ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC vs.
Revision 1.452 by root, Mon Feb 18 03:20:29 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
45# endif 74# endif
46# else 75# else
47# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
49# endif 78# endif
50# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
52# endif 81# endif
53# endif 82# endif
54 83
84# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
61# endif 91# endif
62 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
69# endif 109# endif
70 110
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
74# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
77# endif 118# endif
78 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
85# endif 127# endif
86 128
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
90# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
93# endif 136# endif
94 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
95#endif 145# endif
96 146
97#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
98#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
99#include <fcntl.h> 169#include <fcntl.h>
100#include <stddef.h> 170#include <stddef.h>
101 171
102#include <stdio.h> 172#include <stdio.h>
103 173
104#include <assert.h> 174#include <assert.h>
105#include <errno.h> 175#include <errno.h>
106#include <sys/types.h> 176#include <sys/types.h>
107#include <time.h> 177#include <time.h>
178#include <limits.h>
108 179
109#include <signal.h> 180#include <signal.h>
110 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
111#ifndef _WIN32 199#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 200# include <sys/time.h>
114# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
115#else 203#else
204# include <io.h>
116# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
117# include <windows.h> 207# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
120# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
121#endif 261# endif
122 262#endif
123/**/
124 263
125#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
126# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
127#endif 270#endif
128 271
129#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
131#endif 282#endif
132 283
133#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 286#endif
136 287
137#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
138# ifdef _WIN32 289# ifdef _WIN32
139# define EV_USE_POLL 0 290# define EV_USE_POLL 0
140# else 291# else
141# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 293# endif
143#endif 294#endif
144 295
145#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
146# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
147#endif 302#endif
148 303
149#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
151#endif 306#endif
152 307
153#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 309# define EV_USE_PORT 0
155#endif 310#endif
156 311
157/**/ 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
317# endif
318#endif
158 319
159/* darwin simply cannot be helped */ 320#ifndef EV_PID_HASHSIZE
160#ifdef __APPLE__ 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
161# undef EV_USE_POLL 374# undef EV_USE_POLL
162# undef EV_USE_KQUEUE 375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
163#endif 389# endif
390#endif
391
392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 393
165#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 395# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 396# define EV_USE_MONOTONIC 0
168#endif 397#endif
170#ifndef CLOCK_REALTIME 399#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 400# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 401# define EV_USE_REALTIME 0
173#endif 402#endif
174 403
175#if EV_SELECT_IS_WINSOCKET 404#if !EV_STAT_ENABLE
405# undef EV_USE_INOTIFY
406# define EV_USE_INOTIFY 0
407#endif
408
409#if !EV_USE_NANOSLEEP
410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
412# include <sys/select.h>
413# endif
414#endif
415
416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
423# endif
424#endif
425
426#if EV_USE_EVENTFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
176# include <winsock.h> 428# include <stdint.h>
429# ifndef EFD_NONBLOCK
430# define EFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef EFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
177#endif 462#endif
178 463
179/**/ 464/**/
465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
472/*
473 * This is used to work around floating point rounding problems.
474 * This value is good at least till the year 4000.
475 */
476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
180 478
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
185 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
186#ifdef EV_H 516#ifndef ECB_H
187# include EV_H 517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010002
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
529 #if __GNUC__
530 typedef signed long long int64_t;
531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
188#else 545#else
189# include "ev.h" 546 #include <inttypes.h>
547 #if UINTMAX_MAX > 0xffffffffU
548 #define ECB_PTRSIZE 8
549 #else
550 #define ECB_PTRSIZE 4
190#endif 551 #endif
552#endif
191 553
192#if __GNUC__ >= 3 554/* many compilers define _GNUC_ to some versions but then only implement
193# define expect(expr,value) __builtin_expect ((expr),(value)) 555 * what their idiot authors think are the "more important" extensions,
194# define inline static inline 556 * causing enormous grief in return for some better fake benchmark numbers.
557 * or so.
558 * we try to detect these and simply assume they are not gcc - if they have
559 * an issue with that they should have done it right in the first place.
560 */
561#ifndef ECB_GCC_VERSION
562 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
563 #define ECB_GCC_VERSION(major,minor) 0
564 #else
565 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
566 #endif
567#endif
568
569#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
570#define ECB_C99 (__STDC_VERSION__ >= 199901L)
571#define ECB_C11 (__STDC_VERSION__ >= 201112L)
572#define ECB_CPP (__cplusplus+0)
573#define ECB_CPP11 (__cplusplus >= 201103L)
574
575#if ECB_CPP
576 #define ECB_EXTERN_C extern "C"
577 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
578 #define ECB_EXTERN_C_END }
195#else 579#else
580 #define ECB_EXTERN_C extern
581 #define ECB_EXTERN_C_BEG
582 #define ECB_EXTERN_C_END
583#endif
584
585/*****************************************************************************/
586
587/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
588/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
589
590#if ECB_NO_THREADS
591 #define ECB_NO_SMP 1
592#endif
593
594#if ECB_NO_SMP
595 #define ECB_MEMORY_FENCE do { } while (0)
596#endif
597
598#ifndef ECB_MEMORY_FENCE
599 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #if __i386 || __i386__
601 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
602 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
603 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
604 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
606 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
607 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
608 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
610 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
611 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
613 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
614 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
616 #elif __sparc || __sparc__
617 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
618 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
619 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
620 #elif defined __s390__ || defined __s390x__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
622 #elif defined __mips__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __alpha__
625 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
626 #elif defined __hppa__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif defined __ia64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
631 #endif
632 #endif
633#endif
634
635#ifndef ECB_MEMORY_FENCE
636 #if ECB_GCC_VERSION(4,7)
637 /* see comment below (stdatomic.h) about the C11 memory model. */
638 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
639
640 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
641 * without risking compile time errors with other compilers. We *could*
642 * define our own ecb_clang_has_feature, but I just can't be bothered to work
643 * around this shit time and again.
644 * #elif defined __clang && __has_feature (cxx_atomic)
645 * // see comment below (stdatomic.h) about the C11 memory model.
646 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
647 */
648
649 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
650 #define ECB_MEMORY_FENCE __sync_synchronize ()
651 #elif _MSC_VER >= 1400 /* VC++ 2005 */
652 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
653 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
654 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
655 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
656 #elif defined _WIN32
657 #include <WinNT.h>
658 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
659 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #include <mbarrier.h>
661 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
662 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
663 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
664 #elif __xlC__
665 #define ECB_MEMORY_FENCE __sync ()
666 #endif
667#endif
668
669#ifndef ECB_MEMORY_FENCE
670 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
671 /* we assume that these memory fences work on all variables/all memory accesses, */
672 /* not just C11 atomics and atomic accesses */
673 #include <stdatomic.h>
674 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
675 /* any fence other than seq_cst, which isn't very efficient for us. */
676 /* Why that is, we don't know - either the C11 memory model is quite useless */
677 /* for most usages, or gcc and clang have a bug */
678 /* I *currently* lean towards the latter, and inefficiently implement */
679 /* all three of ecb's fences as a seq_cst fence */
680 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
681 #endif
682#endif
683
684#ifndef ECB_MEMORY_FENCE
685 #if !ECB_AVOID_PTHREADS
686 /*
687 * if you get undefined symbol references to pthread_mutex_lock,
688 * or failure to find pthread.h, then you should implement
689 * the ECB_MEMORY_FENCE operations for your cpu/compiler
690 * OR provide pthread.h and link against the posix thread library
691 * of your system.
692 */
693 #include <pthread.h>
694 #define ECB_NEEDS_PTHREADS 1
695 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
696
697 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
698 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
699 #endif
700#endif
701
702#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
703 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
704#endif
705
706#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
707 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
708#endif
709
710/*****************************************************************************/
711
712#if __cplusplus
713 #define ecb_inline static inline
714#elif ECB_GCC_VERSION(2,5)
715 #define ecb_inline static __inline__
716#elif ECB_C99
717 #define ecb_inline static inline
718#else
719 #define ecb_inline static
720#endif
721
722#if ECB_GCC_VERSION(3,3)
723 #define ecb_restrict __restrict__
724#elif ECB_C99
725 #define ecb_restrict restrict
726#else
727 #define ecb_restrict
728#endif
729
730typedef int ecb_bool;
731
732#define ECB_CONCAT_(a, b) a ## b
733#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
734#define ECB_STRINGIFY_(a) # a
735#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
736
737#define ecb_function_ ecb_inline
738
739#if ECB_GCC_VERSION(3,1)
740 #define ecb_attribute(attrlist) __attribute__(attrlist)
741 #define ecb_is_constant(expr) __builtin_constant_p (expr)
742 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
743 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
744#else
745 #define ecb_attribute(attrlist)
746 #define ecb_is_constant(expr) 0
196# define expect(expr,value) (expr) 747 #define ecb_expect(expr,value) (expr)
197# define inline static 748 #define ecb_prefetch(addr,rw,locality)
198#endif 749#endif
199 750
751/* no emulation for ecb_decltype */
752#if ECB_GCC_VERSION(4,5)
753 #define ecb_decltype(x) __decltype(x)
754#elif ECB_GCC_VERSION(3,0)
755 #define ecb_decltype(x) __typeof(x)
756#endif
757
758#define ecb_noinline ecb_attribute ((__noinline__))
759#define ecb_unused ecb_attribute ((__unused__))
760#define ecb_const ecb_attribute ((__const__))
761#define ecb_pure ecb_attribute ((__pure__))
762
763#if ECB_C11
764 #define ecb_noreturn _Noreturn
765#else
766 #define ecb_noreturn ecb_attribute ((__noreturn__))
767#endif
768
769#if ECB_GCC_VERSION(4,3)
770 #define ecb_artificial ecb_attribute ((__artificial__))
771 #define ecb_hot ecb_attribute ((__hot__))
772 #define ecb_cold ecb_attribute ((__cold__))
773#else
774 #define ecb_artificial
775 #define ecb_hot
776 #define ecb_cold
777#endif
778
779/* put around conditional expressions if you are very sure that the */
780/* expression is mostly true or mostly false. note that these return */
781/* booleans, not the expression. */
200#define expect_false(expr) expect ((expr) != 0, 0) 782#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 783#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
784/* for compatibility to the rest of the world */
785#define ecb_likely(expr) ecb_expect_true (expr)
786#define ecb_unlikely(expr) ecb_expect_false (expr)
202 787
788/* count trailing zero bits and count # of one bits */
789#if ECB_GCC_VERSION(3,4)
790 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
791 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
792 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
793 #define ecb_ctz32(x) __builtin_ctz (x)
794 #define ecb_ctz64(x) __builtin_ctzll (x)
795 #define ecb_popcount32(x) __builtin_popcount (x)
796 /* no popcountll */
797#else
798 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
799 ecb_function_ int
800 ecb_ctz32 (uint32_t x)
801 {
802 int r = 0;
803
804 x &= ~x + 1; /* this isolates the lowest bit */
805
806#if ECB_branchless_on_i386
807 r += !!(x & 0xaaaaaaaa) << 0;
808 r += !!(x & 0xcccccccc) << 1;
809 r += !!(x & 0xf0f0f0f0) << 2;
810 r += !!(x & 0xff00ff00) << 3;
811 r += !!(x & 0xffff0000) << 4;
812#else
813 if (x & 0xaaaaaaaa) r += 1;
814 if (x & 0xcccccccc) r += 2;
815 if (x & 0xf0f0f0f0) r += 4;
816 if (x & 0xff00ff00) r += 8;
817 if (x & 0xffff0000) r += 16;
818#endif
819
820 return r;
821 }
822
823 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
824 ecb_function_ int
825 ecb_ctz64 (uint64_t x)
826 {
827 int shift = x & 0xffffffffU ? 0 : 32;
828 return ecb_ctz32 (x >> shift) + shift;
829 }
830
831 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
832 ecb_function_ int
833 ecb_popcount32 (uint32_t x)
834 {
835 x -= (x >> 1) & 0x55555555;
836 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
837 x = ((x >> 4) + x) & 0x0f0f0f0f;
838 x *= 0x01010101;
839
840 return x >> 24;
841 }
842
843 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
844 ecb_function_ int ecb_ld32 (uint32_t x)
845 {
846 int r = 0;
847
848 if (x >> 16) { x >>= 16; r += 16; }
849 if (x >> 8) { x >>= 8; r += 8; }
850 if (x >> 4) { x >>= 4; r += 4; }
851 if (x >> 2) { x >>= 2; r += 2; }
852 if (x >> 1) { r += 1; }
853
854 return r;
855 }
856
857 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
858 ecb_function_ int ecb_ld64 (uint64_t x)
859 {
860 int r = 0;
861
862 if (x >> 32) { x >>= 32; r += 32; }
863
864 return r + ecb_ld32 (x);
865 }
866#endif
867
868ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
869ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
870ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
871ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
872
873ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
874ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
875{
876 return ( (x * 0x0802U & 0x22110U)
877 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
878}
879
880ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
881ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
882{
883 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
884 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
885 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
886 x = ( x >> 8 ) | ( x << 8);
887
888 return x;
889}
890
891ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
892ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
893{
894 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
895 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
896 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
897 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
898 x = ( x >> 16 ) | ( x << 16);
899
900 return x;
901}
902
903/* popcount64 is only available on 64 bit cpus as gcc builtin */
904/* so for this version we are lazy */
905ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
906ecb_function_ int
907ecb_popcount64 (uint64_t x)
908{
909 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
910}
911
912ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
913ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
914ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
915ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
916ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
917ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
918ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
919ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
920
921ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
922ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
923ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
924ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
925ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
926ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
927ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
928ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
929
930#if ECB_GCC_VERSION(4,3)
931 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
932 #define ecb_bswap32(x) __builtin_bswap32 (x)
933 #define ecb_bswap64(x) __builtin_bswap64 (x)
934#else
935 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
936 ecb_function_ uint16_t
937 ecb_bswap16 (uint16_t x)
938 {
939 return ecb_rotl16 (x, 8);
940 }
941
942 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
943 ecb_function_ uint32_t
944 ecb_bswap32 (uint32_t x)
945 {
946 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
947 }
948
949 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
950 ecb_function_ uint64_t
951 ecb_bswap64 (uint64_t x)
952 {
953 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
954 }
955#endif
956
957#if ECB_GCC_VERSION(4,5)
958 #define ecb_unreachable() __builtin_unreachable ()
959#else
960 /* this seems to work fine, but gcc always emits a warning for it :/ */
961 ecb_inline void ecb_unreachable (void) ecb_noreturn;
962 ecb_inline void ecb_unreachable (void) { }
963#endif
964
965/* try to tell the compiler that some condition is definitely true */
966#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
967
968ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
969ecb_inline unsigned char
970ecb_byteorder_helper (void)
971{
972 /* the union code still generates code under pressure in gcc, */
973 /* but less than using pointers, and always seems to */
974 /* successfully return a constant. */
975 /* the reason why we have this horrible preprocessor mess */
976 /* is to avoid it in all cases, at least on common architectures */
977 /* or when using a recent enough gcc version (>= 4.6) */
978#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
979 return 0x44;
980#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
981 return 0x44;
982#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
983 return 0x11;
984#else
985 union
986 {
987 uint32_t i;
988 uint8_t c;
989 } u = { 0x11223344 };
990 return u.c;
991#endif
992}
993
994ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
995ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
996ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
997ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
998
999#if ECB_GCC_VERSION(3,0) || ECB_C99
1000 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1001#else
1002 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1003#endif
1004
1005#if __cplusplus
1006 template<typename T>
1007 static inline T ecb_div_rd (T val, T div)
1008 {
1009 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1010 }
1011 template<typename T>
1012 static inline T ecb_div_ru (T val, T div)
1013 {
1014 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1015 }
1016#else
1017 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1018 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1019#endif
1020
1021#if ecb_cplusplus_does_not_suck
1022 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1023 template<typename T, int N>
1024 static inline int ecb_array_length (const T (&arr)[N])
1025 {
1026 return N;
1027 }
1028#else
1029 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1030#endif
1031
1032/*******************************************************************************/
1033/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1034
1035/* basically, everything uses "ieee pure-endian" floating point numbers */
1036/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1037#if 0 \
1038 || __i386 || __i386__ \
1039 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1040 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1041 || defined __arm__ && defined __ARM_EABI__ \
1042 || defined __s390__ || defined __s390x__ \
1043 || defined __mips__ \
1044 || defined __alpha__ \
1045 || defined __hppa__ \
1046 || defined __ia64__ \
1047 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1048 #define ECB_STDFP 1
1049 #include <string.h> /* for memcpy */
1050#else
1051 #define ECB_STDFP 0
1052 #include <math.h> /* for frexp*, ldexp* */
1053#endif
1054
1055#ifndef ECB_NO_LIBM
1056
1057 /* convert a float to ieee single/binary32 */
1058 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1059 ecb_function_ uint32_t
1060 ecb_float_to_binary32 (float x)
1061 {
1062 uint32_t r;
1063
1064 #if ECB_STDFP
1065 memcpy (&r, &x, 4);
1066 #else
1067 /* slow emulation, works for anything but -0 */
1068 uint32_t m;
1069 int e;
1070
1071 if (x == 0e0f ) return 0x00000000U;
1072 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1073 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1074 if (x != x ) return 0x7fbfffffU;
1075
1076 m = frexpf (x, &e) * 0x1000000U;
1077
1078 r = m & 0x80000000U;
1079
1080 if (r)
1081 m = -m;
1082
1083 if (e <= -126)
1084 {
1085 m &= 0xffffffU;
1086 m >>= (-125 - e);
1087 e = -126;
1088 }
1089
1090 r |= (e + 126) << 23;
1091 r |= m & 0x7fffffU;
1092 #endif
1093
1094 return r;
1095 }
1096
1097 /* converts an ieee single/binary32 to a float */
1098 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1099 ecb_function_ float
1100 ecb_binary32_to_float (uint32_t x)
1101 {
1102 float r;
1103
1104 #if ECB_STDFP
1105 memcpy (&r, &x, 4);
1106 #else
1107 /* emulation, only works for normals and subnormals and +0 */
1108 int neg = x >> 31;
1109 int e = (x >> 23) & 0xffU;
1110
1111 x &= 0x7fffffU;
1112
1113 if (e)
1114 x |= 0x800000U;
1115 else
1116 e = 1;
1117
1118 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1119 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1120
1121 r = neg ? -r : r;
1122 #endif
1123
1124 return r;
1125 }
1126
1127 /* convert a double to ieee double/binary64 */
1128 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1129 ecb_function_ uint64_t
1130 ecb_double_to_binary64 (double x)
1131 {
1132 uint64_t r;
1133
1134 #if ECB_STDFP
1135 memcpy (&r, &x, 8);
1136 #else
1137 /* slow emulation, works for anything but -0 */
1138 uint64_t m;
1139 int e;
1140
1141 if (x == 0e0 ) return 0x0000000000000000U;
1142 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1143 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1144 if (x != x ) return 0X7ff7ffffffffffffU;
1145
1146 m = frexp (x, &e) * 0x20000000000000U;
1147
1148 r = m & 0x8000000000000000;;
1149
1150 if (r)
1151 m = -m;
1152
1153 if (e <= -1022)
1154 {
1155 m &= 0x1fffffffffffffU;
1156 m >>= (-1021 - e);
1157 e = -1022;
1158 }
1159
1160 r |= ((uint64_t)(e + 1022)) << 52;
1161 r |= m & 0xfffffffffffffU;
1162 #endif
1163
1164 return r;
1165 }
1166
1167 /* converts an ieee double/binary64 to a double */
1168 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1169 ecb_function_ double
1170 ecb_binary64_to_double (uint64_t x)
1171 {
1172 double r;
1173
1174 #if ECB_STDFP
1175 memcpy (&r, &x, 8);
1176 #else
1177 /* emulation, only works for normals and subnormals and +0 */
1178 int neg = x >> 63;
1179 int e = (x >> 52) & 0x7ffU;
1180
1181 x &= 0xfffffffffffffU;
1182
1183 if (e)
1184 x |= 0x10000000000000U;
1185 else
1186 e = 1;
1187
1188 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1189 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1190
1191 r = neg ? -r : r;
1192 #endif
1193
1194 return r;
1195 }
1196
1197#endif
1198
1199#endif
1200
1201/* ECB.H END */
1202
1203#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1204/* if your architecture doesn't need memory fences, e.g. because it is
1205 * single-cpu/core, or if you use libev in a project that doesn't use libev
1206 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1207 * libev, in which cases the memory fences become nops.
1208 * alternatively, you can remove this #error and link against libpthread,
1209 * which will then provide the memory fences.
1210 */
1211# error "memory fences not defined for your architecture, please report"
1212#endif
1213
1214#ifndef ECB_MEMORY_FENCE
1215# define ECB_MEMORY_FENCE do { } while (0)
1216# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1217# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1218#endif
1219
1220#define expect_false(cond) ecb_expect_false (cond)
1221#define expect_true(cond) ecb_expect_true (cond)
1222#define noinline ecb_noinline
1223
1224#define inline_size ecb_inline
1225
1226#if EV_FEATURE_CODE
1227# define inline_speed ecb_inline
1228#else
1229# define inline_speed static noinline
1230#endif
1231
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1232#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1233
1234#if EV_MINPRI == EV_MAXPRI
1235# define ABSPRI(w) (((W)w), 0)
1236#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1237# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1238#endif
205 1239
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1240#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 1241#define EMPTY2(a,b) /* used to suppress some warnings */
208 1242
209typedef struct ev_watcher *W; 1243typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 1244typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 1245typedef ev_watcher_time *WT;
212 1246
1247#define ev_active(w) ((W)(w))->active
1248#define ev_at(w) ((WT)(w))->at
1249
1250#if EV_USE_REALTIME
1251/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1252/* giving it a reasonably high chance of working on typical architectures */
1253static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1254#endif
1255
1256#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1257static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1258#endif
1259
1260#ifndef EV_FD_TO_WIN32_HANDLE
1261# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1262#endif
1263#ifndef EV_WIN32_HANDLE_TO_FD
1264# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1265#endif
1266#ifndef EV_WIN32_CLOSE_FD
1267# define EV_WIN32_CLOSE_FD(fd) close (fd)
1268#endif
214 1269
215#ifdef _WIN32 1270#ifdef _WIN32
216# include "ev_win32.c" 1271# include "ev_win32.c"
217#endif 1272#endif
218 1273
219/*****************************************************************************/ 1274/*****************************************************************************/
220 1275
1276/* define a suitable floor function (only used by periodics atm) */
1277
1278#if EV_USE_FLOOR
1279# include <math.h>
1280# define ev_floor(v) floor (v)
1281#else
1282
1283#include <float.h>
1284
1285/* a floor() replacement function, should be independent of ev_tstamp type */
1286static ev_tstamp noinline
1287ev_floor (ev_tstamp v)
1288{
1289 /* the choice of shift factor is not terribly important */
1290#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1291 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1292#else
1293 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1294#endif
1295
1296 /* argument too large for an unsigned long? */
1297 if (expect_false (v >= shift))
1298 {
1299 ev_tstamp f;
1300
1301 if (v == v - 1.)
1302 return v; /* very large number */
1303
1304 f = shift * ev_floor (v * (1. / shift));
1305 return f + ev_floor (v - f);
1306 }
1307
1308 /* special treatment for negative args? */
1309 if (expect_false (v < 0.))
1310 {
1311 ev_tstamp f = -ev_floor (-v);
1312
1313 return f - (f == v ? 0 : 1);
1314 }
1315
1316 /* fits into an unsigned long */
1317 return (unsigned long)v;
1318}
1319
1320#endif
1321
1322/*****************************************************************************/
1323
1324#ifdef __linux
1325# include <sys/utsname.h>
1326#endif
1327
1328static unsigned int noinline ecb_cold
1329ev_linux_version (void)
1330{
1331#ifdef __linux
1332 unsigned int v = 0;
1333 struct utsname buf;
1334 int i;
1335 char *p = buf.release;
1336
1337 if (uname (&buf))
1338 return 0;
1339
1340 for (i = 3+1; --i; )
1341 {
1342 unsigned int c = 0;
1343
1344 for (;;)
1345 {
1346 if (*p >= '0' && *p <= '9')
1347 c = c * 10 + *p++ - '0';
1348 else
1349 {
1350 p += *p == '.';
1351 break;
1352 }
1353 }
1354
1355 v = (v << 8) | c;
1356 }
1357
1358 return v;
1359#else
1360 return 0;
1361#endif
1362}
1363
1364/*****************************************************************************/
1365
1366#if EV_AVOID_STDIO
1367static void noinline ecb_cold
1368ev_printerr (const char *msg)
1369{
1370 write (STDERR_FILENO, msg, strlen (msg));
1371}
1372#endif
1373
221static void (*syserr_cb)(const char *msg); 1374static void (*syserr_cb)(const char *msg) EV_THROW;
222 1375
1376void ecb_cold
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 1377ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
224{ 1378{
225 syserr_cb = cb; 1379 syserr_cb = cb;
226} 1380}
227 1381
228static void 1382static void noinline ecb_cold
229syserr (const char *msg) 1383ev_syserr (const char *msg)
230{ 1384{
231 if (!msg) 1385 if (!msg)
232 msg = "(libev) system error"; 1386 msg = "(libev) system error";
233 1387
234 if (syserr_cb) 1388 if (syserr_cb)
235 syserr_cb (msg); 1389 syserr_cb (msg);
236 else 1390 else
237 { 1391 {
1392#if EV_AVOID_STDIO
1393 ev_printerr (msg);
1394 ev_printerr (": ");
1395 ev_printerr (strerror (errno));
1396 ev_printerr ("\n");
1397#else
238 perror (msg); 1398 perror (msg);
1399#endif
239 abort (); 1400 abort ();
240 } 1401 }
241} 1402}
242 1403
1404static void *
1405ev_realloc_emul (void *ptr, long size) EV_THROW
1406{
1407 /* some systems, notably openbsd and darwin, fail to properly
1408 * implement realloc (x, 0) (as required by both ansi c-89 and
1409 * the single unix specification, so work around them here.
1410 * recently, also (at least) fedora and debian started breaking it,
1411 * despite documenting it otherwise.
1412 */
1413
1414 if (size)
1415 return realloc (ptr, size);
1416
1417 free (ptr);
1418 return 0;
1419}
1420
243static void *(*alloc)(void *ptr, long size); 1421static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
244 1422
1423void ecb_cold
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1424ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
246{ 1425{
247 alloc = cb; 1426 alloc = cb;
248} 1427}
249 1428
250static void * 1429inline_speed void *
251ev_realloc (void *ptr, long size) 1430ev_realloc (void *ptr, long size)
252{ 1431{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1432 ptr = alloc (ptr, size);
254 1433
255 if (!ptr && size) 1434 if (!ptr && size)
256 { 1435 {
1436#if EV_AVOID_STDIO
1437 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1438#else
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1439 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1440#endif
258 abort (); 1441 abort ();
259 } 1442 }
260 1443
261 return ptr; 1444 return ptr;
262} 1445}
264#define ev_malloc(size) ev_realloc (0, (size)) 1447#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 1448#define ev_free(ptr) ev_realloc ((ptr), 0)
266 1449
267/*****************************************************************************/ 1450/*****************************************************************************/
268 1451
1452/* set in reify when reification needed */
1453#define EV_ANFD_REIFY 1
1454
1455/* file descriptor info structure */
269typedef struct 1456typedef struct
270{ 1457{
271 WL head; 1458 WL head;
272 unsigned char events; 1459 unsigned char events; /* the events watched for */
1460 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1461 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 1462 unsigned char unused;
1463#if EV_USE_EPOLL
1464 unsigned int egen; /* generation counter to counter epoll bugs */
1465#endif
274#if EV_SELECT_IS_WINSOCKET 1466#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
275 SOCKET handle; 1467 SOCKET handle;
276#endif 1468#endif
1469#if EV_USE_IOCP
1470 OVERLAPPED or, ow;
1471#endif
277} ANFD; 1472} ANFD;
278 1473
1474/* stores the pending event set for a given watcher */
279typedef struct 1475typedef struct
280{ 1476{
281 W w; 1477 W w;
282 int events; 1478 int events; /* the pending event set for the given watcher */
283} ANPENDING; 1479} ANPENDING;
1480
1481#if EV_USE_INOTIFY
1482/* hash table entry per inotify-id */
1483typedef struct
1484{
1485 WL head;
1486} ANFS;
1487#endif
1488
1489/* Heap Entry */
1490#if EV_HEAP_CACHE_AT
1491 /* a heap element */
1492 typedef struct {
1493 ev_tstamp at;
1494 WT w;
1495 } ANHE;
1496
1497 #define ANHE_w(he) (he).w /* access watcher, read-write */
1498 #define ANHE_at(he) (he).at /* access cached at, read-only */
1499 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1500#else
1501 /* a heap element */
1502 typedef WT ANHE;
1503
1504 #define ANHE_w(he) (he)
1505 #define ANHE_at(he) (he)->at
1506 #define ANHE_at_cache(he)
1507#endif
284 1508
285#if EV_MULTIPLICITY 1509#if EV_MULTIPLICITY
286 1510
287 struct ev_loop 1511 struct ev_loop
288 { 1512 {
293 #undef VAR 1517 #undef VAR
294 }; 1518 };
295 #include "ev_wrap.h" 1519 #include "ev_wrap.h"
296 1520
297 static struct ev_loop default_loop_struct; 1521 static struct ev_loop default_loop_struct;
298 struct ev_loop *ev_default_loop_ptr; 1522 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
299 1523
300#else 1524#else
301 1525
302 ev_tstamp ev_rt_now; 1526 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
303 #define VAR(name,decl) static decl; 1527 #define VAR(name,decl) static decl;
304 #include "ev_vars.h" 1528 #include "ev_vars.h"
305 #undef VAR 1529 #undef VAR
306 1530
307 static int ev_default_loop_ptr; 1531 static int ev_default_loop_ptr;
308 1532
309#endif 1533#endif
310 1534
1535#if EV_FEATURE_API
1536# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1537# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1538# define EV_INVOKE_PENDING invoke_cb (EV_A)
1539#else
1540# define EV_RELEASE_CB (void)0
1541# define EV_ACQUIRE_CB (void)0
1542# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1543#endif
1544
1545#define EVBREAK_RECURSE 0x80
1546
311/*****************************************************************************/ 1547/*****************************************************************************/
312 1548
1549#ifndef EV_HAVE_EV_TIME
313ev_tstamp 1550ev_tstamp
314ev_time (void) 1551ev_time (void) EV_THROW
315{ 1552{
316#if EV_USE_REALTIME 1553#if EV_USE_REALTIME
1554 if (expect_true (have_realtime))
1555 {
317 struct timespec ts; 1556 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 1557 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 1558 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 1559 }
1560#endif
1561
321 struct timeval tv; 1562 struct timeval tv;
322 gettimeofday (&tv, 0); 1563 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 1564 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 1565}
1566#endif
326 1567
327inline ev_tstamp 1568inline_size ev_tstamp
328get_clock (void) 1569get_clock (void)
329{ 1570{
330#if EV_USE_MONOTONIC 1571#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 1572 if (expect_true (have_monotonic))
332 { 1573 {
339 return ev_time (); 1580 return ev_time ();
340} 1581}
341 1582
342#if EV_MULTIPLICITY 1583#if EV_MULTIPLICITY
343ev_tstamp 1584ev_tstamp
344ev_now (EV_P) 1585ev_now (EV_P) EV_THROW
345{ 1586{
346 return ev_rt_now; 1587 return ev_rt_now;
347} 1588}
348#endif 1589#endif
349 1590
350#define array_roundsize(type,n) (((n) | 4) & ~3) 1591void
1592ev_sleep (ev_tstamp delay) EV_THROW
1593{
1594 if (delay > 0.)
1595 {
1596#if EV_USE_NANOSLEEP
1597 struct timespec ts;
1598
1599 EV_TS_SET (ts, delay);
1600 nanosleep (&ts, 0);
1601#elif defined _WIN32
1602 Sleep ((unsigned long)(delay * 1e3));
1603#else
1604 struct timeval tv;
1605
1606 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1607 /* something not guaranteed by newer posix versions, but guaranteed */
1608 /* by older ones */
1609 EV_TV_SET (tv, delay);
1610 select (0, 0, 0, 0, &tv);
1611#endif
1612 }
1613}
1614
1615/*****************************************************************************/
1616
1617#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1618
1619/* find a suitable new size for the given array, */
1620/* hopefully by rounding to a nice-to-malloc size */
1621inline_size int
1622array_nextsize (int elem, int cur, int cnt)
1623{
1624 int ncur = cur + 1;
1625
1626 do
1627 ncur <<= 1;
1628 while (cnt > ncur);
1629
1630 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1631 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1632 {
1633 ncur *= elem;
1634 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1635 ncur = ncur - sizeof (void *) * 4;
1636 ncur /= elem;
1637 }
1638
1639 return ncur;
1640}
1641
1642static void * noinline ecb_cold
1643array_realloc (int elem, void *base, int *cur, int cnt)
1644{
1645 *cur = array_nextsize (elem, *cur, cnt);
1646 return ev_realloc (base, elem * *cur);
1647}
1648
1649#define array_init_zero(base,count) \
1650 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 1651
352#define array_needsize(type,base,cur,cnt,init) \ 1652#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 1653 if (expect_false ((cnt) > (cur))) \
354 { \ 1654 { \
355 int newcnt = cur; \ 1655 int ecb_unused ocur_ = (cur); \
356 do \ 1656 (base) = (type *)array_realloc \
357 { \ 1657 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 1658 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 1659 }
366 1660
1661#if 0
367#define array_slim(type,stem) \ 1662#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1663 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 1664 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1665 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1666 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1667 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 1668 }
1669#endif
374 1670
375#define array_free(stem, idx) \ 1671#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1672 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 1673
378/*****************************************************************************/ 1674/*****************************************************************************/
379 1675
380static void 1676/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 1677static void noinline
1678pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 1679{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 1680}
392 1681
393void 1682void noinline
394ev_feed_event (EV_P_ void *w, int revents) 1683ev_feed_event (EV_P_ void *w, int revents) EV_THROW
395{ 1684{
396 W w_ = (W)w; 1685 W w_ = (W)w;
1686 int pri = ABSPRI (w_);
397 1687
398 if (expect_false (w_->pending)) 1688 if (expect_false (w_->pending))
1689 pendings [pri][w_->pending - 1].events |= revents;
1690 else
399 { 1691 {
1692 w_->pending = ++pendingcnt [pri];
1693 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1694 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1695 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 1696 }
403 1697
404 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1698 pendingpri = NUMPRI - 1;
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 1699}
409 1700
410static void 1701inline_speed void
1702feed_reverse (EV_P_ W w)
1703{
1704 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1705 rfeeds [rfeedcnt++] = w;
1706}
1707
1708inline_size void
1709feed_reverse_done (EV_P_ int revents)
1710{
1711 do
1712 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1713 while (rfeedcnt);
1714}
1715
1716inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 1717queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 1718{
413 int i; 1719 int i;
414 1720
415 for (i = 0; i < eventcnt; ++i) 1721 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 1722 ev_feed_event (EV_A_ events [i], type);
417} 1723}
418 1724
1725/*****************************************************************************/
1726
419inline void 1727inline_speed void
420fd_event (EV_P_ int fd, int revents) 1728fd_event_nocheck (EV_P_ int fd, int revents)
421{ 1729{
422 ANFD *anfd = anfds + fd; 1730 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 1731 ev_io *w;
424 1732
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1733 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 1734 {
427 int ev = w->events & revents; 1735 int ev = w->events & revents;
428 1736
429 if (ev) 1737 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 1738 ev_feed_event (EV_A_ (W)w, ev);
431 } 1739 }
432} 1740}
433 1741
1742/* do not submit kernel events for fds that have reify set */
1743/* because that means they changed while we were polling for new events */
1744inline_speed void
1745fd_event (EV_P_ int fd, int revents)
1746{
1747 ANFD *anfd = anfds + fd;
1748
1749 if (expect_true (!anfd->reify))
1750 fd_event_nocheck (EV_A_ fd, revents);
1751}
1752
434void 1753void
435ev_feed_fd_event (EV_P_ int fd, int revents) 1754ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
436{ 1755{
1756 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 1757 fd_event_nocheck (EV_A_ fd, revents);
438} 1758}
439 1759
440/*****************************************************************************/ 1760/* make sure the external fd watch events are in-sync */
441 1761/* with the kernel/libev internal state */
442inline void 1762inline_size void
443fd_reify (EV_P) 1763fd_reify (EV_P)
444{ 1764{
445 int i; 1765 int i;
446 1766
1767#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
447 for (i = 0; i < fdchangecnt; ++i) 1768 for (i = 0; i < fdchangecnt; ++i)
448 { 1769 {
449 int fd = fdchanges [i]; 1770 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 1771 ANFD *anfd = anfds + fd;
451 struct ev_io *w;
452 1772
453 int events = 0; 1773 if (anfd->reify & EV__IOFDSET && anfd->head)
454
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
456 events |= w->events;
457
458#if EV_SELECT_IS_WINSOCKET
459 if (events)
460 { 1774 {
1775 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1776
1777 if (handle != anfd->handle)
1778 {
461 unsigned long argp; 1779 unsigned long arg;
462 anfd->handle = _get_osfhandle (fd); 1780
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1781 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1782
1783 /* handle changed, but fd didn't - we need to do it in two steps */
1784 backend_modify (EV_A_ fd, anfd->events, 0);
1785 anfd->events = 0;
1786 anfd->handle = handle;
1787 }
464 } 1788 }
1789 }
465#endif 1790#endif
466 1791
1792 for (i = 0; i < fdchangecnt; ++i)
1793 {
1794 int fd = fdchanges [i];
1795 ANFD *anfd = anfds + fd;
1796 ev_io *w;
1797
1798 unsigned char o_events = anfd->events;
1799 unsigned char o_reify = anfd->reify;
1800
467 anfd->reify = 0; 1801 anfd->reify = 0;
468 1802
469 method_modify (EV_A_ fd, anfd->events, events); 1803 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1804 {
470 anfd->events = events; 1805 anfd->events = 0;
1806
1807 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1808 anfd->events |= (unsigned char)w->events;
1809
1810 if (o_events != anfd->events)
1811 o_reify = EV__IOFDSET; /* actually |= */
1812 }
1813
1814 if (o_reify & EV__IOFDSET)
1815 backend_modify (EV_A_ fd, o_events, anfd->events);
471 } 1816 }
472 1817
473 fdchangecnt = 0; 1818 fdchangecnt = 0;
474} 1819}
475 1820
476static void 1821/* something about the given fd changed */
1822inline_size void
477fd_change (EV_P_ int fd) 1823fd_change (EV_P_ int fd, int flags)
478{ 1824{
479 if (expect_false (anfds [fd].reify)) 1825 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 1826 anfds [fd].reify |= flags;
483 1827
1828 if (expect_true (!reify))
1829 {
484 ++fdchangecnt; 1830 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1831 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 1832 fdchanges [fdchangecnt - 1] = fd;
1833 }
487} 1834}
488 1835
489static void 1836/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1837inline_speed void ecb_cold
490fd_kill (EV_P_ int fd) 1838fd_kill (EV_P_ int fd)
491{ 1839{
492 struct ev_io *w; 1840 ev_io *w;
493 1841
494 while ((w = (struct ev_io *)anfds [fd].head)) 1842 while ((w = (ev_io *)anfds [fd].head))
495 { 1843 {
496 ev_io_stop (EV_A_ w); 1844 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1845 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 1846 }
499} 1847}
500 1848
501inline int 1849/* check whether the given fd is actually valid, for error recovery */
1850inline_size int ecb_cold
502fd_valid (int fd) 1851fd_valid (int fd)
503{ 1852{
504#ifdef _WIN32 1853#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 1854 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
506#else 1855#else
507 return fcntl (fd, F_GETFD) != -1; 1856 return fcntl (fd, F_GETFD) != -1;
508#endif 1857#endif
509} 1858}
510 1859
511/* called on EBADF to verify fds */ 1860/* called on EBADF to verify fds */
512static void 1861static void noinline ecb_cold
513fd_ebadf (EV_P) 1862fd_ebadf (EV_P)
514{ 1863{
515 int fd; 1864 int fd;
516 1865
517 for (fd = 0; fd < anfdmax; ++fd) 1866 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1867 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 1868 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 1869 fd_kill (EV_A_ fd);
521} 1870}
522 1871
523/* called on ENOMEM in select/poll to kill some fds and retry */ 1872/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 1873static void noinline ecb_cold
525fd_enomem (EV_P) 1874fd_enomem (EV_P)
526{ 1875{
527 int fd; 1876 int fd;
528 1877
529 for (fd = anfdmax; fd--; ) 1878 for (fd = anfdmax; fd--; )
530 if (anfds [fd].events) 1879 if (anfds [fd].events)
531 { 1880 {
532 fd_kill (EV_A_ fd); 1881 fd_kill (EV_A_ fd);
533 return; 1882 break;
534 } 1883 }
535} 1884}
536 1885
537/* usually called after fork if method needs to re-arm all fds from scratch */ 1886/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 1887static void noinline
539fd_rearm_all (EV_P) 1888fd_rearm_all (EV_P)
540{ 1889{
541 int fd; 1890 int fd;
542 1891
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 1892 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 1893 if (anfds [fd].events)
546 { 1894 {
547 anfds [fd].events = 0; 1895 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 1896 anfds [fd].emask = 0;
1897 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
549 } 1898 }
550} 1899}
551 1900
552/*****************************************************************************/ 1901/* used to prepare libev internal fd's */
553 1902/* this is not fork-safe */
554static void
555upheap (WT *heap, int k)
556{
557 WT w = heap [k];
558
559 while (k && heap [k >> 1]->at > w->at)
560 {
561 heap [k] = heap [k >> 1];
562 ((W)heap [k])->active = k + 1;
563 k >>= 1;
564 }
565
566 heap [k] = w;
567 ((W)heap [k])->active = k + 1;
568
569}
570
571static void
572downheap (WT *heap, int N, int k)
573{
574 WT w = heap [k];
575
576 while (k < (N >> 1))
577 {
578 int j = k << 1;
579
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break;
585
586 heap [k] = heap [j];
587 ((W)heap [k])->active = k + 1;
588 k = j;
589 }
590
591 heap [k] = w;
592 ((W)heap [k])->active = k + 1;
593}
594
595inline void 1903inline_speed void
596adjustheap (WT *heap, int N, int k)
597{
598 upheap (heap, k);
599 downheap (heap, N, k);
600}
601
602/*****************************************************************************/
603
604typedef struct
605{
606 WL head;
607 sig_atomic_t volatile gotsig;
608} ANSIG;
609
610static ANSIG *signals;
611static int signalmax;
612
613static int sigpipe [2];
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616
617static void
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624
625 ++base;
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1904fd_intern (int fd)
682{ 1905{
683#ifdef _WIN32 1906#ifdef _WIN32
684 int arg = 1; 1907 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1908 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
686#else 1909#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1910 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1911 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1912#endif
690} 1913}
691 1914
1915/*****************************************************************************/
1916
1917/*
1918 * the heap functions want a real array index. array index 0 is guaranteed to not
1919 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1920 * the branching factor of the d-tree.
1921 */
1922
1923/*
1924 * at the moment we allow libev the luxury of two heaps,
1925 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1926 * which is more cache-efficient.
1927 * the difference is about 5% with 50000+ watchers.
1928 */
1929#if EV_USE_4HEAP
1930
1931#define DHEAP 4
1932#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1933#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1934#define UPHEAP_DONE(p,k) ((p) == (k))
1935
1936/* away from the root */
1937inline_speed void
1938downheap (ANHE *heap, int N, int k)
1939{
1940 ANHE he = heap [k];
1941 ANHE *E = heap + N + HEAP0;
1942
1943 for (;;)
1944 {
1945 ev_tstamp minat;
1946 ANHE *minpos;
1947 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1948
1949 /* find minimum child */
1950 if (expect_true (pos + DHEAP - 1 < E))
1951 {
1952 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1953 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1954 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1955 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1956 }
1957 else if (pos < E)
1958 {
1959 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1960 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1961 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1962 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1963 }
1964 else
1965 break;
1966
1967 if (ANHE_at (he) <= minat)
1968 break;
1969
1970 heap [k] = *minpos;
1971 ev_active (ANHE_w (*minpos)) = k;
1972
1973 k = minpos - heap;
1974 }
1975
1976 heap [k] = he;
1977 ev_active (ANHE_w (he)) = k;
1978}
1979
1980#else /* 4HEAP */
1981
1982#define HEAP0 1
1983#define HPARENT(k) ((k) >> 1)
1984#define UPHEAP_DONE(p,k) (!(p))
1985
1986/* away from the root */
1987inline_speed void
1988downheap (ANHE *heap, int N, int k)
1989{
1990 ANHE he = heap [k];
1991
1992 for (;;)
1993 {
1994 int c = k << 1;
1995
1996 if (c >= N + HEAP0)
1997 break;
1998
1999 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2000 ? 1 : 0;
2001
2002 if (ANHE_at (he) <= ANHE_at (heap [c]))
2003 break;
2004
2005 heap [k] = heap [c];
2006 ev_active (ANHE_w (heap [k])) = k;
2007
2008 k = c;
2009 }
2010
2011 heap [k] = he;
2012 ev_active (ANHE_w (he)) = k;
2013}
2014#endif
2015
2016/* towards the root */
2017inline_speed void
2018upheap (ANHE *heap, int k)
2019{
2020 ANHE he = heap [k];
2021
2022 for (;;)
2023 {
2024 int p = HPARENT (k);
2025
2026 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2027 break;
2028
2029 heap [k] = heap [p];
2030 ev_active (ANHE_w (heap [k])) = k;
2031 k = p;
2032 }
2033
2034 heap [k] = he;
2035 ev_active (ANHE_w (he)) = k;
2036}
2037
2038/* move an element suitably so it is in a correct place */
2039inline_size void
2040adjustheap (ANHE *heap, int N, int k)
2041{
2042 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2043 upheap (heap, k);
2044 else
2045 downheap (heap, N, k);
2046}
2047
2048/* rebuild the heap: this function is used only once and executed rarely */
2049inline_size void
2050reheap (ANHE *heap, int N)
2051{
2052 int i;
2053
2054 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2055 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2056 for (i = 0; i < N; ++i)
2057 upheap (heap, i + HEAP0);
2058}
2059
2060/*****************************************************************************/
2061
2062/* associate signal watchers to a signal signal */
2063typedef struct
2064{
2065 EV_ATOMIC_T pending;
2066#if EV_MULTIPLICITY
2067 EV_P;
2068#endif
2069 WL head;
2070} ANSIG;
2071
2072static ANSIG signals [EV_NSIG - 1];
2073
2074/*****************************************************************************/
2075
2076#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2077
2078static void noinline ecb_cold
2079evpipe_init (EV_P)
2080{
2081 if (!ev_is_active (&pipe_w))
2082 {
2083 int fds [2];
2084
2085# if EV_USE_EVENTFD
2086 fds [0] = -1;
2087 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2088 if (fds [1] < 0 && errno == EINVAL)
2089 fds [1] = eventfd (0, 0);
2090
2091 if (fds [1] < 0)
2092# endif
2093 {
2094 while (pipe (fds))
2095 ev_syserr ("(libev) error creating signal/async pipe");
2096
2097 fd_intern (fds [0]);
2098 }
2099
2100 fd_intern (fds [1]);
2101
2102 evpipe [0] = fds [0];
2103
2104 if (evpipe [1] < 0)
2105 evpipe [1] = fds [1]; /* first call, set write fd */
2106 else
2107 {
2108 /* on subsequent calls, do not change evpipe [1] */
2109 /* so that evpipe_write can always rely on its value. */
2110 /* this branch does not do anything sensible on windows, */
2111 /* so must not be executed on windows */
2112
2113 dup2 (fds [1], evpipe [1]);
2114 close (fds [1]);
2115 }
2116
2117 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2118 ev_io_start (EV_A_ &pipe_w);
2119 ev_unref (EV_A); /* watcher should not keep loop alive */
2120 }
2121}
2122
2123inline_speed void
2124evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2125{
2126 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2127
2128 if (expect_true (*flag))
2129 return;
2130
2131 *flag = 1;
2132 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2133
2134 pipe_write_skipped = 1;
2135
2136 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2137
2138 if (pipe_write_wanted)
2139 {
2140 int old_errno;
2141
2142 pipe_write_skipped = 0;
2143 ECB_MEMORY_FENCE_RELEASE;
2144
2145 old_errno = errno; /* save errno because write will clobber it */
2146
2147#if EV_USE_EVENTFD
2148 if (evpipe [0] < 0)
2149 {
2150 uint64_t counter = 1;
2151 write (evpipe [1], &counter, sizeof (uint64_t));
2152 }
2153 else
2154#endif
2155 {
2156#ifdef _WIN32
2157 WSABUF buf;
2158 DWORD sent;
2159 buf.buf = &buf;
2160 buf.len = 1;
2161 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2162#else
2163 write (evpipe [1], &(evpipe [1]), 1);
2164#endif
2165 }
2166
2167 errno = old_errno;
2168 }
2169}
2170
2171/* called whenever the libev signal pipe */
2172/* got some events (signal, async) */
692static void 2173static void
693siginit (EV_P) 2174pipecb (EV_P_ ev_io *iow, int revents)
694{ 2175{
695 fd_intern (sigpipe [0]); 2176 int i;
696 fd_intern (sigpipe [1]);
697 2177
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 2178 if (revents & EV_READ)
699 ev_io_start (EV_A_ &sigev); 2179 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2180#if EV_USE_EVENTFD
2181 if (evpipe [0] < 0)
2182 {
2183 uint64_t counter;
2184 read (evpipe [1], &counter, sizeof (uint64_t));
2185 }
2186 else
2187#endif
2188 {
2189 char dummy[4];
2190#ifdef _WIN32
2191 WSABUF buf;
2192 DWORD recvd;
2193 DWORD flags = 0;
2194 buf.buf = dummy;
2195 buf.len = sizeof (dummy);
2196 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2197#else
2198 read (evpipe [0], &dummy, sizeof (dummy));
2199#endif
2200 }
2201 }
2202
2203 pipe_write_skipped = 0;
2204
2205 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2206
2207#if EV_SIGNAL_ENABLE
2208 if (sig_pending)
2209 {
2210 sig_pending = 0;
2211
2212 ECB_MEMORY_FENCE;
2213
2214 for (i = EV_NSIG - 1; i--; )
2215 if (expect_false (signals [i].pending))
2216 ev_feed_signal_event (EV_A_ i + 1);
2217 }
2218#endif
2219
2220#if EV_ASYNC_ENABLE
2221 if (async_pending)
2222 {
2223 async_pending = 0;
2224
2225 ECB_MEMORY_FENCE;
2226
2227 for (i = asynccnt; i--; )
2228 if (asyncs [i]->sent)
2229 {
2230 asyncs [i]->sent = 0;
2231 ECB_MEMORY_FENCE_RELEASE;
2232 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2233 }
2234 }
2235#endif
701} 2236}
702 2237
703/*****************************************************************************/ 2238/*****************************************************************************/
704 2239
705static struct ev_child *childs [PID_HASHSIZE]; 2240void
2241ev_feed_signal (int signum) EV_THROW
2242{
2243#if EV_MULTIPLICITY
2244 ECB_MEMORY_FENCE_ACQUIRE;
2245 EV_P = signals [signum - 1].loop;
706 2246
2247 if (!EV_A)
2248 return;
2249#endif
2250
2251 signals [signum - 1].pending = 1;
2252 evpipe_write (EV_A_ &sig_pending);
2253}
2254
2255static void
2256ev_sighandler (int signum)
2257{
707#ifndef _WIN32 2258#ifdef _WIN32
2259 signal (signum, ev_sighandler);
2260#endif
708 2261
2262 ev_feed_signal (signum);
2263}
2264
2265void noinline
2266ev_feed_signal_event (EV_P_ int signum) EV_THROW
2267{
2268 WL w;
2269
2270 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2271 return;
2272
2273 --signum;
2274
2275#if EV_MULTIPLICITY
2276 /* it is permissible to try to feed a signal to the wrong loop */
2277 /* or, likely more useful, feeding a signal nobody is waiting for */
2278
2279 if (expect_false (signals [signum].loop != EV_A))
2280 return;
2281#endif
2282
2283 signals [signum].pending = 0;
2284 ECB_MEMORY_FENCE_RELEASE;
2285
2286 for (w = signals [signum].head; w; w = w->next)
2287 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2288}
2289
2290#if EV_USE_SIGNALFD
2291static void
2292sigfdcb (EV_P_ ev_io *iow, int revents)
2293{
2294 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2295
2296 for (;;)
2297 {
2298 ssize_t res = read (sigfd, si, sizeof (si));
2299
2300 /* not ISO-C, as res might be -1, but works with SuS */
2301 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2302 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2303
2304 if (res < (ssize_t)sizeof (si))
2305 break;
2306 }
2307}
2308#endif
2309
2310#endif
2311
2312/*****************************************************************************/
2313
2314#if EV_CHILD_ENABLE
2315static WL childs [EV_PID_HASHSIZE];
2316
709static struct ev_signal childev; 2317static ev_signal childev;
2318
2319#ifndef WIFCONTINUED
2320# define WIFCONTINUED(status) 0
2321#endif
2322
2323/* handle a single child status event */
2324inline_speed void
2325child_reap (EV_P_ int chain, int pid, int status)
2326{
2327 ev_child *w;
2328 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2329
2330 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2331 {
2332 if ((w->pid == pid || !w->pid)
2333 && (!traced || (w->flags & 1)))
2334 {
2335 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2336 w->rpid = pid;
2337 w->rstatus = status;
2338 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2339 }
2340 }
2341}
710 2342
711#ifndef WCONTINUED 2343#ifndef WCONTINUED
712# define WCONTINUED 0 2344# define WCONTINUED 0
713#endif 2345#endif
714 2346
2347/* called on sigchld etc., calls waitpid */
715static void 2348static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 2349childcb (EV_P_ ev_signal *sw, int revents)
732{ 2350{
733 int pid, status; 2351 int pid, status;
734 2352
2353 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2354 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 2355 if (!WCONTINUED
2356 || errno != EINVAL
2357 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2358 return;
2359
737 /* make sure we are called again until all childs have been reaped */ 2360 /* make sure we are called again until all children have been reaped */
2361 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2362 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 2363
740 child_reap (EV_A_ sw, pid, pid, status); 2364 child_reap (EV_A_ pid, pid, status);
2365 if ((EV_PID_HASHSIZE) > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2366 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 2367}
744 2368
745#endif 2369#endif
746 2370
747/*****************************************************************************/ 2371/*****************************************************************************/
748 2372
2373#if EV_USE_IOCP
2374# include "ev_iocp.c"
2375#endif
749#if EV_USE_PORT 2376#if EV_USE_PORT
750# include "ev_port.c" 2377# include "ev_port.c"
751#endif 2378#endif
752#if EV_USE_KQUEUE 2379#if EV_USE_KQUEUE
753# include "ev_kqueue.c" 2380# include "ev_kqueue.c"
760#endif 2387#endif
761#if EV_USE_SELECT 2388#if EV_USE_SELECT
762# include "ev_select.c" 2389# include "ev_select.c"
763#endif 2390#endif
764 2391
765int 2392int ecb_cold
766ev_version_major (void) 2393ev_version_major (void) EV_THROW
767{ 2394{
768 return EV_VERSION_MAJOR; 2395 return EV_VERSION_MAJOR;
769} 2396}
770 2397
771int 2398int ecb_cold
772ev_version_minor (void) 2399ev_version_minor (void) EV_THROW
773{ 2400{
774 return EV_VERSION_MINOR; 2401 return EV_VERSION_MINOR;
775} 2402}
776 2403
777/* return true if we are running with elevated privileges and should ignore env variables */ 2404/* return true if we are running with elevated privileges and should ignore env variables */
778static int 2405int inline_size ecb_cold
779enable_secure (void) 2406enable_secure (void)
780{ 2407{
781#ifdef _WIN32 2408#ifdef _WIN32
782 return 0; 2409 return 0;
783#else 2410#else
784 return getuid () != geteuid () 2411 return getuid () != geteuid ()
785 || getgid () != getegid (); 2412 || getgid () != getegid ();
786#endif 2413#endif
787} 2414}
788 2415
2416unsigned int ecb_cold
2417ev_supported_backends (void) EV_THROW
2418{
2419 unsigned int flags = 0;
2420
2421 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2422 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2423 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2424 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2425 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2426
2427 return flags;
2428}
2429
2430unsigned int ecb_cold
2431ev_recommended_backends (void) EV_THROW
2432{
2433 unsigned int flags = ev_supported_backends ();
2434
2435#ifndef __NetBSD__
2436 /* kqueue is borked on everything but netbsd apparently */
2437 /* it usually doesn't work correctly on anything but sockets and pipes */
2438 flags &= ~EVBACKEND_KQUEUE;
2439#endif
2440#ifdef __APPLE__
2441 /* only select works correctly on that "unix-certified" platform */
2442 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2443 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2444#endif
2445#ifdef __FreeBSD__
2446 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2447#endif
2448
2449 return flags;
2450}
2451
2452unsigned int ecb_cold
2453ev_embeddable_backends (void) EV_THROW
2454{
2455 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2456
2457 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2458 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2459 flags &= ~EVBACKEND_EPOLL;
2460
2461 return flags;
2462}
2463
789unsigned int 2464unsigned int
790ev_method (EV_P) 2465ev_backend (EV_P) EV_THROW
791{ 2466{
792 return method; 2467 return backend;
793} 2468}
794 2469
795static void 2470#if EV_FEATURE_API
2471unsigned int
2472ev_iteration (EV_P) EV_THROW
2473{
2474 return loop_count;
2475}
2476
2477unsigned int
2478ev_depth (EV_P) EV_THROW
2479{
2480 return loop_depth;
2481}
2482
2483void
2484ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2485{
2486 io_blocktime = interval;
2487}
2488
2489void
2490ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2491{
2492 timeout_blocktime = interval;
2493}
2494
2495void
2496ev_set_userdata (EV_P_ void *data) EV_THROW
2497{
2498 userdata = data;
2499}
2500
2501void *
2502ev_userdata (EV_P) EV_THROW
2503{
2504 return userdata;
2505}
2506
2507void
2508ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2509{
2510 invoke_cb = invoke_pending_cb;
2511}
2512
2513void
2514ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2515{
2516 release_cb = release;
2517 acquire_cb = acquire;
2518}
2519#endif
2520
2521/* initialise a loop structure, must be zero-initialised */
2522static void noinline ecb_cold
796loop_init (EV_P_ unsigned int flags) 2523loop_init (EV_P_ unsigned int flags) EV_THROW
797{ 2524{
798 if (!method) 2525 if (!backend)
799 { 2526 {
2527 origflags = flags;
2528
2529#if EV_USE_REALTIME
2530 if (!have_realtime)
2531 {
2532 struct timespec ts;
2533
2534 if (!clock_gettime (CLOCK_REALTIME, &ts))
2535 have_realtime = 1;
2536 }
2537#endif
2538
800#if EV_USE_MONOTONIC 2539#if EV_USE_MONOTONIC
2540 if (!have_monotonic)
801 { 2541 {
802 struct timespec ts; 2542 struct timespec ts;
2543
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2544 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 2545 have_monotonic = 1;
805 } 2546 }
806#endif 2547#endif
807 2548
808 ev_rt_now = ev_time (); 2549 /* pid check not overridable via env */
809 mn_now = get_clock (); 2550#ifndef _WIN32
810 now_floor = mn_now; 2551 if (flags & EVFLAG_FORKCHECK)
811 rtmn_diff = ev_rt_now - mn_now; 2552 curpid = getpid ();
2553#endif
812 2554
813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 2555 if (!(flags & EVFLAG_NOENV)
2556 && !enable_secure ()
2557 && getenv ("LIBEV_FLAGS"))
814 flags = atoi (getenv ("LIBEV_FLAGS")); 2558 flags = atoi (getenv ("LIBEV_FLAGS"));
815 2559
816 if (!(flags & 0x0000ffff)) 2560 ev_rt_now = ev_time ();
817 flags |= 0x0000ffff; 2561 mn_now = get_clock ();
2562 now_floor = mn_now;
2563 rtmn_diff = ev_rt_now - mn_now;
2564#if EV_FEATURE_API
2565 invoke_cb = ev_invoke_pending;
2566#endif
818 2567
819 method = 0; 2568 io_blocktime = 0.;
2569 timeout_blocktime = 0.;
2570 backend = 0;
2571 backend_fd = -1;
2572 sig_pending = 0;
2573#if EV_ASYNC_ENABLE
2574 async_pending = 0;
2575#endif
2576 pipe_write_skipped = 0;
2577 pipe_write_wanted = 0;
2578 evpipe [0] = -1;
2579 evpipe [1] = -1;
2580#if EV_USE_INOTIFY
2581 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2582#endif
2583#if EV_USE_SIGNALFD
2584 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2585#endif
2586
2587 if (!(flags & EVBACKEND_MASK))
2588 flags |= ev_recommended_backends ();
2589
2590#if EV_USE_IOCP
2591 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2592#endif
820#if EV_USE_PORT 2593#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 2594 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
822#endif 2595#endif
823#if EV_USE_KQUEUE 2596#if EV_USE_KQUEUE
824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 2597 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
825#endif 2598#endif
826#if EV_USE_EPOLL 2599#if EV_USE_EPOLL
827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 2600 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
828#endif 2601#endif
829#if EV_USE_POLL 2602#if EV_USE_POLL
830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 2603 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
831#endif 2604#endif
832#if EV_USE_SELECT 2605#if EV_USE_SELECT
833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 2606 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
834#endif 2607#endif
835 2608
2609 ev_prepare_init (&pending_w, pendingcb);
2610
2611#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
836 ev_init (&sigev, sigcb); 2612 ev_init (&pipe_w, pipecb);
837 ev_set_priority (&sigev, EV_MAXPRI); 2613 ev_set_priority (&pipe_w, EV_MAXPRI);
2614#endif
838 } 2615 }
839} 2616}
840 2617
841static void 2618/* free up a loop structure */
2619void ecb_cold
842loop_destroy (EV_P) 2620ev_loop_destroy (EV_P)
843{ 2621{
844 int i; 2622 int i;
845 2623
2624#if EV_MULTIPLICITY
2625 /* mimic free (0) */
2626 if (!EV_A)
2627 return;
2628#endif
2629
2630#if EV_CLEANUP_ENABLE
2631 /* queue cleanup watchers (and execute them) */
2632 if (expect_false (cleanupcnt))
2633 {
2634 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2635 EV_INVOKE_PENDING;
2636 }
2637#endif
2638
2639#if EV_CHILD_ENABLE
2640 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2641 {
2642 ev_ref (EV_A); /* child watcher */
2643 ev_signal_stop (EV_A_ &childev);
2644 }
2645#endif
2646
2647 if (ev_is_active (&pipe_w))
2648 {
2649 /*ev_ref (EV_A);*/
2650 /*ev_io_stop (EV_A_ &pipe_w);*/
2651
2652 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2653 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2654 }
2655
2656#if EV_USE_SIGNALFD
2657 if (ev_is_active (&sigfd_w))
2658 close (sigfd);
2659#endif
2660
2661#if EV_USE_INOTIFY
2662 if (fs_fd >= 0)
2663 close (fs_fd);
2664#endif
2665
2666 if (backend_fd >= 0)
2667 close (backend_fd);
2668
2669#if EV_USE_IOCP
2670 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2671#endif
846#if EV_USE_PORT 2672#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 2673 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
848#endif 2674#endif
849#if EV_USE_KQUEUE 2675#if EV_USE_KQUEUE
850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 2676 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
851#endif 2677#endif
852#if EV_USE_EPOLL 2678#if EV_USE_EPOLL
853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 2679 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
854#endif 2680#endif
855#if EV_USE_POLL 2681#if EV_USE_POLL
856 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 2682 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
857#endif 2683#endif
858#if EV_USE_SELECT 2684#if EV_USE_SELECT
859 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 2685 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
860#endif 2686#endif
861 2687
862 for (i = NUMPRI; i--; ) 2688 for (i = NUMPRI; i--; )
2689 {
863 array_free (pending, [i]); 2690 array_free (pending, [i]);
2691#if EV_IDLE_ENABLE
2692 array_free (idle, [i]);
2693#endif
2694 }
2695
2696 ev_free (anfds); anfds = 0; anfdmax = 0;
864 2697
865 /* have to use the microsoft-never-gets-it-right macro */ 2698 /* have to use the microsoft-never-gets-it-right macro */
2699 array_free (rfeed, EMPTY);
866 array_free (fdchange, EMPTY0); 2700 array_free (fdchange, EMPTY);
867 array_free (timer, EMPTY0); 2701 array_free (timer, EMPTY);
868#if EV_PERIODICS 2702#if EV_PERIODIC_ENABLE
869 array_free (periodic, EMPTY0); 2703 array_free (periodic, EMPTY);
870#endif 2704#endif
2705#if EV_FORK_ENABLE
2706 array_free (fork, EMPTY);
2707#endif
2708#if EV_CLEANUP_ENABLE
871 array_free (idle, EMPTY0); 2709 array_free (cleanup, EMPTY);
2710#endif
872 array_free (prepare, EMPTY0); 2711 array_free (prepare, EMPTY);
873 array_free (check, EMPTY0); 2712 array_free (check, EMPTY);
2713#if EV_ASYNC_ENABLE
2714 array_free (async, EMPTY);
2715#endif
874 2716
875 method = 0; 2717 backend = 0;
876}
877 2718
878static void 2719#if EV_MULTIPLICITY
2720 if (ev_is_default_loop (EV_A))
2721#endif
2722 ev_default_loop_ptr = 0;
2723#if EV_MULTIPLICITY
2724 else
2725 ev_free (EV_A);
2726#endif
2727}
2728
2729#if EV_USE_INOTIFY
2730inline_size void infy_fork (EV_P);
2731#endif
2732
2733inline_size void
879loop_fork (EV_P) 2734loop_fork (EV_P)
880{ 2735{
881#if EV_USE_PORT 2736#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A); 2737 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
883#endif 2738#endif
884#if EV_USE_KQUEUE 2739#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 2740 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
886#endif 2741#endif
887#if EV_USE_EPOLL 2742#if EV_USE_EPOLL
888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2743 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
889#endif 2744#endif
2745#if EV_USE_INOTIFY
2746 infy_fork (EV_A);
2747#endif
890 2748
2749#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
891 if (ev_is_active (&sigev)) 2750 if (ev_is_active (&pipe_w))
892 { 2751 {
893 /* default loop */ 2752 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
894 2753
895 ev_ref (EV_A); 2754 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev); 2755 ev_io_stop (EV_A_ &pipe_w);
897 close (sigpipe [0]);
898 close (sigpipe [1]);
899 2756
900 while (pipe (sigpipe)) 2757 if (evpipe [0] >= 0)
901 syserr ("(libev) error creating pipe"); 2758 EV_WIN32_CLOSE_FD (evpipe [0]);
902 2759
903 siginit (EV_A); 2760 evpipe_init (EV_A);
2761 /* iterate over everything, in case we missed something before */
2762 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
904 } 2763 }
2764#endif
905 2765
906 postfork = 0; 2766 postfork = 0;
907} 2767}
908 2768
909#if EV_MULTIPLICITY 2769#if EV_MULTIPLICITY
2770
910struct ev_loop * 2771struct ev_loop * ecb_cold
911ev_loop_new (unsigned int flags) 2772ev_loop_new (unsigned int flags) EV_THROW
912{ 2773{
913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2774 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
914 2775
915 memset (loop, 0, sizeof (struct ev_loop)); 2776 memset (EV_A, 0, sizeof (struct ev_loop));
916
917 loop_init (EV_A_ flags); 2777 loop_init (EV_A_ flags);
918 2778
919 if (ev_method (EV_A)) 2779 if (ev_backend (EV_A))
920 return loop; 2780 return EV_A;
921 2781
2782 ev_free (EV_A);
922 return 0; 2783 return 0;
923} 2784}
924 2785
925void 2786#endif /* multiplicity */
926ev_loop_destroy (EV_P)
927{
928 loop_destroy (EV_A);
929 ev_free (loop);
930}
931 2787
932void 2788#if EV_VERIFY
933ev_loop_fork (EV_P) 2789static void noinline ecb_cold
2790verify_watcher (EV_P_ W w)
934{ 2791{
935 postfork = 1; 2792 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
936}
937 2793
2794 if (w->pending)
2795 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2796}
2797
2798static void noinline ecb_cold
2799verify_heap (EV_P_ ANHE *heap, int N)
2800{
2801 int i;
2802
2803 for (i = HEAP0; i < N + HEAP0; ++i)
2804 {
2805 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2806 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2807 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2808
2809 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2810 }
2811}
2812
2813static void noinline ecb_cold
2814array_verify (EV_P_ W *ws, int cnt)
2815{
2816 while (cnt--)
2817 {
2818 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2819 verify_watcher (EV_A_ ws [cnt]);
2820 }
2821}
2822#endif
2823
2824#if EV_FEATURE_API
2825void ecb_cold
2826ev_verify (EV_P) EV_THROW
2827{
2828#if EV_VERIFY
2829 int i;
2830 WL w, w2;
2831
2832 assert (activecnt >= -1);
2833
2834 assert (fdchangemax >= fdchangecnt);
2835 for (i = 0; i < fdchangecnt; ++i)
2836 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2837
2838 assert (anfdmax >= 0);
2839 for (i = 0; i < anfdmax; ++i)
2840 {
2841 int j = 0;
2842
2843 for (w = w2 = anfds [i].head; w; w = w->next)
2844 {
2845 verify_watcher (EV_A_ (W)w);
2846
2847 if (j++ & 1)
2848 {
2849 assert (("libev: io watcher list contains a loop", w != w2));
2850 w2 = w2->next;
2851 }
2852
2853 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2854 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2855 }
2856 }
2857
2858 assert (timermax >= timercnt);
2859 verify_heap (EV_A_ timers, timercnt);
2860
2861#if EV_PERIODIC_ENABLE
2862 assert (periodicmax >= periodiccnt);
2863 verify_heap (EV_A_ periodics, periodiccnt);
2864#endif
2865
2866 for (i = NUMPRI; i--; )
2867 {
2868 assert (pendingmax [i] >= pendingcnt [i]);
2869#if EV_IDLE_ENABLE
2870 assert (idleall >= 0);
2871 assert (idlemax [i] >= idlecnt [i]);
2872 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2873#endif
2874 }
2875
2876#if EV_FORK_ENABLE
2877 assert (forkmax >= forkcnt);
2878 array_verify (EV_A_ (W *)forks, forkcnt);
2879#endif
2880
2881#if EV_CLEANUP_ENABLE
2882 assert (cleanupmax >= cleanupcnt);
2883 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2884#endif
2885
2886#if EV_ASYNC_ENABLE
2887 assert (asyncmax >= asynccnt);
2888 array_verify (EV_A_ (W *)asyncs, asynccnt);
2889#endif
2890
2891#if EV_PREPARE_ENABLE
2892 assert (preparemax >= preparecnt);
2893 array_verify (EV_A_ (W *)prepares, preparecnt);
2894#endif
2895
2896#if EV_CHECK_ENABLE
2897 assert (checkmax >= checkcnt);
2898 array_verify (EV_A_ (W *)checks, checkcnt);
2899#endif
2900
2901# if 0
2902#if EV_CHILD_ENABLE
2903 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2904 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2905#endif
2906# endif
2907#endif
2908}
938#endif 2909#endif
939 2910
940#if EV_MULTIPLICITY 2911#if EV_MULTIPLICITY
941struct ev_loop * 2912struct ev_loop * ecb_cold
942ev_default_loop_init (unsigned int flags)
943#else 2913#else
944int 2914int
2915#endif
945ev_default_loop (unsigned int flags) 2916ev_default_loop (unsigned int flags) EV_THROW
946#endif
947{ 2917{
948 if (sigpipe [0] == sigpipe [1])
949 if (pipe (sigpipe))
950 return 0;
951
952 if (!ev_default_loop_ptr) 2918 if (!ev_default_loop_ptr)
953 { 2919 {
954#if EV_MULTIPLICITY 2920#if EV_MULTIPLICITY
955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2921 EV_P = ev_default_loop_ptr = &default_loop_struct;
956#else 2922#else
957 ev_default_loop_ptr = 1; 2923 ev_default_loop_ptr = 1;
958#endif 2924#endif
959 2925
960 loop_init (EV_A_ flags); 2926 loop_init (EV_A_ flags);
961 2927
962 if (ev_method (EV_A)) 2928 if (ev_backend (EV_A))
963 { 2929 {
964 siginit (EV_A); 2930#if EV_CHILD_ENABLE
965
966#ifndef _WIN32
967 ev_signal_init (&childev, childcb, SIGCHLD); 2931 ev_signal_init (&childev, childcb, SIGCHLD);
968 ev_set_priority (&childev, EV_MAXPRI); 2932 ev_set_priority (&childev, EV_MAXPRI);
969 ev_signal_start (EV_A_ &childev); 2933 ev_signal_start (EV_A_ &childev);
970 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2934 ev_unref (EV_A); /* child watcher should not keep loop alive */
971#endif 2935#endif
976 2940
977 return ev_default_loop_ptr; 2941 return ev_default_loop_ptr;
978} 2942}
979 2943
980void 2944void
981ev_default_destroy (void) 2945ev_loop_fork (EV_P) EV_THROW
982{ 2946{
983#if EV_MULTIPLICITY 2947 postfork = 1;
984 struct ev_loop *loop = ev_default_loop_ptr;
985#endif
986
987#ifndef _WIN32
988 ev_ref (EV_A); /* child watcher */
989 ev_signal_stop (EV_A_ &childev);
990#endif
991
992 ev_ref (EV_A); /* signal watcher */
993 ev_io_stop (EV_A_ &sigev);
994
995 close (sigpipe [0]); sigpipe [0] = 0;
996 close (sigpipe [1]); sigpipe [1] = 0;
997
998 loop_destroy (EV_A);
999} 2948}
2949
2950/*****************************************************************************/
1000 2951
1001void 2952void
1002ev_default_fork (void) 2953ev_invoke (EV_P_ void *w, int revents)
1003{ 2954{
1004#if EV_MULTIPLICITY 2955 EV_CB_INVOKE ((W)w, revents);
1005 struct ev_loop *loop = ev_default_loop_ptr;
1006#endif
1007
1008 if (method)
1009 postfork = 1;
1010} 2956}
1011 2957
1012/*****************************************************************************/ 2958unsigned int
1013 2959ev_pending_count (EV_P) EV_THROW
1014static int
1015any_pending (EV_P)
1016{ 2960{
1017 int pri; 2961 int pri;
2962 unsigned int count = 0;
1018 2963
1019 for (pri = NUMPRI; pri--; ) 2964 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri]) 2965 count += pendingcnt [pri];
1021 return 1;
1022 2966
1023 return 0; 2967 return count;
1024} 2968}
1025 2969
1026inline void 2970void noinline
1027call_pending (EV_P) 2971ev_invoke_pending (EV_P)
1028{ 2972{
1029 int pri; 2973 pendingpri = NUMPRI;
1030 2974
1031 for (pri = NUMPRI; pri--; ) 2975 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2976 {
2977 --pendingpri;
2978
1032 while (pendingcnt [pri]) 2979 while (pendingcnt [pendingpri])
1033 {
1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1035
1036 if (expect_true (p->w))
1037 { 2980 {
2981 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2982
1038 p->w->pending = 0; 2983 p->w->pending = 0;
1039 EV_CB_INVOKE (p->w, p->events); 2984 EV_CB_INVOKE (p->w, p->events);
2985 EV_FREQUENT_CHECK;
2986 }
2987 }
2988}
2989
2990#if EV_IDLE_ENABLE
2991/* make idle watchers pending. this handles the "call-idle */
2992/* only when higher priorities are idle" logic */
2993inline_size void
2994idle_reify (EV_P)
2995{
2996 if (expect_false (idleall))
2997 {
2998 int pri;
2999
3000 for (pri = NUMPRI; pri--; )
3001 {
3002 if (pendingcnt [pri])
3003 break;
3004
3005 if (idlecnt [pri])
3006 {
3007 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3008 break;
1040 } 3009 }
1041 } 3010 }
3011 }
1042} 3012}
3013#endif
1043 3014
3015/* make timers pending */
1044inline void 3016inline_size void
1045timers_reify (EV_P) 3017timers_reify (EV_P)
1046{ 3018{
3019 EV_FREQUENT_CHECK;
3020
1047 while (timercnt && ((WT)timers [0])->at <= mn_now) 3021 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1048 { 3022 {
1049 struct ev_timer *w = timers [0]; 3023 do
1050
1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1052
1053 /* first reschedule or stop timer */
1054 if (w->repeat)
1055 { 3024 {
3025 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3026
3027 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3028
3029 /* first reschedule or stop timer */
3030 if (w->repeat)
3031 {
3032 ev_at (w) += w->repeat;
3033 if (ev_at (w) < mn_now)
3034 ev_at (w) = mn_now;
3035
1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3036 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057 3037
1058 ((WT)w)->at += w->repeat; 3038 ANHE_at_cache (timers [HEAP0]);
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
1062 downheap ((WT *)timers, timercnt, 0); 3039 downheap (timers, timercnt, HEAP0);
3040 }
3041 else
3042 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3043
3044 EV_FREQUENT_CHECK;
3045 feed_reverse (EV_A_ (W)w);
1063 } 3046 }
1064 else 3047 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1066 3048
1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3049 feed_reverse_done (EV_A_ EV_TIMER);
3050 }
3051}
3052
3053#if EV_PERIODIC_ENABLE
3054
3055static void noinline
3056periodic_recalc (EV_P_ ev_periodic *w)
3057{
3058 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3059 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3060
3061 /* the above almost always errs on the low side */
3062 while (at <= ev_rt_now)
1068 } 3063 {
1069} 3064 ev_tstamp nat = at + w->interval;
1070 3065
1071#if EV_PERIODICS 3066 /* when resolution fails us, we use ev_rt_now */
3067 if (expect_false (nat == at))
3068 {
3069 at = ev_rt_now;
3070 break;
3071 }
3072
3073 at = nat;
3074 }
3075
3076 ev_at (w) = at;
3077}
3078
3079/* make periodics pending */
1072inline void 3080inline_size void
1073periodics_reify (EV_P) 3081periodics_reify (EV_P)
1074{ 3082{
3083 EV_FREQUENT_CHECK;
3084
1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3085 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1076 { 3086 {
1077 struct ev_periodic *w = periodics [0]; 3087 do
3088 {
3089 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1078 3090
1079 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3091 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1080 3092
1081 /* first reschedule or stop timer */ 3093 /* first reschedule or stop timer */
3094 if (w->reschedule_cb)
3095 {
3096 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3097
3098 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3099
3100 ANHE_at_cache (periodics [HEAP0]);
3101 downheap (periodics, periodiccnt, HEAP0);
3102 }
3103 else if (w->interval)
3104 {
3105 periodic_recalc (EV_A_ w);
3106 ANHE_at_cache (periodics [HEAP0]);
3107 downheap (periodics, periodiccnt, HEAP0);
3108 }
3109 else
3110 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3111
3112 EV_FREQUENT_CHECK;
3113 feed_reverse (EV_A_ (W)w);
3114 }
3115 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3116
3117 feed_reverse_done (EV_A_ EV_PERIODIC);
3118 }
3119}
3120
3121/* simply recalculate all periodics */
3122/* TODO: maybe ensure that at least one event happens when jumping forward? */
3123static void noinline ecb_cold
3124periodics_reschedule (EV_P)
3125{
3126 int i;
3127
3128 /* adjust periodics after time jump */
3129 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3130 {
3131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3132
1082 if (w->reschedule_cb) 3133 if (w->reschedule_cb)
3134 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3135 else if (w->interval)
3136 periodic_recalc (EV_A_ w);
3137
3138 ANHE_at_cache (periodics [i]);
3139 }
3140
3141 reheap (periodics, periodiccnt);
3142}
3143#endif
3144
3145/* adjust all timers by a given offset */
3146static void noinline ecb_cold
3147timers_reschedule (EV_P_ ev_tstamp adjust)
3148{
3149 int i;
3150
3151 for (i = 0; i < timercnt; ++i)
3152 {
3153 ANHE *he = timers + i + HEAP0;
3154 ANHE_w (*he)->at += adjust;
3155 ANHE_at_cache (*he);
3156 }
3157}
3158
3159/* fetch new monotonic and realtime times from the kernel */
3160/* also detect if there was a timejump, and act accordingly */
3161inline_speed void
3162time_update (EV_P_ ev_tstamp max_block)
3163{
3164#if EV_USE_MONOTONIC
3165 if (expect_true (have_monotonic))
3166 {
3167 int i;
3168 ev_tstamp odiff = rtmn_diff;
3169
3170 mn_now = get_clock ();
3171
3172 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3173 /* interpolate in the meantime */
3174 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 { 3175 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3176 ev_rt_now = rtmn_diff + mn_now;
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3177 return;
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 } 3178 }
1088 else if (w->interval)
1089 {
1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1092 downheap ((WT *)periodics, periodiccnt, 0);
1093 }
1094 else
1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1096 3179
1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1098 }
1099}
1100
1101static void
1102periodics_reschedule (EV_P)
1103{
1104 int i;
1105
1106 /* adjust periodics after time jump */
1107 for (i = 0; i < periodiccnt; ++i)
1108 {
1109 struct ev_periodic *w = periodics [i];
1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1113 else if (w->interval)
1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
1120}
1121#endif
1122
1123inline int
1124time_update_monotonic (EV_P)
1125{
1126 mn_now = get_clock ();
1127
1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1129 {
1130 ev_rt_now = rtmn_diff + mn_now;
1131 return 0;
1132 }
1133 else
1134 {
1135 now_floor = mn_now; 3180 now_floor = mn_now;
1136 ev_rt_now = ev_time (); 3181 ev_rt_now = ev_time ();
1137 return 1;
1138 }
1139}
1140 3182
1141inline void 3183 /* loop a few times, before making important decisions.
1142time_update (EV_P) 3184 * on the choice of "4": one iteration isn't enough,
1143{ 3185 * in case we get preempted during the calls to
1144 int i; 3186 * ev_time and get_clock. a second call is almost guaranteed
1145 3187 * to succeed in that case, though. and looping a few more times
1146#if EV_USE_MONOTONIC 3188 * doesn't hurt either as we only do this on time-jumps or
1147 if (expect_true (have_monotonic)) 3189 * in the unlikely event of having been preempted here.
1148 { 3190 */
1149 if (time_update_monotonic (EV_A)) 3191 for (i = 4; --i; )
1150 { 3192 {
1151 ev_tstamp odiff = rtmn_diff; 3193 ev_tstamp diff;
1152
1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1154 {
1155 rtmn_diff = ev_rt_now - mn_now; 3194 rtmn_diff = ev_rt_now - mn_now;
1156 3195
1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3196 diff = odiff - rtmn_diff;
3197
3198 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1158 return; /* all is well */ 3199 return; /* all is well */
1159 3200
1160 ev_rt_now = ev_time (); 3201 ev_rt_now = ev_time ();
1161 mn_now = get_clock (); 3202 mn_now = get_clock ();
1162 now_floor = mn_now; 3203 now_floor = mn_now;
1163 } 3204 }
1164 3205
3206 /* no timer adjustment, as the monotonic clock doesn't jump */
3207 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1165# if EV_PERIODICS 3208# if EV_PERIODIC_ENABLE
3209 periodics_reschedule (EV_A);
3210# endif
3211 }
3212 else
3213#endif
3214 {
3215 ev_rt_now = ev_time ();
3216
3217 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3218 {
3219 /* adjust timers. this is easy, as the offset is the same for all of them */
3220 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3221#if EV_PERIODIC_ENABLE
1166 periodics_reschedule (EV_A); 3222 periodics_reschedule (EV_A);
1167# endif 3223#endif
1168 /* no timer adjustment, as the monotonic clock doesn't jump */
1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1170 } 3224 }
1171 }
1172 else
1173#endif
1174 {
1175 ev_rt_now = ev_time ();
1176
1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1178 {
1179#if EV_PERIODICS
1180 periodics_reschedule (EV_A);
1181#endif
1182
1183 /* adjust timers. this is easy, as the offset is the same for all */
1184 for (i = 0; i < timercnt; ++i)
1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
1186 }
1187 3225
1188 mn_now = ev_rt_now; 3226 mn_now = ev_rt_now;
1189 } 3227 }
1190} 3228}
1191 3229
1192void 3230int
1193ev_ref (EV_P)
1194{
1195 ++activecnt;
1196}
1197
1198void
1199ev_unref (EV_P)
1200{
1201 --activecnt;
1202}
1203
1204static int loop_done;
1205
1206void
1207ev_loop (EV_P_ int flags) 3231ev_run (EV_P_ int flags)
1208{ 3232{
1209 double block; 3233#if EV_FEATURE_API
1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3234 ++loop_depth;
3235#endif
1211 3236
1212 while (activecnt) 3237 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3238
3239 loop_done = EVBREAK_CANCEL;
3240
3241 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3242
3243 do
1213 { 3244 {
3245#if EV_VERIFY >= 2
3246 ev_verify (EV_A);
3247#endif
3248
3249#ifndef _WIN32
3250 if (expect_false (curpid)) /* penalise the forking check even more */
3251 if (expect_false (getpid () != curpid))
3252 {
3253 curpid = getpid ();
3254 postfork = 1;
3255 }
3256#endif
3257
3258#if EV_FORK_ENABLE
3259 /* we might have forked, so queue fork handlers */
3260 if (expect_false (postfork))
3261 if (forkcnt)
3262 {
3263 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3264 EV_INVOKE_PENDING;
3265 }
3266#endif
3267
3268#if EV_PREPARE_ENABLE
1214 /* queue check watchers (and execute them) */ 3269 /* queue prepare watchers (and execute them) */
1215 if (expect_false (preparecnt)) 3270 if (expect_false (preparecnt))
1216 { 3271 {
1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3272 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1218 call_pending (EV_A); 3273 EV_INVOKE_PENDING;
1219 } 3274 }
3275#endif
3276
3277 if (expect_false (loop_done))
3278 break;
1220 3279
1221 /* we might have forked, so reify kernel state if necessary */ 3280 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork)) 3281 if (expect_false (postfork))
1223 loop_fork (EV_A); 3282 loop_fork (EV_A);
1224 3283
1225 /* update fd-related kernel structures */ 3284 /* update fd-related kernel structures */
1226 fd_reify (EV_A); 3285 fd_reify (EV_A);
1227 3286
1228 /* calculate blocking time */ 3287 /* calculate blocking time */
3288 {
3289 ev_tstamp waittime = 0.;
3290 ev_tstamp sleeptime = 0.;
1229 3291
1230 /* we only need this for !monotonic clock or timers, but as we basically 3292 /* remember old timestamp for io_blocktime calculation */
1231 always have timers, we just calculate it always */ 3293 ev_tstamp prev_mn_now = mn_now;
1232#if EV_USE_MONOTONIC 3294
1233 if (expect_true (have_monotonic)) 3295 /* update time to cancel out callback processing overhead */
1234 time_update_monotonic (EV_A); 3296 time_update (EV_A_ 1e100);
1235 else 3297
1236#endif 3298 /* from now on, we want a pipe-wake-up */
3299 pipe_write_wanted = 1;
3300
3301 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3302
3303 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1237 { 3304 {
1238 ev_rt_now = ev_time ();
1239 mn_now = ev_rt_now;
1240 }
1241
1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
1243 block = 0.;
1244 else
1245 {
1246 block = MAX_BLOCKTIME; 3305 waittime = MAX_BLOCKTIME;
1247 3306
1248 if (timercnt) 3307 if (timercnt)
1249 { 3308 {
1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3309 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1251 if (block > to) block = to; 3310 if (waittime > to) waittime = to;
1252 } 3311 }
1253 3312
1254#if EV_PERIODICS 3313#if EV_PERIODIC_ENABLE
1255 if (periodiccnt) 3314 if (periodiccnt)
1256 { 3315 {
1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3316 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1258 if (block > to) block = to; 3317 if (waittime > to) waittime = to;
1259 } 3318 }
1260#endif 3319#endif
1261 3320
1262 if (expect_false (block < 0.)) block = 0.; 3321 /* don't let timeouts decrease the waittime below timeout_blocktime */
3322 if (expect_false (waittime < timeout_blocktime))
3323 waittime = timeout_blocktime;
3324
3325 /* at this point, we NEED to wait, so we have to ensure */
3326 /* to pass a minimum nonzero value to the backend */
3327 if (expect_false (waittime < backend_mintime))
3328 waittime = backend_mintime;
3329
3330 /* extra check because io_blocktime is commonly 0 */
3331 if (expect_false (io_blocktime))
3332 {
3333 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3334
3335 if (sleeptime > waittime - backend_mintime)
3336 sleeptime = waittime - backend_mintime;
3337
3338 if (expect_true (sleeptime > 0.))
3339 {
3340 ev_sleep (sleeptime);
3341 waittime -= sleeptime;
3342 }
3343 }
1263 } 3344 }
1264 3345
1265 method_poll (EV_A_ block); 3346#if EV_FEATURE_API
3347 ++loop_count;
3348#endif
3349 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3350 backend_poll (EV_A_ waittime);
3351 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1266 3352
3353 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3354
3355 ECB_MEMORY_FENCE_ACQUIRE;
3356 if (pipe_write_skipped)
3357 {
3358 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3359 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3360 }
3361
3362
1267 /* update ev_rt_now, do magic */ 3363 /* update ev_rt_now, do magic */
1268 time_update (EV_A); 3364 time_update (EV_A_ waittime + sleeptime);
3365 }
1269 3366
1270 /* queue pending timers and reschedule them */ 3367 /* queue pending timers and reschedule them */
1271 timers_reify (EV_A); /* relative timers called last */ 3368 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS 3369#if EV_PERIODIC_ENABLE
1273 periodics_reify (EV_A); /* absolute timers called first */ 3370 periodics_reify (EV_A); /* absolute timers called first */
1274#endif 3371#endif
1275 3372
3373#if EV_IDLE_ENABLE
1276 /* queue idle watchers unless io or timers are pending */ 3374 /* queue idle watchers unless other events are pending */
1277 if (idlecnt && !any_pending (EV_A)) 3375 idle_reify (EV_A);
1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3376#endif
1279 3377
3378#if EV_CHECK_ENABLE
1280 /* queue check watchers, to be executed first */ 3379 /* queue check watchers, to be executed first */
1281 if (expect_false (checkcnt)) 3380 if (expect_false (checkcnt))
1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3381 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3382#endif
1283 3383
1284 call_pending (EV_A); 3384 EV_INVOKE_PENDING;
1285
1286 if (expect_false (loop_done))
1287 break;
1288 } 3385 }
3386 while (expect_true (
3387 activecnt
3388 && !loop_done
3389 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3390 ));
1289 3391
1290 if (loop_done != 2) 3392 if (loop_done == EVBREAK_ONE)
1291 loop_done = 0; 3393 loop_done = EVBREAK_CANCEL;
3394
3395#if EV_FEATURE_API
3396 --loop_depth;
3397#endif
3398
3399 return activecnt;
1292} 3400}
1293 3401
1294void 3402void
1295ev_unloop (EV_P_ int how) 3403ev_break (EV_P_ int how) EV_THROW
1296{ 3404{
1297 loop_done = how; 3405 loop_done = how;
1298} 3406}
1299 3407
3408void
3409ev_ref (EV_P) EV_THROW
3410{
3411 ++activecnt;
3412}
3413
3414void
3415ev_unref (EV_P) EV_THROW
3416{
3417 --activecnt;
3418}
3419
3420void
3421ev_now_update (EV_P) EV_THROW
3422{
3423 time_update (EV_A_ 1e100);
3424}
3425
3426void
3427ev_suspend (EV_P) EV_THROW
3428{
3429 ev_now_update (EV_A);
3430}
3431
3432void
3433ev_resume (EV_P) EV_THROW
3434{
3435 ev_tstamp mn_prev = mn_now;
3436
3437 ev_now_update (EV_A);
3438 timers_reschedule (EV_A_ mn_now - mn_prev);
3439#if EV_PERIODIC_ENABLE
3440 /* TODO: really do this? */
3441 periodics_reschedule (EV_A);
3442#endif
3443}
3444
1300/*****************************************************************************/ 3445/*****************************************************************************/
3446/* singly-linked list management, used when the expected list length is short */
1301 3447
1302inline void 3448inline_size void
1303wlist_add (WL *head, WL elem) 3449wlist_add (WL *head, WL elem)
1304{ 3450{
1305 elem->next = *head; 3451 elem->next = *head;
1306 *head = elem; 3452 *head = elem;
1307} 3453}
1308 3454
1309inline void 3455inline_size void
1310wlist_del (WL *head, WL elem) 3456wlist_del (WL *head, WL elem)
1311{ 3457{
1312 while (*head) 3458 while (*head)
1313 { 3459 {
1314 if (*head == elem) 3460 if (expect_true (*head == elem))
1315 { 3461 {
1316 *head = elem->next; 3462 *head = elem->next;
1317 return; 3463 break;
1318 } 3464 }
1319 3465
1320 head = &(*head)->next; 3466 head = &(*head)->next;
1321 } 3467 }
1322} 3468}
1323 3469
3470/* internal, faster, version of ev_clear_pending */
1324inline void 3471inline_speed void
1325ev_clear_pending (EV_P_ W w) 3472clear_pending (EV_P_ W w)
1326{ 3473{
1327 if (w->pending) 3474 if (w->pending)
1328 { 3475 {
1329 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3476 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1330 w->pending = 0; 3477 w->pending = 0;
1331 } 3478 }
1332} 3479}
1333 3480
3481int
3482ev_clear_pending (EV_P_ void *w) EV_THROW
3483{
3484 W w_ = (W)w;
3485 int pending = w_->pending;
3486
3487 if (expect_true (pending))
3488 {
3489 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3490 p->w = (W)&pending_w;
3491 w_->pending = 0;
3492 return p->events;
3493 }
3494 else
3495 return 0;
3496}
3497
1334inline void 3498inline_size void
3499pri_adjust (EV_P_ W w)
3500{
3501 int pri = ev_priority (w);
3502 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3503 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3504 ev_set_priority (w, pri);
3505}
3506
3507inline_speed void
1335ev_start (EV_P_ W w, int active) 3508ev_start (EV_P_ W w, int active)
1336{ 3509{
1337 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3510 pri_adjust (EV_A_ w);
1338 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1339
1340 w->active = active; 3511 w->active = active;
1341 ev_ref (EV_A); 3512 ev_ref (EV_A);
1342} 3513}
1343 3514
1344inline void 3515inline_size void
1345ev_stop (EV_P_ W w) 3516ev_stop (EV_P_ W w)
1346{ 3517{
1347 ev_unref (EV_A); 3518 ev_unref (EV_A);
1348 w->active = 0; 3519 w->active = 0;
1349} 3520}
1350 3521
1351/*****************************************************************************/ 3522/*****************************************************************************/
1352 3523
1353void 3524void noinline
1354ev_io_start (EV_P_ struct ev_io *w) 3525ev_io_start (EV_P_ ev_io *w) EV_THROW
1355{ 3526{
1356 int fd = w->fd; 3527 int fd = w->fd;
1357 3528
1358 if (expect_false (ev_is_active (w))) 3529 if (expect_false (ev_is_active (w)))
1359 return; 3530 return;
1360 3531
1361 assert (("ev_io_start called with negative fd", fd >= 0)); 3532 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3533 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3534
3535 EV_FREQUENT_CHECK;
1362 3536
1363 ev_start (EV_A_ (W)w, 1); 3537 ev_start (EV_A_ (W)w, 1);
1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3538 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1365 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3539 wlist_add (&anfds[fd].head, (WL)w);
1366 3540
1367 fd_change (EV_A_ fd); 3541 /* common bug, apparently */
1368} 3542 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1369 3543
1370void 3544 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3545 w->events &= ~EV__IOFDSET;
3546
3547 EV_FREQUENT_CHECK;
3548}
3549
3550void noinline
1371ev_io_stop (EV_P_ struct ev_io *w) 3551ev_io_stop (EV_P_ ev_io *w) EV_THROW
1372{ 3552{
1373 ev_clear_pending (EV_A_ (W)w); 3553 clear_pending (EV_A_ (W)w);
1374 if (expect_false (!ev_is_active (w))) 3554 if (expect_false (!ev_is_active (w)))
1375 return; 3555 return;
1376 3556
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3557 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1378 3558
3559 EV_FREQUENT_CHECK;
3560
1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3561 wlist_del (&anfds[w->fd].head, (WL)w);
1380 ev_stop (EV_A_ (W)w); 3562 ev_stop (EV_A_ (W)w);
1381 3563
1382 fd_change (EV_A_ w->fd); 3564 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1383}
1384 3565
1385void 3566 EV_FREQUENT_CHECK;
3567}
3568
3569void noinline
1386ev_timer_start (EV_P_ struct ev_timer *w) 3570ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1387{ 3571{
1388 if (expect_false (ev_is_active (w))) 3572 if (expect_false (ev_is_active (w)))
1389 return; 3573 return;
1390 3574
1391 ((WT)w)->at += mn_now; 3575 ev_at (w) += mn_now;
1392 3576
1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3577 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1394 3578
3579 EV_FREQUENT_CHECK;
3580
3581 ++timercnt;
1395 ev_start (EV_A_ (W)w, ++timercnt); 3582 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3583 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1397 timers [timercnt - 1] = w; 3584 ANHE_w (timers [ev_active (w)]) = (WT)w;
1398 upheap ((WT *)timers, timercnt - 1); 3585 ANHE_at_cache (timers [ev_active (w)]);
3586 upheap (timers, ev_active (w));
1399 3587
3588 EV_FREQUENT_CHECK;
3589
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3590 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1401} 3591}
1402 3592
1403void 3593void noinline
1404ev_timer_stop (EV_P_ struct ev_timer *w) 3594ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1405{ 3595{
1406 ev_clear_pending (EV_A_ (W)w); 3596 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 3597 if (expect_false (!ev_is_active (w)))
1408 return; 3598 return;
1409 3599
3600 EV_FREQUENT_CHECK;
3601
3602 {
3603 int active = ev_active (w);
3604
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3605 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1411 3606
3607 --timercnt;
3608
1412 if (expect_true (((W)w)->active < timercnt--)) 3609 if (expect_true (active < timercnt + HEAP0))
1413 { 3610 {
1414 timers [((W)w)->active - 1] = timers [timercnt]; 3611 timers [active] = timers [timercnt + HEAP0];
1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3612 adjustheap (timers, timercnt, active);
1416 } 3613 }
3614 }
1417 3615
1418 ((WT)w)->at -= mn_now; 3616 ev_at (w) -= mn_now;
1419 3617
1420 ev_stop (EV_A_ (W)w); 3618 ev_stop (EV_A_ (W)w);
1421}
1422 3619
1423void 3620 EV_FREQUENT_CHECK;
3621}
3622
3623void noinline
1424ev_timer_again (EV_P_ struct ev_timer *w) 3624ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1425{ 3625{
3626 EV_FREQUENT_CHECK;
3627
3628 clear_pending (EV_A_ (W)w);
3629
1426 if (ev_is_active (w)) 3630 if (ev_is_active (w))
1427 { 3631 {
1428 if (w->repeat) 3632 if (w->repeat)
1429 { 3633 {
1430 ((WT)w)->at = mn_now + w->repeat; 3634 ev_at (w) = mn_now + w->repeat;
3635 ANHE_at_cache (timers [ev_active (w)]);
1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3636 adjustheap (timers, timercnt, ev_active (w));
1432 } 3637 }
1433 else 3638 else
1434 ev_timer_stop (EV_A_ w); 3639 ev_timer_stop (EV_A_ w);
1435 } 3640 }
1436 else if (w->repeat) 3641 else if (w->repeat)
1437 { 3642 {
1438 w->at = w->repeat; 3643 ev_at (w) = w->repeat;
1439 ev_timer_start (EV_A_ w); 3644 ev_timer_start (EV_A_ w);
1440 } 3645 }
1441}
1442 3646
3647 EV_FREQUENT_CHECK;
3648}
3649
3650ev_tstamp
3651ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3652{
3653 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3654}
3655
1443#if EV_PERIODICS 3656#if EV_PERIODIC_ENABLE
1444void 3657void noinline
1445ev_periodic_start (EV_P_ struct ev_periodic *w) 3658ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1446{ 3659{
1447 if (expect_false (ev_is_active (w))) 3660 if (expect_false (ev_is_active (w)))
1448 return; 3661 return;
1449 3662
1450 if (w->reschedule_cb) 3663 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3664 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval) 3665 else if (w->interval)
1453 { 3666 {
1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3667 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1455 /* this formula differs from the one in periodic_reify because we do not always round up */ 3668 periodic_recalc (EV_A_ w);
1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1457 } 3669 }
3670 else
3671 ev_at (w) = w->offset;
1458 3672
3673 EV_FREQUENT_CHECK;
3674
3675 ++periodiccnt;
1459 ev_start (EV_A_ (W)w, ++periodiccnt); 3676 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3677 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1461 periodics [periodiccnt - 1] = w; 3678 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1462 upheap ((WT *)periodics, periodiccnt - 1); 3679 ANHE_at_cache (periodics [ev_active (w)]);
3680 upheap (periodics, ev_active (w));
1463 3681
3682 EV_FREQUENT_CHECK;
3683
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3684 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1465} 3685}
1466 3686
1467void 3687void noinline
1468ev_periodic_stop (EV_P_ struct ev_periodic *w) 3688ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1469{ 3689{
1470 ev_clear_pending (EV_A_ (W)w); 3690 clear_pending (EV_A_ (W)w);
1471 if (expect_false (!ev_is_active (w))) 3691 if (expect_false (!ev_is_active (w)))
1472 return; 3692 return;
1473 3693
3694 EV_FREQUENT_CHECK;
3695
3696 {
3697 int active = ev_active (w);
3698
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3699 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1475 3700
3701 --periodiccnt;
3702
1476 if (expect_true (((W)w)->active < periodiccnt--)) 3703 if (expect_true (active < periodiccnt + HEAP0))
1477 { 3704 {
1478 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3705 periodics [active] = periodics [periodiccnt + HEAP0];
1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3706 adjustheap (periodics, periodiccnt, active);
1480 } 3707 }
3708 }
1481 3709
1482 ev_stop (EV_A_ (W)w); 3710 ev_stop (EV_A_ (W)w);
1483}
1484 3711
1485void 3712 EV_FREQUENT_CHECK;
3713}
3714
3715void noinline
1486ev_periodic_again (EV_P_ struct ev_periodic *w) 3716ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1487{ 3717{
1488 /* TODO: use adjustheap and recalculation */ 3718 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w); 3719 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w); 3720 ev_periodic_start (EV_A_ w);
1491} 3721}
1492#endif 3722#endif
1493 3723
1494void 3724#ifndef SA_RESTART
1495ev_idle_start (EV_P_ struct ev_idle *w) 3725# define SA_RESTART 0
3726#endif
3727
3728#if EV_SIGNAL_ENABLE
3729
3730void noinline
3731ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1496{ 3732{
1497 if (expect_false (ev_is_active (w))) 3733 if (expect_false (ev_is_active (w)))
1498 return; 3734 return;
1499 3735
3736 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3737
3738#if EV_MULTIPLICITY
3739 assert (("libev: a signal must not be attached to two different loops",
3740 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3741
3742 signals [w->signum - 1].loop = EV_A;
3743 ECB_MEMORY_FENCE_RELEASE;
3744#endif
3745
3746 EV_FREQUENT_CHECK;
3747
3748#if EV_USE_SIGNALFD
3749 if (sigfd == -2)
3750 {
3751 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3752 if (sigfd < 0 && errno == EINVAL)
3753 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3754
3755 if (sigfd >= 0)
3756 {
3757 fd_intern (sigfd); /* doing it twice will not hurt */
3758
3759 sigemptyset (&sigfd_set);
3760
3761 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3762 ev_set_priority (&sigfd_w, EV_MAXPRI);
3763 ev_io_start (EV_A_ &sigfd_w);
3764 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3765 }
3766 }
3767
3768 if (sigfd >= 0)
3769 {
3770 /* TODO: check .head */
3771 sigaddset (&sigfd_set, w->signum);
3772 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3773
3774 signalfd (sigfd, &sigfd_set, 0);
3775 }
3776#endif
3777
1500 ev_start (EV_A_ (W)w, ++idlecnt); 3778 ev_start (EV_A_ (W)w, 1);
1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3779 wlist_add (&signals [w->signum - 1].head, (WL)w);
1502 idles [idlecnt - 1] = w;
1503}
1504 3780
1505void 3781 if (!((WL)w)->next)
1506ev_idle_stop (EV_P_ struct ev_idle *w) 3782# if EV_USE_SIGNALFD
3783 if (sigfd < 0) /*TODO*/
3784# endif
3785 {
3786# ifdef _WIN32
3787 evpipe_init (EV_A);
3788
3789 signal (w->signum, ev_sighandler);
3790# else
3791 struct sigaction sa;
3792
3793 evpipe_init (EV_A);
3794
3795 sa.sa_handler = ev_sighandler;
3796 sigfillset (&sa.sa_mask);
3797 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3798 sigaction (w->signum, &sa, 0);
3799
3800 if (origflags & EVFLAG_NOSIGMASK)
3801 {
3802 sigemptyset (&sa.sa_mask);
3803 sigaddset (&sa.sa_mask, w->signum);
3804 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3805 }
3806#endif
3807 }
3808
3809 EV_FREQUENT_CHECK;
3810}
3811
3812void noinline
3813ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1507{ 3814{
1508 ev_clear_pending (EV_A_ (W)w); 3815 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 3816 if (expect_false (!ev_is_active (w)))
1510 return; 3817 return;
1511 3818
1512 idles [((W)w)->active - 1] = idles [--idlecnt]; 3819 EV_FREQUENT_CHECK;
3820
3821 wlist_del (&signals [w->signum - 1].head, (WL)w);
1513 ev_stop (EV_A_ (W)w); 3822 ev_stop (EV_A_ (W)w);
3823
3824 if (!signals [w->signum - 1].head)
3825 {
3826#if EV_MULTIPLICITY
3827 signals [w->signum - 1].loop = 0; /* unattach from signal */
3828#endif
3829#if EV_USE_SIGNALFD
3830 if (sigfd >= 0)
3831 {
3832 sigset_t ss;
3833
3834 sigemptyset (&ss);
3835 sigaddset (&ss, w->signum);
3836 sigdelset (&sigfd_set, w->signum);
3837
3838 signalfd (sigfd, &sigfd_set, 0);
3839 sigprocmask (SIG_UNBLOCK, &ss, 0);
3840 }
3841 else
3842#endif
3843 signal (w->signum, SIG_DFL);
3844 }
3845
3846 EV_FREQUENT_CHECK;
1514} 3847}
3848
3849#endif
3850
3851#if EV_CHILD_ENABLE
1515 3852
1516void 3853void
1517ev_prepare_start (EV_P_ struct ev_prepare *w) 3854ev_child_start (EV_P_ ev_child *w) EV_THROW
1518{ 3855{
3856#if EV_MULTIPLICITY
3857 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3858#endif
1519 if (expect_false (ev_is_active (w))) 3859 if (expect_false (ev_is_active (w)))
1520 return; 3860 return;
1521 3861
3862 EV_FREQUENT_CHECK;
3863
1522 ev_start (EV_A_ (W)w, ++preparecnt); 3864 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3865 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1524 prepares [preparecnt - 1] = w; 3866
3867 EV_FREQUENT_CHECK;
1525} 3868}
1526 3869
1527void 3870void
1528ev_prepare_stop (EV_P_ struct ev_prepare *w) 3871ev_child_stop (EV_P_ ev_child *w) EV_THROW
1529{ 3872{
1530 ev_clear_pending (EV_A_ (W)w); 3873 clear_pending (EV_A_ (W)w);
1531 if (expect_false (!ev_is_active (w))) 3874 if (expect_false (!ev_is_active (w)))
1532 return; 3875 return;
1533 3876
1534 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3877 EV_FREQUENT_CHECK;
3878
3879 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1535 ev_stop (EV_A_ (W)w); 3880 ev_stop (EV_A_ (W)w);
3881
3882 EV_FREQUENT_CHECK;
1536} 3883}
3884
3885#endif
3886
3887#if EV_STAT_ENABLE
3888
3889# ifdef _WIN32
3890# undef lstat
3891# define lstat(a,b) _stati64 (a,b)
3892# endif
3893
3894#define DEF_STAT_INTERVAL 5.0074891
3895#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3896#define MIN_STAT_INTERVAL 0.1074891
3897
3898static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3899
3900#if EV_USE_INOTIFY
3901
3902/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3903# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3904
3905static void noinline
3906infy_add (EV_P_ ev_stat *w)
3907{
3908 w->wd = inotify_add_watch (fs_fd, w->path,
3909 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3910 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3911 | IN_DONT_FOLLOW | IN_MASK_ADD);
3912
3913 if (w->wd >= 0)
3914 {
3915 struct statfs sfs;
3916
3917 /* now local changes will be tracked by inotify, but remote changes won't */
3918 /* unless the filesystem is known to be local, we therefore still poll */
3919 /* also do poll on <2.6.25, but with normal frequency */
3920
3921 if (!fs_2625)
3922 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3923 else if (!statfs (w->path, &sfs)
3924 && (sfs.f_type == 0x1373 /* devfs */
3925 || sfs.f_type == 0x4006 /* fat */
3926 || sfs.f_type == 0x4d44 /* msdos */
3927 || sfs.f_type == 0xEF53 /* ext2/3 */
3928 || sfs.f_type == 0x72b6 /* jffs2 */
3929 || sfs.f_type == 0x858458f6 /* ramfs */
3930 || sfs.f_type == 0x5346544e /* ntfs */
3931 || sfs.f_type == 0x3153464a /* jfs */
3932 || sfs.f_type == 0x9123683e /* btrfs */
3933 || sfs.f_type == 0x52654973 /* reiser3 */
3934 || sfs.f_type == 0x01021994 /* tmpfs */
3935 || sfs.f_type == 0x58465342 /* xfs */))
3936 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3937 else
3938 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3939 }
3940 else
3941 {
3942 /* can't use inotify, continue to stat */
3943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3944
3945 /* if path is not there, monitor some parent directory for speedup hints */
3946 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3947 /* but an efficiency issue only */
3948 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3949 {
3950 char path [4096];
3951 strcpy (path, w->path);
3952
3953 do
3954 {
3955 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3956 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3957
3958 char *pend = strrchr (path, '/');
3959
3960 if (!pend || pend == path)
3961 break;
3962
3963 *pend = 0;
3964 w->wd = inotify_add_watch (fs_fd, path, mask);
3965 }
3966 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3967 }
3968 }
3969
3970 if (w->wd >= 0)
3971 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3972
3973 /* now re-arm timer, if required */
3974 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3975 ev_timer_again (EV_A_ &w->timer);
3976 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3977}
3978
3979static void noinline
3980infy_del (EV_P_ ev_stat *w)
3981{
3982 int slot;
3983 int wd = w->wd;
3984
3985 if (wd < 0)
3986 return;
3987
3988 w->wd = -2;
3989 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3990 wlist_del (&fs_hash [slot].head, (WL)w);
3991
3992 /* remove this watcher, if others are watching it, they will rearm */
3993 inotify_rm_watch (fs_fd, wd);
3994}
3995
3996static void noinline
3997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3998{
3999 if (slot < 0)
4000 /* overflow, need to check for all hash slots */
4001 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4002 infy_wd (EV_A_ slot, wd, ev);
4003 else
4004 {
4005 WL w_;
4006
4007 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4008 {
4009 ev_stat *w = (ev_stat *)w_;
4010 w_ = w_->next; /* lets us remove this watcher and all before it */
4011
4012 if (w->wd == wd || wd == -1)
4013 {
4014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4015 {
4016 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4017 w->wd = -1;
4018 infy_add (EV_A_ w); /* re-add, no matter what */
4019 }
4020
4021 stat_timer_cb (EV_A_ &w->timer, 0);
4022 }
4023 }
4024 }
4025}
4026
4027static void
4028infy_cb (EV_P_ ev_io *w, int revents)
4029{
4030 char buf [EV_INOTIFY_BUFSIZE];
4031 int ofs;
4032 int len = read (fs_fd, buf, sizeof (buf));
4033
4034 for (ofs = 0; ofs < len; )
4035 {
4036 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4037 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4038 ofs += sizeof (struct inotify_event) + ev->len;
4039 }
4040}
4041
4042inline_size void ecb_cold
4043ev_check_2625 (EV_P)
4044{
4045 /* kernels < 2.6.25 are borked
4046 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4047 */
4048 if (ev_linux_version () < 0x020619)
4049 return;
4050
4051 fs_2625 = 1;
4052}
4053
4054inline_size int
4055infy_newfd (void)
4056{
4057#if defined IN_CLOEXEC && defined IN_NONBLOCK
4058 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4059 if (fd >= 0)
4060 return fd;
4061#endif
4062 return inotify_init ();
4063}
4064
4065inline_size void
4066infy_init (EV_P)
4067{
4068 if (fs_fd != -2)
4069 return;
4070
4071 fs_fd = -1;
4072
4073 ev_check_2625 (EV_A);
4074
4075 fs_fd = infy_newfd ();
4076
4077 if (fs_fd >= 0)
4078 {
4079 fd_intern (fs_fd);
4080 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4081 ev_set_priority (&fs_w, EV_MAXPRI);
4082 ev_io_start (EV_A_ &fs_w);
4083 ev_unref (EV_A);
4084 }
4085}
4086
4087inline_size void
4088infy_fork (EV_P)
4089{
4090 int slot;
4091
4092 if (fs_fd < 0)
4093 return;
4094
4095 ev_ref (EV_A);
4096 ev_io_stop (EV_A_ &fs_w);
4097 close (fs_fd);
4098 fs_fd = infy_newfd ();
4099
4100 if (fs_fd >= 0)
4101 {
4102 fd_intern (fs_fd);
4103 ev_io_set (&fs_w, fs_fd, EV_READ);
4104 ev_io_start (EV_A_ &fs_w);
4105 ev_unref (EV_A);
4106 }
4107
4108 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4109 {
4110 WL w_ = fs_hash [slot].head;
4111 fs_hash [slot].head = 0;
4112
4113 while (w_)
4114 {
4115 ev_stat *w = (ev_stat *)w_;
4116 w_ = w_->next; /* lets us add this watcher */
4117
4118 w->wd = -1;
4119
4120 if (fs_fd >= 0)
4121 infy_add (EV_A_ w); /* re-add, no matter what */
4122 else
4123 {
4124 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4125 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4126 ev_timer_again (EV_A_ &w->timer);
4127 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4128 }
4129 }
4130 }
4131}
4132
4133#endif
4134
4135#ifdef _WIN32
4136# define EV_LSTAT(p,b) _stati64 (p, b)
4137#else
4138# define EV_LSTAT(p,b) lstat (p, b)
4139#endif
1537 4140
1538void 4141void
1539ev_check_start (EV_P_ struct ev_check *w) 4142ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4143{
4144 if (lstat (w->path, &w->attr) < 0)
4145 w->attr.st_nlink = 0;
4146 else if (!w->attr.st_nlink)
4147 w->attr.st_nlink = 1;
4148}
4149
4150static void noinline
4151stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4152{
4153 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4154
4155 ev_statdata prev = w->attr;
4156 ev_stat_stat (EV_A_ w);
4157
4158 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4159 if (
4160 prev.st_dev != w->attr.st_dev
4161 || prev.st_ino != w->attr.st_ino
4162 || prev.st_mode != w->attr.st_mode
4163 || prev.st_nlink != w->attr.st_nlink
4164 || prev.st_uid != w->attr.st_uid
4165 || prev.st_gid != w->attr.st_gid
4166 || prev.st_rdev != w->attr.st_rdev
4167 || prev.st_size != w->attr.st_size
4168 || prev.st_atime != w->attr.st_atime
4169 || prev.st_mtime != w->attr.st_mtime
4170 || prev.st_ctime != w->attr.st_ctime
4171 ) {
4172 /* we only update w->prev on actual differences */
4173 /* in case we test more often than invoke the callback, */
4174 /* to ensure that prev is always different to attr */
4175 w->prev = prev;
4176
4177 #if EV_USE_INOTIFY
4178 if (fs_fd >= 0)
4179 {
4180 infy_del (EV_A_ w);
4181 infy_add (EV_A_ w);
4182 ev_stat_stat (EV_A_ w); /* avoid race... */
4183 }
4184 #endif
4185
4186 ev_feed_event (EV_A_ w, EV_STAT);
4187 }
4188}
4189
4190void
4191ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1540{ 4192{
1541 if (expect_false (ev_is_active (w))) 4193 if (expect_false (ev_is_active (w)))
1542 return; 4194 return;
1543 4195
4196 ev_stat_stat (EV_A_ w);
4197
4198 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4199 w->interval = MIN_STAT_INTERVAL;
4200
4201 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4202 ev_set_priority (&w->timer, ev_priority (w));
4203
4204#if EV_USE_INOTIFY
4205 infy_init (EV_A);
4206
4207 if (fs_fd >= 0)
4208 infy_add (EV_A_ w);
4209 else
4210#endif
4211 {
4212 ev_timer_again (EV_A_ &w->timer);
4213 ev_unref (EV_A);
4214 }
4215
1544 ev_start (EV_A_ (W)w, ++checkcnt); 4216 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 4217
1546 checks [checkcnt - 1] = w; 4218 EV_FREQUENT_CHECK;
1547} 4219}
1548 4220
1549void 4221void
1550ev_check_stop (EV_P_ struct ev_check *w) 4222ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1551{ 4223{
1552 ev_clear_pending (EV_A_ (W)w); 4224 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 4225 if (expect_false (!ev_is_active (w)))
1554 return; 4226 return;
1555 4227
1556 checks [((W)w)->active - 1] = checks [--checkcnt]; 4228 EV_FREQUENT_CHECK;
4229
4230#if EV_USE_INOTIFY
4231 infy_del (EV_A_ w);
4232#endif
4233
4234 if (ev_is_active (&w->timer))
4235 {
4236 ev_ref (EV_A);
4237 ev_timer_stop (EV_A_ &w->timer);
4238 }
4239
1557 ev_stop (EV_A_ (W)w); 4240 ev_stop (EV_A_ (W)w);
1558}
1559 4241
1560#ifndef SA_RESTART 4242 EV_FREQUENT_CHECK;
1561# define SA_RESTART 0 4243}
1562#endif 4244#endif
1563 4245
4246#if EV_IDLE_ENABLE
1564void 4247void
1565ev_signal_start (EV_P_ struct ev_signal *w) 4248ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1566{ 4249{
1567#if EV_MULTIPLICITY
1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1569#endif
1570 if (expect_false (ev_is_active (w))) 4250 if (expect_false (ev_is_active (w)))
1571 return; 4251 return;
1572 4252
1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4253 pri_adjust (EV_A_ (W)w);
1574 4254
4255 EV_FREQUENT_CHECK;
4256
4257 {
4258 int active = ++idlecnt [ABSPRI (w)];
4259
4260 ++idleall;
1575 ev_start (EV_A_ (W)w, 1); 4261 ev_start (EV_A_ (W)w, active);
1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1578 4262
1579 if (!((WL)w)->next) 4263 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1580 { 4264 idles [ABSPRI (w)][active - 1] = w;
1581#if _WIN32
1582 signal (w->signum, sighandler);
1583#else
1584 struct sigaction sa;
1585 sa.sa_handler = sighandler;
1586 sigfillset (&sa.sa_mask);
1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1588 sigaction (w->signum, &sa, 0);
1589#endif
1590 } 4265 }
4266
4267 EV_FREQUENT_CHECK;
1591} 4268}
1592 4269
1593void 4270void
1594ev_signal_stop (EV_P_ struct ev_signal *w) 4271ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1595{ 4272{
1596 ev_clear_pending (EV_A_ (W)w); 4273 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 4274 if (expect_false (!ev_is_active (w)))
1598 return; 4275 return;
1599 4276
1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4277 EV_FREQUENT_CHECK;
4278
4279 {
4280 int active = ev_active (w);
4281
4282 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4283 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4284
1601 ev_stop (EV_A_ (W)w); 4285 ev_stop (EV_A_ (W)w);
4286 --idleall;
4287 }
1602 4288
1603 if (!signals [w->signum - 1].head) 4289 EV_FREQUENT_CHECK;
1604 signal (w->signum, SIG_DFL);
1605} 4290}
4291#endif
1606 4292
4293#if EV_PREPARE_ENABLE
1607void 4294void
1608ev_child_start (EV_P_ struct ev_child *w) 4295ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1609{ 4296{
1610#if EV_MULTIPLICITY
1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1612#endif
1613 if (expect_false (ev_is_active (w))) 4297 if (expect_false (ev_is_active (w)))
1614 return; 4298 return;
1615 4299
4300 EV_FREQUENT_CHECK;
4301
1616 ev_start (EV_A_ (W)w, 1); 4302 ev_start (EV_A_ (W)w, ++preparecnt);
1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4303 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4304 prepares [preparecnt - 1] = w;
4305
4306 EV_FREQUENT_CHECK;
1618} 4307}
1619 4308
1620void 4309void
1621ev_child_stop (EV_P_ struct ev_child *w) 4310ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1622{ 4311{
1623 ev_clear_pending (EV_A_ (W)w); 4312 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 4313 if (expect_false (!ev_is_active (w)))
1625 return; 4314 return;
1626 4315
1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4316 EV_FREQUENT_CHECK;
4317
4318 {
4319 int active = ev_active (w);
4320
4321 prepares [active - 1] = prepares [--preparecnt];
4322 ev_active (prepares [active - 1]) = active;
4323 }
4324
1628 ev_stop (EV_A_ (W)w); 4325 ev_stop (EV_A_ (W)w);
4326
4327 EV_FREQUENT_CHECK;
1629} 4328}
4329#endif
4330
4331#if EV_CHECK_ENABLE
4332void
4333ev_check_start (EV_P_ ev_check *w) EV_THROW
4334{
4335 if (expect_false (ev_is_active (w)))
4336 return;
4337
4338 EV_FREQUENT_CHECK;
4339
4340 ev_start (EV_A_ (W)w, ++checkcnt);
4341 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4342 checks [checkcnt - 1] = w;
4343
4344 EV_FREQUENT_CHECK;
4345}
4346
4347void
4348ev_check_stop (EV_P_ ev_check *w) EV_THROW
4349{
4350 clear_pending (EV_A_ (W)w);
4351 if (expect_false (!ev_is_active (w)))
4352 return;
4353
4354 EV_FREQUENT_CHECK;
4355
4356 {
4357 int active = ev_active (w);
4358
4359 checks [active - 1] = checks [--checkcnt];
4360 ev_active (checks [active - 1]) = active;
4361 }
4362
4363 ev_stop (EV_A_ (W)w);
4364
4365 EV_FREQUENT_CHECK;
4366}
4367#endif
4368
4369#if EV_EMBED_ENABLE
4370void noinline
4371ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4372{
4373 ev_run (w->other, EVRUN_NOWAIT);
4374}
4375
4376static void
4377embed_io_cb (EV_P_ ev_io *io, int revents)
4378{
4379 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4380
4381 if (ev_cb (w))
4382 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4383 else
4384 ev_run (w->other, EVRUN_NOWAIT);
4385}
4386
4387static void
4388embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4389{
4390 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4391
4392 {
4393 EV_P = w->other;
4394
4395 while (fdchangecnt)
4396 {
4397 fd_reify (EV_A);
4398 ev_run (EV_A_ EVRUN_NOWAIT);
4399 }
4400 }
4401}
4402
4403static void
4404embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4405{
4406 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4407
4408 ev_embed_stop (EV_A_ w);
4409
4410 {
4411 EV_P = w->other;
4412
4413 ev_loop_fork (EV_A);
4414 ev_run (EV_A_ EVRUN_NOWAIT);
4415 }
4416
4417 ev_embed_start (EV_A_ w);
4418}
4419
4420#if 0
4421static void
4422embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4423{
4424 ev_idle_stop (EV_A_ idle);
4425}
4426#endif
4427
4428void
4429ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4430{
4431 if (expect_false (ev_is_active (w)))
4432 return;
4433
4434 {
4435 EV_P = w->other;
4436 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4437 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4438 }
4439
4440 EV_FREQUENT_CHECK;
4441
4442 ev_set_priority (&w->io, ev_priority (w));
4443 ev_io_start (EV_A_ &w->io);
4444
4445 ev_prepare_init (&w->prepare, embed_prepare_cb);
4446 ev_set_priority (&w->prepare, EV_MINPRI);
4447 ev_prepare_start (EV_A_ &w->prepare);
4448
4449 ev_fork_init (&w->fork, embed_fork_cb);
4450 ev_fork_start (EV_A_ &w->fork);
4451
4452 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4453
4454 ev_start (EV_A_ (W)w, 1);
4455
4456 EV_FREQUENT_CHECK;
4457}
4458
4459void
4460ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4461{
4462 clear_pending (EV_A_ (W)w);
4463 if (expect_false (!ev_is_active (w)))
4464 return;
4465
4466 EV_FREQUENT_CHECK;
4467
4468 ev_io_stop (EV_A_ &w->io);
4469 ev_prepare_stop (EV_A_ &w->prepare);
4470 ev_fork_stop (EV_A_ &w->fork);
4471
4472 ev_stop (EV_A_ (W)w);
4473
4474 EV_FREQUENT_CHECK;
4475}
4476#endif
4477
4478#if EV_FORK_ENABLE
4479void
4480ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4481{
4482 if (expect_false (ev_is_active (w)))
4483 return;
4484
4485 EV_FREQUENT_CHECK;
4486
4487 ev_start (EV_A_ (W)w, ++forkcnt);
4488 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4489 forks [forkcnt - 1] = w;
4490
4491 EV_FREQUENT_CHECK;
4492}
4493
4494void
4495ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4496{
4497 clear_pending (EV_A_ (W)w);
4498 if (expect_false (!ev_is_active (w)))
4499 return;
4500
4501 EV_FREQUENT_CHECK;
4502
4503 {
4504 int active = ev_active (w);
4505
4506 forks [active - 1] = forks [--forkcnt];
4507 ev_active (forks [active - 1]) = active;
4508 }
4509
4510 ev_stop (EV_A_ (W)w);
4511
4512 EV_FREQUENT_CHECK;
4513}
4514#endif
4515
4516#if EV_CLEANUP_ENABLE
4517void
4518ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4519{
4520 if (expect_false (ev_is_active (w)))
4521 return;
4522
4523 EV_FREQUENT_CHECK;
4524
4525 ev_start (EV_A_ (W)w, ++cleanupcnt);
4526 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4527 cleanups [cleanupcnt - 1] = w;
4528
4529 /* cleanup watchers should never keep a refcount on the loop */
4530 ev_unref (EV_A);
4531 EV_FREQUENT_CHECK;
4532}
4533
4534void
4535ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4536{
4537 clear_pending (EV_A_ (W)w);
4538 if (expect_false (!ev_is_active (w)))
4539 return;
4540
4541 EV_FREQUENT_CHECK;
4542 ev_ref (EV_A);
4543
4544 {
4545 int active = ev_active (w);
4546
4547 cleanups [active - 1] = cleanups [--cleanupcnt];
4548 ev_active (cleanups [active - 1]) = active;
4549 }
4550
4551 ev_stop (EV_A_ (W)w);
4552
4553 EV_FREQUENT_CHECK;
4554}
4555#endif
4556
4557#if EV_ASYNC_ENABLE
4558void
4559ev_async_start (EV_P_ ev_async *w) EV_THROW
4560{
4561 if (expect_false (ev_is_active (w)))
4562 return;
4563
4564 w->sent = 0;
4565
4566 evpipe_init (EV_A);
4567
4568 EV_FREQUENT_CHECK;
4569
4570 ev_start (EV_A_ (W)w, ++asynccnt);
4571 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4572 asyncs [asynccnt - 1] = w;
4573
4574 EV_FREQUENT_CHECK;
4575}
4576
4577void
4578ev_async_stop (EV_P_ ev_async *w) EV_THROW
4579{
4580 clear_pending (EV_A_ (W)w);
4581 if (expect_false (!ev_is_active (w)))
4582 return;
4583
4584 EV_FREQUENT_CHECK;
4585
4586 {
4587 int active = ev_active (w);
4588
4589 asyncs [active - 1] = asyncs [--asynccnt];
4590 ev_active (asyncs [active - 1]) = active;
4591 }
4592
4593 ev_stop (EV_A_ (W)w);
4594
4595 EV_FREQUENT_CHECK;
4596}
4597
4598void
4599ev_async_send (EV_P_ ev_async *w) EV_THROW
4600{
4601 w->sent = 1;
4602 evpipe_write (EV_A_ &async_pending);
4603}
4604#endif
1630 4605
1631/*****************************************************************************/ 4606/*****************************************************************************/
1632 4607
1633struct ev_once 4608struct ev_once
1634{ 4609{
1635 struct ev_io io; 4610 ev_io io;
1636 struct ev_timer to; 4611 ev_timer to;
1637 void (*cb)(int revents, void *arg); 4612 void (*cb)(int revents, void *arg);
1638 void *arg; 4613 void *arg;
1639}; 4614};
1640 4615
1641static void 4616static void
1642once_cb (EV_P_ struct ev_once *once, int revents) 4617once_cb (EV_P_ struct ev_once *once, int revents)
1643{ 4618{
1644 void (*cb)(int revents, void *arg) = once->cb; 4619 void (*cb)(int revents, void *arg) = once->cb;
1645 void *arg = once->arg; 4620 void *arg = once->arg;
1646 4621
1647 ev_io_stop (EV_A_ &once->io); 4622 ev_io_stop (EV_A_ &once->io);
1648 ev_timer_stop (EV_A_ &once->to); 4623 ev_timer_stop (EV_A_ &once->to);
1649 ev_free (once); 4624 ev_free (once);
1650 4625
1651 cb (revents, arg); 4626 cb (revents, arg);
1652} 4627}
1653 4628
1654static void 4629static void
1655once_cb_io (EV_P_ struct ev_io *w, int revents) 4630once_cb_io (EV_P_ ev_io *w, int revents)
1656{ 4631{
1657 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4632 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4633
4634 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1658} 4635}
1659 4636
1660static void 4637static void
1661once_cb_to (EV_P_ struct ev_timer *w, int revents) 4638once_cb_to (EV_P_ ev_timer *w, int revents)
1662{ 4639{
1663 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4640 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4641
4642 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1664} 4643}
1665 4644
1666void 4645void
1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4646ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1668{ 4647{
1669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4648 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1670 4649
1671 if (expect_false (!once)) 4650 if (expect_false (!once))
1672 { 4651 {
1673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4652 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1674 return; 4653 return;
1675 } 4654 }
1676 4655
1677 once->cb = cb; 4656 once->cb = cb;
1678 once->arg = arg; 4657 once->arg = arg;
1690 ev_timer_set (&once->to, timeout, 0.); 4669 ev_timer_set (&once->to, timeout, 0.);
1691 ev_timer_start (EV_A_ &once->to); 4670 ev_timer_start (EV_A_ &once->to);
1692 } 4671 }
1693} 4672}
1694 4673
1695#ifdef __cplusplus 4674/*****************************************************************************/
1696} 4675
4676#if EV_WALK_ENABLE
4677void ecb_cold
4678ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4679{
4680 int i, j;
4681 ev_watcher_list *wl, *wn;
4682
4683 if (types & (EV_IO | EV_EMBED))
4684 for (i = 0; i < anfdmax; ++i)
4685 for (wl = anfds [i].head; wl; )
4686 {
4687 wn = wl->next;
4688
4689#if EV_EMBED_ENABLE
4690 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4691 {
4692 if (types & EV_EMBED)
4693 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4694 }
4695 else
4696#endif
4697#if EV_USE_INOTIFY
4698 if (ev_cb ((ev_io *)wl) == infy_cb)
4699 ;
4700 else
4701#endif
4702 if ((ev_io *)wl != &pipe_w)
4703 if (types & EV_IO)
4704 cb (EV_A_ EV_IO, wl);
4705
4706 wl = wn;
4707 }
4708
4709 if (types & (EV_TIMER | EV_STAT))
4710 for (i = timercnt + HEAP0; i-- > HEAP0; )
4711#if EV_STAT_ENABLE
4712 /*TODO: timer is not always active*/
4713 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4714 {
4715 if (types & EV_STAT)
4716 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4717 }
4718 else
4719#endif
4720 if (types & EV_TIMER)
4721 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4722
4723#if EV_PERIODIC_ENABLE
4724 if (types & EV_PERIODIC)
4725 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4726 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4727#endif
4728
4729#if EV_IDLE_ENABLE
4730 if (types & EV_IDLE)
4731 for (j = NUMPRI; j--; )
4732 for (i = idlecnt [j]; i--; )
4733 cb (EV_A_ EV_IDLE, idles [j][i]);
4734#endif
4735
4736#if EV_FORK_ENABLE
4737 if (types & EV_FORK)
4738 for (i = forkcnt; i--; )
4739 if (ev_cb (forks [i]) != embed_fork_cb)
4740 cb (EV_A_ EV_FORK, forks [i]);
4741#endif
4742
4743#if EV_ASYNC_ENABLE
4744 if (types & EV_ASYNC)
4745 for (i = asynccnt; i--; )
4746 cb (EV_A_ EV_ASYNC, asyncs [i]);
4747#endif
4748
4749#if EV_PREPARE_ENABLE
4750 if (types & EV_PREPARE)
4751 for (i = preparecnt; i--; )
4752# if EV_EMBED_ENABLE
4753 if (ev_cb (prepares [i]) != embed_prepare_cb)
1697#endif 4754# endif
4755 cb (EV_A_ EV_PREPARE, prepares [i]);
4756#endif
1698 4757
4758#if EV_CHECK_ENABLE
4759 if (types & EV_CHECK)
4760 for (i = checkcnt; i--; )
4761 cb (EV_A_ EV_CHECK, checks [i]);
4762#endif
4763
4764#if EV_SIGNAL_ENABLE
4765 if (types & EV_SIGNAL)
4766 for (i = 0; i < EV_NSIG - 1; ++i)
4767 for (wl = signals [i].head; wl; )
4768 {
4769 wn = wl->next;
4770 cb (EV_A_ EV_SIGNAL, wl);
4771 wl = wn;
4772 }
4773#endif
4774
4775#if EV_CHILD_ENABLE
4776 if (types & EV_CHILD)
4777 for (i = (EV_PID_HASHSIZE); i--; )
4778 for (wl = childs [i]; wl; )
4779 {
4780 wn = wl->next;
4781 cb (EV_A_ EV_CHILD, wl);
4782 wl = wn;
4783 }
4784#endif
4785/* EV_STAT 0x00001000 /* stat data changed */
4786/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4787}
4788#endif
4789
4790#if EV_MULTIPLICITY
4791 #include "ev_wrap.h"
4792#endif
4793

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines