ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.129 by root, Fri Nov 23 05:00:44 2007 UTC vs.
Revision 1.163 by root, Wed Dec 5 13:54:36 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158 196
159#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168 206
169#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 208# include <winsock.h>
171#endif 209#endif
172 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
173/**/ 219/**/
174 220
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185 224
186#if __GNUC__ >= 3 225#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 226# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
188# define inline static inline 233# define inline_speed static inline
234# endif
189#else 235#else
190# define expect(expr,value) (expr) 236# define expect(expr,value) (expr)
237# define inline_speed static
191# define inline static 238# define inline_size static
239# define noinline
192#endif 240#endif
193 241
194#define expect_false(expr) expect ((expr) != 0, 0) 242#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 243#define expect_true(expr) expect ((expr) != 0, 1)
196 244
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 246#define ABSPRI(w) ((w)->priority - EV_MINPRI)
199 247
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 249#define EMPTY2(a,b) /* used to suppress some warnings */
202 250
203typedef struct ev_watcher *W; 251typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 252typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 253typedef ev_watcher_time *WT;
206 254
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 256
209#ifdef _WIN32 257#ifdef _WIN32
210# include "ev_win32.c" 258# include "ev_win32.c"
212 260
213/*****************************************************************************/ 261/*****************************************************************************/
214 262
215static void (*syserr_cb)(const char *msg); 263static void (*syserr_cb)(const char *msg);
216 264
265void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 266ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 267{
219 syserr_cb = cb; 268 syserr_cb = cb;
220} 269}
221 270
222static void 271static void noinline
223syserr (const char *msg) 272syserr (const char *msg)
224{ 273{
225 if (!msg) 274 if (!msg)
226 msg = "(libev) system error"; 275 msg = "(libev) system error";
227 276
234 } 283 }
235} 284}
236 285
237static void *(*alloc)(void *ptr, long size); 286static void *(*alloc)(void *ptr, long size);
238 287
288void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 289ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 290{
241 alloc = cb; 291 alloc = cb;
242} 292}
243 293
244static void * 294inline_speed void *
245ev_realloc (void *ptr, long size) 295ev_realloc (void *ptr, long size)
246{ 296{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 298
249 if (!ptr && size) 299 if (!ptr && size)
273typedef struct 323typedef struct
274{ 324{
275 W w; 325 W w;
276 int events; 326 int events;
277} ANPENDING; 327} ANPENDING;
328
329#if EV_USE_INOTIFY
330typedef struct
331{
332 WL head;
333} ANFS;
334#endif
278 335
279#if EV_MULTIPLICITY 336#if EV_MULTIPLICITY
280 337
281 struct ev_loop 338 struct ev_loop
282 { 339 {
316 gettimeofday (&tv, 0); 373 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 374 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 375#endif
319} 376}
320 377
321inline ev_tstamp 378ev_tstamp inline_size
322get_clock (void) 379get_clock (void)
323{ 380{
324#if EV_USE_MONOTONIC 381#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 382 if (expect_true (have_monotonic))
326 { 383 {
339{ 396{
340 return ev_rt_now; 397 return ev_rt_now;
341} 398}
342#endif 399#endif
343 400
344#define array_roundsize(type,n) (((n) | 4) & ~3) 401int inline_size
402array_nextsize (int elem, int cur, int cnt)
403{
404 int ncur = cur + 1;
405
406 do
407 ncur <<= 1;
408 while (cnt > ncur);
409
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096)
412 {
413 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
415 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem;
417 }
418
419 return ncur;
420}
421
422inline_speed void *
423array_realloc (int elem, void *base, int *cur, int cnt)
424{
425 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur);
427}
345 428
346#define array_needsize(type,base,cur,cnt,init) \ 429#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 430 if (expect_false ((cnt) > (cur))) \
348 { \ 431 { \
349 int newcnt = cur; \ 432 int ocur_ = (cur); \
350 do \ 433 (base) = (type *)array_realloc \
351 { \ 434 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 435 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 436 }
360 437
438#if 0
361#define array_slim(type,stem) \ 439#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 440 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 441 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 442 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 443 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 445 }
446#endif
368 447
369#define array_free(stem, idx) \ 448#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 450
372/*****************************************************************************/ 451/*****************************************************************************/
373 452
374static void 453void noinline
375anfds_init (ANFD *base, int count)
376{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385}
386
387void
388ev_feed_event (EV_P_ void *w, int revents) 454ev_feed_event (EV_P_ void *w, int revents)
389{ 455{
390 W w_ = (W)w; 456 W w_ = (W)w;
391 457
392 if (expect_false (w_->pending)) 458 if (expect_false (w_->pending))
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 468}
403 469
404static void 470void inline_size
405queue_events (EV_P_ W *events, int eventcnt, int type) 471queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 472{
407 int i; 473 int i;
408 474
409 for (i = 0; i < eventcnt; ++i) 475 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 476 ev_feed_event (EV_A_ events [i], type);
411} 477}
412 478
413inline void 479/*****************************************************************************/
480
481void inline_size
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
414fd_event (EV_P_ int fd, int revents) 495fd_event (EV_P_ int fd, int revents)
415{ 496{
416 ANFD *anfd = anfds + fd; 497 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 498 ev_io *w;
418 499
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 501 {
421 int ev = w->events & revents; 502 int ev = w->events & revents;
422 503
423 if (ev) 504 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 505 ev_feed_event (EV_A_ (W)w, ev);
429ev_feed_fd_event (EV_P_ int fd, int revents) 510ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 511{
431 fd_event (EV_A_ fd, revents); 512 fd_event (EV_A_ fd, revents);
432} 513}
433 514
434/*****************************************************************************/ 515void inline_size
435
436inline void
437fd_reify (EV_P) 516fd_reify (EV_P)
438{ 517{
439 int i; 518 int i;
440 519
441 for (i = 0; i < fdchangecnt; ++i) 520 for (i = 0; i < fdchangecnt; ++i)
442 { 521 {
443 int fd = fdchanges [i]; 522 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 523 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 524 ev_io *w;
446 525
447 int events = 0; 526 int events = 0;
448 527
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 529 events |= w->events;
451 530
452#if EV_SELECT_IS_WINSOCKET 531#if EV_SELECT_IS_WINSOCKET
453 if (events) 532 if (events)
454 { 533 {
458 } 537 }
459#endif 538#endif
460 539
461 anfd->reify = 0; 540 anfd->reify = 0;
462 541
463 method_modify (EV_A_ fd, anfd->events, events); 542 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 543 anfd->events = events;
465 } 544 }
466 545
467 fdchangecnt = 0; 546 fdchangecnt = 0;
468} 547}
469 548
470static void 549void inline_size
471fd_change (EV_P_ int fd) 550fd_change (EV_P_ int fd)
472{ 551{
473 if (expect_false (anfds [fd].reify)) 552 if (expect_false (anfds [fd].reify))
474 return; 553 return;
475 554
478 ++fdchangecnt; 557 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 559 fdchanges [fdchangecnt - 1] = fd;
481} 560}
482 561
483static void 562void inline_speed
484fd_kill (EV_P_ int fd) 563fd_kill (EV_P_ int fd)
485{ 564{
486 struct ev_io *w; 565 ev_io *w;
487 566
488 while ((w = (struct ev_io *)anfds [fd].head)) 567 while ((w = (ev_io *)anfds [fd].head))
489 { 568 {
490 ev_io_stop (EV_A_ w); 569 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 571 }
493} 572}
494 573
495inline int 574int inline_size
496fd_valid (int fd) 575fd_valid (int fd)
497{ 576{
498#ifdef _WIN32 577#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 578 return _get_osfhandle (fd) != -1;
500#else 579#else
501 return fcntl (fd, F_GETFD) != -1; 580 return fcntl (fd, F_GETFD) != -1;
502#endif 581#endif
503} 582}
504 583
505/* called on EBADF to verify fds */ 584/* called on EBADF to verify fds */
506static void 585static void noinline
507fd_ebadf (EV_P) 586fd_ebadf (EV_P)
508{ 587{
509 int fd; 588 int fd;
510 589
511 for (fd = 0; fd < anfdmax; ++fd) 590 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 592 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 593 fd_kill (EV_A_ fd);
515} 594}
516 595
517/* called on ENOMEM in select/poll to kill some fds and retry */ 596/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 597static void noinline
519fd_enomem (EV_P) 598fd_enomem (EV_P)
520{ 599{
521 int fd; 600 int fd;
522 601
523 for (fd = anfdmax; fd--; ) 602 for (fd = anfdmax; fd--; )
526 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
527 return; 606 return;
528 } 607 }
529} 608}
530 609
531/* usually called after fork if method needs to re-arm all fds from scratch */ 610/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 611static void noinline
533fd_rearm_all (EV_P) 612fd_rearm_all (EV_P)
534{ 613{
535 int fd; 614 int fd;
536 615
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 616 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 617 if (anfds [fd].events)
540 { 618 {
541 anfds [fd].events = 0; 619 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 620 fd_change (EV_A_ fd);
543 } 621 }
544} 622}
545 623
546/*****************************************************************************/ 624/*****************************************************************************/
547 625
548static void 626void inline_speed
549upheap (WT *heap, int k) 627upheap (WT *heap, int k)
550{ 628{
551 WT w = heap [k]; 629 WT w = heap [k];
552 630
553 while (k && heap [k >> 1]->at > w->at) 631 while (k && heap [k >> 1]->at > w->at)
560 heap [k] = w; 638 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 639 ((W)heap [k])->active = k + 1;
562 640
563} 641}
564 642
565static void 643void inline_speed
566downheap (WT *heap, int N, int k) 644downheap (WT *heap, int N, int k)
567{ 645{
568 WT w = heap [k]; 646 WT w = heap [k];
569 647
570 while (k < (N >> 1)) 648 while (k < (N >> 1))
584 662
585 heap [k] = w; 663 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 664 ((W)heap [k])->active = k + 1;
587} 665}
588 666
589inline void 667void inline_size
590adjustheap (WT *heap, int N, int k) 668adjustheap (WT *heap, int N, int k)
591{ 669{
592 upheap (heap, k); 670 upheap (heap, k);
593 downheap (heap, N, k); 671 downheap (heap, N, k);
594} 672}
604static ANSIG *signals; 682static ANSIG *signals;
605static int signalmax; 683static int signalmax;
606 684
607static int sigpipe [2]; 685static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 686static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 687static ev_io sigev;
610 688
611static void 689void inline_size
612signals_init (ANSIG *base, int count) 690signals_init (ANSIG *base, int count)
613{ 691{
614 while (count--) 692 while (count--)
615 { 693 {
616 base->head = 0; 694 base->head = 0;
636 write (sigpipe [1], &signum, 1); 714 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 715 errno = old_errno;
638 } 716 }
639} 717}
640 718
641void 719void noinline
642ev_feed_signal_event (EV_P_ int signum) 720ev_feed_signal_event (EV_P_ int signum)
643{ 721{
644 WL w; 722 WL w;
645 723
646#if EV_MULTIPLICITY 724#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 735 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 737}
660 738
661static void 739static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 740sigcb (EV_P_ ev_io *iow, int revents)
663{ 741{
664 int signum; 742 int signum;
665 743
666 read (sigpipe [0], &revents, 1); 744 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 745 gotsig = 0;
669 for (signum = signalmax; signum--; ) 747 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 748 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 749 ev_feed_signal_event (EV_A_ signum + 1);
672} 750}
673 751
674static void 752void inline_size
675fd_intern (int fd) 753fd_intern (int fd)
676{ 754{
677#ifdef _WIN32 755#ifdef _WIN32
678 int arg = 1; 756 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 759 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 760 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 761#endif
684} 762}
685 763
686static void 764static void noinline
687siginit (EV_P) 765siginit (EV_P)
688{ 766{
689 fd_intern (sigpipe [0]); 767 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 768 fd_intern (sigpipe [1]);
691 769
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 772 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 773}
696 774
697/*****************************************************************************/ 775/*****************************************************************************/
698 776
699static struct ev_child *childs [PID_HASHSIZE]; 777static ev_child *childs [EV_PID_HASHSIZE];
700 778
701#ifndef _WIN32 779#ifndef _WIN32
702 780
703static struct ev_signal childev; 781static ev_signal childev;
704 782
705#ifndef WCONTINUED 783void inline_speed
706# define WCONTINUED 0
707#endif
708
709static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
711{ 785{
712 struct ev_child *w; 786 ev_child *w;
713 787
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid) 789 if (w->pid == pid || !w->pid)
716 { 790 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 791 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid; 792 w->rpid = pid;
719 w->rstatus = status; 793 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD); 794 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 } 795 }
722} 796}
723 797
798#ifndef WCONTINUED
799# define WCONTINUED 0
800#endif
801
724static void 802static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 803childcb (EV_P_ ev_signal *sw, int revents)
726{ 804{
727 int pid, status; 805 int pid, status;
728 806
807 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 808 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 809 if (!WCONTINUED
810 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return;
813
731 /* make sure we are called again until all childs have been reaped */ 814 /* make sure we are called again until all childs have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 817
734 child_reap (EV_A_ sw, pid, pid, status); 818 child_reap (EV_A_ sw, pid, pid, status);
819 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 821}
738 822
739#endif 823#endif
740 824
741/*****************************************************************************/ 825/*****************************************************************************/
767{ 851{
768 return EV_VERSION_MINOR; 852 return EV_VERSION_MINOR;
769} 853}
770 854
771/* return true if we are running with elevated privileges and should ignore env variables */ 855/* return true if we are running with elevated privileges and should ignore env variables */
772static int 856int inline_size
773enable_secure (void) 857enable_secure (void)
774{ 858{
775#ifdef _WIN32 859#ifdef _WIN32
776 return 0; 860 return 0;
777#else 861#else
781} 865}
782 866
783unsigned int 867unsigned int
784ev_supported_backends (void) 868ev_supported_backends (void)
785{ 869{
786}
787
788unsigned int
789ev_recommended_backends (void)
790{
791 unsigned int flags; 870 unsigned int flags = 0;
792 871
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 872 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 873 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 874 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 875 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
798 877
799 return flags; 878 return flags;
800} 879}
801 880
802unsigned int 881unsigned int
803ev_backend (EV_P) 882ev_recommended_backends (void)
804{ 883{
805 unsigned int flags = ev_recommended_backends (); 884 unsigned int flags = ev_supported_backends ();
806 885
807#ifndef __NetBSD__ 886#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 887 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 888 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 889 flags &= ~EVBACKEND_KQUEUE;
815#endif 894#endif
816 895
817 return flags; 896 return flags;
818} 897}
819 898
820static void 899unsigned int
900ev_embeddable_backends (void)
901{
902 return EVBACKEND_EPOLL
903 | EVBACKEND_KQUEUE
904 | EVBACKEND_PORT;
905}
906
907unsigned int
908ev_backend (EV_P)
909{
910 return backend;
911}
912
913unsigned int
914ev_loop_count (EV_P)
915{
916 return loop_count;
917}
918
919static void noinline
821loop_init (EV_P_ unsigned int flags) 920loop_init (EV_P_ unsigned int flags)
822{ 921{
823 if (!method) 922 if (!backend)
824 { 923 {
825#if EV_USE_MONOTONIC 924#if EV_USE_MONOTONIC
826 { 925 {
827 struct timespec ts; 926 struct timespec ts;
828 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 927 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
833 ev_rt_now = ev_time (); 932 ev_rt_now = ev_time ();
834 mn_now = get_clock (); 933 mn_now = get_clock ();
835 now_floor = mn_now; 934 now_floor = mn_now;
836 rtmn_diff = ev_rt_now - mn_now; 935 rtmn_diff = ev_rt_now - mn_now;
837 936
937 /* pid check not overridable via env */
938#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid ();
941#endif
942
838 if (!(flags & EVFLAG_NOENV) 943 if (!(flags & EVFLAG_NOENV)
839 && !enable_secure () 944 && !enable_secure ()
840 && getenv ("LIBEV_FLAGS")) 945 && getenv ("LIBEV_FLAGS"))
841 flags = atoi (getenv ("LIBEV_FLAGS")); 946 flags = atoi (getenv ("LIBEV_FLAGS"));
842 947
843 if (!(flags & 0x0000ffffUL)) 948 if (!(flags & 0x0000ffffUL))
844 flags |= ev_recommended_backends (); 949 flags |= ev_recommended_backends ();
845 950
846 method = 0; 951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956
847#if EV_USE_PORT 957#if EV_USE_PORT
848 if (!method && (flags & EVBACKEND_PORT )) method = port_init (EV_A_ flags); 958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
849#endif 959#endif
850#if EV_USE_KQUEUE 960#if EV_USE_KQUEUE
851 if (!method && (flags & EVBACKEND_KQUEUE)) method = kqueue_init (EV_A_ flags); 961 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
852#endif 962#endif
853#if EV_USE_EPOLL 963#if EV_USE_EPOLL
854 if (!method && (flags & EVBACKEND_EPOLL )) method = epoll_init (EV_A_ flags); 964 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
855#endif 965#endif
856#if EV_USE_POLL 966#if EV_USE_POLL
857 if (!method && (flags & EVBACKEND_POLL )) method = poll_init (EV_A_ flags); 967 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
858#endif 968#endif
859#if EV_USE_SELECT 969#if EV_USE_SELECT
860 if (!method && (flags & EVBACKEND_SELECT)) method = select_init (EV_A_ flags); 970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
861#endif 971#endif
862 972
863 ev_init (&sigev, sigcb); 973 ev_init (&sigev, sigcb);
864 ev_set_priority (&sigev, EV_MAXPRI); 974 ev_set_priority (&sigev, EV_MAXPRI);
865 } 975 }
866} 976}
867 977
868static void 978static void noinline
869loop_destroy (EV_P) 979loop_destroy (EV_P)
870{ 980{
871 int i; 981 int i;
872 982
983#if EV_USE_INOTIFY
984 if (fs_fd >= 0)
985 close (fs_fd);
986#endif
987
988 if (backend_fd >= 0)
989 close (backend_fd);
990
873#if EV_USE_PORT 991#if EV_USE_PORT
874 if (method == EVBACKEND_PORT ) port_destroy (EV_A); 992 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
875#endif 993#endif
876#if EV_USE_KQUEUE 994#if EV_USE_KQUEUE
877 if (method == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 995 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
878#endif 996#endif
879#if EV_USE_EPOLL 997#if EV_USE_EPOLL
880 if (method == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 998 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
881#endif 999#endif
882#if EV_USE_POLL 1000#if EV_USE_POLL
883 if (method == EVBACKEND_POLL ) poll_destroy (EV_A); 1001 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
884#endif 1002#endif
885#if EV_USE_SELECT 1003#if EV_USE_SELECT
886 if (method == EVBACKEND_SELECT) select_destroy (EV_A); 1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
887#endif 1005#endif
888 1006
889 for (i = NUMPRI; i--; ) 1007 for (i = NUMPRI; i--; )
890 array_free (pending, [i]); 1008 array_free (pending, [i]);
891 1009
892 /* have to use the microsoft-never-gets-it-right macro */ 1010 /* have to use the microsoft-never-gets-it-right macro */
893 array_free (fdchange, EMPTY0); 1011 array_free (fdchange, EMPTY0);
894 array_free (timer, EMPTY0); 1012 array_free (timer, EMPTY0);
895#if EV_PERIODICS 1013#if EV_PERIODIC_ENABLE
896 array_free (periodic, EMPTY0); 1014 array_free (periodic, EMPTY0);
897#endif 1015#endif
898 array_free (idle, EMPTY0); 1016 array_free (idle, EMPTY0);
899 array_free (prepare, EMPTY0); 1017 array_free (prepare, EMPTY0);
900 array_free (check, EMPTY0); 1018 array_free (check, EMPTY0);
901 1019
902 method = 0; 1020 backend = 0;
903} 1021}
904 1022
905static void 1023void inline_size infy_fork (EV_P);
1024
1025void inline_size
906loop_fork (EV_P) 1026loop_fork (EV_P)
907{ 1027{
908#if EV_USE_PORT 1028#if EV_USE_PORT
909 if (method == EVBACKEND_PORT ) port_fork (EV_A); 1029 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
910#endif 1030#endif
911#if EV_USE_KQUEUE 1031#if EV_USE_KQUEUE
912 if (method == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1032 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
913#endif 1033#endif
914#if EV_USE_EPOLL 1034#if EV_USE_EPOLL
915 if (method == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1035 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1036#endif
1037#if EV_USE_INOTIFY
1038 infy_fork (EV_A);
916#endif 1039#endif
917 1040
918 if (ev_is_active (&sigev)) 1041 if (ev_is_active (&sigev))
919 { 1042 {
920 /* default loop */ 1043 /* default loop */
941 1064
942 memset (loop, 0, sizeof (struct ev_loop)); 1065 memset (loop, 0, sizeof (struct ev_loop));
943 1066
944 loop_init (EV_A_ flags); 1067 loop_init (EV_A_ flags);
945 1068
946 if (ev_method (EV_A)) 1069 if (ev_backend (EV_A))
947 return loop; 1070 return loop;
948 1071
949 return 0; 1072 return 0;
950} 1073}
951 1074
984 ev_default_loop_ptr = 1; 1107 ev_default_loop_ptr = 1;
985#endif 1108#endif
986 1109
987 loop_init (EV_A_ flags); 1110 loop_init (EV_A_ flags);
988 1111
989 if (ev_method (EV_A)) 1112 if (ev_backend (EV_A))
990 { 1113 {
991 siginit (EV_A); 1114 siginit (EV_A);
992 1115
993#ifndef _WIN32 1116#ifndef _WIN32
994 ev_signal_init (&childev, childcb, SIGCHLD); 1117 ev_signal_init (&childev, childcb, SIGCHLD);
1030{ 1153{
1031#if EV_MULTIPLICITY 1154#if EV_MULTIPLICITY
1032 struct ev_loop *loop = ev_default_loop_ptr; 1155 struct ev_loop *loop = ev_default_loop_ptr;
1033#endif 1156#endif
1034 1157
1035 if (method) 1158 if (backend)
1036 postfork = 1; 1159 postfork = 1;
1037} 1160}
1038 1161
1039/*****************************************************************************/ 1162/*****************************************************************************/
1040 1163
1041static int 1164int inline_size
1042any_pending (EV_P) 1165any_pending (EV_P)
1043{ 1166{
1044 int pri; 1167 int pri;
1045 1168
1046 for (pri = NUMPRI; pri--; ) 1169 for (pri = NUMPRI; pri--; )
1048 return 1; 1171 return 1;
1049 1172
1050 return 0; 1173 return 0;
1051} 1174}
1052 1175
1053inline void 1176void inline_speed
1054call_pending (EV_P) 1177call_pending (EV_P)
1055{ 1178{
1056 int pri; 1179 int pri;
1057 1180
1058 for (pri = NUMPRI; pri--; ) 1181 for (pri = NUMPRI; pri--; )
1060 { 1183 {
1061 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1062 1185
1063 if (expect_true (p->w)) 1186 if (expect_true (p->w))
1064 { 1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189
1065 p->w->pending = 0; 1190 p->w->pending = 0;
1066 EV_CB_INVOKE (p->w, p->events); 1191 EV_CB_INVOKE (p->w, p->events);
1067 } 1192 }
1068 } 1193 }
1069} 1194}
1070 1195
1071inline void 1196void inline_size
1072timers_reify (EV_P) 1197timers_reify (EV_P)
1073{ 1198{
1074 while (timercnt && ((WT)timers [0])->at <= mn_now) 1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1075 { 1200 {
1076 struct ev_timer *w = timers [0]; 1201 ev_timer *w = timers [0];
1077 1202
1078 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1079 1204
1080 /* first reschedule or stop timer */ 1205 /* first reschedule or stop timer */
1081 if (w->repeat) 1206 if (w->repeat)
1082 { 1207 {
1083 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1093 1218
1094 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1095 } 1220 }
1096} 1221}
1097 1222
1098#if EV_PERIODICS 1223#if EV_PERIODIC_ENABLE
1099inline void 1224void inline_size
1100periodics_reify (EV_P) 1225periodics_reify (EV_P)
1101{ 1226{
1102 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1103 { 1228 {
1104 struct ev_periodic *w = periodics [0]; 1229 ev_periodic *w = periodics [0];
1105 1230
1106 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1107 1232
1108 /* first reschedule or stop timer */ 1233 /* first reschedule or stop timer */
1109 if (w->reschedule_cb) 1234 if (w->reschedule_cb)
1110 { 1235 {
1111 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1123 1248
1124 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1125 } 1250 }
1126} 1251}
1127 1252
1128static void 1253static void noinline
1129periodics_reschedule (EV_P) 1254periodics_reschedule (EV_P)
1130{ 1255{
1131 int i; 1256 int i;
1132 1257
1133 /* adjust periodics after time jump */ 1258 /* adjust periodics after time jump */
1134 for (i = 0; i < periodiccnt; ++i) 1259 for (i = 0; i < periodiccnt; ++i)
1135 { 1260 {
1136 struct ev_periodic *w = periodics [i]; 1261 ev_periodic *w = periodics [i];
1137 1262
1138 if (w->reschedule_cb) 1263 if (w->reschedule_cb)
1139 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1140 else if (w->interval) 1265 else if (w->interval)
1141 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1145 for (i = periodiccnt >> 1; i--; ) 1270 for (i = periodiccnt >> 1; i--; )
1146 downheap ((WT *)periodics, periodiccnt, i); 1271 downheap ((WT *)periodics, periodiccnt, i);
1147} 1272}
1148#endif 1273#endif
1149 1274
1150inline int 1275int inline_size
1151time_update_monotonic (EV_P) 1276time_update_monotonic (EV_P)
1152{ 1277{
1153 mn_now = get_clock (); 1278 mn_now = get_clock ();
1154 1279
1155 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1280 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1163 ev_rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
1164 return 1; 1289 return 1;
1165 } 1290 }
1166} 1291}
1167 1292
1168inline void 1293void inline_size
1169time_update (EV_P) 1294time_update (EV_P)
1170{ 1295{
1171 int i; 1296 int i;
1172 1297
1173#if EV_USE_MONOTONIC 1298#if EV_USE_MONOTONIC
1175 { 1300 {
1176 if (time_update_monotonic (EV_A)) 1301 if (time_update_monotonic (EV_A))
1177 { 1302 {
1178 ev_tstamp odiff = rtmn_diff; 1303 ev_tstamp odiff = rtmn_diff;
1179 1304
1180 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1305 /* loop a few times, before making important decisions.
1306 * on the choice of "4": one iteration isn't enough,
1307 * in case we get preempted during the calls to
1308 * ev_time and get_clock. a second call is almost guaranteed
1309 * to succeed in that case, though. and looping a few more times
1310 * doesn't hurt either as we only do this on time-jumps or
1311 * in the unlikely event of having been preempted here.
1312 */
1313 for (i = 4; --i; )
1181 { 1314 {
1182 rtmn_diff = ev_rt_now - mn_now; 1315 rtmn_diff = ev_rt_now - mn_now;
1183 1316
1184 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1317 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1185 return; /* all is well */ 1318 return; /* all is well */
1187 ev_rt_now = ev_time (); 1320 ev_rt_now = ev_time ();
1188 mn_now = get_clock (); 1321 mn_now = get_clock ();
1189 now_floor = mn_now; 1322 now_floor = mn_now;
1190 } 1323 }
1191 1324
1192# if EV_PERIODICS 1325# if EV_PERIODIC_ENABLE
1193 periodics_reschedule (EV_A); 1326 periodics_reschedule (EV_A);
1194# endif 1327# endif
1195 /* no timer adjustment, as the monotonic clock doesn't jump */ 1328 /* no timer adjustment, as the monotonic clock doesn't jump */
1196 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1197 } 1330 }
1201 { 1334 {
1202 ev_rt_now = ev_time (); 1335 ev_rt_now = ev_time ();
1203 1336
1204 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1337 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1205 { 1338 {
1206#if EV_PERIODICS 1339#if EV_PERIODIC_ENABLE
1207 periodics_reschedule (EV_A); 1340 periodics_reschedule (EV_A);
1208#endif 1341#endif
1209 1342
1210 /* adjust timers. this is easy, as the offset is the same for all */ 1343 /* adjust timers. this is easy, as the offset is the same for all of them */
1211 for (i = 0; i < timercnt; ++i) 1344 for (i = 0; i < timercnt; ++i)
1212 ((WT)timers [i])->at += ev_rt_now - mn_now; 1345 ((WT)timers [i])->at += ev_rt_now - mn_now;
1213 } 1346 }
1214 1347
1215 mn_now = ev_rt_now; 1348 mn_now = ev_rt_now;
1231static int loop_done; 1364static int loop_done;
1232 1365
1233void 1366void
1234ev_loop (EV_P_ int flags) 1367ev_loop (EV_P_ int flags)
1235{ 1368{
1236 double block;
1237 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1369 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1370 ? EVUNLOOP_ONE
1371 : EVUNLOOP_CANCEL;
1238 1372
1239 while (activecnt) 1373 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1374
1375 do
1240 { 1376 {
1377#ifndef _WIN32
1378 if (expect_false (curpid)) /* penalise the forking check even more */
1379 if (expect_false (getpid () != curpid))
1380 {
1381 curpid = getpid ();
1382 postfork = 1;
1383 }
1384#endif
1385
1386#if EV_FORK_ENABLE
1387 /* we might have forked, so queue fork handlers */
1388 if (expect_false (postfork))
1389 if (forkcnt)
1390 {
1391 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1392 call_pending (EV_A);
1393 }
1394#endif
1395
1241 /* queue check watchers (and execute them) */ 1396 /* queue check watchers (and execute them) */
1242 if (expect_false (preparecnt)) 1397 if (expect_false (preparecnt))
1243 { 1398 {
1244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1245 call_pending (EV_A); 1400 call_pending (EV_A);
1246 } 1401 }
1247 1402
1403 if (expect_false (!activecnt))
1404 break;
1405
1248 /* we might have forked, so reify kernel state if necessary */ 1406 /* we might have forked, so reify kernel state if necessary */
1249 if (expect_false (postfork)) 1407 if (expect_false (postfork))
1250 loop_fork (EV_A); 1408 loop_fork (EV_A);
1251 1409
1252 /* update fd-related kernel structures */ 1410 /* update fd-related kernel structures */
1253 fd_reify (EV_A); 1411 fd_reify (EV_A);
1254 1412
1255 /* calculate blocking time */ 1413 /* calculate blocking time */
1414 {
1415 ev_tstamp block;
1256 1416
1257 /* we only need this for !monotonic clock or timers, but as we basically 1417 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt))
1258 always have timers, we just calculate it always */ 1418 block = 0.; /* do not block at all */
1419 else
1420 {
1421 /* update time to cancel out callback processing overhead */
1259#if EV_USE_MONOTONIC 1422#if EV_USE_MONOTONIC
1260 if (expect_true (have_monotonic)) 1423 if (expect_true (have_monotonic))
1261 time_update_monotonic (EV_A); 1424 time_update_monotonic (EV_A);
1262 else 1425 else
1263#endif 1426#endif
1264 { 1427 {
1265 ev_rt_now = ev_time (); 1428 ev_rt_now = ev_time ();
1266 mn_now = ev_rt_now; 1429 mn_now = ev_rt_now;
1267 } 1430 }
1268 1431
1269 if (flags & EVLOOP_NONBLOCK || idlecnt)
1270 block = 0.;
1271 else
1272 {
1273 block = MAX_BLOCKTIME; 1432 block = MAX_BLOCKTIME;
1274 1433
1275 if (timercnt) 1434 if (timercnt)
1276 { 1435 {
1277 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1436 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1278 if (block > to) block = to; 1437 if (block > to) block = to;
1279 } 1438 }
1280 1439
1281#if EV_PERIODICS 1440#if EV_PERIODIC_ENABLE
1282 if (periodiccnt) 1441 if (periodiccnt)
1283 { 1442 {
1284 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1443 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1285 if (block > to) block = to; 1444 if (block > to) block = to;
1286 } 1445 }
1287#endif 1446#endif
1288 1447
1289 if (expect_false (block < 0.)) block = 0.; 1448 if (expect_false (block < 0.)) block = 0.;
1290 } 1449 }
1291 1450
1451 ++loop_count;
1292 method_poll (EV_A_ block); 1452 backend_poll (EV_A_ block);
1453 }
1293 1454
1294 /* update ev_rt_now, do magic */ 1455 /* update ev_rt_now, do magic */
1295 time_update (EV_A); 1456 time_update (EV_A);
1296 1457
1297 /* queue pending timers and reschedule them */ 1458 /* queue pending timers and reschedule them */
1298 timers_reify (EV_A); /* relative timers called last */ 1459 timers_reify (EV_A); /* relative timers called last */
1299#if EV_PERIODICS 1460#if EV_PERIODIC_ENABLE
1300 periodics_reify (EV_A); /* absolute timers called first */ 1461 periodics_reify (EV_A); /* absolute timers called first */
1301#endif 1462#endif
1302 1463
1303 /* queue idle watchers unless io or timers are pending */ 1464 /* queue idle watchers unless other events are pending */
1304 if (idlecnt && !any_pending (EV_A)) 1465 if (idlecnt && !any_pending (EV_A))
1305 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1466 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1306 1467
1307 /* queue check watchers, to be executed first */ 1468 /* queue check watchers, to be executed first */
1308 if (expect_false (checkcnt)) 1469 if (expect_false (checkcnt))
1309 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1470 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1310 1471
1311 call_pending (EV_A); 1472 call_pending (EV_A);
1312 1473
1313 if (expect_false (loop_done))
1314 break;
1315 } 1474 }
1475 while (expect_true (activecnt && !loop_done));
1316 1476
1317 if (loop_done != 2) 1477 if (loop_done == EVUNLOOP_ONE)
1318 loop_done = 0; 1478 loop_done = EVUNLOOP_CANCEL;
1319} 1479}
1320 1480
1321void 1481void
1322ev_unloop (EV_P_ int how) 1482ev_unloop (EV_P_ int how)
1323{ 1483{
1324 loop_done = how; 1484 loop_done = how;
1325} 1485}
1326 1486
1327/*****************************************************************************/ 1487/*****************************************************************************/
1328 1488
1329inline void 1489void inline_size
1330wlist_add (WL *head, WL elem) 1490wlist_add (WL *head, WL elem)
1331{ 1491{
1332 elem->next = *head; 1492 elem->next = *head;
1333 *head = elem; 1493 *head = elem;
1334} 1494}
1335 1495
1336inline void 1496void inline_size
1337wlist_del (WL *head, WL elem) 1497wlist_del (WL *head, WL elem)
1338{ 1498{
1339 while (*head) 1499 while (*head)
1340 { 1500 {
1341 if (*head == elem) 1501 if (*head == elem)
1346 1506
1347 head = &(*head)->next; 1507 head = &(*head)->next;
1348 } 1508 }
1349} 1509}
1350 1510
1351inline void 1511void inline_speed
1352ev_clear_pending (EV_P_ W w) 1512ev_clear_pending (EV_P_ W w)
1353{ 1513{
1354 if (w->pending) 1514 if (w->pending)
1355 { 1515 {
1356 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1516 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1357 w->pending = 0; 1517 w->pending = 0;
1358 } 1518 }
1359} 1519}
1360 1520
1361inline void 1521void inline_speed
1362ev_start (EV_P_ W w, int active) 1522ev_start (EV_P_ W w, int active)
1363{ 1523{
1364 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1524 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1365 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1525 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1366 1526
1367 w->active = active; 1527 w->active = active;
1368 ev_ref (EV_A); 1528 ev_ref (EV_A);
1369} 1529}
1370 1530
1371inline void 1531void inline_size
1372ev_stop (EV_P_ W w) 1532ev_stop (EV_P_ W w)
1373{ 1533{
1374 ev_unref (EV_A); 1534 ev_unref (EV_A);
1375 w->active = 0; 1535 w->active = 0;
1376} 1536}
1377 1537
1378/*****************************************************************************/ 1538/*****************************************************************************/
1379 1539
1380void 1540void
1381ev_io_start (EV_P_ struct ev_io *w) 1541ev_io_start (EV_P_ ev_io *w)
1382{ 1542{
1383 int fd = w->fd; 1543 int fd = w->fd;
1384 1544
1385 if (expect_false (ev_is_active (w))) 1545 if (expect_false (ev_is_active (w)))
1386 return; 1546 return;
1393 1553
1394 fd_change (EV_A_ fd); 1554 fd_change (EV_A_ fd);
1395} 1555}
1396 1556
1397void 1557void
1398ev_io_stop (EV_P_ struct ev_io *w) 1558ev_io_stop (EV_P_ ev_io *w)
1399{ 1559{
1400 ev_clear_pending (EV_A_ (W)w); 1560 ev_clear_pending (EV_A_ (W)w);
1401 if (expect_false (!ev_is_active (w))) 1561 if (expect_false (!ev_is_active (w)))
1402 return; 1562 return;
1403 1563
1408 1568
1409 fd_change (EV_A_ w->fd); 1569 fd_change (EV_A_ w->fd);
1410} 1570}
1411 1571
1412void 1572void
1413ev_timer_start (EV_P_ struct ev_timer *w) 1573ev_timer_start (EV_P_ ev_timer *w)
1414{ 1574{
1415 if (expect_false (ev_is_active (w))) 1575 if (expect_false (ev_is_active (w)))
1416 return; 1576 return;
1417 1577
1418 ((WT)w)->at += mn_now; 1578 ((WT)w)->at += mn_now;
1419 1579
1420 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1580 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1421 1581
1422 ev_start (EV_A_ (W)w, ++timercnt); 1582 ev_start (EV_A_ (W)w, ++timercnt);
1423 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1583 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1424 timers [timercnt - 1] = w; 1584 timers [timercnt - 1] = w;
1425 upheap ((WT *)timers, timercnt - 1); 1585 upheap ((WT *)timers, timercnt - 1);
1426 1586
1427 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1587 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1428} 1588}
1429 1589
1430void 1590void
1431ev_timer_stop (EV_P_ struct ev_timer *w) 1591ev_timer_stop (EV_P_ ev_timer *w)
1432{ 1592{
1433 ev_clear_pending (EV_A_ (W)w); 1593 ev_clear_pending (EV_A_ (W)w);
1434 if (expect_false (!ev_is_active (w))) 1594 if (expect_false (!ev_is_active (w)))
1435 return; 1595 return;
1436 1596
1437 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1597 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1438 1598
1599 {
1600 int active = ((W)w)->active;
1601
1439 if (expect_true (((W)w)->active < timercnt--)) 1602 if (expect_true (--active < --timercnt))
1440 { 1603 {
1441 timers [((W)w)->active - 1] = timers [timercnt]; 1604 timers [active] = timers [timercnt];
1442 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1605 adjustheap ((WT *)timers, timercnt, active);
1443 } 1606 }
1607 }
1444 1608
1445 ((WT)w)->at -= mn_now; 1609 ((WT)w)->at -= mn_now;
1446 1610
1447 ev_stop (EV_A_ (W)w); 1611 ev_stop (EV_A_ (W)w);
1448} 1612}
1449 1613
1450void 1614void
1451ev_timer_again (EV_P_ struct ev_timer *w) 1615ev_timer_again (EV_P_ ev_timer *w)
1452{ 1616{
1453 if (ev_is_active (w)) 1617 if (ev_is_active (w))
1454 { 1618 {
1455 if (w->repeat) 1619 if (w->repeat)
1456 { 1620 {
1465 w->at = w->repeat; 1629 w->at = w->repeat;
1466 ev_timer_start (EV_A_ w); 1630 ev_timer_start (EV_A_ w);
1467 } 1631 }
1468} 1632}
1469 1633
1470#if EV_PERIODICS 1634#if EV_PERIODIC_ENABLE
1471void 1635void
1472ev_periodic_start (EV_P_ struct ev_periodic *w) 1636ev_periodic_start (EV_P_ ev_periodic *w)
1473{ 1637{
1474 if (expect_false (ev_is_active (w))) 1638 if (expect_false (ev_is_active (w)))
1475 return; 1639 return;
1476 1640
1477 if (w->reschedule_cb) 1641 if (w->reschedule_cb)
1482 /* this formula differs from the one in periodic_reify because we do not always round up */ 1646 /* this formula differs from the one in periodic_reify because we do not always round up */
1483 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1647 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1484 } 1648 }
1485 1649
1486 ev_start (EV_A_ (W)w, ++periodiccnt); 1650 ev_start (EV_A_ (W)w, ++periodiccnt);
1487 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1651 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1488 periodics [periodiccnt - 1] = w; 1652 periodics [periodiccnt - 1] = w;
1489 upheap ((WT *)periodics, periodiccnt - 1); 1653 upheap ((WT *)periodics, periodiccnt - 1);
1490 1654
1491 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1655 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1492} 1656}
1493 1657
1494void 1658void
1495ev_periodic_stop (EV_P_ struct ev_periodic *w) 1659ev_periodic_stop (EV_P_ ev_periodic *w)
1496{ 1660{
1497 ev_clear_pending (EV_A_ (W)w); 1661 ev_clear_pending (EV_A_ (W)w);
1498 if (expect_false (!ev_is_active (w))) 1662 if (expect_false (!ev_is_active (w)))
1499 return; 1663 return;
1500 1664
1501 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1665 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1502 1666
1667 {
1668 int active = ((W)w)->active;
1669
1503 if (expect_true (((W)w)->active < periodiccnt--)) 1670 if (expect_true (--active < --periodiccnt))
1504 { 1671 {
1505 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1672 periodics [active] = periodics [periodiccnt];
1506 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1673 adjustheap ((WT *)periodics, periodiccnt, active);
1507 } 1674 }
1675 }
1508 1676
1509 ev_stop (EV_A_ (W)w); 1677 ev_stop (EV_A_ (W)w);
1510} 1678}
1511 1679
1512void 1680void
1513ev_periodic_again (EV_P_ struct ev_periodic *w) 1681ev_periodic_again (EV_P_ ev_periodic *w)
1514{ 1682{
1515 /* TODO: use adjustheap and recalculation */ 1683 /* TODO: use adjustheap and recalculation */
1516 ev_periodic_stop (EV_A_ w); 1684 ev_periodic_stop (EV_A_ w);
1517 ev_periodic_start (EV_A_ w); 1685 ev_periodic_start (EV_A_ w);
1518} 1686}
1519#endif 1687#endif
1520 1688
1521void
1522ev_idle_start (EV_P_ struct ev_idle *w)
1523{
1524 if (expect_false (ev_is_active (w)))
1525 return;
1526
1527 ev_start (EV_A_ (W)w, ++idlecnt);
1528 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1529 idles [idlecnt - 1] = w;
1530}
1531
1532void
1533ev_idle_stop (EV_P_ struct ev_idle *w)
1534{
1535 ev_clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w)))
1537 return;
1538
1539 idles [((W)w)->active - 1] = idles [--idlecnt];
1540 ev_stop (EV_A_ (W)w);
1541}
1542
1543void
1544ev_prepare_start (EV_P_ struct ev_prepare *w)
1545{
1546 if (expect_false (ev_is_active (w)))
1547 return;
1548
1549 ev_start (EV_A_ (W)w, ++preparecnt);
1550 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1551 prepares [preparecnt - 1] = w;
1552}
1553
1554void
1555ev_prepare_stop (EV_P_ struct ev_prepare *w)
1556{
1557 ev_clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w)))
1559 return;
1560
1561 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1562 ev_stop (EV_A_ (W)w);
1563}
1564
1565void
1566ev_check_start (EV_P_ struct ev_check *w)
1567{
1568 if (expect_false (ev_is_active (w)))
1569 return;
1570
1571 ev_start (EV_A_ (W)w, ++checkcnt);
1572 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1573 checks [checkcnt - 1] = w;
1574}
1575
1576void
1577ev_check_stop (EV_P_ struct ev_check *w)
1578{
1579 ev_clear_pending (EV_A_ (W)w);
1580 if (expect_false (!ev_is_active (w)))
1581 return;
1582
1583 checks [((W)w)->active - 1] = checks [--checkcnt];
1584 ev_stop (EV_A_ (W)w);
1585}
1586
1587#ifndef SA_RESTART 1689#ifndef SA_RESTART
1588# define SA_RESTART 0 1690# define SA_RESTART 0
1589#endif 1691#endif
1590 1692
1591void 1693void
1592ev_signal_start (EV_P_ struct ev_signal *w) 1694ev_signal_start (EV_P_ ev_signal *w)
1593{ 1695{
1594#if EV_MULTIPLICITY 1696#if EV_MULTIPLICITY
1595 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1697 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1596#endif 1698#endif
1597 if (expect_false (ev_is_active (w))) 1699 if (expect_false (ev_is_active (w)))
1616#endif 1718#endif
1617 } 1719 }
1618} 1720}
1619 1721
1620void 1722void
1621ev_signal_stop (EV_P_ struct ev_signal *w) 1723ev_signal_stop (EV_P_ ev_signal *w)
1622{ 1724{
1623 ev_clear_pending (EV_A_ (W)w); 1725 ev_clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 1726 if (expect_false (!ev_is_active (w)))
1625 return; 1727 return;
1626 1728
1630 if (!signals [w->signum - 1].head) 1732 if (!signals [w->signum - 1].head)
1631 signal (w->signum, SIG_DFL); 1733 signal (w->signum, SIG_DFL);
1632} 1734}
1633 1735
1634void 1736void
1635ev_child_start (EV_P_ struct ev_child *w) 1737ev_child_start (EV_P_ ev_child *w)
1636{ 1738{
1637#if EV_MULTIPLICITY 1739#if EV_MULTIPLICITY
1638 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1740 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1639#endif 1741#endif
1640 if (expect_false (ev_is_active (w))) 1742 if (expect_false (ev_is_active (w)))
1641 return; 1743 return;
1642 1744
1643 ev_start (EV_A_ (W)w, 1); 1745 ev_start (EV_A_ (W)w, 1);
1644 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1746 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1645} 1747}
1646 1748
1647void 1749void
1648ev_child_stop (EV_P_ struct ev_child *w) 1750ev_child_stop (EV_P_ ev_child *w)
1649{ 1751{
1650 ev_clear_pending (EV_A_ (W)w); 1752 ev_clear_pending (EV_A_ (W)w);
1651 if (expect_false (!ev_is_active (w))) 1753 if (expect_false (!ev_is_active (w)))
1652 return; 1754 return;
1653 1755
1654 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1756 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1655 ev_stop (EV_A_ (W)w); 1757 ev_stop (EV_A_ (W)w);
1656} 1758}
1657 1759
1760#if EV_STAT_ENABLE
1761
1762# ifdef _WIN32
1763# undef lstat
1764# define lstat(a,b) _stati64 (a,b)
1765# endif
1766
1767#define DEF_STAT_INTERVAL 5.0074891
1768#define MIN_STAT_INTERVAL 0.1074891
1769
1770static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1771
1772#if EV_USE_INOTIFY
1773# define EV_INOTIFY_BUFSIZE 8192
1774
1775static void noinline
1776infy_add (EV_P_ ev_stat *w)
1777{
1778 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1779
1780 if (w->wd < 0)
1781 {
1782 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1783
1784 /* monitor some parent directory for speedup hints */
1785 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1786 {
1787 char path [4096];
1788 strcpy (path, w->path);
1789
1790 do
1791 {
1792 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1793 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1794
1795 char *pend = strrchr (path, '/');
1796
1797 if (!pend)
1798 break; /* whoops, no '/', complain to your admin */
1799
1800 *pend = 0;
1801 w->wd = inotify_add_watch (fs_fd, path, mask);
1802 }
1803 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1804 }
1805 }
1806 else
1807 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1808
1809 if (w->wd >= 0)
1810 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1811}
1812
1813static void noinline
1814infy_del (EV_P_ ev_stat *w)
1815{
1816 int slot;
1817 int wd = w->wd;
1818
1819 if (wd < 0)
1820 return;
1821
1822 w->wd = -2;
1823 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1824 wlist_del (&fs_hash [slot].head, (WL)w);
1825
1826 /* remove this watcher, if others are watching it, they will rearm */
1827 inotify_rm_watch (fs_fd, wd);
1828}
1829
1830static void noinline
1831infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1832{
1833 if (slot < 0)
1834 /* overflow, need to check for all hahs slots */
1835 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1836 infy_wd (EV_A_ slot, wd, ev);
1837 else
1838 {
1839 WL w_;
1840
1841 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1842 {
1843 ev_stat *w = (ev_stat *)w_;
1844 w_ = w_->next; /* lets us remove this watcher and all before it */
1845
1846 if (w->wd == wd || wd == -1)
1847 {
1848 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1849 {
1850 w->wd = -1;
1851 infy_add (EV_A_ w); /* re-add, no matter what */
1852 }
1853
1854 stat_timer_cb (EV_A_ &w->timer, 0);
1855 }
1856 }
1857 }
1858}
1859
1860static void
1861infy_cb (EV_P_ ev_io *w, int revents)
1862{
1863 char buf [EV_INOTIFY_BUFSIZE];
1864 struct inotify_event *ev = (struct inotify_event *)buf;
1865 int ofs;
1866 int len = read (fs_fd, buf, sizeof (buf));
1867
1868 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1869 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1870}
1871
1872void inline_size
1873infy_init (EV_P)
1874{
1875 if (fs_fd != -2)
1876 return;
1877
1878 fs_fd = inotify_init ();
1879
1880 if (fs_fd >= 0)
1881 {
1882 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1883 ev_set_priority (&fs_w, EV_MAXPRI);
1884 ev_io_start (EV_A_ &fs_w);
1885 }
1886}
1887
1888void inline_size
1889infy_fork (EV_P)
1890{
1891 int slot;
1892
1893 if (fs_fd < 0)
1894 return;
1895
1896 close (fs_fd);
1897 fs_fd = inotify_init ();
1898
1899 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1900 {
1901 WL w_ = fs_hash [slot].head;
1902 fs_hash [slot].head = 0;
1903
1904 while (w_)
1905 {
1906 ev_stat *w = (ev_stat *)w_;
1907 w_ = w_->next; /* lets us add this watcher */
1908
1909 w->wd = -1;
1910
1911 if (fs_fd >= 0)
1912 infy_add (EV_A_ w); /* re-add, no matter what */
1913 else
1914 ev_timer_start (EV_A_ &w->timer);
1915 }
1916
1917 }
1918}
1919
1920#endif
1921
1922void
1923ev_stat_stat (EV_P_ ev_stat *w)
1924{
1925 if (lstat (w->path, &w->attr) < 0)
1926 w->attr.st_nlink = 0;
1927 else if (!w->attr.st_nlink)
1928 w->attr.st_nlink = 1;
1929}
1930
1931static void noinline
1932stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1933{
1934 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1935
1936 /* we copy this here each the time so that */
1937 /* prev has the old value when the callback gets invoked */
1938 w->prev = w->attr;
1939 ev_stat_stat (EV_A_ w);
1940
1941 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1942 if (
1943 w->prev.st_dev != w->attr.st_dev
1944 || w->prev.st_ino != w->attr.st_ino
1945 || w->prev.st_mode != w->attr.st_mode
1946 || w->prev.st_nlink != w->attr.st_nlink
1947 || w->prev.st_uid != w->attr.st_uid
1948 || w->prev.st_gid != w->attr.st_gid
1949 || w->prev.st_rdev != w->attr.st_rdev
1950 || w->prev.st_size != w->attr.st_size
1951 || w->prev.st_atime != w->attr.st_atime
1952 || w->prev.st_mtime != w->attr.st_mtime
1953 || w->prev.st_ctime != w->attr.st_ctime
1954 ) {
1955 #if EV_USE_INOTIFY
1956 infy_del (EV_A_ w);
1957 infy_add (EV_A_ w);
1958 ev_stat_stat (EV_A_ w); /* avoid race... */
1959 #endif
1960
1961 ev_feed_event (EV_A_ w, EV_STAT);
1962 }
1963}
1964
1965void
1966ev_stat_start (EV_P_ ev_stat *w)
1967{
1968 if (expect_false (ev_is_active (w)))
1969 return;
1970
1971 /* since we use memcmp, we need to clear any padding data etc. */
1972 memset (&w->prev, 0, sizeof (ev_statdata));
1973 memset (&w->attr, 0, sizeof (ev_statdata));
1974
1975 ev_stat_stat (EV_A_ w);
1976
1977 if (w->interval < MIN_STAT_INTERVAL)
1978 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1979
1980 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1981 ev_set_priority (&w->timer, ev_priority (w));
1982
1983#if EV_USE_INOTIFY
1984 infy_init (EV_A);
1985
1986 if (fs_fd >= 0)
1987 infy_add (EV_A_ w);
1988 else
1989#endif
1990 ev_timer_start (EV_A_ &w->timer);
1991
1992 ev_start (EV_A_ (W)w, 1);
1993}
1994
1995void
1996ev_stat_stop (EV_P_ ev_stat *w)
1997{
1998 ev_clear_pending (EV_A_ (W)w);
1999 if (expect_false (!ev_is_active (w)))
2000 return;
2001
2002#if EV_USE_INOTIFY
2003 infy_del (EV_A_ w);
2004#endif
2005 ev_timer_stop (EV_A_ &w->timer);
2006
2007 ev_stop (EV_A_ (W)w);
2008}
2009#endif
2010
2011void
2012ev_idle_start (EV_P_ ev_idle *w)
2013{
2014 if (expect_false (ev_is_active (w)))
2015 return;
2016
2017 ev_start (EV_A_ (W)w, ++idlecnt);
2018 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
2019 idles [idlecnt - 1] = w;
2020}
2021
2022void
2023ev_idle_stop (EV_P_ ev_idle *w)
2024{
2025 ev_clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w)))
2027 return;
2028
2029 {
2030 int active = ((W)w)->active;
2031 idles [active - 1] = idles [--idlecnt];
2032 ((W)idles [active - 1])->active = active;
2033 }
2034
2035 ev_stop (EV_A_ (W)w);
2036}
2037
2038void
2039ev_prepare_start (EV_P_ ev_prepare *w)
2040{
2041 if (expect_false (ev_is_active (w)))
2042 return;
2043
2044 ev_start (EV_A_ (W)w, ++preparecnt);
2045 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2046 prepares [preparecnt - 1] = w;
2047}
2048
2049void
2050ev_prepare_stop (EV_P_ ev_prepare *w)
2051{
2052 ev_clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w)))
2054 return;
2055
2056 {
2057 int active = ((W)w)->active;
2058 prepares [active - 1] = prepares [--preparecnt];
2059 ((W)prepares [active - 1])->active = active;
2060 }
2061
2062 ev_stop (EV_A_ (W)w);
2063}
2064
2065void
2066ev_check_start (EV_P_ ev_check *w)
2067{
2068 if (expect_false (ev_is_active (w)))
2069 return;
2070
2071 ev_start (EV_A_ (W)w, ++checkcnt);
2072 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2073 checks [checkcnt - 1] = w;
2074}
2075
2076void
2077ev_check_stop (EV_P_ ev_check *w)
2078{
2079 ev_clear_pending (EV_A_ (W)w);
2080 if (expect_false (!ev_is_active (w)))
2081 return;
2082
2083 {
2084 int active = ((W)w)->active;
2085 checks [active - 1] = checks [--checkcnt];
2086 ((W)checks [active - 1])->active = active;
2087 }
2088
2089 ev_stop (EV_A_ (W)w);
2090}
2091
2092#if EV_EMBED_ENABLE
2093void noinline
2094ev_embed_sweep (EV_P_ ev_embed *w)
2095{
2096 ev_loop (w->loop, EVLOOP_NONBLOCK);
2097}
2098
2099static void
2100embed_cb (EV_P_ ev_io *io, int revents)
2101{
2102 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2103
2104 if (ev_cb (w))
2105 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2106 else
2107 ev_embed_sweep (loop, w);
2108}
2109
2110void
2111ev_embed_start (EV_P_ ev_embed *w)
2112{
2113 if (expect_false (ev_is_active (w)))
2114 return;
2115
2116 {
2117 struct ev_loop *loop = w->loop;
2118 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2119 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2120 }
2121
2122 ev_set_priority (&w->io, ev_priority (w));
2123 ev_io_start (EV_A_ &w->io);
2124
2125 ev_start (EV_A_ (W)w, 1);
2126}
2127
2128void
2129ev_embed_stop (EV_P_ ev_embed *w)
2130{
2131 ev_clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w)))
2133 return;
2134
2135 ev_io_stop (EV_A_ &w->io);
2136
2137 ev_stop (EV_A_ (W)w);
2138}
2139#endif
2140
2141#if EV_FORK_ENABLE
2142void
2143ev_fork_start (EV_P_ ev_fork *w)
2144{
2145 if (expect_false (ev_is_active (w)))
2146 return;
2147
2148 ev_start (EV_A_ (W)w, ++forkcnt);
2149 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2150 forks [forkcnt - 1] = w;
2151}
2152
2153void
2154ev_fork_stop (EV_P_ ev_fork *w)
2155{
2156 ev_clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w)))
2158 return;
2159
2160 {
2161 int active = ((W)w)->active;
2162 forks [active - 1] = forks [--forkcnt];
2163 ((W)forks [active - 1])->active = active;
2164 }
2165
2166 ev_stop (EV_A_ (W)w);
2167}
2168#endif
2169
1658/*****************************************************************************/ 2170/*****************************************************************************/
1659 2171
1660struct ev_once 2172struct ev_once
1661{ 2173{
1662 struct ev_io io; 2174 ev_io io;
1663 struct ev_timer to; 2175 ev_timer to;
1664 void (*cb)(int revents, void *arg); 2176 void (*cb)(int revents, void *arg);
1665 void *arg; 2177 void *arg;
1666}; 2178};
1667 2179
1668static void 2180static void
1677 2189
1678 cb (revents, arg); 2190 cb (revents, arg);
1679} 2191}
1680 2192
1681static void 2193static void
1682once_cb_io (EV_P_ struct ev_io *w, int revents) 2194once_cb_io (EV_P_ ev_io *w, int revents)
1683{ 2195{
1684 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2196 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1685} 2197}
1686 2198
1687static void 2199static void
1688once_cb_to (EV_P_ struct ev_timer *w, int revents) 2200once_cb_to (EV_P_ ev_timer *w, int revents)
1689{ 2201{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2202 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1691} 2203}
1692 2204
1693void 2205void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines