ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.13 by root, Wed Oct 31 10:50:05 2007 UTC vs.
Revision 1.496 by root, Mon Jun 24 22:27:29 2019 UTC

1#include <math.h> 1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_LINUX_AIO_ABI_H
121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
127# endif
128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
146
147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
2#include <stdlib.h> 186#include <stdlib.h>
3#include <unistd.h> 187#include <string.h>
4#include <fcntl.h> 188#include <fcntl.h>
5#include <signal.h> 189#include <stddef.h>
6 190
7#include <stdio.h> 191#include <stdio.h>
8 192
9#include <assert.h> 193#include <assert.h>
10#include <errno.h> 194#include <errno.h>
11#include <sys/time.h> 195#include <sys/types.h>
12#include <time.h> 196#include <time.h>
197#include <limits.h>
13 198
14#define HAVE_EPOLL 1 199#include <signal.h>
15 200
16#ifndef HAVE_MONOTONIC 201#ifdef EV_H
17# ifdef CLOCK_MONOTONIC 202# include EV_H
18# define HAVE_MONOTONIC 1 203#else
204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
218#ifndef _WIN32
219# include <sys/time.h>
220# include <sys/wait.h>
221# include <unistd.h>
222#else
223# include <io.h>
224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
226# include <windows.h>
227# ifndef EV_SELECT_IS_WINSOCKET
228# define EV_SELECT_IS_WINSOCKET 1
19# endif 229# endif
230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
20#endif 269# endif
270#endif
21 271
22#ifndef HAVE_SELECT 272#if !(_POSIX_TIMERS > 0)
23# define HAVE_SELECT 1 273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
24#endif 275# endif
25 276# ifndef EV_USE_REALTIME
26#ifndef HAVE_EPOLL 277# define EV_USE_REALTIME 0
27# define HAVE_EPOLL 0
28#endif 278# endif
279#endif
29 280
30#ifndef HAVE_REALTIME 281#ifndef EV_USE_MONOTONIC
31# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
285# define EV_USE_MONOTONIC 0
32#endif 286# endif
287#endif
288
289#ifndef EV_USE_REALTIME
290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
299#endif
300
301#ifndef EV_USE_SELECT
302# define EV_USE_SELECT EV_FEATURE_BACKENDS
303#endif
304
305#ifndef EV_USE_POLL
306# ifdef _WIN32
307# define EV_USE_POLL 0
308# else
309# define EV_USE_POLL EV_FEATURE_BACKENDS
310# endif
311#endif
312
313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
317# define EV_USE_EPOLL 0
318# endif
319#endif
320
321#ifndef EV_USE_KQUEUE
322# define EV_USE_KQUEUE 0
323#endif
324
325#ifndef EV_USE_PORT
326# define EV_USE_PORT 0
327#endif
328
329#ifndef EV_USE_LINUXAIO
330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331# define EV_USE_LINUXAIO 1
332# else
333# define EV_USE_LINUXAIO 0
334# endif
335#endif
336
337#ifndef EV_USE_INOTIFY
338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339# define EV_USE_INOTIFY EV_FEATURE_OS
340# else
341# define EV_USE_INOTIFY 0
342# endif
343#endif
344
345#ifndef EV_PID_HASHSIZE
346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347#endif
348
349#ifndef EV_INOTIFY_HASHSIZE
350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351#endif
352
353#ifndef EV_USE_EVENTFD
354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355# define EV_USE_EVENTFD EV_FEATURE_OS
356# else
357# define EV_USE_EVENTFD 0
358# endif
359#endif
360
361#ifndef EV_USE_SIGNALFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_SIGNALFD EV_FEATURE_OS
364# else
365# define EV_USE_SIGNALFD 0
366# endif
367#endif
368
369#if 0 /* debugging */
370# define EV_VERIFY 3
371# define EV_USE_4HEAP 1
372# define EV_HEAP_CACHE_AT 1
373#endif
374
375#ifndef EV_VERIFY
376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377#endif
378
379#ifndef EV_USE_4HEAP
380# define EV_USE_4HEAP EV_FEATURE_DATA
381#endif
382
383#ifndef EV_HEAP_CACHE_AT
384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
415#endif
416
417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
418
419#ifndef CLOCK_MONOTONIC
420# undef EV_USE_MONOTONIC
421# define EV_USE_MONOTONIC 0
422#endif
423
424#ifndef CLOCK_REALTIME
425# undef EV_USE_REALTIME
426# define EV_USE_REALTIME 0
427#endif
428
429#if !EV_STAT_ENABLE
430# undef EV_USE_INOTIFY
431# define EV_USE_INOTIFY 0
432#endif
433
434#if !EV_USE_NANOSLEEP
435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
437# include <sys/select.h>
438# endif
439#endif
440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
449#if EV_USE_INOTIFY
450# include <sys/statfs.h>
451# include <sys/inotify.h>
452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453# ifndef IN_DONT_FOLLOW
454# undef EV_USE_INOTIFY
455# define EV_USE_INOTIFY 0
456# endif
457#endif
458
459#if EV_USE_EVENTFD
460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
461# include <stdint.h>
462# ifndef EFD_NONBLOCK
463# define EFD_NONBLOCK O_NONBLOCK
464# endif
465# ifndef EFD_CLOEXEC
466# ifdef O_CLOEXEC
467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
495#endif
496
497/**/
498
499#if EV_VERIFY >= 3
500# define EV_FREQUENT_CHECK ev_verify (EV_A)
501#else
502# define EV_FREQUENT_CHECK do { } while (0)
503#endif
504
505/*
506 * This is used to work around floating point rounding problems.
507 * This value is good at least till the year 4000.
508 */
509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
33 511
34#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
35#define MAX_BLOCKTIME 60. 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
36 514
37#include "ev.h" 515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
38 517
39typedef struct ev_watcher *W; 518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
40typedef struct ev_watcher_list *WL; 519/* ECB.H BEGIN */
41typedef struct ev_watcher_time *WT; 520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
42 559
43static ev_tstamp now, diff; /* monotonic clock */ 560#ifndef ECB_H
44ev_tstamp ev_now; 561#define ECB_H
45int ev_method;
46 562
47static int have_monotonic; /* runtime */ 563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010006
48 565
49static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 566#ifdef _WIN32
50static void (*method_modify)(int fd, int oev, int nev); 567 typedef signed char int8_t;
51static void (*method_poll)(ev_tstamp timeout); 568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
597
598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601/* work around x32 idiocy by defining proper macros */
602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
609
610/* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
622
623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
52 663
53/*****************************************************************************/ 664/*****************************************************************************/
54 665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
689 #if __i386 || __i386__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
693 #elif ECB_GCC_AMD64
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
695 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
696 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
697 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
699 #elif defined __ARM_ARCH_2__ \
700 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
701 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
702 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
703 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
704 || defined __ARM_ARCH_5TEJ__
705 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
706 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
707 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
708 || defined __ARM_ARCH_6T2__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
710 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
711 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
712 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
713 #elif __aarch64__
714 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
715 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
716 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
718 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
719 #elif defined __s390__ || defined __s390x__
720 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
721 #elif defined __mips__
722 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
723 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
724 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
725 #elif defined __alpha__
726 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
727 #elif defined __hppa__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
729 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
730 #elif defined __ia64__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
732 #elif defined __m68k__
733 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
734 #elif defined __m88k__
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
736 #elif defined __sh__
737 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
738 #endif
739 #endif
740#endif
741
742#ifndef ECB_MEMORY_FENCE
743 #if ECB_GCC_VERSION(4,7)
744 /* see comment below (stdatomic.h) about the C11 memory model. */
745 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
746 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
747 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
748 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
749
750 #elif ECB_CLANG_EXTENSION(c_atomic)
751 /* see comment below (stdatomic.h) about the C11 memory model. */
752 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
753 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
754 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
755 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
756
757 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
758 #define ECB_MEMORY_FENCE __sync_synchronize ()
759 #elif _MSC_VER >= 1500 /* VC++ 2008 */
760 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
761 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
762 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
763 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
764 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
765 #elif _MSC_VER >= 1400 /* VC++ 2005 */
766 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
767 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
768 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
769 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
770 #elif defined _WIN32
771 #include <WinNT.h>
772 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
773 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
774 #include <mbarrier.h>
775 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
776 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
777 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
778 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
779 #elif __xlC__
780 #define ECB_MEMORY_FENCE __sync ()
781 #endif
782#endif
783
784#ifndef ECB_MEMORY_FENCE
785 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786 /* we assume that these memory fences work on all variables/all memory accesses, */
787 /* not just C11 atomics and atomic accesses */
788 #include <stdatomic.h>
789 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
790 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
791 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
792 #endif
793#endif
794
795#ifndef ECB_MEMORY_FENCE
796 #if !ECB_AVOID_PTHREADS
797 /*
798 * if you get undefined symbol references to pthread_mutex_lock,
799 * or failure to find pthread.h, then you should implement
800 * the ECB_MEMORY_FENCE operations for your cpu/compiler
801 * OR provide pthread.h and link against the posix thread library
802 * of your system.
803 */
804 #include <pthread.h>
805 #define ECB_NEEDS_PTHREADS 1
806 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
807
808 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
809 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
810 #endif
811#endif
812
813#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
814 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
815#endif
816
817#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
818 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
819#endif
820
821#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
822 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
823#endif
824
825/*****************************************************************************/
826
827#if ECB_CPP
828 #define ecb_inline static inline
829#elif ECB_GCC_VERSION(2,5)
830 #define ecb_inline static __inline__
831#elif ECB_C99
832 #define ecb_inline static inline
833#else
834 #define ecb_inline static
835#endif
836
837#if ECB_GCC_VERSION(3,3)
838 #define ecb_restrict __restrict__
839#elif ECB_C99
840 #define ecb_restrict restrict
841#else
842 #define ecb_restrict
843#endif
844
845typedef int ecb_bool;
846
847#define ECB_CONCAT_(a, b) a ## b
848#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
849#define ECB_STRINGIFY_(a) # a
850#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
851#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
852
853#define ecb_function_ ecb_inline
854
855#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
856 #define ecb_attribute(attrlist) __attribute__ (attrlist)
857#else
858 #define ecb_attribute(attrlist)
859#endif
860
861#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
862 #define ecb_is_constant(expr) __builtin_constant_p (expr)
863#else
864 /* possible C11 impl for integral types
865 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
866 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
867
868 #define ecb_is_constant(expr) 0
869#endif
870
871#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
872 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
873#else
874 #define ecb_expect(expr,value) (expr)
875#endif
876
877#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
878 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
879#else
880 #define ecb_prefetch(addr,rw,locality)
881#endif
882
883/* no emulation for ecb_decltype */
884#if ECB_CPP11
885 // older implementations might have problems with decltype(x)::type, work around it
886 template<class T> struct ecb_decltype_t { typedef T type; };
887 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
888#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
889 #define ecb_decltype(x) __typeof__ (x)
890#endif
891
892#if _MSC_VER >= 1300
893 #define ecb_deprecated __declspec (deprecated)
894#else
895 #define ecb_deprecated ecb_attribute ((__deprecated__))
896#endif
897
898#if _MSC_VER >= 1500
899 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
900#elif ECB_GCC_VERSION(4,5)
901 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
902#else
903 #define ecb_deprecated_message(msg) ecb_deprecated
904#endif
905
906#if _MSC_VER >= 1400
907 #define ecb_noinline __declspec (noinline)
908#else
909 #define ecb_noinline ecb_attribute ((__noinline__))
910#endif
911
912#define ecb_unused ecb_attribute ((__unused__))
913#define ecb_const ecb_attribute ((__const__))
914#define ecb_pure ecb_attribute ((__pure__))
915
916#if ECB_C11 || __IBMC_NORETURN
917 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
918 #define ecb_noreturn _Noreturn
919#elif ECB_CPP11
920 #define ecb_noreturn [[noreturn]]
921#elif _MSC_VER >= 1200
922 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
923 #define ecb_noreturn __declspec (noreturn)
924#else
925 #define ecb_noreturn ecb_attribute ((__noreturn__))
926#endif
927
928#if ECB_GCC_VERSION(4,3)
929 #define ecb_artificial ecb_attribute ((__artificial__))
930 #define ecb_hot ecb_attribute ((__hot__))
931 #define ecb_cold ecb_attribute ((__cold__))
932#else
933 #define ecb_artificial
934 #define ecb_hot
935 #define ecb_cold
936#endif
937
938/* put around conditional expressions if you are very sure that the */
939/* expression is mostly true or mostly false. note that these return */
940/* booleans, not the expression. */
941#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
942#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
943/* for compatibility to the rest of the world */
944#define ecb_likely(expr) ecb_expect_true (expr)
945#define ecb_unlikely(expr) ecb_expect_false (expr)
946
947/* count trailing zero bits and count # of one bits */
948#if ECB_GCC_VERSION(3,4) \
949 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
950 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
951 && ECB_CLANG_BUILTIN(__builtin_popcount))
952 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
953 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
954 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
955 #define ecb_ctz32(x) __builtin_ctz (x)
956 #define ecb_ctz64(x) __builtin_ctzll (x)
957 #define ecb_popcount32(x) __builtin_popcount (x)
958 /* no popcountll */
959#else
960 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
961 ecb_function_ ecb_const int
962 ecb_ctz32 (uint32_t x)
963 {
964#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
965 unsigned long r;
966 _BitScanForward (&r, x);
967 return (int)r;
968#else
969 int r = 0;
970
971 x &= ~x + 1; /* this isolates the lowest bit */
972
973#if ECB_branchless_on_i386
974 r += !!(x & 0xaaaaaaaa) << 0;
975 r += !!(x & 0xcccccccc) << 1;
976 r += !!(x & 0xf0f0f0f0) << 2;
977 r += !!(x & 0xff00ff00) << 3;
978 r += !!(x & 0xffff0000) << 4;
979#else
980 if (x & 0xaaaaaaaa) r += 1;
981 if (x & 0xcccccccc) r += 2;
982 if (x & 0xf0f0f0f0) r += 4;
983 if (x & 0xff00ff00) r += 8;
984 if (x & 0xffff0000) r += 16;
985#endif
986
987 return r;
988#endif
989 }
990
991 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
992 ecb_function_ ecb_const int
993 ecb_ctz64 (uint64_t x)
994 {
995#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
996 unsigned long r;
997 _BitScanForward64 (&r, x);
998 return (int)r;
999#else
1000 int shift = x & 0xffffffff ? 0 : 32;
1001 return ecb_ctz32 (x >> shift) + shift;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1006 ecb_function_ ecb_const int
1007 ecb_popcount32 (uint32_t x)
1008 {
1009 x -= (x >> 1) & 0x55555555;
1010 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1011 x = ((x >> 4) + x) & 0x0f0f0f0f;
1012 x *= 0x01010101;
1013
1014 return x >> 24;
1015 }
1016
1017 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1018 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1019 {
1020#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1021 unsigned long r;
1022 _BitScanReverse (&r, x);
1023 return (int)r;
1024#else
1025 int r = 0;
1026
1027 if (x >> 16) { x >>= 16; r += 16; }
1028 if (x >> 8) { x >>= 8; r += 8; }
1029 if (x >> 4) { x >>= 4; r += 4; }
1030 if (x >> 2) { x >>= 2; r += 2; }
1031 if (x >> 1) { r += 1; }
1032
1033 return r;
1034#endif
1035 }
1036
1037 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1038 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1039 {
1040#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1041 unsigned long r;
1042 _BitScanReverse64 (&r, x);
1043 return (int)r;
1044#else
1045 int r = 0;
1046
1047 if (x >> 32) { x >>= 32; r += 32; }
1048
1049 return r + ecb_ld32 (x);
1050#endif
1051 }
1052#endif
1053
1054ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1056ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1057ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1058
1059ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1060ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1061{
1062 return ( (x * 0x0802U & 0x22110U)
1063 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1064}
1065
1066ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1067ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1068{
1069 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1070 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1071 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1072 x = ( x >> 8 ) | ( x << 8);
1073
1074 return x;
1075}
1076
1077ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1078ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1079{
1080 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1081 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1082 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1083 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1084 x = ( x >> 16 ) | ( x << 16);
1085
1086 return x;
1087}
1088
1089/* popcount64 is only available on 64 bit cpus as gcc builtin */
1090/* so for this version we are lazy */
1091ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1092ecb_function_ ecb_const int
1093ecb_popcount64 (uint64_t x)
1094{
1095 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1096}
1097
1098ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1099ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1100ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1101ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1102ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1103ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1104ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1105ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1106
1107ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1108ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1109ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1110ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1111ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1112ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1113ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1114ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1115
1116#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1117 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1118 #define ecb_bswap16(x) __builtin_bswap16 (x)
1119 #else
1120 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1121 #endif
1122 #define ecb_bswap32(x) __builtin_bswap32 (x)
1123 #define ecb_bswap64(x) __builtin_bswap64 (x)
1124#elif _MSC_VER
1125 #include <stdlib.h>
1126 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1127 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1128 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1129#else
1130 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1131 ecb_function_ ecb_const uint16_t
1132 ecb_bswap16 (uint16_t x)
1133 {
1134 return ecb_rotl16 (x, 8);
1135 }
1136
1137 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1138 ecb_function_ ecb_const uint32_t
1139 ecb_bswap32 (uint32_t x)
1140 {
1141 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1142 }
1143
1144 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1145 ecb_function_ ecb_const uint64_t
1146 ecb_bswap64 (uint64_t x)
1147 {
1148 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1149 }
1150#endif
1151
1152#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1153 #define ecb_unreachable() __builtin_unreachable ()
1154#else
1155 /* this seems to work fine, but gcc always emits a warning for it :/ */
1156 ecb_inline ecb_noreturn void ecb_unreachable (void);
1157 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1158#endif
1159
1160/* try to tell the compiler that some condition is definitely true */
1161#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1162
1163ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1164ecb_inline ecb_const uint32_t
1165ecb_byteorder_helper (void)
1166{
1167 /* the union code still generates code under pressure in gcc, */
1168 /* but less than using pointers, and always seems to */
1169 /* successfully return a constant. */
1170 /* the reason why we have this horrible preprocessor mess */
1171 /* is to avoid it in all cases, at least on common architectures */
1172 /* or when using a recent enough gcc version (>= 4.6) */
1173#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1174 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1175 #define ECB_LITTLE_ENDIAN 1
1176 return 0x44332211;
1177#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1178 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1179 #define ECB_BIG_ENDIAN 1
1180 return 0x11223344;
1181#else
1182 union
1183 {
1184 uint8_t c[4];
1185 uint32_t u;
1186 } u = { 0x11, 0x22, 0x33, 0x44 };
1187 return u.u;
1188#endif
1189}
1190
1191ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1193ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1194ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1195
1196#if ECB_GCC_VERSION(3,0) || ECB_C99
1197 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1198#else
1199 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1200#endif
1201
1202#if ECB_CPP
1203 template<typename T>
1204 static inline T ecb_div_rd (T val, T div)
1205 {
1206 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1207 }
1208 template<typename T>
1209 static inline T ecb_div_ru (T val, T div)
1210 {
1211 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1212 }
1213#else
1214 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1215 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1216#endif
1217
1218#if ecb_cplusplus_does_not_suck
1219 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1220 template<typename T, int N>
1221 static inline int ecb_array_length (const T (&arr)[N])
1222 {
1223 return N;
1224 }
1225#else
1226 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1227#endif
1228
1229ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1230ecb_function_ ecb_const uint32_t
1231ecb_binary16_to_binary32 (uint32_t x)
1232{
1233 unsigned int s = (x & 0x8000) << (31 - 15);
1234 int e = (x >> 10) & 0x001f;
1235 unsigned int m = x & 0x03ff;
1236
1237 if (ecb_expect_false (e == 31))
1238 /* infinity or NaN */
1239 e = 255 - (127 - 15);
1240 else if (ecb_expect_false (!e))
1241 {
1242 if (ecb_expect_true (!m))
1243 /* zero, handled by code below by forcing e to 0 */
1244 e = 0 - (127 - 15);
1245 else
1246 {
1247 /* subnormal, renormalise */
1248 unsigned int s = 10 - ecb_ld32 (m);
1249
1250 m = (m << s) & 0x3ff; /* mask implicit bit */
1251 e -= s - 1;
1252 }
1253 }
1254
1255 /* e and m now are normalised, or zero, (or inf or nan) */
1256 e += 127 - 15;
1257
1258 return s | (e << 23) | (m << (23 - 10));
1259}
1260
1261ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1262ecb_function_ ecb_const uint16_t
1263ecb_binary32_to_binary16 (uint32_t x)
1264{
1265 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1266 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1267 unsigned int m = x & 0x007fffff;
1268
1269 x &= 0x7fffffff;
1270
1271 /* if it's within range of binary16 normals, use fast path */
1272 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1273 {
1274 /* mantissa round-to-even */
1275 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1276
1277 /* handle overflow */
1278 if (ecb_expect_false (m >= 0x00800000))
1279 {
1280 m >>= 1;
1281 e += 1;
1282 }
1283
1284 return s | (e << 10) | (m >> (23 - 10));
1285 }
1286
1287 /* handle large numbers and infinity */
1288 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1289 return s | 0x7c00;
1290
1291 /* handle zero, subnormals and small numbers */
1292 if (ecb_expect_true (x < 0x38800000))
1293 {
1294 /* zero */
1295 if (ecb_expect_true (!x))
1296 return s;
1297
1298 /* handle subnormals */
1299
1300 /* too small, will be zero */
1301 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1302 return s;
1303
1304 m |= 0x00800000; /* make implicit bit explicit */
1305
1306 /* very tricky - we need to round to the nearest e (+10) bit value */
1307 {
1308 unsigned int bits = 14 - e;
1309 unsigned int half = (1 << (bits - 1)) - 1;
1310 unsigned int even = (m >> bits) & 1;
1311
1312 /* if this overflows, we will end up with a normalised number */
1313 m = (m + half + even) >> bits;
1314 }
1315
1316 return s | m;
1317 }
1318
1319 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1320 m >>= 13;
1321
1322 return s | 0x7c00 | m | !m;
1323}
1324
1325/*******************************************************************************/
1326/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1327
1328/* basically, everything uses "ieee pure-endian" floating point numbers */
1329/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1330#if 0 \
1331 || __i386 || __i386__ \
1332 || ECB_GCC_AMD64 \
1333 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1334 || defined __s390__ || defined __s390x__ \
1335 || defined __mips__ \
1336 || defined __alpha__ \
1337 || defined __hppa__ \
1338 || defined __ia64__ \
1339 || defined __m68k__ \
1340 || defined __m88k__ \
1341 || defined __sh__ \
1342 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1343 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1344 || defined __aarch64__
1345 #define ECB_STDFP 1
1346 #include <string.h> /* for memcpy */
1347#else
1348 #define ECB_STDFP 0
1349#endif
1350
1351#ifndef ECB_NO_LIBM
1352
1353 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1354
1355 /* only the oldest of old doesn't have this one. solaris. */
1356 #ifdef INFINITY
1357 #define ECB_INFINITY INFINITY
1358 #else
1359 #define ECB_INFINITY HUGE_VAL
1360 #endif
1361
1362 #ifdef NAN
1363 #define ECB_NAN NAN
1364 #else
1365 #define ECB_NAN ECB_INFINITY
1366 #endif
1367
1368 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1369 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1370 #define ecb_frexpf(x,e) frexpf ((x), (e))
1371 #else
1372 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1373 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1374 #endif
1375
1376 /* convert a float to ieee single/binary32 */
1377 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1378 ecb_function_ ecb_const uint32_t
1379 ecb_float_to_binary32 (float x)
1380 {
1381 uint32_t r;
1382
1383 #if ECB_STDFP
1384 memcpy (&r, &x, 4);
1385 #else
1386 /* slow emulation, works for anything but -0 */
1387 uint32_t m;
1388 int e;
1389
1390 if (x == 0e0f ) return 0x00000000U;
1391 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1392 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1393 if (x != x ) return 0x7fbfffffU;
1394
1395 m = ecb_frexpf (x, &e) * 0x1000000U;
1396
1397 r = m & 0x80000000U;
1398
1399 if (r)
1400 m = -m;
1401
1402 if (e <= -126)
1403 {
1404 m &= 0xffffffU;
1405 m >>= (-125 - e);
1406 e = -126;
1407 }
1408
1409 r |= (e + 126) << 23;
1410 r |= m & 0x7fffffU;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* converts an ieee single/binary32 to a float */
1417 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1418 ecb_function_ ecb_const float
1419 ecb_binary32_to_float (uint32_t x)
1420 {
1421 float r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 4);
1425 #else
1426 /* emulation, only works for normals and subnormals and +0 */
1427 int neg = x >> 31;
1428 int e = (x >> 23) & 0xffU;
1429
1430 x &= 0x7fffffU;
1431
1432 if (e)
1433 x |= 0x800000U;
1434 else
1435 e = 1;
1436
1437 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1438 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1439
1440 r = neg ? -r : r;
1441 #endif
1442
1443 return r;
1444 }
1445
1446 /* convert a double to ieee double/binary64 */
1447 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1448 ecb_function_ ecb_const uint64_t
1449 ecb_double_to_binary64 (double x)
1450 {
1451 uint64_t r;
1452
1453 #if ECB_STDFP
1454 memcpy (&r, &x, 8);
1455 #else
1456 /* slow emulation, works for anything but -0 */
1457 uint64_t m;
1458 int e;
1459
1460 if (x == 0e0 ) return 0x0000000000000000U;
1461 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1462 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1463 if (x != x ) return 0X7ff7ffffffffffffU;
1464
1465 m = frexp (x, &e) * 0x20000000000000U;
1466
1467 r = m & 0x8000000000000000;;
1468
1469 if (r)
1470 m = -m;
1471
1472 if (e <= -1022)
1473 {
1474 m &= 0x1fffffffffffffU;
1475 m >>= (-1021 - e);
1476 e = -1022;
1477 }
1478
1479 r |= ((uint64_t)(e + 1022)) << 52;
1480 r |= m & 0xfffffffffffffU;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* converts an ieee double/binary64 to a double */
1487 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1488 ecb_function_ ecb_const double
1489 ecb_binary64_to_double (uint64_t x)
1490 {
1491 double r;
1492
1493 #if ECB_STDFP
1494 memcpy (&r, &x, 8);
1495 #else
1496 /* emulation, only works for normals and subnormals and +0 */
1497 int neg = x >> 63;
1498 int e = (x >> 52) & 0x7ffU;
1499
1500 x &= 0xfffffffffffffU;
1501
1502 if (e)
1503 x |= 0x10000000000000U;
1504 else
1505 e = 1;
1506
1507 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1508 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1509
1510 r = neg ? -r : r;
1511 #endif
1512
1513 return r;
1514 }
1515
1516 /* convert a float to ieee half/binary16 */
1517 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1518 ecb_function_ ecb_const uint16_t
1519 ecb_float_to_binary16 (float x)
1520 {
1521 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1522 }
1523
1524 /* convert an ieee half/binary16 to float */
1525 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1526 ecb_function_ ecb_const float
1527 ecb_binary16_to_float (uint16_t x)
1528 {
1529 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1530 }
1531
1532#endif
1533
1534#endif
1535
1536/* ECB.H END */
1537
1538#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1539/* if your architecture doesn't need memory fences, e.g. because it is
1540 * single-cpu/core, or if you use libev in a project that doesn't use libev
1541 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1542 * libev, in which cases the memory fences become nops.
1543 * alternatively, you can remove this #error and link against libpthread,
1544 * which will then provide the memory fences.
1545 */
1546# error "memory fences not defined for your architecture, please report"
1547#endif
1548
1549#ifndef ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE do { } while (0)
1551# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1552# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1553#endif
1554
1555#define expect_false(cond) ecb_expect_false (cond)
1556#define expect_true(cond) ecb_expect_true (cond)
1557#define noinline ecb_noinline
1558
1559#define inline_size ecb_inline
1560
1561#if EV_FEATURE_CODE
1562# define inline_speed ecb_inline
1563#else
1564# define inline_speed noinline static
1565#endif
1566
1567#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1568
1569#if EV_MINPRI == EV_MAXPRI
1570# define ABSPRI(w) (((W)w), 0)
1571#else
1572# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1573#endif
1574
1575#define EMPTY /* required for microsofts broken pseudo-c compiler */
1576
1577typedef ev_watcher *W;
1578typedef ev_watcher_list *WL;
1579typedef ev_watcher_time *WT;
1580
1581#define ev_active(w) ((W)(w))->active
1582#define ev_at(w) ((WT)(w))->at
1583
1584#if EV_USE_REALTIME
1585/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1586/* giving it a reasonably high chance of working on typical architectures */
1587static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1588#endif
1589
1590#if EV_USE_MONOTONIC
1591static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1592#endif
1593
1594#ifndef EV_FD_TO_WIN32_HANDLE
1595# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1596#endif
1597#ifndef EV_WIN32_HANDLE_TO_FD
1598# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1599#endif
1600#ifndef EV_WIN32_CLOSE_FD
1601# define EV_WIN32_CLOSE_FD(fd) close (fd)
1602#endif
1603
1604#ifdef _WIN32
1605# include "ev_win32.c"
1606#endif
1607
1608/*****************************************************************************/
1609
1610#if EV_USE_LINUXAIO
1611# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1612#endif
1613
1614/* define a suitable floor function (only used by periodics atm) */
1615
1616#if EV_USE_FLOOR
1617# include <math.h>
1618# define ev_floor(v) floor (v)
1619#else
1620
1621#include <float.h>
1622
1623/* a floor() replacement function, should be independent of ev_tstamp type */
1624noinline
1625static ev_tstamp
1626ev_floor (ev_tstamp v)
1627{
1628 /* the choice of shift factor is not terribly important */
1629#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1631#else
1632 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1633#endif
1634
1635 /* argument too large for an unsigned long? */
1636 if (expect_false (v >= shift))
1637 {
1638 ev_tstamp f;
1639
1640 if (v == v - 1.)
1641 return v; /* very large number */
1642
1643 f = shift * ev_floor (v * (1. / shift));
1644 return f + ev_floor (v - f);
1645 }
1646
1647 /* special treatment for negative args? */
1648 if (expect_false (v < 0.))
1649 {
1650 ev_tstamp f = -ev_floor (-v);
1651
1652 return f - (f == v ? 0 : 1);
1653 }
1654
1655 /* fits into an unsigned long */
1656 return (unsigned long)v;
1657}
1658
1659#endif
1660
1661/*****************************************************************************/
1662
1663#ifdef __linux
1664# include <sys/utsname.h>
1665#endif
1666
1667noinline ecb_cold
1668static unsigned int
1669ev_linux_version (void)
1670{
1671#ifdef __linux
1672 unsigned int v = 0;
1673 struct utsname buf;
1674 int i;
1675 char *p = buf.release;
1676
1677 if (uname (&buf))
1678 return 0;
1679
1680 for (i = 3+1; --i; )
1681 {
1682 unsigned int c = 0;
1683
1684 for (;;)
1685 {
1686 if (*p >= '0' && *p <= '9')
1687 c = c * 10 + *p++ - '0';
1688 else
1689 {
1690 p += *p == '.';
1691 break;
1692 }
1693 }
1694
1695 v = (v << 8) | c;
1696 }
1697
1698 return v;
1699#else
1700 return 0;
1701#endif
1702}
1703
1704/*****************************************************************************/
1705
1706#if EV_AVOID_STDIO
1707noinline ecb_cold
1708static void
1709ev_printerr (const char *msg)
1710{
1711 write (STDERR_FILENO, msg, strlen (msg));
1712}
1713#endif
1714
1715static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1716
1717ecb_cold
1718void
1719ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1720{
1721 syserr_cb = cb;
1722}
1723
1724noinline ecb_cold
1725static void
1726ev_syserr (const char *msg)
1727{
1728 if (!msg)
1729 msg = "(libev) system error";
1730
1731 if (syserr_cb)
1732 syserr_cb (msg);
1733 else
1734 {
1735#if EV_AVOID_STDIO
1736 ev_printerr (msg);
1737 ev_printerr (": ");
1738 ev_printerr (strerror (errno));
1739 ev_printerr ("\n");
1740#else
1741 perror (msg);
1742#endif
1743 abort ();
1744 }
1745}
1746
1747static void *
1748ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1749{
1750 /* some systems, notably openbsd and darwin, fail to properly
1751 * implement realloc (x, 0) (as required by both ansi c-89 and
1752 * the single unix specification, so work around them here.
1753 * recently, also (at least) fedora and debian started breaking it,
1754 * despite documenting it otherwise.
1755 */
1756
1757 if (size)
1758 return realloc (ptr, size);
1759
1760 free (ptr);
1761 return 0;
1762}
1763
1764static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1765
1766ecb_cold
1767void
1768ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1769{
1770 alloc = cb;
1771}
1772
1773inline_speed void *
1774ev_realloc (void *ptr, long size)
1775{
1776 ptr = alloc (ptr, size);
1777
1778 if (!ptr && size)
1779 {
1780#if EV_AVOID_STDIO
1781 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1782#else
1783 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1784#endif
1785 abort ();
1786 }
1787
1788 return ptr;
1789}
1790
1791#define ev_malloc(size) ev_realloc (0, (size))
1792#define ev_free(ptr) ev_realloc ((ptr), 0)
1793
1794/*****************************************************************************/
1795
1796/* set in reify when reification needed */
1797#define EV_ANFD_REIFY 1
1798
1799/* file descriptor info structure */
1800typedef struct
1801{
1802 WL head;
1803 unsigned char events; /* the events watched for */
1804 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1805 unsigned char emask; /* some backends store the actual kernel mask in here */
1806 unsigned char unused;
1807#if EV_USE_EPOLL
1808 unsigned int egen; /* generation counter to counter epoll bugs */
1809#endif
1810#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1811 SOCKET handle;
1812#endif
1813#if EV_USE_IOCP
1814 OVERLAPPED or, ow;
1815#endif
1816} ANFD;
1817
1818/* stores the pending event set for a given watcher */
1819typedef struct
1820{
1821 W w;
1822 int events; /* the pending event set for the given watcher */
1823} ANPENDING;
1824
1825#if EV_USE_INOTIFY
1826/* hash table entry per inotify-id */
1827typedef struct
1828{
1829 WL head;
1830} ANFS;
1831#endif
1832
1833/* Heap Entry */
1834#if EV_HEAP_CACHE_AT
1835 /* a heap element */
1836 typedef struct {
1837 ev_tstamp at;
1838 WT w;
1839 } ANHE;
1840
1841 #define ANHE_w(he) (he).w /* access watcher, read-write */
1842 #define ANHE_at(he) (he).at /* access cached at, read-only */
1843 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1844#else
1845 /* a heap element */
1846 typedef WT ANHE;
1847
1848 #define ANHE_w(he) (he)
1849 #define ANHE_at(he) (he)->at
1850 #define ANHE_at_cache(he)
1851#endif
1852
1853#if EV_MULTIPLICITY
1854
1855 struct ev_loop
1856 {
1857 ev_tstamp ev_rt_now;
1858 #define ev_rt_now ((loop)->ev_rt_now)
1859 #define VAR(name,decl) decl;
1860 #include "ev_vars.h"
1861 #undef VAR
1862 };
1863 #include "ev_wrap.h"
1864
1865 static struct ev_loop default_loop_struct;
1866 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1867
1868#else
1869
1870 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1871 #define VAR(name,decl) static decl;
1872 #include "ev_vars.h"
1873 #undef VAR
1874
1875 static int ev_default_loop_ptr;
1876
1877#endif
1878
1879#if EV_FEATURE_API
1880# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1881# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1882# define EV_INVOKE_PENDING invoke_cb (EV_A)
1883#else
1884# define EV_RELEASE_CB (void)0
1885# define EV_ACQUIRE_CB (void)0
1886# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1887#endif
1888
1889#define EVBREAK_RECURSE 0x80
1890
1891/*****************************************************************************/
1892
1893#ifndef EV_HAVE_EV_TIME
55ev_tstamp 1894ev_tstamp
56ev_time (void) 1895ev_time (void) EV_NOEXCEPT
57{ 1896{
58#if HAVE_REALTIME 1897#if EV_USE_REALTIME
1898 if (expect_true (have_realtime))
1899 {
59 struct timespec ts; 1900 struct timespec ts;
60 clock_gettime (CLOCK_REALTIME, &ts); 1901 clock_gettime (CLOCK_REALTIME, &ts);
61 return ts.tv_sec + ts.tv_nsec * 1e-9; 1902 return ts.tv_sec + ts.tv_nsec * 1e-9;
62#else 1903 }
1904#endif
1905
63 struct timeval tv; 1906 struct timeval tv;
64 gettimeofday (&tv, 0); 1907 gettimeofday (&tv, 0);
65 return tv.tv_sec + tv.tv_usec * 1e-6; 1908 return tv.tv_sec + tv.tv_usec * 1e-6;
66#endif
67} 1909}
1910#endif
68 1911
69static ev_tstamp 1912inline_size ev_tstamp
70get_clock (void) 1913get_clock (void)
71{ 1914{
72#if HAVE_MONOTONIC 1915#if EV_USE_MONOTONIC
73 if (have_monotonic) 1916 if (expect_true (have_monotonic))
74 { 1917 {
75 struct timespec ts; 1918 struct timespec ts;
76 clock_gettime (CLOCK_MONOTONIC, &ts); 1919 clock_gettime (CLOCK_MONOTONIC, &ts);
77 return ts.tv_sec + ts.tv_nsec * 1e-9; 1920 return ts.tv_sec + ts.tv_nsec * 1e-9;
78 } 1921 }
79#endif 1922#endif
80 1923
81 return ev_time (); 1924 return ev_time ();
82} 1925}
83 1926
84#define array_needsize(base,cur,cnt,init) \ 1927#if EV_MULTIPLICITY
85 if ((cnt) > cur) \ 1928ev_tstamp
86 { \ 1929ev_now (EV_P) EV_NOEXCEPT
87 int newcnt = cur ? cur << 1 : 16; \ 1930{
88 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 1931 return ev_rt_now;
89 base = realloc (base, sizeof (*base) * (newcnt)); \ 1932}
90 init (base + cur, newcnt - cur); \ 1933#endif
91 cur = newcnt; \ 1934
1935void
1936ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1937{
1938 if (delay > 0.)
92 } 1939 {
1940#if EV_USE_NANOSLEEP
1941 struct timespec ts;
1942
1943 EV_TS_SET (ts, delay);
1944 nanosleep (&ts, 0);
1945#elif defined _WIN32
1946 /* maybe this should round up, as ms is very low resolution */
1947 /* compared to select (µs) or nanosleep (ns) */
1948 Sleep ((unsigned long)(delay * 1e3));
1949#else
1950 struct timeval tv;
1951
1952 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1953 /* something not guaranteed by newer posix versions, but guaranteed */
1954 /* by older ones */
1955 EV_TV_SET (tv, delay);
1956 select (0, 0, 0, 0, &tv);
1957#endif
1958 }
1959}
93 1960
94/*****************************************************************************/ 1961/*****************************************************************************/
95 1962
96typedef struct 1963#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
97{
98 struct ev_io *head;
99 unsigned char wev, rev; /* want, received event set */
100} ANFD;
101 1964
102static ANFD *anfds; 1965/* find a suitable new size for the given array, */
103static int anfdmax; 1966/* hopefully by rounding to a nice-to-malloc size */
1967inline_size int
1968array_nextsize (int elem, int cur, int cnt)
1969{
1970 int ncur = cur + 1;
104 1971
105static int *fdchanges; 1972 do
106static int fdchangemax, fdchangecnt; 1973 ncur <<= 1;
1974 while (cnt > ncur);
107 1975
1976 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1977 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1978 {
1979 ncur *= elem;
1980 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1981 ncur = ncur - sizeof (void *) * 4;
1982 ncur /= elem;
1983 }
1984
1985 return ncur;
1986}
1987
1988noinline ecb_cold
1989static void *
1990array_realloc (int elem, void *base, int *cur, int cnt)
1991{
1992 *cur = array_nextsize (elem, *cur, cnt);
1993 return ev_realloc (base, elem * *cur);
1994}
1995
1996#define array_needsize_noinit(base,offset,count)
1997
1998#define array_needsize_zerofill(base,offset,count) \
1999 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2000
2001#define array_needsize(type,base,cur,cnt,init) \
2002 if (expect_false ((cnt) > (cur))) \
2003 { \
2004 ecb_unused int ocur_ = (cur); \
2005 (base) = (type *)array_realloc \
2006 (sizeof (type), (base), &(cur), (cnt)); \
2007 init ((base), ocur_, ((cur) - ocur_)); \
2008 }
2009
2010#if 0
2011#define array_slim(type,stem) \
2012 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2013 { \
2014 stem ## max = array_roundsize (stem ## cnt >> 1); \
2015 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2016 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2017 }
2018#endif
2019
2020#define array_free(stem, idx) \
2021 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2022
2023/*****************************************************************************/
2024
2025/* dummy callback for pending events */
2026noinline
108static void 2027static void
109anfds_init (ANFD *base, int count) 2028pendingcb (EV_P_ ev_prepare *w, int revents)
110{ 2029{
111 while (count--)
112 {
113 base->head = 0;
114 base->wev = base->rev = EV_NONE;
115 ++base;
116 }
117} 2030}
118 2031
119typedef struct 2032noinline
2033void
2034ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
120{ 2035{
121 W w; 2036 W w_ = (W)w;
122 int events; 2037 int pri = ABSPRI (w_);
123} ANPENDING;
124 2038
125static ANPENDING *pendings; 2039 if (expect_false (w_->pending))
126static int pendingmax, pendingcnt;
127
128static void
129event (W w, int events)
130{
131 w->pending = ++pendingcnt;
132 array_needsize (pendings, pendingmax, pendingcnt, );
133 pendings [pendingcnt - 1].w = w;
134 pendings [pendingcnt - 1].events = events; 2040 pendings [pri][w_->pending - 1].events |= revents;
135} 2041 else
2042 {
2043 w_->pending = ++pendingcnt [pri];
2044 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2045 pendings [pri][w_->pending - 1].w = w_;
2046 pendings [pri][w_->pending - 1].events = revents;
2047 }
136 2048
137static void 2049 pendingpri = NUMPRI - 1;
2050}
2051
2052inline_speed void
2053feed_reverse (EV_P_ W w)
2054{
2055 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2056 rfeeds [rfeedcnt++] = w;
2057}
2058
2059inline_size void
2060feed_reverse_done (EV_P_ int revents)
2061{
2062 do
2063 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2064 while (rfeedcnt);
2065}
2066
2067inline_speed void
2068queue_events (EV_P_ W *events, int eventcnt, int type)
2069{
2070 int i;
2071
2072 for (i = 0; i < eventcnt; ++i)
2073 ev_feed_event (EV_A_ events [i], type);
2074}
2075
2076/*****************************************************************************/
2077
2078inline_speed void
138fd_event (int fd, int events) 2079fd_event_nocheck (EV_P_ int fd, int revents)
139{ 2080{
140 ANFD *anfd = anfds + fd; 2081 ANFD *anfd = anfds + fd;
141 struct ev_io *w; 2082 ev_io *w;
142 2083
143 for (w = anfd->head; w; w = w->next) 2084 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
144 { 2085 {
145 int ev = w->events & events; 2086 int ev = w->events & revents;
146 2087
147 if (ev) 2088 if (ev)
148 event ((W)w, ev); 2089 ev_feed_event (EV_A_ (W)w, ev);
149 } 2090 }
150} 2091}
151 2092
152static void 2093/* do not submit kernel events for fds that have reify set */
153queue_events (W *events, int eventcnt, int type) 2094/* because that means they changed while we were polling for new events */
2095inline_speed void
2096fd_event (EV_P_ int fd, int revents)
2097{
2098 ANFD *anfd = anfds + fd;
2099
2100 if (expect_true (!anfd->reify))
2101 fd_event_nocheck (EV_A_ fd, revents);
2102}
2103
2104void
2105ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2106{
2107 if (fd >= 0 && fd < anfdmax)
2108 fd_event_nocheck (EV_A_ fd, revents);
2109}
2110
2111/* make sure the external fd watch events are in-sync */
2112/* with the kernel/libev internal state */
2113inline_size void
2114fd_reify (EV_P)
154{ 2115{
155 int i; 2116 int i;
156 2117
157 for (i = 0; i < eventcnt; ++i) 2118#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
158 event (events [i], type);
159}
160
161/*****************************************************************************/
162
163static struct ev_timer **timers;
164static int timermax, timercnt;
165
166static struct ev_periodic **periodics;
167static int periodicmax, periodiccnt;
168
169static void
170upheap (WT *timers, int k)
171{
172 WT w = timers [k];
173
174 while (k && timers [k >> 1]->at > w->at)
175 {
176 timers [k] = timers [k >> 1];
177 timers [k]->active = k + 1;
178 k >>= 1;
179 }
180
181 timers [k] = w;
182 timers [k]->active = k + 1;
183
184}
185
186static void
187downheap (WT *timers, int N, int k)
188{
189 WT w = timers [k];
190
191 while (k < (N >> 1))
192 {
193 int j = k << 1;
194
195 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
196 ++j;
197
198 if (w->at <= timers [j]->at)
199 break;
200
201 timers [k] = timers [j];
202 timers [k]->active = k + 1;
203 k = j;
204 }
205
206 timers [k] = w;
207 timers [k]->active = k + 1;
208}
209
210/*****************************************************************************/
211
212typedef struct
213{
214 struct ev_signal *head;
215 sig_atomic_t gotsig;
216} ANSIG;
217
218static ANSIG *signals;
219static int signalmax;
220
221static int sigpipe [2];
222static sig_atomic_t gotsig;
223static struct ev_io sigev;
224
225static void
226signals_init (ANSIG *base, int count)
227{
228 while (count--)
229 {
230 base->head = 0;
231 base->gotsig = 0;
232 ++base;
233 }
234}
235
236static void
237sighandler (int signum)
238{
239 signals [signum - 1].gotsig = 1;
240
241 if (!gotsig)
242 {
243 gotsig = 1;
244 write (sigpipe [1], &gotsig, 1);
245 }
246}
247
248static void
249sigcb (struct ev_io *iow, int revents)
250{
251 struct ev_signal *w;
252 int sig;
253
254 gotsig = 0;
255 read (sigpipe [0], &revents, 1);
256
257 for (sig = signalmax; sig--; )
258 if (signals [sig].gotsig)
259 {
260 signals [sig].gotsig = 0;
261
262 for (w = signals [sig].head; w; w = w->next)
263 event ((W)w, EV_SIGNAL);
264 }
265}
266
267static void
268siginit (void)
269{
270 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
271 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
272
273 /* rather than sort out wether we really need nb, set it */
274 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
275 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
276
277 evio_set (&sigev, sigpipe [0], EV_READ);
278 evio_start (&sigev);
279}
280
281/*****************************************************************************/
282
283static struct ev_idle **idles;
284static int idlemax, idlecnt;
285
286static struct ev_check **checks;
287static int checkmax, checkcnt;
288
289/*****************************************************************************/
290
291#if HAVE_EPOLL
292# include "ev_epoll.c"
293#endif
294#if HAVE_SELECT
295# include "ev_select.c"
296#endif
297
298int ev_init (int flags)
299{
300#if HAVE_MONOTONIC
301 {
302 struct timespec ts;
303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
304 have_monotonic = 1;
305 }
306#endif
307
308 ev_now = ev_time ();
309 now = get_clock ();
310 diff = ev_now - now;
311
312 if (pipe (sigpipe))
313 return 0;
314
315 ev_method = EVMETHOD_NONE;
316#if HAVE_EPOLL
317 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
318#endif
319#if HAVE_SELECT
320 if (ev_method == EVMETHOD_NONE) select_init (flags);
321#endif
322
323 if (ev_method)
324 {
325 evw_init (&sigev, sigcb);
326 siginit ();
327 }
328
329 return ev_method;
330}
331
332/*****************************************************************************/
333
334void ev_prefork (void)
335{
336 /* nop */
337}
338
339void ev_postfork_parent (void)
340{
341 /* nop */
342}
343
344void ev_postfork_child (void)
345{
346#if HAVE_EPOLL
347 if (ev_method == EVMETHOD_EPOLL)
348 epoll_postfork_child ();
349#endif
350
351 evio_stop (&sigev);
352 close (sigpipe [0]);
353 close (sigpipe [1]);
354 pipe (sigpipe);
355 siginit ();
356}
357
358/*****************************************************************************/
359
360static void
361fd_reify (void)
362{
363 int i;
364
365 for (i = 0; i < fdchangecnt; ++i) 2119 for (i = 0; i < fdchangecnt; ++i)
366 { 2120 {
367 int fd = fdchanges [i]; 2121 int fd = fdchanges [i];
368 ANFD *anfd = anfds + fd; 2122 ANFD *anfd = anfds + fd;
369 struct ev_io *w;
370 2123
371 int wev = 0; 2124 if (anfd->reify & EV__IOFDSET && anfd->head)
372
373 for (w = anfd->head; w; w = w->next)
374 wev |= w->events;
375
376 if (anfd->wev != wev)
377 { 2125 {
378 method_modify (fd, anfd->wev, wev); 2126 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2127
2128 if (handle != anfd->handle)
2129 {
2130 unsigned long arg;
2131
2132 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2133
2134 /* handle changed, but fd didn't - we need to do it in two steps */
2135 backend_modify (EV_A_ fd, anfd->events, 0);
379 anfd->wev = wev; 2136 anfd->events = 0;
2137 anfd->handle = handle;
2138 }
380 } 2139 }
381 } 2140 }
2141#endif
2142
2143 for (i = 0; i < fdchangecnt; ++i)
2144 {
2145 int fd = fdchanges [i];
2146 ANFD *anfd = anfds + fd;
2147 ev_io *w;
2148
2149 unsigned char o_events = anfd->events;
2150 unsigned char o_reify = anfd->reify;
2151
2152 anfd->reify = 0;
2153
2154 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2155 {
2156 anfd->events = 0;
2157
2158 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2159 anfd->events |= (unsigned char)w->events;
2160
2161 if (o_events != anfd->events)
2162 o_reify = EV__IOFDSET; /* actually |= */
2163 }
2164
2165 if (o_reify & EV__IOFDSET)
2166 backend_modify (EV_A_ fd, o_events, anfd->events);
2167 }
382 2168
383 fdchangecnt = 0; 2169 fdchangecnt = 0;
384} 2170}
385 2171
2172/* something about the given fd changed */
2173inline_size
2174void
2175fd_change (EV_P_ int fd, int flags)
2176{
2177 unsigned char reify = anfds [fd].reify;
2178 anfds [fd].reify |= flags;
2179
2180 if (expect_true (!reify))
2181 {
2182 ++fdchangecnt;
2183 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2184 fdchanges [fdchangecnt - 1] = fd;
2185 }
2186}
2187
2188/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2189inline_speed ecb_cold void
2190fd_kill (EV_P_ int fd)
2191{
2192 ev_io *w;
2193
2194 while ((w = (ev_io *)anfds [fd].head))
2195 {
2196 ev_io_stop (EV_A_ w);
2197 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2198 }
2199}
2200
2201/* check whether the given fd is actually valid, for error recovery */
2202inline_size ecb_cold int
2203fd_valid (int fd)
2204{
2205#ifdef _WIN32
2206 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2207#else
2208 return fcntl (fd, F_GETFD) != -1;
2209#endif
2210}
2211
2212/* called on EBADF to verify fds */
2213noinline ecb_cold
386static void 2214static void
387call_pending () 2215fd_ebadf (EV_P)
2216{
2217 int fd;
2218
2219 for (fd = 0; fd < anfdmax; ++fd)
2220 if (anfds [fd].events)
2221 if (!fd_valid (fd) && errno == EBADF)
2222 fd_kill (EV_A_ fd);
2223}
2224
2225/* called on ENOMEM in select/poll to kill some fds and retry */
2226noinline ecb_cold
2227static void
2228fd_enomem (EV_P)
2229{
2230 int fd;
2231
2232 for (fd = anfdmax; fd--; )
2233 if (anfds [fd].events)
2234 {
2235 fd_kill (EV_A_ fd);
2236 break;
2237 }
2238}
2239
2240/* usually called after fork if backend needs to re-arm all fds from scratch */
2241noinline
2242static void
2243fd_rearm_all (EV_P)
2244{
2245 int fd;
2246
2247 for (fd = 0; fd < anfdmax; ++fd)
2248 if (anfds [fd].events)
2249 {
2250 anfds [fd].events = 0;
2251 anfds [fd].emask = 0;
2252 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2253 }
2254}
2255
2256/* used to prepare libev internal fd's */
2257/* this is not fork-safe */
2258inline_speed void
2259fd_intern (int fd)
2260{
2261#ifdef _WIN32
2262 unsigned long arg = 1;
2263 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2264#else
2265 fcntl (fd, F_SETFD, FD_CLOEXEC);
2266 fcntl (fd, F_SETFL, O_NONBLOCK);
2267#endif
2268}
2269
2270/*****************************************************************************/
2271
2272/*
2273 * the heap functions want a real array index. array index 0 is guaranteed to not
2274 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2275 * the branching factor of the d-tree.
2276 */
2277
2278/*
2279 * at the moment we allow libev the luxury of two heaps,
2280 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2281 * which is more cache-efficient.
2282 * the difference is about 5% with 50000+ watchers.
2283 */
2284#if EV_USE_4HEAP
2285
2286#define DHEAP 4
2287#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2288#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2289#define UPHEAP_DONE(p,k) ((p) == (k))
2290
2291/* away from the root */
2292inline_speed void
2293downheap (ANHE *heap, int N, int k)
2294{
2295 ANHE he = heap [k];
2296 ANHE *E = heap + N + HEAP0;
2297
2298 for (;;)
2299 {
2300 ev_tstamp minat;
2301 ANHE *minpos;
2302 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2303
2304 /* find minimum child */
2305 if (expect_true (pos + DHEAP - 1 < E))
2306 {
2307 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2308 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2309 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2310 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2311 }
2312 else if (pos < E)
2313 {
2314 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2315 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2316 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2317 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2318 }
2319 else
2320 break;
2321
2322 if (ANHE_at (he) <= minat)
2323 break;
2324
2325 heap [k] = *minpos;
2326 ev_active (ANHE_w (*minpos)) = k;
2327
2328 k = minpos - heap;
2329 }
2330
2331 heap [k] = he;
2332 ev_active (ANHE_w (he)) = k;
2333}
2334
2335#else /* 4HEAP */
2336
2337#define HEAP0 1
2338#define HPARENT(k) ((k) >> 1)
2339#define UPHEAP_DONE(p,k) (!(p))
2340
2341/* away from the root */
2342inline_speed void
2343downheap (ANHE *heap, int N, int k)
2344{
2345 ANHE he = heap [k];
2346
2347 for (;;)
2348 {
2349 int c = k << 1;
2350
2351 if (c >= N + HEAP0)
2352 break;
2353
2354 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2355 ? 1 : 0;
2356
2357 if (ANHE_at (he) <= ANHE_at (heap [c]))
2358 break;
2359
2360 heap [k] = heap [c];
2361 ev_active (ANHE_w (heap [k])) = k;
2362
2363 k = c;
2364 }
2365
2366 heap [k] = he;
2367 ev_active (ANHE_w (he)) = k;
2368}
2369#endif
2370
2371/* towards the root */
2372inline_speed void
2373upheap (ANHE *heap, int k)
2374{
2375 ANHE he = heap [k];
2376
2377 for (;;)
2378 {
2379 int p = HPARENT (k);
2380
2381 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2382 break;
2383
2384 heap [k] = heap [p];
2385 ev_active (ANHE_w (heap [k])) = k;
2386 k = p;
2387 }
2388
2389 heap [k] = he;
2390 ev_active (ANHE_w (he)) = k;
2391}
2392
2393/* move an element suitably so it is in a correct place */
2394inline_size void
2395adjustheap (ANHE *heap, int N, int k)
2396{
2397 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2398 upheap (heap, k);
2399 else
2400 downheap (heap, N, k);
2401}
2402
2403/* rebuild the heap: this function is used only once and executed rarely */
2404inline_size void
2405reheap (ANHE *heap, int N)
388{ 2406{
389 int i; 2407 int i;
390 2408
2409 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2410 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
391 for (i = 0; i < pendingcnt; ++i) 2411 for (i = 0; i < N; ++i)
392 { 2412 upheap (heap, i + HEAP0);
393 ANPENDING *p = pendings + i; 2413}
394 2414
395 if (p->w) 2415/*****************************************************************************/
2416
2417/* associate signal watchers to a signal signal */
2418typedef struct
2419{
2420 EV_ATOMIC_T pending;
2421#if EV_MULTIPLICITY
2422 EV_P;
2423#endif
2424 WL head;
2425} ANSIG;
2426
2427static ANSIG signals [EV_NSIG - 1];
2428
2429/*****************************************************************************/
2430
2431#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2432
2433noinline ecb_cold
2434static void
2435evpipe_init (EV_P)
2436{
2437 if (!ev_is_active (&pipe_w))
2438 {
2439 int fds [2];
2440
2441# if EV_USE_EVENTFD
2442 fds [0] = -1;
2443 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2444 if (fds [1] < 0 && errno == EINVAL)
2445 fds [1] = eventfd (0, 0);
2446
2447 if (fds [1] < 0)
2448# endif
396 { 2449 {
2450 while (pipe (fds))
2451 ev_syserr ("(libev) error creating signal/async pipe");
2452
2453 fd_intern (fds [0]);
2454 }
2455
2456 evpipe [0] = fds [0];
2457
2458 if (evpipe [1] < 0)
2459 evpipe [1] = fds [1]; /* first call, set write fd */
2460 else
2461 {
2462 /* on subsequent calls, do not change evpipe [1] */
2463 /* so that evpipe_write can always rely on its value. */
2464 /* this branch does not do anything sensible on windows, */
2465 /* so must not be executed on windows */
2466
2467 dup2 (fds [1], evpipe [1]);
2468 close (fds [1]);
2469 }
2470
2471 fd_intern (evpipe [1]);
2472
2473 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2474 ev_io_start (EV_A_ &pipe_w);
2475 ev_unref (EV_A); /* watcher should not keep loop alive */
2476 }
2477}
2478
2479inline_speed void
2480evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2481{
2482 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2483
2484 if (expect_true (*flag))
2485 return;
2486
2487 *flag = 1;
2488 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2489
2490 pipe_write_skipped = 1;
2491
2492 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2493
2494 if (pipe_write_wanted)
2495 {
2496 int old_errno;
2497
2498 pipe_write_skipped = 0;
2499 ECB_MEMORY_FENCE_RELEASE;
2500
2501 old_errno = errno; /* save errno because write will clobber it */
2502
2503#if EV_USE_EVENTFD
2504 if (evpipe [0] < 0)
2505 {
2506 uint64_t counter = 1;
2507 write (evpipe [1], &counter, sizeof (uint64_t));
2508 }
2509 else
2510#endif
2511 {
2512#ifdef _WIN32
2513 WSABUF buf;
2514 DWORD sent;
2515 buf.buf = (char *)&buf;
2516 buf.len = 1;
2517 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2518#else
2519 write (evpipe [1], &(evpipe [1]), 1);
2520#endif
2521 }
2522
2523 errno = old_errno;
2524 }
2525}
2526
2527/* called whenever the libev signal pipe */
2528/* got some events (signal, async) */
2529static void
2530pipecb (EV_P_ ev_io *iow, int revents)
2531{
2532 int i;
2533
2534 if (revents & EV_READ)
2535 {
2536#if EV_USE_EVENTFD
2537 if (evpipe [0] < 0)
2538 {
2539 uint64_t counter;
2540 read (evpipe [1], &counter, sizeof (uint64_t));
2541 }
2542 else
2543#endif
2544 {
2545 char dummy[4];
2546#ifdef _WIN32
2547 WSABUF buf;
2548 DWORD recvd;
2549 DWORD flags = 0;
2550 buf.buf = dummy;
2551 buf.len = sizeof (dummy);
2552 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2553#else
2554 read (evpipe [0], &dummy, sizeof (dummy));
2555#endif
2556 }
2557 }
2558
2559 pipe_write_skipped = 0;
2560
2561 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2562
2563#if EV_SIGNAL_ENABLE
2564 if (sig_pending)
2565 {
2566 sig_pending = 0;
2567
2568 ECB_MEMORY_FENCE;
2569
2570 for (i = EV_NSIG - 1; i--; )
2571 if (expect_false (signals [i].pending))
2572 ev_feed_signal_event (EV_A_ i + 1);
2573 }
2574#endif
2575
2576#if EV_ASYNC_ENABLE
2577 if (async_pending)
2578 {
2579 async_pending = 0;
2580
2581 ECB_MEMORY_FENCE;
2582
2583 for (i = asynccnt; i--; )
2584 if (asyncs [i]->sent)
2585 {
2586 asyncs [i]->sent = 0;
2587 ECB_MEMORY_FENCE_RELEASE;
2588 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2589 }
2590 }
2591#endif
2592}
2593
2594/*****************************************************************************/
2595
2596void
2597ev_feed_signal (int signum) EV_NOEXCEPT
2598{
2599#if EV_MULTIPLICITY
2600 EV_P;
2601 ECB_MEMORY_FENCE_ACQUIRE;
2602 EV_A = signals [signum - 1].loop;
2603
2604 if (!EV_A)
2605 return;
2606#endif
2607
2608 signals [signum - 1].pending = 1;
2609 evpipe_write (EV_A_ &sig_pending);
2610}
2611
2612static void
2613ev_sighandler (int signum)
2614{
2615#ifdef _WIN32
2616 signal (signum, ev_sighandler);
2617#endif
2618
2619 ev_feed_signal (signum);
2620}
2621
2622noinline
2623void
2624ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2625{
2626 WL w;
2627
2628 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2629 return;
2630
2631 --signum;
2632
2633#if EV_MULTIPLICITY
2634 /* it is permissible to try to feed a signal to the wrong loop */
2635 /* or, likely more useful, feeding a signal nobody is waiting for */
2636
2637 if (expect_false (signals [signum].loop != EV_A))
2638 return;
2639#endif
2640
2641 signals [signum].pending = 0;
2642 ECB_MEMORY_FENCE_RELEASE;
2643
2644 for (w = signals [signum].head; w; w = w->next)
2645 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2646}
2647
2648#if EV_USE_SIGNALFD
2649static void
2650sigfdcb (EV_P_ ev_io *iow, int revents)
2651{
2652 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2653
2654 for (;;)
2655 {
2656 ssize_t res = read (sigfd, si, sizeof (si));
2657
2658 /* not ISO-C, as res might be -1, but works with SuS */
2659 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2660 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2661
2662 if (res < (ssize_t)sizeof (si))
2663 break;
2664 }
2665}
2666#endif
2667
2668#endif
2669
2670/*****************************************************************************/
2671
2672#if EV_CHILD_ENABLE
2673static WL childs [EV_PID_HASHSIZE];
2674
2675static ev_signal childev;
2676
2677#ifndef WIFCONTINUED
2678# define WIFCONTINUED(status) 0
2679#endif
2680
2681/* handle a single child status event */
2682inline_speed void
2683child_reap (EV_P_ int chain, int pid, int status)
2684{
2685 ev_child *w;
2686 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2687
2688 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2689 {
2690 if ((w->pid == pid || !w->pid)
2691 && (!traced || (w->flags & 1)))
2692 {
2693 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2694 w->rpid = pid;
2695 w->rstatus = status;
2696 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2697 }
2698 }
2699}
2700
2701#ifndef WCONTINUED
2702# define WCONTINUED 0
2703#endif
2704
2705/* called on sigchld etc., calls waitpid */
2706static void
2707childcb (EV_P_ ev_signal *sw, int revents)
2708{
2709 int pid, status;
2710
2711 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2712 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2713 if (!WCONTINUED
2714 || errno != EINVAL
2715 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2716 return;
2717
2718 /* make sure we are called again until all children have been reaped */
2719 /* we need to do it this way so that the callback gets called before we continue */
2720 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2721
2722 child_reap (EV_A_ pid, pid, status);
2723 if ((EV_PID_HASHSIZE) > 1)
2724 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2725}
2726
2727#endif
2728
2729/*****************************************************************************/
2730
2731#if EV_USE_IOCP
2732# include "ev_iocp.c"
2733#endif
2734#if EV_USE_PORT
2735# include "ev_port.c"
2736#endif
2737#if EV_USE_KQUEUE
2738# include "ev_kqueue.c"
2739#endif
2740#if EV_USE_EPOLL
2741# include "ev_epoll.c"
2742#endif
2743#if EV_USE_LINUXAIO
2744# include "ev_linuxaio.c"
2745#endif
2746#if EV_USE_POLL
2747# include "ev_poll.c"
2748#endif
2749#if EV_USE_SELECT
2750# include "ev_select.c"
2751#endif
2752
2753ecb_cold int
2754ev_version_major (void) EV_NOEXCEPT
2755{
2756 return EV_VERSION_MAJOR;
2757}
2758
2759ecb_cold int
2760ev_version_minor (void) EV_NOEXCEPT
2761{
2762 return EV_VERSION_MINOR;
2763}
2764
2765/* return true if we are running with elevated privileges and should ignore env variables */
2766inline_size ecb_cold int
2767enable_secure (void)
2768{
2769#ifdef _WIN32
2770 return 0;
2771#else
2772 return getuid () != geteuid ()
2773 || getgid () != getegid ();
2774#endif
2775}
2776
2777ecb_cold
2778unsigned int
2779ev_supported_backends (void) EV_NOEXCEPT
2780{
2781 unsigned int flags = 0;
2782
2783 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2784 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2785 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2786 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2787 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2788 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2789
2790 return flags;
2791}
2792
2793ecb_cold
2794unsigned int
2795ev_recommended_backends (void) EV_NOEXCEPT
2796{
2797 unsigned int flags = ev_supported_backends ();
2798
2799#ifndef __NetBSD__
2800 /* kqueue is borked on everything but netbsd apparently */
2801 /* it usually doesn't work correctly on anything but sockets and pipes */
2802 flags &= ~EVBACKEND_KQUEUE;
2803#endif
2804#ifdef __APPLE__
2805 /* only select works correctly on that "unix-certified" platform */
2806 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2807 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2808#endif
2809#ifdef __FreeBSD__
2810 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2811#endif
2812
2813 /* TODO: linuxaio is very experimental */
2814#if !EV_RECOMMEND_LINUXAIO
2815 flags &= ~EVBACKEND_LINUXAIO;
2816#endif
2817
2818 return flags;
2819}
2820
2821ecb_cold
2822unsigned int
2823ev_embeddable_backends (void) EV_NOEXCEPT
2824{
2825 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2826
2827 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2828 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2829 flags &= ~EVBACKEND_EPOLL;
2830
2831 return flags;
2832}
2833
2834unsigned int
2835ev_backend (EV_P) EV_NOEXCEPT
2836{
2837 return backend;
2838}
2839
2840#if EV_FEATURE_API
2841unsigned int
2842ev_iteration (EV_P) EV_NOEXCEPT
2843{
2844 return loop_count;
2845}
2846
2847unsigned int
2848ev_depth (EV_P) EV_NOEXCEPT
2849{
2850 return loop_depth;
2851}
2852
2853void
2854ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2855{
2856 io_blocktime = interval;
2857}
2858
2859void
2860ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2861{
2862 timeout_blocktime = interval;
2863}
2864
2865void
2866ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2867{
2868 userdata = data;
2869}
2870
2871void *
2872ev_userdata (EV_P) EV_NOEXCEPT
2873{
2874 return userdata;
2875}
2876
2877void
2878ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2879{
2880 invoke_cb = invoke_pending_cb;
2881}
2882
2883void
2884ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2885{
2886 release_cb = release;
2887 acquire_cb = acquire;
2888}
2889#endif
2890
2891/* initialise a loop structure, must be zero-initialised */
2892noinline ecb_cold
2893static void
2894loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2895{
2896 if (!backend)
2897 {
2898 origflags = flags;
2899
2900#if EV_USE_REALTIME
2901 if (!have_realtime)
2902 {
2903 struct timespec ts;
2904
2905 if (!clock_gettime (CLOCK_REALTIME, &ts))
2906 have_realtime = 1;
2907 }
2908#endif
2909
2910#if EV_USE_MONOTONIC
2911 if (!have_monotonic)
2912 {
2913 struct timespec ts;
2914
2915 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2916 have_monotonic = 1;
2917 }
2918#endif
2919
2920 /* pid check not overridable via env */
2921#ifndef _WIN32
2922 if (flags & EVFLAG_FORKCHECK)
2923 curpid = getpid ();
2924#endif
2925
2926 if (!(flags & EVFLAG_NOENV)
2927 && !enable_secure ()
2928 && getenv ("LIBEV_FLAGS"))
2929 flags = atoi (getenv ("LIBEV_FLAGS"));
2930
2931 ev_rt_now = ev_time ();
2932 mn_now = get_clock ();
2933 now_floor = mn_now;
2934 rtmn_diff = ev_rt_now - mn_now;
2935#if EV_FEATURE_API
2936 invoke_cb = ev_invoke_pending;
2937#endif
2938
2939 io_blocktime = 0.;
2940 timeout_blocktime = 0.;
2941 backend = 0;
2942 backend_fd = -1;
2943 sig_pending = 0;
2944#if EV_ASYNC_ENABLE
2945 async_pending = 0;
2946#endif
2947 pipe_write_skipped = 0;
2948 pipe_write_wanted = 0;
2949 evpipe [0] = -1;
2950 evpipe [1] = -1;
2951#if EV_USE_INOTIFY
2952 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2953#endif
2954#if EV_USE_SIGNALFD
2955 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2956#endif
2957
2958 if (!(flags & EVBACKEND_MASK))
2959 flags |= ev_recommended_backends ();
2960
2961#if EV_USE_IOCP
2962 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2963#endif
2964#if EV_USE_PORT
2965 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2966#endif
2967#if EV_USE_KQUEUE
2968 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2969#endif
2970#if EV_USE_LINUXAIO
2971 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2972#endif
2973#if EV_USE_EPOLL
2974 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2975#endif
2976#if EV_USE_POLL
2977 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2978#endif
2979#if EV_USE_SELECT
2980 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2981#endif
2982
2983 ev_prepare_init (&pending_w, pendingcb);
2984
2985#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2986 ev_init (&pipe_w, pipecb);
2987 ev_set_priority (&pipe_w, EV_MAXPRI);
2988#endif
2989 }
2990}
2991
2992/* free up a loop structure */
2993ecb_cold
2994void
2995ev_loop_destroy (EV_P)
2996{
2997 int i;
2998
2999#if EV_MULTIPLICITY
3000 /* mimic free (0) */
3001 if (!EV_A)
3002 return;
3003#endif
3004
3005#if EV_CLEANUP_ENABLE
3006 /* queue cleanup watchers (and execute them) */
3007 if (expect_false (cleanupcnt))
3008 {
3009 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3010 EV_INVOKE_PENDING;
3011 }
3012#endif
3013
3014#if EV_CHILD_ENABLE
3015 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3016 {
3017 ev_ref (EV_A); /* child watcher */
3018 ev_signal_stop (EV_A_ &childev);
3019 }
3020#endif
3021
3022 if (ev_is_active (&pipe_w))
3023 {
3024 /*ev_ref (EV_A);*/
3025 /*ev_io_stop (EV_A_ &pipe_w);*/
3026
3027 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3028 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3029 }
3030
3031#if EV_USE_SIGNALFD
3032 if (ev_is_active (&sigfd_w))
3033 close (sigfd);
3034#endif
3035
3036#if EV_USE_INOTIFY
3037 if (fs_fd >= 0)
3038 close (fs_fd);
3039#endif
3040
3041 if (backend_fd >= 0)
3042 close (backend_fd);
3043
3044#if EV_USE_IOCP
3045 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3046#endif
3047#if EV_USE_PORT
3048 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3049#endif
3050#if EV_USE_KQUEUE
3051 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3052#endif
3053#if EV_USE_LINUXAIO
3054 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3055#endif
3056#if EV_USE_EPOLL
3057 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3058#endif
3059#if EV_USE_POLL
3060 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3061#endif
3062#if EV_USE_SELECT
3063 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3064#endif
3065
3066 for (i = NUMPRI; i--; )
3067 {
3068 array_free (pending, [i]);
3069#if EV_IDLE_ENABLE
3070 array_free (idle, [i]);
3071#endif
3072 }
3073
3074 ev_free (anfds); anfds = 0; anfdmax = 0;
3075
3076 /* have to use the microsoft-never-gets-it-right macro */
3077 array_free (rfeed, EMPTY);
3078 array_free (fdchange, EMPTY);
3079 array_free (timer, EMPTY);
3080#if EV_PERIODIC_ENABLE
3081 array_free (periodic, EMPTY);
3082#endif
3083#if EV_FORK_ENABLE
3084 array_free (fork, EMPTY);
3085#endif
3086#if EV_CLEANUP_ENABLE
3087 array_free (cleanup, EMPTY);
3088#endif
3089 array_free (prepare, EMPTY);
3090 array_free (check, EMPTY);
3091#if EV_ASYNC_ENABLE
3092 array_free (async, EMPTY);
3093#endif
3094
3095 backend = 0;
3096
3097#if EV_MULTIPLICITY
3098 if (ev_is_default_loop (EV_A))
3099#endif
3100 ev_default_loop_ptr = 0;
3101#if EV_MULTIPLICITY
3102 else
3103 ev_free (EV_A);
3104#endif
3105}
3106
3107#if EV_USE_INOTIFY
3108inline_size void infy_fork (EV_P);
3109#endif
3110
3111inline_size void
3112loop_fork (EV_P)
3113{
3114#if EV_USE_PORT
3115 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3116#endif
3117#if EV_USE_KQUEUE
3118 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3119#endif
3120#if EV_USE_LINUXAIO
3121 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3122#endif
3123#if EV_USE_EPOLL
3124 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3125#endif
3126#if EV_USE_INOTIFY
3127 infy_fork (EV_A);
3128#endif
3129
3130#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3131 if (ev_is_active (&pipe_w) && postfork != 2)
3132 {
3133 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3134
3135 ev_ref (EV_A);
3136 ev_io_stop (EV_A_ &pipe_w);
3137
3138 if (evpipe [0] >= 0)
3139 EV_WIN32_CLOSE_FD (evpipe [0]);
3140
3141 evpipe_init (EV_A);
3142 /* iterate over everything, in case we missed something before */
3143 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3144 }
3145#endif
3146
3147 postfork = 0;
3148}
3149
3150#if EV_MULTIPLICITY
3151
3152ecb_cold
3153struct ev_loop *
3154ev_loop_new (unsigned int flags) EV_NOEXCEPT
3155{
3156 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3157
3158 memset (EV_A, 0, sizeof (struct ev_loop));
3159 loop_init (EV_A_ flags);
3160
3161 if (ev_backend (EV_A))
3162 return EV_A;
3163
3164 ev_free (EV_A);
3165 return 0;
3166}
3167
3168#endif /* multiplicity */
3169
3170#if EV_VERIFY
3171noinline ecb_cold
3172static void
3173verify_watcher (EV_P_ W w)
3174{
3175 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3176
3177 if (w->pending)
3178 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3179}
3180
3181noinline ecb_cold
3182static void
3183verify_heap (EV_P_ ANHE *heap, int N)
3184{
3185 int i;
3186
3187 for (i = HEAP0; i < N + HEAP0; ++i)
3188 {
3189 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3190 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3191 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3192
3193 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3194 }
3195}
3196
3197noinline ecb_cold
3198static void
3199array_verify (EV_P_ W *ws, int cnt)
3200{
3201 while (cnt--)
3202 {
3203 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3204 verify_watcher (EV_A_ ws [cnt]);
3205 }
3206}
3207#endif
3208
3209#if EV_FEATURE_API
3210void ecb_cold
3211ev_verify (EV_P) EV_NOEXCEPT
3212{
3213#if EV_VERIFY
3214 int i;
3215 WL w, w2;
3216
3217 assert (activecnt >= -1);
3218
3219 assert (fdchangemax >= fdchangecnt);
3220 for (i = 0; i < fdchangecnt; ++i)
3221 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3222
3223 assert (anfdmax >= 0);
3224 for (i = 0; i < anfdmax; ++i)
3225 {
3226 int j = 0;
3227
3228 for (w = w2 = anfds [i].head; w; w = w->next)
3229 {
3230 verify_watcher (EV_A_ (W)w);
3231
3232 if (j++ & 1)
3233 {
3234 assert (("libev: io watcher list contains a loop", w != w2));
3235 w2 = w2->next;
3236 }
3237
3238 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3239 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3240 }
3241 }
3242
3243 assert (timermax >= timercnt);
3244 verify_heap (EV_A_ timers, timercnt);
3245
3246#if EV_PERIODIC_ENABLE
3247 assert (periodicmax >= periodiccnt);
3248 verify_heap (EV_A_ periodics, periodiccnt);
3249#endif
3250
3251 for (i = NUMPRI; i--; )
3252 {
3253 assert (pendingmax [i] >= pendingcnt [i]);
3254#if EV_IDLE_ENABLE
3255 assert (idleall >= 0);
3256 assert (idlemax [i] >= idlecnt [i]);
3257 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3258#endif
3259 }
3260
3261#if EV_FORK_ENABLE
3262 assert (forkmax >= forkcnt);
3263 array_verify (EV_A_ (W *)forks, forkcnt);
3264#endif
3265
3266#if EV_CLEANUP_ENABLE
3267 assert (cleanupmax >= cleanupcnt);
3268 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3269#endif
3270
3271#if EV_ASYNC_ENABLE
3272 assert (asyncmax >= asynccnt);
3273 array_verify (EV_A_ (W *)asyncs, asynccnt);
3274#endif
3275
3276#if EV_PREPARE_ENABLE
3277 assert (preparemax >= preparecnt);
3278 array_verify (EV_A_ (W *)prepares, preparecnt);
3279#endif
3280
3281#if EV_CHECK_ENABLE
3282 assert (checkmax >= checkcnt);
3283 array_verify (EV_A_ (W *)checks, checkcnt);
3284#endif
3285
3286# if 0
3287#if EV_CHILD_ENABLE
3288 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3289 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3290#endif
3291# endif
3292#endif
3293}
3294#endif
3295
3296#if EV_MULTIPLICITY
3297ecb_cold
3298struct ev_loop *
3299#else
3300int
3301#endif
3302ev_default_loop (unsigned int flags) EV_NOEXCEPT
3303{
3304 if (!ev_default_loop_ptr)
3305 {
3306#if EV_MULTIPLICITY
3307 EV_P = ev_default_loop_ptr = &default_loop_struct;
3308#else
3309 ev_default_loop_ptr = 1;
3310#endif
3311
3312 loop_init (EV_A_ flags);
3313
3314 if (ev_backend (EV_A))
3315 {
3316#if EV_CHILD_ENABLE
3317 ev_signal_init (&childev, childcb, SIGCHLD);
3318 ev_set_priority (&childev, EV_MAXPRI);
3319 ev_signal_start (EV_A_ &childev);
3320 ev_unref (EV_A); /* child watcher should not keep loop alive */
3321#endif
3322 }
3323 else
3324 ev_default_loop_ptr = 0;
3325 }
3326
3327 return ev_default_loop_ptr;
3328}
3329
3330void
3331ev_loop_fork (EV_P) EV_NOEXCEPT
3332{
3333 postfork = 1;
3334}
3335
3336/*****************************************************************************/
3337
3338void
3339ev_invoke (EV_P_ void *w, int revents)
3340{
3341 EV_CB_INVOKE ((W)w, revents);
3342}
3343
3344unsigned int
3345ev_pending_count (EV_P) EV_NOEXCEPT
3346{
3347 int pri;
3348 unsigned int count = 0;
3349
3350 for (pri = NUMPRI; pri--; )
3351 count += pendingcnt [pri];
3352
3353 return count;
3354}
3355
3356noinline
3357void
3358ev_invoke_pending (EV_P)
3359{
3360 pendingpri = NUMPRI;
3361
3362 do
3363 {
3364 --pendingpri;
3365
3366 /* pendingpri possibly gets modified in the inner loop */
3367 while (pendingcnt [pendingpri])
3368 {
3369 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3370
397 p->w->pending = 0; 3371 p->w->pending = 0;
398 p->w->cb (p->w, p->events); 3372 EV_CB_INVOKE (p->w, p->events);
3373 EV_FREQUENT_CHECK;
399 } 3374 }
400 } 3375 }
401 3376 while (pendingpri);
402 pendingcnt = 0;
403} 3377}
404 3378
3379#if EV_IDLE_ENABLE
3380/* make idle watchers pending. this handles the "call-idle */
3381/* only when higher priorities are idle" logic */
3382inline_size void
3383idle_reify (EV_P)
3384{
3385 if (expect_false (idleall))
3386 {
3387 int pri;
3388
3389 for (pri = NUMPRI; pri--; )
3390 {
3391 if (pendingcnt [pri])
3392 break;
3393
3394 if (idlecnt [pri])
3395 {
3396 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3397 break;
3398 }
3399 }
3400 }
3401}
3402#endif
3403
3404/* make timers pending */
3405inline_size void
3406timers_reify (EV_P)
3407{
3408 EV_FREQUENT_CHECK;
3409
3410 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3411 {
3412 do
3413 {
3414 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3415
3416 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3417
3418 /* first reschedule or stop timer */
3419 if (w->repeat)
3420 {
3421 ev_at (w) += w->repeat;
3422 if (ev_at (w) < mn_now)
3423 ev_at (w) = mn_now;
3424
3425 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3426
3427 ANHE_at_cache (timers [HEAP0]);
3428 downheap (timers, timercnt, HEAP0);
3429 }
3430 else
3431 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3432
3433 EV_FREQUENT_CHECK;
3434 feed_reverse (EV_A_ (W)w);
3435 }
3436 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3437
3438 feed_reverse_done (EV_A_ EV_TIMER);
3439 }
3440}
3441
3442#if EV_PERIODIC_ENABLE
3443
3444noinline
405static void 3445static void
406timers_reify () 3446periodic_recalc (EV_P_ ev_periodic *w)
407{ 3447{
408 while (timercnt && timers [0]->at <= now) 3448 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3449 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3450
3451 /* the above almost always errs on the low side */
3452 while (at <= ev_rt_now)
3453 {
3454 ev_tstamp nat = at + w->interval;
3455
3456 /* when resolution fails us, we use ev_rt_now */
3457 if (expect_false (nat == at))
3458 {
3459 at = ev_rt_now;
3460 break;
3461 }
3462
3463 at = nat;
409 { 3464 }
410 struct ev_timer *w = timers [0];
411 3465
3466 ev_at (w) = at;
3467}
3468
3469/* make periodics pending */
3470inline_size void
3471periodics_reify (EV_P)
3472{
3473 EV_FREQUENT_CHECK;
3474
3475 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3476 {
3477 do
3478 {
3479 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3480
3481 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3482
412 /* first reschedule or stop timer */ 3483 /* first reschedule or stop timer */
3484 if (w->reschedule_cb)
3485 {
3486 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3487
3488 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3489
3490 ANHE_at_cache (periodics [HEAP0]);
3491 downheap (periodics, periodiccnt, HEAP0);
3492 }
3493 else if (w->interval)
3494 {
3495 periodic_recalc (EV_A_ w);
3496 ANHE_at_cache (periodics [HEAP0]);
3497 downheap (periodics, periodiccnt, HEAP0);
3498 }
3499 else
3500 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3501
3502 EV_FREQUENT_CHECK;
3503 feed_reverse (EV_A_ (W)w);
3504 }
3505 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3506
3507 feed_reverse_done (EV_A_ EV_PERIODIC);
3508 }
3509}
3510
3511/* simply recalculate all periodics */
3512/* TODO: maybe ensure that at least one event happens when jumping forward? */
3513noinline ecb_cold
3514static void
3515periodics_reschedule (EV_P)
3516{
3517 int i;
3518
3519 /* adjust periodics after time jump */
3520 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3521 {
3522 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3523
3524 if (w->reschedule_cb)
3525 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3526 else if (w->interval)
3527 periodic_recalc (EV_A_ w);
3528
3529 ANHE_at_cache (periodics [i]);
3530 }
3531
3532 reheap (periodics, periodiccnt);
3533}
3534#endif
3535
3536/* adjust all timers by a given offset */
3537noinline ecb_cold
3538static void
3539timers_reschedule (EV_P_ ev_tstamp adjust)
3540{
3541 int i;
3542
3543 for (i = 0; i < timercnt; ++i)
3544 {
3545 ANHE *he = timers + i + HEAP0;
3546 ANHE_w (*he)->at += adjust;
3547 ANHE_at_cache (*he);
3548 }
3549}
3550
3551/* fetch new monotonic and realtime times from the kernel */
3552/* also detect if there was a timejump, and act accordingly */
3553inline_speed void
3554time_update (EV_P_ ev_tstamp max_block)
3555{
3556#if EV_USE_MONOTONIC
3557 if (expect_true (have_monotonic))
3558 {
3559 int i;
3560 ev_tstamp odiff = rtmn_diff;
3561
3562 mn_now = get_clock ();
3563
3564 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3565 /* interpolate in the meantime */
3566 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3567 {
3568 ev_rt_now = rtmn_diff + mn_now;
3569 return;
3570 }
3571
3572 now_floor = mn_now;
3573 ev_rt_now = ev_time ();
3574
3575 /* loop a few times, before making important decisions.
3576 * on the choice of "4": one iteration isn't enough,
3577 * in case we get preempted during the calls to
3578 * ev_time and get_clock. a second call is almost guaranteed
3579 * to succeed in that case, though. and looping a few more times
3580 * doesn't hurt either as we only do this on time-jumps or
3581 * in the unlikely event of having been preempted here.
3582 */
3583 for (i = 4; --i; )
3584 {
3585 ev_tstamp diff;
3586 rtmn_diff = ev_rt_now - mn_now;
3587
3588 diff = odiff - rtmn_diff;
3589
3590 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3591 return; /* all is well */
3592
3593 ev_rt_now = ev_time ();
3594 mn_now = get_clock ();
3595 now_floor = mn_now;
3596 }
3597
3598 /* no timer adjustment, as the monotonic clock doesn't jump */
3599 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3600# if EV_PERIODIC_ENABLE
3601 periodics_reschedule (EV_A);
3602# endif
3603 }
3604 else
3605#endif
3606 {
3607 ev_rt_now = ev_time ();
3608
3609 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3610 {
3611 /* adjust timers. this is easy, as the offset is the same for all of them */
3612 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3613#if EV_PERIODIC_ENABLE
3614 periodics_reschedule (EV_A);
3615#endif
3616 }
3617
3618 mn_now = ev_rt_now;
3619 }
3620}
3621
3622int
3623ev_run (EV_P_ int flags)
3624{
3625#if EV_FEATURE_API
3626 ++loop_depth;
3627#endif
3628
3629 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3630
3631 loop_done = EVBREAK_CANCEL;
3632
3633 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3634
3635 do
3636 {
3637#if EV_VERIFY >= 2
3638 ev_verify (EV_A);
3639#endif
3640
3641#ifndef _WIN32
3642 if (expect_false (curpid)) /* penalise the forking check even more */
3643 if (expect_false (getpid () != curpid))
3644 {
3645 curpid = getpid ();
3646 postfork = 1;
3647 }
3648#endif
3649
3650#if EV_FORK_ENABLE
3651 /* we might have forked, so queue fork handlers */
3652 if (expect_false (postfork))
3653 if (forkcnt)
3654 {
3655 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3656 EV_INVOKE_PENDING;
3657 }
3658#endif
3659
3660#if EV_PREPARE_ENABLE
3661 /* queue prepare watchers (and execute them) */
3662 if (expect_false (preparecnt))
3663 {
3664 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3665 EV_INVOKE_PENDING;
3666 }
3667#endif
3668
3669 if (expect_false (loop_done))
3670 break;
3671
3672 /* we might have forked, so reify kernel state if necessary */
3673 if (expect_false (postfork))
3674 loop_fork (EV_A);
3675
3676 /* update fd-related kernel structures */
3677 fd_reify (EV_A);
3678
3679 /* calculate blocking time */
3680 {
3681 ev_tstamp waittime = 0.;
3682 ev_tstamp sleeptime = 0.;
3683
3684 /* remember old timestamp for io_blocktime calculation */
3685 ev_tstamp prev_mn_now = mn_now;
3686
3687 /* update time to cancel out callback processing overhead */
3688 time_update (EV_A_ 1e100);
3689
3690 /* from now on, we want a pipe-wake-up */
3691 pipe_write_wanted = 1;
3692
3693 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3694
3695 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3696 {
3697 waittime = MAX_BLOCKTIME;
3698
3699 if (timercnt)
3700 {
3701 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3702 if (waittime > to) waittime = to;
3703 }
3704
3705#if EV_PERIODIC_ENABLE
3706 if (periodiccnt)
3707 {
3708 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3709 if (waittime > to) waittime = to;
3710 }
3711#endif
3712
3713 /* don't let timeouts decrease the waittime below timeout_blocktime */
3714 if (expect_false (waittime < timeout_blocktime))
3715 waittime = timeout_blocktime;
3716
3717 /* at this point, we NEED to wait, so we have to ensure */
3718 /* to pass a minimum nonzero value to the backend */
3719 if (expect_false (waittime < backend_mintime))
3720 waittime = backend_mintime;
3721
3722 /* extra check because io_blocktime is commonly 0 */
3723 if (expect_false (io_blocktime))
3724 {
3725 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3726
3727 if (sleeptime > waittime - backend_mintime)
3728 sleeptime = waittime - backend_mintime;
3729
3730 if (expect_true (sleeptime > 0.))
3731 {
3732 ev_sleep (sleeptime);
3733 waittime -= sleeptime;
3734 }
3735 }
3736 }
3737
3738#if EV_FEATURE_API
3739 ++loop_count;
3740#endif
3741 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3742 backend_poll (EV_A_ waittime);
3743 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3744
3745 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3746
3747 ECB_MEMORY_FENCE_ACQUIRE;
3748 if (pipe_write_skipped)
3749 {
3750 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3751 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3752 }
3753
3754
3755 /* update ev_rt_now, do magic */
3756 time_update (EV_A_ waittime + sleeptime);
3757 }
3758
3759 /* queue pending timers and reschedule them */
3760 timers_reify (EV_A); /* relative timers called last */
3761#if EV_PERIODIC_ENABLE
3762 periodics_reify (EV_A); /* absolute timers called first */
3763#endif
3764
3765#if EV_IDLE_ENABLE
3766 /* queue idle watchers unless other events are pending */
3767 idle_reify (EV_A);
3768#endif
3769
3770#if EV_CHECK_ENABLE
3771 /* queue check watchers, to be executed first */
3772 if (expect_false (checkcnt))
3773 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3774#endif
3775
3776 EV_INVOKE_PENDING;
3777 }
3778 while (expect_true (
3779 activecnt
3780 && !loop_done
3781 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3782 ));
3783
3784 if (loop_done == EVBREAK_ONE)
3785 loop_done = EVBREAK_CANCEL;
3786
3787#if EV_FEATURE_API
3788 --loop_depth;
3789#endif
3790
3791 return activecnt;
3792}
3793
3794void
3795ev_break (EV_P_ int how) EV_NOEXCEPT
3796{
3797 loop_done = how;
3798}
3799
3800void
3801ev_ref (EV_P) EV_NOEXCEPT
3802{
3803 ++activecnt;
3804}
3805
3806void
3807ev_unref (EV_P) EV_NOEXCEPT
3808{
3809 --activecnt;
3810}
3811
3812void
3813ev_now_update (EV_P) EV_NOEXCEPT
3814{
3815 time_update (EV_A_ 1e100);
3816}
3817
3818void
3819ev_suspend (EV_P) EV_NOEXCEPT
3820{
3821 ev_now_update (EV_A);
3822}
3823
3824void
3825ev_resume (EV_P) EV_NOEXCEPT
3826{
3827 ev_tstamp mn_prev = mn_now;
3828
3829 ev_now_update (EV_A);
3830 timers_reschedule (EV_A_ mn_now - mn_prev);
3831#if EV_PERIODIC_ENABLE
3832 /* TODO: really do this? */
3833 periodics_reschedule (EV_A);
3834#endif
3835}
3836
3837/*****************************************************************************/
3838/* singly-linked list management, used when the expected list length is short */
3839
3840inline_size void
3841wlist_add (WL *head, WL elem)
3842{
3843 elem->next = *head;
3844 *head = elem;
3845}
3846
3847inline_size void
3848wlist_del (WL *head, WL elem)
3849{
3850 while (*head)
3851 {
3852 if (expect_true (*head == elem))
3853 {
3854 *head = elem->next;
3855 break;
3856 }
3857
3858 head = &(*head)->next;
3859 }
3860}
3861
3862/* internal, faster, version of ev_clear_pending */
3863inline_speed void
3864clear_pending (EV_P_ W w)
3865{
3866 if (w->pending)
3867 {
3868 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3869 w->pending = 0;
3870 }
3871}
3872
3873int
3874ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3875{
3876 W w_ = (W)w;
3877 int pending = w_->pending;
3878
3879 if (expect_true (pending))
3880 {
3881 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3882 p->w = (W)&pending_w;
3883 w_->pending = 0;
3884 return p->events;
3885 }
3886 else
3887 return 0;
3888}
3889
3890inline_size void
3891pri_adjust (EV_P_ W w)
3892{
3893 int pri = ev_priority (w);
3894 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3895 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3896 ev_set_priority (w, pri);
3897}
3898
3899inline_speed void
3900ev_start (EV_P_ W w, int active)
3901{
3902 pri_adjust (EV_A_ w);
3903 w->active = active;
3904 ev_ref (EV_A);
3905}
3906
3907inline_size void
3908ev_stop (EV_P_ W w)
3909{
3910 ev_unref (EV_A);
3911 w->active = 0;
3912}
3913
3914/*****************************************************************************/
3915
3916noinline
3917void
3918ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3919{
3920 int fd = w->fd;
3921
3922 if (expect_false (ev_is_active (w)))
3923 return;
3924
3925 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3926 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3927
3928 EV_FREQUENT_CHECK;
3929
3930 ev_start (EV_A_ (W)w, 1);
3931 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3932 wlist_add (&anfds[fd].head, (WL)w);
3933
3934 /* common bug, apparently */
3935 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3936
3937 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3938 w->events &= ~EV__IOFDSET;
3939
3940 EV_FREQUENT_CHECK;
3941}
3942
3943noinline
3944void
3945ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3946{
3947 clear_pending (EV_A_ (W)w);
3948 if (expect_false (!ev_is_active (w)))
3949 return;
3950
3951 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3952
3953 EV_FREQUENT_CHECK;
3954
3955 wlist_del (&anfds[w->fd].head, (WL)w);
3956 ev_stop (EV_A_ (W)w);
3957
3958 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3959
3960 EV_FREQUENT_CHECK;
3961}
3962
3963noinline
3964void
3965ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3966{
3967 if (expect_false (ev_is_active (w)))
3968 return;
3969
3970 ev_at (w) += mn_now;
3971
3972 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3973
3974 EV_FREQUENT_CHECK;
3975
3976 ++timercnt;
3977 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3978 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3979 ANHE_w (timers [ev_active (w)]) = (WT)w;
3980 ANHE_at_cache (timers [ev_active (w)]);
3981 upheap (timers, ev_active (w));
3982
3983 EV_FREQUENT_CHECK;
3984
3985 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3986}
3987
3988noinline
3989void
3990ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3991{
3992 clear_pending (EV_A_ (W)w);
3993 if (expect_false (!ev_is_active (w)))
3994 return;
3995
3996 EV_FREQUENT_CHECK;
3997
3998 {
3999 int active = ev_active (w);
4000
4001 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4002
4003 --timercnt;
4004
4005 if (expect_true (active < timercnt + HEAP0))
4006 {
4007 timers [active] = timers [timercnt + HEAP0];
4008 adjustheap (timers, timercnt, active);
4009 }
4010 }
4011
4012 ev_at (w) -= mn_now;
4013
4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
4017}
4018
4019noinline
4020void
4021ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4022{
4023 EV_FREQUENT_CHECK;
4024
4025 clear_pending (EV_A_ (W)w);
4026
4027 if (ev_is_active (w))
4028 {
413 if (w->repeat) 4029 if (w->repeat)
414 { 4030 {
415 w->at = now + w->repeat; 4031 ev_at (w) = mn_now + w->repeat;
416 assert (("timer timeout in the past, negative repeat?", w->at > now)); 4032 ANHE_at_cache (timers [ev_active (w)]);
417 downheap ((WT *)timers, timercnt, 0); 4033 adjustheap (timers, timercnt, ev_active (w));
418 } 4034 }
419 else 4035 else
420 evtimer_stop (w); /* nonrepeating: stop timer */ 4036 ev_timer_stop (EV_A_ w);
421
422 event ((W)w, EV_TIMEOUT);
423 }
424}
425
426static void
427periodics_reify ()
428{
429 while (periodiccnt && periodics [0]->at <= ev_now)
430 { 4037 }
431 struct ev_periodic *w = periodics [0]; 4038 else if (w->repeat)
4039 {
4040 ev_at (w) = w->repeat;
4041 ev_timer_start (EV_A_ w);
4042 }
432 4043
433 /* first reschedule or stop timer */ 4044 EV_FREQUENT_CHECK;
4045}
4046
4047ev_tstamp
4048ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4049{
4050 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4051}
4052
4053#if EV_PERIODIC_ENABLE
4054noinline
4055void
4056ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4057{
4058 if (expect_false (ev_is_active (w)))
4059 return;
4060
4061 if (w->reschedule_cb)
4062 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
434 if (w->interval) 4063 else if (w->interval)
4064 {
4065 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4066 periodic_recalc (EV_A_ w);
4067 }
4068 else
4069 ev_at (w) = w->offset;
4070
4071 EV_FREQUENT_CHECK;
4072
4073 ++periodiccnt;
4074 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4075 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4076 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4077 ANHE_at_cache (periodics [ev_active (w)]);
4078 upheap (periodics, ev_active (w));
4079
4080 EV_FREQUENT_CHECK;
4081
4082 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4083}
4084
4085noinline
4086void
4087ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4088{
4089 clear_pending (EV_A_ (W)w);
4090 if (expect_false (!ev_is_active (w)))
4091 return;
4092
4093 EV_FREQUENT_CHECK;
4094
4095 {
4096 int active = ev_active (w);
4097
4098 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4099
4100 --periodiccnt;
4101
4102 if (expect_true (active < periodiccnt + HEAP0))
4103 {
4104 periodics [active] = periodics [periodiccnt + HEAP0];
4105 adjustheap (periodics, periodiccnt, active);
4106 }
4107 }
4108
4109 ev_stop (EV_A_ (W)w);
4110
4111 EV_FREQUENT_CHECK;
4112}
4113
4114noinline
4115void
4116ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4117{
4118 /* TODO: use adjustheap and recalculation */
4119 ev_periodic_stop (EV_A_ w);
4120 ev_periodic_start (EV_A_ w);
4121}
4122#endif
4123
4124#ifndef SA_RESTART
4125# define SA_RESTART 0
4126#endif
4127
4128#if EV_SIGNAL_ENABLE
4129
4130noinline
4131void
4132ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4133{
4134 if (expect_false (ev_is_active (w)))
4135 return;
4136
4137 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4138
4139#if EV_MULTIPLICITY
4140 assert (("libev: a signal must not be attached to two different loops",
4141 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4142
4143 signals [w->signum - 1].loop = EV_A;
4144 ECB_MEMORY_FENCE_RELEASE;
4145#endif
4146
4147 EV_FREQUENT_CHECK;
4148
4149#if EV_USE_SIGNALFD
4150 if (sigfd == -2)
4151 {
4152 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4153 if (sigfd < 0 && errno == EINVAL)
4154 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4155
4156 if (sigfd >= 0)
435 { 4157 {
436 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 4158 fd_intern (sigfd); /* doing it twice will not hurt */
437 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 4159
438 downheap ((WT *)periodics, periodiccnt, 0); 4160 sigemptyset (&sigfd_set);
4161
4162 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4163 ev_set_priority (&sigfd_w, EV_MAXPRI);
4164 ev_io_start (EV_A_ &sigfd_w);
4165 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4166 }
4167 }
4168
4169 if (sigfd >= 0)
4170 {
4171 /* TODO: check .head */
4172 sigaddset (&sigfd_set, w->signum);
4173 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4174
4175 signalfd (sigfd, &sigfd_set, 0);
4176 }
4177#endif
4178
4179 ev_start (EV_A_ (W)w, 1);
4180 wlist_add (&signals [w->signum - 1].head, (WL)w);
4181
4182 if (!((WL)w)->next)
4183# if EV_USE_SIGNALFD
4184 if (sigfd < 0) /*TODO*/
4185# endif
4186 {
4187# ifdef _WIN32
4188 evpipe_init (EV_A);
4189
4190 signal (w->signum, ev_sighandler);
4191# else
4192 struct sigaction sa;
4193
4194 evpipe_init (EV_A);
4195
4196 sa.sa_handler = ev_sighandler;
4197 sigfillset (&sa.sa_mask);
4198 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4199 sigaction (w->signum, &sa, 0);
4200
4201 if (origflags & EVFLAG_NOSIGMASK)
4202 {
4203 sigemptyset (&sa.sa_mask);
4204 sigaddset (&sa.sa_mask, w->signum);
4205 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4206 }
4207#endif
4208 }
4209
4210 EV_FREQUENT_CHECK;
4211}
4212
4213noinline
4214void
4215ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4216{
4217 clear_pending (EV_A_ (W)w);
4218 if (expect_false (!ev_is_active (w)))
4219 return;
4220
4221 EV_FREQUENT_CHECK;
4222
4223 wlist_del (&signals [w->signum - 1].head, (WL)w);
4224 ev_stop (EV_A_ (W)w);
4225
4226 if (!signals [w->signum - 1].head)
4227 {
4228#if EV_MULTIPLICITY
4229 signals [w->signum - 1].loop = 0; /* unattach from signal */
4230#endif
4231#if EV_USE_SIGNALFD
4232 if (sigfd >= 0)
4233 {
4234 sigset_t ss;
4235
4236 sigemptyset (&ss);
4237 sigaddset (&ss, w->signum);
4238 sigdelset (&sigfd_set, w->signum);
4239
4240 signalfd (sigfd, &sigfd_set, 0);
4241 sigprocmask (SIG_UNBLOCK, &ss, 0);
439 } 4242 }
440 else 4243 else
441 evperiodic_stop (w); /* nonrepeating: stop timer */ 4244#endif
442 4245 signal (w->signum, SIG_DFL);
443 event ((W)w, EV_TIMEOUT);
444 } 4246 }
445}
446 4247
4248 EV_FREQUENT_CHECK;
4249}
4250
4251#endif
4252
4253#if EV_CHILD_ENABLE
4254
4255void
4256ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4257{
4258#if EV_MULTIPLICITY
4259 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4260#endif
4261 if (expect_false (ev_is_active (w)))
4262 return;
4263
4264 EV_FREQUENT_CHECK;
4265
4266 ev_start (EV_A_ (W)w, 1);
4267 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4268
4269 EV_FREQUENT_CHECK;
4270}
4271
4272void
4273ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4274{
4275 clear_pending (EV_A_ (W)w);
4276 if (expect_false (!ev_is_active (w)))
4277 return;
4278
4279 EV_FREQUENT_CHECK;
4280
4281 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4282 ev_stop (EV_A_ (W)w);
4283
4284 EV_FREQUENT_CHECK;
4285}
4286
4287#endif
4288
4289#if EV_STAT_ENABLE
4290
4291# ifdef _WIN32
4292# undef lstat
4293# define lstat(a,b) _stati64 (a,b)
4294# endif
4295
4296#define DEF_STAT_INTERVAL 5.0074891
4297#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4298#define MIN_STAT_INTERVAL 0.1074891
4299
4300noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4301
4302#if EV_USE_INOTIFY
4303
4304/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4305# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4306
4307noinline
447static void 4308static void
448periodics_reschedule (ev_tstamp diff) 4309infy_add (EV_P_ ev_stat *w)
449{ 4310{
450 int i; 4311 w->wd = inotify_add_watch (fs_fd, w->path,
4312 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4313 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4314 | IN_DONT_FOLLOW | IN_MASK_ADD);
451 4315
452 /* adjust periodics after time jump */ 4316 if (w->wd >= 0)
453 for (i = 0; i < periodiccnt; ++i) 4317 {
4318 struct statfs sfs;
4319
4320 /* now local changes will be tracked by inotify, but remote changes won't */
4321 /* unless the filesystem is known to be local, we therefore still poll */
4322 /* also do poll on <2.6.25, but with normal frequency */
4323
4324 if (!fs_2625)
4325 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4326 else if (!statfs (w->path, &sfs)
4327 && (sfs.f_type == 0x1373 /* devfs */
4328 || sfs.f_type == 0x4006 /* fat */
4329 || sfs.f_type == 0x4d44 /* msdos */
4330 || sfs.f_type == 0xEF53 /* ext2/3 */
4331 || sfs.f_type == 0x72b6 /* jffs2 */
4332 || sfs.f_type == 0x858458f6 /* ramfs */
4333 || sfs.f_type == 0x5346544e /* ntfs */
4334 || sfs.f_type == 0x3153464a /* jfs */
4335 || sfs.f_type == 0x9123683e /* btrfs */
4336 || sfs.f_type == 0x52654973 /* reiser3 */
4337 || sfs.f_type == 0x01021994 /* tmpfs */
4338 || sfs.f_type == 0x58465342 /* xfs */))
4339 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4340 else
4341 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
454 { 4342 }
455 struct ev_periodic *w = periodics [i]; 4343 else
4344 {
4345 /* can't use inotify, continue to stat */
4346 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
456 4347
457 if (w->interval) 4348 /* if path is not there, monitor some parent directory for speedup hints */
4349 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4350 /* but an efficiency issue only */
4351 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
458 { 4352 {
459 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 4353 char path [4096];
4354 strcpy (path, w->path);
460 4355
461 if (fabs (diff) >= 1e-4) 4356 do
462 { 4357 {
463 evperiodic_stop (w); 4358 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
464 evperiodic_start (w); 4359 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
465 4360
466 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 4361 char *pend = strrchr (path, '/');
4362
4363 if (!pend || pend == path)
4364 break;
4365
4366 *pend = 0;
4367 w->wd = inotify_add_watch (fs_fd, path, mask);
4368 }
4369 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4370 }
4371 }
4372
4373 if (w->wd >= 0)
4374 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4375
4376 /* now re-arm timer, if required */
4377 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4378 ev_timer_again (EV_A_ &w->timer);
4379 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4380}
4381
4382noinline
4383static void
4384infy_del (EV_P_ ev_stat *w)
4385{
4386 int slot;
4387 int wd = w->wd;
4388
4389 if (wd < 0)
4390 return;
4391
4392 w->wd = -2;
4393 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4394 wlist_del (&fs_hash [slot].head, (WL)w);
4395
4396 /* remove this watcher, if others are watching it, they will rearm */
4397 inotify_rm_watch (fs_fd, wd);
4398}
4399
4400noinline
4401static void
4402infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4403{
4404 if (slot < 0)
4405 /* overflow, need to check for all hash slots */
4406 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4407 infy_wd (EV_A_ slot, wd, ev);
4408 else
4409 {
4410 WL w_;
4411
4412 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4413 {
4414 ev_stat *w = (ev_stat *)w_;
4415 w_ = w_->next; /* lets us remove this watcher and all before it */
4416
4417 if (w->wd == wd || wd == -1)
4418 {
4419 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4420 {
4421 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4422 w->wd = -1;
4423 infy_add (EV_A_ w); /* re-add, no matter what */
4424 }
4425
4426 stat_timer_cb (EV_A_ &w->timer, 0);
467 } 4427 }
468 } 4428 }
469 } 4429 }
470} 4430}
471 4431
472static void 4432static void
473time_update () 4433infy_cb (EV_P_ ev_io *w, int revents)
474{ 4434{
4435 char buf [EV_INOTIFY_BUFSIZE];
475 int i; 4436 int ofs;
4437 int len = read (fs_fd, buf, sizeof (buf));
476 4438
477 ev_now = ev_time (); 4439 for (ofs = 0; ofs < len; )
478 4440 {
479 if (have_monotonic) 4441 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4442 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4443 ofs += sizeof (struct inotify_event) + ev->len;
480 { 4444 }
481 ev_tstamp odiff = diff; 4445}
482 4446
483 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 4447inline_size ecb_cold
4448void
4449ev_check_2625 (EV_P)
4450{
4451 /* kernels < 2.6.25 are borked
4452 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4453 */
4454 if (ev_linux_version () < 0x020619)
4455 return;
4456
4457 fs_2625 = 1;
4458}
4459
4460inline_size int
4461infy_newfd (void)
4462{
4463#if defined IN_CLOEXEC && defined IN_NONBLOCK
4464 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4465 if (fd >= 0)
4466 return fd;
4467#endif
4468 return inotify_init ();
4469}
4470
4471inline_size void
4472infy_init (EV_P)
4473{
4474 if (fs_fd != -2)
4475 return;
4476
4477 fs_fd = -1;
4478
4479 ev_check_2625 (EV_A);
4480
4481 fs_fd = infy_newfd ();
4482
4483 if (fs_fd >= 0)
4484 {
4485 fd_intern (fs_fd);
4486 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4487 ev_set_priority (&fs_w, EV_MAXPRI);
4488 ev_io_start (EV_A_ &fs_w);
4489 ev_unref (EV_A);
4490 }
4491}
4492
4493inline_size void
4494infy_fork (EV_P)
4495{
4496 int slot;
4497
4498 if (fs_fd < 0)
4499 return;
4500
4501 ev_ref (EV_A);
4502 ev_io_stop (EV_A_ &fs_w);
4503 close (fs_fd);
4504 fs_fd = infy_newfd ();
4505
4506 if (fs_fd >= 0)
4507 {
4508 fd_intern (fs_fd);
4509 ev_io_set (&fs_w, fs_fd, EV_READ);
4510 ev_io_start (EV_A_ &fs_w);
4511 ev_unref (EV_A);
4512 }
4513
4514 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4515 {
4516 WL w_ = fs_hash [slot].head;
4517 fs_hash [slot].head = 0;
4518
4519 while (w_)
484 { 4520 {
485 now = get_clock (); 4521 ev_stat *w = (ev_stat *)w_;
486 diff = ev_now - now; 4522 w_ = w_->next; /* lets us add this watcher */
487 4523
488 if (fabs (odiff - diff) < MIN_TIMEJUMP) 4524 w->wd = -1;
489 return; /* all is well */
490 4525
491 ev_now = ev_time (); 4526 if (fs_fd >= 0)
4527 infy_add (EV_A_ w); /* re-add, no matter what */
4528 else
4529 {
4530 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4531 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4532 ev_timer_again (EV_A_ &w->timer);
4533 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4534 }
492 } 4535 }
493
494 periodics_reschedule (diff - odiff);
495 /* no timer adjustment, as the monotonic clock doesn't jump */
496 } 4536 }
4537}
4538
4539#endif
4540
4541#ifdef _WIN32
4542# define EV_LSTAT(p,b) _stati64 (p, b)
4543#else
4544# define EV_LSTAT(p,b) lstat (p, b)
4545#endif
4546
4547void
4548ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4549{
4550 if (lstat (w->path, &w->attr) < 0)
4551 w->attr.st_nlink = 0;
4552 else if (!w->attr.st_nlink)
4553 w->attr.st_nlink = 1;
4554}
4555
4556noinline
4557static void
4558stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4559{
4560 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4561
4562 ev_statdata prev = w->attr;
4563 ev_stat_stat (EV_A_ w);
4564
4565 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4566 if (
4567 prev.st_dev != w->attr.st_dev
4568 || prev.st_ino != w->attr.st_ino
4569 || prev.st_mode != w->attr.st_mode
4570 || prev.st_nlink != w->attr.st_nlink
4571 || prev.st_uid != w->attr.st_uid
4572 || prev.st_gid != w->attr.st_gid
4573 || prev.st_rdev != w->attr.st_rdev
4574 || prev.st_size != w->attr.st_size
4575 || prev.st_atime != w->attr.st_atime
4576 || prev.st_mtime != w->attr.st_mtime
4577 || prev.st_ctime != w->attr.st_ctime
4578 ) {
4579 /* we only update w->prev on actual differences */
4580 /* in case we test more often than invoke the callback, */
4581 /* to ensure that prev is always different to attr */
4582 w->prev = prev;
4583
4584 #if EV_USE_INOTIFY
4585 if (fs_fd >= 0)
4586 {
4587 infy_del (EV_A_ w);
4588 infy_add (EV_A_ w);
4589 ev_stat_stat (EV_A_ w); /* avoid race... */
4590 }
4591 #endif
4592
4593 ev_feed_event (EV_A_ w, EV_STAT);
4594 }
4595}
4596
4597void
4598ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4599{
4600 if (expect_false (ev_is_active (w)))
4601 return;
4602
4603 ev_stat_stat (EV_A_ w);
4604
4605 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4606 w->interval = MIN_STAT_INTERVAL;
4607
4608 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4609 ev_set_priority (&w->timer, ev_priority (w));
4610
4611#if EV_USE_INOTIFY
4612 infy_init (EV_A);
4613
4614 if (fs_fd >= 0)
4615 infy_add (EV_A_ w);
497 else 4616 else
4617#endif
4618 {
4619 ev_timer_again (EV_A_ &w->timer);
4620 ev_unref (EV_A);
4621 }
4622
4623 ev_start (EV_A_ (W)w, 1);
4624
4625 EV_FREQUENT_CHECK;
4626}
4627
4628void
4629ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4630{
4631 clear_pending (EV_A_ (W)w);
4632 if (expect_false (!ev_is_active (w)))
4633 return;
4634
4635 EV_FREQUENT_CHECK;
4636
4637#if EV_USE_INOTIFY
4638 infy_del (EV_A_ w);
4639#endif
4640
4641 if (ev_is_active (&w->timer))
4642 {
4643 ev_ref (EV_A);
4644 ev_timer_stop (EV_A_ &w->timer);
4645 }
4646
4647 ev_stop (EV_A_ (W)w);
4648
4649 EV_FREQUENT_CHECK;
4650}
4651#endif
4652
4653#if EV_IDLE_ENABLE
4654void
4655ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4656{
4657 if (expect_false (ev_is_active (w)))
4658 return;
4659
4660 pri_adjust (EV_A_ (W)w);
4661
4662 EV_FREQUENT_CHECK;
4663
4664 {
4665 int active = ++idlecnt [ABSPRI (w)];
4666
4667 ++idleall;
4668 ev_start (EV_A_ (W)w, active);
4669
4670 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4671 idles [ABSPRI (w)][active - 1] = w;
4672 }
4673
4674 EV_FREQUENT_CHECK;
4675}
4676
4677void
4678ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4679{
4680 clear_pending (EV_A_ (W)w);
4681 if (expect_false (!ev_is_active (w)))
4682 return;
4683
4684 EV_FREQUENT_CHECK;
4685
4686 {
4687 int active = ev_active (w);
4688
4689 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4690 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4691
4692 ev_stop (EV_A_ (W)w);
4693 --idleall;
4694 }
4695
4696 EV_FREQUENT_CHECK;
4697}
4698#endif
4699
4700#if EV_PREPARE_ENABLE
4701void
4702ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4703{
4704 if (expect_false (ev_is_active (w)))
4705 return;
4706
4707 EV_FREQUENT_CHECK;
4708
4709 ev_start (EV_A_ (W)w, ++preparecnt);
4710 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4711 prepares [preparecnt - 1] = w;
4712
4713 EV_FREQUENT_CHECK;
4714}
4715
4716void
4717ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4718{
4719 clear_pending (EV_A_ (W)w);
4720 if (expect_false (!ev_is_active (w)))
4721 return;
4722
4723 EV_FREQUENT_CHECK;
4724
4725 {
4726 int active = ev_active (w);
4727
4728 prepares [active - 1] = prepares [--preparecnt];
4729 ev_active (prepares [active - 1]) = active;
4730 }
4731
4732 ev_stop (EV_A_ (W)w);
4733
4734 EV_FREQUENT_CHECK;
4735}
4736#endif
4737
4738#if EV_CHECK_ENABLE
4739void
4740ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4741{
4742 if (expect_false (ev_is_active (w)))
4743 return;
4744
4745 EV_FREQUENT_CHECK;
4746
4747 ev_start (EV_A_ (W)w, ++checkcnt);
4748 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4749 checks [checkcnt - 1] = w;
4750
4751 EV_FREQUENT_CHECK;
4752}
4753
4754void
4755ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4756{
4757 clear_pending (EV_A_ (W)w);
4758 if (expect_false (!ev_is_active (w)))
4759 return;
4760
4761 EV_FREQUENT_CHECK;
4762
4763 {
4764 int active = ev_active (w);
4765
4766 checks [active - 1] = checks [--checkcnt];
4767 ev_active (checks [active - 1]) = active;
4768 }
4769
4770 ev_stop (EV_A_ (W)w);
4771
4772 EV_FREQUENT_CHECK;
4773}
4774#endif
4775
4776#if EV_EMBED_ENABLE
4777noinline
4778void
4779ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4780{
4781 ev_run (w->other, EVRUN_NOWAIT);
4782}
4783
4784static void
4785embed_io_cb (EV_P_ ev_io *io, int revents)
4786{
4787 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4788
4789 if (ev_cb (w))
4790 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4791 else
4792 ev_run (w->other, EVRUN_NOWAIT);
4793}
4794
4795static void
4796embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4797{
4798 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4799
4800 {
4801 EV_P = w->other;
4802
4803 while (fdchangecnt)
498 { 4804 {
499 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 4805 fd_reify (EV_A);
4806 ev_run (EV_A_ EVRUN_NOWAIT);
4807 }
4808 }
4809}
4810
4811static void
4812embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4813{
4814 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4815
4816 ev_embed_stop (EV_A_ w);
4817
4818 {
4819 EV_P = w->other;
4820
4821 ev_loop_fork (EV_A);
4822 ev_run (EV_A_ EVRUN_NOWAIT);
4823 }
4824
4825 ev_embed_start (EV_A_ w);
4826}
4827
4828#if 0
4829static void
4830embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4831{
4832 ev_idle_stop (EV_A_ idle);
4833}
4834#endif
4835
4836void
4837ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4838{
4839 if (expect_false (ev_is_active (w)))
4840 return;
4841
4842 {
4843 EV_P = w->other;
4844 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4846 }
4847
4848 EV_FREQUENT_CHECK;
4849
4850 ev_set_priority (&w->io, ev_priority (w));
4851 ev_io_start (EV_A_ &w->io);
4852
4853 ev_prepare_init (&w->prepare, embed_prepare_cb);
4854 ev_set_priority (&w->prepare, EV_MINPRI);
4855 ev_prepare_start (EV_A_ &w->prepare);
4856
4857 ev_fork_init (&w->fork, embed_fork_cb);
4858 ev_fork_start (EV_A_ &w->fork);
4859
4860 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4861
4862 ev_start (EV_A_ (W)w, 1);
4863
4864 EV_FREQUENT_CHECK;
4865}
4866
4867void
4868ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4869{
4870 clear_pending (EV_A_ (W)w);
4871 if (expect_false (!ev_is_active (w)))
4872 return;
4873
4874 EV_FREQUENT_CHECK;
4875
4876 ev_io_stop (EV_A_ &w->io);
4877 ev_prepare_stop (EV_A_ &w->prepare);
4878 ev_fork_stop (EV_A_ &w->fork);
4879
4880 ev_stop (EV_A_ (W)w);
4881
4882 EV_FREQUENT_CHECK;
4883}
4884#endif
4885
4886#if EV_FORK_ENABLE
4887void
4888ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4889{
4890 if (expect_false (ev_is_active (w)))
4891 return;
4892
4893 EV_FREQUENT_CHECK;
4894
4895 ev_start (EV_A_ (W)w, ++forkcnt);
4896 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4897 forks [forkcnt - 1] = w;
4898
4899 EV_FREQUENT_CHECK;
4900}
4901
4902void
4903ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4904{
4905 clear_pending (EV_A_ (W)w);
4906 if (expect_false (!ev_is_active (w)))
4907 return;
4908
4909 EV_FREQUENT_CHECK;
4910
4911 {
4912 int active = ev_active (w);
4913
4914 forks [active - 1] = forks [--forkcnt];
4915 ev_active (forks [active - 1]) = active;
4916 }
4917
4918 ev_stop (EV_A_ (W)w);
4919
4920 EV_FREQUENT_CHECK;
4921}
4922#endif
4923
4924#if EV_CLEANUP_ENABLE
4925void
4926ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4927{
4928 if (expect_false (ev_is_active (w)))
4929 return;
4930
4931 EV_FREQUENT_CHECK;
4932
4933 ev_start (EV_A_ (W)w, ++cleanupcnt);
4934 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4935 cleanups [cleanupcnt - 1] = w;
4936
4937 /* cleanup watchers should never keep a refcount on the loop */
4938 ev_unref (EV_A);
4939 EV_FREQUENT_CHECK;
4940}
4941
4942void
4943ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4944{
4945 clear_pending (EV_A_ (W)w);
4946 if (expect_false (!ev_is_active (w)))
4947 return;
4948
4949 EV_FREQUENT_CHECK;
4950 ev_ref (EV_A);
4951
4952 {
4953 int active = ev_active (w);
4954
4955 cleanups [active - 1] = cleanups [--cleanupcnt];
4956 ev_active (cleanups [active - 1]) = active;
4957 }
4958
4959 ev_stop (EV_A_ (W)w);
4960
4961 EV_FREQUENT_CHECK;
4962}
4963#endif
4964
4965#if EV_ASYNC_ENABLE
4966void
4967ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4968{
4969 if (expect_false (ev_is_active (w)))
4970 return;
4971
4972 w->sent = 0;
4973
4974 evpipe_init (EV_A);
4975
4976 EV_FREQUENT_CHECK;
4977
4978 ev_start (EV_A_ (W)w, ++asynccnt);
4979 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4980 asyncs [asynccnt - 1] = w;
4981
4982 EV_FREQUENT_CHECK;
4983}
4984
4985void
4986ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4987{
4988 clear_pending (EV_A_ (W)w);
4989 if (expect_false (!ev_is_active (w)))
4990 return;
4991
4992 EV_FREQUENT_CHECK;
4993
4994 {
4995 int active = ev_active (w);
4996
4997 asyncs [active - 1] = asyncs [--asynccnt];
4998 ev_active (asyncs [active - 1]) = active;
4999 }
5000
5001 ev_stop (EV_A_ (W)w);
5002
5003 EV_FREQUENT_CHECK;
5004}
5005
5006void
5007ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5008{
5009 w->sent = 1;
5010 evpipe_write (EV_A_ &async_pending);
5011}
5012#endif
5013
5014/*****************************************************************************/
5015
5016struct ev_once
5017{
5018 ev_io io;
5019 ev_timer to;
5020 void (*cb)(int revents, void *arg);
5021 void *arg;
5022};
5023
5024static void
5025once_cb (EV_P_ struct ev_once *once, int revents)
5026{
5027 void (*cb)(int revents, void *arg) = once->cb;
5028 void *arg = once->arg;
5029
5030 ev_io_stop (EV_A_ &once->io);
5031 ev_timer_stop (EV_A_ &once->to);
5032 ev_free (once);
5033
5034 cb (revents, arg);
5035}
5036
5037static void
5038once_cb_io (EV_P_ ev_io *w, int revents)
5039{
5040 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5041
5042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5043}
5044
5045static void
5046once_cb_to (EV_P_ ev_timer *w, int revents)
5047{
5048 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5049
5050 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5051}
5052
5053void
5054ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5055{
5056 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5057
5058 once->cb = cb;
5059 once->arg = arg;
5060
5061 ev_init (&once->io, once_cb_io);
5062 if (fd >= 0)
5063 {
5064 ev_io_set (&once->io, fd, events);
5065 ev_io_start (EV_A_ &once->io);
5066 }
5067
5068 ev_init (&once->to, once_cb_to);
5069 if (timeout >= 0.)
5070 {
5071 ev_timer_set (&once->to, timeout, 0.);
5072 ev_timer_start (EV_A_ &once->to);
5073 }
5074}
5075
5076/*****************************************************************************/
5077
5078#if EV_WALK_ENABLE
5079ecb_cold
5080void
5081ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5082{
5083 int i, j;
5084 ev_watcher_list *wl, *wn;
5085
5086 if (types & (EV_IO | EV_EMBED))
5087 for (i = 0; i < anfdmax; ++i)
5088 for (wl = anfds [i].head; wl; )
500 { 5089 {
501 periodics_reschedule (ev_now - now); 5090 wn = wl->next;
502 5091
503 /* adjust timers. this is easy, as the offset is the same for all */ 5092#if EV_EMBED_ENABLE
504 for (i = 0; i < timercnt; ++i) 5093 if (ev_cb ((ev_io *)wl) == embed_io_cb)
505 timers [i]->at += diff; 5094 {
5095 if (types & EV_EMBED)
5096 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5097 }
5098 else
5099#endif
5100#if EV_USE_INOTIFY
5101 if (ev_cb ((ev_io *)wl) == infy_cb)
5102 ;
5103 else
5104#endif
5105 if ((ev_io *)wl != &pipe_w)
5106 if (types & EV_IO)
5107 cb (EV_A_ EV_IO, wl);
5108
5109 wl = wn;
506 } 5110 }
507 5111
508 now = ev_now; 5112 if (types & (EV_TIMER | EV_STAT))
509 } 5113 for (i = timercnt + HEAP0; i-- > HEAP0; )
510} 5114#if EV_STAT_ENABLE
511 5115 /*TODO: timer is not always active*/
512int ev_loop_done; 5116 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
513 5117 {
514void ev_loop (int flags) 5118 if (types & EV_STAT)
515{ 5119 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
516 double block; 5120 }
517 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
518
519 if (checkcnt)
520 {
521 queue_events ((W *)checks, checkcnt, EV_CHECK);
522 call_pending ();
523 }
524
525 do
526 {
527 /* update fd-related kernel structures */
528 fd_reify ();
529
530 /* calculate blocking time */
531
532 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */
533 ev_now = ev_time ();
534
535 if (flags & EVLOOP_NONBLOCK || idlecnt)
536 block = 0.;
537 else 5121 else
5122#endif
5123 if (types & EV_TIMER)
5124 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5125
5126#if EV_PERIODIC_ENABLE
5127 if (types & EV_PERIODIC)
5128 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5129 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5130#endif
5131
5132#if EV_IDLE_ENABLE
5133 if (types & EV_IDLE)
5134 for (j = NUMPRI; j--; )
5135 for (i = idlecnt [j]; i--; )
5136 cb (EV_A_ EV_IDLE, idles [j][i]);
5137#endif
5138
5139#if EV_FORK_ENABLE
5140 if (types & EV_FORK)
5141 for (i = forkcnt; i--; )
5142 if (ev_cb (forks [i]) != embed_fork_cb)
5143 cb (EV_A_ EV_FORK, forks [i]);
5144#endif
5145
5146#if EV_ASYNC_ENABLE
5147 if (types & EV_ASYNC)
5148 for (i = asynccnt; i--; )
5149 cb (EV_A_ EV_ASYNC, asyncs [i]);
5150#endif
5151
5152#if EV_PREPARE_ENABLE
5153 if (types & EV_PREPARE)
5154 for (i = preparecnt; i--; )
5155# if EV_EMBED_ENABLE
5156 if (ev_cb (prepares [i]) != embed_prepare_cb)
5157# endif
5158 cb (EV_A_ EV_PREPARE, prepares [i]);
5159#endif
5160
5161#if EV_CHECK_ENABLE
5162 if (types & EV_CHECK)
5163 for (i = checkcnt; i--; )
5164 cb (EV_A_ EV_CHECK, checks [i]);
5165#endif
5166
5167#if EV_SIGNAL_ENABLE
5168 if (types & EV_SIGNAL)
5169 for (i = 0; i < EV_NSIG - 1; ++i)
5170 for (wl = signals [i].head; wl; )
538 { 5171 {
539 block = MAX_BLOCKTIME; 5172 wn = wl->next;
540 5173 cb (EV_A_ EV_SIGNAL, wl);
541 if (timercnt) 5174 wl = wn;
542 {
543 ev_tstamp to = timers [0]->at - get_clock () + method_fudge;
544 if (block > to) block = to;
545 }
546
547 if (periodiccnt)
548 {
549 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
550 if (block > to) block = to;
551 }
552
553 if (block < 0.) block = 0.;
554 } 5175 }
5176#endif
555 5177
556 method_poll (block); 5178#if EV_CHILD_ENABLE
557 5179 if (types & EV_CHILD)
558 /* update ev_now, do magic */ 5180 for (i = (EV_PID_HASHSIZE); i--; )
559 time_update (); 5181 for (wl = childs [i]; wl; )
560
561 /* queue pending timers and reschedule them */
562 periodics_reify (); /* absolute timers first */
563 timers_reify (); /* relative timers second */
564
565 /* queue idle watchers unless io or timers are pending */
566 if (!pendingcnt)
567 queue_events ((W *)idles, idlecnt, EV_IDLE);
568
569 /* queue check and possibly idle watchers */
570 queue_events ((W *)checks, checkcnt, EV_CHECK);
571
572 call_pending ();
573 }
574 while (!ev_loop_done);
575
576 if (ev_loop_done != 2)
577 ev_loop_done = 0;
578}
579
580/*****************************************************************************/
581
582static void
583wlist_add (WL *head, WL elem)
584{
585 elem->next = *head;
586 *head = elem;
587}
588
589static void
590wlist_del (WL *head, WL elem)
591{
592 while (*head)
593 {
594 if (*head == elem)
595 { 5182 {
596 *head = elem->next; 5183 wn = wl->next;
597 return; 5184 cb (EV_A_ EV_CHILD, wl);
5185 wl = wn;
598 } 5186 }
599
600 head = &(*head)->next;
601 }
602}
603
604static void
605ev_start (W w, int active)
606{
607 w->pending = 0;
608 w->active = active;
609}
610
611static void
612ev_stop (W w)
613{
614 if (w->pending)
615 pendings [w->pending - 1].w = 0;
616
617 w->active = 0;
618}
619
620/*****************************************************************************/
621
622void
623evio_start (struct ev_io *w)
624{
625 if (ev_is_active (w))
626 return;
627
628 int fd = w->fd;
629
630 ev_start ((W)w, 1);
631 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
632 wlist_add ((WL *)&anfds[fd].head, (WL)w);
633
634 ++fdchangecnt;
635 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
636 fdchanges [fdchangecnt - 1] = fd;
637}
638
639void
640evio_stop (struct ev_io *w)
641{
642 if (!ev_is_active (w))
643 return;
644
645 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
646 ev_stop ((W)w);
647
648 ++fdchangecnt;
649 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
650 fdchanges [fdchangecnt - 1] = w->fd;
651}
652
653
654void
655evtimer_start (struct ev_timer *w)
656{
657 if (ev_is_active (w))
658 return;
659
660 w->at += now;
661
662 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.));
663
664 ev_start ((W)w, ++timercnt);
665 array_needsize (timers, timermax, timercnt, );
666 timers [timercnt - 1] = w;
667 upheap ((WT *)timers, timercnt - 1);
668}
669
670void
671evtimer_stop (struct ev_timer *w)
672{
673 if (!ev_is_active (w))
674 return;
675
676 if (w->active < timercnt--)
677 {
678 timers [w->active - 1] = timers [timercnt];
679 downheap ((WT *)timers, timercnt, w->active - 1);
680 }
681
682 ev_stop ((W)w);
683}
684
685void
686evperiodic_start (struct ev_periodic *w)
687{
688 if (ev_is_active (w))
689 return;
690
691 assert (("periodic interval value less than zero not allowed", w->interval >= 0.));
692
693 /* this formula differs from the one in periodic_reify because we do not always round up */
694 if (w->interval)
695 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
696
697 ev_start ((W)w, ++periodiccnt);
698 array_needsize (periodics, periodicmax, periodiccnt, );
699 periodics [periodiccnt - 1] = w;
700 upheap ((WT *)periodics, periodiccnt - 1);
701}
702
703void
704evperiodic_stop (struct ev_periodic *w)
705{
706 if (!ev_is_active (w))
707 return;
708
709 if (w->active < periodiccnt--)
710 {
711 periodics [w->active - 1] = periodics [periodiccnt];
712 downheap ((WT *)periodics, periodiccnt, w->active - 1);
713 }
714
715 ev_stop ((W)w);
716}
717
718void
719evsignal_start (struct ev_signal *w)
720{
721 if (ev_is_active (w))
722 return;
723
724 ev_start ((W)w, 1);
725 array_needsize (signals, signalmax, w->signum, signals_init);
726 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
727
728 if (!w->next)
729 {
730 struct sigaction sa;
731 sa.sa_handler = sighandler;
732 sigfillset (&sa.sa_mask);
733 sa.sa_flags = 0;
734 sigaction (w->signum, &sa, 0);
735 }
736}
737
738void
739evsignal_stop (struct ev_signal *w)
740{
741 if (!ev_is_active (w))
742 return;
743
744 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
745 ev_stop ((W)w);
746
747 if (!signals [w->signum - 1].head)
748 signal (w->signum, SIG_DFL);
749}
750
751void evidle_start (struct ev_idle *w)
752{
753 if (ev_is_active (w))
754 return;
755
756 ev_start ((W)w, ++idlecnt);
757 array_needsize (idles, idlemax, idlecnt, );
758 idles [idlecnt - 1] = w;
759}
760
761void evidle_stop (struct ev_idle *w)
762{
763 idles [w->active - 1] = idles [--idlecnt];
764 ev_stop ((W)w);
765}
766
767void evcheck_start (struct ev_check *w)
768{
769 if (ev_is_active (w))
770 return;
771
772 ev_start ((W)w, ++checkcnt);
773 array_needsize (checks, checkmax, checkcnt, );
774 checks [checkcnt - 1] = w;
775}
776
777void evcheck_stop (struct ev_check *w)
778{
779 checks [w->active - 1] = checks [--checkcnt];
780 ev_stop ((W)w);
781}
782
783/*****************************************************************************/
784
785#if 0
786
787struct ev_io wio;
788
789static void
790sin_cb (struct ev_io *w, int revents)
791{
792 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
793}
794
795static void
796ocb (struct ev_timer *w, int revents)
797{
798 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
799 evtimer_stop (w);
800 evtimer_start (w);
801}
802
803static void
804scb (struct ev_signal *w, int revents)
805{
806 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
807 evio_stop (&wio);
808 evio_start (&wio);
809}
810
811static void
812gcb (struct ev_signal *w, int revents)
813{
814 fprintf (stderr, "generic %x\n", revents);
815
816}
817
818int main (void)
819{
820 ev_init (0);
821
822 evio_init (&wio, sin_cb, 0, EV_READ);
823 evio_start (&wio);
824
825 struct ev_timer t[10000];
826
827#if 0
828 int i;
829 for (i = 0; i < 10000; ++i)
830 {
831 struct ev_timer *w = t + i;
832 evw_init (w, ocb, i);
833 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
834 evtimer_start (w);
835 if (drand48 () < 0.5)
836 evtimer_stop (w);
837 }
838#endif 5187#endif
839 5188/* EV_STAT 0x00001000 /* stat data changed */
840 struct ev_timer t1; 5189/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
841 evtimer_init (&t1, ocb, 5, 10);
842 evtimer_start (&t1);
843
844 struct ev_signal sig;
845 evsignal_init (&sig, scb, SIGQUIT);
846 evsignal_start (&sig);
847
848 struct ev_check cw;
849 evcheck_init (&cw, gcb);
850 evcheck_start (&cw);
851
852 struct ev_idle iw;
853 evidle_init (&iw, gcb);
854 evidle_start (&iw);
855
856 ev_loop (0);
857
858 return 0;
859} 5190}
860
861#endif 5191#endif
862 5192
5193#if EV_MULTIPLICITY
5194 #include "ev_wrap.h"
5195#endif
863 5196
864
865

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines