ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC vs.
Revision 1.127 by root, Sun Nov 18 02:17:57 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
46# else
47# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0
49# endif
50# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0
52# endif
37# endif 53# endif
38 54
55# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 56# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif
41# endif 61# endif
42 62
63# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 64# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif
45# endif 69# endif
46 70
71# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 73# define EV_USE_EPOLL 1
74# else
75# define EV_USE_EPOLL 0
76# endif
49# endif 77# endif
50 78
79# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif
85# endif
86
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1
90# else
91# define EV_USE_PORT 0
92# endif
53# endif 93# endif
54 94
55#endif 95#endif
56 96
57#include <math.h> 97#include <math.h>
58#include <stdlib.h> 98#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 99#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 100#include <stddef.h>
63 101
64#include <stdio.h> 102#include <stdio.h>
65 103
66#include <assert.h> 104#include <assert.h>
67#include <errno.h> 105#include <errno.h>
68#include <sys/types.h> 106#include <sys/types.h>
107#include <time.h>
108
109#include <signal.h>
110
69#ifndef WIN32 111#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h>
70# include <sys/wait.h> 114# include <sys/wait.h>
115#else
116# define WIN32_LEAN_AND_MEAN
117# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1
71#endif 120# endif
72#include <sys/time.h> 121#endif
73#include <time.h>
74 122
75/**/ 123/**/
76 124
77#ifndef EV_USE_MONOTONIC 125#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 126# define EV_USE_MONOTONIC 0
127#endif
128
129#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
79#endif 131#endif
80 132
81#ifndef EV_USE_SELECT 133#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 134# define EV_USE_SELECT 1
83#endif 135#endif
84 136
85#ifndef EV_USE_POLL 137#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 138# ifdef _WIN32
139# define EV_USE_POLL 0
140# else
141# define EV_USE_POLL 1
142# endif
87#endif 143#endif
88 144
89#ifndef EV_USE_EPOLL 145#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 146# define EV_USE_EPOLL 0
91#endif 147#endif
92 148
93#ifndef EV_USE_KQUEUE 149#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 150# define EV_USE_KQUEUE 0
95#endif 151#endif
96 152
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 153#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 154# define EV_USE_PORT 0
107#endif 155#endif
108 156
109/**/ 157/**/
158
159/* darwin simply cannot be helped */
160#ifdef __APPLE__
161# undef EV_USE_POLL
162# undef EV_USE_KQUEUE
163#endif
110 164
111#ifndef CLOCK_MONOTONIC 165#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 166# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 167# define EV_USE_MONOTONIC 0
114#endif 168#endif
116#ifndef CLOCK_REALTIME 170#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 171# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 172# define EV_USE_REALTIME 0
119#endif 173#endif
120 174
175#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h>
177#endif
178
121/**/ 179/**/
122 180
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 185
186#ifdef EV_H
187# include EV_H
188#else
128#include "ev.h" 189# include "ev.h"
190#endif
129 191
130#if __GNUC__ >= 3 192#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 193# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 194# define inline static inline
133#else 195#else
134# define expect(expr,value) (expr) 196# define expect(expr,value) (expr)
135# define inline static 197# define inline static
136#endif 198#endif
137 199
139#define expect_true(expr) expect ((expr) != 0, 1) 201#define expect_true(expr) expect ((expr) != 0, 1)
140 202
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 204#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 205
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */
208
144typedef struct ev_watcher *W; 209typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 210typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 211typedef struct ev_watcher_time *WT;
147 212
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 214
215#ifdef _WIN32
216# include "ev_win32.c"
217#endif
218
150/*****************************************************************************/ 219/*****************************************************************************/
151 220
221static void (*syserr_cb)(const char *msg);
222
223void ev_set_syserr_cb (void (*cb)(const char *msg))
224{
225 syserr_cb = cb;
226}
227
228static void
229syserr (const char *msg)
230{
231 if (!msg)
232 msg = "(libev) system error";
233
234 if (syserr_cb)
235 syserr_cb (msg);
236 else
237 {
238 perror (msg);
239 abort ();
240 }
241}
242
243static void *(*alloc)(void *ptr, long size);
244
245void ev_set_allocator (void *(*cb)(void *ptr, long size))
246{
247 alloc = cb;
248}
249
250static void *
251ev_realloc (void *ptr, long size)
252{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
254
255 if (!ptr && size)
256 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort ();
259 }
260
261 return ptr;
262}
263
264#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0)
266
267/*****************************************************************************/
268
152typedef struct 269typedef struct
153{ 270{
154 struct ev_watcher_list *head; 271 WL head;
155 unsigned char events; 272 unsigned char events;
156 unsigned char reify; 273 unsigned char reify;
274#if EV_SELECT_IS_WINSOCKET
275 SOCKET handle;
276#endif
157} ANFD; 277} ANFD;
158 278
159typedef struct 279typedef struct
160{ 280{
161 W w; 281 W w;
162 int events; 282 int events;
163} ANPENDING; 283} ANPENDING;
164 284
165#if EV_MULTIPLICITY 285#if EV_MULTIPLICITY
166 286
167struct ev_loop 287 struct ev_loop
168{ 288 {
289 ev_tstamp ev_rt_now;
290 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 291 #define VAR(name,decl) decl;
170# include "ev_vars.h" 292 #include "ev_vars.h"
171};
172# undef VAR 293 #undef VAR
294 };
173# include "ev_wrap.h" 295 #include "ev_wrap.h"
296
297 static struct ev_loop default_loop_struct;
298 struct ev_loop *ev_default_loop_ptr;
174 299
175#else 300#else
176 301
302 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 303 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 304 #include "ev_vars.h"
179# undef VAR 305 #undef VAR
306
307 static int ev_default_loop_ptr;
180 308
181#endif 309#endif
182 310
183/*****************************************************************************/ 311/*****************************************************************************/
184 312
185inline ev_tstamp 313ev_tstamp
186ev_time (void) 314ev_time (void)
187{ 315{
188#if EV_USE_REALTIME 316#if EV_USE_REALTIME
189 struct timespec ts; 317 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 318 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 337#endif
210 338
211 return ev_time (); 339 return ev_time ();
212} 340}
213 341
342#if EV_MULTIPLICITY
214ev_tstamp 343ev_tstamp
215ev_now (EV_P) 344ev_now (EV_P)
216{ 345{
217 return rt_now; 346 return ev_rt_now;
218} 347}
348#endif
219 349
220#define array_roundsize(base,n) ((n) | 4 & ~3) 350#define array_roundsize(type,n) (((n) | 4) & ~3)
221 351
222#define array_needsize(base,cur,cnt,init) \ 352#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 353 if (expect_false ((cnt) > cur)) \
224 { \ 354 { \
225 int newcnt = cur; \ 355 int newcnt = cur; \
226 do \ 356 do \
227 { \ 357 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 358 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 359 } \
230 while ((cnt) > newcnt); \ 360 while ((cnt) > newcnt); \
231 \ 361 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 363 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 364 cur = newcnt; \
235 } 365 }
366
367#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 }
374
375#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 377
237/*****************************************************************************/ 378/*****************************************************************************/
238 379
239static void 380static void
240anfds_init (ANFD *base, int count) 381anfds_init (ANFD *base, int count)
247 388
248 ++base; 389 ++base;
249 } 390 }
250} 391}
251 392
252static void 393void
253event (EV_P_ W w, int events) 394ev_feed_event (EV_P_ void *w, int revents)
254{ 395{
255 if (w->pending) 396 W w_ = (W)w;
397
398 if (expect_false (w_->pending))
256 { 399 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 401 return;
259 } 402 }
260 403
261 w->pending = ++pendingcnt [ABSPRI (w)]; 404 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 408}
266 409
267static void 410static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 411queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 412{
270 int i; 413 int i;
271 414
272 for (i = 0; i < eventcnt; ++i) 415 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 416 ev_feed_event (EV_A_ events [i], type);
274} 417}
275 418
276static void 419inline void
277fd_event (EV_P_ int fd, int events) 420fd_event (EV_P_ int fd, int revents)
278{ 421{
279 ANFD *anfd = anfds + fd; 422 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 423 struct ev_io *w;
281 424
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 426 {
284 int ev = w->events & events; 427 int ev = w->events & revents;
285 428
286 if (ev) 429 if (ev)
287 event (EV_A_ (W)w, ev); 430 ev_feed_event (EV_A_ (W)w, ev);
288 } 431 }
432}
433
434void
435ev_feed_fd_event (EV_P_ int fd, int revents)
436{
437 fd_event (EV_A_ fd, revents);
289} 438}
290 439
291/*****************************************************************************/ 440/*****************************************************************************/
292 441
293static void 442inline void
294fd_reify (EV_P) 443fd_reify (EV_P)
295{ 444{
296 int i; 445 int i;
297 446
298 for (i = 0; i < fdchangecnt; ++i) 447 for (i = 0; i < fdchangecnt; ++i)
304 int events = 0; 453 int events = 0;
305 454
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 456 events |= w->events;
308 457
458#if EV_SELECT_IS_WINSOCKET
459 if (events)
460 {
461 unsigned long argp;
462 anfd->handle = _get_osfhandle (fd);
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
464 }
465#endif
466
309 anfd->reify = 0; 467 anfd->reify = 0;
310 468
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events); 469 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 470 anfd->events = events;
315 }
316 } 471 }
317 472
318 fdchangecnt = 0; 473 fdchangecnt = 0;
319} 474}
320 475
321static void 476static void
322fd_change (EV_P_ int fd) 477fd_change (EV_P_ int fd)
323{ 478{
324 if (anfds [fd].reify || fdchangecnt < 0) 479 if (expect_false (anfds [fd].reify))
325 return; 480 return;
326 481
327 anfds [fd].reify = 1; 482 anfds [fd].reify = 1;
328 483
329 ++fdchangecnt; 484 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 486 fdchanges [fdchangecnt - 1] = fd;
332} 487}
333 488
334static void 489static void
335fd_kill (EV_P_ int fd) 490fd_kill (EV_P_ int fd)
337 struct ev_io *w; 492 struct ev_io *w;
338 493
339 while ((w = (struct ev_io *)anfds [fd].head)) 494 while ((w = (struct ev_io *)anfds [fd].head))
340 { 495 {
341 ev_io_stop (EV_A_ w); 496 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 498 }
499}
500
501inline int
502fd_valid (int fd)
503{
504#ifdef _WIN32
505 return _get_osfhandle (fd) != -1;
506#else
507 return fcntl (fd, F_GETFD) != -1;
508#endif
344} 509}
345 510
346/* called on EBADF to verify fds */ 511/* called on EBADF to verify fds */
347static void 512static void
348fd_ebadf (EV_P) 513fd_ebadf (EV_P)
349{ 514{
350 int fd; 515 int fd;
351 516
352 for (fd = 0; fd < anfdmax; ++fd) 517 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 518 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 519 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 520 fd_kill (EV_A_ fd);
356} 521}
357 522
358/* called on ENOMEM in select/poll to kill some fds and retry */ 523/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 524static void
362 int fd; 527 int fd;
363 528
364 for (fd = anfdmax; fd--; ) 529 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 530 if (anfds [fd].events)
366 { 531 {
367 close (fd);
368 fd_kill (EV_A_ fd); 532 fd_kill (EV_A_ fd);
369 return; 533 return;
370 } 534 }
371} 535}
372 536
373/* susually called after fork if method needs to re-arm all fds from scratch */ 537/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 538static void
375fd_rearm_all (EV_P) 539fd_rearm_all (EV_P)
376{ 540{
377 int fd; 541 int fd;
378 542
426 590
427 heap [k] = w; 591 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 592 ((W)heap [k])->active = k + 1;
429} 593}
430 594
595inline void
596adjustheap (WT *heap, int N, int k)
597{
598 upheap (heap, k);
599 downheap (heap, N, k);
600}
601
431/*****************************************************************************/ 602/*****************************************************************************/
432 603
433typedef struct 604typedef struct
434{ 605{
435 struct ev_watcher_list *head; 606 WL head;
436 sig_atomic_t volatile gotsig; 607 sig_atomic_t volatile gotsig;
437} ANSIG; 608} ANSIG;
438 609
439static ANSIG *signals; 610static ANSIG *signals;
440static int signalmax; 611static int signalmax;
456} 627}
457 628
458static void 629static void
459sighandler (int signum) 630sighandler (int signum)
460{ 631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
461 signals [signum - 1].gotsig = 1; 636 signals [signum - 1].gotsig = 1;
462 637
463 if (!gotsig) 638 if (!gotsig)
464 { 639 {
465 int old_errno = errno; 640 int old_errno = errno;
467 write (sigpipe [1], &signum, 1); 642 write (sigpipe [1], &signum, 1);
468 errno = old_errno; 643 errno = old_errno;
469 } 644 }
470} 645}
471 646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
472static void 667static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 668sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 669{
475 struct ev_watcher_list *w;
476 int signum; 670 int signum;
477 671
478 read (sigpipe [0], &revents, 1); 672 read (sigpipe [0], &revents, 1);
479 gotsig = 0; 673 gotsig = 0;
480 674
481 for (signum = signalmax; signum--; ) 675 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 676 if (signals [signum].gotsig)
483 { 677 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0; 678}
485 679
486 for (w = signals [signum].head; w; w = w->next) 680static void
487 event (EV_A_ (W)w, EV_SIGNAL); 681fd_intern (int fd)
488 } 682{
683#ifdef _WIN32
684 int arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
686#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif
489} 690}
490 691
491static void 692static void
492siginit (EV_P) 693siginit (EV_P)
493{ 694{
494#ifndef WIN32 695 fd_intern (sigpipe [0]);
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 696 fd_intern (sigpipe [1]);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502 697
503 ev_io_set (&sigev, sigpipe [0], EV_READ); 698 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev); 699 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 700 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 701}
507 702
508/*****************************************************************************/ 703/*****************************************************************************/
509 704
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE]; 705static struct ev_child *childs [PID_HASHSIZE];
706
707#ifndef _WIN32
708
513static struct ev_signal childev; 709static struct ev_signal childev;
514 710
515#ifndef WCONTINUED 711#ifndef WCONTINUED
516# define WCONTINUED 0 712# define WCONTINUED 0
517#endif 713#endif
522 struct ev_child *w; 718 struct ev_child *w;
523 719
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid) 721 if (w->pid == pid || !w->pid)
526 { 722 {
527 w->priority = sw->priority; /* need to do it *now* */ 723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 724 w->rpid = pid;
529 w->rstatus = status; 725 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 727 }
532} 728}
533 729
534static void 730static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 731childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 733 int pid, status;
538 734
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 736 {
541 /* make sure we are called again until all childs have been reaped */ 737 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 739
544 child_reap (EV_A_ sw, pid, pid, status); 740 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 742 }
547} 743}
548 744
549#endif 745#endif
550 746
551/*****************************************************************************/ 747/*****************************************************************************/
552 748
749#if EV_USE_PORT
750# include "ev_port.c"
751#endif
553#if EV_USE_KQUEUE 752#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 753# include "ev_kqueue.c"
555#endif 754#endif
556#if EV_USE_EPOLL 755#if EV_USE_EPOLL
557# include "ev_epoll.c" 756# include "ev_epoll.c"
577 776
578/* return true if we are running with elevated privileges and should ignore env variables */ 777/* return true if we are running with elevated privileges and should ignore env variables */
579static int 778static int
580enable_secure (void) 779enable_secure (void)
581{ 780{
582#ifdef WIN32 781#ifdef _WIN32
583 return 0; 782 return 0;
584#else 783#else
585 return getuid () != geteuid () 784 return getuid () != geteuid ()
586 || getgid () != getegid (); 785 || getgid () != getegid ();
587#endif 786#endif
588} 787}
589 788
590int 789unsigned int
591ev_method (EV_P) 790ev_method (EV_P)
592{ 791{
593 return method; 792 return method;
594} 793}
595 794
596static void 795static void
597loop_init (EV_P_ int methods) 796loop_init (EV_P_ unsigned int flags)
598{ 797{
599 if (!method) 798 if (!method)
600 { 799 {
601#if EV_USE_MONOTONIC 800#if EV_USE_MONOTONIC
602 { 801 {
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 803 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 804 have_monotonic = 1;
606 } 805 }
607#endif 806#endif
608 807
609 rt_now = ev_time (); 808 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 809 mn_now = get_clock ();
611 now_floor = mn_now; 810 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 811 rtmn_diff = ev_rt_now - mn_now;
613 812
614 if (methods == EVMETHOD_AUTO) 813 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 814 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else 815
618 methods = EVMETHOD_ANY; 816 if (!(flags & 0x0000ffff))
817 flags |= 0x0000ffff;
619 818
620 method = 0; 819 method = 0;
621#if EV_USE_WIN32 820#if EV_USE_PORT
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 821 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
623#endif 822#endif
624#if EV_USE_KQUEUE 823#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 824 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
626#endif 825#endif
627#if EV_USE_EPOLL 826#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 827 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
629#endif 828#endif
630#if EV_USE_POLL 829#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 830 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
632#endif 831#endif
633#if EV_USE_SELECT 832#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 833 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
635#endif 834#endif
636 }
637}
638 835
639void 836 ev_init (&sigev, sigcb);
837 ev_set_priority (&sigev, EV_MAXPRI);
838 }
839}
840
841static void
640loop_destroy (EV_P) 842loop_destroy (EV_P)
641{ 843{
642#if EV_USE_WIN32 844 int i;
845
846#if EV_USE_PORT
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 847 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
644#endif 848#endif
645#if EV_USE_KQUEUE 849#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 850 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif 851#endif
648#if EV_USE_EPOLL 852#if EV_USE_EPOLL
653#endif 857#endif
654#if EV_USE_SELECT 858#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 859 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif 860#endif
657 861
862 for (i = NUMPRI; i--; )
863 array_free (pending, [i]);
864
865 /* have to use the microsoft-never-gets-it-right macro */
866 array_free (fdchange, EMPTY0);
867 array_free (timer, EMPTY0);
868#if EV_PERIODICS
869 array_free (periodic, EMPTY0);
870#endif
871 array_free (idle, EMPTY0);
872 array_free (prepare, EMPTY0);
873 array_free (check, EMPTY0);
874
658 method = 0; 875 method = 0;
659 /*TODO*/
660} 876}
661 877
662void 878static void
663loop_fork (EV_P) 879loop_fork (EV_P)
664{ 880{
665 /*TODO*/ 881#if EV_USE_PORT
882 if (method == EVMETHOD_PORT ) port_fork (EV_A);
883#endif
884#if EV_USE_KQUEUE
885 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
886#endif
666#if EV_USE_EPOLL 887#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 888 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif 889#endif
669#if EV_USE_KQUEUE 890
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 891 if (ev_is_active (&sigev))
671#endif 892 {
893 /* default loop */
894
895 ev_ref (EV_A);
896 ev_io_stop (EV_A_ &sigev);
897 close (sigpipe [0]);
898 close (sigpipe [1]);
899
900 while (pipe (sigpipe))
901 syserr ("(libev) error creating pipe");
902
903 siginit (EV_A);
904 }
905
906 postfork = 0;
672} 907}
673 908
674#if EV_MULTIPLICITY 909#if EV_MULTIPLICITY
675struct ev_loop * 910struct ev_loop *
676ev_loop_new (int methods) 911ev_loop_new (unsigned int flags)
677{ 912{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 913 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
679 914
915 memset (loop, 0, sizeof (struct ev_loop));
916
680 loop_init (EV_A_ methods); 917 loop_init (EV_A_ flags);
681 918
682 if (ev_method (EV_A)) 919 if (ev_method (EV_A))
683 return loop; 920 return loop;
684 921
685 return 0; 922 return 0;
687 924
688void 925void
689ev_loop_destroy (EV_P) 926ev_loop_destroy (EV_P)
690{ 927{
691 loop_destroy (EV_A); 928 loop_destroy (EV_A);
692 free (loop); 929 ev_free (loop);
693} 930}
694 931
695void 932void
696ev_loop_fork (EV_P) 933ev_loop_fork (EV_P)
697{ 934{
698 loop_fork (EV_A); 935 postfork = 1;
699} 936}
700 937
701#endif 938#endif
702 939
703#if EV_MULTIPLICITY 940#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 941struct ev_loop *
942ev_default_loop_init (unsigned int flags)
708#else 943#else
709static int default_loop;
710
711int 944int
945ev_default_loop (unsigned int flags)
712#endif 946#endif
713ev_default_loop (int methods)
714{ 947{
715 if (sigpipe [0] == sigpipe [1]) 948 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe)) 949 if (pipe (sigpipe))
717 return 0; 950 return 0;
718 951
719 if (!default_loop) 952 if (!ev_default_loop_ptr)
720 { 953 {
721#if EV_MULTIPLICITY 954#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct; 955 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
723#else 956#else
724 default_loop = 1; 957 ev_default_loop_ptr = 1;
725#endif 958#endif
726 959
727 loop_init (EV_A_ methods); 960 loop_init (EV_A_ flags);
728 961
729 if (ev_method (EV_A)) 962 if (ev_method (EV_A))
730 { 963 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A); 964 siginit (EV_A);
734 965
735#ifndef WIN32 966#ifndef _WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 967 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 968 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev); 969 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */ 970 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif 971#endif
741 } 972 }
742 else 973 else
743 default_loop = 0; 974 ev_default_loop_ptr = 0;
744 } 975 }
745 976
746 return default_loop; 977 return ev_default_loop_ptr;
747} 978}
748 979
749void 980void
750ev_default_destroy (void) 981ev_default_destroy (void)
751{ 982{
752#if EV_MULTIPLICITY 983#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 984 struct ev_loop *loop = ev_default_loop_ptr;
754#endif 985#endif
755 986
987#ifndef _WIN32
756 ev_ref (EV_A); /* child watcher */ 988 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 989 ev_signal_stop (EV_A_ &childev);
990#endif
758 991
759 ev_ref (EV_A); /* signal watcher */ 992 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev); 993 ev_io_stop (EV_A_ &sigev);
761 994
762 close (sigpipe [0]); sigpipe [0] = 0; 995 close (sigpipe [0]); sigpipe [0] = 0;
767 1000
768void 1001void
769ev_default_fork (void) 1002ev_default_fork (void)
770{ 1003{
771#if EV_MULTIPLICITY 1004#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 1005 struct ev_loop *loop = ev_default_loop_ptr;
773#endif 1006#endif
774 1007
775 loop_fork (EV_A); 1008 if (method)
776 1009 postfork = 1;
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 1010}
785 1011
786/*****************************************************************************/ 1012/*****************************************************************************/
787 1013
788static void 1014static int
1015any_pending (EV_P)
1016{
1017 int pri;
1018
1019 for (pri = NUMPRI; pri--; )
1020 if (pendingcnt [pri])
1021 return 1;
1022
1023 return 0;
1024}
1025
1026inline void
789call_pending (EV_P) 1027call_pending (EV_P)
790{ 1028{
791 int pri; 1029 int pri;
792 1030
793 for (pri = NUMPRI; pri--; ) 1031 for (pri = NUMPRI; pri--; )
794 while (pendingcnt [pri]) 1032 while (pendingcnt [pri])
795 { 1033 {
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1034 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 1035
798 if (p->w) 1036 if (expect_true (p->w))
799 { 1037 {
800 p->w->pending = 0; 1038 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events); 1039 EV_CB_INVOKE (p->w, p->events);
802 } 1040 }
803 } 1041 }
804} 1042}
805 1043
806static void 1044inline void
807timers_reify (EV_P) 1045timers_reify (EV_P)
808{ 1046{
809 while (timercnt && timers [0]->at <= mn_now) 1047 while (timercnt && ((WT)timers [0])->at <= mn_now)
810 { 1048 {
811 struct ev_timer *w = timers [0]; 1049 struct ev_timer *w = timers [0];
812 1050
813 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1051 assert (("inactive timer on timer heap detected", ev_is_active (w)));
814 1052
815 /* first reschedule or stop timer */ 1053 /* first reschedule or stop timer */
816 if (w->repeat) 1054 if (w->repeat)
817 { 1055 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1056 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1057
819 w->at = mn_now + w->repeat; 1058 ((WT)w)->at += w->repeat;
1059 if (((WT)w)->at < mn_now)
1060 ((WT)w)->at = mn_now;
1061
820 downheap ((WT *)timers, timercnt, 0); 1062 downheap ((WT *)timers, timercnt, 0);
821 } 1063 }
822 else 1064 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1065 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824 1066
825 event (EV_A_ (W)w, EV_TIMEOUT); 1067 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
826 } 1068 }
827} 1069}
828 1070
829static void 1071#if EV_PERIODICS
1072inline void
830periodics_reify (EV_P) 1073periodics_reify (EV_P)
831{ 1074{
832 while (periodiccnt && periodics [0]->at <= rt_now) 1075 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
833 { 1076 {
834 struct ev_periodic *w = periodics [0]; 1077 struct ev_periodic *w = periodics [0];
835 1078
836 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1079 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
837 1080
838 /* first reschedule or stop timer */ 1081 /* first reschedule or stop timer */
839 if (w->interval) 1082 if (w->reschedule_cb)
840 { 1083 {
1084 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1085 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1086 downheap ((WT *)periodics, periodiccnt, 0);
1087 }
1088 else if (w->interval)
1089 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1090 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1091 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
843 downheap ((WT *)periodics, periodiccnt, 0); 1092 downheap ((WT *)periodics, periodiccnt, 0);
844 } 1093 }
845 else 1094 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1095 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847 1096
848 event (EV_A_ (W)w, EV_PERIODIC); 1097 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
849 } 1098 }
850} 1099}
851 1100
852static void 1101static void
853periodics_reschedule (EV_P) 1102periodics_reschedule (EV_P)
857 /* adjust periodics after time jump */ 1106 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i) 1107 for (i = 0; i < periodiccnt; ++i)
859 { 1108 {
860 struct ev_periodic *w = periodics [i]; 1109 struct ev_periodic *w = periodics [i];
861 1110
1111 if (w->reschedule_cb)
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
862 if (w->interval) 1113 else if (w->interval)
863 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1114 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
865
866 if (fabs (diff) >= 1e-4)
867 {
868 ev_periodic_stop (EV_A_ w);
869 ev_periodic_start (EV_A_ w);
870
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 }
873 }
874 } 1115 }
1116
1117 /* now rebuild the heap */
1118 for (i = periodiccnt >> 1; i--; )
1119 downheap ((WT *)periodics, periodiccnt, i);
875} 1120}
1121#endif
876 1122
877inline int 1123inline int
878time_update_monotonic (EV_P) 1124time_update_monotonic (EV_P)
879{ 1125{
880 mn_now = get_clock (); 1126 mn_now = get_clock ();
881 1127
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1128 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 { 1129 {
884 rt_now = rtmn_diff + mn_now; 1130 ev_rt_now = rtmn_diff + mn_now;
885 return 0; 1131 return 0;
886 } 1132 }
887 else 1133 else
888 { 1134 {
889 now_floor = mn_now; 1135 now_floor = mn_now;
890 rt_now = ev_time (); 1136 ev_rt_now = ev_time ();
891 return 1; 1137 return 1;
892 } 1138 }
893} 1139}
894 1140
895static void 1141inline void
896time_update (EV_P) 1142time_update (EV_P)
897{ 1143{
898 int i; 1144 int i;
899 1145
900#if EV_USE_MONOTONIC 1146#if EV_USE_MONOTONIC
904 { 1150 {
905 ev_tstamp odiff = rtmn_diff; 1151 ev_tstamp odiff = rtmn_diff;
906 1152
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1153 for (i = 4; --i; ) /* loop a few times, before making important decisions */
908 { 1154 {
909 rtmn_diff = rt_now - mn_now; 1155 rtmn_diff = ev_rt_now - mn_now;
910 1156
911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1157 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
912 return; /* all is well */ 1158 return; /* all is well */
913 1159
914 rt_now = ev_time (); 1160 ev_rt_now = ev_time ();
915 mn_now = get_clock (); 1161 mn_now = get_clock ();
916 now_floor = mn_now; 1162 now_floor = mn_now;
917 } 1163 }
918 1164
1165# if EV_PERIODICS
919 periodics_reschedule (EV_A); 1166 periodics_reschedule (EV_A);
1167# endif
920 /* no timer adjustment, as the monotonic clock doesn't jump */ 1168 /* no timer adjustment, as the monotonic clock doesn't jump */
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1169 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
922 } 1170 }
923 } 1171 }
924 else 1172 else
925#endif 1173#endif
926 { 1174 {
927 rt_now = ev_time (); 1175 ev_rt_now = ev_time ();
928 1176
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1177 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 { 1178 {
1179#if EV_PERIODICS
931 periodics_reschedule (EV_A); 1180 periodics_reschedule (EV_A);
1181#endif
932 1182
933 /* adjust timers. this is easy, as the offset is the same for all */ 1183 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i) 1184 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now; 1185 ((WT)timers [i])->at += ev_rt_now - mn_now;
936 } 1186 }
937 1187
938 mn_now = rt_now; 1188 mn_now = ev_rt_now;
939 } 1189 }
940} 1190}
941 1191
942void 1192void
943ev_ref (EV_P) 1193ev_ref (EV_P)
957ev_loop (EV_P_ int flags) 1207ev_loop (EV_P_ int flags)
958{ 1208{
959 double block; 1209 double block;
960 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1210 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
961 1211
962 do 1212 while (activecnt)
963 { 1213 {
964 /* queue check watchers (and execute them) */ 1214 /* queue check watchers (and execute them) */
965 if (expect_false (preparecnt)) 1215 if (expect_false (preparecnt))
966 { 1216 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1217 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A); 1218 call_pending (EV_A);
969 } 1219 }
970 1220
1221 /* we might have forked, so reify kernel state if necessary */
1222 if (expect_false (postfork))
1223 loop_fork (EV_A);
1224
971 /* update fd-related kernel structures */ 1225 /* update fd-related kernel structures */
972 fd_reify (EV_A); 1226 fd_reify (EV_A);
973 1227
974 /* calculate blocking time */ 1228 /* calculate blocking time */
975 1229
976 /* we only need this for !monotonic clockor timers, but as we basically 1230 /* we only need this for !monotonic clock or timers, but as we basically
977 always have timers, we just calculate it always */ 1231 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC 1232#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic)) 1233 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A); 1234 time_update_monotonic (EV_A);
981 else 1235 else
982#endif 1236#endif
983 { 1237 {
984 rt_now = ev_time (); 1238 ev_rt_now = ev_time ();
985 mn_now = rt_now; 1239 mn_now = ev_rt_now;
986 } 1240 }
987 1241
988 if (flags & EVLOOP_NONBLOCK || idlecnt) 1242 if (flags & EVLOOP_NONBLOCK || idlecnt)
989 block = 0.; 1243 block = 0.;
990 else 1244 else
991 { 1245 {
992 block = MAX_BLOCKTIME; 1246 block = MAX_BLOCKTIME;
993 1247
994 if (timercnt) 1248 if (timercnt)
995 { 1249 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1250 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
997 if (block > to) block = to; 1251 if (block > to) block = to;
998 } 1252 }
999 1253
1254#if EV_PERIODICS
1000 if (periodiccnt) 1255 if (periodiccnt)
1001 { 1256 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1257 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1003 if (block > to) block = to; 1258 if (block > to) block = to;
1004 } 1259 }
1260#endif
1005 1261
1006 if (block < 0.) block = 0.; 1262 if (expect_false (block < 0.)) block = 0.;
1007 } 1263 }
1008 1264
1009 method_poll (EV_A_ block); 1265 method_poll (EV_A_ block);
1010 1266
1011 /* update rt_now, do magic */ 1267 /* update ev_rt_now, do magic */
1012 time_update (EV_A); 1268 time_update (EV_A);
1013 1269
1014 /* queue pending timers and reschedule them */ 1270 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */ 1271 timers_reify (EV_A); /* relative timers called last */
1272#if EV_PERIODICS
1016 periodics_reify (EV_A); /* absolute timers called first */ 1273 periodics_reify (EV_A); /* absolute timers called first */
1274#endif
1017 1275
1018 /* queue idle watchers unless io or timers are pending */ 1276 /* queue idle watchers unless io or timers are pending */
1019 if (!pendingcnt) 1277 if (idlecnt && !any_pending (EV_A))
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1278 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1021 1279
1022 /* queue check watchers, to be executed first */ 1280 /* queue check watchers, to be executed first */
1023 if (checkcnt) 1281 if (expect_false (checkcnt))
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1282 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1025 1283
1026 call_pending (EV_A); 1284 call_pending (EV_A);
1285
1286 if (expect_false (loop_done))
1287 break;
1027 } 1288 }
1028 while (activecnt && !loop_done);
1029 1289
1030 if (loop_done != 2) 1290 if (loop_done != 2)
1031 loop_done = 0; 1291 loop_done = 0;
1032} 1292}
1033 1293
1093void 1353void
1094ev_io_start (EV_P_ struct ev_io *w) 1354ev_io_start (EV_P_ struct ev_io *w)
1095{ 1355{
1096 int fd = w->fd; 1356 int fd = w->fd;
1097 1357
1098 if (ev_is_active (w)) 1358 if (expect_false (ev_is_active (w)))
1099 return; 1359 return;
1100 1360
1101 assert (("ev_io_start called with negative fd", fd >= 0)); 1361 assert (("ev_io_start called with negative fd", fd >= 0));
1102 1362
1103 ev_start (EV_A_ (W)w, 1); 1363 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1364 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1365 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1106 1366
1107 fd_change (EV_A_ fd); 1367 fd_change (EV_A_ fd);
1108} 1368}
1109 1369
1110void 1370void
1111ev_io_stop (EV_P_ struct ev_io *w) 1371ev_io_stop (EV_P_ struct ev_io *w)
1112{ 1372{
1113 ev_clear_pending (EV_A_ (W)w); 1373 ev_clear_pending (EV_A_ (W)w);
1114 if (!ev_is_active (w)) 1374 if (expect_false (!ev_is_active (w)))
1115 return; 1375 return;
1376
1377 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1116 1378
1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1379 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1118 ev_stop (EV_A_ (W)w); 1380 ev_stop (EV_A_ (W)w);
1119 1381
1120 fd_change (EV_A_ w->fd); 1382 fd_change (EV_A_ w->fd);
1121} 1383}
1122 1384
1123void 1385void
1124ev_timer_start (EV_P_ struct ev_timer *w) 1386ev_timer_start (EV_P_ struct ev_timer *w)
1125{ 1387{
1126 if (ev_is_active (w)) 1388 if (expect_false (ev_is_active (w)))
1127 return; 1389 return;
1128 1390
1129 w->at += mn_now; 1391 ((WT)w)->at += mn_now;
1130 1392
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1393 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132 1394
1133 ev_start (EV_A_ (W)w, ++timercnt); 1395 ev_start (EV_A_ (W)w, ++timercnt);
1134 array_needsize (timers, timermax, timercnt, ); 1396 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1135 timers [timercnt - 1] = w; 1397 timers [timercnt - 1] = w;
1136 upheap ((WT *)timers, timercnt - 1); 1398 upheap ((WT *)timers, timercnt - 1);
1137 1399
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139} 1401}
1140 1402
1141void 1403void
1142ev_timer_stop (EV_P_ struct ev_timer *w) 1404ev_timer_stop (EV_P_ struct ev_timer *w)
1143{ 1405{
1144 ev_clear_pending (EV_A_ (W)w); 1406 ev_clear_pending (EV_A_ (W)w);
1145 if (!ev_is_active (w)) 1407 if (expect_false (!ev_is_active (w)))
1146 return; 1408 return;
1147 1409
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1410 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1149 1411
1150 if (((W)w)->active < timercnt--) 1412 if (expect_true (((W)w)->active < timercnt--))
1151 { 1413 {
1152 timers [((W)w)->active - 1] = timers [timercnt]; 1414 timers [((W)w)->active - 1] = timers [timercnt];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1415 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1154 } 1416 }
1155 1417
1156 w->at = w->repeat; 1418 ((WT)w)->at -= mn_now;
1157 1419
1158 ev_stop (EV_A_ (W)w); 1420 ev_stop (EV_A_ (W)w);
1159} 1421}
1160 1422
1161void 1423void
1163{ 1425{
1164 if (ev_is_active (w)) 1426 if (ev_is_active (w))
1165 { 1427 {
1166 if (w->repeat) 1428 if (w->repeat)
1167 { 1429 {
1168 w->at = mn_now + w->repeat; 1430 ((WT)w)->at = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1431 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1170 } 1432 }
1171 else 1433 else
1172 ev_timer_stop (EV_A_ w); 1434 ev_timer_stop (EV_A_ w);
1173 } 1435 }
1174 else if (w->repeat) 1436 else if (w->repeat)
1437 {
1438 w->at = w->repeat;
1175 ev_timer_start (EV_A_ w); 1439 ev_timer_start (EV_A_ w);
1440 }
1176} 1441}
1177 1442
1443#if EV_PERIODICS
1178void 1444void
1179ev_periodic_start (EV_P_ struct ev_periodic *w) 1445ev_periodic_start (EV_P_ struct ev_periodic *w)
1180{ 1446{
1181 if (ev_is_active (w)) 1447 if (expect_false (ev_is_active (w)))
1182 return; 1448 return;
1183 1449
1450 if (w->reschedule_cb)
1451 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1452 else if (w->interval)
1453 {
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1454 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */ 1455 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1456 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1457 }
1189 1458
1190 ev_start (EV_A_ (W)w, ++periodiccnt); 1459 ev_start (EV_A_ (W)w, ++periodiccnt);
1191 array_needsize (periodics, periodicmax, periodiccnt, ); 1460 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1192 periodics [periodiccnt - 1] = w; 1461 periodics [periodiccnt - 1] = w;
1193 upheap ((WT *)periodics, periodiccnt - 1); 1462 upheap ((WT *)periodics, periodiccnt - 1);
1194 1463
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196} 1465}
1197 1466
1198void 1467void
1199ev_periodic_stop (EV_P_ struct ev_periodic *w) 1468ev_periodic_stop (EV_P_ struct ev_periodic *w)
1200{ 1469{
1201 ev_clear_pending (EV_A_ (W)w); 1470 ev_clear_pending (EV_A_ (W)w);
1202 if (!ev_is_active (w)) 1471 if (expect_false (!ev_is_active (w)))
1203 return; 1472 return;
1204 1473
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1474 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1206 1475
1207 if (((W)w)->active < periodiccnt--) 1476 if (expect_true (((W)w)->active < periodiccnt--))
1208 { 1477 {
1209 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1478 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1479 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1211 } 1480 }
1212 1481
1213 ev_stop (EV_A_ (W)w); 1482 ev_stop (EV_A_ (W)w);
1214} 1483}
1215 1484
1216void 1485void
1486ev_periodic_again (EV_P_ struct ev_periodic *w)
1487{
1488 /* TODO: use adjustheap and recalculation */
1489 ev_periodic_stop (EV_A_ w);
1490 ev_periodic_start (EV_A_ w);
1491}
1492#endif
1493
1494void
1217ev_idle_start (EV_P_ struct ev_idle *w) 1495ev_idle_start (EV_P_ struct ev_idle *w)
1218{ 1496{
1219 if (ev_is_active (w)) 1497 if (expect_false (ev_is_active (w)))
1220 return; 1498 return;
1221 1499
1222 ev_start (EV_A_ (W)w, ++idlecnt); 1500 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, ); 1501 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1224 idles [idlecnt - 1] = w; 1502 idles [idlecnt - 1] = w;
1225} 1503}
1226 1504
1227void 1505void
1228ev_idle_stop (EV_P_ struct ev_idle *w) 1506ev_idle_stop (EV_P_ struct ev_idle *w)
1229{ 1507{
1230 ev_clear_pending (EV_A_ (W)w); 1508 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1509 if (expect_false (!ev_is_active (w)))
1232 return; 1510 return;
1233 1511
1234 idles [((W)w)->active - 1] = idles [--idlecnt]; 1512 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w); 1513 ev_stop (EV_A_ (W)w);
1236} 1514}
1237 1515
1238void 1516void
1239ev_prepare_start (EV_P_ struct ev_prepare *w) 1517ev_prepare_start (EV_P_ struct ev_prepare *w)
1240{ 1518{
1241 if (ev_is_active (w)) 1519 if (expect_false (ev_is_active (w)))
1242 return; 1520 return;
1243 1521
1244 ev_start (EV_A_ (W)w, ++preparecnt); 1522 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, ); 1523 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1246 prepares [preparecnt - 1] = w; 1524 prepares [preparecnt - 1] = w;
1247} 1525}
1248 1526
1249void 1527void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w) 1528ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251{ 1529{
1252 ev_clear_pending (EV_A_ (W)w); 1530 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w)) 1531 if (expect_false (!ev_is_active (w)))
1254 return; 1532 return;
1255 1533
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1534 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w); 1535 ev_stop (EV_A_ (W)w);
1258} 1536}
1259 1537
1260void 1538void
1261ev_check_start (EV_P_ struct ev_check *w) 1539ev_check_start (EV_P_ struct ev_check *w)
1262{ 1540{
1263 if (ev_is_active (w)) 1541 if (expect_false (ev_is_active (w)))
1264 return; 1542 return;
1265 1543
1266 ev_start (EV_A_ (W)w, ++checkcnt); 1544 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, ); 1545 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1268 checks [checkcnt - 1] = w; 1546 checks [checkcnt - 1] = w;
1269} 1547}
1270 1548
1271void 1549void
1272ev_check_stop (EV_P_ struct ev_check *w) 1550ev_check_stop (EV_P_ struct ev_check *w)
1273{ 1551{
1274 ev_clear_pending (EV_A_ (W)w); 1552 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w)) 1553 if (expect_false (!ev_is_active (w)))
1276 return; 1554 return;
1277 1555
1278 checks [((W)w)->active - 1] = checks [--checkcnt]; 1556 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w); 1557 ev_stop (EV_A_ (W)w);
1280} 1558}
1285 1563
1286void 1564void
1287ev_signal_start (EV_P_ struct ev_signal *w) 1565ev_signal_start (EV_P_ struct ev_signal *w)
1288{ 1566{
1289#if EV_MULTIPLICITY 1567#if EV_MULTIPLICITY
1290 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1568 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1291#endif 1569#endif
1292 if (ev_is_active (w)) 1570 if (expect_false (ev_is_active (w)))
1293 return; 1571 return;
1294 1572
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1573 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296 1574
1297 ev_start (EV_A_ (W)w, 1); 1575 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init); 1576 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1577 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1300 1578
1301 if (!w->next) 1579 if (!((WL)w)->next)
1302 { 1580 {
1581#if _WIN32
1582 signal (w->signum, sighandler);
1583#else
1303 struct sigaction sa; 1584 struct sigaction sa;
1304 sa.sa_handler = sighandler; 1585 sa.sa_handler = sighandler;
1305 sigfillset (&sa.sa_mask); 1586 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1587 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0); 1588 sigaction (w->signum, &sa, 0);
1589#endif
1308 } 1590 }
1309} 1591}
1310 1592
1311void 1593void
1312ev_signal_stop (EV_P_ struct ev_signal *w) 1594ev_signal_stop (EV_P_ struct ev_signal *w)
1313{ 1595{
1314 ev_clear_pending (EV_A_ (W)w); 1596 ev_clear_pending (EV_A_ (W)w);
1315 if (!ev_is_active (w)) 1597 if (expect_false (!ev_is_active (w)))
1316 return; 1598 return;
1317 1599
1318 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1600 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1319 ev_stop (EV_A_ (W)w); 1601 ev_stop (EV_A_ (W)w);
1320 1602
1324 1606
1325void 1607void
1326ev_child_start (EV_P_ struct ev_child *w) 1608ev_child_start (EV_P_ struct ev_child *w)
1327{ 1609{
1328#if EV_MULTIPLICITY 1610#if EV_MULTIPLICITY
1329 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1611 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1330#endif 1612#endif
1331 if (ev_is_active (w)) 1613 if (expect_false (ev_is_active (w)))
1332 return; 1614 return;
1333 1615
1334 ev_start (EV_A_ (W)w, 1); 1616 ev_start (EV_A_ (W)w, 1);
1335 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1617 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1336} 1618}
1337 1619
1338void 1620void
1339ev_child_stop (EV_P_ struct ev_child *w) 1621ev_child_stop (EV_P_ struct ev_child *w)
1340{ 1622{
1341 ev_clear_pending (EV_A_ (W)w); 1623 ev_clear_pending (EV_A_ (W)w);
1342 if (ev_is_active (w)) 1624 if (expect_false (!ev_is_active (w)))
1343 return; 1625 return;
1344 1626
1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1627 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1346 ev_stop (EV_A_ (W)w); 1628 ev_stop (EV_A_ (W)w);
1347} 1629}
1362 void (*cb)(int revents, void *arg) = once->cb; 1644 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg; 1645 void *arg = once->arg;
1364 1646
1365 ev_io_stop (EV_A_ &once->io); 1647 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to); 1648 ev_timer_stop (EV_A_ &once->to);
1367 free (once); 1649 ev_free (once);
1368 1650
1369 cb (revents, arg); 1651 cb (revents, arg);
1370} 1652}
1371 1653
1372static void 1654static void
1382} 1664}
1383 1665
1384void 1666void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{ 1668{
1387 struct ev_once *once = malloc (sizeof (struct ev_once)); 1669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1388 1670
1389 if (!once) 1671 if (expect_false (!once))
1672 {
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else 1674 return;
1392 { 1675 }
1676
1393 once->cb = cb; 1677 once->cb = cb;
1394 once->arg = arg; 1678 once->arg = arg;
1395 1679
1396 ev_watcher_init (&once->io, once_cb_io); 1680 ev_init (&once->io, once_cb_io);
1397 if (fd >= 0) 1681 if (fd >= 0)
1398 { 1682 {
1399 ev_io_set (&once->io, fd, events); 1683 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io); 1684 ev_io_start (EV_A_ &once->io);
1401 } 1685 }
1402 1686
1403 ev_watcher_init (&once->to, once_cb_to); 1687 ev_init (&once->to, once_cb_to);
1404 if (timeout >= 0.) 1688 if (timeout >= 0.)
1405 { 1689 {
1406 ev_timer_set (&once->to, timeout, 0.); 1690 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to); 1691 ev_timer_start (EV_A_ &once->to);
1408 }
1409 } 1692 }
1410} 1693}
1411 1694
1695#ifdef __cplusplus
1696}
1697#endif
1698

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines