ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.129 by root, Fri Nov 23 05:00:44 2007 UTC vs.
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
116# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 160# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
120# endif 163# endif
121#endif 164#endif
122 165
123/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
124 167
125#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
126# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
127#endif 170#endif
128 171
129#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
131#endif 178#endif
132 179
133#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
135#endif 182#endif
141# define EV_USE_POLL 1 188# define EV_USE_POLL 1
142# endif 189# endif
143#endif 190#endif
144 191
145#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
146# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
147#endif 198#endif
148 199
149#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
151#endif 202#endif
152 203
153#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 205# define EV_USE_PORT 0
155#endif 206#endif
156 207
157/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 241
159#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
162#endif 245#endif
164#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
167#endif 250#endif
168 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
169#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 268# include <winsock.h>
171#endif 269#endif
172 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
173/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 294
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 298
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 299#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 301# define noinline __attribute__ ((noinline))
189#else 302#else
190# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
191# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
192#endif 308#endif
193 309
194#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
196 319
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 322
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
202 325
203typedef struct ev_watcher *W; 326typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
206 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
208 335
209#ifdef _WIN32 336#ifdef _WIN32
210# include "ev_win32.c" 337# include "ev_win32.c"
211#endif 338#endif
212 339
213/*****************************************************************************/ 340/*****************************************************************************/
214 341
215static void (*syserr_cb)(const char *msg); 342static void (*syserr_cb)(const char *msg);
216 343
344void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 345ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 346{
219 syserr_cb = cb; 347 syserr_cb = cb;
220} 348}
221 349
222static void 350static void noinline
223syserr (const char *msg) 351syserr (const char *msg)
224{ 352{
225 if (!msg) 353 if (!msg)
226 msg = "(libev) system error"; 354 msg = "(libev) system error";
227 355
232 perror (msg); 360 perror (msg);
233 abort (); 361 abort ();
234 } 362 }
235} 363}
236 364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
237static void *(*alloc)(void *ptr, long size); 380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 381
382void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 383ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 384{
241 alloc = cb; 385 alloc = cb;
242} 386}
243 387
244static void * 388inline_speed void *
245ev_realloc (void *ptr, long size) 389ev_realloc (void *ptr, long size)
246{ 390{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 391 ptr = alloc (ptr, size);
248 392
249 if (!ptr && size) 393 if (!ptr && size)
250 { 394 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 396 abort ();
273typedef struct 417typedef struct
274{ 418{
275 W w; 419 W w;
276 int events; 420 int events;
277} ANPENDING; 421} ANPENDING;
422
423#if EV_USE_INOTIFY
424typedef struct
425{
426 WL head;
427} ANFS;
428#endif
278 429
279#if EV_MULTIPLICITY 430#if EV_MULTIPLICITY
280 431
281 struct ev_loop 432 struct ev_loop
282 { 433 {
316 gettimeofday (&tv, 0); 467 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 468 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 469#endif
319} 470}
320 471
321inline ev_tstamp 472ev_tstamp inline_size
322get_clock (void) 473get_clock (void)
323{ 474{
324#if EV_USE_MONOTONIC 475#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 476 if (expect_true (have_monotonic))
326 { 477 {
339{ 490{
340 return ev_rt_now; 491 return ev_rt_now;
341} 492}
342#endif 493#endif
343 494
344#define array_roundsize(type,n) (((n) | 4) & ~3) 495void
496ev_sleep (ev_tstamp delay)
497{
498 if (delay > 0.)
499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
519
520/*****************************************************************************/
521
522int inline_size
523array_nextsize (int elem, int cur, int cnt)
524{
525 int ncur = cur + 1;
526
527 do
528 ncur <<= 1;
529 while (cnt > ncur);
530
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096)
533 {
534 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
536 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem;
538 }
539
540 return ncur;
541}
542
543static noinline void *
544array_realloc (int elem, void *base, int *cur, int cnt)
545{
546 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur);
548}
345 549
346#define array_needsize(type,base,cur,cnt,init) \ 550#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 551 if (expect_false ((cnt) > (cur))) \
348 { \ 552 { \
349 int newcnt = cur; \ 553 int ocur_ = (cur); \
350 do \ 554 (base) = (type *)array_realloc \
351 { \ 555 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 556 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 557 }
360 558
559#if 0
361#define array_slim(type,stem) \ 560#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 561 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 562 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 563 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 564 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 566 }
567#endif
368 568
369#define array_free(stem, idx) \ 569#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 571
372/*****************************************************************************/ 572/*****************************************************************************/
373 573
374static void 574void noinline
575ev_feed_event (EV_P_ void *w, int revents)
576{
577 W w_ = (W)w;
578 int pri = ABSPRI (w_);
579
580 if (expect_false (w_->pending))
581 pendings [pri][w_->pending - 1].events |= revents;
582 else
583 {
584 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents;
588 }
589}
590
591void inline_speed
592queue_events (EV_P_ W *events, int eventcnt, int type)
593{
594 int i;
595
596 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type);
598}
599
600/*****************************************************************************/
601
602void inline_size
375anfds_init (ANFD *base, int count) 603anfds_init (ANFD *base, int count)
376{ 604{
377 while (count--) 605 while (count--)
378 { 606 {
379 base->head = 0; 607 base->head = 0;
382 610
383 ++base; 611 ++base;
384 } 612 }
385} 613}
386 614
387void 615void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 616fd_event (EV_P_ int fd, int revents)
415{ 617{
416 ANFD *anfd = anfds + fd; 618 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 619 ev_io *w;
418 620
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 622 {
421 int ev = w->events & revents; 623 int ev = w->events & revents;
422 624
423 if (ev) 625 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 626 ev_feed_event (EV_A_ (W)w, ev);
426} 628}
427 629
428void 630void
429ev_feed_fd_event (EV_P_ int fd, int revents) 631ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 632{
633 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 634 fd_event (EV_A_ fd, revents);
432} 635}
433 636
434/*****************************************************************************/ 637void inline_size
435
436inline void
437fd_reify (EV_P) 638fd_reify (EV_P)
438{ 639{
439 int i; 640 int i;
440 641
441 for (i = 0; i < fdchangecnt; ++i) 642 for (i = 0; i < fdchangecnt; ++i)
442 { 643 {
443 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 646 ev_io *w;
446 647
447 int events = 0; 648 unsigned char events = 0;
448 649
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 651 events |= (unsigned char)w->events;
451 652
452#if EV_SELECT_IS_WINSOCKET 653#if EV_SELECT_IS_WINSOCKET
453 if (events) 654 if (events)
454 { 655 {
455 unsigned long argp; 656 unsigned long argp;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
456 anfd->handle = _get_osfhandle (fd); 660 anfd->handle = _get_osfhandle (fd);
661 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 663 }
459#endif 664#endif
460 665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
461 anfd->reify = 0; 670 anfd->reify = 0;
462
463 method_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
465 } 676 }
466 677
467 fdchangecnt = 0; 678 fdchangecnt = 0;
468} 679}
469 680
470static void 681void inline_size
471fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
472{ 683{
473 if (expect_false (anfds [fd].reify)) 684 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
477 686
687 if (expect_true (!reify))
688 {
478 ++fdchangecnt; 689 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
481} 693}
482 694
483static void 695void inline_speed
484fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
485{ 697{
486 struct ev_io *w; 698 ev_io *w;
487 699
488 while ((w = (struct ev_io *)anfds [fd].head)) 700 while ((w = (ev_io *)anfds [fd].head))
489 { 701 {
490 ev_io_stop (EV_A_ w); 702 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 704 }
493} 705}
494 706
495inline int 707int inline_size
496fd_valid (int fd) 708fd_valid (int fd)
497{ 709{
498#ifdef _WIN32 710#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 711 return _get_osfhandle (fd) != -1;
500#else 712#else
501 return fcntl (fd, F_GETFD) != -1; 713 return fcntl (fd, F_GETFD) != -1;
502#endif 714#endif
503} 715}
504 716
505/* called on EBADF to verify fds */ 717/* called on EBADF to verify fds */
506static void 718static void noinline
507fd_ebadf (EV_P) 719fd_ebadf (EV_P)
508{ 720{
509 int fd; 721 int fd;
510 722
511 for (fd = 0; fd < anfdmax; ++fd) 723 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 725 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 726 fd_kill (EV_A_ fd);
515} 727}
516 728
517/* called on ENOMEM in select/poll to kill some fds and retry */ 729/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 730static void noinline
519fd_enomem (EV_P) 731fd_enomem (EV_P)
520{ 732{
521 int fd; 733 int fd;
522 734
523 for (fd = anfdmax; fd--; ) 735 for (fd = anfdmax; fd--; )
526 fd_kill (EV_A_ fd); 738 fd_kill (EV_A_ fd);
527 return; 739 return;
528 } 740 }
529} 741}
530 742
531/* usually called after fork if method needs to re-arm all fds from scratch */ 743/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 744static void noinline
533fd_rearm_all (EV_P) 745fd_rearm_all (EV_P)
534{ 746{
535 int fd; 747 int fd;
536 748
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 750 if (anfds [fd].events)
540 { 751 {
541 anfds [fd].events = 0; 752 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 754 }
544} 755}
545 756
546/*****************************************************************************/ 757/*****************************************************************************/
547 758
548static void 759void inline_speed
549upheap (WT *heap, int k) 760upheap (WT *heap, int k)
550{ 761{
551 WT w = heap [k]; 762 WT w = heap [k];
552 763
553 while (k && heap [k >> 1]->at > w->at) 764 while (k)
554 { 765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
555 heap [k] = heap [k >> 1]; 771 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 772 ((W)heap [k])->active = k + 1;
557 k >>= 1; 773 k = p;
558 } 774 }
559 775
560 heap [k] = w; 776 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
562
563} 778}
564 779
565static void 780void inline_speed
566downheap (WT *heap, int N, int k) 781downheap (WT *heap, int N, int k)
567{ 782{
568 WT w = heap [k]; 783 WT w = heap [k];
569 784
570 while (k < (N >> 1)) 785 for (;;)
571 { 786 {
572 int j = k << 1; 787 int c = (k << 1) + 1;
573 788
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 789 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 790 break;
579 791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
580 heap [k] = heap [j]; 798 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 799 ((W)heap [k])->active = k + 1;
800
582 k = j; 801 k = c;
583 } 802 }
584 803
585 heap [k] = w; 804 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k + 1;
587} 806}
588 807
589inline void 808void inline_size
590adjustheap (WT *heap, int N, int k) 809adjustheap (WT *heap, int N, int k)
591{ 810{
592 upheap (heap, k); 811 upheap (heap, k);
593 downheap (heap, N, k); 812 downheap (heap, N, k);
594} 813}
596/*****************************************************************************/ 815/*****************************************************************************/
597 816
598typedef struct 817typedef struct
599{ 818{
600 WL head; 819 WL head;
601 sig_atomic_t volatile gotsig; 820 EV_ATOMIC_T gotsig;
602} ANSIG; 821} ANSIG;
603 822
604static ANSIG *signals; 823static ANSIG *signals;
605static int signalmax; 824static int signalmax;
606 825
607static int sigpipe [2]; 826static EV_ATOMIC_T gotsig;
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 827
611static void 828void inline_size
612signals_init (ANSIG *base, int count) 829signals_init (ANSIG *base, int count)
613{ 830{
614 while (count--) 831 while (count--)
615 { 832 {
616 base->head = 0; 833 base->head = 0;
618 835
619 ++base; 836 ++base;
620 } 837 }
621} 838}
622 839
623static void 840/*****************************************************************************/
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629 841
630 signals [signum - 1].gotsig = 1; 842void inline_speed
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 843fd_intern (int fd)
676{ 844{
677#ifdef _WIN32 845#ifdef _WIN32
678 int arg = 1; 846 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 849 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 850 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 851#endif
684} 852}
685 853
854static void noinline
855evpipe_init (EV_P)
856{
857 if (!ev_is_active (&pipeev))
858 {
859#if EV_USE_EVENTFD
860 if ((evfd = eventfd (0, 0)) >= 0)
861 {
862 evpipe [0] = -1;
863 fd_intern (evfd);
864 ev_io_set (&pipeev, evfd, EV_READ);
865 }
866 else
867#endif
868 {
869 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe");
871
872 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ);
875 }
876
877 ev_io_start (EV_A_ &pipeev);
878 ev_unref (EV_A); /* watcher should not keep loop alive */
879 }
880}
881
882void inline_size
883evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{
885 if (!*flag)
886 {
887 int old_errno = errno; /* save errno because write might clobber it */
888
889 *flag = 1;
890
891#if EV_USE_EVENTFD
892 if (evfd >= 0)
893 {
894 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t));
896 }
897 else
898#endif
899 write (evpipe [1], &old_errno, 1);
900
901 errno = old_errno;
902 }
903}
904
686static void 905static void
687siginit (EV_P) 906pipecb (EV_P_ ev_io *iow, int revents)
688{ 907{
689 fd_intern (sigpipe [0]); 908#if EV_USE_EVENTFD
690 fd_intern (sigpipe [1]); 909 if (evfd >= 0)
910 {
911 uint64_t counter = 1;
912 read (evfd, &counter, sizeof (uint64_t));
913 }
914 else
915#endif
916 {
917 char dummy;
918 read (evpipe [0], &dummy, 1);
919 }
691 920
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 921 if (gotsig && ev_is_default_loop (EV_A))
693 ev_io_start (EV_A_ &sigev); 922 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 923 int signum;
924 gotsig = 0;
925
926 for (signum = signalmax; signum--; )
927 if (signals [signum].gotsig)
928 ev_feed_signal_event (EV_A_ signum + 1);
929 }
930
931#if EV_ASYNC_ENABLE
932 if (gotasync)
933 {
934 int i;
935 gotasync = 0;
936
937 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent)
939 {
940 asyncs [i]->sent = 0;
941 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
942 }
943 }
944#endif
695} 945}
696 946
697/*****************************************************************************/ 947/*****************************************************************************/
698 948
699static struct ev_child *childs [PID_HASHSIZE]; 949static void
950ev_sighandler (int signum)
951{
952#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct;
954#endif
955
956#if _WIN32
957 signal (signum, ev_sighandler);
958#endif
959
960 signals [signum - 1].gotsig = 1;
961 evpipe_write (EV_A_ &gotsig);
962}
963
964void noinline
965ev_feed_signal_event (EV_P_ int signum)
966{
967 WL w;
968
969#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif
972
973 --signum;
974
975 if (signum < 0 || signum >= signalmax)
976 return;
977
978 signals [signum].gotsig = 0;
979
980 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982}
983
984/*****************************************************************************/
985
986static WL childs [EV_PID_HASHSIZE];
700 987
701#ifndef _WIN32 988#ifndef _WIN32
702 989
703static struct ev_signal childev; 990static ev_signal childev;
991
992#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0
994#endif
995
996void inline_speed
997child_reap (EV_P_ int chain, int pid, int status)
998{
999 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001
1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 {
1004 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1)))
1006 {
1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1008 w->rpid = pid;
1009 w->rstatus = status;
1010 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1011 }
1012 }
1013}
704 1014
705#ifndef WCONTINUED 1015#ifndef WCONTINUED
706# define WCONTINUED 0 1016# define WCONTINUED 0
707#endif 1017#endif
708 1018
709static void 1019static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1020childcb (EV_P_ ev_signal *sw, int revents)
726{ 1021{
727 int pid, status; 1022 int pid, status;
728 1023
1024 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1025 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1026 if (!WCONTINUED
1027 || errno != EINVAL
1028 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1029 return;
1030
731 /* make sure we are called again until all childs have been reaped */ 1031 /* make sure we are called again until all children have been reaped */
1032 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1034
734 child_reap (EV_A_ sw, pid, pid, status); 1035 child_reap (EV_A_ pid, pid, status);
1036 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1038}
738 1039
739#endif 1040#endif
740 1041
741/*****************************************************************************/ 1042/*****************************************************************************/
767{ 1068{
768 return EV_VERSION_MINOR; 1069 return EV_VERSION_MINOR;
769} 1070}
770 1071
771/* return true if we are running with elevated privileges and should ignore env variables */ 1072/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1073int inline_size
773enable_secure (void) 1074enable_secure (void)
774{ 1075{
775#ifdef _WIN32 1076#ifdef _WIN32
776 return 0; 1077 return 0;
777#else 1078#else
781} 1082}
782 1083
783unsigned int 1084unsigned int
784ev_supported_backends (void) 1085ev_supported_backends (void)
785{ 1086{
786}
787
788unsigned int
789ev_recommended_backends (void)
790{
791 unsigned int flags; 1087 unsigned int flags = 0;
792 1088
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 1089 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 1090 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 1091 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 1092 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
798 1094
799 return flags; 1095 return flags;
800} 1096}
801 1097
802unsigned int 1098unsigned int
803ev_backend (EV_P) 1099ev_recommended_backends (void)
804{ 1100{
805 unsigned int flags = ev_recommended_backends (); 1101 unsigned int flags = ev_supported_backends ();
806 1102
807#ifndef __NetBSD__ 1103#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 1104 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1105 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1106 flags &= ~EVBACKEND_KQUEUE;
815#endif 1111#endif
816 1112
817 return flags; 1113 return flags;
818} 1114}
819 1115
820static void 1116unsigned int
1117ev_embeddable_backends (void)
1118{
1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1120
1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */
1123 flags &= ~EVBACKEND_EPOLL;
1124
1125 return flags;
1126}
1127
1128unsigned int
1129ev_backend (EV_P)
1130{
1131 return backend;
1132}
1133
1134unsigned int
1135ev_loop_count (EV_P)
1136{
1137 return loop_count;
1138}
1139
1140void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{
1143 io_blocktime = interval;
1144}
1145
1146void
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 timeout_blocktime = interval;
1150}
1151
1152static void noinline
821loop_init (EV_P_ unsigned int flags) 1153loop_init (EV_P_ unsigned int flags)
822{ 1154{
823 if (!method) 1155 if (!backend)
824 { 1156 {
825#if EV_USE_MONOTONIC 1157#if EV_USE_MONOTONIC
826 { 1158 {
827 struct timespec ts; 1159 struct timespec ts;
828 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
829 have_monotonic = 1; 1161 have_monotonic = 1;
830 } 1162 }
831#endif 1163#endif
832 1164
833 ev_rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
834 mn_now = get_clock (); 1166 mn_now = get_clock ();
835 now_floor = mn_now; 1167 now_floor = mn_now;
836 rtmn_diff = ev_rt_now - mn_now; 1168 rtmn_diff = ev_rt_now - mn_now;
1169
1170 io_blocktime = 0.;
1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif
1178
1179 /* pid check not overridable via env */
1180#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK)
1182 curpid = getpid ();
1183#endif
837 1184
838 if (!(flags & EVFLAG_NOENV) 1185 if (!(flags & EVFLAG_NOENV)
839 && !enable_secure () 1186 && !enable_secure ()
840 && getenv ("LIBEV_FLAGS")) 1187 && getenv ("LIBEV_FLAGS"))
841 flags = atoi (getenv ("LIBEV_FLAGS")); 1188 flags = atoi (getenv ("LIBEV_FLAGS"));
842 1189
843 if (!(flags & 0x0000ffffUL)) 1190 if (!(flags & 0x0000ffffU))
844 flags |= ev_recommended_backends (); 1191 flags |= ev_recommended_backends ();
845 1192
846 method = 0;
847#if EV_USE_PORT 1193#if EV_USE_PORT
848 if (!method && (flags & EVBACKEND_PORT )) method = port_init (EV_A_ flags); 1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
849#endif 1195#endif
850#if EV_USE_KQUEUE 1196#if EV_USE_KQUEUE
851 if (!method && (flags & EVBACKEND_KQUEUE)) method = kqueue_init (EV_A_ flags); 1197 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
852#endif 1198#endif
853#if EV_USE_EPOLL 1199#if EV_USE_EPOLL
854 if (!method && (flags & EVBACKEND_EPOLL )) method = epoll_init (EV_A_ flags); 1200 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
855#endif 1201#endif
856#if EV_USE_POLL 1202#if EV_USE_POLL
857 if (!method && (flags & EVBACKEND_POLL )) method = poll_init (EV_A_ flags); 1203 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
858#endif 1204#endif
859#if EV_USE_SELECT 1205#if EV_USE_SELECT
860 if (!method && (flags & EVBACKEND_SELECT)) method = select_init (EV_A_ flags); 1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
861#endif 1207#endif
862 1208
863 ev_init (&sigev, sigcb); 1209 ev_init (&pipeev, pipecb);
864 ev_set_priority (&sigev, EV_MAXPRI); 1210 ev_set_priority (&pipeev, EV_MAXPRI);
865 } 1211 }
866} 1212}
867 1213
868static void 1214static void noinline
869loop_destroy (EV_P) 1215loop_destroy (EV_P)
870{ 1216{
871 int i; 1217 int i;
872 1218
1219 if (ev_is_active (&pipeev))
1220 {
1221 ev_ref (EV_A); /* signal watcher */
1222 ev_io_stop (EV_A_ &pipeev);
1223
1224#if EV_USE_EVENTFD
1225 if (evfd >= 0)
1226 close (evfd);
1227#endif
1228
1229 if (evpipe [0] >= 0)
1230 {
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233 }
1234 }
1235
1236#if EV_USE_INOTIFY
1237 if (fs_fd >= 0)
1238 close (fs_fd);
1239#endif
1240
1241 if (backend_fd >= 0)
1242 close (backend_fd);
1243
873#if EV_USE_PORT 1244#if EV_USE_PORT
874 if (method == EVBACKEND_PORT ) port_destroy (EV_A); 1245 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
875#endif 1246#endif
876#if EV_USE_KQUEUE 1247#if EV_USE_KQUEUE
877 if (method == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1248 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
878#endif 1249#endif
879#if EV_USE_EPOLL 1250#if EV_USE_EPOLL
880 if (method == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 1251 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
881#endif 1252#endif
882#if EV_USE_POLL 1253#if EV_USE_POLL
883 if (method == EVBACKEND_POLL ) poll_destroy (EV_A); 1254 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
884#endif 1255#endif
885#if EV_USE_SELECT 1256#if EV_USE_SELECT
886 if (method == EVBACKEND_SELECT) select_destroy (EV_A); 1257 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
887#endif 1258#endif
888 1259
889 for (i = NUMPRI; i--; ) 1260 for (i = NUMPRI; i--; )
1261 {
890 array_free (pending, [i]); 1262 array_free (pending, [i]);
1263#if EV_IDLE_ENABLE
1264 array_free (idle, [i]);
1265#endif
1266 }
1267
1268 ev_free (anfds); anfdmax = 0;
891 1269
892 /* have to use the microsoft-never-gets-it-right macro */ 1270 /* have to use the microsoft-never-gets-it-right macro */
893 array_free (fdchange, EMPTY0); 1271 array_free (fdchange, EMPTY);
894 array_free (timer, EMPTY0); 1272 array_free (timer, EMPTY);
895#if EV_PERIODICS 1273#if EV_PERIODIC_ENABLE
896 array_free (periodic, EMPTY0); 1274 array_free (periodic, EMPTY);
897#endif 1275#endif
1276#if EV_FORK_ENABLE
898 array_free (idle, EMPTY0); 1277 array_free (fork, EMPTY);
1278#endif
899 array_free (prepare, EMPTY0); 1279 array_free (prepare, EMPTY);
900 array_free (check, EMPTY0); 1280 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY);
1283#endif
901 1284
902 method = 0; 1285 backend = 0;
903} 1286}
904 1287
905static void 1288#if EV_USE_INOTIFY
1289void inline_size infy_fork (EV_P);
1290#endif
1291
1292void inline_size
906loop_fork (EV_P) 1293loop_fork (EV_P)
907{ 1294{
908#if EV_USE_PORT 1295#if EV_USE_PORT
909 if (method == EVBACKEND_PORT ) port_fork (EV_A); 1296 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
910#endif 1297#endif
911#if EV_USE_KQUEUE 1298#if EV_USE_KQUEUE
912 if (method == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1299 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
913#endif 1300#endif
914#if EV_USE_EPOLL 1301#if EV_USE_EPOLL
915 if (method == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1302 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
916#endif 1303#endif
1304#if EV_USE_INOTIFY
1305 infy_fork (EV_A);
1306#endif
917 1307
918 if (ev_is_active (&sigev)) 1308 if (ev_is_active (&pipeev))
919 { 1309 {
920 /* default loop */ 1310 /* this "locks" the handlers against writing to the pipe */
1311 /* while we modify the fd vars */
1312 gotsig = 1;
1313#if EV_ASYNC_ENABLE
1314 gotasync = 1;
1315#endif
921 1316
922 ev_ref (EV_A); 1317 ev_ref (EV_A);
923 ev_io_stop (EV_A_ &sigev); 1318 ev_io_stop (EV_A_ &pipeev);
1319
1320#if EV_USE_EVENTFD
1321 if (evfd >= 0)
1322 close (evfd);
1323#endif
1324
1325 if (evpipe [0] >= 0)
1326 {
924 close (sigpipe [0]); 1327 close (evpipe [0]);
925 close (sigpipe [1]); 1328 close (evpipe [1]);
1329 }
926 1330
927 while (pipe (sigpipe))
928 syserr ("(libev) error creating pipe");
929
930 siginit (EV_A); 1331 evpipe_init (EV_A);
1332 /* now iterate over everything, in case we missed something */
1333 pipecb (EV_A_ &pipeev, EV_READ);
931 } 1334 }
932 1335
933 postfork = 0; 1336 postfork = 0;
934} 1337}
935 1338
941 1344
942 memset (loop, 0, sizeof (struct ev_loop)); 1345 memset (loop, 0, sizeof (struct ev_loop));
943 1346
944 loop_init (EV_A_ flags); 1347 loop_init (EV_A_ flags);
945 1348
946 if (ev_method (EV_A)) 1349 if (ev_backend (EV_A))
947 return loop; 1350 return loop;
948 1351
949 return 0; 1352 return 0;
950} 1353}
951 1354
957} 1360}
958 1361
959void 1362void
960ev_loop_fork (EV_P) 1363ev_loop_fork (EV_P)
961{ 1364{
962 postfork = 1; 1365 postfork = 1; /* must be in line with ev_default_fork */
963} 1366}
964 1367
965#endif 1368#endif
966 1369
967#if EV_MULTIPLICITY 1370#if EV_MULTIPLICITY
970#else 1373#else
971int 1374int
972ev_default_loop (unsigned int flags) 1375ev_default_loop (unsigned int flags)
973#endif 1376#endif
974{ 1377{
975 if (sigpipe [0] == sigpipe [1])
976 if (pipe (sigpipe))
977 return 0;
978
979 if (!ev_default_loop_ptr) 1378 if (!ev_default_loop_ptr)
980 { 1379 {
981#if EV_MULTIPLICITY 1380#if EV_MULTIPLICITY
982 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1381 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
983#else 1382#else
984 ev_default_loop_ptr = 1; 1383 ev_default_loop_ptr = 1;
985#endif 1384#endif
986 1385
987 loop_init (EV_A_ flags); 1386 loop_init (EV_A_ flags);
988 1387
989 if (ev_method (EV_A)) 1388 if (ev_backend (EV_A))
990 { 1389 {
991 siginit (EV_A);
992
993#ifndef _WIN32 1390#ifndef _WIN32
994 ev_signal_init (&childev, childcb, SIGCHLD); 1391 ev_signal_init (&childev, childcb, SIGCHLD);
995 ev_set_priority (&childev, EV_MAXPRI); 1392 ev_set_priority (&childev, EV_MAXPRI);
996 ev_signal_start (EV_A_ &childev); 1393 ev_signal_start (EV_A_ &childev);
997 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1394 ev_unref (EV_A); /* child watcher should not keep loop alive */
1014#ifndef _WIN32 1411#ifndef _WIN32
1015 ev_ref (EV_A); /* child watcher */ 1412 ev_ref (EV_A); /* child watcher */
1016 ev_signal_stop (EV_A_ &childev); 1413 ev_signal_stop (EV_A_ &childev);
1017#endif 1414#endif
1018 1415
1019 ev_ref (EV_A); /* signal watcher */
1020 ev_io_stop (EV_A_ &sigev);
1021
1022 close (sigpipe [0]); sigpipe [0] = 0;
1023 close (sigpipe [1]); sigpipe [1] = 0;
1024
1025 loop_destroy (EV_A); 1416 loop_destroy (EV_A);
1026} 1417}
1027 1418
1028void 1419void
1029ev_default_fork (void) 1420ev_default_fork (void)
1030{ 1421{
1031#if EV_MULTIPLICITY 1422#if EV_MULTIPLICITY
1032 struct ev_loop *loop = ev_default_loop_ptr; 1423 struct ev_loop *loop = ev_default_loop_ptr;
1033#endif 1424#endif
1034 1425
1035 if (method) 1426 if (backend)
1036 postfork = 1; 1427 postfork = 1; /* must be in line with ev_loop_fork */
1037} 1428}
1038 1429
1039/*****************************************************************************/ 1430/*****************************************************************************/
1040 1431
1041static int 1432void
1042any_pending (EV_P) 1433ev_invoke (EV_P_ void *w, int revents)
1043{ 1434{
1044 int pri; 1435 EV_CB_INVOKE ((W)w, revents);
1045
1046 for (pri = NUMPRI; pri--; )
1047 if (pendingcnt [pri])
1048 return 1;
1049
1050 return 0;
1051} 1436}
1052 1437
1053inline void 1438void inline_speed
1054call_pending (EV_P) 1439call_pending (EV_P)
1055{ 1440{
1056 int pri; 1441 int pri;
1057 1442
1058 for (pri = NUMPRI; pri--; ) 1443 for (pri = NUMPRI; pri--; )
1060 { 1445 {
1061 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1446 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1062 1447
1063 if (expect_true (p->w)) 1448 if (expect_true (p->w))
1064 { 1449 {
1450 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1451
1065 p->w->pending = 0; 1452 p->w->pending = 0;
1066 EV_CB_INVOKE (p->w, p->events); 1453 EV_CB_INVOKE (p->w, p->events);
1067 } 1454 }
1068 } 1455 }
1069} 1456}
1070 1457
1071inline void 1458void inline_size
1072timers_reify (EV_P) 1459timers_reify (EV_P)
1073{ 1460{
1074 while (timercnt && ((WT)timers [0])->at <= mn_now) 1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1075 { 1462 {
1076 struct ev_timer *w = timers [0]; 1463 ev_timer *w = (ev_timer *)timers [0];
1077 1464
1078 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1079 1466
1080 /* first reschedule or stop timer */ 1467 /* first reschedule or stop timer */
1081 if (w->repeat) 1468 if (w->repeat)
1082 { 1469 {
1083 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1084 1471
1085 ((WT)w)->at += w->repeat; 1472 ((WT)w)->at += w->repeat;
1086 if (((WT)w)->at < mn_now) 1473 if (((WT)w)->at < mn_now)
1087 ((WT)w)->at = mn_now; 1474 ((WT)w)->at = mn_now;
1088 1475
1089 downheap ((WT *)timers, timercnt, 0); 1476 downheap (timers, timercnt, 0);
1090 } 1477 }
1091 else 1478 else
1092 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1093 1480
1094 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1095 } 1482 }
1096} 1483}
1097 1484
1098#if EV_PERIODICS 1485#if EV_PERIODIC_ENABLE
1099inline void 1486void inline_size
1100periodics_reify (EV_P) 1487periodics_reify (EV_P)
1101{ 1488{
1102 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1103 { 1490 {
1104 struct ev_periodic *w = periodics [0]; 1491 ev_periodic *w = (ev_periodic *)periodics [0];
1105 1492
1106 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1107 1494
1108 /* first reschedule or stop timer */ 1495 /* first reschedule or stop timer */
1109 if (w->reschedule_cb) 1496 if (w->reschedule_cb)
1110 { 1497 {
1111 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1112 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1113 downheap ((WT *)periodics, periodiccnt, 0); 1500 downheap (periodics, periodiccnt, 0);
1114 } 1501 }
1115 else if (w->interval) 1502 else if (w->interval)
1116 { 1503 {
1117 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1118 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0); 1507 downheap (periodics, periodiccnt, 0);
1120 } 1508 }
1121 else 1509 else
1122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1123 1511
1124 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1125 } 1513 }
1126} 1514}
1127 1515
1128static void 1516static void noinline
1129periodics_reschedule (EV_P) 1517periodics_reschedule (EV_P)
1130{ 1518{
1131 int i; 1519 int i;
1132 1520
1133 /* adjust periodics after time jump */ 1521 /* adjust periodics after time jump */
1134 for (i = 0; i < periodiccnt; ++i) 1522 for (i = 0; i < periodiccnt; ++i)
1135 { 1523 {
1136 struct ev_periodic *w = periodics [i]; 1524 ev_periodic *w = (ev_periodic *)periodics [i];
1137 1525
1138 if (w->reschedule_cb) 1526 if (w->reschedule_cb)
1139 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1140 else if (w->interval) 1528 else if (w->interval)
1141 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1142 } 1530 }
1143 1531
1144 /* now rebuild the heap */ 1532 /* now rebuild the heap */
1145 for (i = periodiccnt >> 1; i--; ) 1533 for (i = periodiccnt >> 1; i--; )
1146 downheap ((WT *)periodics, periodiccnt, i); 1534 downheap (periodics, periodiccnt, i);
1147} 1535}
1148#endif 1536#endif
1149 1537
1150inline int 1538#if EV_IDLE_ENABLE
1151time_update_monotonic (EV_P) 1539void inline_size
1540idle_reify (EV_P)
1152{ 1541{
1542 if (expect_false (idleall))
1543 {
1544 int pri;
1545
1546 for (pri = NUMPRI; pri--; )
1547 {
1548 if (pendingcnt [pri])
1549 break;
1550
1551 if (idlecnt [pri])
1552 {
1553 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1554 break;
1555 }
1556 }
1557 }
1558}
1559#endif
1560
1561void inline_speed
1562time_update (EV_P_ ev_tstamp max_block)
1563{
1564 int i;
1565
1566#if EV_USE_MONOTONIC
1567 if (expect_true (have_monotonic))
1568 {
1569 ev_tstamp odiff = rtmn_diff;
1570
1153 mn_now = get_clock (); 1571 mn_now = get_clock ();
1154 1572
1573 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1574 /* interpolate in the meantime */
1155 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1575 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1156 { 1576 {
1157 ev_rt_now = rtmn_diff + mn_now; 1577 ev_rt_now = rtmn_diff + mn_now;
1158 return 0; 1578 return;
1159 } 1579 }
1160 else 1580
1161 {
1162 now_floor = mn_now; 1581 now_floor = mn_now;
1163 ev_rt_now = ev_time (); 1582 ev_rt_now = ev_time ();
1164 return 1;
1165 }
1166}
1167 1583
1168inline void 1584 /* loop a few times, before making important decisions.
1169time_update (EV_P) 1585 * on the choice of "4": one iteration isn't enough,
1170{ 1586 * in case we get preempted during the calls to
1171 int i; 1587 * ev_time and get_clock. a second call is almost guaranteed
1172 1588 * to succeed in that case, though. and looping a few more times
1173#if EV_USE_MONOTONIC 1589 * doesn't hurt either as we only do this on time-jumps or
1174 if (expect_true (have_monotonic)) 1590 * in the unlikely event of having been preempted here.
1175 { 1591 */
1176 if (time_update_monotonic (EV_A)) 1592 for (i = 4; --i; )
1177 { 1593 {
1178 ev_tstamp odiff = rtmn_diff;
1179
1180 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1181 {
1182 rtmn_diff = ev_rt_now - mn_now; 1594 rtmn_diff = ev_rt_now - mn_now;
1183 1595
1184 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1185 return; /* all is well */ 1597 return; /* all is well */
1186 1598
1187 ev_rt_now = ev_time (); 1599 ev_rt_now = ev_time ();
1188 mn_now = get_clock (); 1600 mn_now = get_clock ();
1189 now_floor = mn_now; 1601 now_floor = mn_now;
1190 } 1602 }
1191 1603
1192# if EV_PERIODICS 1604# if EV_PERIODIC_ENABLE
1605 periodics_reschedule (EV_A);
1606# endif
1607 /* no timer adjustment, as the monotonic clock doesn't jump */
1608 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609 }
1610 else
1611#endif
1612 {
1613 ev_rt_now = ev_time ();
1614
1615 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1616 {
1617#if EV_PERIODIC_ENABLE
1193 periodics_reschedule (EV_A); 1618 periodics_reschedule (EV_A);
1194# endif 1619#endif
1195 /* no timer adjustment, as the monotonic clock doesn't jump */
1196 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1197 }
1198 }
1199 else
1200#endif
1201 {
1202 ev_rt_now = ev_time ();
1203
1204 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1205 {
1206#if EV_PERIODICS
1207 periodics_reschedule (EV_A);
1208#endif
1209
1210 /* adjust timers. this is easy, as the offset is the same for all */ 1620 /* adjust timers. this is easy, as the offset is the same for all of them */
1211 for (i = 0; i < timercnt; ++i) 1621 for (i = 0; i < timercnt; ++i)
1212 ((WT)timers [i])->at += ev_rt_now - mn_now; 1622 ((WT)timers [i])->at += ev_rt_now - mn_now;
1213 } 1623 }
1214 1624
1215 mn_now = ev_rt_now; 1625 mn_now = ev_rt_now;
1231static int loop_done; 1641static int loop_done;
1232 1642
1233void 1643void
1234ev_loop (EV_P_ int flags) 1644ev_loop (EV_P_ int flags)
1235{ 1645{
1236 double block; 1646 loop_done = EVUNLOOP_CANCEL;
1237 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1238 1647
1239 while (activecnt) 1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1649
1650 do
1240 { 1651 {
1652#ifndef _WIN32
1653 if (expect_false (curpid)) /* penalise the forking check even more */
1654 if (expect_false (getpid () != curpid))
1655 {
1656 curpid = getpid ();
1657 postfork = 1;
1658 }
1659#endif
1660
1661#if EV_FORK_ENABLE
1662 /* we might have forked, so queue fork handlers */
1663 if (expect_false (postfork))
1664 if (forkcnt)
1665 {
1666 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1667 call_pending (EV_A);
1668 }
1669#endif
1670
1241 /* queue check watchers (and execute them) */ 1671 /* queue prepare watchers (and execute them) */
1242 if (expect_false (preparecnt)) 1672 if (expect_false (preparecnt))
1243 { 1673 {
1244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1674 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1245 call_pending (EV_A); 1675 call_pending (EV_A);
1246 } 1676 }
1247 1677
1678 if (expect_false (!activecnt))
1679 break;
1680
1248 /* we might have forked, so reify kernel state if necessary */ 1681 /* we might have forked, so reify kernel state if necessary */
1249 if (expect_false (postfork)) 1682 if (expect_false (postfork))
1250 loop_fork (EV_A); 1683 loop_fork (EV_A);
1251 1684
1252 /* update fd-related kernel structures */ 1685 /* update fd-related kernel structures */
1253 fd_reify (EV_A); 1686 fd_reify (EV_A);
1254 1687
1255 /* calculate blocking time */ 1688 /* calculate blocking time */
1689 {
1690 ev_tstamp waittime = 0.;
1691 ev_tstamp sleeptime = 0.;
1256 1692
1257 /* we only need this for !monotonic clock or timers, but as we basically 1693 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1258 always have timers, we just calculate it always */
1259#if EV_USE_MONOTONIC
1260 if (expect_true (have_monotonic))
1261 time_update_monotonic (EV_A);
1262 else
1263#endif
1264 { 1694 {
1265 ev_rt_now = ev_time (); 1695 /* update time to cancel out callback processing overhead */
1266 mn_now = ev_rt_now; 1696 time_update (EV_A_ 1e100);
1267 }
1268 1697
1269 if (flags & EVLOOP_NONBLOCK || idlecnt)
1270 block = 0.;
1271 else
1272 {
1273 block = MAX_BLOCKTIME; 1698 waittime = MAX_BLOCKTIME;
1274 1699
1275 if (timercnt) 1700 if (timercnt)
1276 { 1701 {
1277 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1278 if (block > to) block = to; 1703 if (waittime > to) waittime = to;
1279 } 1704 }
1280 1705
1281#if EV_PERIODICS 1706#if EV_PERIODIC_ENABLE
1282 if (periodiccnt) 1707 if (periodiccnt)
1283 { 1708 {
1284 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1285 if (block > to) block = to; 1710 if (waittime > to) waittime = to;
1286 } 1711 }
1287#endif 1712#endif
1288 1713
1289 if (expect_false (block < 0.)) block = 0.; 1714 if (expect_false (waittime < timeout_blocktime))
1715 waittime = timeout_blocktime;
1716
1717 sleeptime = waittime - backend_fudge;
1718
1719 if (expect_true (sleeptime > io_blocktime))
1720 sleeptime = io_blocktime;
1721
1722 if (sleeptime)
1723 {
1724 ev_sleep (sleeptime);
1725 waittime -= sleeptime;
1726 }
1290 } 1727 }
1291 1728
1292 method_poll (EV_A_ block); 1729 ++loop_count;
1730 backend_poll (EV_A_ waittime);
1293 1731
1294 /* update ev_rt_now, do magic */ 1732 /* update ev_rt_now, do magic */
1295 time_update (EV_A); 1733 time_update (EV_A_ waittime + sleeptime);
1734 }
1296 1735
1297 /* queue pending timers and reschedule them */ 1736 /* queue pending timers and reschedule them */
1298 timers_reify (EV_A); /* relative timers called last */ 1737 timers_reify (EV_A); /* relative timers called last */
1299#if EV_PERIODICS 1738#if EV_PERIODIC_ENABLE
1300 periodics_reify (EV_A); /* absolute timers called first */ 1739 periodics_reify (EV_A); /* absolute timers called first */
1301#endif 1740#endif
1302 1741
1742#if EV_IDLE_ENABLE
1303 /* queue idle watchers unless io or timers are pending */ 1743 /* queue idle watchers unless other events are pending */
1304 if (idlecnt && !any_pending (EV_A)) 1744 idle_reify (EV_A);
1305 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1745#endif
1306 1746
1307 /* queue check watchers, to be executed first */ 1747 /* queue check watchers, to be executed first */
1308 if (expect_false (checkcnt)) 1748 if (expect_false (checkcnt))
1309 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1749 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1310 1750
1311 call_pending (EV_A); 1751 call_pending (EV_A);
1312
1313 if (expect_false (loop_done))
1314 break;
1315 } 1752 }
1753 while (expect_true (
1754 activecnt
1755 && !loop_done
1756 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1757 ));
1316 1758
1317 if (loop_done != 2) 1759 if (loop_done == EVUNLOOP_ONE)
1318 loop_done = 0; 1760 loop_done = EVUNLOOP_CANCEL;
1319} 1761}
1320 1762
1321void 1763void
1322ev_unloop (EV_P_ int how) 1764ev_unloop (EV_P_ int how)
1323{ 1765{
1324 loop_done = how; 1766 loop_done = how;
1325} 1767}
1326 1768
1327/*****************************************************************************/ 1769/*****************************************************************************/
1328 1770
1329inline void 1771void inline_size
1330wlist_add (WL *head, WL elem) 1772wlist_add (WL *head, WL elem)
1331{ 1773{
1332 elem->next = *head; 1774 elem->next = *head;
1333 *head = elem; 1775 *head = elem;
1334} 1776}
1335 1777
1336inline void 1778void inline_size
1337wlist_del (WL *head, WL elem) 1779wlist_del (WL *head, WL elem)
1338{ 1780{
1339 while (*head) 1781 while (*head)
1340 { 1782 {
1341 if (*head == elem) 1783 if (*head == elem)
1346 1788
1347 head = &(*head)->next; 1789 head = &(*head)->next;
1348 } 1790 }
1349} 1791}
1350 1792
1351inline void 1793void inline_speed
1352ev_clear_pending (EV_P_ W w) 1794clear_pending (EV_P_ W w)
1353{ 1795{
1354 if (w->pending) 1796 if (w->pending)
1355 { 1797 {
1356 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1798 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1357 w->pending = 0; 1799 w->pending = 0;
1358 } 1800 }
1359} 1801}
1360 1802
1361inline void 1803int
1804ev_clear_pending (EV_P_ void *w)
1805{
1806 W w_ = (W)w;
1807 int pending = w_->pending;
1808
1809 if (expect_true (pending))
1810 {
1811 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1812 w_->pending = 0;
1813 p->w = 0;
1814 return p->events;
1815 }
1816 else
1817 return 0;
1818}
1819
1820void inline_size
1821pri_adjust (EV_P_ W w)
1822{
1823 int pri = w->priority;
1824 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1825 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1826 w->priority = pri;
1827}
1828
1829void inline_speed
1362ev_start (EV_P_ W w, int active) 1830ev_start (EV_P_ W w, int active)
1363{ 1831{
1364 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1832 pri_adjust (EV_A_ w);
1365 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1366
1367 w->active = active; 1833 w->active = active;
1368 ev_ref (EV_A); 1834 ev_ref (EV_A);
1369} 1835}
1370 1836
1371inline void 1837void inline_size
1372ev_stop (EV_P_ W w) 1838ev_stop (EV_P_ W w)
1373{ 1839{
1374 ev_unref (EV_A); 1840 ev_unref (EV_A);
1375 w->active = 0; 1841 w->active = 0;
1376} 1842}
1377 1843
1378/*****************************************************************************/ 1844/*****************************************************************************/
1379 1845
1380void 1846void noinline
1381ev_io_start (EV_P_ struct ev_io *w) 1847ev_io_start (EV_P_ ev_io *w)
1382{ 1848{
1383 int fd = w->fd; 1849 int fd = w->fd;
1384 1850
1385 if (expect_false (ev_is_active (w))) 1851 if (expect_false (ev_is_active (w)))
1386 return; 1852 return;
1387 1853
1388 assert (("ev_io_start called with negative fd", fd >= 0)); 1854 assert (("ev_io_start called with negative fd", fd >= 0));
1389 1855
1390 ev_start (EV_A_ (W)w, 1); 1856 ev_start (EV_A_ (W)w, 1);
1391 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1392 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1858 wlist_add (&anfds[fd].head, (WL)w);
1393 1859
1394 fd_change (EV_A_ fd); 1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1861 w->events &= ~EV_IOFDSET;
1395} 1862}
1396 1863
1397void 1864void noinline
1398ev_io_stop (EV_P_ struct ev_io *w) 1865ev_io_stop (EV_P_ ev_io *w)
1399{ 1866{
1400 ev_clear_pending (EV_A_ (W)w); 1867 clear_pending (EV_A_ (W)w);
1401 if (expect_false (!ev_is_active (w))) 1868 if (expect_false (!ev_is_active (w)))
1402 return; 1869 return;
1403 1870
1404 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1405 1872
1406 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1873 wlist_del (&anfds[w->fd].head, (WL)w);
1407 ev_stop (EV_A_ (W)w); 1874 ev_stop (EV_A_ (W)w);
1408 1875
1409 fd_change (EV_A_ w->fd); 1876 fd_change (EV_A_ w->fd, 1);
1410} 1877}
1411 1878
1412void 1879void noinline
1413ev_timer_start (EV_P_ struct ev_timer *w) 1880ev_timer_start (EV_P_ ev_timer *w)
1414{ 1881{
1415 if (expect_false (ev_is_active (w))) 1882 if (expect_false (ev_is_active (w)))
1416 return; 1883 return;
1417 1884
1418 ((WT)w)->at += mn_now; 1885 ((WT)w)->at += mn_now;
1419 1886
1420 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1421 1888
1422 ev_start (EV_A_ (W)w, ++timercnt); 1889 ev_start (EV_A_ (W)w, ++timercnt);
1423 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1424 timers [timercnt - 1] = w; 1891 timers [timercnt - 1] = (WT)w;
1425 upheap ((WT *)timers, timercnt - 1); 1892 upheap (timers, timercnt - 1);
1426 1893
1427 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1428} 1895}
1429 1896
1430void 1897void noinline
1431ev_timer_stop (EV_P_ struct ev_timer *w) 1898ev_timer_stop (EV_P_ ev_timer *w)
1432{ 1899{
1433 ev_clear_pending (EV_A_ (W)w); 1900 clear_pending (EV_A_ (W)w);
1434 if (expect_false (!ev_is_active (w))) 1901 if (expect_false (!ev_is_active (w)))
1435 return; 1902 return;
1436 1903
1437 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1438 1905
1906 {
1907 int active = ((W)w)->active;
1908
1439 if (expect_true (((W)w)->active < timercnt--)) 1909 if (expect_true (--active < --timercnt))
1440 { 1910 {
1441 timers [((W)w)->active - 1] = timers [timercnt]; 1911 timers [active] = timers [timercnt];
1442 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1912 adjustheap (timers, timercnt, active);
1443 } 1913 }
1914 }
1444 1915
1445 ((WT)w)->at -= mn_now; 1916 ((WT)w)->at -= mn_now;
1446 1917
1447 ev_stop (EV_A_ (W)w); 1918 ev_stop (EV_A_ (W)w);
1448} 1919}
1449 1920
1450void 1921void noinline
1451ev_timer_again (EV_P_ struct ev_timer *w) 1922ev_timer_again (EV_P_ ev_timer *w)
1452{ 1923{
1453 if (ev_is_active (w)) 1924 if (ev_is_active (w))
1454 { 1925 {
1455 if (w->repeat) 1926 if (w->repeat)
1456 { 1927 {
1457 ((WT)w)->at = mn_now + w->repeat; 1928 ((WT)w)->at = mn_now + w->repeat;
1458 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1929 adjustheap (timers, timercnt, ((W)w)->active - 1);
1459 } 1930 }
1460 else 1931 else
1461 ev_timer_stop (EV_A_ w); 1932 ev_timer_stop (EV_A_ w);
1462 } 1933 }
1463 else if (w->repeat) 1934 else if (w->repeat)
1465 w->at = w->repeat; 1936 w->at = w->repeat;
1466 ev_timer_start (EV_A_ w); 1937 ev_timer_start (EV_A_ w);
1467 } 1938 }
1468} 1939}
1469 1940
1470#if EV_PERIODICS 1941#if EV_PERIODIC_ENABLE
1471void 1942void noinline
1472ev_periodic_start (EV_P_ struct ev_periodic *w) 1943ev_periodic_start (EV_P_ ev_periodic *w)
1473{ 1944{
1474 if (expect_false (ev_is_active (w))) 1945 if (expect_false (ev_is_active (w)))
1475 return; 1946 return;
1476 1947
1477 if (w->reschedule_cb) 1948 if (w->reschedule_cb)
1478 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1479 else if (w->interval) 1950 else if (w->interval)
1480 { 1951 {
1481 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1482 /* this formula differs from the one in periodic_reify because we do not always round up */ 1953 /* this formula differs from the one in periodic_reify because we do not always round up */
1483 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1484 } 1955 }
1956 else
1957 ((WT)w)->at = w->offset;
1485 1958
1486 ev_start (EV_A_ (W)w, ++periodiccnt); 1959 ev_start (EV_A_ (W)w, ++periodiccnt);
1487 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1488 periodics [periodiccnt - 1] = w; 1961 periodics [periodiccnt - 1] = (WT)w;
1489 upheap ((WT *)periodics, periodiccnt - 1); 1962 upheap (periodics, periodiccnt - 1);
1490 1963
1491 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1492} 1965}
1493 1966
1494void 1967void noinline
1495ev_periodic_stop (EV_P_ struct ev_periodic *w) 1968ev_periodic_stop (EV_P_ ev_periodic *w)
1496{ 1969{
1497 ev_clear_pending (EV_A_ (W)w); 1970 clear_pending (EV_A_ (W)w);
1498 if (expect_false (!ev_is_active (w))) 1971 if (expect_false (!ev_is_active (w)))
1499 return; 1972 return;
1500 1973
1501 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1502 1975
1976 {
1977 int active = ((W)w)->active;
1978
1503 if (expect_true (((W)w)->active < periodiccnt--)) 1979 if (expect_true (--active < --periodiccnt))
1504 { 1980 {
1505 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1981 periodics [active] = periodics [periodiccnt];
1506 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1982 adjustheap (periodics, periodiccnt, active);
1507 } 1983 }
1984 }
1508 1985
1509 ev_stop (EV_A_ (W)w); 1986 ev_stop (EV_A_ (W)w);
1510} 1987}
1511 1988
1512void 1989void noinline
1513ev_periodic_again (EV_P_ struct ev_periodic *w) 1990ev_periodic_again (EV_P_ ev_periodic *w)
1514{ 1991{
1515 /* TODO: use adjustheap and recalculation */ 1992 /* TODO: use adjustheap and recalculation */
1516 ev_periodic_stop (EV_A_ w); 1993 ev_periodic_stop (EV_A_ w);
1517 ev_periodic_start (EV_A_ w); 1994 ev_periodic_start (EV_A_ w);
1518} 1995}
1519#endif 1996#endif
1520 1997
1521void
1522ev_idle_start (EV_P_ struct ev_idle *w)
1523{
1524 if (expect_false (ev_is_active (w)))
1525 return;
1526
1527 ev_start (EV_A_ (W)w, ++idlecnt);
1528 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1529 idles [idlecnt - 1] = w;
1530}
1531
1532void
1533ev_idle_stop (EV_P_ struct ev_idle *w)
1534{
1535 ev_clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w)))
1537 return;
1538
1539 idles [((W)w)->active - 1] = idles [--idlecnt];
1540 ev_stop (EV_A_ (W)w);
1541}
1542
1543void
1544ev_prepare_start (EV_P_ struct ev_prepare *w)
1545{
1546 if (expect_false (ev_is_active (w)))
1547 return;
1548
1549 ev_start (EV_A_ (W)w, ++preparecnt);
1550 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1551 prepares [preparecnt - 1] = w;
1552}
1553
1554void
1555ev_prepare_stop (EV_P_ struct ev_prepare *w)
1556{
1557 ev_clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w)))
1559 return;
1560
1561 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1562 ev_stop (EV_A_ (W)w);
1563}
1564
1565void
1566ev_check_start (EV_P_ struct ev_check *w)
1567{
1568 if (expect_false (ev_is_active (w)))
1569 return;
1570
1571 ev_start (EV_A_ (W)w, ++checkcnt);
1572 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1573 checks [checkcnt - 1] = w;
1574}
1575
1576void
1577ev_check_stop (EV_P_ struct ev_check *w)
1578{
1579 ev_clear_pending (EV_A_ (W)w);
1580 if (expect_false (!ev_is_active (w)))
1581 return;
1582
1583 checks [((W)w)->active - 1] = checks [--checkcnt];
1584 ev_stop (EV_A_ (W)w);
1585}
1586
1587#ifndef SA_RESTART 1998#ifndef SA_RESTART
1588# define SA_RESTART 0 1999# define SA_RESTART 0
1589#endif 2000#endif
1590 2001
1591void 2002void noinline
1592ev_signal_start (EV_P_ struct ev_signal *w) 2003ev_signal_start (EV_P_ ev_signal *w)
1593{ 2004{
1594#if EV_MULTIPLICITY 2005#if EV_MULTIPLICITY
1595 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2006 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1596#endif 2007#endif
1597 if (expect_false (ev_is_active (w))) 2008 if (expect_false (ev_is_active (w)))
1598 return; 2009 return;
1599 2010
1600 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1601 2012
2013 evpipe_init (EV_A);
2014
2015 {
2016#ifndef _WIN32
2017 sigset_t full, prev;
2018 sigfillset (&full);
2019 sigprocmask (SIG_SETMASK, &full, &prev);
2020#endif
2021
2022 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2023
2024#ifndef _WIN32
2025 sigprocmask (SIG_SETMASK, &prev, 0);
2026#endif
2027 }
2028
1602 ev_start (EV_A_ (W)w, 1); 2029 ev_start (EV_A_ (W)w, 1);
1603 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1604 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2030 wlist_add (&signals [w->signum - 1].head, (WL)w);
1605 2031
1606 if (!((WL)w)->next) 2032 if (!((WL)w)->next)
1607 { 2033 {
1608#if _WIN32 2034#if _WIN32
1609 signal (w->signum, sighandler); 2035 signal (w->signum, ev_sighandler);
1610#else 2036#else
1611 struct sigaction sa; 2037 struct sigaction sa;
1612 sa.sa_handler = sighandler; 2038 sa.sa_handler = ev_sighandler;
1613 sigfillset (&sa.sa_mask); 2039 sigfillset (&sa.sa_mask);
1614 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1615 sigaction (w->signum, &sa, 0); 2041 sigaction (w->signum, &sa, 0);
1616#endif 2042#endif
1617 } 2043 }
1618} 2044}
1619 2045
1620void 2046void noinline
1621ev_signal_stop (EV_P_ struct ev_signal *w) 2047ev_signal_stop (EV_P_ ev_signal *w)
1622{ 2048{
1623 ev_clear_pending (EV_A_ (W)w); 2049 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2050 if (expect_false (!ev_is_active (w)))
1625 return; 2051 return;
1626 2052
1627 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2053 wlist_del (&signals [w->signum - 1].head, (WL)w);
1628 ev_stop (EV_A_ (W)w); 2054 ev_stop (EV_A_ (W)w);
1629 2055
1630 if (!signals [w->signum - 1].head) 2056 if (!signals [w->signum - 1].head)
1631 signal (w->signum, SIG_DFL); 2057 signal (w->signum, SIG_DFL);
1632} 2058}
1633 2059
1634void 2060void
1635ev_child_start (EV_P_ struct ev_child *w) 2061ev_child_start (EV_P_ ev_child *w)
1636{ 2062{
1637#if EV_MULTIPLICITY 2063#if EV_MULTIPLICITY
1638 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2064 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1639#endif 2065#endif
1640 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1641 return; 2067 return;
1642 2068
1643 ev_start (EV_A_ (W)w, 1); 2069 ev_start (EV_A_ (W)w, 1);
1644 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1645} 2071}
1646 2072
1647void 2073void
1648ev_child_stop (EV_P_ struct ev_child *w) 2074ev_child_stop (EV_P_ ev_child *w)
1649{ 2075{
1650 ev_clear_pending (EV_A_ (W)w); 2076 clear_pending (EV_A_ (W)w);
1651 if (expect_false (!ev_is_active (w))) 2077 if (expect_false (!ev_is_active (w)))
1652 return; 2078 return;
1653 2079
1654 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1655 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1656} 2082}
1657 2083
2084#if EV_STAT_ENABLE
2085
2086# ifdef _WIN32
2087# undef lstat
2088# define lstat(a,b) _stati64 (a,b)
2089# endif
2090
2091#define DEF_STAT_INTERVAL 5.0074891
2092#define MIN_STAT_INTERVAL 0.1074891
2093
2094static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2095
2096#if EV_USE_INOTIFY
2097# define EV_INOTIFY_BUFSIZE 8192
2098
2099static void noinline
2100infy_add (EV_P_ ev_stat *w)
2101{
2102 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2103
2104 if (w->wd < 0)
2105 {
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2107
2108 /* monitor some parent directory for speedup hints */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 {
2111 char path [4096];
2112 strcpy (path, w->path);
2113
2114 do
2115 {
2116 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2117 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2118
2119 char *pend = strrchr (path, '/');
2120
2121 if (!pend)
2122 break; /* whoops, no '/', complain to your admin */
2123
2124 *pend = 0;
2125 w->wd = inotify_add_watch (fs_fd, path, mask);
2126 }
2127 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2128 }
2129 }
2130 else
2131 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2132
2133 if (w->wd >= 0)
2134 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2135}
2136
2137static void noinline
2138infy_del (EV_P_ ev_stat *w)
2139{
2140 int slot;
2141 int wd = w->wd;
2142
2143 if (wd < 0)
2144 return;
2145
2146 w->wd = -2;
2147 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2148 wlist_del (&fs_hash [slot].head, (WL)w);
2149
2150 /* remove this watcher, if others are watching it, they will rearm */
2151 inotify_rm_watch (fs_fd, wd);
2152}
2153
2154static void noinline
2155infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2156{
2157 if (slot < 0)
2158 /* overflow, need to check for all hahs slots */
2159 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2160 infy_wd (EV_A_ slot, wd, ev);
2161 else
2162 {
2163 WL w_;
2164
2165 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2166 {
2167 ev_stat *w = (ev_stat *)w_;
2168 w_ = w_->next; /* lets us remove this watcher and all before it */
2169
2170 if (w->wd == wd || wd == -1)
2171 {
2172 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2173 {
2174 w->wd = -1;
2175 infy_add (EV_A_ w); /* re-add, no matter what */
2176 }
2177
2178 stat_timer_cb (EV_A_ &w->timer, 0);
2179 }
2180 }
2181 }
2182}
2183
2184static void
2185infy_cb (EV_P_ ev_io *w, int revents)
2186{
2187 char buf [EV_INOTIFY_BUFSIZE];
2188 struct inotify_event *ev = (struct inotify_event *)buf;
2189 int ofs;
2190 int len = read (fs_fd, buf, sizeof (buf));
2191
2192 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2193 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2194}
2195
2196void inline_size
2197infy_init (EV_P)
2198{
2199 if (fs_fd != -2)
2200 return;
2201
2202 fs_fd = inotify_init ();
2203
2204 if (fs_fd >= 0)
2205 {
2206 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2207 ev_set_priority (&fs_w, EV_MAXPRI);
2208 ev_io_start (EV_A_ &fs_w);
2209 }
2210}
2211
2212void inline_size
2213infy_fork (EV_P)
2214{
2215 int slot;
2216
2217 if (fs_fd < 0)
2218 return;
2219
2220 close (fs_fd);
2221 fs_fd = inotify_init ();
2222
2223 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2224 {
2225 WL w_ = fs_hash [slot].head;
2226 fs_hash [slot].head = 0;
2227
2228 while (w_)
2229 {
2230 ev_stat *w = (ev_stat *)w_;
2231 w_ = w_->next; /* lets us add this watcher */
2232
2233 w->wd = -1;
2234
2235 if (fs_fd >= 0)
2236 infy_add (EV_A_ w); /* re-add, no matter what */
2237 else
2238 ev_timer_start (EV_A_ &w->timer);
2239 }
2240
2241 }
2242}
2243
2244#endif
2245
2246void
2247ev_stat_stat (EV_P_ ev_stat *w)
2248{
2249 if (lstat (w->path, &w->attr) < 0)
2250 w->attr.st_nlink = 0;
2251 else if (!w->attr.st_nlink)
2252 w->attr.st_nlink = 1;
2253}
2254
2255static void noinline
2256stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2257{
2258 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2259
2260 /* we copy this here each the time so that */
2261 /* prev has the old value when the callback gets invoked */
2262 w->prev = w->attr;
2263 ev_stat_stat (EV_A_ w);
2264
2265 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2266 if (
2267 w->prev.st_dev != w->attr.st_dev
2268 || w->prev.st_ino != w->attr.st_ino
2269 || w->prev.st_mode != w->attr.st_mode
2270 || w->prev.st_nlink != w->attr.st_nlink
2271 || w->prev.st_uid != w->attr.st_uid
2272 || w->prev.st_gid != w->attr.st_gid
2273 || w->prev.st_rdev != w->attr.st_rdev
2274 || w->prev.st_size != w->attr.st_size
2275 || w->prev.st_atime != w->attr.st_atime
2276 || w->prev.st_mtime != w->attr.st_mtime
2277 || w->prev.st_ctime != w->attr.st_ctime
2278 ) {
2279 #if EV_USE_INOTIFY
2280 infy_del (EV_A_ w);
2281 infy_add (EV_A_ w);
2282 ev_stat_stat (EV_A_ w); /* avoid race... */
2283 #endif
2284
2285 ev_feed_event (EV_A_ w, EV_STAT);
2286 }
2287}
2288
2289void
2290ev_stat_start (EV_P_ ev_stat *w)
2291{
2292 if (expect_false (ev_is_active (w)))
2293 return;
2294
2295 /* since we use memcmp, we need to clear any padding data etc. */
2296 memset (&w->prev, 0, sizeof (ev_statdata));
2297 memset (&w->attr, 0, sizeof (ev_statdata));
2298
2299 ev_stat_stat (EV_A_ w);
2300
2301 if (w->interval < MIN_STAT_INTERVAL)
2302 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2303
2304 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2305 ev_set_priority (&w->timer, ev_priority (w));
2306
2307#if EV_USE_INOTIFY
2308 infy_init (EV_A);
2309
2310 if (fs_fd >= 0)
2311 infy_add (EV_A_ w);
2312 else
2313#endif
2314 ev_timer_start (EV_A_ &w->timer);
2315
2316 ev_start (EV_A_ (W)w, 1);
2317}
2318
2319void
2320ev_stat_stop (EV_P_ ev_stat *w)
2321{
2322 clear_pending (EV_A_ (W)w);
2323 if (expect_false (!ev_is_active (w)))
2324 return;
2325
2326#if EV_USE_INOTIFY
2327 infy_del (EV_A_ w);
2328#endif
2329 ev_timer_stop (EV_A_ &w->timer);
2330
2331 ev_stop (EV_A_ (W)w);
2332}
2333#endif
2334
2335#if EV_IDLE_ENABLE
2336void
2337ev_idle_start (EV_P_ ev_idle *w)
2338{
2339 if (expect_false (ev_is_active (w)))
2340 return;
2341
2342 pri_adjust (EV_A_ (W)w);
2343
2344 {
2345 int active = ++idlecnt [ABSPRI (w)];
2346
2347 ++idleall;
2348 ev_start (EV_A_ (W)w, active);
2349
2350 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2351 idles [ABSPRI (w)][active - 1] = w;
2352 }
2353}
2354
2355void
2356ev_idle_stop (EV_P_ ev_idle *w)
2357{
2358 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w)))
2360 return;
2361
2362 {
2363 int active = ((W)w)->active;
2364
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2367
2368 ev_stop (EV_A_ (W)w);
2369 --idleall;
2370 }
2371}
2372#endif
2373
2374void
2375ev_prepare_start (EV_P_ ev_prepare *w)
2376{
2377 if (expect_false (ev_is_active (w)))
2378 return;
2379
2380 ev_start (EV_A_ (W)w, ++preparecnt);
2381 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2382 prepares [preparecnt - 1] = w;
2383}
2384
2385void
2386ev_prepare_stop (EV_P_ ev_prepare *w)
2387{
2388 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w)))
2390 return;
2391
2392 {
2393 int active = ((W)w)->active;
2394 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active;
2396 }
2397
2398 ev_stop (EV_A_ (W)w);
2399}
2400
2401void
2402ev_check_start (EV_P_ ev_check *w)
2403{
2404 if (expect_false (ev_is_active (w)))
2405 return;
2406
2407 ev_start (EV_A_ (W)w, ++checkcnt);
2408 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2409 checks [checkcnt - 1] = w;
2410}
2411
2412void
2413ev_check_stop (EV_P_ ev_check *w)
2414{
2415 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w)))
2417 return;
2418
2419 {
2420 int active = ((W)w)->active;
2421 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active;
2423 }
2424
2425 ev_stop (EV_A_ (W)w);
2426}
2427
2428#if EV_EMBED_ENABLE
2429void noinline
2430ev_embed_sweep (EV_P_ ev_embed *w)
2431{
2432 ev_loop (w->other, EVLOOP_NONBLOCK);
2433}
2434
2435static void
2436embed_io_cb (EV_P_ ev_io *io, int revents)
2437{
2438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2439
2440 if (ev_cb (w))
2441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2442 else
2443 ev_loop (w->other, EVLOOP_NONBLOCK);
2444}
2445
2446static void
2447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2448{
2449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2450
2451 {
2452 struct ev_loop *loop = w->other;
2453
2454 while (fdchangecnt)
2455 {
2456 fd_reify (EV_A);
2457 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2458 }
2459 }
2460}
2461
2462#if 0
2463static void
2464embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2465{
2466 ev_idle_stop (EV_A_ idle);
2467}
2468#endif
2469
2470void
2471ev_embed_start (EV_P_ ev_embed *w)
2472{
2473 if (expect_false (ev_is_active (w)))
2474 return;
2475
2476 {
2477 struct ev_loop *loop = w->other;
2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2480 }
2481
2482 ev_set_priority (&w->io, ev_priority (w));
2483 ev_io_start (EV_A_ &w->io);
2484
2485 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare);
2488
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490
2491 ev_start (EV_A_ (W)w, 1);
2492}
2493
2494void
2495ev_embed_stop (EV_P_ ev_embed *w)
2496{
2497 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w)))
2499 return;
2500
2501 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare);
2503
2504 ev_stop (EV_A_ (W)w);
2505}
2506#endif
2507
2508#if EV_FORK_ENABLE
2509void
2510ev_fork_start (EV_P_ ev_fork *w)
2511{
2512 if (expect_false (ev_is_active (w)))
2513 return;
2514
2515 ev_start (EV_A_ (W)w, ++forkcnt);
2516 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2517 forks [forkcnt - 1] = w;
2518}
2519
2520void
2521ev_fork_stop (EV_P_ ev_fork *w)
2522{
2523 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w)))
2525 return;
2526
2527 {
2528 int active = ((W)w)->active;
2529 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active;
2531 }
2532
2533 ev_stop (EV_A_ (W)w);
2534}
2535#endif
2536
2537#if EV_ASYNC_ENABLE
2538void
2539ev_async_start (EV_P_ ev_async *w)
2540{
2541 if (expect_false (ev_is_active (w)))
2542 return;
2543
2544 evpipe_init (EV_A);
2545
2546 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w;
2549}
2550
2551void
2552ev_async_stop (EV_P_ ev_async *w)
2553{
2554 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w)))
2556 return;
2557
2558 {
2559 int active = ((W)w)->active;
2560 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active;
2562 }
2563
2564 ev_stop (EV_A_ (W)w);
2565}
2566
2567void
2568ev_async_send (EV_P_ ev_async *w)
2569{
2570 w->sent = 1;
2571 evpipe_write (EV_A_ &gotasync);
2572}
2573#endif
2574
1658/*****************************************************************************/ 2575/*****************************************************************************/
1659 2576
1660struct ev_once 2577struct ev_once
1661{ 2578{
1662 struct ev_io io; 2579 ev_io io;
1663 struct ev_timer to; 2580 ev_timer to;
1664 void (*cb)(int revents, void *arg); 2581 void (*cb)(int revents, void *arg);
1665 void *arg; 2582 void *arg;
1666}; 2583};
1667 2584
1668static void 2585static void
1677 2594
1678 cb (revents, arg); 2595 cb (revents, arg);
1679} 2596}
1680 2597
1681static void 2598static void
1682once_cb_io (EV_P_ struct ev_io *w, int revents) 2599once_cb_io (EV_P_ ev_io *w, int revents)
1683{ 2600{
1684 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2601 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1685} 2602}
1686 2603
1687static void 2604static void
1688once_cb_to (EV_P_ struct ev_timer *w, int revents) 2605once_cb_to (EV_P_ ev_timer *w, int revents)
1689{ 2606{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2607 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1691} 2608}
1692 2609
1693void 2610void
1717 ev_timer_set (&once->to, timeout, 0.); 2634 ev_timer_set (&once->to, timeout, 0.);
1718 ev_timer_start (EV_A_ &once->to); 2635 ev_timer_start (EV_A_ &once->to);
1719 } 2636 }
1720} 2637}
1721 2638
2639#if EV_MULTIPLICITY
2640 #include "ev_wrap.h"
2641#endif
2642
1722#ifdef __cplusplus 2643#ifdef __cplusplus
1723} 2644}
1724#endif 2645#endif
1725 2646

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines