ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.129 by root, Fri Nov 23 05:00:44 2007 UTC vs.
Revision 1.141 by root, Mon Nov 26 20:33:58 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
107#include <time.h> 111#include <time.h>
108 112
109#include <signal.h> 113#include <signal.h>
110 114
111#ifndef _WIN32 115#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 116# include <sys/time.h>
114# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
115#else 119#else
116# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 121# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
183# include "ev.h" 187# include "ev.h"
184#endif 188#endif
185 189
186#if __GNUC__ >= 3 190#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
188# define inline static inline 198# define inline_speed static inline
199# endif
189#else 200#else
190# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
191# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
192#endif 205#endif
193 206
194#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
196 209
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
199 212
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 214#define EMPTY2(a,b) /* used to suppress some warnings */
202 215
203typedef struct ev_watcher *W; 216typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
206 219
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 221
209#ifdef _WIN32 222#ifdef _WIN32
210# include "ev_win32.c" 223# include "ev_win32.c"
212 225
213/*****************************************************************************/ 226/*****************************************************************************/
214 227
215static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
216 229
230void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 231ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 232{
219 syserr_cb = cb; 233 syserr_cb = cb;
220} 234}
221 235
222static void 236static void noinline
223syserr (const char *msg) 237syserr (const char *msg)
224{ 238{
225 if (!msg) 239 if (!msg)
226 msg = "(libev) system error"; 240 msg = "(libev) system error";
227 241
234 } 248 }
235} 249}
236 250
237static void *(*alloc)(void *ptr, long size); 251static void *(*alloc)(void *ptr, long size);
238 252
253void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 254ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 255{
241 alloc = cb; 256 alloc = cb;
242} 257}
243 258
244static void * 259static void *
316 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 333#endif
319} 334}
320 335
321inline ev_tstamp 336ev_tstamp inline_size
322get_clock (void) 337get_clock (void)
323{ 338{
324#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
326 { 341 {
369#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 386
372/*****************************************************************************/ 387/*****************************************************************************/
373 388
374static void 389void noinline
375anfds_init (ANFD *base, int count)
376{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385}
386
387void
388ev_feed_event (EV_P_ void *w, int revents) 390ev_feed_event (EV_P_ void *w, int revents)
389{ 391{
390 W w_ = (W)w; 392 W w_ = (W)w;
391 393
392 if (expect_false (w_->pending)) 394 if (expect_false (w_->pending))
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 404}
403 405
404static void 406void inline_size
405queue_events (EV_P_ W *events, int eventcnt, int type) 407queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 408{
407 int i; 409 int i;
408 410
409 for (i = 0; i < eventcnt; ++i) 411 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 412 ev_feed_event (EV_A_ events [i], type);
411} 413}
412 414
413inline void 415/*****************************************************************************/
416
417void inline_size
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
414fd_event (EV_P_ int fd, int revents) 431fd_event (EV_P_ int fd, int revents)
415{ 432{
416 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 434 ev_io *w;
418 435
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 437 {
421 int ev = w->events & revents; 438 int ev = w->events & revents;
422 439
423 if (ev) 440 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
429ev_feed_fd_event (EV_P_ int fd, int revents) 446ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 447{
431 fd_event (EV_A_ fd, revents); 448 fd_event (EV_A_ fd, revents);
432} 449}
433 450
434/*****************************************************************************/ 451void inline_size
435
436inline void
437fd_reify (EV_P) 452fd_reify (EV_P)
438{ 453{
439 int i; 454 int i;
440 455
441 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
442 { 457 {
443 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 460 ev_io *w;
446 461
447 int events = 0; 462 int events = 0;
448 463
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 465 events |= w->events;
451 466
452#if EV_SELECT_IS_WINSOCKET 467#if EV_SELECT_IS_WINSOCKET
453 if (events) 468 if (events)
454 { 469 {
458 } 473 }
459#endif 474#endif
460 475
461 anfd->reify = 0; 476 anfd->reify = 0;
462 477
463 method_modify (EV_A_ fd, anfd->events, events); 478 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 479 anfd->events = events;
465 } 480 }
466 481
467 fdchangecnt = 0; 482 fdchangecnt = 0;
468} 483}
469 484
470static void 485void inline_size
471fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
472{ 487{
473 if (expect_false (anfds [fd].reify)) 488 if (expect_false (anfds [fd].reify))
474 return; 489 return;
475 490
478 ++fdchangecnt; 493 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
481} 496}
482 497
483static void 498void inline_speed
484fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
485{ 500{
486 struct ev_io *w; 501 ev_io *w;
487 502
488 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
489 { 504 {
490 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 507 }
493} 508}
494 509
495inline int 510int inline_size
496fd_valid (int fd) 511fd_valid (int fd)
497{ 512{
498#ifdef _WIN32 513#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 514 return _get_osfhandle (fd) != -1;
500#else 515#else
501 return fcntl (fd, F_GETFD) != -1; 516 return fcntl (fd, F_GETFD) != -1;
502#endif 517#endif
503} 518}
504 519
505/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
506static void 521static void noinline
507fd_ebadf (EV_P) 522fd_ebadf (EV_P)
508{ 523{
509 int fd; 524 int fd;
510 525
511 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
515} 530}
516 531
517/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 533static void noinline
519fd_enomem (EV_P) 534fd_enomem (EV_P)
520{ 535{
521 int fd; 536 int fd;
522 537
523 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
526 fd_kill (EV_A_ fd); 541 fd_kill (EV_A_ fd);
527 return; 542 return;
528 } 543 }
529} 544}
530 545
531/* usually called after fork if method needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 547static void noinline
533fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
534{ 549{
535 int fd; 550 int fd;
536 551
537 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
543 } 558 }
544} 559}
545 560
546/*****************************************************************************/ 561/*****************************************************************************/
547 562
548static void 563void inline_speed
549upheap (WT *heap, int k) 564upheap (WT *heap, int k)
550{ 565{
551 WT w = heap [k]; 566 WT w = heap [k];
552 567
553 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
560 heap [k] = w; 575 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
562 577
563} 578}
564 579
565static void 580void inline_speed
566downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
567{ 582{
568 WT w = heap [k]; 583 WT w = heap [k];
569 584
570 while (k < (N >> 1)) 585 while (k < (N >> 1))
584 599
585 heap [k] = w; 600 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
587} 602}
588 603
589inline void 604void inline_size
590adjustheap (WT *heap, int N, int k) 605adjustheap (WT *heap, int N, int k)
591{ 606{
592 upheap (heap, k); 607 upheap (heap, k);
593 downheap (heap, N, k); 608 downheap (heap, N, k);
594} 609}
604static ANSIG *signals; 619static ANSIG *signals;
605static int signalmax; 620static int signalmax;
606 621
607static int sigpipe [2]; 622static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 624static ev_io sigev;
610 625
611static void 626void inline_size
612signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
613{ 628{
614 while (count--) 629 while (count--)
615 { 630 {
616 base->head = 0; 631 base->head = 0;
636 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 652 errno = old_errno;
638 } 653 }
639} 654}
640 655
641void 656void noinline
642ev_feed_signal_event (EV_P_ int signum) 657ev_feed_signal_event (EV_P_ int signum)
643{ 658{
644 WL w; 659 WL w;
645 660
646#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 672 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 674}
660 675
661static void 676static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
663{ 678{
664 int signum; 679 int signum;
665 680
666 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 682 gotsig = 0;
669 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 686 ev_feed_signal_event (EV_A_ signum + 1);
672} 687}
673 688
674static void 689void inline_size
675fd_intern (int fd) 690fd_intern (int fd)
676{ 691{
677#ifdef _WIN32 692#ifdef _WIN32
678 int arg = 1; 693 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 696 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 697 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 698#endif
684} 699}
685 700
686static void 701static void noinline
687siginit (EV_P) 702siginit (EV_P)
688{ 703{
689 fd_intern (sigpipe [0]); 704 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 705 fd_intern (sigpipe [1]);
691 706
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 710}
696 711
697/*****************************************************************************/ 712/*****************************************************************************/
698 713
699static struct ev_child *childs [PID_HASHSIZE]; 714static ev_child *childs [PID_HASHSIZE];
700 715
701#ifndef _WIN32 716#ifndef _WIN32
702 717
703static struct ev_signal childev; 718static ev_signal childev;
704 719
705#ifndef WCONTINUED 720#ifndef WCONTINUED
706# define WCONTINUED 0 721# define WCONTINUED 0
707#endif 722#endif
708 723
709static void 724void inline_speed
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 725child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
711{ 726{
712 struct ev_child *w; 727 ev_child *w;
713 728
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 729 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid) 730 if (w->pid == pid || !w->pid)
716 { 731 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 732 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid; 733 w->rpid = pid;
719 w->rstatus = status; 734 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD); 735 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 } 736 }
722} 737}
723 738
724static void 739static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
726{ 741{
727 int pid, status; 742 int pid, status;
728 743
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 744 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 745 {
731 /* make sure we are called again until all childs have been reaped */ 746 /* make sure we are called again until all childs have been reaped */
747 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 748 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 749
734 child_reap (EV_A_ sw, pid, pid, status); 750 child_reap (EV_A_ sw, pid, pid, status);
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 751 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 } 752 }
737} 753}
738 754
739#endif 755#endif
740 756
767{ 783{
768 return EV_VERSION_MINOR; 784 return EV_VERSION_MINOR;
769} 785}
770 786
771/* return true if we are running with elevated privileges and should ignore env variables */ 787/* return true if we are running with elevated privileges and should ignore env variables */
772static int 788int inline_size
773enable_secure (void) 789enable_secure (void)
774{ 790{
775#ifdef _WIN32 791#ifdef _WIN32
776 return 0; 792 return 0;
777#else 793#else
781} 797}
782 798
783unsigned int 799unsigned int
784ev_supported_backends (void) 800ev_supported_backends (void)
785{ 801{
786}
787
788unsigned int
789ev_recommended_backends (void)
790{
791 unsigned int flags; 802 unsigned int flags = 0;
792 803
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 804 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 805 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 806 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 807 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
798 809
799 return flags; 810 return flags;
800} 811}
801 812
802unsigned int 813unsigned int
803ev_backend (EV_P) 814ev_recommended_backends (void)
804{ 815{
805 unsigned int flags = ev_recommended_backends (); 816 unsigned int flags = ev_supported_backends ();
806 817
807#ifndef __NetBSD__ 818#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 819 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 820 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 821 flags &= ~EVBACKEND_KQUEUE;
815#endif 826#endif
816 827
817 return flags; 828 return flags;
818} 829}
819 830
831unsigned int
832ev_embeddable_backends (void)
833{
834 return EVBACKEND_EPOLL
835 | EVBACKEND_KQUEUE
836 | EVBACKEND_PORT;
837}
838
839unsigned int
840ev_backend (EV_P)
841{
842 return backend;
843}
844
820static void 845static void
821loop_init (EV_P_ unsigned int flags) 846loop_init (EV_P_ unsigned int flags)
822{ 847{
823 if (!method) 848 if (!backend)
824 { 849 {
825#if EV_USE_MONOTONIC 850#if EV_USE_MONOTONIC
826 { 851 {
827 struct timespec ts; 852 struct timespec ts;
828 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 853 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
841 flags = atoi (getenv ("LIBEV_FLAGS")); 866 flags = atoi (getenv ("LIBEV_FLAGS"));
842 867
843 if (!(flags & 0x0000ffffUL)) 868 if (!(flags & 0x0000ffffUL))
844 flags |= ev_recommended_backends (); 869 flags |= ev_recommended_backends ();
845 870
846 method = 0; 871 backend = 0;
847#if EV_USE_PORT 872#if EV_USE_PORT
848 if (!method && (flags & EVBACKEND_PORT )) method = port_init (EV_A_ flags); 873 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
849#endif 874#endif
850#if EV_USE_KQUEUE 875#if EV_USE_KQUEUE
851 if (!method && (flags & EVBACKEND_KQUEUE)) method = kqueue_init (EV_A_ flags); 876 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
852#endif 877#endif
853#if EV_USE_EPOLL 878#if EV_USE_EPOLL
854 if (!method && (flags & EVBACKEND_EPOLL )) method = epoll_init (EV_A_ flags); 879 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
855#endif 880#endif
856#if EV_USE_POLL 881#if EV_USE_POLL
857 if (!method && (flags & EVBACKEND_POLL )) method = poll_init (EV_A_ flags); 882 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
858#endif 883#endif
859#if EV_USE_SELECT 884#if EV_USE_SELECT
860 if (!method && (flags & EVBACKEND_SELECT)) method = select_init (EV_A_ flags); 885 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
861#endif 886#endif
862 887
863 ev_init (&sigev, sigcb); 888 ev_init (&sigev, sigcb);
864 ev_set_priority (&sigev, EV_MAXPRI); 889 ev_set_priority (&sigev, EV_MAXPRI);
865 } 890 }
869loop_destroy (EV_P) 894loop_destroy (EV_P)
870{ 895{
871 int i; 896 int i;
872 897
873#if EV_USE_PORT 898#if EV_USE_PORT
874 if (method == EVBACKEND_PORT ) port_destroy (EV_A); 899 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
875#endif 900#endif
876#if EV_USE_KQUEUE 901#if EV_USE_KQUEUE
877 if (method == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 902 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
878#endif 903#endif
879#if EV_USE_EPOLL 904#if EV_USE_EPOLL
880 if (method == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 905 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
881#endif 906#endif
882#if EV_USE_POLL 907#if EV_USE_POLL
883 if (method == EVBACKEND_POLL ) poll_destroy (EV_A); 908 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
884#endif 909#endif
885#if EV_USE_SELECT 910#if EV_USE_SELECT
886 if (method == EVBACKEND_SELECT) select_destroy (EV_A); 911 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
887#endif 912#endif
888 913
889 for (i = NUMPRI; i--; ) 914 for (i = NUMPRI; i--; )
890 array_free (pending, [i]); 915 array_free (pending, [i]);
891 916
892 /* have to use the microsoft-never-gets-it-right macro */ 917 /* have to use the microsoft-never-gets-it-right macro */
893 array_free (fdchange, EMPTY0); 918 array_free (fdchange, EMPTY0);
894 array_free (timer, EMPTY0); 919 array_free (timer, EMPTY0);
895#if EV_PERIODICS 920#if EV_PERIODIC_ENABLE
896 array_free (periodic, EMPTY0); 921 array_free (periodic, EMPTY0);
897#endif 922#endif
898 array_free (idle, EMPTY0); 923 array_free (idle, EMPTY0);
899 array_free (prepare, EMPTY0); 924 array_free (prepare, EMPTY0);
900 array_free (check, EMPTY0); 925 array_free (check, EMPTY0);
901 926
902 method = 0; 927 backend = 0;
903} 928}
904 929
905static void 930static void
906loop_fork (EV_P) 931loop_fork (EV_P)
907{ 932{
908#if EV_USE_PORT 933#if EV_USE_PORT
909 if (method == EVBACKEND_PORT ) port_fork (EV_A); 934 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
910#endif 935#endif
911#if EV_USE_KQUEUE 936#if EV_USE_KQUEUE
912 if (method == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 937 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
913#endif 938#endif
914#if EV_USE_EPOLL 939#if EV_USE_EPOLL
915 if (method == EVBACKEND_EPOLL ) epoll_fork (EV_A); 940 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
916#endif 941#endif
917 942
918 if (ev_is_active (&sigev)) 943 if (ev_is_active (&sigev))
919 { 944 {
920 /* default loop */ 945 /* default loop */
941 966
942 memset (loop, 0, sizeof (struct ev_loop)); 967 memset (loop, 0, sizeof (struct ev_loop));
943 968
944 loop_init (EV_A_ flags); 969 loop_init (EV_A_ flags);
945 970
946 if (ev_method (EV_A)) 971 if (ev_backend (EV_A))
947 return loop; 972 return loop;
948 973
949 return 0; 974 return 0;
950} 975}
951 976
984 ev_default_loop_ptr = 1; 1009 ev_default_loop_ptr = 1;
985#endif 1010#endif
986 1011
987 loop_init (EV_A_ flags); 1012 loop_init (EV_A_ flags);
988 1013
989 if (ev_method (EV_A)) 1014 if (ev_backend (EV_A))
990 { 1015 {
991 siginit (EV_A); 1016 siginit (EV_A);
992 1017
993#ifndef _WIN32 1018#ifndef _WIN32
994 ev_signal_init (&childev, childcb, SIGCHLD); 1019 ev_signal_init (&childev, childcb, SIGCHLD);
1030{ 1055{
1031#if EV_MULTIPLICITY 1056#if EV_MULTIPLICITY
1032 struct ev_loop *loop = ev_default_loop_ptr; 1057 struct ev_loop *loop = ev_default_loop_ptr;
1033#endif 1058#endif
1034 1059
1035 if (method) 1060 if (backend)
1036 postfork = 1; 1061 postfork = 1;
1037} 1062}
1038 1063
1039/*****************************************************************************/ 1064/*****************************************************************************/
1040 1065
1041static int 1066int inline_size
1042any_pending (EV_P) 1067any_pending (EV_P)
1043{ 1068{
1044 int pri; 1069 int pri;
1045 1070
1046 for (pri = NUMPRI; pri--; ) 1071 for (pri = NUMPRI; pri--; )
1048 return 1; 1073 return 1;
1049 1074
1050 return 0; 1075 return 0;
1051} 1076}
1052 1077
1053inline void 1078void inline_speed
1054call_pending (EV_P) 1079call_pending (EV_P)
1055{ 1080{
1056 int pri; 1081 int pri;
1057 1082
1058 for (pri = NUMPRI; pri--; ) 1083 for (pri = NUMPRI; pri--; )
1060 { 1085 {
1061 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1086 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1062 1087
1063 if (expect_true (p->w)) 1088 if (expect_true (p->w))
1064 { 1089 {
1090 assert (("non-pending watcher on pending list", p->w->pending));
1091
1065 p->w->pending = 0; 1092 p->w->pending = 0;
1066 EV_CB_INVOKE (p->w, p->events); 1093 EV_CB_INVOKE (p->w, p->events);
1067 } 1094 }
1068 } 1095 }
1069} 1096}
1070 1097
1071inline void 1098void inline_size
1072timers_reify (EV_P) 1099timers_reify (EV_P)
1073{ 1100{
1074 while (timercnt && ((WT)timers [0])->at <= mn_now) 1101 while (timercnt && ((WT)timers [0])->at <= mn_now)
1075 { 1102 {
1076 struct ev_timer *w = timers [0]; 1103 ev_timer *w = timers [0];
1077 1104
1078 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1105 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1079 1106
1080 /* first reschedule or stop timer */ 1107 /* first reschedule or stop timer */
1081 if (w->repeat) 1108 if (w->repeat)
1093 1120
1094 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1121 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1095 } 1122 }
1096} 1123}
1097 1124
1098#if EV_PERIODICS 1125#if EV_PERIODIC_ENABLE
1099inline void 1126void inline_size
1100periodics_reify (EV_P) 1127periodics_reify (EV_P)
1101{ 1128{
1102 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1129 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1103 { 1130 {
1104 struct ev_periodic *w = periodics [0]; 1131 ev_periodic *w = periodics [0];
1105 1132
1106 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1133 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1107 1134
1108 /* first reschedule or stop timer */ 1135 /* first reschedule or stop timer */
1109 if (w->reschedule_cb) 1136 if (w->reschedule_cb)
1123 1150
1124 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1151 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1125 } 1152 }
1126} 1153}
1127 1154
1128static void 1155static void noinline
1129periodics_reschedule (EV_P) 1156periodics_reschedule (EV_P)
1130{ 1157{
1131 int i; 1158 int i;
1132 1159
1133 /* adjust periodics after time jump */ 1160 /* adjust periodics after time jump */
1134 for (i = 0; i < periodiccnt; ++i) 1161 for (i = 0; i < periodiccnt; ++i)
1135 { 1162 {
1136 struct ev_periodic *w = periodics [i]; 1163 ev_periodic *w = periodics [i];
1137 1164
1138 if (w->reschedule_cb) 1165 if (w->reschedule_cb)
1139 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1166 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1140 else if (w->interval) 1167 else if (w->interval)
1141 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1168 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1145 for (i = periodiccnt >> 1; i--; ) 1172 for (i = periodiccnt >> 1; i--; )
1146 downheap ((WT *)periodics, periodiccnt, i); 1173 downheap ((WT *)periodics, periodiccnt, i);
1147} 1174}
1148#endif 1175#endif
1149 1176
1150inline int 1177int inline_size
1151time_update_monotonic (EV_P) 1178time_update_monotonic (EV_P)
1152{ 1179{
1153 mn_now = get_clock (); 1180 mn_now = get_clock ();
1154 1181
1155 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1163 ev_rt_now = ev_time (); 1190 ev_rt_now = ev_time ();
1164 return 1; 1191 return 1;
1165 } 1192 }
1166} 1193}
1167 1194
1168inline void 1195void inline_size
1169time_update (EV_P) 1196time_update (EV_P)
1170{ 1197{
1171 int i; 1198 int i;
1172 1199
1173#if EV_USE_MONOTONIC 1200#if EV_USE_MONOTONIC
1175 { 1202 {
1176 if (time_update_monotonic (EV_A)) 1203 if (time_update_monotonic (EV_A))
1177 { 1204 {
1178 ev_tstamp odiff = rtmn_diff; 1205 ev_tstamp odiff = rtmn_diff;
1179 1206
1180 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1207 /* loop a few times, before making important decisions.
1208 * on the choice of "4": one iteration isn't enough,
1209 * in case we get preempted during the calls to
1210 * ev_time and get_clock. a second call is almost guarenteed
1211 * to succeed in that case, though. and looping a few more times
1212 * doesn't hurt either as we only do this on time-jumps or
1213 * in the unlikely event of getting preempted here.
1214 */
1215 for (i = 4; --i; )
1181 { 1216 {
1182 rtmn_diff = ev_rt_now - mn_now; 1217 rtmn_diff = ev_rt_now - mn_now;
1183 1218
1184 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1219 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1185 return; /* all is well */ 1220 return; /* all is well */
1187 ev_rt_now = ev_time (); 1222 ev_rt_now = ev_time ();
1188 mn_now = get_clock (); 1223 mn_now = get_clock ();
1189 now_floor = mn_now; 1224 now_floor = mn_now;
1190 } 1225 }
1191 1226
1192# if EV_PERIODICS 1227# if EV_PERIODIC_ENABLE
1193 periodics_reschedule (EV_A); 1228 periodics_reschedule (EV_A);
1194# endif 1229# endif
1195 /* no timer adjustment, as the monotonic clock doesn't jump */ 1230 /* no timer adjustment, as the monotonic clock doesn't jump */
1196 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1231 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1197 } 1232 }
1201 { 1236 {
1202 ev_rt_now = ev_time (); 1237 ev_rt_now = ev_time ();
1203 1238
1204 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1239 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1205 { 1240 {
1206#if EV_PERIODICS 1241#if EV_PERIODIC_ENABLE
1207 periodics_reschedule (EV_A); 1242 periodics_reschedule (EV_A);
1208#endif 1243#endif
1209 1244
1210 /* adjust timers. this is easy, as the offset is the same for all */ 1245 /* adjust timers. this is easy, as the offset is the same for all */
1211 for (i = 0; i < timercnt; ++i) 1246 for (i = 0; i < timercnt; ++i)
1231static int loop_done; 1266static int loop_done;
1232 1267
1233void 1268void
1234ev_loop (EV_P_ int flags) 1269ev_loop (EV_P_ int flags)
1235{ 1270{
1236 double block;
1237 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1271 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1272 ? EVUNLOOP_ONE
1273 : EVUNLOOP_CANCEL;
1238 1274
1239 while (activecnt) 1275 while (activecnt)
1240 { 1276 {
1241 /* queue check watchers (and execute them) */ 1277 /* queue check watchers (and execute them) */
1242 if (expect_false (preparecnt)) 1278 if (expect_false (preparecnt))
1251 1287
1252 /* update fd-related kernel structures */ 1288 /* update fd-related kernel structures */
1253 fd_reify (EV_A); 1289 fd_reify (EV_A);
1254 1290
1255 /* calculate blocking time */ 1291 /* calculate blocking time */
1292 {
1293 double block;
1256 1294
1257 /* we only need this for !monotonic clock or timers, but as we basically 1295 if (flags & EVLOOP_NONBLOCK || idlecnt)
1258 always have timers, we just calculate it always */ 1296 block = 0.; /* do not block at all */
1297 else
1298 {
1299 /* update time to cancel out callback processing overhead */
1259#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
1260 if (expect_true (have_monotonic)) 1301 if (expect_true (have_monotonic))
1261 time_update_monotonic (EV_A); 1302 time_update_monotonic (EV_A);
1262 else 1303 else
1263#endif 1304#endif
1264 { 1305 {
1265 ev_rt_now = ev_time (); 1306 ev_rt_now = ev_time ();
1266 mn_now = ev_rt_now; 1307 mn_now = ev_rt_now;
1267 } 1308 }
1268 1309
1269 if (flags & EVLOOP_NONBLOCK || idlecnt)
1270 block = 0.;
1271 else
1272 {
1273 block = MAX_BLOCKTIME; 1310 block = MAX_BLOCKTIME;
1274 1311
1275 if (timercnt) 1312 if (timercnt)
1276 { 1313 {
1277 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1314 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1278 if (block > to) block = to; 1315 if (block > to) block = to;
1279 } 1316 }
1280 1317
1281#if EV_PERIODICS 1318#if EV_PERIODIC_ENABLE
1282 if (periodiccnt) 1319 if (periodiccnt)
1283 { 1320 {
1284 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1321 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1285 if (block > to) block = to; 1322 if (block > to) block = to;
1286 } 1323 }
1287#endif 1324#endif
1288 1325
1289 if (expect_false (block < 0.)) block = 0.; 1326 if (expect_false (block < 0.)) block = 0.;
1290 } 1327 }
1291 1328
1292 method_poll (EV_A_ block); 1329 backend_poll (EV_A_ block);
1330 }
1293 1331
1294 /* update ev_rt_now, do magic */ 1332 /* update ev_rt_now, do magic */
1295 time_update (EV_A); 1333 time_update (EV_A);
1296 1334
1297 /* queue pending timers and reschedule them */ 1335 /* queue pending timers and reschedule them */
1298 timers_reify (EV_A); /* relative timers called last */ 1336 timers_reify (EV_A); /* relative timers called last */
1299#if EV_PERIODICS 1337#if EV_PERIODIC_ENABLE
1300 periodics_reify (EV_A); /* absolute timers called first */ 1338 periodics_reify (EV_A); /* absolute timers called first */
1301#endif 1339#endif
1302 1340
1303 /* queue idle watchers unless io or timers are pending */ 1341 /* queue idle watchers unless other events are pending */
1304 if (idlecnt && !any_pending (EV_A)) 1342 if (idlecnt && !any_pending (EV_A))
1305 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1343 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1306 1344
1307 /* queue check watchers, to be executed first */ 1345 /* queue check watchers, to be executed first */
1308 if (expect_false (checkcnt)) 1346 if (expect_false (checkcnt))
1312 1350
1313 if (expect_false (loop_done)) 1351 if (expect_false (loop_done))
1314 break; 1352 break;
1315 } 1353 }
1316 1354
1317 if (loop_done != 2) 1355 if (loop_done == EVUNLOOP_ONE)
1318 loop_done = 0; 1356 loop_done = EVUNLOOP_CANCEL;
1319} 1357}
1320 1358
1321void 1359void
1322ev_unloop (EV_P_ int how) 1360ev_unloop (EV_P_ int how)
1323{ 1361{
1324 loop_done = how; 1362 loop_done = how;
1325} 1363}
1326 1364
1327/*****************************************************************************/ 1365/*****************************************************************************/
1328 1366
1329inline void 1367void inline_size
1330wlist_add (WL *head, WL elem) 1368wlist_add (WL *head, WL elem)
1331{ 1369{
1332 elem->next = *head; 1370 elem->next = *head;
1333 *head = elem; 1371 *head = elem;
1334} 1372}
1335 1373
1336inline void 1374void inline_size
1337wlist_del (WL *head, WL elem) 1375wlist_del (WL *head, WL elem)
1338{ 1376{
1339 while (*head) 1377 while (*head)
1340 { 1378 {
1341 if (*head == elem) 1379 if (*head == elem)
1346 1384
1347 head = &(*head)->next; 1385 head = &(*head)->next;
1348 } 1386 }
1349} 1387}
1350 1388
1351inline void 1389void inline_speed
1352ev_clear_pending (EV_P_ W w) 1390ev_clear_pending (EV_P_ W w)
1353{ 1391{
1354 if (w->pending) 1392 if (w->pending)
1355 { 1393 {
1356 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1394 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1357 w->pending = 0; 1395 w->pending = 0;
1358 } 1396 }
1359} 1397}
1360 1398
1361inline void 1399void inline_speed
1362ev_start (EV_P_ W w, int active) 1400ev_start (EV_P_ W w, int active)
1363{ 1401{
1364 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1402 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1365 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1403 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1366 1404
1367 w->active = active; 1405 w->active = active;
1368 ev_ref (EV_A); 1406 ev_ref (EV_A);
1369} 1407}
1370 1408
1371inline void 1409void inline_size
1372ev_stop (EV_P_ W w) 1410ev_stop (EV_P_ W w)
1373{ 1411{
1374 ev_unref (EV_A); 1412 ev_unref (EV_A);
1375 w->active = 0; 1413 w->active = 0;
1376} 1414}
1377 1415
1378/*****************************************************************************/ 1416/*****************************************************************************/
1379 1417
1380void 1418void
1381ev_io_start (EV_P_ struct ev_io *w) 1419ev_io_start (EV_P_ ev_io *w)
1382{ 1420{
1383 int fd = w->fd; 1421 int fd = w->fd;
1384 1422
1385 if (expect_false (ev_is_active (w))) 1423 if (expect_false (ev_is_active (w)))
1386 return; 1424 return;
1393 1431
1394 fd_change (EV_A_ fd); 1432 fd_change (EV_A_ fd);
1395} 1433}
1396 1434
1397void 1435void
1398ev_io_stop (EV_P_ struct ev_io *w) 1436ev_io_stop (EV_P_ ev_io *w)
1399{ 1437{
1400 ev_clear_pending (EV_A_ (W)w); 1438 ev_clear_pending (EV_A_ (W)w);
1401 if (expect_false (!ev_is_active (w))) 1439 if (expect_false (!ev_is_active (w)))
1402 return; 1440 return;
1403 1441
1408 1446
1409 fd_change (EV_A_ w->fd); 1447 fd_change (EV_A_ w->fd);
1410} 1448}
1411 1449
1412void 1450void
1413ev_timer_start (EV_P_ struct ev_timer *w) 1451ev_timer_start (EV_P_ ev_timer *w)
1414{ 1452{
1415 if (expect_false (ev_is_active (w))) 1453 if (expect_false (ev_is_active (w)))
1416 return; 1454 return;
1417 1455
1418 ((WT)w)->at += mn_now; 1456 ((WT)w)->at += mn_now;
1419 1457
1420 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1458 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1421 1459
1422 ev_start (EV_A_ (W)w, ++timercnt); 1460 ev_start (EV_A_ (W)w, ++timercnt);
1423 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1461 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1424 timers [timercnt - 1] = w; 1462 timers [timercnt - 1] = w;
1425 upheap ((WT *)timers, timercnt - 1); 1463 upheap ((WT *)timers, timercnt - 1);
1426 1464
1427 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1465 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1428} 1466}
1429 1467
1430void 1468void
1431ev_timer_stop (EV_P_ struct ev_timer *w) 1469ev_timer_stop (EV_P_ ev_timer *w)
1432{ 1470{
1433 ev_clear_pending (EV_A_ (W)w); 1471 ev_clear_pending (EV_A_ (W)w);
1434 if (expect_false (!ev_is_active (w))) 1472 if (expect_false (!ev_is_active (w)))
1435 return; 1473 return;
1436 1474
1446 1484
1447 ev_stop (EV_A_ (W)w); 1485 ev_stop (EV_A_ (W)w);
1448} 1486}
1449 1487
1450void 1488void
1451ev_timer_again (EV_P_ struct ev_timer *w) 1489ev_timer_again (EV_P_ ev_timer *w)
1452{ 1490{
1453 if (ev_is_active (w)) 1491 if (ev_is_active (w))
1454 { 1492 {
1455 if (w->repeat) 1493 if (w->repeat)
1456 { 1494 {
1465 w->at = w->repeat; 1503 w->at = w->repeat;
1466 ev_timer_start (EV_A_ w); 1504 ev_timer_start (EV_A_ w);
1467 } 1505 }
1468} 1506}
1469 1507
1470#if EV_PERIODICS 1508#if EV_PERIODIC_ENABLE
1471void 1509void
1472ev_periodic_start (EV_P_ struct ev_periodic *w) 1510ev_periodic_start (EV_P_ ev_periodic *w)
1473{ 1511{
1474 if (expect_false (ev_is_active (w))) 1512 if (expect_false (ev_is_active (w)))
1475 return; 1513 return;
1476 1514
1477 if (w->reschedule_cb) 1515 if (w->reschedule_cb)
1482 /* this formula differs from the one in periodic_reify because we do not always round up */ 1520 /* this formula differs from the one in periodic_reify because we do not always round up */
1483 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1521 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1484 } 1522 }
1485 1523
1486 ev_start (EV_A_ (W)w, ++periodiccnt); 1524 ev_start (EV_A_ (W)w, ++periodiccnt);
1487 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1525 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1488 periodics [periodiccnt - 1] = w; 1526 periodics [periodiccnt - 1] = w;
1489 upheap ((WT *)periodics, periodiccnt - 1); 1527 upheap ((WT *)periodics, periodiccnt - 1);
1490 1528
1491 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1529 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1492} 1530}
1493 1531
1494void 1532void
1495ev_periodic_stop (EV_P_ struct ev_periodic *w) 1533ev_periodic_stop (EV_P_ ev_periodic *w)
1496{ 1534{
1497 ev_clear_pending (EV_A_ (W)w); 1535 ev_clear_pending (EV_A_ (W)w);
1498 if (expect_false (!ev_is_active (w))) 1536 if (expect_false (!ev_is_active (w)))
1499 return; 1537 return;
1500 1538
1508 1546
1509 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1510} 1548}
1511 1549
1512void 1550void
1513ev_periodic_again (EV_P_ struct ev_periodic *w) 1551ev_periodic_again (EV_P_ ev_periodic *w)
1514{ 1552{
1515 /* TODO: use adjustheap and recalculation */ 1553 /* TODO: use adjustheap and recalculation */
1516 ev_periodic_stop (EV_A_ w); 1554 ev_periodic_stop (EV_A_ w);
1517 ev_periodic_start (EV_A_ w); 1555 ev_periodic_start (EV_A_ w);
1518} 1556}
1519#endif 1557#endif
1520 1558
1521void 1559void
1522ev_idle_start (EV_P_ struct ev_idle *w) 1560ev_idle_start (EV_P_ ev_idle *w)
1523{ 1561{
1524 if (expect_false (ev_is_active (w))) 1562 if (expect_false (ev_is_active (w)))
1525 return; 1563 return;
1526 1564
1527 ev_start (EV_A_ (W)w, ++idlecnt); 1565 ev_start (EV_A_ (W)w, ++idlecnt);
1528 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 1566 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1529 idles [idlecnt - 1] = w; 1567 idles [idlecnt - 1] = w;
1530} 1568}
1531 1569
1532void 1570void
1533ev_idle_stop (EV_P_ struct ev_idle *w) 1571ev_idle_stop (EV_P_ ev_idle *w)
1534{ 1572{
1535 ev_clear_pending (EV_A_ (W)w); 1573 ev_clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w))) 1574 if (expect_false (!ev_is_active (w)))
1537 return; 1575 return;
1538 1576
1577 {
1578 int active = ((W)w)->active;
1539 idles [((W)w)->active - 1] = idles [--idlecnt]; 1579 idles [active - 1] = idles [--idlecnt];
1580 ((W)idles [active - 1])->active = active;
1581 }
1582
1540 ev_stop (EV_A_ (W)w); 1583 ev_stop (EV_A_ (W)w);
1541} 1584}
1542 1585
1543void 1586void
1544ev_prepare_start (EV_P_ struct ev_prepare *w) 1587ev_prepare_start (EV_P_ ev_prepare *w)
1545{ 1588{
1546 if (expect_false (ev_is_active (w))) 1589 if (expect_false (ev_is_active (w)))
1547 return; 1590 return;
1548 1591
1549 ev_start (EV_A_ (W)w, ++preparecnt); 1592 ev_start (EV_A_ (W)w, ++preparecnt);
1550 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 1593 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1551 prepares [preparecnt - 1] = w; 1594 prepares [preparecnt - 1] = w;
1552} 1595}
1553 1596
1554void 1597void
1555ev_prepare_stop (EV_P_ struct ev_prepare *w) 1598ev_prepare_stop (EV_P_ ev_prepare *w)
1556{ 1599{
1557 ev_clear_pending (EV_A_ (W)w); 1600 ev_clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 1601 if (expect_false (!ev_is_active (w)))
1559 return; 1602 return;
1560 1603
1604 {
1605 int active = ((W)w)->active;
1561 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1606 prepares [active - 1] = prepares [--preparecnt];
1607 ((W)prepares [active - 1])->active = active;
1608 }
1609
1562 ev_stop (EV_A_ (W)w); 1610 ev_stop (EV_A_ (W)w);
1563} 1611}
1564 1612
1565void 1613void
1566ev_check_start (EV_P_ struct ev_check *w) 1614ev_check_start (EV_P_ ev_check *w)
1567{ 1615{
1568 if (expect_false (ev_is_active (w))) 1616 if (expect_false (ev_is_active (w)))
1569 return; 1617 return;
1570 1618
1571 ev_start (EV_A_ (W)w, ++checkcnt); 1619 ev_start (EV_A_ (W)w, ++checkcnt);
1572 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 1620 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1573 checks [checkcnt - 1] = w; 1621 checks [checkcnt - 1] = w;
1574} 1622}
1575 1623
1576void 1624void
1577ev_check_stop (EV_P_ struct ev_check *w) 1625ev_check_stop (EV_P_ ev_check *w)
1578{ 1626{
1579 ev_clear_pending (EV_A_ (W)w); 1627 ev_clear_pending (EV_A_ (W)w);
1580 if (expect_false (!ev_is_active (w))) 1628 if (expect_false (!ev_is_active (w)))
1581 return; 1629 return;
1582 1630
1631 {
1632 int active = ((W)w)->active;
1583 checks [((W)w)->active - 1] = checks [--checkcnt]; 1633 checks [active - 1] = checks [--checkcnt];
1634 ((W)checks [active - 1])->active = active;
1635 }
1636
1584 ev_stop (EV_A_ (W)w); 1637 ev_stop (EV_A_ (W)w);
1585} 1638}
1586 1639
1587#ifndef SA_RESTART 1640#ifndef SA_RESTART
1588# define SA_RESTART 0 1641# define SA_RESTART 0
1589#endif 1642#endif
1590 1643
1591void 1644void
1592ev_signal_start (EV_P_ struct ev_signal *w) 1645ev_signal_start (EV_P_ ev_signal *w)
1593{ 1646{
1594#if EV_MULTIPLICITY 1647#if EV_MULTIPLICITY
1595 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1648 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1596#endif 1649#endif
1597 if (expect_false (ev_is_active (w))) 1650 if (expect_false (ev_is_active (w)))
1616#endif 1669#endif
1617 } 1670 }
1618} 1671}
1619 1672
1620void 1673void
1621ev_signal_stop (EV_P_ struct ev_signal *w) 1674ev_signal_stop (EV_P_ ev_signal *w)
1622{ 1675{
1623 ev_clear_pending (EV_A_ (W)w); 1676 ev_clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 1677 if (expect_false (!ev_is_active (w)))
1625 return; 1678 return;
1626 1679
1630 if (!signals [w->signum - 1].head) 1683 if (!signals [w->signum - 1].head)
1631 signal (w->signum, SIG_DFL); 1684 signal (w->signum, SIG_DFL);
1632} 1685}
1633 1686
1634void 1687void
1635ev_child_start (EV_P_ struct ev_child *w) 1688ev_child_start (EV_P_ ev_child *w)
1636{ 1689{
1637#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1638 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1691 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1639#endif 1692#endif
1640 if (expect_false (ev_is_active (w))) 1693 if (expect_false (ev_is_active (w)))
1643 ev_start (EV_A_ (W)w, 1); 1696 ev_start (EV_A_ (W)w, 1);
1644 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1697 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1645} 1698}
1646 1699
1647void 1700void
1648ev_child_stop (EV_P_ struct ev_child *w) 1701ev_child_stop (EV_P_ ev_child *w)
1649{ 1702{
1650 ev_clear_pending (EV_A_ (W)w); 1703 ev_clear_pending (EV_A_ (W)w);
1651 if (expect_false (!ev_is_active (w))) 1704 if (expect_false (!ev_is_active (w)))
1652 return; 1705 return;
1653 1706
1654 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1707 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1655 ev_stop (EV_A_ (W)w); 1708 ev_stop (EV_A_ (W)w);
1656} 1709}
1657 1710
1711#if EV_EMBED_ENABLE
1712void noinline
1713ev_embed_sweep (EV_P_ ev_embed *w)
1714{
1715 ev_loop (w->loop, EVLOOP_NONBLOCK);
1716}
1717
1718static void
1719embed_cb (EV_P_ ev_io *io, int revents)
1720{
1721 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1722
1723 if (ev_cb (w))
1724 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1725 else
1726 ev_embed_sweep (loop, w);
1727}
1728
1729void
1730ev_embed_start (EV_P_ ev_embed *w)
1731{
1732 if (expect_false (ev_is_active (w)))
1733 return;
1734
1735 {
1736 struct ev_loop *loop = w->loop;
1737 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1738 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1739 }
1740
1741 ev_set_priority (&w->io, ev_priority (w));
1742 ev_io_start (EV_A_ &w->io);
1743
1744 ev_start (EV_A_ (W)w, 1);
1745}
1746
1747void
1748ev_embed_stop (EV_P_ ev_embed *w)
1749{
1750 ev_clear_pending (EV_A_ (W)w);
1751 if (expect_false (!ev_is_active (w)))
1752 return;
1753
1754 ev_io_stop (EV_A_ &w->io);
1755
1756 ev_stop (EV_A_ (W)w);
1757}
1758#endif
1759
1760#if EV_STAT_ENABLE
1761
1762# ifdef _WIN32
1763# define lstat(a,b) stat(a,b)
1764# endif
1765
1766void
1767ev_stat_stat (EV_P_ ev_stat *w)
1768{
1769 if (lstat (w->path, &w->attr) < 0)
1770 w->attr.st_nlink = 0;
1771 else if (!w->attr.st_nlink)
1772 w->attr.st_nlink = 1;
1773}
1774
1775static void
1776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1777{
1778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1779
1780 /* we copy this here each the time so that */
1781 /* prev has the old value when the callback gets invoked */
1782 w->prev = w->attr;
1783 ev_stat_stat (EV_A_ w);
1784
1785 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1786 ev_feed_event (EV_A_ w, EV_STAT);
1787}
1788
1789void
1790ev_stat_start (EV_P_ ev_stat *w)
1791{
1792 if (expect_false (ev_is_active (w)))
1793 return;
1794
1795 /* since we use memcmp, we need to clear any padding data etc. */
1796 memset (&w->prev, 0, sizeof (ev_statdata));
1797 memset (&w->attr, 0, sizeof (ev_statdata));
1798
1799 ev_stat_stat (EV_A_ w);
1800
1801 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1802 ev_set_priority (&w->timer, ev_priority (w));
1803 ev_timer_start (EV_A_ &w->timer);
1804
1805 ev_start (EV_A_ (W)w, 1);
1806}
1807
1808void
1809ev_stat_stop (EV_P_ ev_stat *w)
1810{
1811 ev_clear_pending (EV_A_ (W)w);
1812 if (expect_false (!ev_is_active (w)))
1813 return;
1814
1815 ev_timer_stop (EV_A_ &w->timer);
1816
1817 ev_stop (EV_A_ (W)w);
1818}
1819#endif
1820
1658/*****************************************************************************/ 1821/*****************************************************************************/
1659 1822
1660struct ev_once 1823struct ev_once
1661{ 1824{
1662 struct ev_io io; 1825 ev_io io;
1663 struct ev_timer to; 1826 ev_timer to;
1664 void (*cb)(int revents, void *arg); 1827 void (*cb)(int revents, void *arg);
1665 void *arg; 1828 void *arg;
1666}; 1829};
1667 1830
1668static void 1831static void
1677 1840
1678 cb (revents, arg); 1841 cb (revents, arg);
1679} 1842}
1680 1843
1681static void 1844static void
1682once_cb_io (EV_P_ struct ev_io *w, int revents) 1845once_cb_io (EV_P_ ev_io *w, int revents)
1683{ 1846{
1684 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1847 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1685} 1848}
1686 1849
1687static void 1850static void
1688once_cb_to (EV_P_ struct ev_timer *w, int revents) 1851once_cb_to (EV_P_ ev_timer *w, int revents)
1689{ 1852{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1853 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1691} 1854}
1692 1855
1693void 1856void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines