
3748{
3749 clear_pending (EV_A_ (W)w);
3750 if (expect_false (!ev_is_active (w)))
3751 return;
3752
3753 EV_FREQUENT_CHECK;
3754
3755 {
3756 int active = ev_active (w);
3757
3758 asyncs [active - 1] = asyncs [--asynccnt];
3759 ev_active (asyncs [active - 1]) = active;
3760 }
3761
3762 ev_stop (EV_A_ (W)w);
3763
3764 EV_FREQUENT_CHECK;
3765}
3766
3767void
3768ev_async_send (EV_P_ ev_async *w)
3769{
3770 w->sent = 1;
3771 evpipe_write (EV_A_ &async_pending);
3772}
3773#endif
1630 3774
1631/*****************************************************************************/ 3775/*****************************************************************************/
1632 3776
1633struct ev_once 3777struct ev_once
1634{ 3778{
1635 struct ev_io io; 3779 ev_io io;
1636 struct ev_timer to; 3780 ev_timer to;
1637 void (*cb)(int revents, void *arg); 3781 void (*cb)(int revents, void *arg);
1638 void *arg; 3782 void *arg;
1639}; 3783};
1640 3784
1641static void 3785static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 3786once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 3787{
1644 void (*cb)(int revents, void *arg) = once->cb; 3788 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 3789 void *arg = once->arg;
1646 3790
1647 ev_io_stop (EV_A_ &once->io); 3791 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 3792 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 3793 ev_free (once);
1650 3794
1651 cb (revents, arg); 3795 cb (revents, arg);
1652} 3796}
1653 3797
1654static void 3798static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 3799once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 3800{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3801 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3802
3803 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 3804}
1659 3805
1660static void 3806static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 3807once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 3808{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3809 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3810
3811 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 3812}
1665 3813
1666void 3814void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3815ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1668{ 3816{
1669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3817 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1670 3818
1671 if (expect_false (!once)) 3819 if (expect_false (!once))
1672 { 3820 {
1673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3821 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1674 return; 3822 return;
1675 } 3823 }
1676 3824
1677 once->cb = cb; 3825 once->cb = cb;
1678 once->arg = arg; 3826 once->arg = arg;
1690 ev_timer_set (&once->to, timeout, 0.); 3838 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 3839 ev_timer_start (EV_A_ &once->to);
1692 } 3840 }
1693} 3841}
1694 3842
1695#ifdef __cplusplus 3843/*****************************************************************************/
1696} 3844
3845#if EV_WALK_ENABLE
3846void
3847ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3848{
3849 int i, j;
3850 ev_watcher_list *wl, *wn;
3851
3852 if (types & (EV_IO | EV_EMBED))
3853 for (i = 0; i < anfdmax; ++i)
3854 for (wl = anfds [i].head; wl; )
3855 {
3856 wn = wl->next;
3857
3858#if EV_EMBED_ENABLE
3859 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3860 {
3861 if (types & EV_EMBED)
3862 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3863 }
3864 else
3865#endif
3866#if EV_USE_INOTIFY
3867 if (ev_cb ((ev_io *)wl) == infy_cb)
3868 ;
3869 else
3870#endif
3871 if ((ev_io *)wl != &pipe_w)
3872 if (types & EV_IO)
3873 cb (EV_A_ EV_IO, wl);
3874
3875 wl = wn;
3876 }
3877
3878 if (types & (EV_TIMER | EV_STAT))
3879 for (i = timercnt + HEAP0; i-- > HEAP0; )
3880#if EV_STAT_ENABLE
3881 /*TODO: timer is not always active*/
3882 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3883 {
3884 if (types & EV_STAT)
3885 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3886 }
3887 else
3888#endif
3889 if (types & EV_TIMER)
3890 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3891
3892#if EV_PERIODIC_ENABLE
3893 if (types & EV_PERIODIC)
3894 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3895 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3896#endif
3897
3898#if EV_IDLE_ENABLE
3899 if (types & EV_IDLE)
3900 for (j = NUMPRI; i--; )
3901 for (i = idlecnt [j]; i--; )
3902 cb (EV_A_ EV_IDLE, idles [j][i]);
3903#endif
3904
3905#if EV_FORK_ENABLE
3906 if (types & EV_FORK)
3907 for (i = forkcnt; i--; )
3908 if (ev_cb (forks [i]) != embed_fork_cb)
3909 cb (EV_A_ EV_FORK, forks [i]);
3910#endif
3911
3912#if EV_ASYNC_ENABLE
3913 if (types & EV_ASYNC)
3914 for (i = asynccnt; i--; )
3915 cb (EV_A_ EV_ASYNC, asyncs [i]);
3916#endif
3917
3918#if EV_PREPARE_ENABLE
3919 if (types & EV_PREPARE)
3920 for (i = preparecnt; i--; )
3921# if EV_EMBED_ENABLE
3922 if (ev_cb (prepares [i]) != embed_prepare_cb)
1697#endif 3923# endif
3924 cb (EV_A_ EV_PREPARE, prepares [i]);
3925#endif
1698 3926
3927#if EV_CHECK_ENABLE
3928 if (types & EV_CHECK)
3929 for (i = checkcnt; i--; )
3930 cb (EV_A_ EV_CHECK, checks [i]);
3931#endif
3932
3933#if EV_SIGNAL_ENABLE
3934 if (types & EV_SIGNAL)
3935 for (i = 0; i < EV_NSIG - 1; ++i)
3936 for (wl = signals [i].head; wl; )
3937 {
3938 wn = wl->next;
3939 cb (EV_A_ EV_SIGNAL, wl);
3940 wl = wn;
3941 }
3942#endif
3943
3944#if EV_CHILD_ENABLE
3945 if (types & EV_CHILD)
3946 for (i = (EV_PID_HASHSIZE); i--; )
3947 for (wl = childs [i]; wl; )
3948 {
3949 wn = wl->next;
3950 cb (EV_A_ EV_CHILD, wl);
3951 wl = wn;
3952 }
3953#endif
3954/* EV_STAT 0x00001000 /* stat data changed */
3955/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3956}
3957#endif
3958
3959#if EV_MULTIPLICITY
3960 #include "ev_wrap.h"
3961#endif
3962
3963EV_CPP(})
3964

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines