ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.129 by root, Fri Nov 23 05:00:44 2007 UTC vs.
Revision 1.249 by root, Wed May 21 23:30:52 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
116# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 160# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
120# endif 163# endif
121#endif 164#endif
122 165
123/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
124 167
125#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
126# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
127#endif 170#endif
128 171
129#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
131#endif 178#endif
132 179
133#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
135#endif 182#endif
141# define EV_USE_POLL 1 188# define EV_USE_POLL 1
142# endif 189# endif
143#endif 190#endif
144 191
145#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
146# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
147#endif 198#endif
148 199
149#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
151#endif 202#endif
152 203
153#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 205# define EV_USE_PORT 0
155#endif 206#endif
156 207
157/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 1
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_USE_4HEAP
247# define EV_USE_4HEAP !EV_MINIMAL
248#endif
249
250#ifndef EV_HEAP_CACHE_AT
251# define EV_HEAP_CACHE_AT !EV_MINIMAL
252#endif
253
254/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 255
159#ifndef CLOCK_MONOTONIC 256#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 257# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
162#endif 259#endif
164#ifndef CLOCK_REALTIME 261#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 262# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME 0
167#endif 264#endif
168 265
266#if !EV_STAT_ENABLE
267# undef EV_USE_INOTIFY
268# define EV_USE_INOTIFY 0
269#endif
270
271#if !EV_USE_NANOSLEEP
272# ifndef _WIN32
273# include <sys/select.h>
274# endif
275#endif
276
277#if EV_USE_INOTIFY
278# include <sys/inotify.h>
279#endif
280
169#if EV_SELECT_IS_WINSOCKET 281#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 282# include <winsock.h>
171#endif 283#endif
172 284
285#if EV_USE_EVENTFD
286/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
287# include <stdint.h>
288# ifdef __cplusplus
289extern "C" {
290# endif
291int eventfd (unsigned int initval, int flags);
292# ifdef __cplusplus
293}
294# endif
295#endif
296
173/**/ 297/**/
298
299/* EV_VERIFY: enable internal consistency checks
300 * undefined or zero: no verification done or available
301 * 1 or higher: ev_loop_verify function available
302 * 2 or higher: ev_loop_verify is called frequently
303 */
304#if EV_VERIFY >= 1
305# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
306#else
307# define EV_FREQUENT_CHECK do { } while (0)
308#endif
309
310/*
311 * This is used to avoid floating point rounding problems.
312 * It is added to ev_rt_now when scheduling periodics
313 * to ensure progress, time-wise, even when rounding
314 * errors are against us.
315 * This value is good at least till the year 4000.
316 * Better solutions welcome.
317 */
318#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 319
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 320#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 321#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 322/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 323
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 324#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 325# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 326# define noinline __attribute__ ((noinline))
189#else 327#else
190# define expect(expr,value) (expr) 328# define expect(expr,value) (expr)
191# define inline static 329# define noinline
330# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
331# define inline
332# endif
192#endif 333#endif
193 334
194#define expect_false(expr) expect ((expr) != 0, 0) 335#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 336#define expect_true(expr) expect ((expr) != 0, 1)
337#define inline_size static inline
338
339#if EV_MINIMAL
340# define inline_speed static noinline
341#else
342# define inline_speed static inline
343#endif
196 344
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 345#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 346#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 347
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 348#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 349#define EMPTY2(a,b) /* used to suppress some warnings */
202 350
203typedef struct ev_watcher *W; 351typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 352typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 353typedef ev_watcher_time *WT;
206 354
355#define ev_active(w) ((W)(w))->active
356#define ev_at(w) ((WT)(w))->at
357
358#if EV_USE_MONOTONIC
359/* sig_atomic_t is used to avoid per-thread variables or locking but still */
360/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 361static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
362#endif
208 363
209#ifdef _WIN32 364#ifdef _WIN32
210# include "ev_win32.c" 365# include "ev_win32.c"
211#endif 366#endif
212 367
213/*****************************************************************************/ 368/*****************************************************************************/
214 369
215static void (*syserr_cb)(const char *msg); 370static void (*syserr_cb)(const char *msg);
216 371
372void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 373ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 374{
219 syserr_cb = cb; 375 syserr_cb = cb;
220} 376}
221 377
222static void 378static void noinline
223syserr (const char *msg) 379syserr (const char *msg)
224{ 380{
225 if (!msg) 381 if (!msg)
226 msg = "(libev) system error"; 382 msg = "(libev) system error";
227 383
232 perror (msg); 388 perror (msg);
233 abort (); 389 abort ();
234 } 390 }
235} 391}
236 392
393static void *
394ev_realloc_emul (void *ptr, long size)
395{
396 /* some systems, notably openbsd and darwin, fail to properly
397 * implement realloc (x, 0) (as required by both ansi c-98 and
398 * the single unix specification, so work around them here.
399 */
400
401 if (size)
402 return realloc (ptr, size);
403
404 free (ptr);
405 return 0;
406}
407
237static void *(*alloc)(void *ptr, long size); 408static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 409
410void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 411ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 412{
241 alloc = cb; 413 alloc = cb;
242} 414}
243 415
244static void * 416inline_speed void *
245ev_realloc (void *ptr, long size) 417ev_realloc (void *ptr, long size)
246{ 418{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 419 ptr = alloc (ptr, size);
248 420
249 if (!ptr && size) 421 if (!ptr && size)
250 { 422 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 423 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 424 abort ();
273typedef struct 445typedef struct
274{ 446{
275 W w; 447 W w;
276 int events; 448 int events;
277} ANPENDING; 449} ANPENDING;
450
451#if EV_USE_INOTIFY
452/* hash table entry per inotify-id */
453typedef struct
454{
455 WL head;
456} ANFS;
457#endif
458
459/* Heap Entry */
460#if EV_HEAP_CACHE_AT
461 typedef struct {
462 ev_tstamp at;
463 WT w;
464 } ANHE;
465
466 #define ANHE_w(he) (he).w /* access watcher, read-write */
467 #define ANHE_at(he) (he).at /* access cached at, read-only */
468 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
469#else
470 typedef WT ANHE;
471
472 #define ANHE_w(he) (he)
473 #define ANHE_at(he) (he)->at
474 #define ANHE_at_cache(he)
475#endif
278 476
279#if EV_MULTIPLICITY 477#if EV_MULTIPLICITY
280 478
281 struct ev_loop 479 struct ev_loop
282 { 480 {
316 gettimeofday (&tv, 0); 514 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 515 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 516#endif
319} 517}
320 518
321inline ev_tstamp 519ev_tstamp inline_size
322get_clock (void) 520get_clock (void)
323{ 521{
324#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 523 if (expect_true (have_monotonic))
326 { 524 {
339{ 537{
340 return ev_rt_now; 538 return ev_rt_now;
341} 539}
342#endif 540#endif
343 541
344#define array_roundsize(type,n) (((n) | 4) & ~3) 542void
543ev_sleep (ev_tstamp delay)
544{
545 if (delay > 0.)
546 {
547#if EV_USE_NANOSLEEP
548 struct timespec ts;
549
550 ts.tv_sec = (time_t)delay;
551 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
552
553 nanosleep (&ts, 0);
554#elif defined(_WIN32)
555 Sleep ((unsigned long)(delay * 1e3));
556#else
557 struct timeval tv;
558
559 tv.tv_sec = (time_t)delay;
560 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
561
562 select (0, 0, 0, 0, &tv);
563#endif
564 }
565}
566
567/*****************************************************************************/
568
569#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
570
571int inline_size
572array_nextsize (int elem, int cur, int cnt)
573{
574 int ncur = cur + 1;
575
576 do
577 ncur <<= 1;
578 while (cnt > ncur);
579
580 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
581 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
582 {
583 ncur *= elem;
584 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
585 ncur = ncur - sizeof (void *) * 4;
586 ncur /= elem;
587 }
588
589 return ncur;
590}
591
592static noinline void *
593array_realloc (int elem, void *base, int *cur, int cnt)
594{
595 *cur = array_nextsize (elem, *cur, cnt);
596 return ev_realloc (base, elem * *cur);
597}
345 598
346#define array_needsize(type,base,cur,cnt,init) \ 599#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 600 if (expect_false ((cnt) > (cur))) \
348 { \ 601 { \
349 int newcnt = cur; \ 602 int ocur_ = (cur); \
350 do \ 603 (base) = (type *)array_realloc \
351 { \ 604 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 605 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 606 }
360 607
608#if 0
361#define array_slim(type,stem) \ 609#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 610 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 611 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 612 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 613 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 614 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 615 }
616#endif
368 617
369#define array_free(stem, idx) \ 618#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 619 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 620
372/*****************************************************************************/ 621/*****************************************************************************/
373 622
374static void 623void noinline
624ev_feed_event (EV_P_ void *w, int revents)
625{
626 W w_ = (W)w;
627 int pri = ABSPRI (w_);
628
629 if (expect_false (w_->pending))
630 pendings [pri][w_->pending - 1].events |= revents;
631 else
632 {
633 w_->pending = ++pendingcnt [pri];
634 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
635 pendings [pri][w_->pending - 1].w = w_;
636 pendings [pri][w_->pending - 1].events = revents;
637 }
638}
639
640void inline_speed
641queue_events (EV_P_ W *events, int eventcnt, int type)
642{
643 int i;
644
645 for (i = 0; i < eventcnt; ++i)
646 ev_feed_event (EV_A_ events [i], type);
647}
648
649/*****************************************************************************/
650
651void inline_size
375anfds_init (ANFD *base, int count) 652anfds_init (ANFD *base, int count)
376{ 653{
377 while (count--) 654 while (count--)
378 { 655 {
379 base->head = 0; 656 base->head = 0;
382 659
383 ++base; 660 ++base;
384 } 661 }
385} 662}
386 663
387void 664void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 665fd_event (EV_P_ int fd, int revents)
415{ 666{
416 ANFD *anfd = anfds + fd; 667 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 668 ev_io *w;
418 669
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 670 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 671 {
421 int ev = w->events & revents; 672 int ev = w->events & revents;
422 673
423 if (ev) 674 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 675 ev_feed_event (EV_A_ (W)w, ev);
426} 677}
427 678
428void 679void
429ev_feed_fd_event (EV_P_ int fd, int revents) 680ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 681{
682 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 683 fd_event (EV_A_ fd, revents);
432} 684}
433 685
434/*****************************************************************************/ 686void inline_size
435
436inline void
437fd_reify (EV_P) 687fd_reify (EV_P)
438{ 688{
439 int i; 689 int i;
440 690
441 for (i = 0; i < fdchangecnt; ++i) 691 for (i = 0; i < fdchangecnt; ++i)
442 { 692 {
443 int fd = fdchanges [i]; 693 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 694 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 695 ev_io *w;
446 696
447 int events = 0; 697 unsigned char events = 0;
448 698
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 699 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 700 events |= (unsigned char)w->events;
451 701
452#if EV_SELECT_IS_WINSOCKET 702#if EV_SELECT_IS_WINSOCKET
453 if (events) 703 if (events)
454 { 704 {
455 unsigned long argp; 705 unsigned long argp;
706 #ifdef EV_FD_TO_WIN32_HANDLE
707 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
708 #else
456 anfd->handle = _get_osfhandle (fd); 709 anfd->handle = _get_osfhandle (fd);
710 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 711 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 712 }
459#endif 713#endif
460 714
715 {
716 unsigned char o_events = anfd->events;
717 unsigned char o_reify = anfd->reify;
718
461 anfd->reify = 0; 719 anfd->reify = 0;
462
463 method_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 720 anfd->events = events;
721
722 if (o_events != events || o_reify & EV_IOFDSET)
723 backend_modify (EV_A_ fd, o_events, events);
724 }
465 } 725 }
466 726
467 fdchangecnt = 0; 727 fdchangecnt = 0;
468} 728}
469 729
470static void 730void inline_size
471fd_change (EV_P_ int fd) 731fd_change (EV_P_ int fd, int flags)
472{ 732{
473 if (expect_false (anfds [fd].reify)) 733 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 734 anfds [fd].reify |= flags;
477 735
736 if (expect_true (!reify))
737 {
478 ++fdchangecnt; 738 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 739 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 740 fdchanges [fdchangecnt - 1] = fd;
741 }
481} 742}
482 743
483static void 744void inline_speed
484fd_kill (EV_P_ int fd) 745fd_kill (EV_P_ int fd)
485{ 746{
486 struct ev_io *w; 747 ev_io *w;
487 748
488 while ((w = (struct ev_io *)anfds [fd].head)) 749 while ((w = (ev_io *)anfds [fd].head))
489 { 750 {
490 ev_io_stop (EV_A_ w); 751 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 752 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 753 }
493} 754}
494 755
495inline int 756int inline_size
496fd_valid (int fd) 757fd_valid (int fd)
497{ 758{
498#ifdef _WIN32 759#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 760 return _get_osfhandle (fd) != -1;
500#else 761#else
501 return fcntl (fd, F_GETFD) != -1; 762 return fcntl (fd, F_GETFD) != -1;
502#endif 763#endif
503} 764}
504 765
505/* called on EBADF to verify fds */ 766/* called on EBADF to verify fds */
506static void 767static void noinline
507fd_ebadf (EV_P) 768fd_ebadf (EV_P)
508{ 769{
509 int fd; 770 int fd;
510 771
511 for (fd = 0; fd < anfdmax; ++fd) 772 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 774 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 775 fd_kill (EV_A_ fd);
515} 776}
516 777
517/* called on ENOMEM in select/poll to kill some fds and retry */ 778/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 779static void noinline
519fd_enomem (EV_P) 780fd_enomem (EV_P)
520{ 781{
521 int fd; 782 int fd;
522 783
523 for (fd = anfdmax; fd--; ) 784 for (fd = anfdmax; fd--; )
526 fd_kill (EV_A_ fd); 787 fd_kill (EV_A_ fd);
527 return; 788 return;
528 } 789 }
529} 790}
530 791
531/* usually called after fork if method needs to re-arm all fds from scratch */ 792/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 793static void noinline
533fd_rearm_all (EV_P) 794fd_rearm_all (EV_P)
534{ 795{
535 int fd; 796 int fd;
536 797
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 798 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 799 if (anfds [fd].events)
540 { 800 {
541 anfds [fd].events = 0; 801 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 802 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 803 }
544} 804}
545 805
546/*****************************************************************************/ 806/*****************************************************************************/
547 807
808/*
809 * the heap functions want a real array index. array index 0 uis guaranteed to not
810 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
811 * the branching factor of the d-tree.
812 */
813
814/*
815 * at the moment we allow libev the luxury of two heaps,
816 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
817 * which is more cache-efficient.
818 * the difference is about 5% with 50000+ watchers.
819 */
820#if EV_USE_4HEAP
821
822#define DHEAP 4
823#define HEAP0 (DHEAP - 1) /* index of first element in heap */
824#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
825#define UPHEAP_DONE(p,k) ((p) == (k))
826
827/* away from the root */
828void inline_speed
829downheap (ANHE *heap, int N, int k)
830{
831 ANHE he = heap [k];
832 ANHE *E = heap + N + HEAP0;
833
834 for (;;)
835 {
836 ev_tstamp minat;
837 ANHE *minpos;
838 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
839
840 /* find minimum child */
841 if (expect_true (pos + DHEAP - 1 < E))
842 {
843 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
846 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
847 }
848 else if (pos < E)
849 {
850 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else
856 break;
857
858 if (ANHE_at (he) <= minat)
859 break;
860
861 heap [k] = *minpos;
862 ev_active (ANHE_w (*minpos)) = k;
863
864 k = minpos - heap;
865 }
866
867 heap [k] = he;
868 ev_active (ANHE_w (he)) = k;
869}
870
871#else /* 4HEAP */
872
873#define HEAP0 1
874#define HPARENT(k) ((k) >> 1)
875#define UPHEAP_DONE(p,k) (!(p))
876
877/* away from the root */
878void inline_speed
879downheap (ANHE *heap, int N, int k)
880{
881 ANHE he = heap [k];
882
883 for (;;)
884 {
885 int c = k << 1;
886
887 if (c > N + HEAP0 - 1)
888 break;
889
890 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
891 ? 1 : 0;
892
893 if (ANHE_at (he) <= ANHE_at (heap [c]))
894 break;
895
896 heap [k] = heap [c];
897 ev_active (ANHE_w (heap [k])) = k;
898
899 k = c;
900 }
901
902 heap [k] = he;
903 ev_active (ANHE_w (he)) = k;
904}
905#endif
906
907/* towards the root */
908void inline_speed
909upheap (ANHE *heap, int k)
910{
911 ANHE he = heap [k];
912
913 for (;;)
914 {
915 int p = HPARENT (k);
916
917 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
918 break;
919
920 heap [k] = heap [p];
921 ev_active (ANHE_w (heap [k])) = k;
922 k = p;
923 }
924
925 heap [k] = he;
926 ev_active (ANHE_w (he)) = k;
927}
928
929void inline_size
930adjustheap (ANHE *heap, int N, int k)
931{
932 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
933 upheap (heap, k);
934 else
935 downheap (heap, N, k);
936}
937
938/* rebuild the heap: this function is used only once and executed rarely */
939void inline_size
940reheap (ANHE *heap, int N)
941{
942 int i;
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
947}
948
949#if EV_VERIFY
548static void 950static void
549upheap (WT *heap, int k) 951checkheap (ANHE *heap, int N)
550{ 952{
551 WT w = heap [k]; 953 int i;
552 954
553 while (k && heap [k >> 1]->at > w->at) 955 for (i = HEAP0; i < N + HEAP0; ++i)
554 {
555 heap [k] = heap [k >> 1];
556 ((W)heap [k])->active = k + 1;
557 k >>= 1;
558 } 956 {
559 957 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
560 heap [k] = w; 958 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
561 ((W)heap [k])->active = k + 1; 959 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
562
563}
564
565static void
566downheap (WT *heap, int N, int k)
567{
568 WT w = heap [k];
569
570 while (k < (N >> 1))
571 { 960 }
572 int j = k << 1;
573
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break;
579
580 heap [k] = heap [j];
581 ((W)heap [k])->active = k + 1;
582 k = j;
583 }
584
585 heap [k] = w;
586 ((W)heap [k])->active = k + 1;
587} 961}
588 962#endif
589inline void
590adjustheap (WT *heap, int N, int k)
591{
592 upheap (heap, k);
593 downheap (heap, N, k);
594}
595 963
596/*****************************************************************************/ 964/*****************************************************************************/
597 965
598typedef struct 966typedef struct
599{ 967{
600 WL head; 968 WL head;
601 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
602} ANSIG; 970} ANSIG;
603 971
604static ANSIG *signals; 972static ANSIG *signals;
605static int signalmax; 973static int signalmax;
606 974
607static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 976
611static void 977void inline_size
612signals_init (ANSIG *base, int count) 978signals_init (ANSIG *base, int count)
613{ 979{
614 while (count--) 980 while (count--)
615 { 981 {
616 base->head = 0; 982 base->head = 0;
618 984
619 ++base; 985 ++base;
620 } 986 }
621} 987}
622 988
623static void 989/*****************************************************************************/
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629 990
630 signals [signum - 1].gotsig = 1; 991void inline_speed
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 992fd_intern (int fd)
676{ 993{
677#ifdef _WIN32 994#ifdef _WIN32
678 int arg = 1; 995 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 996 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 998 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 999 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1000#endif
684} 1001}
685 1002
1003static void noinline
1004evpipe_init (EV_P)
1005{
1006 if (!ev_is_active (&pipeev))
1007 {
1008#if EV_USE_EVENTFD
1009 if ((evfd = eventfd (0, 0)) >= 0)
1010 {
1011 evpipe [0] = -1;
1012 fd_intern (evfd);
1013 ev_io_set (&pipeev, evfd, EV_READ);
1014 }
1015 else
1016#endif
1017 {
1018 while (pipe (evpipe))
1019 syserr ("(libev) error creating signal/async pipe");
1020
1021 fd_intern (evpipe [0]);
1022 fd_intern (evpipe [1]);
1023 ev_io_set (&pipeev, evpipe [0], EV_READ);
1024 }
1025
1026 ev_io_start (EV_A_ &pipeev);
1027 ev_unref (EV_A); /* watcher should not keep loop alive */
1028 }
1029}
1030
1031void inline_size
1032evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1033{
1034 if (!*flag)
1035 {
1036 int old_errno = errno; /* save errno because write might clobber it */
1037
1038 *flag = 1;
1039
1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter = 1;
1044 write (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
1048 write (evpipe [1], &old_errno, 1);
1049
1050 errno = old_errno;
1051 }
1052}
1053
686static void 1054static void
687siginit (EV_P) 1055pipecb (EV_P_ ev_io *iow, int revents)
688{ 1056{
689 fd_intern (sigpipe [0]); 1057#if EV_USE_EVENTFD
690 fd_intern (sigpipe [1]); 1058 if (evfd >= 0)
1059 {
1060 uint64_t counter;
1061 read (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 {
1066 char dummy;
1067 read (evpipe [0], &dummy, 1);
1068 }
691 1069
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1070 if (gotsig && ev_is_default_loop (EV_A))
693 ev_io_start (EV_A_ &sigev); 1071 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1072 int signum;
1073 gotsig = 0;
1074
1075 for (signum = signalmax; signum--; )
1076 if (signals [signum].gotsig)
1077 ev_feed_signal_event (EV_A_ signum + 1);
1078 }
1079
1080#if EV_ASYNC_ENABLE
1081 if (gotasync)
1082 {
1083 int i;
1084 gotasync = 0;
1085
1086 for (i = asynccnt; i--; )
1087 if (asyncs [i]->sent)
1088 {
1089 asyncs [i]->sent = 0;
1090 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1091 }
1092 }
1093#endif
695} 1094}
696 1095
697/*****************************************************************************/ 1096/*****************************************************************************/
698 1097
699static struct ev_child *childs [PID_HASHSIZE]; 1098static void
1099ev_sighandler (int signum)
1100{
1101#if EV_MULTIPLICITY
1102 struct ev_loop *loop = &default_loop_struct;
1103#endif
1104
1105#if _WIN32
1106 signal (signum, ev_sighandler);
1107#endif
1108
1109 signals [signum - 1].gotsig = 1;
1110 evpipe_write (EV_A_ &gotsig);
1111}
1112
1113void noinline
1114ev_feed_signal_event (EV_P_ int signum)
1115{
1116 WL w;
1117
1118#if EV_MULTIPLICITY
1119 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1120#endif
1121
1122 --signum;
1123
1124 if (signum < 0 || signum >= signalmax)
1125 return;
1126
1127 signals [signum].gotsig = 0;
1128
1129 for (w = signals [signum].head; w; w = w->next)
1130 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1131}
1132
1133/*****************************************************************************/
1134
1135static WL childs [EV_PID_HASHSIZE];
700 1136
701#ifndef _WIN32 1137#ifndef _WIN32
702 1138
703static struct ev_signal childev; 1139static ev_signal childev;
1140
1141#ifndef WIFCONTINUED
1142# define WIFCONTINUED(status) 0
1143#endif
1144
1145void inline_speed
1146child_reap (EV_P_ int chain, int pid, int status)
1147{
1148 ev_child *w;
1149 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1150
1151 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1152 {
1153 if ((w->pid == pid || !w->pid)
1154 && (!traced || (w->flags & 1)))
1155 {
1156 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1157 w->rpid = pid;
1158 w->rstatus = status;
1159 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1160 }
1161 }
1162}
704 1163
705#ifndef WCONTINUED 1164#ifndef WCONTINUED
706# define WCONTINUED 0 1165# define WCONTINUED 0
707#endif 1166#endif
708 1167
709static void 1168static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1169childcb (EV_P_ ev_signal *sw, int revents)
726{ 1170{
727 int pid, status; 1171 int pid, status;
728 1172
1173 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1174 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1175 if (!WCONTINUED
1176 || errno != EINVAL
1177 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1178 return;
1179
731 /* make sure we are called again until all childs have been reaped */ 1180 /* make sure we are called again until all children have been reaped */
1181 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1182 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1183
734 child_reap (EV_A_ sw, pid, pid, status); 1184 child_reap (EV_A_ pid, pid, status);
1185 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1186 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1187}
738 1188
739#endif 1189#endif
740 1190
741/*****************************************************************************/ 1191/*****************************************************************************/
767{ 1217{
768 return EV_VERSION_MINOR; 1218 return EV_VERSION_MINOR;
769} 1219}
770 1220
771/* return true if we are running with elevated privileges and should ignore env variables */ 1221/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1222int inline_size
773enable_secure (void) 1223enable_secure (void)
774{ 1224{
775#ifdef _WIN32 1225#ifdef _WIN32
776 return 0; 1226 return 0;
777#else 1227#else
781} 1231}
782 1232
783unsigned int 1233unsigned int
784ev_supported_backends (void) 1234ev_supported_backends (void)
785{ 1235{
786}
787
788unsigned int
789ev_recommended_backends (void)
790{
791 unsigned int flags; 1236 unsigned int flags = 0;
792 1237
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 1238 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 1239 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 1240 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 1241 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
798 1243
799 return flags; 1244 return flags;
800} 1245}
801 1246
802unsigned int 1247unsigned int
803ev_backend (EV_P) 1248ev_recommended_backends (void)
804{ 1249{
805 unsigned int flags = ev_recommended_backends (); 1250 unsigned int flags = ev_supported_backends ();
806 1251
807#ifndef __NetBSD__ 1252#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 1253 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1254 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1255 flags &= ~EVBACKEND_KQUEUE;
815#endif 1260#endif
816 1261
817 return flags; 1262 return flags;
818} 1263}
819 1264
820static void 1265unsigned int
1266ev_embeddable_backends (void)
1267{
1268 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1269
1270 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1271 /* please fix it and tell me how to detect the fix */
1272 flags &= ~EVBACKEND_EPOLL;
1273
1274 return flags;
1275}
1276
1277unsigned int
1278ev_backend (EV_P)
1279{
1280 return backend;
1281}
1282
1283unsigned int
1284ev_loop_count (EV_P)
1285{
1286 return loop_count;
1287}
1288
1289void
1290ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 io_blocktime = interval;
1293}
1294
1295void
1296ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1297{
1298 timeout_blocktime = interval;
1299}
1300
1301static void noinline
821loop_init (EV_P_ unsigned int flags) 1302loop_init (EV_P_ unsigned int flags)
822{ 1303{
823 if (!method) 1304 if (!backend)
824 { 1305 {
825#if EV_USE_MONOTONIC 1306#if EV_USE_MONOTONIC
826 { 1307 {
827 struct timespec ts; 1308 struct timespec ts;
828 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1309 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
829 have_monotonic = 1; 1310 have_monotonic = 1;
830 } 1311 }
831#endif 1312#endif
832 1313
833 ev_rt_now = ev_time (); 1314 ev_rt_now = ev_time ();
834 mn_now = get_clock (); 1315 mn_now = get_clock ();
835 now_floor = mn_now; 1316 now_floor = mn_now;
836 rtmn_diff = ev_rt_now - mn_now; 1317 rtmn_diff = ev_rt_now - mn_now;
1318
1319 io_blocktime = 0.;
1320 timeout_blocktime = 0.;
1321 backend = 0;
1322 backend_fd = -1;
1323 gotasync = 0;
1324#if EV_USE_INOTIFY
1325 fs_fd = -2;
1326#endif
1327
1328 /* pid check not overridable via env */
1329#ifndef _WIN32
1330 if (flags & EVFLAG_FORKCHECK)
1331 curpid = getpid ();
1332#endif
837 1333
838 if (!(flags & EVFLAG_NOENV) 1334 if (!(flags & EVFLAG_NOENV)
839 && !enable_secure () 1335 && !enable_secure ()
840 && getenv ("LIBEV_FLAGS")) 1336 && getenv ("LIBEV_FLAGS"))
841 flags = atoi (getenv ("LIBEV_FLAGS")); 1337 flags = atoi (getenv ("LIBEV_FLAGS"));
842 1338
843 if (!(flags & 0x0000ffffUL)) 1339 if (!(flags & 0x0000ffffU))
844 flags |= ev_recommended_backends (); 1340 flags |= ev_recommended_backends ();
845 1341
846 method = 0;
847#if EV_USE_PORT 1342#if EV_USE_PORT
848 if (!method && (flags & EVBACKEND_PORT )) method = port_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
849#endif 1344#endif
850#if EV_USE_KQUEUE 1345#if EV_USE_KQUEUE
851 if (!method && (flags & EVBACKEND_KQUEUE)) method = kqueue_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
852#endif 1347#endif
853#if EV_USE_EPOLL 1348#if EV_USE_EPOLL
854 if (!method && (flags & EVBACKEND_EPOLL )) method = epoll_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
855#endif 1350#endif
856#if EV_USE_POLL 1351#if EV_USE_POLL
857 if (!method && (flags & EVBACKEND_POLL )) method = poll_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
858#endif 1353#endif
859#if EV_USE_SELECT 1354#if EV_USE_SELECT
860 if (!method && (flags & EVBACKEND_SELECT)) method = select_init (EV_A_ flags); 1355 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
861#endif 1356#endif
862 1357
863 ev_init (&sigev, sigcb); 1358 ev_init (&pipeev, pipecb);
864 ev_set_priority (&sigev, EV_MAXPRI); 1359 ev_set_priority (&pipeev, EV_MAXPRI);
865 } 1360 }
866} 1361}
867 1362
868static void 1363static void noinline
869loop_destroy (EV_P) 1364loop_destroy (EV_P)
870{ 1365{
871 int i; 1366 int i;
872 1367
1368 if (ev_is_active (&pipeev))
1369 {
1370 ev_ref (EV_A); /* signal watcher */
1371 ev_io_stop (EV_A_ &pipeev);
1372
1373#if EV_USE_EVENTFD
1374 if (evfd >= 0)
1375 close (evfd);
1376#endif
1377
1378 if (evpipe [0] >= 0)
1379 {
1380 close (evpipe [0]);
1381 close (evpipe [1]);
1382 }
1383 }
1384
1385#if EV_USE_INOTIFY
1386 if (fs_fd >= 0)
1387 close (fs_fd);
1388#endif
1389
1390 if (backend_fd >= 0)
1391 close (backend_fd);
1392
873#if EV_USE_PORT 1393#if EV_USE_PORT
874 if (method == EVBACKEND_PORT ) port_destroy (EV_A); 1394 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
875#endif 1395#endif
876#if EV_USE_KQUEUE 1396#if EV_USE_KQUEUE
877 if (method == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1397 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
878#endif 1398#endif
879#if EV_USE_EPOLL 1399#if EV_USE_EPOLL
880 if (method == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 1400 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
881#endif 1401#endif
882#if EV_USE_POLL 1402#if EV_USE_POLL
883 if (method == EVBACKEND_POLL ) poll_destroy (EV_A); 1403 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
884#endif 1404#endif
885#if EV_USE_SELECT 1405#if EV_USE_SELECT
886 if (method == EVBACKEND_SELECT) select_destroy (EV_A); 1406 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
887#endif 1407#endif
888 1408
889 for (i = NUMPRI; i--; ) 1409 for (i = NUMPRI; i--; )
1410 {
890 array_free (pending, [i]); 1411 array_free (pending, [i]);
1412#if EV_IDLE_ENABLE
1413 array_free (idle, [i]);
1414#endif
1415 }
1416
1417 ev_free (anfds); anfdmax = 0;
891 1418
892 /* have to use the microsoft-never-gets-it-right macro */ 1419 /* have to use the microsoft-never-gets-it-right macro */
893 array_free (fdchange, EMPTY0); 1420 array_free (fdchange, EMPTY);
894 array_free (timer, EMPTY0); 1421 array_free (timer, EMPTY);
895#if EV_PERIODICS 1422#if EV_PERIODIC_ENABLE
896 array_free (periodic, EMPTY0); 1423 array_free (periodic, EMPTY);
897#endif 1424#endif
1425#if EV_FORK_ENABLE
898 array_free (idle, EMPTY0); 1426 array_free (fork, EMPTY);
1427#endif
899 array_free (prepare, EMPTY0); 1428 array_free (prepare, EMPTY);
900 array_free (check, EMPTY0); 1429 array_free (check, EMPTY);
1430#if EV_ASYNC_ENABLE
1431 array_free (async, EMPTY);
1432#endif
901 1433
902 method = 0; 1434 backend = 0;
903} 1435}
904 1436
905static void 1437#if EV_USE_INOTIFY
1438void inline_size infy_fork (EV_P);
1439#endif
1440
1441void inline_size
906loop_fork (EV_P) 1442loop_fork (EV_P)
907{ 1443{
908#if EV_USE_PORT 1444#if EV_USE_PORT
909 if (method == EVBACKEND_PORT ) port_fork (EV_A); 1445 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
910#endif 1446#endif
911#if EV_USE_KQUEUE 1447#if EV_USE_KQUEUE
912 if (method == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1448 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
913#endif 1449#endif
914#if EV_USE_EPOLL 1450#if EV_USE_EPOLL
915 if (method == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1451 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
916#endif 1452#endif
1453#if EV_USE_INOTIFY
1454 infy_fork (EV_A);
1455#endif
917 1456
918 if (ev_is_active (&sigev)) 1457 if (ev_is_active (&pipeev))
919 { 1458 {
920 /* default loop */ 1459 /* this "locks" the handlers against writing to the pipe */
1460 /* while we modify the fd vars */
1461 gotsig = 1;
1462#if EV_ASYNC_ENABLE
1463 gotasync = 1;
1464#endif
921 1465
922 ev_ref (EV_A); 1466 ev_ref (EV_A);
923 ev_io_stop (EV_A_ &sigev); 1467 ev_io_stop (EV_A_ &pipeev);
1468
1469#if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
924 close (sigpipe [0]); 1476 close (evpipe [0]);
925 close (sigpipe [1]); 1477 close (evpipe [1]);
1478 }
926 1479
927 while (pipe (sigpipe))
928 syserr ("(libev) error creating pipe");
929
930 siginit (EV_A); 1480 evpipe_init (EV_A);
1481 /* now iterate over everything, in case we missed something */
1482 pipecb (EV_A_ &pipeev, EV_READ);
931 } 1483 }
932 1484
933 postfork = 0; 1485 postfork = 0;
934} 1486}
935 1487
941 1493
942 memset (loop, 0, sizeof (struct ev_loop)); 1494 memset (loop, 0, sizeof (struct ev_loop));
943 1495
944 loop_init (EV_A_ flags); 1496 loop_init (EV_A_ flags);
945 1497
946 if (ev_method (EV_A)) 1498 if (ev_backend (EV_A))
947 return loop; 1499 return loop;
948 1500
949 return 0; 1501 return 0;
950} 1502}
951 1503
957} 1509}
958 1510
959void 1511void
960ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
961{ 1513{
962 postfork = 1; 1514 postfork = 1; /* must be in line with ev_default_fork */
963} 1515}
1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1524
1525static void
1526ev_loop_verify (EV_P)
1527{
1528 int i;
1529
1530 checkheap (timers, timercnt);
1531#if EV_PERIODIC_ENABLE
1532 checkheap (periodics, periodiccnt);
1533#endif
1534
1535#if EV_IDLE_ENABLE
1536 for (i = NUMPRI; i--; )
1537 array_check ((W **)idles [i], idlecnt [i]);
1538#endif
1539#if EV_FORK_ENABLE
1540 array_check ((W **)forks, forkcnt);
1541#endif
1542 array_check ((W **)prepares, preparecnt);
1543 array_check ((W **)checks, checkcnt);
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547}
1548#endif
964 1549
965#endif 1550#endif
966 1551
967#if EV_MULTIPLICITY 1552#if EV_MULTIPLICITY
968struct ev_loop * 1553struct ev_loop *
970#else 1555#else
971int 1556int
972ev_default_loop (unsigned int flags) 1557ev_default_loop (unsigned int flags)
973#endif 1558#endif
974{ 1559{
975 if (sigpipe [0] == sigpipe [1])
976 if (pipe (sigpipe))
977 return 0;
978
979 if (!ev_default_loop_ptr) 1560 if (!ev_default_loop_ptr)
980 { 1561 {
981#if EV_MULTIPLICITY 1562#if EV_MULTIPLICITY
982 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1563 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
983#else 1564#else
984 ev_default_loop_ptr = 1; 1565 ev_default_loop_ptr = 1;
985#endif 1566#endif
986 1567
987 loop_init (EV_A_ flags); 1568 loop_init (EV_A_ flags);
988 1569
989 if (ev_method (EV_A)) 1570 if (ev_backend (EV_A))
990 { 1571 {
991 siginit (EV_A);
992
993#ifndef _WIN32 1572#ifndef _WIN32
994 ev_signal_init (&childev, childcb, SIGCHLD); 1573 ev_signal_init (&childev, childcb, SIGCHLD);
995 ev_set_priority (&childev, EV_MAXPRI); 1574 ev_set_priority (&childev, EV_MAXPRI);
996 ev_signal_start (EV_A_ &childev); 1575 ev_signal_start (EV_A_ &childev);
997 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1576 ev_unref (EV_A); /* child watcher should not keep loop alive */
1014#ifndef _WIN32 1593#ifndef _WIN32
1015 ev_ref (EV_A); /* child watcher */ 1594 ev_ref (EV_A); /* child watcher */
1016 ev_signal_stop (EV_A_ &childev); 1595 ev_signal_stop (EV_A_ &childev);
1017#endif 1596#endif
1018 1597
1019 ev_ref (EV_A); /* signal watcher */
1020 ev_io_stop (EV_A_ &sigev);
1021
1022 close (sigpipe [0]); sigpipe [0] = 0;
1023 close (sigpipe [1]); sigpipe [1] = 0;
1024
1025 loop_destroy (EV_A); 1598 loop_destroy (EV_A);
1026} 1599}
1027 1600
1028void 1601void
1029ev_default_fork (void) 1602ev_default_fork (void)
1030{ 1603{
1031#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1032 struct ev_loop *loop = ev_default_loop_ptr; 1605 struct ev_loop *loop = ev_default_loop_ptr;
1033#endif 1606#endif
1034 1607
1035 if (method) 1608 if (backend)
1036 postfork = 1; 1609 postfork = 1; /* must be in line with ev_loop_fork */
1037} 1610}
1038 1611
1039/*****************************************************************************/ 1612/*****************************************************************************/
1040 1613
1041static int 1614void
1615ev_invoke (EV_P_ void *w, int revents)
1616{
1617 EV_CB_INVOKE ((W)w, revents);
1618}
1619
1620void inline_speed
1042any_pending (EV_P) 1621call_pending (EV_P)
1043{ 1622{
1044 int pri; 1623 int pri;
1045 1624
1046 for (pri = NUMPRI; pri--; ) 1625 EV_FREQUENT_CHECK;
1047 if (pendingcnt [pri])
1048 return 1;
1049
1050 return 0;
1051}
1052
1053inline void
1054call_pending (EV_P)
1055{
1056 int pri;
1057 1626
1058 for (pri = NUMPRI; pri--; ) 1627 for (pri = NUMPRI; pri--; )
1059 while (pendingcnt [pri]) 1628 while (pendingcnt [pri])
1060 { 1629 {
1061 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1062 1631
1063 if (expect_true (p->w)) 1632 if (expect_true (p->w))
1064 { 1633 {
1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1635
1065 p->w->pending = 0; 1636 p->w->pending = 0;
1066 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1067 } 1638 }
1068 } 1639 }
1069}
1070 1640
1071inline void 1641 EV_FREQUENT_CHECK;
1642}
1643
1644#if EV_IDLE_ENABLE
1645void inline_size
1646idle_reify (EV_P)
1647{
1648 if (expect_false (idleall))
1649 {
1650 int pri;
1651
1652 for (pri = NUMPRI; pri--; )
1653 {
1654 if (pendingcnt [pri])
1655 break;
1656
1657 if (idlecnt [pri])
1658 {
1659 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1660 break;
1661 }
1662 }
1663 }
1664}
1665#endif
1666
1667void inline_size
1072timers_reify (EV_P) 1668timers_reify (EV_P)
1073{ 1669{
1670 EV_FREQUENT_CHECK;
1671
1074 while (timercnt && ((WT)timers [0])->at <= mn_now) 1672 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1075 { 1673 {
1076 struct ev_timer *w = timers [0]; 1674 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1077 1675
1078 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1676 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1079 1677
1080 /* first reschedule or stop timer */ 1678 /* first reschedule or stop timer */
1081 if (w->repeat) 1679 if (w->repeat)
1082 { 1680 {
1681 ev_at (w) += w->repeat;
1682 if (ev_at (w) < mn_now)
1683 ev_at (w) = mn_now;
1684
1083 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1685 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1084 1686
1085 ((WT)w)->at += w->repeat; 1687 ANHE_at_cache (timers [HEAP0]);
1086 if (((WT)w)->at < mn_now)
1087 ((WT)w)->at = mn_now;
1088
1089 downheap ((WT *)timers, timercnt, 0); 1688 downheap (timers, timercnt, HEAP0);
1090 } 1689 }
1091 else 1690 else
1092 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1691 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1093 1692
1693 EV_FREQUENT_CHECK;
1094 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1694 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1095 } 1695 }
1096} 1696}
1097 1697
1098#if EV_PERIODICS 1698#if EV_PERIODIC_ENABLE
1099inline void 1699void inline_size
1100periodics_reify (EV_P) 1700periodics_reify (EV_P)
1101{ 1701{
1702 EV_FREQUENT_CHECK;
1102 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1103 { 1704 {
1104 struct ev_periodic *w = periodics [0]; 1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1105 1706
1106 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1107 1708
1108 /* first reschedule or stop timer */ 1709 /* first reschedule or stop timer */
1109 if (w->reschedule_cb) 1710 if (w->reschedule_cb)
1110 { 1711 {
1111 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1112 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1113 downheap ((WT *)periodics, periodiccnt, 0); 1717 downheap (periodics, periodiccnt, HEAP0);
1718 EV_FREQUENT_CHECK;
1114 } 1719 }
1115 else if (w->interval) 1720 else if (w->interval)
1116 { 1721 {
1117 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1722 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1118 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1723 /* if next trigger time is not sufficiently in the future, put it there */
1724 /* this might happen because of floating point inexactness */
1725 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1726 {
1727 ev_at (w) += w->interval;
1728
1729 /* if interval is unreasonably low we might still have a time in the past */
1730 /* so correct this. this will make the periodic very inexact, but the user */
1731 /* has effectively asked to get triggered more often than possible */
1732 if (ev_at (w) < ev_rt_now)
1733 ev_at (w) = ev_rt_now;
1734 }
1735
1736 ANHE_at_cache (periodics [HEAP0]);
1119 downheap ((WT *)periodics, periodiccnt, 0); 1737 downheap (periodics, periodiccnt, HEAP0);
1120 } 1738 }
1121 else 1739 else
1122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1740 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1123 1741
1742 EV_FREQUENT_CHECK;
1124 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1743 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1125 } 1744 }
1126} 1745}
1127 1746
1128static void 1747static void noinline
1129periodics_reschedule (EV_P) 1748periodics_reschedule (EV_P)
1130{ 1749{
1131 int i; 1750 int i;
1132 1751
1133 /* adjust periodics after time jump */ 1752 /* adjust periodics after time jump */
1134 for (i = 0; i < periodiccnt; ++i) 1753 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1135 { 1754 {
1136 struct ev_periodic *w = periodics [i]; 1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1137 1756
1138 if (w->reschedule_cb) 1757 if (w->reschedule_cb)
1139 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1758 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1140 else if (w->interval) 1759 else if (w->interval)
1141 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1760 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1761
1762 ANHE_at_cache (periodics [i]);
1763 }
1764
1765 reheap (periodics, periodiccnt);
1766}
1767#endif
1768
1769void inline_speed
1770time_update (EV_P_ ev_tstamp max_block)
1771{
1772 int i;
1773
1774#if EV_USE_MONOTONIC
1775 if (expect_true (have_monotonic))
1142 } 1776 {
1777 ev_tstamp odiff = rtmn_diff;
1143 1778
1144 /* now rebuild the heap */
1145 for (i = periodiccnt >> 1; i--; )
1146 downheap ((WT *)periodics, periodiccnt, i);
1147}
1148#endif
1149
1150inline int
1151time_update_monotonic (EV_P)
1152{
1153 mn_now = get_clock (); 1779 mn_now = get_clock ();
1154 1780
1781 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1782 /* interpolate in the meantime */
1155 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1783 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1156 { 1784 {
1157 ev_rt_now = rtmn_diff + mn_now; 1785 ev_rt_now = rtmn_diff + mn_now;
1158 return 0; 1786 return;
1159 } 1787 }
1160 else 1788
1161 {
1162 now_floor = mn_now; 1789 now_floor = mn_now;
1163 ev_rt_now = ev_time (); 1790 ev_rt_now = ev_time ();
1164 return 1;
1165 }
1166}
1167 1791
1168inline void 1792 /* loop a few times, before making important decisions.
1169time_update (EV_P) 1793 * on the choice of "4": one iteration isn't enough,
1170{ 1794 * in case we get preempted during the calls to
1171 int i; 1795 * ev_time and get_clock. a second call is almost guaranteed
1172 1796 * to succeed in that case, though. and looping a few more times
1173#if EV_USE_MONOTONIC 1797 * doesn't hurt either as we only do this on time-jumps or
1174 if (expect_true (have_monotonic)) 1798 * in the unlikely event of having been preempted here.
1175 { 1799 */
1176 if (time_update_monotonic (EV_A)) 1800 for (i = 4; --i; )
1177 { 1801 {
1178 ev_tstamp odiff = rtmn_diff; 1802 rtmn_diff = ev_rt_now - mn_now;
1179 1803
1180 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1804 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1805 return; /* all is well */
1806
1807 ev_rt_now = ev_time ();
1808 mn_now = get_clock ();
1809 now_floor = mn_now;
1810 }
1811
1812# if EV_PERIODIC_ENABLE
1813 periodics_reschedule (EV_A);
1814# endif
1815 /* no timer adjustment, as the monotonic clock doesn't jump */
1816 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1817 }
1818 else
1819#endif
1820 {
1821 ev_rt_now = ev_time ();
1822
1823 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1824 {
1825#if EV_PERIODIC_ENABLE
1826 periodics_reschedule (EV_A);
1827#endif
1828 /* adjust timers. this is easy, as the offset is the same for all of them */
1829 for (i = 0; i < timercnt; ++i)
1181 { 1830 {
1182 rtmn_diff = ev_rt_now - mn_now; 1831 ANHE *he = timers + i + HEAP0;
1183 1832 ANHE_w (*he)->at += ev_rt_now - mn_now;
1184 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1833 ANHE_at_cache (*he);
1185 return; /* all is well */
1186
1187 ev_rt_now = ev_time ();
1188 mn_now = get_clock ();
1189 now_floor = mn_now;
1190 } 1834 }
1191
1192# if EV_PERIODICS
1193 periodics_reschedule (EV_A);
1194# endif
1195 /* no timer adjustment, as the monotonic clock doesn't jump */
1196 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1197 } 1835 }
1198 }
1199 else
1200#endif
1201 {
1202 ev_rt_now = ev_time ();
1203
1204 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1205 {
1206#if EV_PERIODICS
1207 periodics_reschedule (EV_A);
1208#endif
1209
1210 /* adjust timers. this is easy, as the offset is the same for all */
1211 for (i = 0; i < timercnt; ++i)
1212 ((WT)timers [i])->at += ev_rt_now - mn_now;
1213 }
1214 1836
1215 mn_now = ev_rt_now; 1837 mn_now = ev_rt_now;
1216 } 1838 }
1217} 1839}
1218 1840
1231static int loop_done; 1853static int loop_done;
1232 1854
1233void 1855void
1234ev_loop (EV_P_ int flags) 1856ev_loop (EV_P_ int flags)
1235{ 1857{
1236 double block; 1858 loop_done = EVUNLOOP_CANCEL;
1237 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1238 1859
1239 while (activecnt) 1860 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1861
1862 do
1240 { 1863 {
1864#ifndef _WIN32
1865 if (expect_false (curpid)) /* penalise the forking check even more */
1866 if (expect_false (getpid () != curpid))
1867 {
1868 curpid = getpid ();
1869 postfork = 1;
1870 }
1871#endif
1872
1873#if EV_FORK_ENABLE
1874 /* we might have forked, so queue fork handlers */
1875 if (expect_false (postfork))
1876 if (forkcnt)
1877 {
1878 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1879 call_pending (EV_A);
1880 }
1881#endif
1882
1241 /* queue check watchers (and execute them) */ 1883 /* queue prepare watchers (and execute them) */
1242 if (expect_false (preparecnt)) 1884 if (expect_false (preparecnt))
1243 { 1885 {
1244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1886 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1245 call_pending (EV_A); 1887 call_pending (EV_A);
1246 } 1888 }
1247 1889
1890 if (expect_false (!activecnt))
1891 break;
1892
1248 /* we might have forked, so reify kernel state if necessary */ 1893 /* we might have forked, so reify kernel state if necessary */
1249 if (expect_false (postfork)) 1894 if (expect_false (postfork))
1250 loop_fork (EV_A); 1895 loop_fork (EV_A);
1251 1896
1252 /* update fd-related kernel structures */ 1897 /* update fd-related kernel structures */
1253 fd_reify (EV_A); 1898 fd_reify (EV_A);
1254 1899
1255 /* calculate blocking time */ 1900 /* calculate blocking time */
1901 {
1902 ev_tstamp waittime = 0.;
1903 ev_tstamp sleeptime = 0.;
1256 1904
1257 /* we only need this for !monotonic clock or timers, but as we basically 1905 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1258 always have timers, we just calculate it always */
1259#if EV_USE_MONOTONIC
1260 if (expect_true (have_monotonic))
1261 time_update_monotonic (EV_A);
1262 else
1263#endif
1264 { 1906 {
1265 ev_rt_now = ev_time (); 1907 /* update time to cancel out callback processing overhead */
1266 mn_now = ev_rt_now; 1908 time_update (EV_A_ 1e100);
1267 }
1268 1909
1269 if (flags & EVLOOP_NONBLOCK || idlecnt)
1270 block = 0.;
1271 else
1272 {
1273 block = MAX_BLOCKTIME; 1910 waittime = MAX_BLOCKTIME;
1274 1911
1275 if (timercnt) 1912 if (timercnt)
1276 { 1913 {
1277 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1914 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1278 if (block > to) block = to; 1915 if (waittime > to) waittime = to;
1279 } 1916 }
1280 1917
1281#if EV_PERIODICS 1918#if EV_PERIODIC_ENABLE
1282 if (periodiccnt) 1919 if (periodiccnt)
1283 { 1920 {
1284 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1921 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1285 if (block > to) block = to; 1922 if (waittime > to) waittime = to;
1286 } 1923 }
1287#endif 1924#endif
1288 1925
1289 if (expect_false (block < 0.)) block = 0.; 1926 if (expect_false (waittime < timeout_blocktime))
1927 waittime = timeout_blocktime;
1928
1929 sleeptime = waittime - backend_fudge;
1930
1931 if (expect_true (sleeptime > io_blocktime))
1932 sleeptime = io_blocktime;
1933
1934 if (sleeptime)
1935 {
1936 ev_sleep (sleeptime);
1937 waittime -= sleeptime;
1938 }
1290 } 1939 }
1291 1940
1292 method_poll (EV_A_ block); 1941 ++loop_count;
1942 backend_poll (EV_A_ waittime);
1293 1943
1294 /* update ev_rt_now, do magic */ 1944 /* update ev_rt_now, do magic */
1295 time_update (EV_A); 1945 time_update (EV_A_ waittime + sleeptime);
1946 }
1296 1947
1297 /* queue pending timers and reschedule them */ 1948 /* queue pending timers and reschedule them */
1298 timers_reify (EV_A); /* relative timers called last */ 1949 timers_reify (EV_A); /* relative timers called last */
1299#if EV_PERIODICS 1950#if EV_PERIODIC_ENABLE
1300 periodics_reify (EV_A); /* absolute timers called first */ 1951 periodics_reify (EV_A); /* absolute timers called first */
1301#endif 1952#endif
1302 1953
1954#if EV_IDLE_ENABLE
1303 /* queue idle watchers unless io or timers are pending */ 1955 /* queue idle watchers unless other events are pending */
1304 if (idlecnt && !any_pending (EV_A)) 1956 idle_reify (EV_A);
1305 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1957#endif
1306 1958
1307 /* queue check watchers, to be executed first */ 1959 /* queue check watchers, to be executed first */
1308 if (expect_false (checkcnt)) 1960 if (expect_false (checkcnt))
1309 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1961 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1310 1962
1311 call_pending (EV_A); 1963 call_pending (EV_A);
1312
1313 if (expect_false (loop_done))
1314 break;
1315 } 1964 }
1965 while (expect_true (
1966 activecnt
1967 && !loop_done
1968 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1969 ));
1316 1970
1317 if (loop_done != 2) 1971 if (loop_done == EVUNLOOP_ONE)
1318 loop_done = 0; 1972 loop_done = EVUNLOOP_CANCEL;
1319} 1973}
1320 1974
1321void 1975void
1322ev_unloop (EV_P_ int how) 1976ev_unloop (EV_P_ int how)
1323{ 1977{
1324 loop_done = how; 1978 loop_done = how;
1325} 1979}
1326 1980
1327/*****************************************************************************/ 1981/*****************************************************************************/
1328 1982
1329inline void 1983void inline_size
1330wlist_add (WL *head, WL elem) 1984wlist_add (WL *head, WL elem)
1331{ 1985{
1332 elem->next = *head; 1986 elem->next = *head;
1333 *head = elem; 1987 *head = elem;
1334} 1988}
1335 1989
1336inline void 1990void inline_size
1337wlist_del (WL *head, WL elem) 1991wlist_del (WL *head, WL elem)
1338{ 1992{
1339 while (*head) 1993 while (*head)
1340 { 1994 {
1341 if (*head == elem) 1995 if (*head == elem)
1346 2000
1347 head = &(*head)->next; 2001 head = &(*head)->next;
1348 } 2002 }
1349} 2003}
1350 2004
1351inline void 2005void inline_speed
1352ev_clear_pending (EV_P_ W w) 2006clear_pending (EV_P_ W w)
1353{ 2007{
1354 if (w->pending) 2008 if (w->pending)
1355 { 2009 {
1356 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2010 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1357 w->pending = 0; 2011 w->pending = 0;
1358 } 2012 }
1359} 2013}
1360 2014
1361inline void 2015int
2016ev_clear_pending (EV_P_ void *w)
2017{
2018 W w_ = (W)w;
2019 int pending = w_->pending;
2020
2021 if (expect_true (pending))
2022 {
2023 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2024 w_->pending = 0;
2025 p->w = 0;
2026 return p->events;
2027 }
2028 else
2029 return 0;
2030}
2031
2032void inline_size
2033pri_adjust (EV_P_ W w)
2034{
2035 int pri = w->priority;
2036 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2037 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2038 w->priority = pri;
2039}
2040
2041void inline_speed
1362ev_start (EV_P_ W w, int active) 2042ev_start (EV_P_ W w, int active)
1363{ 2043{
1364 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2044 pri_adjust (EV_A_ w);
1365 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1366
1367 w->active = active; 2045 w->active = active;
1368 ev_ref (EV_A); 2046 ev_ref (EV_A);
1369} 2047}
1370 2048
1371inline void 2049void inline_size
1372ev_stop (EV_P_ W w) 2050ev_stop (EV_P_ W w)
1373{ 2051{
1374 ev_unref (EV_A); 2052 ev_unref (EV_A);
1375 w->active = 0; 2053 w->active = 0;
1376} 2054}
1377 2055
1378/*****************************************************************************/ 2056/*****************************************************************************/
1379 2057
1380void 2058void noinline
1381ev_io_start (EV_P_ struct ev_io *w) 2059ev_io_start (EV_P_ ev_io *w)
1382{ 2060{
1383 int fd = w->fd; 2061 int fd = w->fd;
1384 2062
1385 if (expect_false (ev_is_active (w))) 2063 if (expect_false (ev_is_active (w)))
1386 return; 2064 return;
1387 2065
1388 assert (("ev_io_start called with negative fd", fd >= 0)); 2066 assert (("ev_io_start called with negative fd", fd >= 0));
1389 2067
2068 EV_FREQUENT_CHECK;
2069
1390 ev_start (EV_A_ (W)w, 1); 2070 ev_start (EV_A_ (W)w, 1);
1391 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2071 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1392 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2072 wlist_add (&anfds[fd].head, (WL)w);
1393 2073
1394 fd_change (EV_A_ fd); 2074 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1395} 2075 w->events &= ~EV_IOFDSET;
1396 2076
1397void 2077 EV_FREQUENT_CHECK;
2078}
2079
2080void noinline
1398ev_io_stop (EV_P_ struct ev_io *w) 2081ev_io_stop (EV_P_ ev_io *w)
1399{ 2082{
1400 ev_clear_pending (EV_A_ (W)w); 2083 clear_pending (EV_A_ (W)w);
1401 if (expect_false (!ev_is_active (w))) 2084 if (expect_false (!ev_is_active (w)))
1402 return; 2085 return;
1403 2086
1404 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2087 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1405 2088
2089 EV_FREQUENT_CHECK;
2090
1406 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2091 wlist_del (&anfds[w->fd].head, (WL)w);
1407 ev_stop (EV_A_ (W)w); 2092 ev_stop (EV_A_ (W)w);
1408 2093
1409 fd_change (EV_A_ w->fd); 2094 fd_change (EV_A_ w->fd, 1);
1410}
1411 2095
1412void 2096 EV_FREQUENT_CHECK;
2097}
2098
2099void noinline
1413ev_timer_start (EV_P_ struct ev_timer *w) 2100ev_timer_start (EV_P_ ev_timer *w)
1414{ 2101{
1415 if (expect_false (ev_is_active (w))) 2102 if (expect_false (ev_is_active (w)))
1416 return; 2103 return;
1417 2104
1418 ((WT)w)->at += mn_now; 2105 ev_at (w) += mn_now;
1419 2106
1420 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2107 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1421 2108
2109 EV_FREQUENT_CHECK;
2110
2111 ++timercnt;
1422 ev_start (EV_A_ (W)w, ++timercnt); 2112 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1423 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2113 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1424 timers [timercnt - 1] = w; 2114 ANHE_w (timers [ev_active (w)]) = (WT)w;
1425 upheap ((WT *)timers, timercnt - 1); 2115 ANHE_at_cache (timers [ev_active (w)]);
2116 upheap (timers, ev_active (w));
1426 2117
2118 EV_FREQUENT_CHECK;
2119
1427 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2120 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1428} 2121}
1429 2122
1430void 2123void noinline
1431ev_timer_stop (EV_P_ struct ev_timer *w) 2124ev_timer_stop (EV_P_ ev_timer *w)
1432{ 2125{
1433 ev_clear_pending (EV_A_ (W)w); 2126 clear_pending (EV_A_ (W)w);
1434 if (expect_false (!ev_is_active (w))) 2127 if (expect_false (!ev_is_active (w)))
1435 return; 2128 return;
1436 2129
2130 EV_FREQUENT_CHECK;
2131
2132 {
2133 int active = ev_active (w);
2134
1437 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2135 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1438 2136
2137 --timercnt;
2138
1439 if (expect_true (((W)w)->active < timercnt--)) 2139 if (expect_true (active < timercnt + HEAP0))
1440 { 2140 {
1441 timers [((W)w)->active - 1] = timers [timercnt]; 2141 timers [active] = timers [timercnt + HEAP0];
1442 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2142 adjustheap (timers, timercnt, active);
1443 } 2143 }
2144 }
1444 2145
1445 ((WT)w)->at -= mn_now; 2146 EV_FREQUENT_CHECK;
2147
2148 ev_at (w) -= mn_now;
1446 2149
1447 ev_stop (EV_A_ (W)w); 2150 ev_stop (EV_A_ (W)w);
1448} 2151}
1449 2152
1450void 2153void noinline
1451ev_timer_again (EV_P_ struct ev_timer *w) 2154ev_timer_again (EV_P_ ev_timer *w)
1452{ 2155{
2156 EV_FREQUENT_CHECK;
2157
1453 if (ev_is_active (w)) 2158 if (ev_is_active (w))
1454 { 2159 {
1455 if (w->repeat) 2160 if (w->repeat)
1456 { 2161 {
1457 ((WT)w)->at = mn_now + w->repeat; 2162 ev_at (w) = mn_now + w->repeat;
2163 ANHE_at_cache (timers [ev_active (w)]);
1458 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2164 adjustheap (timers, timercnt, ev_active (w));
1459 } 2165 }
1460 else 2166 else
1461 ev_timer_stop (EV_A_ w); 2167 ev_timer_stop (EV_A_ w);
1462 } 2168 }
1463 else if (w->repeat) 2169 else if (w->repeat)
1464 { 2170 {
1465 w->at = w->repeat; 2171 ev_at (w) = w->repeat;
1466 ev_timer_start (EV_A_ w); 2172 ev_timer_start (EV_A_ w);
1467 } 2173 }
1468}
1469 2174
2175 EV_FREQUENT_CHECK;
2176}
2177
1470#if EV_PERIODICS 2178#if EV_PERIODIC_ENABLE
1471void 2179void noinline
1472ev_periodic_start (EV_P_ struct ev_periodic *w) 2180ev_periodic_start (EV_P_ ev_periodic *w)
1473{ 2181{
1474 if (expect_false (ev_is_active (w))) 2182 if (expect_false (ev_is_active (w)))
1475 return; 2183 return;
1476 2184
1477 if (w->reschedule_cb) 2185 if (w->reschedule_cb)
1478 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2186 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1479 else if (w->interval) 2187 else if (w->interval)
1480 { 2188 {
1481 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2189 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1482 /* this formula differs from the one in periodic_reify because we do not always round up */ 2190 /* this formula differs from the one in periodic_reify because we do not always round up */
1483 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2191 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1484 } 2192 }
2193 else
2194 ev_at (w) = w->offset;
1485 2195
2196 EV_FREQUENT_CHECK;
2197
2198 ++periodiccnt;
1486 ev_start (EV_A_ (W)w, ++periodiccnt); 2199 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1487 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2200 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1488 periodics [periodiccnt - 1] = w; 2201 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1489 upheap ((WT *)periodics, periodiccnt - 1); 2202 ANHE_at_cache (periodics [ev_active (w)]);
2203 upheap (periodics, ev_active (w));
1490 2204
2205 EV_FREQUENT_CHECK;
2206
1491 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2207 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1492} 2208}
1493 2209
1494void 2210void noinline
1495ev_periodic_stop (EV_P_ struct ev_periodic *w) 2211ev_periodic_stop (EV_P_ ev_periodic *w)
1496{ 2212{
1497 ev_clear_pending (EV_A_ (W)w); 2213 clear_pending (EV_A_ (W)w);
1498 if (expect_false (!ev_is_active (w))) 2214 if (expect_false (!ev_is_active (w)))
1499 return; 2215 return;
1500 2216
2217 EV_FREQUENT_CHECK;
2218
2219 {
2220 int active = ev_active (w);
2221
1501 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2222 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1502 2223
2224 --periodiccnt;
2225
1503 if (expect_true (((W)w)->active < periodiccnt--)) 2226 if (expect_true (active < periodiccnt + HEAP0))
1504 { 2227 {
1505 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2228 periodics [active] = periodics [periodiccnt + HEAP0];
1506 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2229 adjustheap (periodics, periodiccnt, active);
1507 } 2230 }
2231 }
2232
2233 EV_FREQUENT_CHECK;
1508 2234
1509 ev_stop (EV_A_ (W)w); 2235 ev_stop (EV_A_ (W)w);
1510} 2236}
1511 2237
1512void 2238void noinline
1513ev_periodic_again (EV_P_ struct ev_periodic *w) 2239ev_periodic_again (EV_P_ ev_periodic *w)
1514{ 2240{
1515 /* TODO: use adjustheap and recalculation */ 2241 /* TODO: use adjustheap and recalculation */
1516 ev_periodic_stop (EV_A_ w); 2242 ev_periodic_stop (EV_A_ w);
1517 ev_periodic_start (EV_A_ w); 2243 ev_periodic_start (EV_A_ w);
1518} 2244}
1519#endif 2245#endif
1520 2246
1521void 2247#ifndef SA_RESTART
1522ev_idle_start (EV_P_ struct ev_idle *w) 2248# define SA_RESTART 0
2249#endif
2250
2251void noinline
2252ev_signal_start (EV_P_ ev_signal *w)
1523{ 2253{
2254#if EV_MULTIPLICITY
2255 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2256#endif
1524 if (expect_false (ev_is_active (w))) 2257 if (expect_false (ev_is_active (w)))
1525 return; 2258 return;
1526 2259
1527 ev_start (EV_A_ (W)w, ++idlecnt);
1528 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1529 idles [idlecnt - 1] = w;
1530}
1531
1532void
1533ev_idle_stop (EV_P_ struct ev_idle *w)
1534{
1535 ev_clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w)))
1537 return;
1538
1539 idles [((W)w)->active - 1] = idles [--idlecnt];
1540 ev_stop (EV_A_ (W)w);
1541}
1542
1543void
1544ev_prepare_start (EV_P_ struct ev_prepare *w)
1545{
1546 if (expect_false (ev_is_active (w)))
1547 return;
1548
1549 ev_start (EV_A_ (W)w, ++preparecnt);
1550 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1551 prepares [preparecnt - 1] = w;
1552}
1553
1554void
1555ev_prepare_stop (EV_P_ struct ev_prepare *w)
1556{
1557 ev_clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w)))
1559 return;
1560
1561 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1562 ev_stop (EV_A_ (W)w);
1563}
1564
1565void
1566ev_check_start (EV_P_ struct ev_check *w)
1567{
1568 if (expect_false (ev_is_active (w)))
1569 return;
1570
1571 ev_start (EV_A_ (W)w, ++checkcnt);
1572 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1573 checks [checkcnt - 1] = w;
1574}
1575
1576void
1577ev_check_stop (EV_P_ struct ev_check *w)
1578{
1579 ev_clear_pending (EV_A_ (W)w);
1580 if (expect_false (!ev_is_active (w)))
1581 return;
1582
1583 checks [((W)w)->active - 1] = checks [--checkcnt];
1584 ev_stop (EV_A_ (W)w);
1585}
1586
1587#ifndef SA_RESTART
1588# define SA_RESTART 0
1589#endif
1590
1591void
1592ev_signal_start (EV_P_ struct ev_signal *w)
1593{
1594#if EV_MULTIPLICITY
1595 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1596#endif
1597 if (expect_false (ev_is_active (w)))
1598 return;
1599
1600 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2260 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1601 2261
2262 evpipe_init (EV_A);
2263
2264 EV_FREQUENT_CHECK;
2265
2266 {
2267#ifndef _WIN32
2268 sigset_t full, prev;
2269 sigfillset (&full);
2270 sigprocmask (SIG_SETMASK, &full, &prev);
2271#endif
2272
2273 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2274
2275#ifndef _WIN32
2276 sigprocmask (SIG_SETMASK, &prev, 0);
2277#endif
2278 }
2279
1602 ev_start (EV_A_ (W)w, 1); 2280 ev_start (EV_A_ (W)w, 1);
1603 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1604 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2281 wlist_add (&signals [w->signum - 1].head, (WL)w);
1605 2282
1606 if (!((WL)w)->next) 2283 if (!((WL)w)->next)
1607 { 2284 {
1608#if _WIN32 2285#if _WIN32
1609 signal (w->signum, sighandler); 2286 signal (w->signum, ev_sighandler);
1610#else 2287#else
1611 struct sigaction sa; 2288 struct sigaction sa;
1612 sa.sa_handler = sighandler; 2289 sa.sa_handler = ev_sighandler;
1613 sigfillset (&sa.sa_mask); 2290 sigfillset (&sa.sa_mask);
1614 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2291 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1615 sigaction (w->signum, &sa, 0); 2292 sigaction (w->signum, &sa, 0);
1616#endif 2293#endif
1617 } 2294 }
1618}
1619 2295
1620void 2296 EV_FREQUENT_CHECK;
2297}
2298
2299void noinline
1621ev_signal_stop (EV_P_ struct ev_signal *w) 2300ev_signal_stop (EV_P_ ev_signal *w)
1622{ 2301{
1623 ev_clear_pending (EV_A_ (W)w); 2302 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2303 if (expect_false (!ev_is_active (w)))
1625 return; 2304 return;
1626 2305
2306 EV_FREQUENT_CHECK;
2307
1627 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2308 wlist_del (&signals [w->signum - 1].head, (WL)w);
1628 ev_stop (EV_A_ (W)w); 2309 ev_stop (EV_A_ (W)w);
1629 2310
1630 if (!signals [w->signum - 1].head) 2311 if (!signals [w->signum - 1].head)
1631 signal (w->signum, SIG_DFL); 2312 signal (w->signum, SIG_DFL);
1632}
1633 2313
2314 EV_FREQUENT_CHECK;
2315}
2316
1634void 2317void
1635ev_child_start (EV_P_ struct ev_child *w) 2318ev_child_start (EV_P_ ev_child *w)
1636{ 2319{
1637#if EV_MULTIPLICITY 2320#if EV_MULTIPLICITY
1638 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2321 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1639#endif 2322#endif
1640 if (expect_false (ev_is_active (w))) 2323 if (expect_false (ev_is_active (w)))
1641 return; 2324 return;
1642 2325
2326 EV_FREQUENT_CHECK;
2327
1643 ev_start (EV_A_ (W)w, 1); 2328 ev_start (EV_A_ (W)w, 1);
1644 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2329 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1645}
1646 2330
2331 EV_FREQUENT_CHECK;
2332}
2333
1647void 2334void
1648ev_child_stop (EV_P_ struct ev_child *w) 2335ev_child_stop (EV_P_ ev_child *w)
1649{ 2336{
1650 ev_clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
1651 if (expect_false (!ev_is_active (w))) 2338 if (expect_false (!ev_is_active (w)))
1652 return; 2339 return;
1653 2340
2341 EV_FREQUENT_CHECK;
2342
1654 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2343 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1655 ev_stop (EV_A_ (W)w); 2344 ev_stop (EV_A_ (W)w);
2345
2346 EV_FREQUENT_CHECK;
1656} 2347}
2348
2349#if EV_STAT_ENABLE
2350
2351# ifdef _WIN32
2352# undef lstat
2353# define lstat(a,b) _stati64 (a,b)
2354# endif
2355
2356#define DEF_STAT_INTERVAL 5.0074891
2357#define MIN_STAT_INTERVAL 0.1074891
2358
2359static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2360
2361#if EV_USE_INOTIFY
2362# define EV_INOTIFY_BUFSIZE 8192
2363
2364static void noinline
2365infy_add (EV_P_ ev_stat *w)
2366{
2367 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2368
2369 if (w->wd < 0)
2370 {
2371 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2372
2373 /* monitor some parent directory for speedup hints */
2374 /* note that exceeding the hardcoded limit is not a correctness issue, */
2375 /* but an efficiency issue only */
2376 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2377 {
2378 char path [4096];
2379 strcpy (path, w->path);
2380
2381 do
2382 {
2383 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2384 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2385
2386 char *pend = strrchr (path, '/');
2387
2388 if (!pend)
2389 break; /* whoops, no '/', complain to your admin */
2390
2391 *pend = 0;
2392 w->wd = inotify_add_watch (fs_fd, path, mask);
2393 }
2394 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2395 }
2396 }
2397 else
2398 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2399
2400 if (w->wd >= 0)
2401 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2402}
2403
2404static void noinline
2405infy_del (EV_P_ ev_stat *w)
2406{
2407 int slot;
2408 int wd = w->wd;
2409
2410 if (wd < 0)
2411 return;
2412
2413 w->wd = -2;
2414 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2415 wlist_del (&fs_hash [slot].head, (WL)w);
2416
2417 /* remove this watcher, if others are watching it, they will rearm */
2418 inotify_rm_watch (fs_fd, wd);
2419}
2420
2421static void noinline
2422infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2423{
2424 if (slot < 0)
2425 /* overflow, need to check for all hahs slots */
2426 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2427 infy_wd (EV_A_ slot, wd, ev);
2428 else
2429 {
2430 WL w_;
2431
2432 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2433 {
2434 ev_stat *w = (ev_stat *)w_;
2435 w_ = w_->next; /* lets us remove this watcher and all before it */
2436
2437 if (w->wd == wd || wd == -1)
2438 {
2439 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2440 {
2441 w->wd = -1;
2442 infy_add (EV_A_ w); /* re-add, no matter what */
2443 }
2444
2445 stat_timer_cb (EV_A_ &w->timer, 0);
2446 }
2447 }
2448 }
2449}
2450
2451static void
2452infy_cb (EV_P_ ev_io *w, int revents)
2453{
2454 char buf [EV_INOTIFY_BUFSIZE];
2455 struct inotify_event *ev = (struct inotify_event *)buf;
2456 int ofs;
2457 int len = read (fs_fd, buf, sizeof (buf));
2458
2459 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2460 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2461}
2462
2463void inline_size
2464infy_init (EV_P)
2465{
2466 if (fs_fd != -2)
2467 return;
2468
2469 fs_fd = inotify_init ();
2470
2471 if (fs_fd >= 0)
2472 {
2473 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2474 ev_set_priority (&fs_w, EV_MAXPRI);
2475 ev_io_start (EV_A_ &fs_w);
2476 }
2477}
2478
2479void inline_size
2480infy_fork (EV_P)
2481{
2482 int slot;
2483
2484 if (fs_fd < 0)
2485 return;
2486
2487 close (fs_fd);
2488 fs_fd = inotify_init ();
2489
2490 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2491 {
2492 WL w_ = fs_hash [slot].head;
2493 fs_hash [slot].head = 0;
2494
2495 while (w_)
2496 {
2497 ev_stat *w = (ev_stat *)w_;
2498 w_ = w_->next; /* lets us add this watcher */
2499
2500 w->wd = -1;
2501
2502 if (fs_fd >= 0)
2503 infy_add (EV_A_ w); /* re-add, no matter what */
2504 else
2505 ev_timer_start (EV_A_ &w->timer);
2506 }
2507
2508 }
2509}
2510
2511#endif
2512
2513void
2514ev_stat_stat (EV_P_ ev_stat *w)
2515{
2516 if (lstat (w->path, &w->attr) < 0)
2517 w->attr.st_nlink = 0;
2518 else if (!w->attr.st_nlink)
2519 w->attr.st_nlink = 1;
2520}
2521
2522static void noinline
2523stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2524{
2525 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2526
2527 /* we copy this here each the time so that */
2528 /* prev has the old value when the callback gets invoked */
2529 w->prev = w->attr;
2530 ev_stat_stat (EV_A_ w);
2531
2532 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2533 if (
2534 w->prev.st_dev != w->attr.st_dev
2535 || w->prev.st_ino != w->attr.st_ino
2536 || w->prev.st_mode != w->attr.st_mode
2537 || w->prev.st_nlink != w->attr.st_nlink
2538 || w->prev.st_uid != w->attr.st_uid
2539 || w->prev.st_gid != w->attr.st_gid
2540 || w->prev.st_rdev != w->attr.st_rdev
2541 || w->prev.st_size != w->attr.st_size
2542 || w->prev.st_atime != w->attr.st_atime
2543 || w->prev.st_mtime != w->attr.st_mtime
2544 || w->prev.st_ctime != w->attr.st_ctime
2545 ) {
2546 #if EV_USE_INOTIFY
2547 infy_del (EV_A_ w);
2548 infy_add (EV_A_ w);
2549 ev_stat_stat (EV_A_ w); /* avoid race... */
2550 #endif
2551
2552 ev_feed_event (EV_A_ w, EV_STAT);
2553 }
2554}
2555
2556void
2557ev_stat_start (EV_P_ ev_stat *w)
2558{
2559 if (expect_false (ev_is_active (w)))
2560 return;
2561
2562 /* since we use memcmp, we need to clear any padding data etc. */
2563 memset (&w->prev, 0, sizeof (ev_statdata));
2564 memset (&w->attr, 0, sizeof (ev_statdata));
2565
2566 ev_stat_stat (EV_A_ w);
2567
2568 if (w->interval < MIN_STAT_INTERVAL)
2569 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2570
2571 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2572 ev_set_priority (&w->timer, ev_priority (w));
2573
2574#if EV_USE_INOTIFY
2575 infy_init (EV_A);
2576
2577 if (fs_fd >= 0)
2578 infy_add (EV_A_ w);
2579 else
2580#endif
2581 ev_timer_start (EV_A_ &w->timer);
2582
2583 ev_start (EV_A_ (W)w, 1);
2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588void
2589ev_stat_stop (EV_P_ ev_stat *w)
2590{
2591 clear_pending (EV_A_ (W)w);
2592 if (expect_false (!ev_is_active (w)))
2593 return;
2594
2595 EV_FREQUENT_CHECK;
2596
2597#if EV_USE_INOTIFY
2598 infy_del (EV_A_ w);
2599#endif
2600 ev_timer_stop (EV_A_ &w->timer);
2601
2602 ev_stop (EV_A_ (W)w);
2603
2604 EV_FREQUENT_CHECK;
2605}
2606#endif
2607
2608#if EV_IDLE_ENABLE
2609void
2610ev_idle_start (EV_P_ ev_idle *w)
2611{
2612 if (expect_false (ev_is_active (w)))
2613 return;
2614
2615 pri_adjust (EV_A_ (W)w);
2616
2617 EV_FREQUENT_CHECK;
2618
2619 {
2620 int active = ++idlecnt [ABSPRI (w)];
2621
2622 ++idleall;
2623 ev_start (EV_A_ (W)w, active);
2624
2625 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2626 idles [ABSPRI (w)][active - 1] = w;
2627 }
2628
2629 EV_FREQUENT_CHECK;
2630}
2631
2632void
2633ev_idle_stop (EV_P_ ev_idle *w)
2634{
2635 clear_pending (EV_A_ (W)w);
2636 if (expect_false (!ev_is_active (w)))
2637 return;
2638
2639 EV_FREQUENT_CHECK;
2640
2641 {
2642 int active = ev_active (w);
2643
2644 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2645 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2646
2647 ev_stop (EV_A_ (W)w);
2648 --idleall;
2649 }
2650
2651 EV_FREQUENT_CHECK;
2652}
2653#endif
2654
2655void
2656ev_prepare_start (EV_P_ ev_prepare *w)
2657{
2658 if (expect_false (ev_is_active (w)))
2659 return;
2660
2661 EV_FREQUENT_CHECK;
2662
2663 ev_start (EV_A_ (W)w, ++preparecnt);
2664 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2665 prepares [preparecnt - 1] = w;
2666
2667 EV_FREQUENT_CHECK;
2668}
2669
2670void
2671ev_prepare_stop (EV_P_ ev_prepare *w)
2672{
2673 clear_pending (EV_A_ (W)w);
2674 if (expect_false (!ev_is_active (w)))
2675 return;
2676
2677 EV_FREQUENT_CHECK;
2678
2679 {
2680 int active = ev_active (w);
2681
2682 prepares [active - 1] = prepares [--preparecnt];
2683 ev_active (prepares [active - 1]) = active;
2684 }
2685
2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2689}
2690
2691void
2692ev_check_start (EV_P_ ev_check *w)
2693{
2694 if (expect_false (ev_is_active (w)))
2695 return;
2696
2697 EV_FREQUENT_CHECK;
2698
2699 ev_start (EV_A_ (W)w, ++checkcnt);
2700 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2701 checks [checkcnt - 1] = w;
2702
2703 EV_FREQUENT_CHECK;
2704}
2705
2706void
2707ev_check_stop (EV_P_ ev_check *w)
2708{
2709 clear_pending (EV_A_ (W)w);
2710 if (expect_false (!ev_is_active (w)))
2711 return;
2712
2713 EV_FREQUENT_CHECK;
2714
2715 {
2716 int active = ev_active (w);
2717
2718 checks [active - 1] = checks [--checkcnt];
2719 ev_active (checks [active - 1]) = active;
2720 }
2721
2722 ev_stop (EV_A_ (W)w);
2723
2724 EV_FREQUENT_CHECK;
2725}
2726
2727#if EV_EMBED_ENABLE
2728void noinline
2729ev_embed_sweep (EV_P_ ev_embed *w)
2730{
2731 ev_loop (w->other, EVLOOP_NONBLOCK);
2732}
2733
2734static void
2735embed_io_cb (EV_P_ ev_io *io, int revents)
2736{
2737 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2738
2739 if (ev_cb (w))
2740 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2741 else
2742 ev_loop (w->other, EVLOOP_NONBLOCK);
2743}
2744
2745static void
2746embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2747{
2748 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2749
2750 {
2751 struct ev_loop *loop = w->other;
2752
2753 while (fdchangecnt)
2754 {
2755 fd_reify (EV_A);
2756 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2757 }
2758 }
2759}
2760
2761#if 0
2762static void
2763embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2764{
2765 ev_idle_stop (EV_A_ idle);
2766}
2767#endif
2768
2769void
2770ev_embed_start (EV_P_ ev_embed *w)
2771{
2772 if (expect_false (ev_is_active (w)))
2773 return;
2774
2775 {
2776 struct ev_loop *loop = w->other;
2777 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2778 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2779 }
2780
2781 EV_FREQUENT_CHECK;
2782
2783 ev_set_priority (&w->io, ev_priority (w));
2784 ev_io_start (EV_A_ &w->io);
2785
2786 ev_prepare_init (&w->prepare, embed_prepare_cb);
2787 ev_set_priority (&w->prepare, EV_MINPRI);
2788 ev_prepare_start (EV_A_ &w->prepare);
2789
2790 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2791
2792 ev_start (EV_A_ (W)w, 1);
2793
2794 EV_FREQUENT_CHECK;
2795}
2796
2797void
2798ev_embed_stop (EV_P_ ev_embed *w)
2799{
2800 clear_pending (EV_A_ (W)w);
2801 if (expect_false (!ev_is_active (w)))
2802 return;
2803
2804 EV_FREQUENT_CHECK;
2805
2806 ev_io_stop (EV_A_ &w->io);
2807 ev_prepare_stop (EV_A_ &w->prepare);
2808
2809 ev_stop (EV_A_ (W)w);
2810
2811 EV_FREQUENT_CHECK;
2812}
2813#endif
2814
2815#if EV_FORK_ENABLE
2816void
2817ev_fork_start (EV_P_ ev_fork *w)
2818{
2819 if (expect_false (ev_is_active (w)))
2820 return;
2821
2822 EV_FREQUENT_CHECK;
2823
2824 ev_start (EV_A_ (W)w, ++forkcnt);
2825 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2826 forks [forkcnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2829}
2830
2831void
2832ev_fork_stop (EV_P_ ev_fork *w)
2833{
2834 clear_pending (EV_A_ (W)w);
2835 if (expect_false (!ev_is_active (w)))
2836 return;
2837
2838 EV_FREQUENT_CHECK;
2839
2840 {
2841 int active = ev_active (w);
2842
2843 forks [active - 1] = forks [--forkcnt];
2844 ev_active (forks [active - 1]) = active;
2845 }
2846
2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2850}
2851#endif
2852
2853#if EV_ASYNC_ENABLE
2854void
2855ev_async_start (EV_P_ ev_async *w)
2856{
2857 if (expect_false (ev_is_active (w)))
2858 return;
2859
2860 evpipe_init (EV_A);
2861
2862 EV_FREQUENT_CHECK;
2863
2864 ev_start (EV_A_ (W)w, ++asynccnt);
2865 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2866 asyncs [asynccnt - 1] = w;
2867
2868 EV_FREQUENT_CHECK;
2869}
2870
2871void
2872ev_async_stop (EV_P_ ev_async *w)
2873{
2874 clear_pending (EV_A_ (W)w);
2875 if (expect_false (!ev_is_active (w)))
2876 return;
2877
2878 EV_FREQUENT_CHECK;
2879
2880 {
2881 int active = ev_active (w);
2882
2883 asyncs [active - 1] = asyncs [--asynccnt];
2884 ev_active (asyncs [active - 1]) = active;
2885 }
2886
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890}
2891
2892void
2893ev_async_send (EV_P_ ev_async *w)
2894{
2895 w->sent = 1;
2896 evpipe_write (EV_A_ &gotasync);
2897}
2898#endif
1657 2899
1658/*****************************************************************************/ 2900/*****************************************************************************/
1659 2901
1660struct ev_once 2902struct ev_once
1661{ 2903{
1662 struct ev_io io; 2904 ev_io io;
1663 struct ev_timer to; 2905 ev_timer to;
1664 void (*cb)(int revents, void *arg); 2906 void (*cb)(int revents, void *arg);
1665 void *arg; 2907 void *arg;
1666}; 2908};
1667 2909
1668static void 2910static void
1677 2919
1678 cb (revents, arg); 2920 cb (revents, arg);
1679} 2921}
1680 2922
1681static void 2923static void
1682once_cb_io (EV_P_ struct ev_io *w, int revents) 2924once_cb_io (EV_P_ ev_io *w, int revents)
1683{ 2925{
1684 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2926 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1685} 2927}
1686 2928
1687static void 2929static void
1688once_cb_to (EV_P_ struct ev_timer *w, int revents) 2930once_cb_to (EV_P_ ev_timer *w, int revents)
1689{ 2931{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2932 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1691} 2933}
1692 2934
1693void 2935void
1717 ev_timer_set (&once->to, timeout, 0.); 2959 ev_timer_set (&once->to, timeout, 0.);
1718 ev_timer_start (EV_A_ &once->to); 2960 ev_timer_start (EV_A_ &once->to);
1719 } 2961 }
1720} 2962}
1721 2963
2964#if EV_MULTIPLICITY
2965 #include "ev_wrap.h"
2966#endif
2967
1722#ifdef __cplusplus 2968#ifdef __cplusplus
1723} 2969}
1724#endif 2970#endif
1725 2971

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines