ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.129 by root, Fri Nov 23 05:00:44 2007 UTC vs.
Revision 1.325 by root, Sun Jan 24 12:31:55 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
46# else 73# else
47# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
49# endif 76# endif
50# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
52# endif 79# endif
53# endif 80# endif
54 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
55# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
57# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
58# else 93# else
59# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
75# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
76# endif 111# endif
77# endif 112# endif
78 113
79# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
81# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
82# else 117# else
83# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
84# endif 119# endif
85# endif 120# endif
90# else 125# else
91# define EV_USE_PORT 0 126# define EV_USE_PORT 0
92# endif 127# endif
93# endif 128# endif
94 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
95#endif 154#endif
96 155
97#include <math.h> 156#include <math.h>
98#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
99#include <fcntl.h> 159#include <fcntl.h>
100#include <stddef.h> 160#include <stddef.h>
101 161
102#include <stdio.h> 162#include <stdio.h>
103 163
106#include <sys/types.h> 166#include <sys/types.h>
107#include <time.h> 167#include <time.h>
108 168
109#include <signal.h> 169#include <signal.h>
110 170
171#ifdef EV_H
172# include EV_H
173#else
174# include "ev.h"
175#endif
176
111#ifndef _WIN32 177#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 178# include <sys/time.h>
114# include <sys/wait.h> 179# include <sys/wait.h>
180# include <unistd.h>
115#else 181#else
182# include <io.h>
116# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 184# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
120# endif 187# endif
121#endif 188#endif
122 189
123/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
124 226
125#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
126# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
127#endif 233#endif
128 234
129#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
131#endif 245#endif
132 246
133#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
135#endif 249#endif
141# define EV_USE_POLL 1 255# define EV_USE_POLL 1
142# endif 256# endif
143#endif 257#endif
144 258
145#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
146# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
147#endif 265#endif
148 266
149#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
151#endif 269#endif
152 270
153#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 272# define EV_USE_PORT 0
155#endif 273#endif
156 274
157/**/ 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
279# define EV_USE_INOTIFY 0
280# endif
281#endif
282
283#ifndef EV_PID_HASHSIZE
284# if EV_MINIMAL
285# define EV_PID_HASHSIZE 1
286# else
287# define EV_PID_HASHSIZE 16
288# endif
289#endif
290
291#ifndef EV_INOTIFY_HASHSIZE
292# if EV_MINIMAL
293# define EV_INOTIFY_HASHSIZE 1
294# else
295# define EV_INOTIFY_HASHSIZE 16
296# endif
297#endif
298
299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
348
349#ifdef _AIX
350/* AIX has a completely broken poll.h header */
351# undef EV_USE_POLL
352# define EV_USE_POLL 0
353#endif
158 354
159#ifndef CLOCK_MONOTONIC 355#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 356# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 357# define EV_USE_MONOTONIC 0
162#endif 358#endif
164#ifndef CLOCK_REALTIME 360#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 361# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 362# define EV_USE_REALTIME 0
167#endif 363#endif
168 364
365#if !EV_STAT_ENABLE
366# undef EV_USE_INOTIFY
367# define EV_USE_INOTIFY 0
368#endif
369
370#if !EV_USE_NANOSLEEP
371# ifndef _WIN32
372# include <sys/select.h>
373# endif
374#endif
375
376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
385#endif
386
169#if EV_SELECT_IS_WINSOCKET 387#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 388# include <winsock.h>
171#endif 389#endif
172 390
391#if EV_USE_EVENTFD
392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
396# endif
397# ifndef EFD_CLOEXEC
398# ifdef O_CLOEXEC
399# define EFD_CLOEXEC O_CLOEXEC
400# else
401# define EFD_CLOEXEC 02000000
402# endif
403# endif
404# ifdef __cplusplus
405extern "C" {
406# endif
407int eventfd (unsigned int initval, int flags);
408# ifdef __cplusplus
409}
410# endif
411#endif
412
413#if EV_USE_SIGNALFD
414/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
415# include <stdint.h>
416# ifndef SFD_NONBLOCK
417# define SFD_NONBLOCK O_NONBLOCK
418# endif
419# ifndef SFD_CLOEXEC
420# ifdef O_CLOEXEC
421# define SFD_CLOEXEC O_CLOEXEC
422# else
423# define SFD_CLOEXEC 02000000
424# endif
425# endif
426# ifdef __cplusplus
427extern "C" {
428# endif
429int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436# ifdef __cplusplus
437}
438# endif
439#endif
440
441
173/**/ 442/**/
443
444#if EV_VERIFY >= 3
445# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
446#else
447# define EV_FREQUENT_CHECK do { } while (0)
448#endif
449
450/*
451 * This is used to avoid floating point rounding problems.
452 * It is added to ev_rt_now when scheduling periodics
453 * to ensure progress, time-wise, even when rounding
454 * errors are against us.
455 * This value is good at least till the year 4000.
456 * Better solutions welcome.
457 */
458#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 459
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 460#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 461#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179 462
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 463#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 465# define noinline __attribute__ ((noinline))
189#else 466#else
190# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
191# define inline static 468# define noinline
469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
470# define inline
471# endif
192#endif 472#endif
193 473
194#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
476#define inline_size static inline
196 477
478#if EV_MINIMAL
479# define inline_speed static noinline
480#else
481# define inline_speed static inline
482#endif
483
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
199 491
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
202 494
203typedef struct ev_watcher *W; 495typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
206 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architetcures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
208 521
209#ifdef _WIN32 522#ifdef _WIN32
210# include "ev_win32.c" 523# include "ev_win32.c"
211#endif 524#endif
212 525
213/*****************************************************************************/ 526/*****************************************************************************/
214 527
215static void (*syserr_cb)(const char *msg); 528static void (*syserr_cb)(const char *msg);
216 529
530void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 531ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 532{
219 syserr_cb = cb; 533 syserr_cb = cb;
220} 534}
221 535
222static void 536static void noinline
223syserr (const char *msg) 537ev_syserr (const char *msg)
224{ 538{
225 if (!msg) 539 if (!msg)
226 msg = "(libev) system error"; 540 msg = "(libev) system error";
227 541
228 if (syserr_cb) 542 if (syserr_cb)
232 perror (msg); 546 perror (msg);
233 abort (); 547 abort ();
234 } 548 }
235} 549}
236 550
551static void *
552ev_realloc_emul (void *ptr, long size)
553{
554 /* some systems, notably openbsd and darwin, fail to properly
555 * implement realloc (x, 0) (as required by both ansi c-98 and
556 * the single unix specification, so work around them here.
557 */
558
559 if (size)
560 return realloc (ptr, size);
561
562 free (ptr);
563 return 0;
564}
565
237static void *(*alloc)(void *ptr, long size); 566static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 567
568void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 569ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 570{
241 alloc = cb; 571 alloc = cb;
242} 572}
243 573
244static void * 574inline_speed void *
245ev_realloc (void *ptr, long size) 575ev_realloc (void *ptr, long size)
246{ 576{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 577 ptr = alloc (ptr, size);
248 578
249 if (!ptr && size) 579 if (!ptr && size)
250 { 580 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 581 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 582 abort ();
258#define ev_malloc(size) ev_realloc (0, (size)) 588#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0) 589#define ev_free(ptr) ev_realloc ((ptr), 0)
260 590
261/*****************************************************************************/ 591/*****************************************************************************/
262 592
593/* set in reify when reification needed */
594#define EV_ANFD_REIFY 1
595
596/* file descriptor info structure */
263typedef struct 597typedef struct
264{ 598{
265 WL head; 599 WL head;
266 unsigned char events; 600 unsigned char events; /* the events watched for */
601 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
602 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
267 unsigned char reify; 603 unsigned char unused;
604#if EV_USE_EPOLL
605 unsigned int egen; /* generation counter to counter epoll bugs */
606#endif
268#if EV_SELECT_IS_WINSOCKET 607#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle; 608 SOCKET handle;
270#endif 609#endif
271} ANFD; 610} ANFD;
272 611
612/* stores the pending event set for a given watcher */
273typedef struct 613typedef struct
274{ 614{
275 W w; 615 W w;
276 int events; 616 int events; /* the pending event set for the given watcher */
277} ANPENDING; 617} ANPENDING;
618
619#if EV_USE_INOTIFY
620/* hash table entry per inotify-id */
621typedef struct
622{
623 WL head;
624} ANFS;
625#endif
626
627/* Heap Entry */
628#if EV_HEAP_CACHE_AT
629 /* a heap element */
630 typedef struct {
631 ev_tstamp at;
632 WT w;
633 } ANHE;
634
635 #define ANHE_w(he) (he).w /* access watcher, read-write */
636 #define ANHE_at(he) (he).at /* access cached at, read-only */
637 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
638#else
639 /* a heap element */
640 typedef WT ANHE;
641
642 #define ANHE_w(he) (he)
643 #define ANHE_at(he) (he)->at
644 #define ANHE_at_cache(he)
645#endif
278 646
279#if EV_MULTIPLICITY 647#if EV_MULTIPLICITY
280 648
281 struct ev_loop 649 struct ev_loop
282 { 650 {
300 668
301 static int ev_default_loop_ptr; 669 static int ev_default_loop_ptr;
302 670
303#endif 671#endif
304 672
673#if EV_MINIMAL < 2
674# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
675# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
676# define EV_INVOKE_PENDING invoke_cb (EV_A)
677#else
678# define EV_RELEASE_CB (void)0
679# define EV_ACQUIRE_CB (void)0
680# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
681#endif
682
683#define EVUNLOOP_RECURSE 0x80
684
305/*****************************************************************************/ 685/*****************************************************************************/
306 686
687#ifndef EV_HAVE_EV_TIME
307ev_tstamp 688ev_tstamp
308ev_time (void) 689ev_time (void)
309{ 690{
310#if EV_USE_REALTIME 691#if EV_USE_REALTIME
692 if (expect_true (have_realtime))
693 {
311 struct timespec ts; 694 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 695 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 696 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 697 }
698#endif
699
315 struct timeval tv; 700 struct timeval tv;
316 gettimeofday (&tv, 0); 701 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 702 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 703}
704#endif
320 705
321inline ev_tstamp 706inline_size ev_tstamp
322get_clock (void) 707get_clock (void)
323{ 708{
324#if EV_USE_MONOTONIC 709#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 710 if (expect_true (have_monotonic))
326 { 711 {
339{ 724{
340 return ev_rt_now; 725 return ev_rt_now;
341} 726}
342#endif 727#endif
343 728
344#define array_roundsize(type,n) (((n) | 4) & ~3) 729void
730ev_sleep (ev_tstamp delay)
731{
732 if (delay > 0.)
733 {
734#if EV_USE_NANOSLEEP
735 struct timespec ts;
736
737 ts.tv_sec = (time_t)delay;
738 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
739
740 nanosleep (&ts, 0);
741#elif defined(_WIN32)
742 Sleep ((unsigned long)(delay * 1e3));
743#else
744 struct timeval tv;
745
746 tv.tv_sec = (time_t)delay;
747 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
748
749 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
750 /* something not guaranteed by newer posix versions, but guaranteed */
751 /* by older ones */
752 select (0, 0, 0, 0, &tv);
753#endif
754 }
755}
756
757/*****************************************************************************/
758
759#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
760
761/* find a suitable new size for the given array, */
762/* hopefully by rounding to a ncie-to-malloc size */
763inline_size int
764array_nextsize (int elem, int cur, int cnt)
765{
766 int ncur = cur + 1;
767
768 do
769 ncur <<= 1;
770 while (cnt > ncur);
771
772 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
773 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
774 {
775 ncur *= elem;
776 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
777 ncur = ncur - sizeof (void *) * 4;
778 ncur /= elem;
779 }
780
781 return ncur;
782}
783
784static noinline void *
785array_realloc (int elem, void *base, int *cur, int cnt)
786{
787 *cur = array_nextsize (elem, *cur, cnt);
788 return ev_realloc (base, elem * *cur);
789}
790
791#define array_init_zero(base,count) \
792 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 793
346#define array_needsize(type,base,cur,cnt,init) \ 794#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 795 if (expect_false ((cnt) > (cur))) \
348 { \ 796 { \
349 int newcnt = cur; \ 797 int ocur_ = (cur); \
350 do \ 798 (base) = (type *)array_realloc \
351 { \ 799 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 800 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 801 }
360 802
803#if 0
361#define array_slim(type,stem) \ 804#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 805 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 806 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 807 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 808 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 809 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 810 }
811#endif
368 812
369#define array_free(stem, idx) \ 813#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 814 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
371 815
372/*****************************************************************************/ 816/*****************************************************************************/
373 817
374static void 818/* dummy callback for pending events */
375anfds_init (ANFD *base, int count) 819static void noinline
820pendingcb (EV_P_ ev_prepare *w, int revents)
376{ 821{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385} 822}
386 823
387void 824void noinline
388ev_feed_event (EV_P_ void *w, int revents) 825ev_feed_event (EV_P_ void *w, int revents)
389{ 826{
390 W w_ = (W)w; 827 W w_ = (W)w;
828 int pri = ABSPRI (w_);
391 829
392 if (expect_false (w_->pending)) 830 if (expect_false (w_->pending))
831 pendings [pri][w_->pending - 1].events |= revents;
832 else
393 { 833 {
834 w_->pending = ++pendingcnt [pri];
835 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
836 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 837 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 838 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 839}
403 840
404static void 841inline_speed void
842feed_reverse (EV_P_ W w)
843{
844 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
845 rfeeds [rfeedcnt++] = w;
846}
847
848inline_size void
849feed_reverse_done (EV_P_ int revents)
850{
851 do
852 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
853 while (rfeedcnt);
854}
855
856inline_speed void
405queue_events (EV_P_ W *events, int eventcnt, int type) 857queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 858{
407 int i; 859 int i;
408 860
409 for (i = 0; i < eventcnt; ++i) 861 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 862 ev_feed_event (EV_A_ events [i], type);
411} 863}
412 864
865/*****************************************************************************/
866
413inline void 867inline_speed void
414fd_event (EV_P_ int fd, int revents) 868fd_event_nc (EV_P_ int fd, int revents)
415{ 869{
416 ANFD *anfd = anfds + fd; 870 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 871 ev_io *w;
418 872
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 873 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 874 {
421 int ev = w->events & revents; 875 int ev = w->events & revents;
422 876
423 if (ev) 877 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 878 ev_feed_event (EV_A_ (W)w, ev);
425 } 879 }
426} 880}
427 881
882/* do not submit kernel events for fds that have reify set */
883/* because that means they changed while we were polling for new events */
884inline_speed void
885fd_event (EV_P_ int fd, int revents)
886{
887 ANFD *anfd = anfds + fd;
888
889 if (expect_true (!anfd->reify))
890 fd_event_nc (EV_A_ fd, revents);
891}
892
428void 893void
429ev_feed_fd_event (EV_P_ int fd, int revents) 894ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 895{
896 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 897 fd_event_nc (EV_A_ fd, revents);
432} 898}
433 899
434/*****************************************************************************/ 900/* make sure the external fd watch events are in-sync */
435 901/* with the kernel/libev internal state */
436inline void 902inline_size void
437fd_reify (EV_P) 903fd_reify (EV_P)
438{ 904{
439 int i; 905 int i;
440 906
441 for (i = 0; i < fdchangecnt; ++i) 907 for (i = 0; i < fdchangecnt; ++i)
442 { 908 {
443 int fd = fdchanges [i]; 909 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 910 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 911 ev_io *w;
446 912
447 int events = 0; 913 unsigned char events = 0;
448 914
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 915 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 916 events |= (unsigned char)w->events;
451 917
452#if EV_SELECT_IS_WINSOCKET 918#if EV_SELECT_IS_WINSOCKET
453 if (events) 919 if (events)
454 { 920 {
455 unsigned long argp; 921 unsigned long arg;
456 anfd->handle = _get_osfhandle (fd); 922 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 923 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
458 } 924 }
459#endif 925#endif
460 926
927 {
928 unsigned char o_events = anfd->events;
929 unsigned char o_reify = anfd->reify;
930
461 anfd->reify = 0; 931 anfd->reify = 0;
462
463 method_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 932 anfd->events = events;
933
934 if (o_events != events || o_reify & EV__IOFDSET)
935 backend_modify (EV_A_ fd, o_events, events);
936 }
465 } 937 }
466 938
467 fdchangecnt = 0; 939 fdchangecnt = 0;
468} 940}
469 941
470static void 942/* something about the given fd changed */
943inline_size void
471fd_change (EV_P_ int fd) 944fd_change (EV_P_ int fd, int flags)
472{ 945{
473 if (expect_false (anfds [fd].reify)) 946 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 947 anfds [fd].reify |= flags;
477 948
949 if (expect_true (!reify))
950 {
478 ++fdchangecnt; 951 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 952 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 953 fdchanges [fdchangecnt - 1] = fd;
954 }
481} 955}
482 956
483static void 957/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
958inline_speed void
484fd_kill (EV_P_ int fd) 959fd_kill (EV_P_ int fd)
485{ 960{
486 struct ev_io *w; 961 ev_io *w;
487 962
488 while ((w = (struct ev_io *)anfds [fd].head)) 963 while ((w = (ev_io *)anfds [fd].head))
489 { 964 {
490 ev_io_stop (EV_A_ w); 965 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 966 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 967 }
493} 968}
494 969
970/* check whether the given fd is atcually valid, for error recovery */
495inline int 971inline_size int
496fd_valid (int fd) 972fd_valid (int fd)
497{ 973{
498#ifdef _WIN32 974#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 975 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
500#else 976#else
501 return fcntl (fd, F_GETFD) != -1; 977 return fcntl (fd, F_GETFD) != -1;
502#endif 978#endif
503} 979}
504 980
505/* called on EBADF to verify fds */ 981/* called on EBADF to verify fds */
506static void 982static void noinline
507fd_ebadf (EV_P) 983fd_ebadf (EV_P)
508{ 984{
509 int fd; 985 int fd;
510 986
511 for (fd = 0; fd < anfdmax; ++fd) 987 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 988 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 989 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 990 fd_kill (EV_A_ fd);
515} 991}
516 992
517/* called on ENOMEM in select/poll to kill some fds and retry */ 993/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 994static void noinline
519fd_enomem (EV_P) 995fd_enomem (EV_P)
520{ 996{
521 int fd; 997 int fd;
522 998
523 for (fd = anfdmax; fd--; ) 999 for (fd = anfdmax; fd--; )
524 if (anfds [fd].events) 1000 if (anfds [fd].events)
525 { 1001 {
526 fd_kill (EV_A_ fd); 1002 fd_kill (EV_A_ fd);
527 return; 1003 break;
528 } 1004 }
529} 1005}
530 1006
531/* usually called after fork if method needs to re-arm all fds from scratch */ 1007/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 1008static void noinline
533fd_rearm_all (EV_P) 1009fd_rearm_all (EV_P)
534{ 1010{
535 int fd; 1011 int fd;
536 1012
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 1013 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 1014 if (anfds [fd].events)
540 { 1015 {
541 anfds [fd].events = 0; 1016 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 1017 anfds [fd].emask = 0;
1018 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
543 } 1019 }
544} 1020}
545 1021
546/*****************************************************************************/ 1022/*****************************************************************************/
547 1023
548static void 1024/*
549upheap (WT *heap, int k) 1025 * the heap functions want a real array index. array index 0 uis guaranteed to not
550{ 1026 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
551 WT w = heap [k]; 1027 * the branching factor of the d-tree.
1028 */
552 1029
553 while (k && heap [k >> 1]->at > w->at) 1030/*
554 { 1031 * at the moment we allow libev the luxury of two heaps,
555 heap [k] = heap [k >> 1]; 1032 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
556 ((W)heap [k])->active = k + 1; 1033 * which is more cache-efficient.
557 k >>= 1; 1034 * the difference is about 5% with 50000+ watchers.
558 } 1035 */
1036#if EV_USE_4HEAP
559 1037
560 heap [k] = w; 1038#define DHEAP 4
561 ((W)heap [k])->active = k + 1; 1039#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1040#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1041#define UPHEAP_DONE(p,k) ((p) == (k))
562 1042
563} 1043/* away from the root */
564 1044inline_speed void
565static void
566downheap (WT *heap, int N, int k) 1045downheap (ANHE *heap, int N, int k)
567{ 1046{
568 WT w = heap [k]; 1047 ANHE he = heap [k];
1048 ANHE *E = heap + N + HEAP0;
569 1049
570 while (k < (N >> 1)) 1050 for (;;)
571 { 1051 {
572 int j = k << 1; 1052 ev_tstamp minat;
1053 ANHE *minpos;
1054 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
573 1055
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1056 /* find minimum child */
1057 if (expect_true (pos + DHEAP - 1 < E))
575 ++j; 1058 {
576 1059 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
577 if (w->at <= heap [j]->at) 1060 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else if (pos < E)
1065 {
1066 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1067 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1068 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1069 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1070 }
1071 else
578 break; 1072 break;
579 1073
1074 if (ANHE_at (he) <= minat)
1075 break;
1076
1077 heap [k] = *minpos;
1078 ev_active (ANHE_w (*minpos)) = k;
1079
1080 k = minpos - heap;
1081 }
1082
1083 heap [k] = he;
1084 ev_active (ANHE_w (he)) = k;
1085}
1086
1087#else /* 4HEAP */
1088
1089#define HEAP0 1
1090#define HPARENT(k) ((k) >> 1)
1091#define UPHEAP_DONE(p,k) (!(p))
1092
1093/* away from the root */
1094inline_speed void
1095downheap (ANHE *heap, int N, int k)
1096{
1097 ANHE he = heap [k];
1098
1099 for (;;)
1100 {
1101 int c = k << 1;
1102
1103 if (c >= N + HEAP0)
1104 break;
1105
1106 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1107 ? 1 : 0;
1108
1109 if (ANHE_at (he) <= ANHE_at (heap [c]))
1110 break;
1111
580 heap [k] = heap [j]; 1112 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 1113 ev_active (ANHE_w (heap [k])) = k;
1114
582 k = j; 1115 k = c;
583 } 1116 }
584 1117
585 heap [k] = w; 1118 heap [k] = he;
586 ((W)heap [k])->active = k + 1; 1119 ev_active (ANHE_w (he)) = k;
587} 1120}
1121#endif
588 1122
1123/* towards the root */
1124inline_speed void
1125upheap (ANHE *heap, int k)
1126{
1127 ANHE he = heap [k];
1128
1129 for (;;)
1130 {
1131 int p = HPARENT (k);
1132
1133 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1134 break;
1135
1136 heap [k] = heap [p];
1137 ev_active (ANHE_w (heap [k])) = k;
1138 k = p;
1139 }
1140
1141 heap [k] = he;
1142 ev_active (ANHE_w (he)) = k;
1143}
1144
1145/* move an element suitably so it is in a correct place */
589inline void 1146inline_size void
590adjustheap (WT *heap, int N, int k) 1147adjustheap (ANHE *heap, int N, int k)
591{ 1148{
1149 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
592 upheap (heap, k); 1150 upheap (heap, k);
1151 else
593 downheap (heap, N, k); 1152 downheap (heap, N, k);
1153}
1154
1155/* rebuild the heap: this function is used only once and executed rarely */
1156inline_size void
1157reheap (ANHE *heap, int N)
1158{
1159 int i;
1160
1161 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1162 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1163 for (i = 0; i < N; ++i)
1164 upheap (heap, i + HEAP0);
594} 1165}
595 1166
596/*****************************************************************************/ 1167/*****************************************************************************/
597 1168
1169/* associate signal watchers to a signal signal */
598typedef struct 1170typedef struct
599{ 1171{
1172 EV_ATOMIC_T pending;
1173#if EV_MULTIPLICITY
1174 EV_P;
1175#endif
600 WL head; 1176 WL head;
601 sig_atomic_t volatile gotsig;
602} ANSIG; 1177} ANSIG;
603 1178
604static ANSIG *signals; 1179static ANSIG signals [EV_NSIG - 1];
605static int signalmax;
606 1180
607static int sigpipe [2]; 1181/*****************************************************************************/
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 1182
611static void 1183/* used to prepare libev internal fd's */
612signals_init (ANSIG *base, int count) 1184/* this is not fork-safe */
613{ 1185inline_speed void
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618
619 ++base;
620 }
621}
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1186fd_intern (int fd)
676{ 1187{
677#ifdef _WIN32 1188#ifdef _WIN32
678 int arg = 1; 1189 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1190 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
680#else 1191#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1192 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1193 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1194#endif
684} 1195}
685 1196
1197static void noinline
1198evpipe_init (EV_P)
1199{
1200 if (!ev_is_active (&pipe_w))
1201 {
1202#if EV_USE_EVENTFD
1203 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1204 if (evfd < 0 && errno == EINVAL)
1205 evfd = eventfd (0, 0);
1206
1207 if (evfd >= 0)
1208 {
1209 evpipe [0] = -1;
1210 fd_intern (evfd); /* doing it twice doesn't hurt */
1211 ev_io_set (&pipe_w, evfd, EV_READ);
1212 }
1213 else
1214#endif
1215 {
1216 while (pipe (evpipe))
1217 ev_syserr ("(libev) error creating signal/async pipe");
1218
1219 fd_intern (evpipe [0]);
1220 fd_intern (evpipe [1]);
1221 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1222 }
1223
1224 ev_io_start (EV_A_ &pipe_w);
1225 ev_unref (EV_A); /* watcher should not keep loop alive */
1226 }
1227}
1228
1229inline_size void
1230evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1231{
1232 if (!*flag)
1233 {
1234 int old_errno = errno; /* save errno because write might clobber it */
1235
1236 *flag = 1;
1237
1238#if EV_USE_EVENTFD
1239 if (evfd >= 0)
1240 {
1241 uint64_t counter = 1;
1242 write (evfd, &counter, sizeof (uint64_t));
1243 }
1244 else
1245#endif
1246 write (evpipe [1], &old_errno, 1);
1247
1248 errno = old_errno;
1249 }
1250}
1251
1252/* called whenever the libev signal pipe */
1253/* got some events (signal, async) */
686static void 1254static void
687siginit (EV_P) 1255pipecb (EV_P_ ev_io *iow, int revents)
688{ 1256{
689 fd_intern (sigpipe [0]); 1257 int i;
690 fd_intern (sigpipe [1]);
691 1258
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1259#if EV_USE_EVENTFD
693 ev_io_start (EV_A_ &sigev); 1260 if (evfd >= 0)
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1261 {
1262 uint64_t counter;
1263 read (evfd, &counter, sizeof (uint64_t));
1264 }
1265 else
1266#endif
1267 {
1268 char dummy;
1269 read (evpipe [0], &dummy, 1);
1270 }
1271
1272 if (sig_pending)
1273 {
1274 sig_pending = 0;
1275
1276 for (i = EV_NSIG - 1; i--; )
1277 if (expect_false (signals [i].pending))
1278 ev_feed_signal_event (EV_A_ i + 1);
1279 }
1280
1281#if EV_ASYNC_ENABLE
1282 if (async_pending)
1283 {
1284 async_pending = 0;
1285
1286 for (i = asynccnt; i--; )
1287 if (asyncs [i]->sent)
1288 {
1289 asyncs [i]->sent = 0;
1290 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1291 }
1292 }
1293#endif
695} 1294}
696 1295
697/*****************************************************************************/ 1296/*****************************************************************************/
698 1297
699static struct ev_child *childs [PID_HASHSIZE]; 1298static void
1299ev_sighandler (int signum)
1300{
1301#if EV_MULTIPLICITY
1302 EV_P = signals [signum - 1].loop;
1303#endif
1304
1305#ifdef _WIN32
1306 signal (signum, ev_sighandler);
1307#endif
1308
1309 signals [signum - 1].pending = 1;
1310 evpipe_write (EV_A_ &sig_pending);
1311}
1312
1313void noinline
1314ev_feed_signal_event (EV_P_ int signum)
1315{
1316 WL w;
1317
1318 if (expect_false (signum <= 0 || signum > EV_NSIG))
1319 return;
1320
1321 --signum;
1322
1323#if EV_MULTIPLICITY
1324 /* it is permissible to try to feed a signal to the wrong loop */
1325 /* or, likely more useful, feeding a signal nobody is waiting for */
1326
1327 if (expect_false (signals [signum].loop != EV_A))
1328 return;
1329#endif
1330
1331 signals [signum].pending = 0;
1332
1333 for (w = signals [signum].head; w; w = w->next)
1334 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1335}
1336
1337#if EV_USE_SIGNALFD
1338static void
1339sigfdcb (EV_P_ ev_io *iow, int revents)
1340{
1341 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1342
1343 for (;;)
1344 {
1345 ssize_t res = read (sigfd, si, sizeof (si));
1346
1347 /* not ISO-C, as res might be -1, but works with SuS */
1348 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1349 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1350
1351 if (res < (ssize_t)sizeof (si))
1352 break;
1353 }
1354}
1355#endif
1356
1357/*****************************************************************************/
1358
1359static WL childs [EV_PID_HASHSIZE];
700 1360
701#ifndef _WIN32 1361#ifndef _WIN32
702 1362
703static struct ev_signal childev; 1363static ev_signal childev;
1364
1365#ifndef WIFCONTINUED
1366# define WIFCONTINUED(status) 0
1367#endif
1368
1369/* handle a single child status event */
1370inline_speed void
1371child_reap (EV_P_ int chain, int pid, int status)
1372{
1373 ev_child *w;
1374 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1375
1376 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1377 {
1378 if ((w->pid == pid || !w->pid)
1379 && (!traced || (w->flags & 1)))
1380 {
1381 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1382 w->rpid = pid;
1383 w->rstatus = status;
1384 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1385 }
1386 }
1387}
704 1388
705#ifndef WCONTINUED 1389#ifndef WCONTINUED
706# define WCONTINUED 0 1390# define WCONTINUED 0
707#endif 1391#endif
708 1392
1393/* called on sigchld etc., calls waitpid */
709static void 1394static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1395childcb (EV_P_ ev_signal *sw, int revents)
726{ 1396{
727 int pid, status; 1397 int pid, status;
728 1398
1399 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1400 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1401 if (!WCONTINUED
1402 || errno != EINVAL
1403 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1404 return;
1405
731 /* make sure we are called again until all childs have been reaped */ 1406 /* make sure we are called again until all children have been reaped */
1407 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1408 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1409
734 child_reap (EV_A_ sw, pid, pid, status); 1410 child_reap (EV_A_ pid, pid, status);
1411 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1412 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1413}
738 1414
739#endif 1415#endif
740 1416
741/*****************************************************************************/ 1417/*****************************************************************************/
767{ 1443{
768 return EV_VERSION_MINOR; 1444 return EV_VERSION_MINOR;
769} 1445}
770 1446
771/* return true if we are running with elevated privileges and should ignore env variables */ 1447/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1448int inline_size
773enable_secure (void) 1449enable_secure (void)
774{ 1450{
775#ifdef _WIN32 1451#ifdef _WIN32
776 return 0; 1452 return 0;
777#else 1453#else
781} 1457}
782 1458
783unsigned int 1459unsigned int
784ev_supported_backends (void) 1460ev_supported_backends (void)
785{ 1461{
786}
787
788unsigned int
789ev_recommended_backends (void)
790{
791 unsigned int flags; 1462 unsigned int flags = 0;
792 1463
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 1464 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 1465 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 1466 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 1467 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
798 1469
799 return flags; 1470 return flags;
800} 1471}
801 1472
802unsigned int 1473unsigned int
803ev_backend (EV_P) 1474ev_recommended_backends (void)
804{ 1475{
805 unsigned int flags = ev_recommended_backends (); 1476 unsigned int flags = ev_supported_backends ();
806 1477
807#ifndef __NetBSD__ 1478#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 1479 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1480 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1481 flags &= ~EVBACKEND_KQUEUE;
811#endif 1482#endif
812#ifdef __APPLE__ 1483#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 1484 /* only select works correctly on that "unix-certified" platform */
814 flags &= ~EVBACKEND_POLL; 1485 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1486 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
815#endif 1487#endif
816 1488
817 return flags; 1489 return flags;
818} 1490}
819 1491
820static void 1492unsigned int
1493ev_embeddable_backends (void)
1494{
1495 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1496
1497 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1498 /* please fix it and tell me how to detect the fix */
1499 flags &= ~EVBACKEND_EPOLL;
1500
1501 return flags;
1502}
1503
1504unsigned int
1505ev_backend (EV_P)
1506{
1507 return backend;
1508}
1509
1510#if EV_MINIMAL < 2
1511unsigned int
1512ev_loop_count (EV_P)
1513{
1514 return loop_count;
1515}
1516
1517unsigned int
1518ev_loop_depth (EV_P)
1519{
1520 return loop_depth;
1521}
1522
1523void
1524ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 io_blocktime = interval;
1527}
1528
1529void
1530ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1531{
1532 timeout_blocktime = interval;
1533}
1534
1535void
1536ev_set_userdata (EV_P_ void *data)
1537{
1538 userdata = data;
1539}
1540
1541void *
1542ev_userdata (EV_P)
1543{
1544 return userdata;
1545}
1546
1547void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1548{
1549 invoke_cb = invoke_pending_cb;
1550}
1551
1552void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1553{
1554 release_cb = release;
1555 acquire_cb = acquire;
1556}
1557#endif
1558
1559/* initialise a loop structure, must be zero-initialised */
1560static void noinline
821loop_init (EV_P_ unsigned int flags) 1561loop_init (EV_P_ unsigned int flags)
822{ 1562{
823 if (!method) 1563 if (!backend)
824 { 1564 {
1565#if EV_USE_REALTIME
1566 if (!have_realtime)
1567 {
1568 struct timespec ts;
1569
1570 if (!clock_gettime (CLOCK_REALTIME, &ts))
1571 have_realtime = 1;
1572 }
1573#endif
1574
825#if EV_USE_MONOTONIC 1575#if EV_USE_MONOTONIC
1576 if (!have_monotonic)
826 { 1577 {
827 struct timespec ts; 1578 struct timespec ts;
1579
828 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1580 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
829 have_monotonic = 1; 1581 have_monotonic = 1;
830 } 1582 }
831#endif 1583#endif
832 1584
833 ev_rt_now = ev_time (); 1585 /* pid check not overridable via env */
834 mn_now = get_clock (); 1586#ifndef _WIN32
835 now_floor = mn_now; 1587 if (flags & EVFLAG_FORKCHECK)
836 rtmn_diff = ev_rt_now - mn_now; 1588 curpid = getpid ();
1589#endif
837 1590
838 if (!(flags & EVFLAG_NOENV) 1591 if (!(flags & EVFLAG_NOENV)
839 && !enable_secure () 1592 && !enable_secure ()
840 && getenv ("LIBEV_FLAGS")) 1593 && getenv ("LIBEV_FLAGS"))
841 flags = atoi (getenv ("LIBEV_FLAGS")); 1594 flags = atoi (getenv ("LIBEV_FLAGS"));
842 1595
1596 ev_rt_now = ev_time ();
1597 mn_now = get_clock ();
1598 now_floor = mn_now;
1599 rtmn_diff = ev_rt_now - mn_now;
1600#if EV_MINIMAL < 2
1601 invoke_cb = ev_invoke_pending;
1602#endif
1603
1604 io_blocktime = 0.;
1605 timeout_blocktime = 0.;
1606 backend = 0;
1607 backend_fd = -1;
1608 sig_pending = 0;
1609#if EV_ASYNC_ENABLE
1610 async_pending = 0;
1611#endif
1612#if EV_USE_INOTIFY
1613 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1614#endif
1615#if EV_USE_SIGNALFD
1616 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1617#endif
1618
843 if (!(flags & 0x0000ffffUL)) 1619 if (!(flags & 0x0000ffffU))
844 flags |= ev_recommended_backends (); 1620 flags |= ev_recommended_backends ();
845 1621
846 method = 0;
847#if EV_USE_PORT 1622#if EV_USE_PORT
848 if (!method && (flags & EVBACKEND_PORT )) method = port_init (EV_A_ flags); 1623 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
849#endif 1624#endif
850#if EV_USE_KQUEUE 1625#if EV_USE_KQUEUE
851 if (!method && (flags & EVBACKEND_KQUEUE)) method = kqueue_init (EV_A_ flags); 1626 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
852#endif 1627#endif
853#if EV_USE_EPOLL 1628#if EV_USE_EPOLL
854 if (!method && (flags & EVBACKEND_EPOLL )) method = epoll_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
855#endif 1630#endif
856#if EV_USE_POLL 1631#if EV_USE_POLL
857 if (!method && (flags & EVBACKEND_POLL )) method = poll_init (EV_A_ flags); 1632 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
858#endif 1633#endif
859#if EV_USE_SELECT 1634#if EV_USE_SELECT
860 if (!method && (flags & EVBACKEND_SELECT)) method = select_init (EV_A_ flags); 1635 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
861#endif 1636#endif
862 1637
1638 ev_prepare_init (&pending_w, pendingcb);
1639
863 ev_init (&sigev, sigcb); 1640 ev_init (&pipe_w, pipecb);
864 ev_set_priority (&sigev, EV_MAXPRI); 1641 ev_set_priority (&pipe_w, EV_MAXPRI);
865 } 1642 }
866} 1643}
867 1644
868static void 1645/* free up a loop structure */
1646static void noinline
869loop_destroy (EV_P) 1647loop_destroy (EV_P)
870{ 1648{
871 int i; 1649 int i;
872 1650
1651 if (ev_is_active (&pipe_w))
1652 {
1653 /*ev_ref (EV_A);*/
1654 /*ev_io_stop (EV_A_ &pipe_w);*/
1655
1656#if EV_USE_EVENTFD
1657 if (evfd >= 0)
1658 close (evfd);
1659#endif
1660
1661 if (evpipe [0] >= 0)
1662 {
1663 EV_WIN32_CLOSE_FD (evpipe [0]);
1664 EV_WIN32_CLOSE_FD (evpipe [1]);
1665 }
1666 }
1667
1668#if EV_USE_SIGNALFD
1669 if (ev_is_active (&sigfd_w))
1670 close (sigfd);
1671#endif
1672
1673#if EV_USE_INOTIFY
1674 if (fs_fd >= 0)
1675 close (fs_fd);
1676#endif
1677
1678 if (backend_fd >= 0)
1679 close (backend_fd);
1680
873#if EV_USE_PORT 1681#if EV_USE_PORT
874 if (method == EVBACKEND_PORT ) port_destroy (EV_A); 1682 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
875#endif 1683#endif
876#if EV_USE_KQUEUE 1684#if EV_USE_KQUEUE
877 if (method == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1685 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
878#endif 1686#endif
879#if EV_USE_EPOLL 1687#if EV_USE_EPOLL
880 if (method == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 1688 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
881#endif 1689#endif
882#if EV_USE_POLL 1690#if EV_USE_POLL
883 if (method == EVBACKEND_POLL ) poll_destroy (EV_A); 1691 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
884#endif 1692#endif
885#if EV_USE_SELECT 1693#if EV_USE_SELECT
886 if (method == EVBACKEND_SELECT) select_destroy (EV_A); 1694 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
887#endif 1695#endif
888 1696
889 for (i = NUMPRI; i--; ) 1697 for (i = NUMPRI; i--; )
1698 {
890 array_free (pending, [i]); 1699 array_free (pending, [i]);
1700#if EV_IDLE_ENABLE
1701 array_free (idle, [i]);
1702#endif
1703 }
1704
1705 ev_free (anfds); anfds = 0; anfdmax = 0;
891 1706
892 /* have to use the microsoft-never-gets-it-right macro */ 1707 /* have to use the microsoft-never-gets-it-right macro */
1708 array_free (rfeed, EMPTY);
893 array_free (fdchange, EMPTY0); 1709 array_free (fdchange, EMPTY);
894 array_free (timer, EMPTY0); 1710 array_free (timer, EMPTY);
895#if EV_PERIODICS 1711#if EV_PERIODIC_ENABLE
896 array_free (periodic, EMPTY0); 1712 array_free (periodic, EMPTY);
897#endif 1713#endif
1714#if EV_FORK_ENABLE
898 array_free (idle, EMPTY0); 1715 array_free (fork, EMPTY);
1716#endif
899 array_free (prepare, EMPTY0); 1717 array_free (prepare, EMPTY);
900 array_free (check, EMPTY0); 1718 array_free (check, EMPTY);
1719#if EV_ASYNC_ENABLE
1720 array_free (async, EMPTY);
1721#endif
901 1722
902 method = 0; 1723 backend = 0;
903} 1724}
904 1725
905static void 1726#if EV_USE_INOTIFY
1727inline_size void infy_fork (EV_P);
1728#endif
1729
1730inline_size void
906loop_fork (EV_P) 1731loop_fork (EV_P)
907{ 1732{
908#if EV_USE_PORT 1733#if EV_USE_PORT
909 if (method == EVBACKEND_PORT ) port_fork (EV_A); 1734 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
910#endif 1735#endif
911#if EV_USE_KQUEUE 1736#if EV_USE_KQUEUE
912 if (method == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1737 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
913#endif 1738#endif
914#if EV_USE_EPOLL 1739#if EV_USE_EPOLL
915 if (method == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1740 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
916#endif 1741#endif
1742#if EV_USE_INOTIFY
1743 infy_fork (EV_A);
1744#endif
917 1745
918 if (ev_is_active (&sigev)) 1746 if (ev_is_active (&pipe_w))
919 { 1747 {
920 /* default loop */ 1748 /* this "locks" the handlers against writing to the pipe */
1749 /* while we modify the fd vars */
1750 sig_pending = 1;
1751#if EV_ASYNC_ENABLE
1752 async_pending = 1;
1753#endif
921 1754
922 ev_ref (EV_A); 1755 ev_ref (EV_A);
923 ev_io_stop (EV_A_ &sigev); 1756 ev_io_stop (EV_A_ &pipe_w);
924 close (sigpipe [0]);
925 close (sigpipe [1]);
926 1757
927 while (pipe (sigpipe)) 1758#if EV_USE_EVENTFD
928 syserr ("(libev) error creating pipe"); 1759 if (evfd >= 0)
1760 close (evfd);
1761#endif
929 1762
1763 if (evpipe [0] >= 0)
1764 {
1765 EV_WIN32_CLOSE_FD (evpipe [0]);
1766 EV_WIN32_CLOSE_FD (evpipe [1]);
1767 }
1768
930 siginit (EV_A); 1769 evpipe_init (EV_A);
1770 /* now iterate over everything, in case we missed something */
1771 pipecb (EV_A_ &pipe_w, EV_READ);
931 } 1772 }
932 1773
933 postfork = 0; 1774 postfork = 0;
934} 1775}
935 1776
936#if EV_MULTIPLICITY 1777#if EV_MULTIPLICITY
1778
937struct ev_loop * 1779struct ev_loop *
938ev_loop_new (unsigned int flags) 1780ev_loop_new (unsigned int flags)
939{ 1781{
940 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1782 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
941 1783
942 memset (loop, 0, sizeof (struct ev_loop)); 1784 memset (EV_A, 0, sizeof (struct ev_loop));
943
944 loop_init (EV_A_ flags); 1785 loop_init (EV_A_ flags);
945 1786
946 if (ev_method (EV_A)) 1787 if (ev_backend (EV_A))
947 return loop; 1788 return EV_A;
948 1789
949 return 0; 1790 return 0;
950} 1791}
951 1792
952void 1793void
957} 1798}
958 1799
959void 1800void
960ev_loop_fork (EV_P) 1801ev_loop_fork (EV_P)
961{ 1802{
962 postfork = 1; 1803 postfork = 1; /* must be in line with ev_default_fork */
963} 1804}
1805#endif /* multiplicity */
964 1806
1807#if EV_VERIFY
1808static void noinline
1809verify_watcher (EV_P_ W w)
1810{
1811 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1812
1813 if (w->pending)
1814 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1815}
1816
1817static void noinline
1818verify_heap (EV_P_ ANHE *heap, int N)
1819{
1820 int i;
1821
1822 for (i = HEAP0; i < N + HEAP0; ++i)
1823 {
1824 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1825 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1826 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1827
1828 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1829 }
1830}
1831
1832static void noinline
1833array_verify (EV_P_ W *ws, int cnt)
1834{
1835 while (cnt--)
1836 {
1837 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1838 verify_watcher (EV_A_ ws [cnt]);
1839 }
1840}
1841#endif
1842
1843#if EV_MINIMAL < 2
1844void
1845ev_loop_verify (EV_P)
1846{
1847#if EV_VERIFY
1848 int i;
1849 WL w;
1850
1851 assert (activecnt >= -1);
1852
1853 assert (fdchangemax >= fdchangecnt);
1854 for (i = 0; i < fdchangecnt; ++i)
1855 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1856
1857 assert (anfdmax >= 0);
1858 for (i = 0; i < anfdmax; ++i)
1859 for (w = anfds [i].head; w; w = w->next)
1860 {
1861 verify_watcher (EV_A_ (W)w);
1862 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1863 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1864 }
1865
1866 assert (timermax >= timercnt);
1867 verify_heap (EV_A_ timers, timercnt);
1868
1869#if EV_PERIODIC_ENABLE
1870 assert (periodicmax >= periodiccnt);
1871 verify_heap (EV_A_ periodics, periodiccnt);
1872#endif
1873
1874 for (i = NUMPRI; i--; )
1875 {
1876 assert (pendingmax [i] >= pendingcnt [i]);
1877#if EV_IDLE_ENABLE
1878 assert (idleall >= 0);
1879 assert (idlemax [i] >= idlecnt [i]);
1880 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1881#endif
1882 }
1883
1884#if EV_FORK_ENABLE
1885 assert (forkmax >= forkcnt);
1886 array_verify (EV_A_ (W *)forks, forkcnt);
1887#endif
1888
1889#if EV_ASYNC_ENABLE
1890 assert (asyncmax >= asynccnt);
1891 array_verify (EV_A_ (W *)asyncs, asynccnt);
1892#endif
1893
1894 assert (preparemax >= preparecnt);
1895 array_verify (EV_A_ (W *)prepares, preparecnt);
1896
1897 assert (checkmax >= checkcnt);
1898 array_verify (EV_A_ (W *)checks, checkcnt);
1899
1900# if 0
1901 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1902 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1903# endif
1904#endif
1905}
965#endif 1906#endif
966 1907
967#if EV_MULTIPLICITY 1908#if EV_MULTIPLICITY
968struct ev_loop * 1909struct ev_loop *
969ev_default_loop_init (unsigned int flags) 1910ev_default_loop_init (unsigned int flags)
970#else 1911#else
971int 1912int
972ev_default_loop (unsigned int flags) 1913ev_default_loop (unsigned int flags)
973#endif 1914#endif
974{ 1915{
975 if (sigpipe [0] == sigpipe [1])
976 if (pipe (sigpipe))
977 return 0;
978
979 if (!ev_default_loop_ptr) 1916 if (!ev_default_loop_ptr)
980 { 1917 {
981#if EV_MULTIPLICITY 1918#if EV_MULTIPLICITY
982 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1919 EV_P = ev_default_loop_ptr = &default_loop_struct;
983#else 1920#else
984 ev_default_loop_ptr = 1; 1921 ev_default_loop_ptr = 1;
985#endif 1922#endif
986 1923
987 loop_init (EV_A_ flags); 1924 loop_init (EV_A_ flags);
988 1925
989 if (ev_method (EV_A)) 1926 if (ev_backend (EV_A))
990 { 1927 {
991 siginit (EV_A);
992
993#ifndef _WIN32 1928#ifndef _WIN32
994 ev_signal_init (&childev, childcb, SIGCHLD); 1929 ev_signal_init (&childev, childcb, SIGCHLD);
995 ev_set_priority (&childev, EV_MAXPRI); 1930 ev_set_priority (&childev, EV_MAXPRI);
996 ev_signal_start (EV_A_ &childev); 1931 ev_signal_start (EV_A_ &childev);
997 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1932 ev_unref (EV_A); /* child watcher should not keep loop alive */
1006 1941
1007void 1942void
1008ev_default_destroy (void) 1943ev_default_destroy (void)
1009{ 1944{
1010#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr; 1946 EV_P = ev_default_loop_ptr;
1012#endif 1947#endif
1948
1949 ev_default_loop_ptr = 0;
1013 1950
1014#ifndef _WIN32 1951#ifndef _WIN32
1015 ev_ref (EV_A); /* child watcher */ 1952 ev_ref (EV_A); /* child watcher */
1016 ev_signal_stop (EV_A_ &childev); 1953 ev_signal_stop (EV_A_ &childev);
1017#endif 1954#endif
1018 1955
1019 ev_ref (EV_A); /* signal watcher */
1020 ev_io_stop (EV_A_ &sigev);
1021
1022 close (sigpipe [0]); sigpipe [0] = 0;
1023 close (sigpipe [1]); sigpipe [1] = 0;
1024
1025 loop_destroy (EV_A); 1956 loop_destroy (EV_A);
1026} 1957}
1027 1958
1028void 1959void
1029ev_default_fork (void) 1960ev_default_fork (void)
1030{ 1961{
1031#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
1032 struct ev_loop *loop = ev_default_loop_ptr; 1963 EV_P = ev_default_loop_ptr;
1033#endif 1964#endif
1034 1965
1035 if (method) 1966 postfork = 1; /* must be in line with ev_loop_fork */
1036 postfork = 1;
1037} 1967}
1038 1968
1039/*****************************************************************************/ 1969/*****************************************************************************/
1040 1970
1041static int 1971void
1042any_pending (EV_P) 1972ev_invoke (EV_P_ void *w, int revents)
1973{
1974 EV_CB_INVOKE ((W)w, revents);
1975}
1976
1977unsigned int
1978ev_pending_count (EV_P)
1043{ 1979{
1044 int pri; 1980 int pri;
1981 unsigned int count = 0;
1045 1982
1046 for (pri = NUMPRI; pri--; ) 1983 for (pri = NUMPRI; pri--; )
1047 if (pendingcnt [pri]) 1984 count += pendingcnt [pri];
1048 return 1;
1049 1985
1050 return 0; 1986 return count;
1051} 1987}
1052 1988
1053inline void 1989void noinline
1054call_pending (EV_P) 1990ev_invoke_pending (EV_P)
1055{ 1991{
1056 int pri; 1992 int pri;
1057 1993
1058 for (pri = NUMPRI; pri--; ) 1994 for (pri = NUMPRI; pri--; )
1059 while (pendingcnt [pri]) 1995 while (pendingcnt [pri])
1060 { 1996 {
1061 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1997 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1062 1998
1063 if (expect_true (p->w)) 1999 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1064 { 2000 /* ^ this is no longer true, as pending_w could be here */
2001
1065 p->w->pending = 0; 2002 p->w->pending = 0;
1066 EV_CB_INVOKE (p->w, p->events); 2003 EV_CB_INVOKE (p->w, p->events);
1067 } 2004 EV_FREQUENT_CHECK;
1068 } 2005 }
1069} 2006}
1070 2007
2008#if EV_IDLE_ENABLE
2009/* make idle watchers pending. this handles the "call-idle */
2010/* only when higher priorities are idle" logic */
1071inline void 2011inline_size void
2012idle_reify (EV_P)
2013{
2014 if (expect_false (idleall))
2015 {
2016 int pri;
2017
2018 for (pri = NUMPRI; pri--; )
2019 {
2020 if (pendingcnt [pri])
2021 break;
2022
2023 if (idlecnt [pri])
2024 {
2025 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2026 break;
2027 }
2028 }
2029 }
2030}
2031#endif
2032
2033/* make timers pending */
2034inline_size void
1072timers_reify (EV_P) 2035timers_reify (EV_P)
1073{ 2036{
2037 EV_FREQUENT_CHECK;
2038
1074 while (timercnt && ((WT)timers [0])->at <= mn_now) 2039 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1075 { 2040 {
1076 struct ev_timer *w = timers [0]; 2041 do
1077
1078 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1079
1080 /* first reschedule or stop timer */
1081 if (w->repeat)
1082 { 2042 {
2043 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2044
2045 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2046
2047 /* first reschedule or stop timer */
2048 if (w->repeat)
2049 {
2050 ev_at (w) += w->repeat;
2051 if (ev_at (w) < mn_now)
2052 ev_at (w) = mn_now;
2053
1083 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2054 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1084 2055
1085 ((WT)w)->at += w->repeat; 2056 ANHE_at_cache (timers [HEAP0]);
1086 if (((WT)w)->at < mn_now)
1087 ((WT)w)->at = mn_now;
1088
1089 downheap ((WT *)timers, timercnt, 0); 2057 downheap (timers, timercnt, HEAP0);
2058 }
2059 else
2060 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2061
2062 EV_FREQUENT_CHECK;
2063 feed_reverse (EV_A_ (W)w);
1090 } 2064 }
1091 else 2065 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1092 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1093 2066
1094 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2067 feed_reverse_done (EV_A_ EV_TIMEOUT);
1095 } 2068 }
1096} 2069}
1097 2070
1098#if EV_PERIODICS 2071#if EV_PERIODIC_ENABLE
2072/* make periodics pending */
1099inline void 2073inline_size void
1100periodics_reify (EV_P) 2074periodics_reify (EV_P)
1101{ 2075{
2076 EV_FREQUENT_CHECK;
2077
1102 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2078 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1103 { 2079 {
1104 struct ev_periodic *w = periodics [0]; 2080 int feed_count = 0;
1105 2081
2082 do
2083 {
2084 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2085
1106 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2086 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1107 2087
1108 /* first reschedule or stop timer */ 2088 /* first reschedule or stop timer */
2089 if (w->reschedule_cb)
2090 {
2091 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2092
2093 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2094
2095 ANHE_at_cache (periodics [HEAP0]);
2096 downheap (periodics, periodiccnt, HEAP0);
2097 }
2098 else if (w->interval)
2099 {
2100 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2101 /* if next trigger time is not sufficiently in the future, put it there */
2102 /* this might happen because of floating point inexactness */
2103 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2104 {
2105 ev_at (w) += w->interval;
2106
2107 /* if interval is unreasonably low we might still have a time in the past */
2108 /* so correct this. this will make the periodic very inexact, but the user */
2109 /* has effectively asked to get triggered more often than possible */
2110 if (ev_at (w) < ev_rt_now)
2111 ev_at (w) = ev_rt_now;
2112 }
2113
2114 ANHE_at_cache (periodics [HEAP0]);
2115 downheap (periodics, periodiccnt, HEAP0);
2116 }
2117 else
2118 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
2122 }
2123 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2124
2125 feed_reverse_done (EV_A_ EV_PERIODIC);
2126 }
2127}
2128
2129/* simply recalculate all periodics */
2130/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2131static void noinline
2132periodics_reschedule (EV_P)
2133{
2134 int i;
2135
2136 /* adjust periodics after time jump */
2137 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2138 {
2139 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2140
1109 if (w->reschedule_cb) 2141 if (w->reschedule_cb)
2142 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2143 else if (w->interval)
2144 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2145
2146 ANHE_at_cache (periodics [i]);
2147 }
2148
2149 reheap (periodics, periodiccnt);
2150}
2151#endif
2152
2153/* adjust all timers by a given offset */
2154static void noinline
2155timers_reschedule (EV_P_ ev_tstamp adjust)
2156{
2157 int i;
2158
2159 for (i = 0; i < timercnt; ++i)
2160 {
2161 ANHE *he = timers + i + HEAP0;
2162 ANHE_w (*he)->at += adjust;
2163 ANHE_at_cache (*he);
2164 }
2165}
2166
2167/* fetch new monotonic and realtime times from the kernel */
2168/* also detect if there was a timejump, and act accordingly */
2169inline_speed void
2170time_update (EV_P_ ev_tstamp max_block)
2171{
2172#if EV_USE_MONOTONIC
2173 if (expect_true (have_monotonic))
2174 {
2175 int i;
2176 ev_tstamp odiff = rtmn_diff;
2177
2178 mn_now = get_clock ();
2179
2180 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2181 /* interpolate in the meantime */
2182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1110 { 2183 {
1111 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2184 ev_rt_now = rtmn_diff + mn_now;
1112 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2185 return;
1113 downheap ((WT *)periodics, periodiccnt, 0);
1114 } 2186 }
1115 else if (w->interval)
1116 {
1117 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1118 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 }
1121 else
1122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1123 2187
1124 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1125 }
1126}
1127
1128static void
1129periodics_reschedule (EV_P)
1130{
1131 int i;
1132
1133 /* adjust periodics after time jump */
1134 for (i = 0; i < periodiccnt; ++i)
1135 {
1136 struct ev_periodic *w = periodics [i];
1137
1138 if (w->reschedule_cb)
1139 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1140 else if (w->interval)
1141 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1142 }
1143
1144 /* now rebuild the heap */
1145 for (i = periodiccnt >> 1; i--; )
1146 downheap ((WT *)periodics, periodiccnt, i);
1147}
1148#endif
1149
1150inline int
1151time_update_monotonic (EV_P)
1152{
1153 mn_now = get_clock ();
1154
1155 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1156 {
1157 ev_rt_now = rtmn_diff + mn_now;
1158 return 0;
1159 }
1160 else
1161 {
1162 now_floor = mn_now; 2188 now_floor = mn_now;
1163 ev_rt_now = ev_time (); 2189 ev_rt_now = ev_time ();
1164 return 1;
1165 }
1166}
1167 2190
1168inline void 2191 /* loop a few times, before making important decisions.
1169time_update (EV_P) 2192 * on the choice of "4": one iteration isn't enough,
1170{ 2193 * in case we get preempted during the calls to
1171 int i; 2194 * ev_time and get_clock. a second call is almost guaranteed
1172 2195 * to succeed in that case, though. and looping a few more times
1173#if EV_USE_MONOTONIC 2196 * doesn't hurt either as we only do this on time-jumps or
1174 if (expect_true (have_monotonic)) 2197 * in the unlikely event of having been preempted here.
1175 { 2198 */
1176 if (time_update_monotonic (EV_A)) 2199 for (i = 4; --i; )
1177 { 2200 {
1178 ev_tstamp odiff = rtmn_diff;
1179
1180 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1181 {
1182 rtmn_diff = ev_rt_now - mn_now; 2201 rtmn_diff = ev_rt_now - mn_now;
1183 2202
1184 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2203 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1185 return; /* all is well */ 2204 return; /* all is well */
1186 2205
1187 ev_rt_now = ev_time (); 2206 ev_rt_now = ev_time ();
1188 mn_now = get_clock (); 2207 mn_now = get_clock ();
1189 now_floor = mn_now; 2208 now_floor = mn_now;
1190 } 2209 }
1191 2210
2211 /* no timer adjustment, as the monotonic clock doesn't jump */
2212 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1192# if EV_PERIODICS 2213# if EV_PERIODIC_ENABLE
2214 periodics_reschedule (EV_A);
2215# endif
2216 }
2217 else
2218#endif
2219 {
2220 ev_rt_now = ev_time ();
2221
2222 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2223 {
2224 /* adjust timers. this is easy, as the offset is the same for all of them */
2225 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2226#if EV_PERIODIC_ENABLE
1193 periodics_reschedule (EV_A); 2227 periodics_reschedule (EV_A);
1194# endif 2228#endif
1195 /* no timer adjustment, as the monotonic clock doesn't jump */
1196 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1197 } 2229 }
1198 }
1199 else
1200#endif
1201 {
1202 ev_rt_now = ev_time ();
1203
1204 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1205 {
1206#if EV_PERIODICS
1207 periodics_reschedule (EV_A);
1208#endif
1209
1210 /* adjust timers. this is easy, as the offset is the same for all */
1211 for (i = 0; i < timercnt; ++i)
1212 ((WT)timers [i])->at += ev_rt_now - mn_now;
1213 }
1214 2230
1215 mn_now = ev_rt_now; 2231 mn_now = ev_rt_now;
1216 } 2232 }
1217} 2233}
1218 2234
1219void 2235void
1220ev_ref (EV_P)
1221{
1222 ++activecnt;
1223}
1224
1225void
1226ev_unref (EV_P)
1227{
1228 --activecnt;
1229}
1230
1231static int loop_done;
1232
1233void
1234ev_loop (EV_P_ int flags) 2236ev_loop (EV_P_ int flags)
1235{ 2237{
1236 double block; 2238#if EV_MINIMAL < 2
1237 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2239 ++loop_depth;
2240#endif
1238 2241
1239 while (activecnt) 2242 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2243
2244 loop_done = EVUNLOOP_CANCEL;
2245
2246 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2247
2248 do
1240 { 2249 {
2250#if EV_VERIFY >= 2
2251 ev_loop_verify (EV_A);
2252#endif
2253
2254#ifndef _WIN32
2255 if (expect_false (curpid)) /* penalise the forking check even more */
2256 if (expect_false (getpid () != curpid))
2257 {
2258 curpid = getpid ();
2259 postfork = 1;
2260 }
2261#endif
2262
2263#if EV_FORK_ENABLE
2264 /* we might have forked, so queue fork handlers */
2265 if (expect_false (postfork))
2266 if (forkcnt)
2267 {
2268 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2269 EV_INVOKE_PENDING;
2270 }
2271#endif
2272
1241 /* queue check watchers (and execute them) */ 2273 /* queue prepare watchers (and execute them) */
1242 if (expect_false (preparecnt)) 2274 if (expect_false (preparecnt))
1243 { 2275 {
1244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2276 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1245 call_pending (EV_A); 2277 EV_INVOKE_PENDING;
1246 } 2278 }
2279
2280 if (expect_false (loop_done))
2281 break;
1247 2282
1248 /* we might have forked, so reify kernel state if necessary */ 2283 /* we might have forked, so reify kernel state if necessary */
1249 if (expect_false (postfork)) 2284 if (expect_false (postfork))
1250 loop_fork (EV_A); 2285 loop_fork (EV_A);
1251 2286
1252 /* update fd-related kernel structures */ 2287 /* update fd-related kernel structures */
1253 fd_reify (EV_A); 2288 fd_reify (EV_A);
1254 2289
1255 /* calculate blocking time */ 2290 /* calculate blocking time */
2291 {
2292 ev_tstamp waittime = 0.;
2293 ev_tstamp sleeptime = 0.;
1256 2294
1257 /* we only need this for !monotonic clock or timers, but as we basically 2295 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1258 always have timers, we just calculate it always */
1259#if EV_USE_MONOTONIC
1260 if (expect_true (have_monotonic))
1261 time_update_monotonic (EV_A);
1262 else
1263#endif
1264 { 2296 {
1265 ev_rt_now = ev_time (); 2297 /* remember old timestamp for io_blocktime calculation */
1266 mn_now = ev_rt_now; 2298 ev_tstamp prev_mn_now = mn_now;
1267 }
1268 2299
1269 if (flags & EVLOOP_NONBLOCK || idlecnt) 2300 /* update time to cancel out callback processing overhead */
1270 block = 0.; 2301 time_update (EV_A_ 1e100);
1271 else 2302
1272 {
1273 block = MAX_BLOCKTIME; 2303 waittime = MAX_BLOCKTIME;
1274 2304
1275 if (timercnt) 2305 if (timercnt)
1276 { 2306 {
1277 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2307 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1278 if (block > to) block = to; 2308 if (waittime > to) waittime = to;
1279 } 2309 }
1280 2310
1281#if EV_PERIODICS 2311#if EV_PERIODIC_ENABLE
1282 if (periodiccnt) 2312 if (periodiccnt)
1283 { 2313 {
1284 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2314 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1285 if (block > to) block = to; 2315 if (waittime > to) waittime = to;
1286 } 2316 }
1287#endif 2317#endif
1288 2318
1289 if (expect_false (block < 0.)) block = 0.; 2319 /* don't let timeouts decrease the waittime below timeout_blocktime */
2320 if (expect_false (waittime < timeout_blocktime))
2321 waittime = timeout_blocktime;
2322
2323 /* extra check because io_blocktime is commonly 0 */
2324 if (expect_false (io_blocktime))
2325 {
2326 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2327
2328 if (sleeptime > waittime - backend_fudge)
2329 sleeptime = waittime - backend_fudge;
2330
2331 if (expect_true (sleeptime > 0.))
2332 {
2333 ev_sleep (sleeptime);
2334 waittime -= sleeptime;
2335 }
2336 }
1290 } 2337 }
1291 2338
1292 method_poll (EV_A_ block); 2339#if EV_MINIMAL < 2
2340 ++loop_count;
2341#endif
2342 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2343 backend_poll (EV_A_ waittime);
2344 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1293 2345
1294 /* update ev_rt_now, do magic */ 2346 /* update ev_rt_now, do magic */
1295 time_update (EV_A); 2347 time_update (EV_A_ waittime + sleeptime);
2348 }
1296 2349
1297 /* queue pending timers and reschedule them */ 2350 /* queue pending timers and reschedule them */
1298 timers_reify (EV_A); /* relative timers called last */ 2351 timers_reify (EV_A); /* relative timers called last */
1299#if EV_PERIODICS 2352#if EV_PERIODIC_ENABLE
1300 periodics_reify (EV_A); /* absolute timers called first */ 2353 periodics_reify (EV_A); /* absolute timers called first */
1301#endif 2354#endif
1302 2355
2356#if EV_IDLE_ENABLE
1303 /* queue idle watchers unless io or timers are pending */ 2357 /* queue idle watchers unless other events are pending */
1304 if (idlecnt && !any_pending (EV_A)) 2358 idle_reify (EV_A);
1305 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2359#endif
1306 2360
1307 /* queue check watchers, to be executed first */ 2361 /* queue check watchers, to be executed first */
1308 if (expect_false (checkcnt)) 2362 if (expect_false (checkcnt))
1309 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2363 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1310 2364
1311 call_pending (EV_A); 2365 EV_INVOKE_PENDING;
1312
1313 if (expect_false (loop_done))
1314 break;
1315 } 2366 }
2367 while (expect_true (
2368 activecnt
2369 && !loop_done
2370 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2371 ));
1316 2372
1317 if (loop_done != 2) 2373 if (loop_done == EVUNLOOP_ONE)
1318 loop_done = 0; 2374 loop_done = EVUNLOOP_CANCEL;
2375
2376#if EV_MINIMAL < 2
2377 --loop_depth;
2378#endif
1319} 2379}
1320 2380
1321void 2381void
1322ev_unloop (EV_P_ int how) 2382ev_unloop (EV_P_ int how)
1323{ 2383{
1324 loop_done = how; 2384 loop_done = how;
1325} 2385}
1326 2386
2387void
2388ev_ref (EV_P)
2389{
2390 ++activecnt;
2391}
2392
2393void
2394ev_unref (EV_P)
2395{
2396 --activecnt;
2397}
2398
2399void
2400ev_now_update (EV_P)
2401{
2402 time_update (EV_A_ 1e100);
2403}
2404
2405void
2406ev_suspend (EV_P)
2407{
2408 ev_now_update (EV_A);
2409}
2410
2411void
2412ev_resume (EV_P)
2413{
2414 ev_tstamp mn_prev = mn_now;
2415
2416 ev_now_update (EV_A);
2417 timers_reschedule (EV_A_ mn_now - mn_prev);
2418#if EV_PERIODIC_ENABLE
2419 /* TODO: really do this? */
2420 periodics_reschedule (EV_A);
2421#endif
2422}
2423
1327/*****************************************************************************/ 2424/*****************************************************************************/
2425/* singly-linked list management, used when the expected list length is short */
1328 2426
1329inline void 2427inline_size void
1330wlist_add (WL *head, WL elem) 2428wlist_add (WL *head, WL elem)
1331{ 2429{
1332 elem->next = *head; 2430 elem->next = *head;
1333 *head = elem; 2431 *head = elem;
1334} 2432}
1335 2433
1336inline void 2434inline_size void
1337wlist_del (WL *head, WL elem) 2435wlist_del (WL *head, WL elem)
1338{ 2436{
1339 while (*head) 2437 while (*head)
1340 { 2438 {
1341 if (*head == elem) 2439 if (expect_true (*head == elem))
1342 { 2440 {
1343 *head = elem->next; 2441 *head = elem->next;
1344 return; 2442 break;
1345 } 2443 }
1346 2444
1347 head = &(*head)->next; 2445 head = &(*head)->next;
1348 } 2446 }
1349} 2447}
1350 2448
2449/* internal, faster, version of ev_clear_pending */
1351inline void 2450inline_speed void
1352ev_clear_pending (EV_P_ W w) 2451clear_pending (EV_P_ W w)
1353{ 2452{
1354 if (w->pending) 2453 if (w->pending)
1355 { 2454 {
1356 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2455 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1357 w->pending = 0; 2456 w->pending = 0;
1358 } 2457 }
1359} 2458}
1360 2459
2460int
2461ev_clear_pending (EV_P_ void *w)
2462{
2463 W w_ = (W)w;
2464 int pending = w_->pending;
2465
2466 if (expect_true (pending))
2467 {
2468 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2469 p->w = (W)&pending_w;
2470 w_->pending = 0;
2471 return p->events;
2472 }
2473 else
2474 return 0;
2475}
2476
1361inline void 2477inline_size void
2478pri_adjust (EV_P_ W w)
2479{
2480 int pri = ev_priority (w);
2481 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2482 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2483 ev_set_priority (w, pri);
2484}
2485
2486inline_speed void
1362ev_start (EV_P_ W w, int active) 2487ev_start (EV_P_ W w, int active)
1363{ 2488{
1364 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2489 pri_adjust (EV_A_ w);
1365 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1366
1367 w->active = active; 2490 w->active = active;
1368 ev_ref (EV_A); 2491 ev_ref (EV_A);
1369} 2492}
1370 2493
1371inline void 2494inline_size void
1372ev_stop (EV_P_ W w) 2495ev_stop (EV_P_ W w)
1373{ 2496{
1374 ev_unref (EV_A); 2497 ev_unref (EV_A);
1375 w->active = 0; 2498 w->active = 0;
1376} 2499}
1377 2500
1378/*****************************************************************************/ 2501/*****************************************************************************/
1379 2502
1380void 2503void noinline
1381ev_io_start (EV_P_ struct ev_io *w) 2504ev_io_start (EV_P_ ev_io *w)
1382{ 2505{
1383 int fd = w->fd; 2506 int fd = w->fd;
1384 2507
1385 if (expect_false (ev_is_active (w))) 2508 if (expect_false (ev_is_active (w)))
1386 return; 2509 return;
1387 2510
1388 assert (("ev_io_start called with negative fd", fd >= 0)); 2511 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2512 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2513
2514 EV_FREQUENT_CHECK;
1389 2515
1390 ev_start (EV_A_ (W)w, 1); 2516 ev_start (EV_A_ (W)w, 1);
1391 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2517 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1392 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2518 wlist_add (&anfds[fd].head, (WL)w);
1393 2519
1394 fd_change (EV_A_ fd); 2520 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1395} 2521 w->events &= ~EV__IOFDSET;
1396 2522
1397void 2523 EV_FREQUENT_CHECK;
2524}
2525
2526void noinline
1398ev_io_stop (EV_P_ struct ev_io *w) 2527ev_io_stop (EV_P_ ev_io *w)
1399{ 2528{
1400 ev_clear_pending (EV_A_ (W)w); 2529 clear_pending (EV_A_ (W)w);
1401 if (expect_false (!ev_is_active (w))) 2530 if (expect_false (!ev_is_active (w)))
1402 return; 2531 return;
1403 2532
1404 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2533 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1405 2534
2535 EV_FREQUENT_CHECK;
2536
1406 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2537 wlist_del (&anfds[w->fd].head, (WL)w);
1407 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
1408 2539
1409 fd_change (EV_A_ w->fd); 2540 fd_change (EV_A_ w->fd, 1);
1410}
1411 2541
1412void 2542 EV_FREQUENT_CHECK;
2543}
2544
2545void noinline
1413ev_timer_start (EV_P_ struct ev_timer *w) 2546ev_timer_start (EV_P_ ev_timer *w)
1414{ 2547{
1415 if (expect_false (ev_is_active (w))) 2548 if (expect_false (ev_is_active (w)))
1416 return; 2549 return;
1417 2550
1418 ((WT)w)->at += mn_now; 2551 ev_at (w) += mn_now;
1419 2552
1420 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2553 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1421 2554
2555 EV_FREQUENT_CHECK;
2556
2557 ++timercnt;
1422 ev_start (EV_A_ (W)w, ++timercnt); 2558 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1423 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2559 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1424 timers [timercnt - 1] = w; 2560 ANHE_w (timers [ev_active (w)]) = (WT)w;
1425 upheap ((WT *)timers, timercnt - 1); 2561 ANHE_at_cache (timers [ev_active (w)]);
2562 upheap (timers, ev_active (w));
1426 2563
2564 EV_FREQUENT_CHECK;
2565
1427 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2566 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1428} 2567}
1429 2568
1430void 2569void noinline
1431ev_timer_stop (EV_P_ struct ev_timer *w) 2570ev_timer_stop (EV_P_ ev_timer *w)
1432{ 2571{
1433 ev_clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
1434 if (expect_false (!ev_is_active (w))) 2573 if (expect_false (!ev_is_active (w)))
1435 return; 2574 return;
1436 2575
2576 EV_FREQUENT_CHECK;
2577
2578 {
2579 int active = ev_active (w);
2580
1437 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2581 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1438 2582
2583 --timercnt;
2584
1439 if (expect_true (((W)w)->active < timercnt--)) 2585 if (expect_true (active < timercnt + HEAP0))
1440 { 2586 {
1441 timers [((W)w)->active - 1] = timers [timercnt]; 2587 timers [active] = timers [timercnt + HEAP0];
1442 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2588 adjustheap (timers, timercnt, active);
1443 } 2589 }
2590 }
1444 2591
1445 ((WT)w)->at -= mn_now; 2592 EV_FREQUENT_CHECK;
2593
2594 ev_at (w) -= mn_now;
1446 2595
1447 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1448} 2597}
1449 2598
1450void 2599void noinline
1451ev_timer_again (EV_P_ struct ev_timer *w) 2600ev_timer_again (EV_P_ ev_timer *w)
1452{ 2601{
2602 EV_FREQUENT_CHECK;
2603
1453 if (ev_is_active (w)) 2604 if (ev_is_active (w))
1454 { 2605 {
1455 if (w->repeat) 2606 if (w->repeat)
1456 { 2607 {
1457 ((WT)w)->at = mn_now + w->repeat; 2608 ev_at (w) = mn_now + w->repeat;
2609 ANHE_at_cache (timers [ev_active (w)]);
1458 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2610 adjustheap (timers, timercnt, ev_active (w));
1459 } 2611 }
1460 else 2612 else
1461 ev_timer_stop (EV_A_ w); 2613 ev_timer_stop (EV_A_ w);
1462 } 2614 }
1463 else if (w->repeat) 2615 else if (w->repeat)
1464 { 2616 {
1465 w->at = w->repeat; 2617 ev_at (w) = w->repeat;
1466 ev_timer_start (EV_A_ w); 2618 ev_timer_start (EV_A_ w);
1467 } 2619 }
1468}
1469 2620
2621 EV_FREQUENT_CHECK;
2622}
2623
2624ev_tstamp
2625ev_timer_remaining (EV_P_ ev_timer *w)
2626{
2627 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2628}
2629
1470#if EV_PERIODICS 2630#if EV_PERIODIC_ENABLE
1471void 2631void noinline
1472ev_periodic_start (EV_P_ struct ev_periodic *w) 2632ev_periodic_start (EV_P_ ev_periodic *w)
1473{ 2633{
1474 if (expect_false (ev_is_active (w))) 2634 if (expect_false (ev_is_active (w)))
1475 return; 2635 return;
1476 2636
1477 if (w->reschedule_cb) 2637 if (w->reschedule_cb)
1478 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2638 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1479 else if (w->interval) 2639 else if (w->interval)
1480 { 2640 {
1481 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2641 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1482 /* this formula differs from the one in periodic_reify because we do not always round up */ 2642 /* this formula differs from the one in periodic_reify because we do not always round up */
1483 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1484 } 2644 }
2645 else
2646 ev_at (w) = w->offset;
1485 2647
2648 EV_FREQUENT_CHECK;
2649
2650 ++periodiccnt;
1486 ev_start (EV_A_ (W)w, ++periodiccnt); 2651 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1487 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2652 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1488 periodics [periodiccnt - 1] = w; 2653 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1489 upheap ((WT *)periodics, periodiccnt - 1); 2654 ANHE_at_cache (periodics [ev_active (w)]);
2655 upheap (periodics, ev_active (w));
1490 2656
2657 EV_FREQUENT_CHECK;
2658
1491 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2659 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1492} 2660}
1493 2661
1494void 2662void noinline
1495ev_periodic_stop (EV_P_ struct ev_periodic *w) 2663ev_periodic_stop (EV_P_ ev_periodic *w)
1496{ 2664{
1497 ev_clear_pending (EV_A_ (W)w); 2665 clear_pending (EV_A_ (W)w);
1498 if (expect_false (!ev_is_active (w))) 2666 if (expect_false (!ev_is_active (w)))
1499 return; 2667 return;
1500 2668
2669 EV_FREQUENT_CHECK;
2670
2671 {
2672 int active = ev_active (w);
2673
1501 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2674 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1502 2675
2676 --periodiccnt;
2677
1503 if (expect_true (((W)w)->active < periodiccnt--)) 2678 if (expect_true (active < periodiccnt + HEAP0))
1504 { 2679 {
1505 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2680 periodics [active] = periodics [periodiccnt + HEAP0];
1506 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2681 adjustheap (periodics, periodiccnt, active);
1507 } 2682 }
2683 }
2684
2685 EV_FREQUENT_CHECK;
1508 2686
1509 ev_stop (EV_A_ (W)w); 2687 ev_stop (EV_A_ (W)w);
1510} 2688}
1511 2689
1512void 2690void noinline
1513ev_periodic_again (EV_P_ struct ev_periodic *w) 2691ev_periodic_again (EV_P_ ev_periodic *w)
1514{ 2692{
1515 /* TODO: use adjustheap and recalculation */ 2693 /* TODO: use adjustheap and recalculation */
1516 ev_periodic_stop (EV_A_ w); 2694 ev_periodic_stop (EV_A_ w);
1517 ev_periodic_start (EV_A_ w); 2695 ev_periodic_start (EV_A_ w);
1518} 2696}
1519#endif 2697#endif
1520 2698
1521void 2699#ifndef SA_RESTART
1522ev_idle_start (EV_P_ struct ev_idle *w) 2700# define SA_RESTART 0
2701#endif
2702
2703void noinline
2704ev_signal_start (EV_P_ ev_signal *w)
1523{ 2705{
1524 if (expect_false (ev_is_active (w))) 2706 if (expect_false (ev_is_active (w)))
1525 return; 2707 return;
1526 2708
2709 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2710
2711#if EV_MULTIPLICITY
2712 assert (("libev: a signal must not be attached to two different loops",
2713 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2714
2715 signals [w->signum - 1].loop = EV_A;
2716#endif
2717
2718 EV_FREQUENT_CHECK;
2719
2720#if EV_USE_SIGNALFD
2721 if (sigfd == -2)
2722 {
2723 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2724 if (sigfd < 0 && errno == EINVAL)
2725 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2726
2727 if (sigfd >= 0)
2728 {
2729 fd_intern (sigfd); /* doing it twice will not hurt */
2730
2731 sigemptyset (&sigfd_set);
2732
2733 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2734 ev_set_priority (&sigfd_w, EV_MAXPRI);
2735 ev_io_start (EV_A_ &sigfd_w);
2736 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2737 }
2738 }
2739
2740 if (sigfd >= 0)
2741 {
2742 /* TODO: check .head */
2743 sigaddset (&sigfd_set, w->signum);
2744 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2745
2746 signalfd (sigfd, &sigfd_set, 0);
2747 }
2748#endif
2749
1527 ev_start (EV_A_ (W)w, ++idlecnt); 2750 ev_start (EV_A_ (W)w, 1);
1528 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2751 wlist_add (&signals [w->signum - 1].head, (WL)w);
1529 idles [idlecnt - 1] = w;
1530}
1531 2752
1532void 2753 if (!((WL)w)->next)
1533ev_idle_stop (EV_P_ struct ev_idle *w) 2754# if EV_USE_SIGNALFD
2755 if (sigfd < 0) /*TODO*/
2756# endif
2757 {
2758# ifdef _WIN32
2759 evpipe_init (EV_A);
2760
2761 signal (w->signum, ev_sighandler);
2762# else
2763 struct sigaction sa;
2764
2765 evpipe_init (EV_A);
2766
2767 sa.sa_handler = ev_sighandler;
2768 sigfillset (&sa.sa_mask);
2769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2770 sigaction (w->signum, &sa, 0);
2771
2772 sigemptyset (&sa.sa_mask);
2773 sigaddset (&sa.sa_mask, w->signum);
2774 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2775#endif
2776 }
2777
2778 EV_FREQUENT_CHECK;
2779}
2780
2781void noinline
2782ev_signal_stop (EV_P_ ev_signal *w)
1534{ 2783{
1535 ev_clear_pending (EV_A_ (W)w); 2784 clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w))) 2785 if (expect_false (!ev_is_active (w)))
1537 return; 2786 return;
1538 2787
1539 idles [((W)w)->active - 1] = idles [--idlecnt]; 2788 EV_FREQUENT_CHECK;
2789
2790 wlist_del (&signals [w->signum - 1].head, (WL)w);
1540 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
1541}
1542 2792
2793 if (!signals [w->signum - 1].head)
2794 {
2795#if EV_MULTIPLICITY
2796 signals [w->signum - 1].loop = 0; /* unattach from signal */
2797#endif
2798#if EV_USE_SIGNALFD
2799 if (sigfd >= 0)
2800 {
2801 sigset_t ss;
2802
2803 sigemptyset (&ss);
2804 sigaddset (&ss, w->signum);
2805 sigdelset (&sigfd_set, w->signum);
2806
2807 signalfd (sigfd, &sigfd_set, 0);
2808 sigprocmask (SIG_UNBLOCK, &ss, 0);
2809 }
2810 else
2811#endif
2812 signal (w->signum, SIG_DFL);
2813 }
2814
2815 EV_FREQUENT_CHECK;
2816}
2817
1543void 2818void
1544ev_prepare_start (EV_P_ struct ev_prepare *w) 2819ev_child_start (EV_P_ ev_child *w)
1545{ 2820{
2821#if EV_MULTIPLICITY
2822 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2823#endif
1546 if (expect_false (ev_is_active (w))) 2824 if (expect_false (ev_is_active (w)))
1547 return; 2825 return;
1548 2826
2827 EV_FREQUENT_CHECK;
2828
1549 ev_start (EV_A_ (W)w, ++preparecnt); 2829 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2830 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1551 prepares [preparecnt - 1] = w;
1552}
1553 2831
2832 EV_FREQUENT_CHECK;
2833}
2834
1554void 2835void
1555ev_prepare_stop (EV_P_ struct ev_prepare *w) 2836ev_child_stop (EV_P_ ev_child *w)
1556{ 2837{
1557 ev_clear_pending (EV_A_ (W)w); 2838 clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 2839 if (expect_false (!ev_is_active (w)))
1559 return; 2840 return;
1560 2841
1561 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2842 EV_FREQUENT_CHECK;
2843
2844 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1562 ev_stop (EV_A_ (W)w); 2845 ev_stop (EV_A_ (W)w);
1563}
1564 2846
2847 EV_FREQUENT_CHECK;
2848}
2849
2850#if EV_STAT_ENABLE
2851
2852# ifdef _WIN32
2853# undef lstat
2854# define lstat(a,b) _stati64 (a,b)
2855# endif
2856
2857#define DEF_STAT_INTERVAL 5.0074891
2858#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2859#define MIN_STAT_INTERVAL 0.1074891
2860
2861static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2862
2863#if EV_USE_INOTIFY
2864# define EV_INOTIFY_BUFSIZE 8192
2865
2866static void noinline
2867infy_add (EV_P_ ev_stat *w)
2868{
2869 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2870
2871 if (w->wd >= 0)
2872 {
2873 struct statfs sfs;
2874
2875 /* now local changes will be tracked by inotify, but remote changes won't */
2876 /* unless the filesystem is known to be local, we therefore still poll */
2877 /* also do poll on <2.6.25, but with normal frequency */
2878
2879 if (!fs_2625)
2880 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2881 else if (!statfs (w->path, &sfs)
2882 && (sfs.f_type == 0x1373 /* devfs */
2883 || sfs.f_type == 0xEF53 /* ext2/3 */
2884 || sfs.f_type == 0x3153464a /* jfs */
2885 || sfs.f_type == 0x52654973 /* reiser3 */
2886 || sfs.f_type == 0x01021994 /* tempfs */
2887 || sfs.f_type == 0x58465342 /* xfs */))
2888 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2889 else
2890 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2891 }
2892 else
2893 {
2894 /* can't use inotify, continue to stat */
2895 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2896
2897 /* if path is not there, monitor some parent directory for speedup hints */
2898 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2899 /* but an efficiency issue only */
2900 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2901 {
2902 char path [4096];
2903 strcpy (path, w->path);
2904
2905 do
2906 {
2907 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2908 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2909
2910 char *pend = strrchr (path, '/');
2911
2912 if (!pend || pend == path)
2913 break;
2914
2915 *pend = 0;
2916 w->wd = inotify_add_watch (fs_fd, path, mask);
2917 }
2918 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2919 }
2920 }
2921
2922 if (w->wd >= 0)
2923 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2924
2925 /* now re-arm timer, if required */
2926 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2927 ev_timer_again (EV_A_ &w->timer);
2928 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2929}
2930
2931static void noinline
2932infy_del (EV_P_ ev_stat *w)
2933{
2934 int slot;
2935 int wd = w->wd;
2936
2937 if (wd < 0)
2938 return;
2939
2940 w->wd = -2;
2941 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2942 wlist_del (&fs_hash [slot].head, (WL)w);
2943
2944 /* remove this watcher, if others are watching it, they will rearm */
2945 inotify_rm_watch (fs_fd, wd);
2946}
2947
2948static void noinline
2949infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2950{
2951 if (slot < 0)
2952 /* overflow, need to check for all hash slots */
2953 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2954 infy_wd (EV_A_ slot, wd, ev);
2955 else
2956 {
2957 WL w_;
2958
2959 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2960 {
2961 ev_stat *w = (ev_stat *)w_;
2962 w_ = w_->next; /* lets us remove this watcher and all before it */
2963
2964 if (w->wd == wd || wd == -1)
2965 {
2966 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2967 {
2968 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2969 w->wd = -1;
2970 infy_add (EV_A_ w); /* re-add, no matter what */
2971 }
2972
2973 stat_timer_cb (EV_A_ &w->timer, 0);
2974 }
2975 }
2976 }
2977}
2978
2979static void
2980infy_cb (EV_P_ ev_io *w, int revents)
2981{
2982 char buf [EV_INOTIFY_BUFSIZE];
2983 struct inotify_event *ev = (struct inotify_event *)buf;
2984 int ofs;
2985 int len = read (fs_fd, buf, sizeof (buf));
2986
2987 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2988 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2989}
2990
2991inline_size void
2992check_2625 (EV_P)
2993{
2994 /* kernels < 2.6.25 are borked
2995 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2996 */
2997 struct utsname buf;
2998 int major, minor, micro;
2999
3000 if (uname (&buf))
3001 return;
3002
3003 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3004 return;
3005
3006 if (major < 2
3007 || (major == 2 && minor < 6)
3008 || (major == 2 && minor == 6 && micro < 25))
3009 return;
3010
3011 fs_2625 = 1;
3012}
3013
3014inline_size int
3015infy_newfd (void)
3016{
3017#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3018 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3019 if (fd >= 0)
3020 return fd;
3021#endif
3022 return inotify_init ();
3023}
3024
3025inline_size void
3026infy_init (EV_P)
3027{
3028 if (fs_fd != -2)
3029 return;
3030
3031 fs_fd = -1;
3032
3033 check_2625 (EV_A);
3034
3035 fs_fd = infy_newfd ();
3036
3037 if (fs_fd >= 0)
3038 {
3039 fd_intern (fs_fd);
3040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3041 ev_set_priority (&fs_w, EV_MAXPRI);
3042 ev_io_start (EV_A_ &fs_w);
3043 ev_unref (EV_A);
3044 }
3045}
3046
3047inline_size void
3048infy_fork (EV_P)
3049{
3050 int slot;
3051
3052 if (fs_fd < 0)
3053 return;
3054
3055 ev_ref (EV_A);
3056 ev_io_stop (EV_A_ &fs_w);
3057 close (fs_fd);
3058 fs_fd = infy_newfd ();
3059
3060 if (fs_fd >= 0)
3061 {
3062 fd_intern (fs_fd);
3063 ev_io_set (&fs_w, fs_fd, EV_READ);
3064 ev_io_start (EV_A_ &fs_w);
3065 ev_unref (EV_A);
3066 }
3067
3068 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3069 {
3070 WL w_ = fs_hash [slot].head;
3071 fs_hash [slot].head = 0;
3072
3073 while (w_)
3074 {
3075 ev_stat *w = (ev_stat *)w_;
3076 w_ = w_->next; /* lets us add this watcher */
3077
3078 w->wd = -1;
3079
3080 if (fs_fd >= 0)
3081 infy_add (EV_A_ w); /* re-add, no matter what */
3082 else
3083 {
3084 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3085 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3086 ev_timer_again (EV_A_ &w->timer);
3087 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3088 }
3089 }
3090 }
3091}
3092
3093#endif
3094
3095#ifdef _WIN32
3096# define EV_LSTAT(p,b) _stati64 (p, b)
3097#else
3098# define EV_LSTAT(p,b) lstat (p, b)
3099#endif
3100
1565void 3101void
1566ev_check_start (EV_P_ struct ev_check *w) 3102ev_stat_stat (EV_P_ ev_stat *w)
3103{
3104 if (lstat (w->path, &w->attr) < 0)
3105 w->attr.st_nlink = 0;
3106 else if (!w->attr.st_nlink)
3107 w->attr.st_nlink = 1;
3108}
3109
3110static void noinline
3111stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3112{
3113 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3114
3115 ev_statdata prev = w->attr;
3116 ev_stat_stat (EV_A_ w);
3117
3118 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3119 if (
3120 prev.st_dev != w->attr.st_dev
3121 || prev.st_ino != w->attr.st_ino
3122 || prev.st_mode != w->attr.st_mode
3123 || prev.st_nlink != w->attr.st_nlink
3124 || prev.st_uid != w->attr.st_uid
3125 || prev.st_gid != w->attr.st_gid
3126 || prev.st_rdev != w->attr.st_rdev
3127 || prev.st_size != w->attr.st_size
3128 || prev.st_atime != w->attr.st_atime
3129 || prev.st_mtime != w->attr.st_mtime
3130 || prev.st_ctime != w->attr.st_ctime
3131 ) {
3132 /* we only update w->prev on actual differences */
3133 /* in case we test more often than invoke the callback, */
3134 /* to ensure that prev is always different to attr */
3135 w->prev = prev;
3136
3137 #if EV_USE_INOTIFY
3138 if (fs_fd >= 0)
3139 {
3140 infy_del (EV_A_ w);
3141 infy_add (EV_A_ w);
3142 ev_stat_stat (EV_A_ w); /* avoid race... */
3143 }
3144 #endif
3145
3146 ev_feed_event (EV_A_ w, EV_STAT);
3147 }
3148}
3149
3150void
3151ev_stat_start (EV_P_ ev_stat *w)
1567{ 3152{
1568 if (expect_false (ev_is_active (w))) 3153 if (expect_false (ev_is_active (w)))
1569 return; 3154 return;
1570 3155
3156 ev_stat_stat (EV_A_ w);
3157
3158 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3159 w->interval = MIN_STAT_INTERVAL;
3160
3161 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3162 ev_set_priority (&w->timer, ev_priority (w));
3163
3164#if EV_USE_INOTIFY
3165 infy_init (EV_A);
3166
3167 if (fs_fd >= 0)
3168 infy_add (EV_A_ w);
3169 else
3170#endif
3171 {
3172 ev_timer_again (EV_A_ &w->timer);
3173 ev_unref (EV_A);
3174 }
3175
1571 ev_start (EV_A_ (W)w, ++checkcnt); 3176 ev_start (EV_A_ (W)w, 1);
1572 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1573 checks [checkcnt - 1] = w;
1574}
1575 3177
3178 EV_FREQUENT_CHECK;
3179}
3180
1576void 3181void
1577ev_check_stop (EV_P_ struct ev_check *w) 3182ev_stat_stop (EV_P_ ev_stat *w)
1578{ 3183{
1579 ev_clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
1580 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
1581 return; 3186 return;
1582 3187
1583 checks [((W)w)->active - 1] = checks [--checkcnt]; 3188 EV_FREQUENT_CHECK;
3189
3190#if EV_USE_INOTIFY
3191 infy_del (EV_A_ w);
3192#endif
3193
3194 if (ev_is_active (&w->timer))
3195 {
3196 ev_ref (EV_A);
3197 ev_timer_stop (EV_A_ &w->timer);
3198 }
3199
1584 ev_stop (EV_A_ (W)w); 3200 ev_stop (EV_A_ (W)w);
1585}
1586 3201
1587#ifndef SA_RESTART 3202 EV_FREQUENT_CHECK;
1588# define SA_RESTART 0 3203}
1589#endif 3204#endif
1590 3205
3206#if EV_IDLE_ENABLE
1591void 3207void
1592ev_signal_start (EV_P_ struct ev_signal *w) 3208ev_idle_start (EV_P_ ev_idle *w)
1593{ 3209{
1594#if EV_MULTIPLICITY
1595 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1596#endif
1597 if (expect_false (ev_is_active (w))) 3210 if (expect_false (ev_is_active (w)))
1598 return; 3211 return;
1599 3212
1600 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3213 pri_adjust (EV_A_ (W)w);
1601 3214
3215 EV_FREQUENT_CHECK;
3216
3217 {
3218 int active = ++idlecnt [ABSPRI (w)];
3219
3220 ++idleall;
1602 ev_start (EV_A_ (W)w, 1); 3221 ev_start (EV_A_ (W)w, active);
1603 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1604 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1605 3222
1606 if (!((WL)w)->next) 3223 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1607 { 3224 idles [ABSPRI (w)][active - 1] = w;
1608#if _WIN32
1609 signal (w->signum, sighandler);
1610#else
1611 struct sigaction sa;
1612 sa.sa_handler = sighandler;
1613 sigfillset (&sa.sa_mask);
1614 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1615 sigaction (w->signum, &sa, 0);
1616#endif
1617 } 3225 }
1618}
1619 3226
3227 EV_FREQUENT_CHECK;
3228}
3229
1620void 3230void
1621ev_signal_stop (EV_P_ struct ev_signal *w) 3231ev_idle_stop (EV_P_ ev_idle *w)
1622{ 3232{
1623 ev_clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
1625 return; 3235 return;
1626 3236
1627 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3237 EV_FREQUENT_CHECK;
3238
3239 {
3240 int active = ev_active (w);
3241
3242 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3243 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3244
1628 ev_stop (EV_A_ (W)w); 3245 ev_stop (EV_A_ (W)w);
3246 --idleall;
3247 }
1629 3248
1630 if (!signals [w->signum - 1].head) 3249 EV_FREQUENT_CHECK;
1631 signal (w->signum, SIG_DFL);
1632} 3250}
1633
1634void
1635ev_child_start (EV_P_ struct ev_child *w)
1636{
1637#if EV_MULTIPLICITY
1638 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1639#endif 3251#endif
3252
3253void
3254ev_prepare_start (EV_P_ ev_prepare *w)
3255{
1640 if (expect_false (ev_is_active (w))) 3256 if (expect_false (ev_is_active (w)))
1641 return; 3257 return;
1642 3258
3259 EV_FREQUENT_CHECK;
3260
1643 ev_start (EV_A_ (W)w, 1); 3261 ev_start (EV_A_ (W)w, ++preparecnt);
1644 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3262 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1645} 3263 prepares [preparecnt - 1] = w;
1646 3264
3265 EV_FREQUENT_CHECK;
3266}
3267
1647void 3268void
1648ev_child_stop (EV_P_ struct ev_child *w) 3269ev_prepare_stop (EV_P_ ev_prepare *w)
1649{ 3270{
1650 ev_clear_pending (EV_A_ (W)w); 3271 clear_pending (EV_A_ (W)w);
1651 if (expect_false (!ev_is_active (w))) 3272 if (expect_false (!ev_is_active (w)))
1652 return; 3273 return;
1653 3274
1654 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3275 EV_FREQUENT_CHECK;
3276
3277 {
3278 int active = ev_active (w);
3279
3280 prepares [active - 1] = prepares [--preparecnt];
3281 ev_active (prepares [active - 1]) = active;
3282 }
3283
1655 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
3285
3286 EV_FREQUENT_CHECK;
1656} 3287}
3288
3289void
3290ev_check_start (EV_P_ ev_check *w)
3291{
3292 if (expect_false (ev_is_active (w)))
3293 return;
3294
3295 EV_FREQUENT_CHECK;
3296
3297 ev_start (EV_A_ (W)w, ++checkcnt);
3298 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3299 checks [checkcnt - 1] = w;
3300
3301 EV_FREQUENT_CHECK;
3302}
3303
3304void
3305ev_check_stop (EV_P_ ev_check *w)
3306{
3307 clear_pending (EV_A_ (W)w);
3308 if (expect_false (!ev_is_active (w)))
3309 return;
3310
3311 EV_FREQUENT_CHECK;
3312
3313 {
3314 int active = ev_active (w);
3315
3316 checks [active - 1] = checks [--checkcnt];
3317 ev_active (checks [active - 1]) = active;
3318 }
3319
3320 ev_stop (EV_A_ (W)w);
3321
3322 EV_FREQUENT_CHECK;
3323}
3324
3325#if EV_EMBED_ENABLE
3326void noinline
3327ev_embed_sweep (EV_P_ ev_embed *w)
3328{
3329 ev_loop (w->other, EVLOOP_NONBLOCK);
3330}
3331
3332static void
3333embed_io_cb (EV_P_ ev_io *io, int revents)
3334{
3335 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3336
3337 if (ev_cb (w))
3338 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3339 else
3340 ev_loop (w->other, EVLOOP_NONBLOCK);
3341}
3342
3343static void
3344embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3345{
3346 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3347
3348 {
3349 EV_P = w->other;
3350
3351 while (fdchangecnt)
3352 {
3353 fd_reify (EV_A);
3354 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3355 }
3356 }
3357}
3358
3359static void
3360embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3361{
3362 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3363
3364 ev_embed_stop (EV_A_ w);
3365
3366 {
3367 EV_P = w->other;
3368
3369 ev_loop_fork (EV_A);
3370 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3371 }
3372
3373 ev_embed_start (EV_A_ w);
3374}
3375
3376#if 0
3377static void
3378embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3379{
3380 ev_idle_stop (EV_A_ idle);
3381}
3382#endif
3383
3384void
3385ev_embed_start (EV_P_ ev_embed *w)
3386{
3387 if (expect_false (ev_is_active (w)))
3388 return;
3389
3390 {
3391 EV_P = w->other;
3392 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3393 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3394 }
3395
3396 EV_FREQUENT_CHECK;
3397
3398 ev_set_priority (&w->io, ev_priority (w));
3399 ev_io_start (EV_A_ &w->io);
3400
3401 ev_prepare_init (&w->prepare, embed_prepare_cb);
3402 ev_set_priority (&w->prepare, EV_MINPRI);
3403 ev_prepare_start (EV_A_ &w->prepare);
3404
3405 ev_fork_init (&w->fork, embed_fork_cb);
3406 ev_fork_start (EV_A_ &w->fork);
3407
3408 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3409
3410 ev_start (EV_A_ (W)w, 1);
3411
3412 EV_FREQUENT_CHECK;
3413}
3414
3415void
3416ev_embed_stop (EV_P_ ev_embed *w)
3417{
3418 clear_pending (EV_A_ (W)w);
3419 if (expect_false (!ev_is_active (w)))
3420 return;
3421
3422 EV_FREQUENT_CHECK;
3423
3424 ev_io_stop (EV_A_ &w->io);
3425 ev_prepare_stop (EV_A_ &w->prepare);
3426 ev_fork_stop (EV_A_ &w->fork);
3427
3428 EV_FREQUENT_CHECK;
3429}
3430#endif
3431
3432#if EV_FORK_ENABLE
3433void
3434ev_fork_start (EV_P_ ev_fork *w)
3435{
3436 if (expect_false (ev_is_active (w)))
3437 return;
3438
3439 EV_FREQUENT_CHECK;
3440
3441 ev_start (EV_A_ (W)w, ++forkcnt);
3442 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3443 forks [forkcnt - 1] = w;
3444
3445 EV_FREQUENT_CHECK;
3446}
3447
3448void
3449ev_fork_stop (EV_P_ ev_fork *w)
3450{
3451 clear_pending (EV_A_ (W)w);
3452 if (expect_false (!ev_is_active (w)))
3453 return;
3454
3455 EV_FREQUENT_CHECK;
3456
3457 {
3458 int active = ev_active (w);
3459
3460 forks [active - 1] = forks [--forkcnt];
3461 ev_active (forks [active - 1]) = active;
3462 }
3463
3464 ev_stop (EV_A_ (W)w);
3465
3466 EV_FREQUENT_CHECK;
3467}
3468#endif
3469
3470#if EV_ASYNC_ENABLE
3471void
3472ev_async_start (EV_P_ ev_async *w)
3473{
3474 if (expect_false (ev_is_active (w)))
3475 return;
3476
3477 evpipe_init (EV_A);
3478
3479 EV_FREQUENT_CHECK;
3480
3481 ev_start (EV_A_ (W)w, ++asynccnt);
3482 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3483 asyncs [asynccnt - 1] = w;
3484
3485 EV_FREQUENT_CHECK;
3486}
3487
3488void
3489ev_async_stop (EV_P_ ev_async *w)
3490{
3491 clear_pending (EV_A_ (W)w);
3492 if (expect_false (!ev_is_active (w)))
3493 return;
3494
3495 EV_FREQUENT_CHECK;
3496
3497 {
3498 int active = ev_active (w);
3499
3500 asyncs [active - 1] = asyncs [--asynccnt];
3501 ev_active (asyncs [active - 1]) = active;
3502 }
3503
3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
3507}
3508
3509void
3510ev_async_send (EV_P_ ev_async *w)
3511{
3512 w->sent = 1;
3513 evpipe_write (EV_A_ &async_pending);
3514}
3515#endif
1657 3516
1658/*****************************************************************************/ 3517/*****************************************************************************/
1659 3518
1660struct ev_once 3519struct ev_once
1661{ 3520{
1662 struct ev_io io; 3521 ev_io io;
1663 struct ev_timer to; 3522 ev_timer to;
1664 void (*cb)(int revents, void *arg); 3523 void (*cb)(int revents, void *arg);
1665 void *arg; 3524 void *arg;
1666}; 3525};
1667 3526
1668static void 3527static void
1669once_cb (EV_P_ struct ev_once *once, int revents) 3528once_cb (EV_P_ struct ev_once *once, int revents)
1670{ 3529{
1671 void (*cb)(int revents, void *arg) = once->cb; 3530 void (*cb)(int revents, void *arg) = once->cb;
1672 void *arg = once->arg; 3531 void *arg = once->arg;
1673 3532
1674 ev_io_stop (EV_A_ &once->io); 3533 ev_io_stop (EV_A_ &once->io);
1675 ev_timer_stop (EV_A_ &once->to); 3534 ev_timer_stop (EV_A_ &once->to);
1676 ev_free (once); 3535 ev_free (once);
1677 3536
1678 cb (revents, arg); 3537 cb (revents, arg);
1679} 3538}
1680 3539
1681static void 3540static void
1682once_cb_io (EV_P_ struct ev_io *w, int revents) 3541once_cb_io (EV_P_ ev_io *w, int revents)
1683{ 3542{
1684 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3543 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3544
3545 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1685} 3546}
1686 3547
1687static void 3548static void
1688once_cb_to (EV_P_ struct ev_timer *w, int revents) 3549once_cb_to (EV_P_ ev_timer *w, int revents)
1689{ 3550{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1691} 3554}
1692 3555
1693void 3556void
1694ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3557ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1695{ 3558{
1717 ev_timer_set (&once->to, timeout, 0.); 3580 ev_timer_set (&once->to, timeout, 0.);
1718 ev_timer_start (EV_A_ &once->to); 3581 ev_timer_start (EV_A_ &once->to);
1719 } 3582 }
1720} 3583}
1721 3584
3585/*****************************************************************************/
3586
3587#if EV_WALK_ENABLE
3588void
3589ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3590{
3591 int i, j;
3592 ev_watcher_list *wl, *wn;
3593
3594 if (types & (EV_IO | EV_EMBED))
3595 for (i = 0; i < anfdmax; ++i)
3596 for (wl = anfds [i].head; wl; )
3597 {
3598 wn = wl->next;
3599
3600#if EV_EMBED_ENABLE
3601 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3602 {
3603 if (types & EV_EMBED)
3604 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3605 }
3606 else
3607#endif
3608#if EV_USE_INOTIFY
3609 if (ev_cb ((ev_io *)wl) == infy_cb)
3610 ;
3611 else
3612#endif
3613 if ((ev_io *)wl != &pipe_w)
3614 if (types & EV_IO)
3615 cb (EV_A_ EV_IO, wl);
3616
3617 wl = wn;
3618 }
3619
3620 if (types & (EV_TIMER | EV_STAT))
3621 for (i = timercnt + HEAP0; i-- > HEAP0; )
3622#if EV_STAT_ENABLE
3623 /*TODO: timer is not always active*/
3624 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3625 {
3626 if (types & EV_STAT)
3627 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3628 }
3629 else
3630#endif
3631 if (types & EV_TIMER)
3632 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3633
3634#if EV_PERIODIC_ENABLE
3635 if (types & EV_PERIODIC)
3636 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3637 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3638#endif
3639
3640#if EV_IDLE_ENABLE
3641 if (types & EV_IDLE)
3642 for (j = NUMPRI; i--; )
3643 for (i = idlecnt [j]; i--; )
3644 cb (EV_A_ EV_IDLE, idles [j][i]);
3645#endif
3646
3647#if EV_FORK_ENABLE
3648 if (types & EV_FORK)
3649 for (i = forkcnt; i--; )
3650 if (ev_cb (forks [i]) != embed_fork_cb)
3651 cb (EV_A_ EV_FORK, forks [i]);
3652#endif
3653
3654#if EV_ASYNC_ENABLE
3655 if (types & EV_ASYNC)
3656 for (i = asynccnt; i--; )
3657 cb (EV_A_ EV_ASYNC, asyncs [i]);
3658#endif
3659
3660 if (types & EV_PREPARE)
3661 for (i = preparecnt; i--; )
3662#if EV_EMBED_ENABLE
3663 if (ev_cb (prepares [i]) != embed_prepare_cb)
3664#endif
3665 cb (EV_A_ EV_PREPARE, prepares [i]);
3666
3667 if (types & EV_CHECK)
3668 for (i = checkcnt; i--; )
3669 cb (EV_A_ EV_CHECK, checks [i]);
3670
3671 if (types & EV_SIGNAL)
3672 for (i = 0; i < EV_NSIG - 1; ++i)
3673 for (wl = signals [i].head; wl; )
3674 {
3675 wn = wl->next;
3676 cb (EV_A_ EV_SIGNAL, wl);
3677 wl = wn;
3678 }
3679
3680 if (types & EV_CHILD)
3681 for (i = EV_PID_HASHSIZE; i--; )
3682 for (wl = childs [i]; wl; )
3683 {
3684 wn = wl->next;
3685 cb (EV_A_ EV_CHILD, wl);
3686 wl = wn;
3687 }
3688/* EV_STAT 0x00001000 /* stat data changed */
3689/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3690}
3691#endif
3692
3693#if EV_MULTIPLICITY
3694 #include "ev_wrap.h"
3695#endif
3696
1722#ifdef __cplusplus 3697#ifdef __cplusplus
1723} 3698}
1724#endif 3699#endif
1725 3700

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines