ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
46# else
47# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0
49# endif
50# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0
52# endif
37# endif 53# endif
38 54
55# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 56# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif
41# endif 61# endif
42 62
63# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 64# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif
45# endif 69# endif
46 70
71# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 73# define EV_USE_EPOLL 1
74# else
75# define EV_USE_EPOLL 0
76# endif
49# endif 77# endif
50 78
79# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif
85# endif
86
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1
90# else
91# define EV_USE_PORT 0
92# endif
53# endif 93# endif
54 94
55#endif 95#endif
56 96
57#include <math.h> 97#include <math.h>
58#include <stdlib.h> 98#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 99#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 100#include <stddef.h>
63 101
64#include <stdio.h> 102#include <stdio.h>
65 103
66#include <assert.h> 104#include <assert.h>
67#include <errno.h> 105#include <errno.h>
68#include <sys/types.h> 106#include <sys/types.h>
107#include <time.h>
108
109#include <signal.h>
110
69#ifndef WIN32 111#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h>
70# include <sys/wait.h> 114# include <sys/wait.h>
115#else
116# define WIN32_LEAN_AND_MEAN
117# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1
71#endif 120# endif
72#include <sys/time.h> 121#endif
73#include <time.h>
74 122
75/**/ 123/**/
76 124
77#ifndef EV_USE_MONOTONIC 125#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 126# define EV_USE_MONOTONIC 0
127#endif
128
129#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
79#endif 131#endif
80 132
81#ifndef EV_USE_SELECT 133#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 134# define EV_USE_SELECT 1
83#endif 135#endif
84 136
85#ifndef EV_USE_POLL 137#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 138# ifdef _WIN32
139# define EV_USE_POLL 0
140# else
141# define EV_USE_POLL 1
142# endif
87#endif 143#endif
88 144
89#ifndef EV_USE_EPOLL 145#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 146# define EV_USE_EPOLL 0
91#endif 147#endif
92 148
93#ifndef EV_USE_KQUEUE 149#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 150# define EV_USE_KQUEUE 0
95#endif 151#endif
96 152
97#ifndef EV_USE_REALTIME 153#ifndef EV_USE_PORT
98# define EV_USE_REALTIME 1 154# define EV_USE_PORT 0
99#endif 155#endif
100 156
101/**/ 157/**/
158
159/* darwin simply cannot be helped */
160#ifdef __APPLE__
161# undef EV_USE_POLL
162# undef EV_USE_KQUEUE
163#endif
102 164
103#ifndef CLOCK_MONOTONIC 165#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC 166# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0 167# define EV_USE_MONOTONIC 0
106#endif 168#endif
108#ifndef CLOCK_REALTIME 170#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 171# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 172# define EV_USE_REALTIME 0
111#endif 173#endif
112 174
175#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h>
177#endif
178
113/**/ 179/**/
114 180
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
119 185
186#ifdef EV_H
187# include EV_H
188#else
120#include "ev.h" 189# include "ev.h"
190#endif
121 191
122#if __GNUC__ >= 3 192#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 193# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 194# define inline static inline
125#else 195#else
126# define expect(expr,value) (expr) 196# define expect(expr,value) (expr)
127# define inline static 197# define inline static
128#endif 198#endif
129 199
131#define expect_true(expr) expect ((expr) != 0, 1) 201#define expect_true(expr) expect ((expr) != 0, 1)
132 202
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 204#define ABSPRI(w) ((w)->priority - EV_MINPRI)
135 205
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */
208
136typedef struct ev_watcher *W; 209typedef struct ev_watcher *W;
137typedef struct ev_watcher_list *WL; 210typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 211typedef struct ev_watcher_time *WT;
139 212
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 214
215#ifdef _WIN32
216# include "ev_win32.c"
217#endif
218
142/*****************************************************************************/ 219/*****************************************************************************/
143 220
221static void (*syserr_cb)(const char *msg);
222
223void ev_set_syserr_cb (void (*cb)(const char *msg))
224{
225 syserr_cb = cb;
226}
227
228static void
229syserr (const char *msg)
230{
231 if (!msg)
232 msg = "(libev) system error";
233
234 if (syserr_cb)
235 syserr_cb (msg);
236 else
237 {
238 perror (msg);
239 abort ();
240 }
241}
242
243static void *(*alloc)(void *ptr, long size);
244
245void ev_set_allocator (void *(*cb)(void *ptr, long size))
246{
247 alloc = cb;
248}
249
250static void *
251ev_realloc (void *ptr, long size)
252{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
254
255 if (!ptr && size)
256 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort ();
259 }
260
261 return ptr;
262}
263
264#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0)
266
267/*****************************************************************************/
268
144typedef struct 269typedef struct
145{ 270{
146 struct ev_watcher_list *head; 271 WL head;
147 unsigned char events; 272 unsigned char events;
148 unsigned char reify; 273 unsigned char reify;
274#if EV_SELECT_IS_WINSOCKET
275 SOCKET handle;
276#endif
149} ANFD; 277} ANFD;
150 278
151typedef struct 279typedef struct
152{ 280{
153 W w; 281 W w;
154 int events; 282 int events;
155} ANPENDING; 283} ANPENDING;
156 284
157#if EV_MULTIPLICITY 285#if EV_MULTIPLICITY
158 286
159struct ev_loop 287 struct ev_loop
160{ 288 {
289 ev_tstamp ev_rt_now;
290 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 291 #define VAR(name,decl) decl;
162# include "ev_vars.h" 292 #include "ev_vars.h"
163};
164# undef VAR 293 #undef VAR
294 };
165# include "ev_wrap.h" 295 #include "ev_wrap.h"
296
297 static struct ev_loop default_loop_struct;
298 struct ev_loop *ev_default_loop_ptr;
166 299
167#else 300#else
168 301
302 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 303 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 304 #include "ev_vars.h"
171# undef VAR 305 #undef VAR
306
307 static int ev_default_loop_ptr;
172 308
173#endif 309#endif
174 310
175/*****************************************************************************/ 311/*****************************************************************************/
176 312
177inline ev_tstamp 313ev_tstamp
178ev_time (void) 314ev_time (void)
179{ 315{
180#if EV_USE_REALTIME 316#if EV_USE_REALTIME
181 struct timespec ts; 317 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 318 clock_gettime (CLOCK_REALTIME, &ts);
201#endif 337#endif
202 338
203 return ev_time (); 339 return ev_time ();
204} 340}
205 341
342#if EV_MULTIPLICITY
206ev_tstamp 343ev_tstamp
207ev_now (EV_P) 344ev_now (EV_P)
208{ 345{
209 return rt_now; 346 return ev_rt_now;
210} 347}
348#endif
211 349
212#define array_roundsize(base,n) ((n) | 4 & ~3) 350#define array_roundsize(type,n) (((n) | 4) & ~3)
213 351
214#define array_needsize(base,cur,cnt,init) \ 352#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 353 if (expect_false ((cnt) > cur)) \
216 { \ 354 { \
217 int newcnt = cur; \ 355 int newcnt = cur; \
218 do \ 356 do \
219 { \ 357 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 358 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 359 } \
222 while ((cnt) > newcnt); \ 360 while ((cnt) > newcnt); \
223 \ 361 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 363 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 364 cur = newcnt; \
227 } 365 }
366
367#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 }
374
375#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 377
229/*****************************************************************************/ 378/*****************************************************************************/
230 379
231static void 380static void
232anfds_init (ANFD *base, int count) 381anfds_init (ANFD *base, int count)
239 388
240 ++base; 389 ++base;
241 } 390 }
242} 391}
243 392
244static void 393void
245event (EV_P_ W w, int events) 394ev_feed_event (EV_P_ void *w, int revents)
246{ 395{
247 if (w->pending) 396 W w_ = (W)w;
397
398 if (expect_false (w_->pending))
248 { 399 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 401 return;
251 } 402 }
252 403
253 w->pending = ++pendingcnt [ABSPRI (w)]; 404 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 408}
258 409
259static void 410static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 411queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 412{
262 int i; 413 int i;
263 414
264 for (i = 0; i < eventcnt; ++i) 415 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 416 ev_feed_event (EV_A_ events [i], type);
266} 417}
267 418
268static void 419inline void
269fd_event (EV_P_ int fd, int events) 420fd_event (EV_P_ int fd, int revents)
270{ 421{
271 ANFD *anfd = anfds + fd; 422 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 423 struct ev_io *w;
273 424
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 426 {
276 int ev = w->events & events; 427 int ev = w->events & revents;
277 428
278 if (ev) 429 if (ev)
279 event (EV_A_ (W)w, ev); 430 ev_feed_event (EV_A_ (W)w, ev);
280 } 431 }
432}
433
434void
435ev_feed_fd_event (EV_P_ int fd, int revents)
436{
437 fd_event (EV_A_ fd, revents);
281} 438}
282 439
283/*****************************************************************************/ 440/*****************************************************************************/
284 441
285static void 442inline void
286fd_reify (EV_P) 443fd_reify (EV_P)
287{ 444{
288 int i; 445 int i;
289 446
290 for (i = 0; i < fdchangecnt; ++i) 447 for (i = 0; i < fdchangecnt; ++i)
296 int events = 0; 453 int events = 0;
297 454
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 456 events |= w->events;
300 457
458#if EV_SELECT_IS_WINSOCKET
459 if (events)
460 {
461 unsigned long argp;
462 anfd->handle = _get_osfhandle (fd);
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
464 }
465#endif
466
301 anfd->reify = 0; 467 anfd->reify = 0;
302 468
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 469 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 470 anfd->events = events;
307 }
308 } 471 }
309 472
310 fdchangecnt = 0; 473 fdchangecnt = 0;
311} 474}
312 475
313static void 476static void
314fd_change (EV_P_ int fd) 477fd_change (EV_P_ int fd)
315{ 478{
316 if (anfds [fd].reify || fdchangecnt < 0) 479 if (expect_false (anfds [fd].reify))
317 return; 480 return;
318 481
319 anfds [fd].reify = 1; 482 anfds [fd].reify = 1;
320 483
321 ++fdchangecnt; 484 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
323 fdchanges [fdchangecnt - 1] = fd; 486 fdchanges [fdchangecnt - 1] = fd;
324} 487}
325 488
326static void 489static void
327fd_kill (EV_P_ int fd) 490fd_kill (EV_P_ int fd)
329 struct ev_io *w; 492 struct ev_io *w;
330 493
331 while ((w = (struct ev_io *)anfds [fd].head)) 494 while ((w = (struct ev_io *)anfds [fd].head))
332 { 495 {
333 ev_io_stop (EV_A_ w); 496 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 498 }
499}
500
501inline int
502fd_valid (int fd)
503{
504#ifdef _WIN32
505 return _get_osfhandle (fd) != -1;
506#else
507 return fcntl (fd, F_GETFD) != -1;
508#endif
336} 509}
337 510
338/* called on EBADF to verify fds */ 511/* called on EBADF to verify fds */
339static void 512static void
340fd_ebadf (EV_P) 513fd_ebadf (EV_P)
341{ 514{
342 int fd; 515 int fd;
343 516
344 for (fd = 0; fd < anfdmax; ++fd) 517 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 518 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 519 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 520 fd_kill (EV_A_ fd);
348} 521}
349 522
350/* called on ENOMEM in select/poll to kill some fds and retry */ 523/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 524static void
352fd_enomem (EV_P) 525fd_enomem (EV_P)
353{ 526{
354 int fd = anfdmax; 527 int fd;
355 528
356 while (fd--) 529 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 530 if (anfds [fd].events)
358 { 531 {
359 close (fd);
360 fd_kill (EV_A_ fd); 532 fd_kill (EV_A_ fd);
361 return; 533 return;
362 } 534 }
363} 535}
364 536
365/* susually called after fork if method needs to re-arm all fds from scratch */ 537/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 538static void
367fd_rearm_all (EV_P) 539fd_rearm_all (EV_P)
368{ 540{
369 int fd; 541 int fd;
370 542
385 WT w = heap [k]; 557 WT w = heap [k];
386 558
387 while (k && heap [k >> 1]->at > w->at) 559 while (k && heap [k >> 1]->at > w->at)
388 { 560 {
389 heap [k] = heap [k >> 1]; 561 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 562 ((W)heap [k])->active = k + 1;
391 k >>= 1; 563 k >>= 1;
392 } 564 }
393 565
394 heap [k] = w; 566 heap [k] = w;
395 heap [k]->active = k + 1; 567 ((W)heap [k])->active = k + 1;
396 568
397} 569}
398 570
399static void 571static void
400downheap (WT *heap, int N, int k) 572downheap (WT *heap, int N, int k)
410 582
411 if (w->at <= heap [j]->at) 583 if (w->at <= heap [j]->at)
412 break; 584 break;
413 585
414 heap [k] = heap [j]; 586 heap [k] = heap [j];
415 heap [k]->active = k + 1; 587 ((W)heap [k])->active = k + 1;
416 k = j; 588 k = j;
417 } 589 }
418 590
419 heap [k] = w; 591 heap [k] = w;
420 heap [k]->active = k + 1; 592 ((W)heap [k])->active = k + 1;
593}
594
595inline void
596adjustheap (WT *heap, int N, int k)
597{
598 upheap (heap, k);
599 downheap (heap, N, k);
421} 600}
422 601
423/*****************************************************************************/ 602/*****************************************************************************/
424 603
425typedef struct 604typedef struct
426{ 605{
427 struct ev_watcher_list *head; 606 WL head;
428 sig_atomic_t volatile gotsig; 607 sig_atomic_t volatile gotsig;
429} ANSIG; 608} ANSIG;
430 609
431static ANSIG *signals; 610static ANSIG *signals;
432static int signalmax; 611static int signalmax;
448} 627}
449 628
450static void 629static void
451sighandler (int signum) 630sighandler (int signum)
452{ 631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
453 signals [signum - 1].gotsig = 1; 636 signals [signum - 1].gotsig = 1;
454 637
455 if (!gotsig) 638 if (!gotsig)
456 { 639 {
457 int old_errno = errno; 640 int old_errno = errno;
459 write (sigpipe [1], &signum, 1); 642 write (sigpipe [1], &signum, 1);
460 errno = old_errno; 643 errno = old_errno;
461 } 644 }
462} 645}
463 646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
464static void 667static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 668sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 669{
467 struct ev_watcher_list *w;
468 int signum; 670 int signum;
469 671
470 read (sigpipe [0], &revents, 1); 672 read (sigpipe [0], &revents, 1);
471 gotsig = 0; 673 gotsig = 0;
472 674
473 for (signum = signalmax; signum--; ) 675 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 676 if (signals [signum].gotsig)
475 { 677 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0; 678}
477 679
478 for (w = signals [signum].head; w; w = w->next) 680static void
479 event (EV_A_ (W)w, EV_SIGNAL); 681fd_intern (int fd)
480 } 682{
683#ifdef _WIN32
684 int arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
686#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif
481} 690}
482 691
483static void 692static void
484siginit (EV_P) 693siginit (EV_P)
485{ 694{
486#ifndef WIN32 695 fd_intern (sigpipe [0]);
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 696 fd_intern (sigpipe [1]);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494 697
495 ev_io_set (&sigev, sigpipe [0], EV_READ); 698 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev); 699 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 700 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 701}
499 702
500/*****************************************************************************/ 703/*****************************************************************************/
501 704
502#ifndef WIN32
503
504static struct ev_child *childs [PID_HASHSIZE]; 705static struct ev_child *childs [PID_HASHSIZE];
706
707#ifndef _WIN32
708
505static struct ev_signal childev; 709static struct ev_signal childev;
506 710
507#ifndef WCONTINUED 711#ifndef WCONTINUED
508# define WCONTINUED 0 712# define WCONTINUED 0
509#endif 713#endif
514 struct ev_child *w; 718 struct ev_child *w;
515 719
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 721 if (w->pid == pid || !w->pid)
518 { 722 {
519 w->priority = sw->priority; /* need to do it *now* */ 723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 724 w->rpid = pid;
521 w->rstatus = status; 725 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 727 }
524} 728}
525 729
526static void 730static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 731childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 733 int pid, status;
530 734
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 736 {
533 /* make sure we are called again until all childs have been reaped */ 737 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 739
536 child_reap (EV_A_ sw, pid, pid, status); 740 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 742 }
539} 743}
540 744
541#endif 745#endif
542 746
543/*****************************************************************************/ 747/*****************************************************************************/
544 748
749#if EV_USE_PORT
750# include "ev_port.c"
751#endif
545#if EV_USE_KQUEUE 752#if EV_USE_KQUEUE
546# include "ev_kqueue.c" 753# include "ev_kqueue.c"
547#endif 754#endif
548#if EV_USE_EPOLL 755#if EV_USE_EPOLL
549# include "ev_epoll.c" 756# include "ev_epoll.c"
569 776
570/* return true if we are running with elevated privileges and should ignore env variables */ 777/* return true if we are running with elevated privileges and should ignore env variables */
571static int 778static int
572enable_secure (void) 779enable_secure (void)
573{ 780{
574#ifdef WIN32 781#ifdef _WIN32
575 return 0; 782 return 0;
576#else 783#else
577 return getuid () != geteuid () 784 return getuid () != geteuid ()
578 || getgid () != getegid (); 785 || getgid () != getegid ();
579#endif 786#endif
580} 787}
581 788
582int 789unsigned int
583ev_method (EV_P) 790ev_method (EV_P)
584{ 791{
585 return method; 792 return method;
586} 793}
587 794
588static void 795static void
589loop_init (EV_P_ int methods) 796loop_init (EV_P_ unsigned int flags)
590{ 797{
591 if (!method) 798 if (!method)
592 { 799 {
593#if EV_USE_MONOTONIC 800#if EV_USE_MONOTONIC
594 { 801 {
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 803 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 804 have_monotonic = 1;
598 } 805 }
599#endif 806#endif
600 807
601 rt_now = ev_time (); 808 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 809 mn_now = get_clock ();
603 now_floor = mn_now; 810 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 811 rtmn_diff = ev_rt_now - mn_now;
605 812
606 if (methods == EVMETHOD_AUTO) 813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 814 flags = atoi (getenv ("LIBEV_FLAGS"));
609 else 815
610 methods = EVMETHOD_ANY; 816 if (!(flags & 0x0000ffff))
817 flags |= 0x0000ffff;
611 818
612 method = 0; 819 method = 0;
820#if EV_USE_PORT
821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
822#endif
613#if EV_USE_KQUEUE 823#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
615#endif 825#endif
616#if EV_USE_EPOLL 826#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
618#endif 828#endif
619#if EV_USE_POLL 829#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
621#endif 831#endif
622#if EV_USE_SELECT 832#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
624#endif 834#endif
625 }
626}
627 835
628void 836 ev_init (&sigev, sigcb);
837 ev_set_priority (&sigev, EV_MAXPRI);
838 }
839}
840
841static void
629loop_destroy (EV_P) 842loop_destroy (EV_P)
630{ 843{
844 int i;
845
846#if EV_USE_PORT
847 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
848#endif
631#if EV_USE_KQUEUE 849#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 851#endif
634#if EV_USE_EPOLL 852#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 853 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 857#endif
640#if EV_USE_SELECT 858#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 859 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 860#endif
643 861
862 for (i = NUMPRI; i--; )
863 array_free (pending, [i]);
864
865 /* have to use the microsoft-never-gets-it-right macro */
866 array_free (fdchange, EMPTY0);
867 array_free (timer, EMPTY0);
868#if EV_PERIODICS
869 array_free (periodic, EMPTY0);
870#endif
871 array_free (idle, EMPTY0);
872 array_free (prepare, EMPTY0);
873 array_free (check, EMPTY0);
874
644 method = 0; 875 method = 0;
645 /*TODO*/
646} 876}
647 877
648void 878static void
649loop_fork (EV_P) 879loop_fork (EV_P)
650{ 880{
651 /*TODO*/ 881#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A);
883#endif
884#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
886#endif
652#if EV_USE_EPOLL 887#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 889#endif
655#if EV_USE_KQUEUE 890
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 891 if (ev_is_active (&sigev))
657#endif 892 {
893 /* default loop */
894
895 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev);
897 close (sigpipe [0]);
898 close (sigpipe [1]);
899
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A);
904 }
905
906 postfork = 0;
658} 907}
659 908
660#if EV_MULTIPLICITY 909#if EV_MULTIPLICITY
661struct ev_loop * 910struct ev_loop *
662ev_loop_new (int methods) 911ev_loop_new (unsigned int flags)
663{ 912{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
665 914
915 memset (loop, 0, sizeof (struct ev_loop));
916
666 loop_init (EV_A_ methods); 917 loop_init (EV_A_ flags);
667 918
668 if (ev_method (EV_A)) 919 if (ev_method (EV_A))
669 return loop; 920 return loop;
670 921
671 return 0; 922 return 0;
673 924
674void 925void
675ev_loop_destroy (EV_P) 926ev_loop_destroy (EV_P)
676{ 927{
677 loop_destroy (EV_A); 928 loop_destroy (EV_A);
678 free (loop); 929 ev_free (loop);
679} 930}
680 931
681void 932void
682ev_loop_fork (EV_P) 933ev_loop_fork (EV_P)
683{ 934{
684 loop_fork (EV_A); 935 postfork = 1;
685} 936}
686 937
687#endif 938#endif
688 939
689#if EV_MULTIPLICITY 940#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 941struct ev_loop *
942ev_default_loop_init (unsigned int flags)
694#else 943#else
695static int default_loop;
696
697int 944int
945ev_default_loop (unsigned int flags)
698#endif 946#endif
699ev_default_loop (int methods)
700{ 947{
701 if (sigpipe [0] == sigpipe [1]) 948 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe)) 949 if (pipe (sigpipe))
703 return 0; 950 return 0;
704 951
705 if (!default_loop) 952 if (!ev_default_loop_ptr)
706 { 953 {
707#if EV_MULTIPLICITY 954#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct; 955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
709#else 956#else
710 default_loop = 1; 957 ev_default_loop_ptr = 1;
711#endif 958#endif
712 959
713 loop_init (EV_A_ methods); 960 loop_init (EV_A_ flags);
714 961
715 if (ev_method (EV_A)) 962 if (ev_method (EV_A))
716 { 963 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 964 siginit (EV_A);
720 965
721#ifndef WIN32 966#ifndef _WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 967 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 968 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 969 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 970 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 971#endif
727 } 972 }
728 else 973 else
729 default_loop = 0; 974 ev_default_loop_ptr = 0;
730 } 975 }
731 976
732 return default_loop; 977 return ev_default_loop_ptr;
733} 978}
734 979
735void 980void
736ev_default_destroy (void) 981ev_default_destroy (void)
737{ 982{
738#if EV_MULTIPLICITY 983#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 984 struct ev_loop *loop = ev_default_loop_ptr;
740#endif 985#endif
741 986
987#ifndef _WIN32
742 ev_ref (EV_A); /* child watcher */ 988 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 989 ev_signal_stop (EV_A_ &childev);
990#endif
744 991
745 ev_ref (EV_A); /* signal watcher */ 992 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 993 ev_io_stop (EV_A_ &sigev);
747 994
748 close (sigpipe [0]); sigpipe [0] = 0; 995 close (sigpipe [0]); sigpipe [0] = 0;
753 1000
754void 1001void
755ev_default_fork (void) 1002ev_default_fork (void)
756{ 1003{
757#if EV_MULTIPLICITY 1004#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 1005 struct ev_loop *loop = ev_default_loop_ptr;
759#endif 1006#endif
760 1007
761 loop_fork (EV_A); 1008 if (method)
762 1009 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 1010}
771 1011
772/*****************************************************************************/ 1012/*****************************************************************************/
773 1013
774static void 1014static int
1015any_pending (EV_P)
1016{
1017 int pri;
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024}
1025
1026inline void
775call_pending (EV_P) 1027call_pending (EV_P)
776{ 1028{
777 int pri; 1029 int pri;
778 1030
779 for (pri = NUMPRI; pri--; ) 1031 for (pri = NUMPRI; pri--; )
780 while (pendingcnt [pri]) 1032 while (pendingcnt [pri])
781 { 1033 {
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 1035
784 if (p->w) 1036 if (expect_true (p->w))
785 { 1037 {
786 p->w->pending = 0; 1038 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 1039 EV_CB_INVOKE (p->w, p->events);
788 } 1040 }
789 } 1041 }
790} 1042}
791 1043
792static void 1044inline void
793timers_reify (EV_P) 1045timers_reify (EV_P)
794{ 1046{
795 while (timercnt && timers [0]->at <= mn_now) 1047 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 1048 {
797 struct ev_timer *w = timers [0]; 1049 struct ev_timer *w = timers [0];
798 1050
799 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800 1052
801 /* first reschedule or stop timer */ 1053 /* first reschedule or stop timer */
802 if (w->repeat) 1054 if (w->repeat)
803 { 1055 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057
805 w->at = mn_now + w->repeat; 1058 ((WT)w)->at += w->repeat;
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
806 downheap ((WT *)timers, timercnt, 0); 1062 downheap ((WT *)timers, timercnt, 0);
807 } 1063 }
808 else 1064 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 1066
811 event (EV_A_ (W)w, EV_TIMEOUT); 1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
812 } 1068 }
813} 1069}
814 1070
815static void 1071#if EV_PERIODICS
1072inline void
816periodics_reify (EV_P) 1073periodics_reify (EV_P)
817{ 1074{
818 while (periodiccnt && periodics [0]->at <= rt_now) 1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
819 { 1076 {
820 struct ev_periodic *w = periodics [0]; 1077 struct ev_periodic *w = periodics [0];
821 1078
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1079 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823 1080
824 /* first reschedule or stop timer */ 1081 /* first reschedule or stop timer */
825 if (w->interval) 1082 if (w->reschedule_cb)
826 { 1083 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 }
1088 else if (w->interval)
1089 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0); 1092 downheap ((WT *)periodics, periodiccnt, 0);
830 } 1093 }
831 else 1094 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 1096
834 event (EV_A_ (W)w, EV_PERIODIC); 1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
835 } 1098 }
836} 1099}
837 1100
838static void 1101static void
839periodics_reschedule (EV_P) 1102periodics_reschedule (EV_P)
843 /* adjust periodics after time jump */ 1106 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 1107 for (i = 0; i < periodiccnt; ++i)
845 { 1108 {
846 struct ev_periodic *w = periodics [i]; 1109 struct ev_periodic *w = periodics [i];
847 1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
848 if (w->interval) 1113 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
859 }
860 } 1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
861} 1120}
1121#endif
862 1122
863inline int 1123inline int
864time_update_monotonic (EV_P) 1124time_update_monotonic (EV_P)
865{ 1125{
866 mn_now = get_clock (); 1126 mn_now = get_clock ();
867 1127
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 { 1129 {
870 rt_now = rtmn_diff + mn_now; 1130 ev_rt_now = rtmn_diff + mn_now;
871 return 0; 1131 return 0;
872 } 1132 }
873 else 1133 else
874 { 1134 {
875 now_floor = mn_now; 1135 now_floor = mn_now;
876 rt_now = ev_time (); 1136 ev_rt_now = ev_time ();
877 return 1; 1137 return 1;
878 } 1138 }
879} 1139}
880 1140
881static void 1141inline void
882time_update (EV_P) 1142time_update (EV_P)
883{ 1143{
884 int i; 1144 int i;
885 1145
886#if EV_USE_MONOTONIC 1146#if EV_USE_MONOTONIC
890 { 1150 {
891 ev_tstamp odiff = rtmn_diff; 1151 ev_tstamp odiff = rtmn_diff;
892 1152
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 { 1154 {
895 rtmn_diff = rt_now - mn_now; 1155 rtmn_diff = ev_rt_now - mn_now;
896 1156
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 return; /* all is well */ 1158 return; /* all is well */
899 1159
900 rt_now = ev_time (); 1160 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 1161 mn_now = get_clock ();
902 now_floor = mn_now; 1162 now_floor = mn_now;
903 } 1163 }
904 1164
1165# if EV_PERIODICS
905 periodics_reschedule (EV_A); 1166 periodics_reschedule (EV_A);
1167# endif
906 /* no timer adjustment, as the monotonic clock doesn't jump */ 1168 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
908 } 1170 }
909 } 1171 }
910 else 1172 else
911#endif 1173#endif
912 { 1174 {
913 rt_now = ev_time (); 1175 ev_rt_now = ev_time ();
914 1176
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 { 1178 {
1179#if EV_PERIODICS
917 periodics_reschedule (EV_A); 1180 periodics_reschedule (EV_A);
1181#endif
918 1182
919 /* adjust timers. this is easy, as the offset is the same for all */ 1183 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i) 1184 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now; 1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
922 } 1186 }
923 1187
924 mn_now = rt_now; 1188 mn_now = ev_rt_now;
925 } 1189 }
926} 1190}
927 1191
928void 1192void
929ev_ref (EV_P) 1193ev_ref (EV_P)
943ev_loop (EV_P_ int flags) 1207ev_loop (EV_P_ int flags)
944{ 1208{
945 double block; 1209 double block;
946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
947 1211
948 do 1212 while (activecnt)
949 { 1213 {
950 /* queue check watchers (and execute them) */ 1214 /* queue check watchers (and execute them) */
951 if (expect_false (preparecnt)) 1215 if (expect_false (preparecnt))
952 { 1216 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 1218 call_pending (EV_A);
955 } 1219 }
956 1220
1221 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork))
1223 loop_fork (EV_A);
1224
957 /* update fd-related kernel structures */ 1225 /* update fd-related kernel structures */
958 fd_reify (EV_A); 1226 fd_reify (EV_A);
959 1227
960 /* calculate blocking time */ 1228 /* calculate blocking time */
961 1229
962 /* we only need this for !monotonic clockor timers, but as we basically 1230 /* we only need this for !monotonic clock or timers, but as we basically
963 always have timers, we just calculate it always */ 1231 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC 1232#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic)) 1233 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A); 1234 time_update_monotonic (EV_A);
967 else 1235 else
968#endif 1236#endif
969 { 1237 {
970 rt_now = ev_time (); 1238 ev_rt_now = ev_time ();
971 mn_now = rt_now; 1239 mn_now = ev_rt_now;
972 } 1240 }
973 1241
974 if (flags & EVLOOP_NONBLOCK || idlecnt) 1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.; 1243 block = 0.;
976 else 1244 else
977 { 1245 {
978 block = MAX_BLOCKTIME; 1246 block = MAX_BLOCKTIME;
979 1247
980 if (timercnt) 1248 if (timercnt)
981 { 1249 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
983 if (block > to) block = to; 1251 if (block > to) block = to;
984 } 1252 }
985 1253
1254#if EV_PERIODICS
986 if (periodiccnt) 1255 if (periodiccnt)
987 { 1256 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
989 if (block > to) block = to; 1258 if (block > to) block = to;
990 } 1259 }
1260#endif
991 1261
992 if (block < 0.) block = 0.; 1262 if (expect_false (block < 0.)) block = 0.;
993 } 1263 }
994 1264
995 method_poll (EV_A_ block); 1265 method_poll (EV_A_ block);
996 1266
997 /* update rt_now, do magic */ 1267 /* update ev_rt_now, do magic */
998 time_update (EV_A); 1268 time_update (EV_A);
999 1269
1000 /* queue pending timers and reschedule them */ 1270 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 1271 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS
1002 periodics_reify (EV_A); /* absolute timers called first */ 1273 periodics_reify (EV_A); /* absolute timers called first */
1274#endif
1003 1275
1004 /* queue idle watchers unless io or timers are pending */ 1276 /* queue idle watchers unless io or timers are pending */
1005 if (!pendingcnt) 1277 if (idlecnt && !any_pending (EV_A))
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 1279
1008 /* queue check watchers, to be executed first */ 1280 /* queue check watchers, to be executed first */
1009 if (checkcnt) 1281 if (expect_false (checkcnt))
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1011 1283
1012 call_pending (EV_A); 1284 call_pending (EV_A);
1285
1286 if (expect_false (loop_done))
1287 break;
1013 } 1288 }
1014 while (activecnt && !loop_done);
1015 1289
1016 if (loop_done != 2) 1290 if (loop_done != 2)
1017 loop_done = 0; 1291 loop_done = 0;
1018} 1292}
1019 1293
1079void 1353void
1080ev_io_start (EV_P_ struct ev_io *w) 1354ev_io_start (EV_P_ struct ev_io *w)
1081{ 1355{
1082 int fd = w->fd; 1356 int fd = w->fd;
1083 1357
1084 if (ev_is_active (w)) 1358 if (expect_false (ev_is_active (w)))
1085 return; 1359 return;
1086 1360
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 1361 assert (("ev_io_start called with negative fd", fd >= 0));
1088 1362
1089 ev_start (EV_A_ (W)w, 1); 1363 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1365 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 1366
1093 fd_change (EV_A_ fd); 1367 fd_change (EV_A_ fd);
1094} 1368}
1095 1369
1096void 1370void
1097ev_io_stop (EV_P_ struct ev_io *w) 1371ev_io_stop (EV_P_ struct ev_io *w)
1098{ 1372{
1099 ev_clear_pending (EV_A_ (W)w); 1373 ev_clear_pending (EV_A_ (W)w);
1100 if (!ev_is_active (w)) 1374 if (expect_false (!ev_is_active (w)))
1101 return; 1375 return;
1376
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1102 1378
1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1104 ev_stop (EV_A_ (W)w); 1380 ev_stop (EV_A_ (W)w);
1105 1381
1106 fd_change (EV_A_ w->fd); 1382 fd_change (EV_A_ w->fd);
1107} 1383}
1108 1384
1109void 1385void
1110ev_timer_start (EV_P_ struct ev_timer *w) 1386ev_timer_start (EV_P_ struct ev_timer *w)
1111{ 1387{
1112 if (ev_is_active (w)) 1388 if (expect_false (ev_is_active (w)))
1113 return; 1389 return;
1114 1390
1115 w->at += mn_now; 1391 ((WT)w)->at += mn_now;
1116 1392
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 1394
1119 ev_start (EV_A_ (W)w, ++timercnt); 1395 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, ); 1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1121 timers [timercnt - 1] = w; 1397 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1); 1398 upheap ((WT *)timers, timercnt - 1);
1399
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1123} 1401}
1124 1402
1125void 1403void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 1404ev_timer_stop (EV_P_ struct ev_timer *w)
1127{ 1405{
1128 ev_clear_pending (EV_A_ (W)w); 1406 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 1407 if (expect_false (!ev_is_active (w)))
1130 return; 1408 return;
1131 1409
1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1411
1132 if (w->active < timercnt--) 1412 if (expect_true (((W)w)->active < timercnt--))
1133 { 1413 {
1134 timers [w->active - 1] = timers [timercnt]; 1414 timers [((W)w)->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1136 } 1416 }
1137 1417
1138 w->at = w->repeat; 1418 ((WT)w)->at -= mn_now;
1139 1419
1140 ev_stop (EV_A_ (W)w); 1420 ev_stop (EV_A_ (W)w);
1141} 1421}
1142 1422
1143void 1423void
1145{ 1425{
1146 if (ev_is_active (w)) 1426 if (ev_is_active (w))
1147 { 1427 {
1148 if (w->repeat) 1428 if (w->repeat)
1149 { 1429 {
1150 w->at = mn_now + w->repeat; 1430 ((WT)w)->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1); 1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1152 } 1432 }
1153 else 1433 else
1154 ev_timer_stop (EV_A_ w); 1434 ev_timer_stop (EV_A_ w);
1155 } 1435 }
1156 else if (w->repeat) 1436 else if (w->repeat)
1437 {
1438 w->at = w->repeat;
1157 ev_timer_start (EV_A_ w); 1439 ev_timer_start (EV_A_ w);
1440 }
1158} 1441}
1159 1442
1443#if EV_PERIODICS
1160void 1444void
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 1445ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{ 1446{
1163 if (ev_is_active (w)) 1447 if (expect_false (ev_is_active (w)))
1164 return; 1448 return;
1165 1449
1450 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval)
1453 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 1455 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1457 }
1171 1458
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 1459 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1174 periodics [periodiccnt - 1] = w; 1461 periodics [periodiccnt - 1] = w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 1462 upheap ((WT *)periodics, periodiccnt - 1);
1463
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1176} 1465}
1177 1466
1178void 1467void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 1468ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180{ 1469{
1181 ev_clear_pending (EV_A_ (W)w); 1470 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 1471 if (expect_false (!ev_is_active (w)))
1183 return; 1472 return;
1184 1473
1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1475
1185 if (w->active < periodiccnt--) 1476 if (expect_true (((W)w)->active < periodiccnt--))
1186 { 1477 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 1478 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1189 } 1480 }
1190 1481
1191 ev_stop (EV_A_ (W)w); 1482 ev_stop (EV_A_ (W)w);
1192} 1483}
1193 1484
1194void 1485void
1486ev_periodic_again (EV_P_ struct ev_periodic *w)
1487{
1488 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w);
1491}
1492#endif
1493
1494void
1195ev_idle_start (EV_P_ struct ev_idle *w) 1495ev_idle_start (EV_P_ struct ev_idle *w)
1196{ 1496{
1197 if (ev_is_active (w)) 1497 if (expect_false (ev_is_active (w)))
1198 return; 1498 return;
1199 1499
1200 ev_start (EV_A_ (W)w, ++idlecnt); 1500 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, ); 1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1202 idles [idlecnt - 1] = w; 1502 idles [idlecnt - 1] = w;
1203} 1503}
1204 1504
1205void 1505void
1206ev_idle_stop (EV_P_ struct ev_idle *w) 1506ev_idle_stop (EV_P_ struct ev_idle *w)
1207{ 1507{
1208 ev_clear_pending (EV_A_ (W)w); 1508 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w)) 1509 if (expect_false (!ev_is_active (w)))
1210 return; 1510 return;
1211 1511
1212 idles [w->active - 1] = idles [--idlecnt]; 1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w); 1513 ev_stop (EV_A_ (W)w);
1214} 1514}
1215 1515
1216void 1516void
1217ev_prepare_start (EV_P_ struct ev_prepare *w) 1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{ 1518{
1219 if (ev_is_active (w)) 1519 if (expect_false (ev_is_active (w)))
1220 return; 1520 return;
1221 1521
1222 ev_start (EV_A_ (W)w, ++preparecnt); 1522 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, ); 1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1224 prepares [preparecnt - 1] = w; 1524 prepares [preparecnt - 1] = w;
1225} 1525}
1226 1526
1227void 1527void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w) 1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{ 1529{
1230 ev_clear_pending (EV_A_ (W)w); 1530 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1531 if (expect_false (!ev_is_active (w)))
1232 return; 1532 return;
1233 1533
1234 prepares [w->active - 1] = prepares [--preparecnt]; 1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w); 1535 ev_stop (EV_A_ (W)w);
1236} 1536}
1237 1537
1238void 1538void
1239ev_check_start (EV_P_ struct ev_check *w) 1539ev_check_start (EV_P_ struct ev_check *w)
1240{ 1540{
1241 if (ev_is_active (w)) 1541 if (expect_false (ev_is_active (w)))
1242 return; 1542 return;
1243 1543
1244 ev_start (EV_A_ (W)w, ++checkcnt); 1544 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, ); 1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1246 checks [checkcnt - 1] = w; 1546 checks [checkcnt - 1] = w;
1247} 1547}
1248 1548
1249void 1549void
1250ev_check_stop (EV_P_ struct ev_check *w) 1550ev_check_stop (EV_P_ struct ev_check *w)
1251{ 1551{
1252 ev_clear_pending (EV_A_ (W)w); 1552 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w)) 1553 if (expect_false (!ev_is_active (w)))
1254 return; 1554 return;
1255 1555
1256 checks [w->active - 1] = checks [--checkcnt]; 1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w); 1557 ev_stop (EV_A_ (W)w);
1258} 1558}
1259 1559
1260#ifndef SA_RESTART 1560#ifndef SA_RESTART
1261# define SA_RESTART 0 1561# define SA_RESTART 0
1263 1563
1264void 1564void
1265ev_signal_start (EV_P_ struct ev_signal *w) 1565ev_signal_start (EV_P_ struct ev_signal *w)
1266{ 1566{
1267#if EV_MULTIPLICITY 1567#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1269#endif 1569#endif
1270 if (ev_is_active (w)) 1570 if (expect_false (ev_is_active (w)))
1271 return; 1571 return;
1272 1572
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274 1574
1275 ev_start (EV_A_ (W)w, 1); 1575 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 1578
1279 if (!w->next) 1579 if (!((WL)w)->next)
1280 { 1580 {
1581#if _WIN32
1582 signal (w->signum, sighandler);
1583#else
1281 struct sigaction sa; 1584 struct sigaction sa;
1282 sa.sa_handler = sighandler; 1585 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask); 1586 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0); 1588 sigaction (w->signum, &sa, 0);
1589#endif
1286 } 1590 }
1287} 1591}
1288 1592
1289void 1593void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 1594ev_signal_stop (EV_P_ struct ev_signal *w)
1291{ 1595{
1292 ev_clear_pending (EV_A_ (W)w); 1596 ev_clear_pending (EV_A_ (W)w);
1293 if (!ev_is_active (w)) 1597 if (expect_false (!ev_is_active (w)))
1294 return; 1598 return;
1295 1599
1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1297 ev_stop (EV_A_ (W)w); 1601 ev_stop (EV_A_ (W)w);
1298 1602
1302 1606
1303void 1607void
1304ev_child_start (EV_P_ struct ev_child *w) 1608ev_child_start (EV_P_ struct ev_child *w)
1305{ 1609{
1306#if EV_MULTIPLICITY 1610#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1308#endif 1612#endif
1309 if (ev_is_active (w)) 1613 if (expect_false (ev_is_active (w)))
1310 return; 1614 return;
1311 1615
1312 ev_start (EV_A_ (W)w, 1); 1616 ev_start (EV_A_ (W)w, 1);
1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1314} 1618}
1315 1619
1316void 1620void
1317ev_child_stop (EV_P_ struct ev_child *w) 1621ev_child_stop (EV_P_ struct ev_child *w)
1318{ 1622{
1319 ev_clear_pending (EV_A_ (W)w); 1623 ev_clear_pending (EV_A_ (W)w);
1320 if (ev_is_active (w)) 1624 if (expect_false (!ev_is_active (w)))
1321 return; 1625 return;
1322 1626
1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1324 ev_stop (EV_A_ (W)w); 1628 ev_stop (EV_A_ (W)w);
1325} 1629}
1340 void (*cb)(int revents, void *arg) = once->cb; 1644 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 1645 void *arg = once->arg;
1342 1646
1343 ev_io_stop (EV_A_ &once->io); 1647 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 1648 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 1649 ev_free (once);
1346 1650
1347 cb (revents, arg); 1651 cb (revents, arg);
1348} 1652}
1349 1653
1350static void 1654static void
1360} 1664}
1361 1665
1362void 1666void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{ 1668{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 1669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 1670
1367 if (!once) 1671 if (expect_false (!once))
1672 {
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else 1674 return;
1370 { 1675 }
1676
1371 once->cb = cb; 1677 once->cb = cb;
1372 once->arg = arg; 1678 once->arg = arg;
1373 1679
1374 ev_watcher_init (&once->io, once_cb_io); 1680 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 1681 if (fd >= 0)
1376 { 1682 {
1377 ev_io_set (&once->io, fd, events); 1683 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io); 1684 ev_io_start (EV_A_ &once->io);
1379 } 1685 }
1380 1686
1381 ev_watcher_init (&once->to, once_cb_to); 1687 ev_init (&once->to, once_cb_to);
1382 if (timeout >= 0.) 1688 if (timeout >= 0.)
1383 { 1689 {
1384 ev_timer_set (&once->to, timeout, 0.); 1690 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to); 1691 ev_timer_start (EV_A_ &once->to);
1386 }
1387 } 1692 }
1388} 1693}
1389 1694
1695#ifdef __cplusplus
1696}
1697#endif
1698

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines