ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.13 by root, Wed Oct 31 10:50:05 2007 UTC vs.
Revision 1.521 by root, Sat Dec 28 07:47:35 2019 UTC

1#include <math.h> 1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_LINUX_AIO_ABI_H
121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
127# endif
128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
130# ifndef EV_USE_IOURING
131# define EV_USE_IOURING EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
136# endif
137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
155
156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
2#include <stdlib.h> 204#include <stdlib.h>
3#include <unistd.h> 205#include <string.h>
4#include <fcntl.h> 206#include <fcntl.h>
5#include <signal.h> 207#include <stddef.h>
6 208
7#include <stdio.h> 209#include <stdio.h>
8 210
9#include <assert.h> 211#include <assert.h>
10#include <errno.h> 212#include <errno.h>
11#include <sys/time.h> 213#include <sys/types.h>
12#include <time.h> 214#include <time.h>
215#include <limits.h>
13 216
14#define HAVE_EPOLL 1 217#include <signal.h>
15 218
16#ifndef HAVE_MONOTONIC 219#ifdef EV_H
17# ifdef CLOCK_MONOTONIC 220# include EV_H
18# define HAVE_MONOTONIC 1 221#else
222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
234#endif
235
236#ifndef _WIN32
237# include <sys/time.h>
238# include <sys/wait.h>
239# include <unistd.h>
240#else
241# include <io.h>
242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
244# include <windows.h>
245# ifndef EV_SELECT_IS_WINSOCKET
246# define EV_SELECT_IS_WINSOCKET 1
19# endif 247# endif
248# undef EV_AVOID_STDIO
249#endif
250
251/* this block tries to deduce configuration from header-defined symbols and defaults */
252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
20#endif 287# endif
288#endif
21 289
22#ifndef HAVE_SELECT 290#if !(_POSIX_TIMERS > 0)
23# define HAVE_SELECT 1 291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
24#endif 293# endif
25 294# ifndef EV_USE_REALTIME
26#ifndef HAVE_EPOLL 295# define EV_USE_REALTIME 0
27# define HAVE_EPOLL 0
28#endif 296# endif
297#endif
29 298
30#ifndef HAVE_REALTIME 299#ifndef EV_USE_MONOTONIC
31# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
303# define EV_USE_MONOTONIC 0
32#endif 304# endif
305#endif
33 306
34#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 307#ifndef EV_USE_REALTIME
35#define MAX_BLOCKTIME 60. 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
309#endif
36 310
37#include "ev.h" 311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
315# define EV_USE_NANOSLEEP 0
316# endif
317#endif
38 318
39typedef struct ev_watcher *W; 319#ifndef EV_USE_SELECT
40typedef struct ev_watcher_list *WL; 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
41typedef struct ev_watcher_time *WT; 321#endif
42 322
43static ev_tstamp now, diff; /* monotonic clock */ 323#ifndef EV_USE_POLL
44ev_tstamp ev_now; 324# ifdef _WIN32
45int ev_method; 325# define EV_USE_POLL 0
326# else
327# define EV_USE_POLL EV_FEATURE_BACKENDS
328# endif
329#endif
46 330
47static int have_monotonic; /* runtime */ 331#ifndef EV_USE_EPOLL
332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
334# else
335# define EV_USE_EPOLL 0
336# endif
337#endif
48 338
49static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 339#ifndef EV_USE_KQUEUE
50static void (*method_modify)(int fd, int oev, int nev); 340# define EV_USE_KQUEUE 0
51static void (*method_poll)(ev_tstamp timeout); 341#endif
342
343#ifndef EV_USE_PORT
344# define EV_USE_PORT 0
345#endif
346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
363#ifndef EV_USE_INOTIFY
364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365# define EV_USE_INOTIFY EV_FEATURE_OS
366# else
367# define EV_USE_INOTIFY 0
368# endif
369#endif
370
371#ifndef EV_PID_HASHSIZE
372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
373#endif
374
375#ifndef EV_INOTIFY_HASHSIZE
376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377#endif
378
379#ifndef EV_USE_EVENTFD
380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381# define EV_USE_EVENTFD EV_FEATURE_OS
382# else
383# define EV_USE_EVENTFD 0
384# endif
385#endif
386
387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
413#ifndef EV_USE_4HEAP
414# define EV_USE_4HEAP EV_FEATURE_DATA
415#endif
416
417#ifndef EV_HEAP_CACHE_AT
418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
450#endif
451
452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
453
454#ifndef CLOCK_MONOTONIC
455# undef EV_USE_MONOTONIC
456# define EV_USE_MONOTONIC 0
457#endif
458
459#ifndef CLOCK_REALTIME
460# undef EV_USE_REALTIME
461# define EV_USE_REALTIME 0
462#endif
463
464#if !EV_STAT_ENABLE
465# undef EV_USE_INOTIFY
466# define EV_USE_INOTIFY 0
467#endif
468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
476
477#if !EV_USE_NANOSLEEP
478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
480# include <sys/select.h>
481# endif
482#endif
483
484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
516# endif
517#endif
518
519#if EV_USE_EVENTFD
520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
521# include <stdint.h>
522# ifndef EFD_NONBLOCK
523# define EFD_NONBLOCK O_NONBLOCK
524# endif
525# ifndef EFD_CLOEXEC
526# ifdef O_CLOEXEC
527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
52 566
53/*****************************************************************************/ 567/*****************************************************************************/
54 568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
571#else
572# define EV_FREQUENT_CHECK do { } while (0)
573#endif
574
575/*
576 * This is used to work around floating point rounding problems.
577 * This value is good at least till the year 4000.
578 */
579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
581
582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
584
585/* find a portable timestamp that is "always" in the future but fits into time_t.
586 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
587 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
588#define EV_TSTAMP_HUGE \
589 (sizeof (time_t) >= 8 ? 10000000000000. \
590 : 0 < (time_t)4294967295 ? 4294967295. \
591 : 2147483647.) \
592
593#ifndef EV_TS_CONST
594# define EV_TS_CONST(nv) nv
595# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
596# define EV_TS_FROM_USEC(us) us * 1e-6
597# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
598# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
599# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
600# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
601#endif
602
603/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604/* ECB.H BEGIN */
605/*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
645#ifndef ECB_H
646#define ECB_H
647
648/* 16 bits major, 16 bits minor */
649#define ECB_VERSION 0x00010006
650
651#ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
658 #if __GNUC__
659 typedef signed long long int64_t;
660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
664 #endif
665 #ifdef _WIN64
666 #define ECB_PTRSIZE 8
667 typedef uint64_t uintptr_t;
668 typedef int64_t intptr_t;
669 #else
670 #define ECB_PTRSIZE 4
671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
673 #endif
674#else
675 #include <inttypes.h>
676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
677 #define ECB_PTRSIZE 8
678 #else
679 #define ECB_PTRSIZE 4
680 #endif
681#endif
682
683#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
684#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
685
686/* work around x32 idiocy by defining proper macros */
687#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
692 #endif
693#endif
694
695/* many compilers define _GNUC_ to some versions but then only implement
696 * what their idiot authors think are the "more important" extensions,
697 * causing enormous grief in return for some better fake benchmark numbers.
698 * or so.
699 * we try to detect these and simply assume they are not gcc - if they have
700 * an issue with that they should have done it right in the first place.
701 */
702#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
704#else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706#endif
707
708#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
709
710#if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712#else
713 #define ECB_CLANG_BUILTIN(x) 0
714#endif
715
716#if __clang__ && defined __has_extension
717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718#else
719 #define ECB_CLANG_EXTENSION(x) 0
720#endif
721
722#define ECB_CPP (__cplusplus+0)
723#define ECB_CPP11 (__cplusplus >= 201103L)
724#define ECB_CPP14 (__cplusplus >= 201402L)
725#define ECB_CPP17 (__cplusplus >= 201703L)
726
727#if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730#else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733#endif
734
735#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739#if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743#else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747#endif
748
749/*****************************************************************************/
750
751/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754#if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756#endif
757
758#if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760#endif
761
762/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763#if __xlC__ && ECB_CPP
764 #include <builtins.h>
765#endif
766
767#if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769#endif
770
771#ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825#endif
826
827#ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867#endif
868
869#ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878#endif
879
880#ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896#endif
897
898#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900#endif
901
902#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904#endif
905
906#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908#endif
909
910/*****************************************************************************/
911
912#if ECB_CPP
913 #define ecb_inline static inline
914#elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916#elif ECB_C99
917 #define ecb_inline static inline
918#else
919 #define ecb_inline static
920#endif
921
922#if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924#elif ECB_C99
925 #define ecb_restrict restrict
926#else
927 #define ecb_restrict
928#endif
929
930typedef int ecb_bool;
931
932#define ECB_CONCAT_(a, b) a ## b
933#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934#define ECB_STRINGIFY_(a) # a
935#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938#define ecb_function_ ecb_inline
939
940#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942#else
943 #define ecb_attribute(attrlist)
944#endif
945
946#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948#else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954#endif
955
956#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958#else
959 #define ecb_expect(expr,value) (expr)
960#endif
961
962#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964#else
965 #define ecb_prefetch(addr,rw,locality)
966#endif
967
968/* no emulation for ecb_decltype */
969#if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975#endif
976
977#if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979#else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981#endif
982
983#if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985#elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987#else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989#endif
990
991#if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993#else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995#endif
996
997#define ecb_unused ecb_attribute ((__unused__))
998#define ecb_const ecb_attribute ((__const__))
999#define ecb_pure ecb_attribute ((__pure__))
1000
1001#if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004#elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006#elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009#else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011#endif
1012
1013#if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017#else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021#endif
1022
1023/* put around conditional expressions if you are very sure that the */
1024/* expression is mostly true or mostly false. note that these return */
1025/* booleans, not the expression. */
1026#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028/* for compatibility to the rest of the world */
1029#define ecb_likely(expr) ecb_expect_true (expr)
1030#define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032/* count trailing zero bits and count # of one bits */
1033#if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044#else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053#else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058#if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064#else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070#endif
1071
1072 return r;
1073#endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084#else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087#endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109#else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119#endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129#else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135#endif
1136 }
1137#endif
1138
1139ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146{
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149}
1150
1151ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153{
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160}
1161
1162ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164{
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172}
1173
1174/* popcount64 is only available on 64 bit cpus as gcc builtin */
1175/* so for this version we are lazy */
1176ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177ecb_function_ ecb_const int
1178ecb_popcount64 (uint64_t x)
1179{
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181}
1182
1183ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209#elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214#else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235#endif
1236
1237#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239#else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243#endif
1244
1245/* try to tell the compiler that some condition is definitely true */
1246#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249ecb_inline ecb_const uint32_t
1250ecb_byteorder_helper (void)
1251{
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266#else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273#endif
1274}
1275
1276ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281#if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283#else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285#endif
1286
1287#if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298#else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301#endif
1302
1303#if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310#else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312#endif
1313
1314ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315ecb_function_ ecb_const uint32_t
1316ecb_binary16_to_binary32 (uint32_t x)
1317{
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344}
1345
1346ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347ecb_function_ ecb_const uint16_t
1348ecb_binary32_to_binary16 (uint32_t x)
1349{
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408}
1409
1410/*******************************************************************************/
1411/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413/* basically, everything uses "ieee pure-endian" floating point numbers */
1414/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415#if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432#else
1433 #define ECB_STDFP 0
1434#endif
1435
1436#ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617#endif
1618
1619#endif
1620
1621/* ECB.H END */
1622
1623#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624/* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631# error "memory fences not defined for your architecture, please report"
1632#endif
1633
1634#ifndef ECB_MEMORY_FENCE
1635# define ECB_MEMORY_FENCE do { } while (0)
1636# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638#endif
1639
1640#define inline_size ecb_inline
1641
1642#if EV_FEATURE_CODE
1643# define inline_speed ecb_inline
1644#else
1645# define inline_speed ecb_noinline static
1646#endif
1647
1648/*****************************************************************************/
1649/* raw syscall wrappers */
1650
1651#if EV_NEED_SYSCALL
1652
1653#include <sys/syscall.h>
1654
1655/*
1656 * define some syscall wrappers for common architectures
1657 * this is mostly for nice looks during debugging, not performance.
1658 * our syscalls return < 0, not == -1, on error. which is good
1659 * enough for linux aio.
1660 * TODO: arm is also common nowadays, maybe even mips and x86
1661 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1662 */
1663#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1664 /* the costly errno access probably kills this for size optimisation */
1665
1666 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1667 ({ \
1668 long res; \
1669 register unsigned long r6 __asm__ ("r9" ); \
1670 register unsigned long r5 __asm__ ("r8" ); \
1671 register unsigned long r4 __asm__ ("r10"); \
1672 register unsigned long r3 __asm__ ("rdx"); \
1673 register unsigned long r2 __asm__ ("rsi"); \
1674 register unsigned long r1 __asm__ ("rdi"); \
1675 if (narg >= 6) r6 = (unsigned long)(arg6); \
1676 if (narg >= 5) r5 = (unsigned long)(arg5); \
1677 if (narg >= 4) r4 = (unsigned long)(arg4); \
1678 if (narg >= 3) r3 = (unsigned long)(arg3); \
1679 if (narg >= 2) r2 = (unsigned long)(arg2); \
1680 if (narg >= 1) r1 = (unsigned long)(arg1); \
1681 __asm__ __volatile__ ( \
1682 "syscall\n\t" \
1683 : "=a" (res) \
1684 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1685 : "cc", "r11", "cx", "memory"); \
1686 errno = -res; \
1687 res; \
1688 })
1689
1690#endif
1691
1692#ifdef ev_syscall
1693 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1694 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1695 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1696 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1697 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1698 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1699 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1700#else
1701 #define ev_syscall0(nr) syscall (nr)
1702 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1703 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1704 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1705 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1706 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1707 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1708#endif
1709
1710#endif
1711
1712/*****************************************************************************/
1713
1714#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1715
1716#if EV_MINPRI == EV_MAXPRI
1717# define ABSPRI(w) (((W)w), 0)
1718#else
1719# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1720#endif
1721
1722#define EMPTY /* required for microsofts broken pseudo-c compiler */
1723
1724typedef ev_watcher *W;
1725typedef ev_watcher_list *WL;
1726typedef ev_watcher_time *WT;
1727
1728#define ev_active(w) ((W)(w))->active
1729#define ev_at(w) ((WT)(w))->at
1730
1731#if EV_USE_REALTIME
1732/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1733/* giving it a reasonably high chance of working on typical architectures */
1734static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1735#endif
1736
1737#if EV_USE_MONOTONIC
1738static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1739#endif
1740
1741#ifndef EV_FD_TO_WIN32_HANDLE
1742# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1743#endif
1744#ifndef EV_WIN32_HANDLE_TO_FD
1745# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1746#endif
1747#ifndef EV_WIN32_CLOSE_FD
1748# define EV_WIN32_CLOSE_FD(fd) close (fd)
1749#endif
1750
1751#ifdef _WIN32
1752# include "ev_win32.c"
1753#endif
1754
1755/*****************************************************************************/
1756
1757#if EV_USE_LINUXAIO
1758# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1759#endif
1760
1761/* define a suitable floor function (only used by periodics atm) */
1762
1763#if EV_USE_FLOOR
1764# include <math.h>
1765# define ev_floor(v) floor (v)
1766#else
1767
1768#include <float.h>
1769
1770/* a floor() replacement function, should be independent of ev_tstamp type */
1771ecb_noinline
1772static ev_tstamp
1773ev_floor (ev_tstamp v)
1774{
1775 /* the choice of shift factor is not terribly important */
1776#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1777 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1778#else
1779 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1780#endif
1781
1782 /* special treatment for negative arguments */
1783 if (ecb_expect_false (v < 0.))
1784 {
1785 ev_tstamp f = -ev_floor (-v);
1786
1787 return f - (f == v ? 0 : 1);
1788 }
1789
1790 /* argument too large for an unsigned long? then reduce it */
1791 if (ecb_expect_false (v >= shift))
1792 {
1793 ev_tstamp f;
1794
1795 if (v == v - 1.)
1796 return v; /* very large numbers are assumed to be integer */
1797
1798 f = shift * ev_floor (v * (1. / shift));
1799 return f + ev_floor (v - f);
1800 }
1801
1802 /* fits into an unsigned long */
1803 return (unsigned long)v;
1804}
1805
1806#endif
1807
1808/*****************************************************************************/
1809
1810#ifdef __linux
1811# include <sys/utsname.h>
1812#endif
1813
1814ecb_noinline ecb_cold
1815static unsigned int
1816ev_linux_version (void)
1817{
1818#ifdef __linux
1819 unsigned int v = 0;
1820 struct utsname buf;
1821 int i;
1822 char *p = buf.release;
1823
1824 if (uname (&buf))
1825 return 0;
1826
1827 for (i = 3+1; --i; )
1828 {
1829 unsigned int c = 0;
1830
1831 for (;;)
1832 {
1833 if (*p >= '0' && *p <= '9')
1834 c = c * 10 + *p++ - '0';
1835 else
1836 {
1837 p += *p == '.';
1838 break;
1839 }
1840 }
1841
1842 v = (v << 8) | c;
1843 }
1844
1845 return v;
1846#else
1847 return 0;
1848#endif
1849}
1850
1851/*****************************************************************************/
1852
1853#if EV_AVOID_STDIO
1854ecb_noinline ecb_cold
1855static void
1856ev_printerr (const char *msg)
1857{
1858 write (STDERR_FILENO, msg, strlen (msg));
1859}
1860#endif
1861
1862static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1863
1864ecb_cold
1865void
1866ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1867{
1868 syserr_cb = cb;
1869}
1870
1871ecb_noinline ecb_cold
1872static void
1873ev_syserr (const char *msg)
1874{
1875 if (!msg)
1876 msg = "(libev) system error";
1877
1878 if (syserr_cb)
1879 syserr_cb (msg);
1880 else
1881 {
1882#if EV_AVOID_STDIO
1883 ev_printerr (msg);
1884 ev_printerr (": ");
1885 ev_printerr (strerror (errno));
1886 ev_printerr ("\n");
1887#else
1888 perror (msg);
1889#endif
1890 abort ();
1891 }
1892}
1893
1894static void *
1895ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1896{
1897 /* some systems, notably openbsd and darwin, fail to properly
1898 * implement realloc (x, 0) (as required by both ansi c-89 and
1899 * the single unix specification, so work around them here.
1900 * recently, also (at least) fedora and debian started breaking it,
1901 * despite documenting it otherwise.
1902 */
1903
1904 if (size)
1905 return realloc (ptr, size);
1906
1907 free (ptr);
1908 return 0;
1909}
1910
1911static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1912
1913ecb_cold
1914void
1915ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1916{
1917 alloc = cb;
1918}
1919
1920inline_speed void *
1921ev_realloc (void *ptr, long size)
1922{
1923 ptr = alloc (ptr, size);
1924
1925 if (!ptr && size)
1926 {
1927#if EV_AVOID_STDIO
1928 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1929#else
1930 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1931#endif
1932 abort ();
1933 }
1934
1935 return ptr;
1936}
1937
1938#define ev_malloc(size) ev_realloc (0, (size))
1939#define ev_free(ptr) ev_realloc ((ptr), 0)
1940
1941/*****************************************************************************/
1942
1943/* set in reify when reification needed */
1944#define EV_ANFD_REIFY 1
1945
1946/* file descriptor info structure */
1947typedef struct
1948{
1949 WL head;
1950 unsigned char events; /* the events watched for */
1951 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1952 unsigned char emask; /* some backends store the actual kernel mask in here */
1953 unsigned char eflags; /* flags field for use by backends */
1954#if EV_USE_EPOLL
1955 unsigned int egen; /* generation counter to counter epoll bugs */
1956#endif
1957#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1958 SOCKET handle;
1959#endif
1960#if EV_USE_IOCP
1961 OVERLAPPED or, ow;
1962#endif
1963} ANFD;
1964
1965/* stores the pending event set for a given watcher */
1966typedef struct
1967{
1968 W w;
1969 int events; /* the pending event set for the given watcher */
1970} ANPENDING;
1971
1972#if EV_USE_INOTIFY
1973/* hash table entry per inotify-id */
1974typedef struct
1975{
1976 WL head;
1977} ANFS;
1978#endif
1979
1980/* Heap Entry */
1981#if EV_HEAP_CACHE_AT
1982 /* a heap element */
1983 typedef struct {
1984 ev_tstamp at;
1985 WT w;
1986 } ANHE;
1987
1988 #define ANHE_w(he) (he).w /* access watcher, read-write */
1989 #define ANHE_at(he) (he).at /* access cached at, read-only */
1990 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1991#else
1992 /* a heap element */
1993 typedef WT ANHE;
1994
1995 #define ANHE_w(he) (he)
1996 #define ANHE_at(he) (he)->at
1997 #define ANHE_at_cache(he)
1998#endif
1999
2000#if EV_MULTIPLICITY
2001
2002 struct ev_loop
2003 {
2004 ev_tstamp ev_rt_now;
2005 #define ev_rt_now ((loop)->ev_rt_now)
2006 #define VAR(name,decl) decl;
2007 #include "ev_vars.h"
2008 #undef VAR
2009 };
2010 #include "ev_wrap.h"
2011
2012 static struct ev_loop default_loop_struct;
2013 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
2014
2015#else
2016
2017 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
2018 #define VAR(name,decl) static decl;
2019 #include "ev_vars.h"
2020 #undef VAR
2021
2022 static int ev_default_loop_ptr;
2023
2024#endif
2025
2026#if EV_FEATURE_API
2027# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2028# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2029# define EV_INVOKE_PENDING invoke_cb (EV_A)
2030#else
2031# define EV_RELEASE_CB (void)0
2032# define EV_ACQUIRE_CB (void)0
2033# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2034#endif
2035
2036#define EVBREAK_RECURSE 0x80
2037
2038/*****************************************************************************/
2039
2040#ifndef EV_HAVE_EV_TIME
55ev_tstamp 2041ev_tstamp
56ev_time (void) 2042ev_time (void) EV_NOEXCEPT
57{ 2043{
58#if HAVE_REALTIME 2044#if EV_USE_REALTIME
2045 if (ecb_expect_true (have_realtime))
2046 {
59 struct timespec ts; 2047 struct timespec ts;
60 clock_gettime (CLOCK_REALTIME, &ts); 2048 clock_gettime (CLOCK_REALTIME, &ts);
61 return ts.tv_sec + ts.tv_nsec * 1e-9; 2049 return EV_TS_GET (ts);
62#else 2050 }
2051#endif
2052
2053 {
63 struct timeval tv; 2054 struct timeval tv;
64 gettimeofday (&tv, 0); 2055 gettimeofday (&tv, 0);
65 return tv.tv_sec + tv.tv_usec * 1e-6; 2056 return EV_TV_GET (tv);
66#endif 2057 }
67} 2058}
2059#endif
68 2060
69static ev_tstamp 2061inline_size ev_tstamp
70get_clock (void) 2062get_clock (void)
71{ 2063{
72#if HAVE_MONOTONIC 2064#if EV_USE_MONOTONIC
73 if (have_monotonic) 2065 if (ecb_expect_true (have_monotonic))
74 { 2066 {
75 struct timespec ts; 2067 struct timespec ts;
76 clock_gettime (CLOCK_MONOTONIC, &ts); 2068 clock_gettime (CLOCK_MONOTONIC, &ts);
77 return ts.tv_sec + ts.tv_nsec * 1e-9; 2069 return EV_TS_GET (ts);
78 } 2070 }
79#endif 2071#endif
80 2072
81 return ev_time (); 2073 return ev_time ();
82} 2074}
83 2075
84#define array_needsize(base,cur,cnt,init) \ 2076#if EV_MULTIPLICITY
85 if ((cnt) > cur) \ 2077ev_tstamp
86 { \ 2078ev_now (EV_P) EV_NOEXCEPT
87 int newcnt = cur ? cur << 1 : 16; \ 2079{
88 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 2080 return ev_rt_now;
89 base = realloc (base, sizeof (*base) * (newcnt)); \ 2081}
90 init (base + cur, newcnt - cur); \ 2082#endif
91 cur = newcnt; \ 2083
2084void
2085ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2086{
2087 if (delay > EV_TS_CONST (0.))
92 } 2088 {
2089#if EV_USE_NANOSLEEP
2090 struct timespec ts;
2091
2092 EV_TS_SET (ts, delay);
2093 nanosleep (&ts, 0);
2094#elif defined _WIN32
2095 /* maybe this should round up, as ms is very low resolution */
2096 /* compared to select (µs) or nanosleep (ns) */
2097 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2098#else
2099 struct timeval tv;
2100
2101 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2102 /* something not guaranteed by newer posix versions, but guaranteed */
2103 /* by older ones */
2104 EV_TV_SET (tv, delay);
2105 select (0, 0, 0, 0, &tv);
2106#endif
2107 }
2108}
93 2109
94/*****************************************************************************/ 2110/*****************************************************************************/
95 2111
96typedef struct 2112#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
97{
98 struct ev_io *head;
99 unsigned char wev, rev; /* want, received event set */
100} ANFD;
101 2113
102static ANFD *anfds; 2114/* find a suitable new size for the given array, */
103static int anfdmax; 2115/* hopefully by rounding to a nice-to-malloc size */
2116inline_size int
2117array_nextsize (int elem, int cur, int cnt)
2118{
2119 int ncur = cur + 1;
104 2120
105static int *fdchanges; 2121 do
106static int fdchangemax, fdchangecnt; 2122 ncur <<= 1;
2123 while (cnt > ncur);
107 2124
2125 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2126 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2127 {
2128 ncur *= elem;
2129 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2130 ncur = ncur - sizeof (void *) * 4;
2131 ncur /= elem;
2132 }
2133
2134 return ncur;
2135}
2136
2137ecb_noinline ecb_cold
2138static void *
2139array_realloc (int elem, void *base, int *cur, int cnt)
2140{
2141 *cur = array_nextsize (elem, *cur, cnt);
2142 return ev_realloc (base, elem * *cur);
2143}
2144
2145#define array_needsize_noinit(base,offset,count)
2146
2147#define array_needsize_zerofill(base,offset,count) \
2148 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2149
2150#define array_needsize(type,base,cur,cnt,init) \
2151 if (ecb_expect_false ((cnt) > (cur))) \
2152 { \
2153 ecb_unused int ocur_ = (cur); \
2154 (base) = (type *)array_realloc \
2155 (sizeof (type), (base), &(cur), (cnt)); \
2156 init ((base), ocur_, ((cur) - ocur_)); \
2157 }
2158
2159#if 0
2160#define array_slim(type,stem) \
2161 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2162 { \
2163 stem ## max = array_roundsize (stem ## cnt >> 1); \
2164 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2165 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2166 }
2167#endif
2168
2169#define array_free(stem, idx) \
2170 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2171
2172/*****************************************************************************/
2173
2174/* dummy callback for pending events */
2175ecb_noinline
108static void 2176static void
109anfds_init (ANFD *base, int count) 2177pendingcb (EV_P_ ev_prepare *w, int revents)
110{ 2178{
111 while (count--)
112 {
113 base->head = 0;
114 base->wev = base->rev = EV_NONE;
115 ++base;
116 }
117} 2179}
118 2180
119typedef struct 2181ecb_noinline
2182void
2183ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
120{ 2184{
121 W w; 2185 W w_ = (W)w;
122 int events; 2186 int pri = ABSPRI (w_);
123} ANPENDING;
124 2187
125static ANPENDING *pendings; 2188 if (ecb_expect_false (w_->pending))
126static int pendingmax, pendingcnt;
127
128static void
129event (W w, int events)
130{
131 w->pending = ++pendingcnt;
132 array_needsize (pendings, pendingmax, pendingcnt, );
133 pendings [pendingcnt - 1].w = w;
134 pendings [pendingcnt - 1].events = events; 2189 pendings [pri][w_->pending - 1].events |= revents;
135} 2190 else
2191 {
2192 w_->pending = ++pendingcnt [pri];
2193 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2194 pendings [pri][w_->pending - 1].w = w_;
2195 pendings [pri][w_->pending - 1].events = revents;
2196 }
136 2197
137static void 2198 pendingpri = NUMPRI - 1;
2199}
2200
2201inline_speed void
2202feed_reverse (EV_P_ W w)
2203{
2204 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2205 rfeeds [rfeedcnt++] = w;
2206}
2207
2208inline_size void
2209feed_reverse_done (EV_P_ int revents)
2210{
2211 do
2212 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2213 while (rfeedcnt);
2214}
2215
2216inline_speed void
2217queue_events (EV_P_ W *events, int eventcnt, int type)
2218{
2219 int i;
2220
2221 for (i = 0; i < eventcnt; ++i)
2222 ev_feed_event (EV_A_ events [i], type);
2223}
2224
2225/*****************************************************************************/
2226
2227inline_speed void
138fd_event (int fd, int events) 2228fd_event_nocheck (EV_P_ int fd, int revents)
139{ 2229{
140 ANFD *anfd = anfds + fd; 2230 ANFD *anfd = anfds + fd;
141 struct ev_io *w; 2231 ev_io *w;
142 2232
143 for (w = anfd->head; w; w = w->next) 2233 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
144 { 2234 {
145 int ev = w->events & events; 2235 int ev = w->events & revents;
146 2236
147 if (ev) 2237 if (ev)
148 event ((W)w, ev); 2238 ev_feed_event (EV_A_ (W)w, ev);
149 } 2239 }
150} 2240}
151 2241
152static void 2242/* do not submit kernel events for fds that have reify set */
153queue_events (W *events, int eventcnt, int type) 2243/* because that means they changed while we were polling for new events */
2244inline_speed void
2245fd_event (EV_P_ int fd, int revents)
2246{
2247 ANFD *anfd = anfds + fd;
2248
2249 if (ecb_expect_true (!anfd->reify))
2250 fd_event_nocheck (EV_A_ fd, revents);
2251}
2252
2253void
2254ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2255{
2256 if (fd >= 0 && fd < anfdmax)
2257 fd_event_nocheck (EV_A_ fd, revents);
2258}
2259
2260/* make sure the external fd watch events are in-sync */
2261/* with the kernel/libev internal state */
2262inline_size void
2263fd_reify (EV_P)
154{ 2264{
155 int i; 2265 int i;
156 2266
157 for (i = 0; i < eventcnt; ++i) 2267 /* most backends do not modify the fdchanges list in backend_modfiy.
158 event (events [i], type); 2268 * except io_uring, which has fixed-size buffers which might force us
159} 2269 * to handle events in backend_modify, causing fdchangesd to be amended,
2270 * which could result in an endless loop.
2271 * to avoid this, we do not dynamically handle fds that were added
2272 * during fd_reify. that menas thast for those backends, fdchangecnt
2273 * might be non-zero during poll, which must cause them to not block.
2274 * to not put too much of a burden on other backends, this detail
2275 * needs to be handled in the backend.
2276 */
2277 int changecnt = fdchangecnt;
160 2278
161/*****************************************************************************/ 2279#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
162
163static struct ev_timer **timers;
164static int timermax, timercnt;
165
166static struct ev_periodic **periodics;
167static int periodicmax, periodiccnt;
168
169static void
170upheap (WT *timers, int k)
171{
172 WT w = timers [k];
173
174 while (k && timers [k >> 1]->at > w->at)
175 {
176 timers [k] = timers [k >> 1];
177 timers [k]->active = k + 1;
178 k >>= 1;
179 }
180
181 timers [k] = w;
182 timers [k]->active = k + 1;
183
184}
185
186static void
187downheap (WT *timers, int N, int k)
188{
189 WT w = timers [k];
190
191 while (k < (N >> 1))
192 {
193 int j = k << 1;
194
195 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
196 ++j;
197
198 if (w->at <= timers [j]->at)
199 break;
200
201 timers [k] = timers [j];
202 timers [k]->active = k + 1;
203 k = j;
204 }
205
206 timers [k] = w;
207 timers [k]->active = k + 1;
208}
209
210/*****************************************************************************/
211
212typedef struct
213{
214 struct ev_signal *head;
215 sig_atomic_t gotsig;
216} ANSIG;
217
218static ANSIG *signals;
219static int signalmax;
220
221static int sigpipe [2];
222static sig_atomic_t gotsig;
223static struct ev_io sigev;
224
225static void
226signals_init (ANSIG *base, int count)
227{
228 while (count--)
229 {
230 base->head = 0;
231 base->gotsig = 0;
232 ++base;
233 }
234}
235
236static void
237sighandler (int signum)
238{
239 signals [signum - 1].gotsig = 1;
240
241 if (!gotsig)
242 {
243 gotsig = 1;
244 write (sigpipe [1], &gotsig, 1);
245 }
246}
247
248static void
249sigcb (struct ev_io *iow, int revents)
250{
251 struct ev_signal *w;
252 int sig;
253
254 gotsig = 0;
255 read (sigpipe [0], &revents, 1);
256
257 for (sig = signalmax; sig--; )
258 if (signals [sig].gotsig)
259 {
260 signals [sig].gotsig = 0;
261
262 for (w = signals [sig].head; w; w = w->next)
263 event ((W)w, EV_SIGNAL);
264 }
265}
266
267static void
268siginit (void)
269{
270 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
271 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
272
273 /* rather than sort out wether we really need nb, set it */
274 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
275 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
276
277 evio_set (&sigev, sigpipe [0], EV_READ);
278 evio_start (&sigev);
279}
280
281/*****************************************************************************/
282
283static struct ev_idle **idles;
284static int idlemax, idlecnt;
285
286static struct ev_check **checks;
287static int checkmax, checkcnt;
288
289/*****************************************************************************/
290
291#if HAVE_EPOLL
292# include "ev_epoll.c"
293#endif
294#if HAVE_SELECT
295# include "ev_select.c"
296#endif
297
298int ev_init (int flags)
299{
300#if HAVE_MONOTONIC
301 {
302 struct timespec ts;
303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
304 have_monotonic = 1;
305 }
306#endif
307
308 ev_now = ev_time ();
309 now = get_clock ();
310 diff = ev_now - now;
311
312 if (pipe (sigpipe))
313 return 0;
314
315 ev_method = EVMETHOD_NONE;
316#if HAVE_EPOLL
317 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
318#endif
319#if HAVE_SELECT
320 if (ev_method == EVMETHOD_NONE) select_init (flags);
321#endif
322
323 if (ev_method)
324 {
325 evw_init (&sigev, sigcb);
326 siginit ();
327 }
328
329 return ev_method;
330}
331
332/*****************************************************************************/
333
334void ev_prefork (void)
335{
336 /* nop */
337}
338
339void ev_postfork_parent (void)
340{
341 /* nop */
342}
343
344void ev_postfork_child (void)
345{
346#if HAVE_EPOLL
347 if (ev_method == EVMETHOD_EPOLL)
348 epoll_postfork_child ();
349#endif
350
351 evio_stop (&sigev);
352 close (sigpipe [0]);
353 close (sigpipe [1]);
354 pipe (sigpipe);
355 siginit ();
356}
357
358/*****************************************************************************/
359
360static void
361fd_reify (void)
362{
363 int i;
364
365 for (i = 0; i < fdchangecnt; ++i) 2280 for (i = 0; i < changecnt; ++i)
366 { 2281 {
367 int fd = fdchanges [i]; 2282 int fd = fdchanges [i];
368 ANFD *anfd = anfds + fd; 2283 ANFD *anfd = anfds + fd;
369 struct ev_io *w;
370 2284
371 int wev = 0; 2285 if (anfd->reify & EV__IOFDSET && anfd->head)
372
373 for (w = anfd->head; w; w = w->next)
374 wev |= w->events;
375
376 if (anfd->wev != wev)
377 { 2286 {
378 method_modify (fd, anfd->wev, wev); 2287 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2288
2289 if (handle != anfd->handle)
2290 {
2291 unsigned long arg;
2292
2293 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2294
2295 /* handle changed, but fd didn't - we need to do it in two steps */
2296 backend_modify (EV_A_ fd, anfd->events, 0);
379 anfd->wev = wev; 2297 anfd->events = 0;
2298 anfd->handle = handle;
2299 }
380 } 2300 }
381 } 2301 }
2302#endif
382 2303
2304 for (i = 0; i < changecnt; ++i)
2305 {
2306 int fd = fdchanges [i];
2307 ANFD *anfd = anfds + fd;
2308 ev_io *w;
2309
2310 unsigned char o_events = anfd->events;
2311 unsigned char o_reify = anfd->reify;
2312
2313 anfd->reify = 0;
2314
2315 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2316 {
2317 anfd->events = 0;
2318
2319 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2320 anfd->events |= (unsigned char)w->events;
2321
2322 if (o_events != anfd->events)
2323 o_reify = EV__IOFDSET; /* actually |= */
2324 }
2325
2326 if (o_reify & EV__IOFDSET)
2327 backend_modify (EV_A_ fd, o_events, anfd->events);
2328 }
2329
2330 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2331 * this is a rare case (see beginning comment in this function), so we copy them to the
2332 * front and hope the backend handles this case.
2333 */
2334 if (ecb_expect_false (fdchangecnt != changecnt))
2335 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2336
383 fdchangecnt = 0; 2337 fdchangecnt -= changecnt;
384} 2338}
385 2339
2340/* something about the given fd changed */
2341inline_size
2342void
2343fd_change (EV_P_ int fd, int flags)
2344{
2345 unsigned char reify = anfds [fd].reify;
2346 anfds [fd].reify |= flags;
2347
2348 if (ecb_expect_true (!reify))
2349 {
2350 ++fdchangecnt;
2351 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2352 fdchanges [fdchangecnt - 1] = fd;
2353 }
2354}
2355
2356/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2357inline_speed ecb_cold void
2358fd_kill (EV_P_ int fd)
2359{
2360 ev_io *w;
2361
2362 while ((w = (ev_io *)anfds [fd].head))
2363 {
2364 ev_io_stop (EV_A_ w);
2365 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2366 }
2367}
2368
2369/* check whether the given fd is actually valid, for error recovery */
2370inline_size ecb_cold int
2371fd_valid (int fd)
2372{
2373#ifdef _WIN32
2374 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2375#else
2376 return fcntl (fd, F_GETFD) != -1;
2377#endif
2378}
2379
2380/* called on EBADF to verify fds */
2381ecb_noinline ecb_cold
386static void 2382static void
387call_pending () 2383fd_ebadf (EV_P)
2384{
2385 int fd;
2386
2387 for (fd = 0; fd < anfdmax; ++fd)
2388 if (anfds [fd].events)
2389 if (!fd_valid (fd) && errno == EBADF)
2390 fd_kill (EV_A_ fd);
2391}
2392
2393/* called on ENOMEM in select/poll to kill some fds and retry */
2394ecb_noinline ecb_cold
2395static void
2396fd_enomem (EV_P)
2397{
2398 int fd;
2399
2400 for (fd = anfdmax; fd--; )
2401 if (anfds [fd].events)
2402 {
2403 fd_kill (EV_A_ fd);
2404 break;
2405 }
2406}
2407
2408/* usually called after fork if backend needs to re-arm all fds from scratch */
2409ecb_noinline
2410static void
2411fd_rearm_all (EV_P)
2412{
2413 int fd;
2414
2415 for (fd = 0; fd < anfdmax; ++fd)
2416 if (anfds [fd].events)
2417 {
2418 anfds [fd].events = 0;
2419 anfds [fd].emask = 0;
2420 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2421 }
2422}
2423
2424/* used to prepare libev internal fd's */
2425/* this is not fork-safe */
2426inline_speed void
2427fd_intern (int fd)
2428{
2429#ifdef _WIN32
2430 unsigned long arg = 1;
2431 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2432#else
2433 fcntl (fd, F_SETFD, FD_CLOEXEC);
2434 fcntl (fd, F_SETFL, O_NONBLOCK);
2435#endif
2436}
2437
2438/*****************************************************************************/
2439
2440/*
2441 * the heap functions want a real array index. array index 0 is guaranteed to not
2442 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2443 * the branching factor of the d-tree.
2444 */
2445
2446/*
2447 * at the moment we allow libev the luxury of two heaps,
2448 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2449 * which is more cache-efficient.
2450 * the difference is about 5% with 50000+ watchers.
2451 */
2452#if EV_USE_4HEAP
2453
2454#define DHEAP 4
2455#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2456#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2457#define UPHEAP_DONE(p,k) ((p) == (k))
2458
2459/* away from the root */
2460inline_speed void
2461downheap (ANHE *heap, int N, int k)
2462{
2463 ANHE he = heap [k];
2464 ANHE *E = heap + N + HEAP0;
2465
2466 for (;;)
2467 {
2468 ev_tstamp minat;
2469 ANHE *minpos;
2470 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2471
2472 /* find minimum child */
2473 if (ecb_expect_true (pos + DHEAP - 1 < E))
2474 {
2475 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2476 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2477 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2478 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2479 }
2480 else if (pos < E)
2481 {
2482 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2483 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2484 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2485 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2486 }
2487 else
2488 break;
2489
2490 if (ANHE_at (he) <= minat)
2491 break;
2492
2493 heap [k] = *minpos;
2494 ev_active (ANHE_w (*minpos)) = k;
2495
2496 k = minpos - heap;
2497 }
2498
2499 heap [k] = he;
2500 ev_active (ANHE_w (he)) = k;
2501}
2502
2503#else /* not 4HEAP */
2504
2505#define HEAP0 1
2506#define HPARENT(k) ((k) >> 1)
2507#define UPHEAP_DONE(p,k) (!(p))
2508
2509/* away from the root */
2510inline_speed void
2511downheap (ANHE *heap, int N, int k)
2512{
2513 ANHE he = heap [k];
2514
2515 for (;;)
2516 {
2517 int c = k << 1;
2518
2519 if (c >= N + HEAP0)
2520 break;
2521
2522 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2523 ? 1 : 0;
2524
2525 if (ANHE_at (he) <= ANHE_at (heap [c]))
2526 break;
2527
2528 heap [k] = heap [c];
2529 ev_active (ANHE_w (heap [k])) = k;
2530
2531 k = c;
2532 }
2533
2534 heap [k] = he;
2535 ev_active (ANHE_w (he)) = k;
2536}
2537#endif
2538
2539/* towards the root */
2540inline_speed void
2541upheap (ANHE *heap, int k)
2542{
2543 ANHE he = heap [k];
2544
2545 for (;;)
2546 {
2547 int p = HPARENT (k);
2548
2549 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2550 break;
2551
2552 heap [k] = heap [p];
2553 ev_active (ANHE_w (heap [k])) = k;
2554 k = p;
2555 }
2556
2557 heap [k] = he;
2558 ev_active (ANHE_w (he)) = k;
2559}
2560
2561/* move an element suitably so it is in a correct place */
2562inline_size void
2563adjustheap (ANHE *heap, int N, int k)
2564{
2565 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2566 upheap (heap, k);
2567 else
2568 downheap (heap, N, k);
2569}
2570
2571/* rebuild the heap: this function is used only once and executed rarely */
2572inline_size void
2573reheap (ANHE *heap, int N)
388{ 2574{
389 int i; 2575 int i;
390 2576
2577 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2578 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
391 for (i = 0; i < pendingcnt; ++i) 2579 for (i = 0; i < N; ++i)
392 { 2580 upheap (heap, i + HEAP0);
393 ANPENDING *p = pendings + i; 2581}
394 2582
395 if (p->w) 2583/*****************************************************************************/
2584
2585/* associate signal watchers to a signal signal */
2586typedef struct
2587{
2588 EV_ATOMIC_T pending;
2589#if EV_MULTIPLICITY
2590 EV_P;
2591#endif
2592 WL head;
2593} ANSIG;
2594
2595static ANSIG signals [EV_NSIG - 1];
2596
2597/*****************************************************************************/
2598
2599#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2600
2601ecb_noinline ecb_cold
2602static void
2603evpipe_init (EV_P)
2604{
2605 if (!ev_is_active (&pipe_w))
2606 {
2607 int fds [2];
2608
2609# if EV_USE_EVENTFD
2610 fds [0] = -1;
2611 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2612 if (fds [1] < 0 && errno == EINVAL)
2613 fds [1] = eventfd (0, 0);
2614
2615 if (fds [1] < 0)
2616# endif
396 { 2617 {
2618 while (pipe (fds))
2619 ev_syserr ("(libev) error creating signal/async pipe");
2620
2621 fd_intern (fds [0]);
2622 }
2623
2624 evpipe [0] = fds [0];
2625
2626 if (evpipe [1] < 0)
2627 evpipe [1] = fds [1]; /* first call, set write fd */
2628 else
2629 {
2630 /* on subsequent calls, do not change evpipe [1] */
2631 /* so that evpipe_write can always rely on its value. */
2632 /* this branch does not do anything sensible on windows, */
2633 /* so must not be executed on windows */
2634
2635 dup2 (fds [1], evpipe [1]);
2636 close (fds [1]);
2637 }
2638
2639 fd_intern (evpipe [1]);
2640
2641 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2642 ev_io_start (EV_A_ &pipe_w);
2643 ev_unref (EV_A); /* watcher should not keep loop alive */
2644 }
2645}
2646
2647inline_speed void
2648evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2649{
2650 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2651
2652 if (ecb_expect_true (*flag))
2653 return;
2654
2655 *flag = 1;
2656 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2657
2658 pipe_write_skipped = 1;
2659
2660 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2661
2662 if (pipe_write_wanted)
2663 {
2664 int old_errno;
2665
2666 pipe_write_skipped = 0;
2667 ECB_MEMORY_FENCE_RELEASE;
2668
2669 old_errno = errno; /* save errno because write will clobber it */
2670
2671#if EV_USE_EVENTFD
2672 if (evpipe [0] < 0)
2673 {
2674 uint64_t counter = 1;
2675 write (evpipe [1], &counter, sizeof (uint64_t));
2676 }
2677 else
2678#endif
2679 {
2680#ifdef _WIN32
2681 WSABUF buf;
2682 DWORD sent;
2683 buf.buf = (char *)&buf;
2684 buf.len = 1;
2685 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2686#else
2687 write (evpipe [1], &(evpipe [1]), 1);
2688#endif
2689 }
2690
2691 errno = old_errno;
2692 }
2693}
2694
2695/* called whenever the libev signal pipe */
2696/* got some events (signal, async) */
2697static void
2698pipecb (EV_P_ ev_io *iow, int revents)
2699{
2700 int i;
2701
2702 if (revents & EV_READ)
2703 {
2704#if EV_USE_EVENTFD
2705 if (evpipe [0] < 0)
2706 {
2707 uint64_t counter;
2708 read (evpipe [1], &counter, sizeof (uint64_t));
2709 }
2710 else
2711#endif
2712 {
2713 char dummy[4];
2714#ifdef _WIN32
2715 WSABUF buf;
2716 DWORD recvd;
2717 DWORD flags = 0;
2718 buf.buf = dummy;
2719 buf.len = sizeof (dummy);
2720 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2721#else
2722 read (evpipe [0], &dummy, sizeof (dummy));
2723#endif
2724 }
2725 }
2726
2727 pipe_write_skipped = 0;
2728
2729 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2730
2731#if EV_SIGNAL_ENABLE
2732 if (sig_pending)
2733 {
2734 sig_pending = 0;
2735
2736 ECB_MEMORY_FENCE;
2737
2738 for (i = EV_NSIG - 1; i--; )
2739 if (ecb_expect_false (signals [i].pending))
2740 ev_feed_signal_event (EV_A_ i + 1);
2741 }
2742#endif
2743
2744#if EV_ASYNC_ENABLE
2745 if (async_pending)
2746 {
2747 async_pending = 0;
2748
2749 ECB_MEMORY_FENCE;
2750
2751 for (i = asynccnt; i--; )
2752 if (asyncs [i]->sent)
2753 {
2754 asyncs [i]->sent = 0;
2755 ECB_MEMORY_FENCE_RELEASE;
2756 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2757 }
2758 }
2759#endif
2760}
2761
2762/*****************************************************************************/
2763
2764void
2765ev_feed_signal (int signum) EV_NOEXCEPT
2766{
2767#if EV_MULTIPLICITY
2768 EV_P;
2769 ECB_MEMORY_FENCE_ACQUIRE;
2770 EV_A = signals [signum - 1].loop;
2771
2772 if (!EV_A)
2773 return;
2774#endif
2775
2776 signals [signum - 1].pending = 1;
2777 evpipe_write (EV_A_ &sig_pending);
2778}
2779
2780static void
2781ev_sighandler (int signum)
2782{
2783#ifdef _WIN32
2784 signal (signum, ev_sighandler);
2785#endif
2786
2787 ev_feed_signal (signum);
2788}
2789
2790ecb_noinline
2791void
2792ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2793{
2794 WL w;
2795
2796 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2797 return;
2798
2799 --signum;
2800
2801#if EV_MULTIPLICITY
2802 /* it is permissible to try to feed a signal to the wrong loop */
2803 /* or, likely more useful, feeding a signal nobody is waiting for */
2804
2805 if (ecb_expect_false (signals [signum].loop != EV_A))
2806 return;
2807#endif
2808
2809 signals [signum].pending = 0;
2810 ECB_MEMORY_FENCE_RELEASE;
2811
2812 for (w = signals [signum].head; w; w = w->next)
2813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2814}
2815
2816#if EV_USE_SIGNALFD
2817static void
2818sigfdcb (EV_P_ ev_io *iow, int revents)
2819{
2820 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2821
2822 for (;;)
2823 {
2824 ssize_t res = read (sigfd, si, sizeof (si));
2825
2826 /* not ISO-C, as res might be -1, but works with SuS */
2827 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2828 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2829
2830 if (res < (ssize_t)sizeof (si))
2831 break;
2832 }
2833}
2834#endif
2835
2836#endif
2837
2838/*****************************************************************************/
2839
2840#if EV_CHILD_ENABLE
2841static WL childs [EV_PID_HASHSIZE];
2842
2843static ev_signal childev;
2844
2845#ifndef WIFCONTINUED
2846# define WIFCONTINUED(status) 0
2847#endif
2848
2849/* handle a single child status event */
2850inline_speed void
2851child_reap (EV_P_ int chain, int pid, int status)
2852{
2853 ev_child *w;
2854 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2855
2856 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2857 {
2858 if ((w->pid == pid || !w->pid)
2859 && (!traced || (w->flags & 1)))
2860 {
2861 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2862 w->rpid = pid;
2863 w->rstatus = status;
2864 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2865 }
2866 }
2867}
2868
2869#ifndef WCONTINUED
2870# define WCONTINUED 0
2871#endif
2872
2873/* called on sigchld etc., calls waitpid */
2874static void
2875childcb (EV_P_ ev_signal *sw, int revents)
2876{
2877 int pid, status;
2878
2879 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2880 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2881 if (!WCONTINUED
2882 || errno != EINVAL
2883 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2884 return;
2885
2886 /* make sure we are called again until all children have been reaped */
2887 /* we need to do it this way so that the callback gets called before we continue */
2888 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2889
2890 child_reap (EV_A_ pid, pid, status);
2891 if ((EV_PID_HASHSIZE) > 1)
2892 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2893}
2894
2895#endif
2896
2897/*****************************************************************************/
2898
2899#if EV_USE_TIMERFD
2900
2901static void periodics_reschedule (EV_P);
2902
2903static void
2904timerfdcb (EV_P_ ev_io *iow, int revents)
2905{
2906 struct itimerspec its = { 0 };
2907
2908 /* since we can't easily come zup with a (portable) maximum value of time_t,
2909 * we wake up once per month, which hopefully is rare enough to not
2910 * be a problem. */
2911 its.it_value.tv_sec = ev_rt_now + 86400 * 30;
2912 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
2913
2914 ev_rt_now = ev_time ();
2915 /* periodics_reschedule only needs ev_rt_now */
2916 /* but maybe in the future we want the full treatment. */
2917 /*
2918 now_floor = EV_TS_CONST (0.);
2919 time_update (EV_A_ EV_TSTAMP_HUGE);
2920 */
2921 periodics_reschedule (EV_A);
2922}
2923
2924ecb_noinline ecb_cold
2925static void
2926evtimerfd_init (EV_P)
2927{
2928 if (!ev_is_active (&timerfd_w))
2929 {
2930 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
2931
2932 if (timerfd >= 0)
2933 {
2934 fd_intern (timerfd); /* just to be sure */
2935
2936 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
2937 ev_set_priority (&timerfd_w, EV_MINPRI);
2938 ev_io_start (EV_A_ &timerfd_w);
2939 ev_unref (EV_A); /* watcher should not keep loop alive */
2940
2941 /* (re-) arm timer */
2942 timerfdcb (EV_A_ 0, 0);
2943 }
2944 }
2945}
2946
2947#endif
2948
2949/*****************************************************************************/
2950
2951#if EV_USE_IOCP
2952# include "ev_iocp.c"
2953#endif
2954#if EV_USE_PORT
2955# include "ev_port.c"
2956#endif
2957#if EV_USE_KQUEUE
2958# include "ev_kqueue.c"
2959#endif
2960#if EV_USE_EPOLL
2961# include "ev_epoll.c"
2962#endif
2963#if EV_USE_LINUXAIO
2964# include "ev_linuxaio.c"
2965#endif
2966#if EV_USE_IOURING
2967# include "ev_iouring.c"
2968#endif
2969#if EV_USE_POLL
2970# include "ev_poll.c"
2971#endif
2972#if EV_USE_SELECT
2973# include "ev_select.c"
2974#endif
2975
2976ecb_cold int
2977ev_version_major (void) EV_NOEXCEPT
2978{
2979 return EV_VERSION_MAJOR;
2980}
2981
2982ecb_cold int
2983ev_version_minor (void) EV_NOEXCEPT
2984{
2985 return EV_VERSION_MINOR;
2986}
2987
2988/* return true if we are running with elevated privileges and should ignore env variables */
2989inline_size ecb_cold int
2990enable_secure (void)
2991{
2992#ifdef _WIN32
2993 return 0;
2994#else
2995 return getuid () != geteuid ()
2996 || getgid () != getegid ();
2997#endif
2998}
2999
3000ecb_cold
3001unsigned int
3002ev_supported_backends (void) EV_NOEXCEPT
3003{
3004 unsigned int flags = 0;
3005
3006 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
3007 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
3008 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
3009 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
3010 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
3011 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3012 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3013
3014 return flags;
3015}
3016
3017ecb_cold
3018unsigned int
3019ev_recommended_backends (void) EV_NOEXCEPT
3020{
3021 unsigned int flags = ev_supported_backends ();
3022
3023#ifndef __NetBSD__
3024 /* kqueue is borked on everything but netbsd apparently */
3025 /* it usually doesn't work correctly on anything but sockets and pipes */
3026 flags &= ~EVBACKEND_KQUEUE;
3027#endif
3028#ifdef __APPLE__
3029 /* only select works correctly on that "unix-certified" platform */
3030 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3031 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3032#endif
3033#ifdef __FreeBSD__
3034 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3035#endif
3036
3037 /* TODO: linuxaio is very experimental */
3038#if !EV_RECOMMEND_LINUXAIO
3039 flags &= ~EVBACKEND_LINUXAIO;
3040#endif
3041 /* TODO: linuxaio is super experimental */
3042#if !EV_RECOMMEND_IOURING
3043 flags &= ~EVBACKEND_IOURING;
3044#endif
3045
3046 return flags;
3047}
3048
3049ecb_cold
3050unsigned int
3051ev_embeddable_backends (void) EV_NOEXCEPT
3052{
3053 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
3054
3055 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3056 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3057 flags &= ~EVBACKEND_EPOLL;
3058
3059 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3060
3061 return flags;
3062}
3063
3064unsigned int
3065ev_backend (EV_P) EV_NOEXCEPT
3066{
3067 return backend;
3068}
3069
3070#if EV_FEATURE_API
3071unsigned int
3072ev_iteration (EV_P) EV_NOEXCEPT
3073{
3074 return loop_count;
3075}
3076
3077unsigned int
3078ev_depth (EV_P) EV_NOEXCEPT
3079{
3080 return loop_depth;
3081}
3082
3083void
3084ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3085{
3086 io_blocktime = interval;
3087}
3088
3089void
3090ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3091{
3092 timeout_blocktime = interval;
3093}
3094
3095void
3096ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3097{
3098 userdata = data;
3099}
3100
3101void *
3102ev_userdata (EV_P) EV_NOEXCEPT
3103{
3104 return userdata;
3105}
3106
3107void
3108ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3109{
3110 invoke_cb = invoke_pending_cb;
3111}
3112
3113void
3114ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3115{
3116 release_cb = release;
3117 acquire_cb = acquire;
3118}
3119#endif
3120
3121/* initialise a loop structure, must be zero-initialised */
3122ecb_noinline ecb_cold
3123static void
3124loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3125{
3126 if (!backend)
3127 {
3128 origflags = flags;
3129
3130#if EV_USE_REALTIME
3131 if (!have_realtime)
3132 {
3133 struct timespec ts;
3134
3135 if (!clock_gettime (CLOCK_REALTIME, &ts))
3136 have_realtime = 1;
3137 }
3138#endif
3139
3140#if EV_USE_MONOTONIC
3141 if (!have_monotonic)
3142 {
3143 struct timespec ts;
3144
3145 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3146 have_monotonic = 1;
3147 }
3148#endif
3149
3150 /* pid check not overridable via env */
3151#ifndef _WIN32
3152 if (flags & EVFLAG_FORKCHECK)
3153 curpid = getpid ();
3154#endif
3155
3156 if (!(flags & EVFLAG_NOENV)
3157 && !enable_secure ()
3158 && getenv ("LIBEV_FLAGS"))
3159 flags = atoi (getenv ("LIBEV_FLAGS"));
3160
3161 ev_rt_now = ev_time ();
3162 mn_now = get_clock ();
3163 now_floor = mn_now;
3164 rtmn_diff = ev_rt_now - mn_now;
3165#if EV_FEATURE_API
3166 invoke_cb = ev_invoke_pending;
3167#endif
3168
3169 io_blocktime = 0.;
3170 timeout_blocktime = 0.;
3171 backend = 0;
3172 backend_fd = -1;
3173 sig_pending = 0;
3174#if EV_ASYNC_ENABLE
3175 async_pending = 0;
3176#endif
3177 pipe_write_skipped = 0;
3178 pipe_write_wanted = 0;
3179 evpipe [0] = -1;
3180 evpipe [1] = -1;
3181#if EV_USE_INOTIFY
3182 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3183#endif
3184#if EV_USE_SIGNALFD
3185 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3186#endif
3187#if EV_USE_TIMERFD
3188 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3189#endif
3190
3191 if (!(flags & EVBACKEND_MASK))
3192 flags |= ev_recommended_backends ();
3193
3194#if EV_USE_IOCP
3195 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3196#endif
3197#if EV_USE_PORT
3198 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3199#endif
3200#if EV_USE_KQUEUE
3201 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3202#endif
3203#if EV_USE_IOURING
3204 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3205#endif
3206#if EV_USE_LINUXAIO
3207 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3208#endif
3209#if EV_USE_EPOLL
3210 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3211#endif
3212#if EV_USE_POLL
3213 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3214#endif
3215#if EV_USE_SELECT
3216 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3217#endif
3218
3219 ev_prepare_init (&pending_w, pendingcb);
3220
3221#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3222 ev_init (&pipe_w, pipecb);
3223 ev_set_priority (&pipe_w, EV_MAXPRI);
3224#endif
3225 }
3226}
3227
3228/* free up a loop structure */
3229ecb_cold
3230void
3231ev_loop_destroy (EV_P)
3232{
3233 int i;
3234
3235#if EV_MULTIPLICITY
3236 /* mimic free (0) */
3237 if (!EV_A)
3238 return;
3239#endif
3240
3241#if EV_CLEANUP_ENABLE
3242 /* queue cleanup watchers (and execute them) */
3243 if (ecb_expect_false (cleanupcnt))
3244 {
3245 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3246 EV_INVOKE_PENDING;
3247 }
3248#endif
3249
3250#if EV_CHILD_ENABLE
3251 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3252 {
3253 ev_ref (EV_A); /* child watcher */
3254 ev_signal_stop (EV_A_ &childev);
3255 }
3256#endif
3257
3258 if (ev_is_active (&pipe_w))
3259 {
3260 /*ev_ref (EV_A);*/
3261 /*ev_io_stop (EV_A_ &pipe_w);*/
3262
3263 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3264 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3265 }
3266
3267#if EV_USE_SIGNALFD
3268 if (ev_is_active (&sigfd_w))
3269 close (sigfd);
3270#endif
3271
3272#if EV_USE_TIMERFD
3273 if (ev_is_active (&timerfd_w))
3274 close (timerfd);
3275#endif
3276
3277#if EV_USE_INOTIFY
3278 if (fs_fd >= 0)
3279 close (fs_fd);
3280#endif
3281
3282 if (backend_fd >= 0)
3283 close (backend_fd);
3284
3285#if EV_USE_IOCP
3286 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3287#endif
3288#if EV_USE_PORT
3289 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3290#endif
3291#if EV_USE_KQUEUE
3292 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3293#endif
3294#if EV_USE_IOURING
3295 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3296#endif
3297#if EV_USE_LINUXAIO
3298 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3299#endif
3300#if EV_USE_EPOLL
3301 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3302#endif
3303#if EV_USE_POLL
3304 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3305#endif
3306#if EV_USE_SELECT
3307 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3308#endif
3309
3310 for (i = NUMPRI; i--; )
3311 {
3312 array_free (pending, [i]);
3313#if EV_IDLE_ENABLE
3314 array_free (idle, [i]);
3315#endif
3316 }
3317
3318 ev_free (anfds); anfds = 0; anfdmax = 0;
3319
3320 /* have to use the microsoft-never-gets-it-right macro */
3321 array_free (rfeed, EMPTY);
3322 array_free (fdchange, EMPTY);
3323 array_free (timer, EMPTY);
3324#if EV_PERIODIC_ENABLE
3325 array_free (periodic, EMPTY);
3326#endif
3327#if EV_FORK_ENABLE
3328 array_free (fork, EMPTY);
3329#endif
3330#if EV_CLEANUP_ENABLE
3331 array_free (cleanup, EMPTY);
3332#endif
3333 array_free (prepare, EMPTY);
3334 array_free (check, EMPTY);
3335#if EV_ASYNC_ENABLE
3336 array_free (async, EMPTY);
3337#endif
3338
3339 backend = 0;
3340
3341#if EV_MULTIPLICITY
3342 if (ev_is_default_loop (EV_A))
3343#endif
3344 ev_default_loop_ptr = 0;
3345#if EV_MULTIPLICITY
3346 else
3347 ev_free (EV_A);
3348#endif
3349}
3350
3351#if EV_USE_INOTIFY
3352inline_size void infy_fork (EV_P);
3353#endif
3354
3355inline_size void
3356loop_fork (EV_P)
3357{
3358#if EV_USE_PORT
3359 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3360#endif
3361#if EV_USE_KQUEUE
3362 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3363#endif
3364#if EV_USE_IOURING
3365 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3366#endif
3367#if EV_USE_LINUXAIO
3368 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3369#endif
3370#if EV_USE_EPOLL
3371 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3372#endif
3373#if EV_USE_INOTIFY
3374 infy_fork (EV_A);
3375#endif
3376
3377 if (postfork != 2)
3378 {
3379 #if EV_USE_SIGNALFD
3380 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3381 #endif
3382
3383 #if EV_USE_TIMERFD
3384 if (ev_is_active (&timerfd_w))
3385 {
3386 ev_ref (EV_A);
3387 ev_io_stop (EV_A_ &timerfd_w);
3388
3389 close (timerfd);
3390 timerfd = -2;
3391
3392 evtimerfd_init (EV_A);
3393 /* reschedule periodics, in case we missed something */
3394 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3395 }
3396 #endif
3397
3398 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3399 if (ev_is_active (&pipe_w))
3400 {
3401 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3402
3403 ev_ref (EV_A);
3404 ev_io_stop (EV_A_ &pipe_w);
3405
3406 if (evpipe [0] >= 0)
3407 EV_WIN32_CLOSE_FD (evpipe [0]);
3408
3409 evpipe_init (EV_A);
3410 /* iterate over everything, in case we missed something before */
3411 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3412 }
3413 #endif
3414 }
3415
3416 postfork = 0;
3417}
3418
3419#if EV_MULTIPLICITY
3420
3421ecb_cold
3422struct ev_loop *
3423ev_loop_new (unsigned int flags) EV_NOEXCEPT
3424{
3425 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3426
3427 memset (EV_A, 0, sizeof (struct ev_loop));
3428 loop_init (EV_A_ flags);
3429
3430 if (ev_backend (EV_A))
3431 return EV_A;
3432
3433 ev_free (EV_A);
3434 return 0;
3435}
3436
3437#endif /* multiplicity */
3438
3439#if EV_VERIFY
3440ecb_noinline ecb_cold
3441static void
3442verify_watcher (EV_P_ W w)
3443{
3444 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3445
3446 if (w->pending)
3447 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3448}
3449
3450ecb_noinline ecb_cold
3451static void
3452verify_heap (EV_P_ ANHE *heap, int N)
3453{
3454 int i;
3455
3456 for (i = HEAP0; i < N + HEAP0; ++i)
3457 {
3458 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3459 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3460 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3461
3462 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3463 }
3464}
3465
3466ecb_noinline ecb_cold
3467static void
3468array_verify (EV_P_ W *ws, int cnt)
3469{
3470 while (cnt--)
3471 {
3472 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3473 verify_watcher (EV_A_ ws [cnt]);
3474 }
3475}
3476#endif
3477
3478#if EV_FEATURE_API
3479void ecb_cold
3480ev_verify (EV_P) EV_NOEXCEPT
3481{
3482#if EV_VERIFY
3483 int i;
3484 WL w, w2;
3485
3486 assert (activecnt >= -1);
3487
3488 assert (fdchangemax >= fdchangecnt);
3489 for (i = 0; i < fdchangecnt; ++i)
3490 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3491
3492 assert (anfdmax >= 0);
3493 for (i = 0; i < anfdmax; ++i)
3494 {
3495 int j = 0;
3496
3497 for (w = w2 = anfds [i].head; w; w = w->next)
3498 {
3499 verify_watcher (EV_A_ (W)w);
3500
3501 if (j++ & 1)
3502 {
3503 assert (("libev: io watcher list contains a loop", w != w2));
3504 w2 = w2->next;
3505 }
3506
3507 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3508 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3509 }
3510 }
3511
3512 assert (timermax >= timercnt);
3513 verify_heap (EV_A_ timers, timercnt);
3514
3515#if EV_PERIODIC_ENABLE
3516 assert (periodicmax >= periodiccnt);
3517 verify_heap (EV_A_ periodics, periodiccnt);
3518#endif
3519
3520 for (i = NUMPRI; i--; )
3521 {
3522 assert (pendingmax [i] >= pendingcnt [i]);
3523#if EV_IDLE_ENABLE
3524 assert (idleall >= 0);
3525 assert (idlemax [i] >= idlecnt [i]);
3526 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3527#endif
3528 }
3529
3530#if EV_FORK_ENABLE
3531 assert (forkmax >= forkcnt);
3532 array_verify (EV_A_ (W *)forks, forkcnt);
3533#endif
3534
3535#if EV_CLEANUP_ENABLE
3536 assert (cleanupmax >= cleanupcnt);
3537 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3538#endif
3539
3540#if EV_ASYNC_ENABLE
3541 assert (asyncmax >= asynccnt);
3542 array_verify (EV_A_ (W *)asyncs, asynccnt);
3543#endif
3544
3545#if EV_PREPARE_ENABLE
3546 assert (preparemax >= preparecnt);
3547 array_verify (EV_A_ (W *)prepares, preparecnt);
3548#endif
3549
3550#if EV_CHECK_ENABLE
3551 assert (checkmax >= checkcnt);
3552 array_verify (EV_A_ (W *)checks, checkcnt);
3553#endif
3554
3555# if 0
3556#if EV_CHILD_ENABLE
3557 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3558 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3559#endif
3560# endif
3561#endif
3562}
3563#endif
3564
3565#if EV_MULTIPLICITY
3566ecb_cold
3567struct ev_loop *
3568#else
3569int
3570#endif
3571ev_default_loop (unsigned int flags) EV_NOEXCEPT
3572{
3573 if (!ev_default_loop_ptr)
3574 {
3575#if EV_MULTIPLICITY
3576 EV_P = ev_default_loop_ptr = &default_loop_struct;
3577#else
3578 ev_default_loop_ptr = 1;
3579#endif
3580
3581 loop_init (EV_A_ flags);
3582
3583 if (ev_backend (EV_A))
3584 {
3585#if EV_CHILD_ENABLE
3586 ev_signal_init (&childev, childcb, SIGCHLD);
3587 ev_set_priority (&childev, EV_MAXPRI);
3588 ev_signal_start (EV_A_ &childev);
3589 ev_unref (EV_A); /* child watcher should not keep loop alive */
3590#endif
3591 }
3592 else
3593 ev_default_loop_ptr = 0;
3594 }
3595
3596 return ev_default_loop_ptr;
3597}
3598
3599void
3600ev_loop_fork (EV_P) EV_NOEXCEPT
3601{
3602 postfork = 1;
3603}
3604
3605/*****************************************************************************/
3606
3607void
3608ev_invoke (EV_P_ void *w, int revents)
3609{
3610 EV_CB_INVOKE ((W)w, revents);
3611}
3612
3613unsigned int
3614ev_pending_count (EV_P) EV_NOEXCEPT
3615{
3616 int pri;
3617 unsigned int count = 0;
3618
3619 for (pri = NUMPRI; pri--; )
3620 count += pendingcnt [pri];
3621
3622 return count;
3623}
3624
3625ecb_noinline
3626void
3627ev_invoke_pending (EV_P)
3628{
3629 pendingpri = NUMPRI;
3630
3631 do
3632 {
3633 --pendingpri;
3634
3635 /* pendingpri possibly gets modified in the inner loop */
3636 while (pendingcnt [pendingpri])
3637 {
3638 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3639
397 p->w->pending = 0; 3640 p->w->pending = 0;
398 p->w->cb (p->w, p->events); 3641 EV_CB_INVOKE (p->w, p->events);
3642 EV_FREQUENT_CHECK;
399 } 3643 }
400 } 3644 }
401 3645 while (pendingpri);
402 pendingcnt = 0;
403} 3646}
404 3647
3648#if EV_IDLE_ENABLE
3649/* make idle watchers pending. this handles the "call-idle */
3650/* only when higher priorities are idle" logic */
3651inline_size void
3652idle_reify (EV_P)
3653{
3654 if (ecb_expect_false (idleall))
3655 {
3656 int pri;
3657
3658 for (pri = NUMPRI; pri--; )
3659 {
3660 if (pendingcnt [pri])
3661 break;
3662
3663 if (idlecnt [pri])
3664 {
3665 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3666 break;
3667 }
3668 }
3669 }
3670}
3671#endif
3672
3673/* make timers pending */
3674inline_size void
3675timers_reify (EV_P)
3676{
3677 EV_FREQUENT_CHECK;
3678
3679 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3680 {
3681 do
3682 {
3683 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3684
3685 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3686
3687 /* first reschedule or stop timer */
3688 if (w->repeat)
3689 {
3690 ev_at (w) += w->repeat;
3691 if (ev_at (w) < mn_now)
3692 ev_at (w) = mn_now;
3693
3694 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3695
3696 ANHE_at_cache (timers [HEAP0]);
3697 downheap (timers, timercnt, HEAP0);
3698 }
3699 else
3700 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3701
3702 EV_FREQUENT_CHECK;
3703 feed_reverse (EV_A_ (W)w);
3704 }
3705 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3706
3707 feed_reverse_done (EV_A_ EV_TIMER);
3708 }
3709}
3710
3711#if EV_PERIODIC_ENABLE
3712
3713ecb_noinline
405static void 3714static void
406timers_reify () 3715periodic_recalc (EV_P_ ev_periodic *w)
407{ 3716{
408 while (timercnt && timers [0]->at <= now) 3717 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3718 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3719
3720 /* the above almost always errs on the low side */
3721 while (at <= ev_rt_now)
3722 {
3723 ev_tstamp nat = at + w->interval;
3724
3725 /* when resolution fails us, we use ev_rt_now */
3726 if (ecb_expect_false (nat == at))
3727 {
3728 at = ev_rt_now;
3729 break;
3730 }
3731
3732 at = nat;
409 { 3733 }
410 struct ev_timer *w = timers [0];
411 3734
3735 ev_at (w) = at;
3736}
3737
3738/* make periodics pending */
3739inline_size void
3740periodics_reify (EV_P)
3741{
3742 EV_FREQUENT_CHECK;
3743
3744 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3745 {
3746 do
3747 {
3748 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3749
3750 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3751
412 /* first reschedule or stop timer */ 3752 /* first reschedule or stop timer */
3753 if (w->reschedule_cb)
3754 {
3755 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3756
3757 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3758
3759 ANHE_at_cache (periodics [HEAP0]);
3760 downheap (periodics, periodiccnt, HEAP0);
3761 }
3762 else if (w->interval)
3763 {
3764 periodic_recalc (EV_A_ w);
3765 ANHE_at_cache (periodics [HEAP0]);
3766 downheap (periodics, periodiccnt, HEAP0);
3767 }
3768 else
3769 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3770
3771 EV_FREQUENT_CHECK;
3772 feed_reverse (EV_A_ (W)w);
3773 }
3774 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3775
3776 feed_reverse_done (EV_A_ EV_PERIODIC);
3777 }
3778}
3779
3780/* simply recalculate all periodics */
3781/* TODO: maybe ensure that at least one event happens when jumping forward? */
3782ecb_noinline ecb_cold
3783static void
3784periodics_reschedule (EV_P)
3785{
3786 int i;
3787
3788 /* adjust periodics after time jump */
3789 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3790 {
3791 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3792
3793 if (w->reschedule_cb)
3794 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3795 else if (w->interval)
3796 periodic_recalc (EV_A_ w);
3797
3798 ANHE_at_cache (periodics [i]);
3799 }
3800
3801 reheap (periodics, periodiccnt);
3802}
3803#endif
3804
3805/* adjust all timers by a given offset */
3806ecb_noinline ecb_cold
3807static void
3808timers_reschedule (EV_P_ ev_tstamp adjust)
3809{
3810 int i;
3811
3812 for (i = 0; i < timercnt; ++i)
3813 {
3814 ANHE *he = timers + i + HEAP0;
3815 ANHE_w (*he)->at += adjust;
3816 ANHE_at_cache (*he);
3817 }
3818}
3819
3820/* fetch new monotonic and realtime times from the kernel */
3821/* also detect if there was a timejump, and act accordingly */
3822inline_speed void
3823time_update (EV_P_ ev_tstamp max_block)
3824{
3825#if EV_USE_MONOTONIC
3826 if (ecb_expect_true (have_monotonic))
3827 {
3828 int i;
3829 ev_tstamp odiff = rtmn_diff;
3830
3831 mn_now = get_clock ();
3832
3833 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3834 /* interpolate in the meantime */
3835 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3836 {
3837 ev_rt_now = rtmn_diff + mn_now;
3838 return;
3839 }
3840
3841 now_floor = mn_now;
3842 ev_rt_now = ev_time ();
3843
3844 /* loop a few times, before making important decisions.
3845 * on the choice of "4": one iteration isn't enough,
3846 * in case we get preempted during the calls to
3847 * ev_time and get_clock. a second call is almost guaranteed
3848 * to succeed in that case, though. and looping a few more times
3849 * doesn't hurt either as we only do this on time-jumps or
3850 * in the unlikely event of having been preempted here.
3851 */
3852 for (i = 4; --i; )
3853 {
3854 ev_tstamp diff;
3855 rtmn_diff = ev_rt_now - mn_now;
3856
3857 diff = odiff - rtmn_diff;
3858
3859 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3860 return; /* all is well */
3861
3862 ev_rt_now = ev_time ();
3863 mn_now = get_clock ();
3864 now_floor = mn_now;
3865 }
3866
3867 /* no timer adjustment, as the monotonic clock doesn't jump */
3868 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3869# if EV_PERIODIC_ENABLE
3870 periodics_reschedule (EV_A);
3871# endif
3872 }
3873 else
3874#endif
3875 {
3876 ev_rt_now = ev_time ();
3877
3878 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
3879 {
3880 /* adjust timers. this is easy, as the offset is the same for all of them */
3881 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3882#if EV_PERIODIC_ENABLE
3883 periodics_reschedule (EV_A);
3884#endif
3885 }
3886
3887 mn_now = ev_rt_now;
3888 }
3889}
3890
3891int
3892ev_run (EV_P_ int flags)
3893{
3894#if EV_FEATURE_API
3895 ++loop_depth;
3896#endif
3897
3898 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3899
3900 loop_done = EVBREAK_CANCEL;
3901
3902 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3903
3904 do
3905 {
3906#if EV_VERIFY >= 2
3907 ev_verify (EV_A);
3908#endif
3909
3910#ifndef _WIN32
3911 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3912 if (ecb_expect_false (getpid () != curpid))
3913 {
3914 curpid = getpid ();
3915 postfork = 1;
3916 }
3917#endif
3918
3919#if EV_FORK_ENABLE
3920 /* we might have forked, so queue fork handlers */
3921 if (ecb_expect_false (postfork))
3922 if (forkcnt)
3923 {
3924 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3925 EV_INVOKE_PENDING;
3926 }
3927#endif
3928
3929#if EV_PREPARE_ENABLE
3930 /* queue prepare watchers (and execute them) */
3931 if (ecb_expect_false (preparecnt))
3932 {
3933 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3934 EV_INVOKE_PENDING;
3935 }
3936#endif
3937
3938 if (ecb_expect_false (loop_done))
3939 break;
3940
3941 /* we might have forked, so reify kernel state if necessary */
3942 if (ecb_expect_false (postfork))
3943 loop_fork (EV_A);
3944
3945 /* update fd-related kernel structures */
3946 fd_reify (EV_A);
3947
3948 /* calculate blocking time */
3949 {
3950 ev_tstamp waittime = 0.;
3951 ev_tstamp sleeptime = 0.;
3952
3953 /* remember old timestamp for io_blocktime calculation */
3954 ev_tstamp prev_mn_now = mn_now;
3955
3956 /* update time to cancel out callback processing overhead */
3957 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3958
3959 /* from now on, we want a pipe-wake-up */
3960 pipe_write_wanted = 1;
3961
3962 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3963
3964 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3965 {
3966 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3967
3968 if (timercnt)
3969 {
3970 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3971 if (waittime > to) waittime = to;
3972 }
3973
3974#if EV_PERIODIC_ENABLE
3975 if (periodiccnt)
3976 {
3977 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3978 if (waittime > to) waittime = to;
3979 }
3980#endif
3981
3982 /* don't let timeouts decrease the waittime below timeout_blocktime */
3983 if (ecb_expect_false (waittime < timeout_blocktime))
3984 waittime = timeout_blocktime;
3985
3986 /* now there are two more special cases left, either we have
3987 * already-expired timers, so we should not sleep, or we have timers
3988 * that expire very soon, in which case we need to wait for a minimum
3989 * amount of time for some event loop backends.
3990 */
3991 if (ecb_expect_false (waittime < backend_mintime))
3992 waittime = waittime <= EV_TS_CONST (0.)
3993 ? EV_TS_CONST (0.)
3994 : backend_mintime;
3995
3996 /* extra check because io_blocktime is commonly 0 */
3997 if (ecb_expect_false (io_blocktime))
3998 {
3999 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4000
4001 if (sleeptime > waittime - backend_mintime)
4002 sleeptime = waittime - backend_mintime;
4003
4004 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4005 {
4006 ev_sleep (sleeptime);
4007 waittime -= sleeptime;
4008 }
4009 }
4010 }
4011
4012#if EV_FEATURE_API
4013 ++loop_count;
4014#endif
4015 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
4016 backend_poll (EV_A_ waittime);
4017 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4018
4019 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4020
4021 ECB_MEMORY_FENCE_ACQUIRE;
4022 if (pipe_write_skipped)
4023 {
4024 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4025 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4026 }
4027
4028 /* update ev_rt_now, do magic */
4029 time_update (EV_A_ waittime + sleeptime);
4030 }
4031
4032 /* queue pending timers and reschedule them */
4033 timers_reify (EV_A); /* relative timers called last */
4034#if EV_PERIODIC_ENABLE
4035 periodics_reify (EV_A); /* absolute timers called first */
4036#endif
4037
4038#if EV_IDLE_ENABLE
4039 /* queue idle watchers unless other events are pending */
4040 idle_reify (EV_A);
4041#endif
4042
4043#if EV_CHECK_ENABLE
4044 /* queue check watchers, to be executed first */
4045 if (ecb_expect_false (checkcnt))
4046 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4047#endif
4048
4049 EV_INVOKE_PENDING;
4050 }
4051 while (ecb_expect_true (
4052 activecnt
4053 && !loop_done
4054 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4055 ));
4056
4057 if (loop_done == EVBREAK_ONE)
4058 loop_done = EVBREAK_CANCEL;
4059
4060#if EV_FEATURE_API
4061 --loop_depth;
4062#endif
4063
4064 return activecnt;
4065}
4066
4067void
4068ev_break (EV_P_ int how) EV_NOEXCEPT
4069{
4070 loop_done = how;
4071}
4072
4073void
4074ev_ref (EV_P) EV_NOEXCEPT
4075{
4076 ++activecnt;
4077}
4078
4079void
4080ev_unref (EV_P) EV_NOEXCEPT
4081{
4082 --activecnt;
4083}
4084
4085void
4086ev_now_update (EV_P) EV_NOEXCEPT
4087{
4088 time_update (EV_A_ EV_TSTAMP_HUGE);
4089}
4090
4091void
4092ev_suspend (EV_P) EV_NOEXCEPT
4093{
4094 ev_now_update (EV_A);
4095}
4096
4097void
4098ev_resume (EV_P) EV_NOEXCEPT
4099{
4100 ev_tstamp mn_prev = mn_now;
4101
4102 ev_now_update (EV_A);
4103 timers_reschedule (EV_A_ mn_now - mn_prev);
4104#if EV_PERIODIC_ENABLE
4105 /* TODO: really do this? */
4106 periodics_reschedule (EV_A);
4107#endif
4108}
4109
4110/*****************************************************************************/
4111/* singly-linked list management, used when the expected list length is short */
4112
4113inline_size void
4114wlist_add (WL *head, WL elem)
4115{
4116 elem->next = *head;
4117 *head = elem;
4118}
4119
4120inline_size void
4121wlist_del (WL *head, WL elem)
4122{
4123 while (*head)
4124 {
4125 if (ecb_expect_true (*head == elem))
4126 {
4127 *head = elem->next;
4128 break;
4129 }
4130
4131 head = &(*head)->next;
4132 }
4133}
4134
4135/* internal, faster, version of ev_clear_pending */
4136inline_speed void
4137clear_pending (EV_P_ W w)
4138{
4139 if (w->pending)
4140 {
4141 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4142 w->pending = 0;
4143 }
4144}
4145
4146int
4147ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4148{
4149 W w_ = (W)w;
4150 int pending = w_->pending;
4151
4152 if (ecb_expect_true (pending))
4153 {
4154 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4155 p->w = (W)&pending_w;
4156 w_->pending = 0;
4157 return p->events;
4158 }
4159 else
4160 return 0;
4161}
4162
4163inline_size void
4164pri_adjust (EV_P_ W w)
4165{
4166 int pri = ev_priority (w);
4167 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4168 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4169 ev_set_priority (w, pri);
4170}
4171
4172inline_speed void
4173ev_start (EV_P_ W w, int active)
4174{
4175 pri_adjust (EV_A_ w);
4176 w->active = active;
4177 ev_ref (EV_A);
4178}
4179
4180inline_size void
4181ev_stop (EV_P_ W w)
4182{
4183 ev_unref (EV_A);
4184 w->active = 0;
4185}
4186
4187/*****************************************************************************/
4188
4189ecb_noinline
4190void
4191ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4192{
4193 int fd = w->fd;
4194
4195 if (ecb_expect_false (ev_is_active (w)))
4196 return;
4197
4198 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4199 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4200
4201#if EV_VERIFY >= 2
4202 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4203#endif
4204 EV_FREQUENT_CHECK;
4205
4206 ev_start (EV_A_ (W)w, 1);
4207 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4208 wlist_add (&anfds[fd].head, (WL)w);
4209
4210 /* common bug, apparently */
4211 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4212
4213 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4214 w->events &= ~EV__IOFDSET;
4215
4216 EV_FREQUENT_CHECK;
4217}
4218
4219ecb_noinline
4220void
4221ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4222{
4223 clear_pending (EV_A_ (W)w);
4224 if (ecb_expect_false (!ev_is_active (w)))
4225 return;
4226
4227 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4228
4229#if EV_VERIFY >= 2
4230 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4231#endif
4232 EV_FREQUENT_CHECK;
4233
4234 wlist_del (&anfds[w->fd].head, (WL)w);
4235 ev_stop (EV_A_ (W)w);
4236
4237 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4238
4239 EV_FREQUENT_CHECK;
4240}
4241
4242ecb_noinline
4243void
4244ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4245{
4246 if (ecb_expect_false (ev_is_active (w)))
4247 return;
4248
4249 ev_at (w) += mn_now;
4250
4251 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4252
4253 EV_FREQUENT_CHECK;
4254
4255 ++timercnt;
4256 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4257 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4258 ANHE_w (timers [ev_active (w)]) = (WT)w;
4259 ANHE_at_cache (timers [ev_active (w)]);
4260 upheap (timers, ev_active (w));
4261
4262 EV_FREQUENT_CHECK;
4263
4264 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4265}
4266
4267ecb_noinline
4268void
4269ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4270{
4271 clear_pending (EV_A_ (W)w);
4272 if (ecb_expect_false (!ev_is_active (w)))
4273 return;
4274
4275 EV_FREQUENT_CHECK;
4276
4277 {
4278 int active = ev_active (w);
4279
4280 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4281
4282 --timercnt;
4283
4284 if (ecb_expect_true (active < timercnt + HEAP0))
4285 {
4286 timers [active] = timers [timercnt + HEAP0];
4287 adjustheap (timers, timercnt, active);
4288 }
4289 }
4290
4291 ev_at (w) -= mn_now;
4292
4293 ev_stop (EV_A_ (W)w);
4294
4295 EV_FREQUENT_CHECK;
4296}
4297
4298ecb_noinline
4299void
4300ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4301{
4302 EV_FREQUENT_CHECK;
4303
4304 clear_pending (EV_A_ (W)w);
4305
4306 if (ev_is_active (w))
4307 {
413 if (w->repeat) 4308 if (w->repeat)
414 { 4309 {
415 w->at = now + w->repeat; 4310 ev_at (w) = mn_now + w->repeat;
416 assert (("timer timeout in the past, negative repeat?", w->at > now)); 4311 ANHE_at_cache (timers [ev_active (w)]);
417 downheap ((WT *)timers, timercnt, 0); 4312 adjustheap (timers, timercnt, ev_active (w));
418 } 4313 }
419 else 4314 else
420 evtimer_stop (w); /* nonrepeating: stop timer */ 4315 ev_timer_stop (EV_A_ w);
421
422 event ((W)w, EV_TIMEOUT);
423 }
424}
425
426static void
427periodics_reify ()
428{
429 while (periodiccnt && periodics [0]->at <= ev_now)
430 { 4316 }
431 struct ev_periodic *w = periodics [0]; 4317 else if (w->repeat)
4318 {
4319 ev_at (w) = w->repeat;
4320 ev_timer_start (EV_A_ w);
4321 }
432 4322
433 /* first reschedule or stop timer */ 4323 EV_FREQUENT_CHECK;
4324}
4325
4326ev_tstamp
4327ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4328{
4329 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4330}
4331
4332#if EV_PERIODIC_ENABLE
4333ecb_noinline
4334void
4335ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4336{
4337 if (ecb_expect_false (ev_is_active (w)))
4338 return;
4339
4340#if EV_USE_TIMERFD
4341 if (timerfd == -2)
4342 evtimerfd_init (EV_A);
4343#endif
4344
4345 if (w->reschedule_cb)
4346 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
434 if (w->interval) 4347 else if (w->interval)
4348 {
4349 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4350 periodic_recalc (EV_A_ w);
4351 }
4352 else
4353 ev_at (w) = w->offset;
4354
4355 EV_FREQUENT_CHECK;
4356
4357 ++periodiccnt;
4358 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4359 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4360 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4361 ANHE_at_cache (periodics [ev_active (w)]);
4362 upheap (periodics, ev_active (w));
4363
4364 EV_FREQUENT_CHECK;
4365
4366 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4367}
4368
4369ecb_noinline
4370void
4371ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4372{
4373 clear_pending (EV_A_ (W)w);
4374 if (ecb_expect_false (!ev_is_active (w)))
4375 return;
4376
4377 EV_FREQUENT_CHECK;
4378
4379 {
4380 int active = ev_active (w);
4381
4382 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4383
4384 --periodiccnt;
4385
4386 if (ecb_expect_true (active < periodiccnt + HEAP0))
4387 {
4388 periodics [active] = periodics [periodiccnt + HEAP0];
4389 adjustheap (periodics, periodiccnt, active);
4390 }
4391 }
4392
4393 ev_stop (EV_A_ (W)w);
4394
4395 EV_FREQUENT_CHECK;
4396}
4397
4398ecb_noinline
4399void
4400ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4401{
4402 /* TODO: use adjustheap and recalculation */
4403 ev_periodic_stop (EV_A_ w);
4404 ev_periodic_start (EV_A_ w);
4405}
4406#endif
4407
4408#ifndef SA_RESTART
4409# define SA_RESTART 0
4410#endif
4411
4412#if EV_SIGNAL_ENABLE
4413
4414ecb_noinline
4415void
4416ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4417{
4418 if (ecb_expect_false (ev_is_active (w)))
4419 return;
4420
4421 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4422
4423#if EV_MULTIPLICITY
4424 assert (("libev: a signal must not be attached to two different loops",
4425 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4426
4427 signals [w->signum - 1].loop = EV_A;
4428 ECB_MEMORY_FENCE_RELEASE;
4429#endif
4430
4431 EV_FREQUENT_CHECK;
4432
4433#if EV_USE_SIGNALFD
4434 if (sigfd == -2)
4435 {
4436 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4437 if (sigfd < 0 && errno == EINVAL)
4438 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4439
4440 if (sigfd >= 0)
435 { 4441 {
436 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 4442 fd_intern (sigfd); /* doing it twice will not hurt */
437 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 4443
438 downheap ((WT *)periodics, periodiccnt, 0); 4444 sigemptyset (&sigfd_set);
4445
4446 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4447 ev_set_priority (&sigfd_w, EV_MAXPRI);
4448 ev_io_start (EV_A_ &sigfd_w);
4449 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4450 }
4451 }
4452
4453 if (sigfd >= 0)
4454 {
4455 /* TODO: check .head */
4456 sigaddset (&sigfd_set, w->signum);
4457 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4458
4459 signalfd (sigfd, &sigfd_set, 0);
4460 }
4461#endif
4462
4463 ev_start (EV_A_ (W)w, 1);
4464 wlist_add (&signals [w->signum - 1].head, (WL)w);
4465
4466 if (!((WL)w)->next)
4467# if EV_USE_SIGNALFD
4468 if (sigfd < 0) /*TODO*/
4469# endif
4470 {
4471# ifdef _WIN32
4472 evpipe_init (EV_A);
4473
4474 signal (w->signum, ev_sighandler);
4475# else
4476 struct sigaction sa;
4477
4478 evpipe_init (EV_A);
4479
4480 sa.sa_handler = ev_sighandler;
4481 sigfillset (&sa.sa_mask);
4482 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4483 sigaction (w->signum, &sa, 0);
4484
4485 if (origflags & EVFLAG_NOSIGMASK)
4486 {
4487 sigemptyset (&sa.sa_mask);
4488 sigaddset (&sa.sa_mask, w->signum);
4489 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4490 }
4491#endif
4492 }
4493
4494 EV_FREQUENT_CHECK;
4495}
4496
4497ecb_noinline
4498void
4499ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4500{
4501 clear_pending (EV_A_ (W)w);
4502 if (ecb_expect_false (!ev_is_active (w)))
4503 return;
4504
4505 EV_FREQUENT_CHECK;
4506
4507 wlist_del (&signals [w->signum - 1].head, (WL)w);
4508 ev_stop (EV_A_ (W)w);
4509
4510 if (!signals [w->signum - 1].head)
4511 {
4512#if EV_MULTIPLICITY
4513 signals [w->signum - 1].loop = 0; /* unattach from signal */
4514#endif
4515#if EV_USE_SIGNALFD
4516 if (sigfd >= 0)
4517 {
4518 sigset_t ss;
4519
4520 sigemptyset (&ss);
4521 sigaddset (&ss, w->signum);
4522 sigdelset (&sigfd_set, w->signum);
4523
4524 signalfd (sigfd, &sigfd_set, 0);
4525 sigprocmask (SIG_UNBLOCK, &ss, 0);
439 } 4526 }
440 else 4527 else
441 evperiodic_stop (w); /* nonrepeating: stop timer */ 4528#endif
442 4529 signal (w->signum, SIG_DFL);
443 event ((W)w, EV_TIMEOUT);
444 } 4530 }
445}
446 4531
4532 EV_FREQUENT_CHECK;
4533}
4534
4535#endif
4536
4537#if EV_CHILD_ENABLE
4538
4539void
4540ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4541{
4542#if EV_MULTIPLICITY
4543 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4544#endif
4545 if (ecb_expect_false (ev_is_active (w)))
4546 return;
4547
4548 EV_FREQUENT_CHECK;
4549
4550 ev_start (EV_A_ (W)w, 1);
4551 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4552
4553 EV_FREQUENT_CHECK;
4554}
4555
4556void
4557ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4558{
4559 clear_pending (EV_A_ (W)w);
4560 if (ecb_expect_false (!ev_is_active (w)))
4561 return;
4562
4563 EV_FREQUENT_CHECK;
4564
4565 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4566 ev_stop (EV_A_ (W)w);
4567
4568 EV_FREQUENT_CHECK;
4569}
4570
4571#endif
4572
4573#if EV_STAT_ENABLE
4574
4575# ifdef _WIN32
4576# undef lstat
4577# define lstat(a,b) _stati64 (a,b)
4578# endif
4579
4580#define DEF_STAT_INTERVAL 5.0074891
4581#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4582#define MIN_STAT_INTERVAL 0.1074891
4583
4584ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4585
4586#if EV_USE_INOTIFY
4587
4588/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4589# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4590
4591ecb_noinline
447static void 4592static void
448periodics_reschedule (ev_tstamp diff) 4593infy_add (EV_P_ ev_stat *w)
449{ 4594{
450 int i; 4595 w->wd = inotify_add_watch (fs_fd, w->path,
4596 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4597 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4598 | IN_DONT_FOLLOW | IN_MASK_ADD);
451 4599
452 /* adjust periodics after time jump */ 4600 if (w->wd >= 0)
453 for (i = 0; i < periodiccnt; ++i) 4601 {
4602 struct statfs sfs;
4603
4604 /* now local changes will be tracked by inotify, but remote changes won't */
4605 /* unless the filesystem is known to be local, we therefore still poll */
4606 /* also do poll on <2.6.25, but with normal frequency */
4607
4608 if (!fs_2625)
4609 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4610 else if (!statfs (w->path, &sfs)
4611 && (sfs.f_type == 0x1373 /* devfs */
4612 || sfs.f_type == 0x4006 /* fat */
4613 || sfs.f_type == 0x4d44 /* msdos */
4614 || sfs.f_type == 0xEF53 /* ext2/3 */
4615 || sfs.f_type == 0x72b6 /* jffs2 */
4616 || sfs.f_type == 0x858458f6 /* ramfs */
4617 || sfs.f_type == 0x5346544e /* ntfs */
4618 || sfs.f_type == 0x3153464a /* jfs */
4619 || sfs.f_type == 0x9123683e /* btrfs */
4620 || sfs.f_type == 0x52654973 /* reiser3 */
4621 || sfs.f_type == 0x01021994 /* tmpfs */
4622 || sfs.f_type == 0x58465342 /* xfs */))
4623 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4624 else
4625 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
454 { 4626 }
455 struct ev_periodic *w = periodics [i]; 4627 else
4628 {
4629 /* can't use inotify, continue to stat */
4630 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
456 4631
457 if (w->interval) 4632 /* if path is not there, monitor some parent directory for speedup hints */
4633 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4634 /* but an efficiency issue only */
4635 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
458 { 4636 {
459 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 4637 char path [4096];
4638 strcpy (path, w->path);
460 4639
461 if (fabs (diff) >= 1e-4) 4640 do
462 { 4641 {
463 evperiodic_stop (w); 4642 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
464 evperiodic_start (w); 4643 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
465 4644
466 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 4645 char *pend = strrchr (path, '/');
4646
4647 if (!pend || pend == path)
4648 break;
4649
4650 *pend = 0;
4651 w->wd = inotify_add_watch (fs_fd, path, mask);
4652 }
4653 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4654 }
4655 }
4656
4657 if (w->wd >= 0)
4658 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4659
4660 /* now re-arm timer, if required */
4661 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4662 ev_timer_again (EV_A_ &w->timer);
4663 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4664}
4665
4666ecb_noinline
4667static void
4668infy_del (EV_P_ ev_stat *w)
4669{
4670 int slot;
4671 int wd = w->wd;
4672
4673 if (wd < 0)
4674 return;
4675
4676 w->wd = -2;
4677 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4678 wlist_del (&fs_hash [slot].head, (WL)w);
4679
4680 /* remove this watcher, if others are watching it, they will rearm */
4681 inotify_rm_watch (fs_fd, wd);
4682}
4683
4684ecb_noinline
4685static void
4686infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4687{
4688 if (slot < 0)
4689 /* overflow, need to check for all hash slots */
4690 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4691 infy_wd (EV_A_ slot, wd, ev);
4692 else
4693 {
4694 WL w_;
4695
4696 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4697 {
4698 ev_stat *w = (ev_stat *)w_;
4699 w_ = w_->next; /* lets us remove this watcher and all before it */
4700
4701 if (w->wd == wd || wd == -1)
4702 {
4703 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4704 {
4705 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4706 w->wd = -1;
4707 infy_add (EV_A_ w); /* re-add, no matter what */
4708 }
4709
4710 stat_timer_cb (EV_A_ &w->timer, 0);
467 } 4711 }
468 } 4712 }
469 } 4713 }
470} 4714}
471 4715
472static void 4716static void
473time_update () 4717infy_cb (EV_P_ ev_io *w, int revents)
474{ 4718{
4719 char buf [EV_INOTIFY_BUFSIZE];
475 int i; 4720 int ofs;
4721 int len = read (fs_fd, buf, sizeof (buf));
476 4722
477 ev_now = ev_time (); 4723 for (ofs = 0; ofs < len; )
478 4724 {
479 if (have_monotonic) 4725 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4726 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4727 ofs += sizeof (struct inotify_event) + ev->len;
480 { 4728 }
481 ev_tstamp odiff = diff; 4729}
482 4730
483 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 4731inline_size ecb_cold
4732void
4733ev_check_2625 (EV_P)
4734{
4735 /* kernels < 2.6.25 are borked
4736 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4737 */
4738 if (ev_linux_version () < 0x020619)
4739 return;
4740
4741 fs_2625 = 1;
4742}
4743
4744inline_size int
4745infy_newfd (void)
4746{
4747#if defined IN_CLOEXEC && defined IN_NONBLOCK
4748 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4749 if (fd >= 0)
4750 return fd;
4751#endif
4752 return inotify_init ();
4753}
4754
4755inline_size void
4756infy_init (EV_P)
4757{
4758 if (fs_fd != -2)
4759 return;
4760
4761 fs_fd = -1;
4762
4763 ev_check_2625 (EV_A);
4764
4765 fs_fd = infy_newfd ();
4766
4767 if (fs_fd >= 0)
4768 {
4769 fd_intern (fs_fd);
4770 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4771 ev_set_priority (&fs_w, EV_MAXPRI);
4772 ev_io_start (EV_A_ &fs_w);
4773 ev_unref (EV_A);
4774 }
4775}
4776
4777inline_size void
4778infy_fork (EV_P)
4779{
4780 int slot;
4781
4782 if (fs_fd < 0)
4783 return;
4784
4785 ev_ref (EV_A);
4786 ev_io_stop (EV_A_ &fs_w);
4787 close (fs_fd);
4788 fs_fd = infy_newfd ();
4789
4790 if (fs_fd >= 0)
4791 {
4792 fd_intern (fs_fd);
4793 ev_io_set (&fs_w, fs_fd, EV_READ);
4794 ev_io_start (EV_A_ &fs_w);
4795 ev_unref (EV_A);
4796 }
4797
4798 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4799 {
4800 WL w_ = fs_hash [slot].head;
4801 fs_hash [slot].head = 0;
4802
4803 while (w_)
484 { 4804 {
485 now = get_clock (); 4805 ev_stat *w = (ev_stat *)w_;
486 diff = ev_now - now; 4806 w_ = w_->next; /* lets us add this watcher */
487 4807
488 if (fabs (odiff - diff) < MIN_TIMEJUMP) 4808 w->wd = -1;
489 return; /* all is well */
490 4809
491 ev_now = ev_time (); 4810 if (fs_fd >= 0)
4811 infy_add (EV_A_ w); /* re-add, no matter what */
4812 else
4813 {
4814 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4815 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4816 ev_timer_again (EV_A_ &w->timer);
4817 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4818 }
492 } 4819 }
493
494 periodics_reschedule (diff - odiff);
495 /* no timer adjustment, as the monotonic clock doesn't jump */
496 } 4820 }
4821}
4822
4823#endif
4824
4825#ifdef _WIN32
4826# define EV_LSTAT(p,b) _stati64 (p, b)
4827#else
4828# define EV_LSTAT(p,b) lstat (p, b)
4829#endif
4830
4831void
4832ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4833{
4834 if (lstat (w->path, &w->attr) < 0)
4835 w->attr.st_nlink = 0;
4836 else if (!w->attr.st_nlink)
4837 w->attr.st_nlink = 1;
4838}
4839
4840ecb_noinline
4841static void
4842stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4843{
4844 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4845
4846 ev_statdata prev = w->attr;
4847 ev_stat_stat (EV_A_ w);
4848
4849 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4850 if (
4851 prev.st_dev != w->attr.st_dev
4852 || prev.st_ino != w->attr.st_ino
4853 || prev.st_mode != w->attr.st_mode
4854 || prev.st_nlink != w->attr.st_nlink
4855 || prev.st_uid != w->attr.st_uid
4856 || prev.st_gid != w->attr.st_gid
4857 || prev.st_rdev != w->attr.st_rdev
4858 || prev.st_size != w->attr.st_size
4859 || prev.st_atime != w->attr.st_atime
4860 || prev.st_mtime != w->attr.st_mtime
4861 || prev.st_ctime != w->attr.st_ctime
4862 ) {
4863 /* we only update w->prev on actual differences */
4864 /* in case we test more often than invoke the callback, */
4865 /* to ensure that prev is always different to attr */
4866 w->prev = prev;
4867
4868 #if EV_USE_INOTIFY
4869 if (fs_fd >= 0)
4870 {
4871 infy_del (EV_A_ w);
4872 infy_add (EV_A_ w);
4873 ev_stat_stat (EV_A_ w); /* avoid race... */
4874 }
4875 #endif
4876
4877 ev_feed_event (EV_A_ w, EV_STAT);
4878 }
4879}
4880
4881void
4882ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4883{
4884 if (ecb_expect_false (ev_is_active (w)))
4885 return;
4886
4887 ev_stat_stat (EV_A_ w);
4888
4889 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4890 w->interval = MIN_STAT_INTERVAL;
4891
4892 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4893 ev_set_priority (&w->timer, ev_priority (w));
4894
4895#if EV_USE_INOTIFY
4896 infy_init (EV_A);
4897
4898 if (fs_fd >= 0)
4899 infy_add (EV_A_ w);
497 else 4900 else
4901#endif
4902 {
4903 ev_timer_again (EV_A_ &w->timer);
4904 ev_unref (EV_A);
4905 }
4906
4907 ev_start (EV_A_ (W)w, 1);
4908
4909 EV_FREQUENT_CHECK;
4910}
4911
4912void
4913ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4914{
4915 clear_pending (EV_A_ (W)w);
4916 if (ecb_expect_false (!ev_is_active (w)))
4917 return;
4918
4919 EV_FREQUENT_CHECK;
4920
4921#if EV_USE_INOTIFY
4922 infy_del (EV_A_ w);
4923#endif
4924
4925 if (ev_is_active (&w->timer))
4926 {
4927 ev_ref (EV_A);
4928 ev_timer_stop (EV_A_ &w->timer);
4929 }
4930
4931 ev_stop (EV_A_ (W)w);
4932
4933 EV_FREQUENT_CHECK;
4934}
4935#endif
4936
4937#if EV_IDLE_ENABLE
4938void
4939ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4940{
4941 if (ecb_expect_false (ev_is_active (w)))
4942 return;
4943
4944 pri_adjust (EV_A_ (W)w);
4945
4946 EV_FREQUENT_CHECK;
4947
4948 {
4949 int active = ++idlecnt [ABSPRI (w)];
4950
4951 ++idleall;
4952 ev_start (EV_A_ (W)w, active);
4953
4954 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4955 idles [ABSPRI (w)][active - 1] = w;
4956 }
4957
4958 EV_FREQUENT_CHECK;
4959}
4960
4961void
4962ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4963{
4964 clear_pending (EV_A_ (W)w);
4965 if (ecb_expect_false (!ev_is_active (w)))
4966 return;
4967
4968 EV_FREQUENT_CHECK;
4969
4970 {
4971 int active = ev_active (w);
4972
4973 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4974 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4975
4976 ev_stop (EV_A_ (W)w);
4977 --idleall;
4978 }
4979
4980 EV_FREQUENT_CHECK;
4981}
4982#endif
4983
4984#if EV_PREPARE_ENABLE
4985void
4986ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4987{
4988 if (ecb_expect_false (ev_is_active (w)))
4989 return;
4990
4991 EV_FREQUENT_CHECK;
4992
4993 ev_start (EV_A_ (W)w, ++preparecnt);
4994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4995 prepares [preparecnt - 1] = w;
4996
4997 EV_FREQUENT_CHECK;
4998}
4999
5000void
5001ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
5002{
5003 clear_pending (EV_A_ (W)w);
5004 if (ecb_expect_false (!ev_is_active (w)))
5005 return;
5006
5007 EV_FREQUENT_CHECK;
5008
5009 {
5010 int active = ev_active (w);
5011
5012 prepares [active - 1] = prepares [--preparecnt];
5013 ev_active (prepares [active - 1]) = active;
5014 }
5015
5016 ev_stop (EV_A_ (W)w);
5017
5018 EV_FREQUENT_CHECK;
5019}
5020#endif
5021
5022#if EV_CHECK_ENABLE
5023void
5024ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
5025{
5026 if (ecb_expect_false (ev_is_active (w)))
5027 return;
5028
5029 EV_FREQUENT_CHECK;
5030
5031 ev_start (EV_A_ (W)w, ++checkcnt);
5032 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
5033 checks [checkcnt - 1] = w;
5034
5035 EV_FREQUENT_CHECK;
5036}
5037
5038void
5039ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
5040{
5041 clear_pending (EV_A_ (W)w);
5042 if (ecb_expect_false (!ev_is_active (w)))
5043 return;
5044
5045 EV_FREQUENT_CHECK;
5046
5047 {
5048 int active = ev_active (w);
5049
5050 checks [active - 1] = checks [--checkcnt];
5051 ev_active (checks [active - 1]) = active;
5052 }
5053
5054 ev_stop (EV_A_ (W)w);
5055
5056 EV_FREQUENT_CHECK;
5057}
5058#endif
5059
5060#if EV_EMBED_ENABLE
5061ecb_noinline
5062void
5063ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
5064{
5065 ev_run (w->other, EVRUN_NOWAIT);
5066}
5067
5068static void
5069embed_io_cb (EV_P_ ev_io *io, int revents)
5070{
5071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
5072
5073 if (ev_cb (w))
5074 ev_feed_event (EV_A_ (W)w, EV_EMBED);
5075 else
5076 ev_run (w->other, EVRUN_NOWAIT);
5077}
5078
5079static void
5080embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5081{
5082 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5083
5084 {
5085 EV_P = w->other;
5086
5087 while (fdchangecnt)
498 { 5088 {
499 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 5089 fd_reify (EV_A);
5090 ev_run (EV_A_ EVRUN_NOWAIT);
5091 }
5092 }
5093}
5094
5095#if EV_FORK_ENABLE
5096static void
5097embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5098{
5099 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5100
5101 ev_embed_stop (EV_A_ w);
5102
5103 {
5104 EV_P = w->other;
5105
5106 ev_loop_fork (EV_A);
5107 ev_run (EV_A_ EVRUN_NOWAIT);
5108 }
5109
5110 ev_embed_start (EV_A_ w);
5111}
5112#endif
5113
5114#if 0
5115static void
5116embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5117{
5118 ev_idle_stop (EV_A_ idle);
5119}
5120#endif
5121
5122void
5123ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
5124{
5125 if (ecb_expect_false (ev_is_active (w)))
5126 return;
5127
5128 {
5129 EV_P = w->other;
5130 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
5131 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
5132 }
5133
5134 EV_FREQUENT_CHECK;
5135
5136 ev_set_priority (&w->io, ev_priority (w));
5137 ev_io_start (EV_A_ &w->io);
5138
5139 ev_prepare_init (&w->prepare, embed_prepare_cb);
5140 ev_set_priority (&w->prepare, EV_MINPRI);
5141 ev_prepare_start (EV_A_ &w->prepare);
5142
5143#if EV_FORK_ENABLE
5144 ev_fork_init (&w->fork, embed_fork_cb);
5145 ev_fork_start (EV_A_ &w->fork);
5146#endif
5147
5148 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5149
5150 ev_start (EV_A_ (W)w, 1);
5151
5152 EV_FREQUENT_CHECK;
5153}
5154
5155void
5156ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5157{
5158 clear_pending (EV_A_ (W)w);
5159 if (ecb_expect_false (!ev_is_active (w)))
5160 return;
5161
5162 EV_FREQUENT_CHECK;
5163
5164 ev_io_stop (EV_A_ &w->io);
5165 ev_prepare_stop (EV_A_ &w->prepare);
5166#if EV_FORK_ENABLE
5167 ev_fork_stop (EV_A_ &w->fork);
5168#endif
5169
5170 ev_stop (EV_A_ (W)w);
5171
5172 EV_FREQUENT_CHECK;
5173}
5174#endif
5175
5176#if EV_FORK_ENABLE
5177void
5178ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5179{
5180 if (ecb_expect_false (ev_is_active (w)))
5181 return;
5182
5183 EV_FREQUENT_CHECK;
5184
5185 ev_start (EV_A_ (W)w, ++forkcnt);
5186 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5187 forks [forkcnt - 1] = w;
5188
5189 EV_FREQUENT_CHECK;
5190}
5191
5192void
5193ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5194{
5195 clear_pending (EV_A_ (W)w);
5196 if (ecb_expect_false (!ev_is_active (w)))
5197 return;
5198
5199 EV_FREQUENT_CHECK;
5200
5201 {
5202 int active = ev_active (w);
5203
5204 forks [active - 1] = forks [--forkcnt];
5205 ev_active (forks [active - 1]) = active;
5206 }
5207
5208 ev_stop (EV_A_ (W)w);
5209
5210 EV_FREQUENT_CHECK;
5211}
5212#endif
5213
5214#if EV_CLEANUP_ENABLE
5215void
5216ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5217{
5218 if (ecb_expect_false (ev_is_active (w)))
5219 return;
5220
5221 EV_FREQUENT_CHECK;
5222
5223 ev_start (EV_A_ (W)w, ++cleanupcnt);
5224 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5225 cleanups [cleanupcnt - 1] = w;
5226
5227 /* cleanup watchers should never keep a refcount on the loop */
5228 ev_unref (EV_A);
5229 EV_FREQUENT_CHECK;
5230}
5231
5232void
5233ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5234{
5235 clear_pending (EV_A_ (W)w);
5236 if (ecb_expect_false (!ev_is_active (w)))
5237 return;
5238
5239 EV_FREQUENT_CHECK;
5240 ev_ref (EV_A);
5241
5242 {
5243 int active = ev_active (w);
5244
5245 cleanups [active - 1] = cleanups [--cleanupcnt];
5246 ev_active (cleanups [active - 1]) = active;
5247 }
5248
5249 ev_stop (EV_A_ (W)w);
5250
5251 EV_FREQUENT_CHECK;
5252}
5253#endif
5254
5255#if EV_ASYNC_ENABLE
5256void
5257ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5258{
5259 if (ecb_expect_false (ev_is_active (w)))
5260 return;
5261
5262 w->sent = 0;
5263
5264 evpipe_init (EV_A);
5265
5266 EV_FREQUENT_CHECK;
5267
5268 ev_start (EV_A_ (W)w, ++asynccnt);
5269 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5270 asyncs [asynccnt - 1] = w;
5271
5272 EV_FREQUENT_CHECK;
5273}
5274
5275void
5276ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5277{
5278 clear_pending (EV_A_ (W)w);
5279 if (ecb_expect_false (!ev_is_active (w)))
5280 return;
5281
5282 EV_FREQUENT_CHECK;
5283
5284 {
5285 int active = ev_active (w);
5286
5287 asyncs [active - 1] = asyncs [--asynccnt];
5288 ev_active (asyncs [active - 1]) = active;
5289 }
5290
5291 ev_stop (EV_A_ (W)w);
5292
5293 EV_FREQUENT_CHECK;
5294}
5295
5296void
5297ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5298{
5299 w->sent = 1;
5300 evpipe_write (EV_A_ &async_pending);
5301}
5302#endif
5303
5304/*****************************************************************************/
5305
5306struct ev_once
5307{
5308 ev_io io;
5309 ev_timer to;
5310 void (*cb)(int revents, void *arg);
5311 void *arg;
5312};
5313
5314static void
5315once_cb (EV_P_ struct ev_once *once, int revents)
5316{
5317 void (*cb)(int revents, void *arg) = once->cb;
5318 void *arg = once->arg;
5319
5320 ev_io_stop (EV_A_ &once->io);
5321 ev_timer_stop (EV_A_ &once->to);
5322 ev_free (once);
5323
5324 cb (revents, arg);
5325}
5326
5327static void
5328once_cb_io (EV_P_ ev_io *w, int revents)
5329{
5330 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5331
5332 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5333}
5334
5335static void
5336once_cb_to (EV_P_ ev_timer *w, int revents)
5337{
5338 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5339
5340 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5341}
5342
5343void
5344ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5345{
5346 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5347
5348 once->cb = cb;
5349 once->arg = arg;
5350
5351 ev_init (&once->io, once_cb_io);
5352 if (fd >= 0)
5353 {
5354 ev_io_set (&once->io, fd, events);
5355 ev_io_start (EV_A_ &once->io);
5356 }
5357
5358 ev_init (&once->to, once_cb_to);
5359 if (timeout >= 0.)
5360 {
5361 ev_timer_set (&once->to, timeout, 0.);
5362 ev_timer_start (EV_A_ &once->to);
5363 }
5364}
5365
5366/*****************************************************************************/
5367
5368#if EV_WALK_ENABLE
5369ecb_cold
5370void
5371ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5372{
5373 int i, j;
5374 ev_watcher_list *wl, *wn;
5375
5376 if (types & (EV_IO | EV_EMBED))
5377 for (i = 0; i < anfdmax; ++i)
5378 for (wl = anfds [i].head; wl; )
500 { 5379 {
501 periodics_reschedule (ev_now - now); 5380 wn = wl->next;
502 5381
503 /* adjust timers. this is easy, as the offset is the same for all */ 5382#if EV_EMBED_ENABLE
504 for (i = 0; i < timercnt; ++i) 5383 if (ev_cb ((ev_io *)wl) == embed_io_cb)
505 timers [i]->at += diff; 5384 {
5385 if (types & EV_EMBED)
5386 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5387 }
5388 else
5389#endif
5390#if EV_USE_INOTIFY
5391 if (ev_cb ((ev_io *)wl) == infy_cb)
5392 ;
5393 else
5394#endif
5395 if ((ev_io *)wl != &pipe_w)
5396 if (types & EV_IO)
5397 cb (EV_A_ EV_IO, wl);
5398
5399 wl = wn;
506 } 5400 }
507 5401
508 now = ev_now; 5402 if (types & (EV_TIMER | EV_STAT))
509 } 5403 for (i = timercnt + HEAP0; i-- > HEAP0; )
510} 5404#if EV_STAT_ENABLE
511 5405 /*TODO: timer is not always active*/
512int ev_loop_done; 5406 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
513 5407 {
514void ev_loop (int flags) 5408 if (types & EV_STAT)
515{ 5409 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
516 double block; 5410 }
517 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
518
519 if (checkcnt)
520 {
521 queue_events ((W *)checks, checkcnt, EV_CHECK);
522 call_pending ();
523 }
524
525 do
526 {
527 /* update fd-related kernel structures */
528 fd_reify ();
529
530 /* calculate blocking time */
531
532 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */
533 ev_now = ev_time ();
534
535 if (flags & EVLOOP_NONBLOCK || idlecnt)
536 block = 0.;
537 else 5411 else
5412#endif
5413 if (types & EV_TIMER)
5414 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5415
5416#if EV_PERIODIC_ENABLE
5417 if (types & EV_PERIODIC)
5418 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5419 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5420#endif
5421
5422#if EV_IDLE_ENABLE
5423 if (types & EV_IDLE)
5424 for (j = NUMPRI; j--; )
5425 for (i = idlecnt [j]; i--; )
5426 cb (EV_A_ EV_IDLE, idles [j][i]);
5427#endif
5428
5429#if EV_FORK_ENABLE
5430 if (types & EV_FORK)
5431 for (i = forkcnt; i--; )
5432 if (ev_cb (forks [i]) != embed_fork_cb)
5433 cb (EV_A_ EV_FORK, forks [i]);
5434#endif
5435
5436#if EV_ASYNC_ENABLE
5437 if (types & EV_ASYNC)
5438 for (i = asynccnt; i--; )
5439 cb (EV_A_ EV_ASYNC, asyncs [i]);
5440#endif
5441
5442#if EV_PREPARE_ENABLE
5443 if (types & EV_PREPARE)
5444 for (i = preparecnt; i--; )
5445# if EV_EMBED_ENABLE
5446 if (ev_cb (prepares [i]) != embed_prepare_cb)
5447# endif
5448 cb (EV_A_ EV_PREPARE, prepares [i]);
5449#endif
5450
5451#if EV_CHECK_ENABLE
5452 if (types & EV_CHECK)
5453 for (i = checkcnt; i--; )
5454 cb (EV_A_ EV_CHECK, checks [i]);
5455#endif
5456
5457#if EV_SIGNAL_ENABLE
5458 if (types & EV_SIGNAL)
5459 for (i = 0; i < EV_NSIG - 1; ++i)
5460 for (wl = signals [i].head; wl; )
538 { 5461 {
539 block = MAX_BLOCKTIME; 5462 wn = wl->next;
540 5463 cb (EV_A_ EV_SIGNAL, wl);
541 if (timercnt) 5464 wl = wn;
542 {
543 ev_tstamp to = timers [0]->at - get_clock () + method_fudge;
544 if (block > to) block = to;
545 }
546
547 if (periodiccnt)
548 {
549 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
550 if (block > to) block = to;
551 }
552
553 if (block < 0.) block = 0.;
554 } 5465 }
5466#endif
555 5467
556 method_poll (block); 5468#if EV_CHILD_ENABLE
557 5469 if (types & EV_CHILD)
558 /* update ev_now, do magic */ 5470 for (i = (EV_PID_HASHSIZE); i--; )
559 time_update (); 5471 for (wl = childs [i]; wl; )
560
561 /* queue pending timers and reschedule them */
562 periodics_reify (); /* absolute timers first */
563 timers_reify (); /* relative timers second */
564
565 /* queue idle watchers unless io or timers are pending */
566 if (!pendingcnt)
567 queue_events ((W *)idles, idlecnt, EV_IDLE);
568
569 /* queue check and possibly idle watchers */
570 queue_events ((W *)checks, checkcnt, EV_CHECK);
571
572 call_pending ();
573 }
574 while (!ev_loop_done);
575
576 if (ev_loop_done != 2)
577 ev_loop_done = 0;
578}
579
580/*****************************************************************************/
581
582static void
583wlist_add (WL *head, WL elem)
584{
585 elem->next = *head;
586 *head = elem;
587}
588
589static void
590wlist_del (WL *head, WL elem)
591{
592 while (*head)
593 {
594 if (*head == elem)
595 { 5472 {
596 *head = elem->next; 5473 wn = wl->next;
597 return; 5474 cb (EV_A_ EV_CHILD, wl);
5475 wl = wn;
598 } 5476 }
599
600 head = &(*head)->next;
601 }
602}
603
604static void
605ev_start (W w, int active)
606{
607 w->pending = 0;
608 w->active = active;
609}
610
611static void
612ev_stop (W w)
613{
614 if (w->pending)
615 pendings [w->pending - 1].w = 0;
616
617 w->active = 0;
618}
619
620/*****************************************************************************/
621
622void
623evio_start (struct ev_io *w)
624{
625 if (ev_is_active (w))
626 return;
627
628 int fd = w->fd;
629
630 ev_start ((W)w, 1);
631 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
632 wlist_add ((WL *)&anfds[fd].head, (WL)w);
633
634 ++fdchangecnt;
635 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
636 fdchanges [fdchangecnt - 1] = fd;
637}
638
639void
640evio_stop (struct ev_io *w)
641{
642 if (!ev_is_active (w))
643 return;
644
645 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
646 ev_stop ((W)w);
647
648 ++fdchangecnt;
649 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
650 fdchanges [fdchangecnt - 1] = w->fd;
651}
652
653
654void
655evtimer_start (struct ev_timer *w)
656{
657 if (ev_is_active (w))
658 return;
659
660 w->at += now;
661
662 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.));
663
664 ev_start ((W)w, ++timercnt);
665 array_needsize (timers, timermax, timercnt, );
666 timers [timercnt - 1] = w;
667 upheap ((WT *)timers, timercnt - 1);
668}
669
670void
671evtimer_stop (struct ev_timer *w)
672{
673 if (!ev_is_active (w))
674 return;
675
676 if (w->active < timercnt--)
677 {
678 timers [w->active - 1] = timers [timercnt];
679 downheap ((WT *)timers, timercnt, w->active - 1);
680 }
681
682 ev_stop ((W)w);
683}
684
685void
686evperiodic_start (struct ev_periodic *w)
687{
688 if (ev_is_active (w))
689 return;
690
691 assert (("periodic interval value less than zero not allowed", w->interval >= 0.));
692
693 /* this formula differs from the one in periodic_reify because we do not always round up */
694 if (w->interval)
695 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
696
697 ev_start ((W)w, ++periodiccnt);
698 array_needsize (periodics, periodicmax, periodiccnt, );
699 periodics [periodiccnt - 1] = w;
700 upheap ((WT *)periodics, periodiccnt - 1);
701}
702
703void
704evperiodic_stop (struct ev_periodic *w)
705{
706 if (!ev_is_active (w))
707 return;
708
709 if (w->active < periodiccnt--)
710 {
711 periodics [w->active - 1] = periodics [periodiccnt];
712 downheap ((WT *)periodics, periodiccnt, w->active - 1);
713 }
714
715 ev_stop ((W)w);
716}
717
718void
719evsignal_start (struct ev_signal *w)
720{
721 if (ev_is_active (w))
722 return;
723
724 ev_start ((W)w, 1);
725 array_needsize (signals, signalmax, w->signum, signals_init);
726 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
727
728 if (!w->next)
729 {
730 struct sigaction sa;
731 sa.sa_handler = sighandler;
732 sigfillset (&sa.sa_mask);
733 sa.sa_flags = 0;
734 sigaction (w->signum, &sa, 0);
735 }
736}
737
738void
739evsignal_stop (struct ev_signal *w)
740{
741 if (!ev_is_active (w))
742 return;
743
744 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
745 ev_stop ((W)w);
746
747 if (!signals [w->signum - 1].head)
748 signal (w->signum, SIG_DFL);
749}
750
751void evidle_start (struct ev_idle *w)
752{
753 if (ev_is_active (w))
754 return;
755
756 ev_start ((W)w, ++idlecnt);
757 array_needsize (idles, idlemax, idlecnt, );
758 idles [idlecnt - 1] = w;
759}
760
761void evidle_stop (struct ev_idle *w)
762{
763 idles [w->active - 1] = idles [--idlecnt];
764 ev_stop ((W)w);
765}
766
767void evcheck_start (struct ev_check *w)
768{
769 if (ev_is_active (w))
770 return;
771
772 ev_start ((W)w, ++checkcnt);
773 array_needsize (checks, checkmax, checkcnt, );
774 checks [checkcnt - 1] = w;
775}
776
777void evcheck_stop (struct ev_check *w)
778{
779 checks [w->active - 1] = checks [--checkcnt];
780 ev_stop ((W)w);
781}
782
783/*****************************************************************************/
784
785#if 0
786
787struct ev_io wio;
788
789static void
790sin_cb (struct ev_io *w, int revents)
791{
792 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
793}
794
795static void
796ocb (struct ev_timer *w, int revents)
797{
798 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
799 evtimer_stop (w);
800 evtimer_start (w);
801}
802
803static void
804scb (struct ev_signal *w, int revents)
805{
806 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
807 evio_stop (&wio);
808 evio_start (&wio);
809}
810
811static void
812gcb (struct ev_signal *w, int revents)
813{
814 fprintf (stderr, "generic %x\n", revents);
815
816}
817
818int main (void)
819{
820 ev_init (0);
821
822 evio_init (&wio, sin_cb, 0, EV_READ);
823 evio_start (&wio);
824
825 struct ev_timer t[10000];
826
827#if 0
828 int i;
829 for (i = 0; i < 10000; ++i)
830 {
831 struct ev_timer *w = t + i;
832 evw_init (w, ocb, i);
833 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
834 evtimer_start (w);
835 if (drand48 () < 0.5)
836 evtimer_stop (w);
837 }
838#endif 5477#endif
839 5478/* EV_STAT 0x00001000 /* stat data changed */
840 struct ev_timer t1; 5479/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
841 evtimer_init (&t1, ocb, 5, 10);
842 evtimer_start (&t1);
843
844 struct ev_signal sig;
845 evsignal_init (&sig, scb, SIGQUIT);
846 evsignal_start (&sig);
847
848 struct ev_check cw;
849 evcheck_init (&cw, gcb);
850 evcheck_start (&cw);
851
852 struct ev_idle iw;
853 evidle_init (&iw, gcb);
854 evidle_start (&iw);
855
856 ev_loop (0);
857
858 return 0;
859} 5480}
860
861#endif 5481#endif
862 5482
5483#if EV_MULTIPLICITY
5484 #include "ev_wrap.h"
5485#endif
863 5486
864
865

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines