ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.13 by root, Wed Oct 31 10:50:05 2007 UTC vs.
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
14#define HAVE_EPOLL 1 75/**/
15 76
16#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
17# ifdef CLOCK_MONOTONIC
18# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
19# endif 102# endif
20#endif 103#endif
21 104
22#ifndef HAVE_SELECT
23# define HAVE_SELECT 1
24#endif
25
26#ifndef HAVE_EPOLL
27# define HAVE_EPOLL 0
28#endif
29
30#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
31# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
32#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
33 122
34#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
35#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
36 127
37#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
38 143
39typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
40typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
41typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
42 147
43static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
44ev_tstamp ev_now;
45int ev_method;
46
47static int have_monotonic; /* runtime */
48
49static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
50static void (*method_modify)(int fd, int oev, int nev);
51static void (*method_poll)(ev_tstamp timeout);
52 149
53/*****************************************************************************/ 150/*****************************************************************************/
54 151
55ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
56ev_time (void) 186ev_time (void)
57{ 187{
58#if HAVE_REALTIME 188#if EV_USE_REALTIME
59 struct timespec ts; 189 struct timespec ts;
60 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
61 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
62#else 192#else
63 struct timeval tv; 193 struct timeval tv;
64 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
65 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
66#endif 196#endif
67} 197}
68 198
69static ev_tstamp 199inline ev_tstamp
70get_clock (void) 200get_clock (void)
71{ 201{
72#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
73 if (have_monotonic) 203 if (expect_true (have_monotonic))
74 { 204 {
75 struct timespec ts; 205 struct timespec ts;
76 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
77 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
78 } 208 }
79#endif 209#endif
80 210
81 return ev_time (); 211 return ev_time ();
82} 212}
83 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
84#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
85 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
86 { \ 224 { \
87 int newcnt = cur ? cur << 1 : 16; \ 225 int newcnt = cur; \
88 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
89 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
90 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
91 cur = newcnt; \ 234 cur = newcnt; \
92 } 235 }
93 236
94/*****************************************************************************/ 237/*****************************************************************************/
95 238
96typedef struct
97{
98 struct ev_io *head;
99 unsigned char wev, rev; /* want, received event set */
100} ANFD;
101
102static ANFD *anfds;
103static int anfdmax;
104
105static int *fdchanges;
106static int fdchangemax, fdchangecnt;
107
108static void 239static void
109anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
110{ 241{
111 while (count--) 242 while (count--)
112 { 243 {
113 base->head = 0; 244 base->head = 0;
114 base->wev = base->rev = EV_NONE; 245 base->events = EV_NONE;
246 base->reify = 0;
247
115 ++base; 248 ++base;
116 } 249 }
117} 250}
118 251
119typedef struct
120{
121 W w;
122 int events;
123} ANPENDING;
124
125static ANPENDING *pendings;
126static int pendingmax, pendingcnt;
127
128static void 252static void
129event (W w, int events) 253event (EV_P_ W w, int events)
130{ 254{
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
131 w->pending = ++pendingcnt; 261 w->pending = ++pendingcnt [ABSPRI (w)];
132 array_needsize (pendings, pendingmax, pendingcnt, ); 262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
133 pendings [pendingcnt - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
134 pendings [pendingcnt - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
135} 265}
136 266
137static void 267static void
268queue_events (EV_P_ W *events, int eventcnt, int type)
269{
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274}
275
276static void
138fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
139{ 278{
140 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
141 struct ev_io *w; 280 struct ev_io *w;
142 281
143 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
144 { 283 {
145 int ev = w->events & events; 284 int ev = w->events & events;
146 285
147 if (ev) 286 if (ev)
148 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
149 } 288 }
150} 289}
151 290
291/*****************************************************************************/
292
152static void 293static void
153queue_events (W *events, int eventcnt, int type) 294fd_reify (EV_P)
154{ 295{
155 int i; 296 int i;
156 297
157 for (i = 0; i < eventcnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
158 event (events [i], type); 299 {
300 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd;
302 struct ev_io *w;
303
304 int events = 0;
305
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308
309 anfd->reify = 0;
310
311 method_modify (EV_A_ fd, anfd->events, events);
312 anfd->events = events;
313 }
314
315 fdchangecnt = 0;
316}
317
318static void
319fd_change (EV_P_ int fd)
320{
321 if (anfds [fd].reify || fdchangecnt < 0)
322 return;
323
324 anfds [fd].reify = 1;
325
326 ++fdchangecnt;
327 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
328 fdchanges [fdchangecnt - 1] = fd;
329}
330
331static void
332fd_kill (EV_P_ int fd)
333{
334 struct ev_io *w;
335
336 while ((w = (struct ev_io *)anfds [fd].head))
337 {
338 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 }
341}
342
343/* called on EBADF to verify fds */
344static void
345fd_ebadf (EV_P)
346{
347 int fd;
348
349 for (fd = 0; fd < anfdmax; ++fd)
350 if (anfds [fd].events)
351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
352 fd_kill (EV_A_ fd);
353}
354
355/* called on ENOMEM in select/poll to kill some fds and retry */
356static void
357fd_enomem (EV_P)
358{
359 int fd;
360
361 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events)
363 {
364 close (fd);
365 fd_kill (EV_A_ fd);
366 return;
367 }
368}
369
370/* susually called after fork if method needs to re-arm all fds from scratch */
371static void
372fd_rearm_all (EV_P)
373{
374 int fd;
375
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events)
379 {
380 anfds [fd].events = 0;
381 fd_change (EV_A_ fd);
382 }
159} 383}
160 384
161/*****************************************************************************/ 385/*****************************************************************************/
162 386
163static struct ev_timer **timers;
164static int timermax, timercnt;
165
166static struct ev_periodic **periodics;
167static int periodicmax, periodiccnt;
168
169static void 387static void
170upheap (WT *timers, int k) 388upheap (WT *heap, int k)
171{ 389{
172 WT w = timers [k]; 390 WT w = heap [k];
173 391
174 while (k && timers [k >> 1]->at > w->at) 392 while (k && heap [k >> 1]->at > w->at)
175 { 393 {
176 timers [k] = timers [k >> 1]; 394 heap [k] = heap [k >> 1];
177 timers [k]->active = k + 1; 395 ((W)heap [k])->active = k + 1;
178 k >>= 1; 396 k >>= 1;
179 } 397 }
180 398
181 timers [k] = w; 399 heap [k] = w;
182 timers [k]->active = k + 1; 400 ((W)heap [k])->active = k + 1;
183 401
184} 402}
185 403
186static void 404static void
187downheap (WT *timers, int N, int k) 405downheap (WT *heap, int N, int k)
188{ 406{
189 WT w = timers [k]; 407 WT w = heap [k];
190 408
191 while (k < (N >> 1)) 409 while (k < (N >> 1))
192 { 410 {
193 int j = k << 1; 411 int j = k << 1;
194 412
195 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
196 ++j; 414 ++j;
197 415
198 if (w->at <= timers [j]->at) 416 if (w->at <= heap [j]->at)
199 break; 417 break;
200 418
201 timers [k] = timers [j]; 419 heap [k] = heap [j];
202 timers [k]->active = k + 1; 420 ((W)heap [k])->active = k + 1;
203 k = j; 421 k = j;
204 } 422 }
205 423
206 timers [k] = w; 424 heap [k] = w;
207 timers [k]->active = k + 1; 425 ((W)heap [k])->active = k + 1;
208} 426}
209 427
210/*****************************************************************************/ 428/*****************************************************************************/
211 429
212typedef struct 430typedef struct
213{ 431{
214 struct ev_signal *head; 432 struct ev_watcher_list *head;
215 sig_atomic_t gotsig; 433 sig_atomic_t volatile gotsig;
216} ANSIG; 434} ANSIG;
217 435
218static ANSIG *signals; 436static ANSIG *signals;
219static int signalmax; 437static int signalmax;
220 438
221static int sigpipe [2]; 439static int sigpipe [2];
222static sig_atomic_t gotsig; 440static sig_atomic_t volatile gotsig;
223static struct ev_io sigev; 441static struct ev_io sigev;
224 442
225static void 443static void
226signals_init (ANSIG *base, int count) 444signals_init (ANSIG *base, int count)
227{ 445{
228 while (count--) 446 while (count--)
229 { 447 {
230 base->head = 0; 448 base->head = 0;
231 base->gotsig = 0; 449 base->gotsig = 0;
450
232 ++base; 451 ++base;
233 } 452 }
234} 453}
235 454
236static void 455static void
238{ 457{
239 signals [signum - 1].gotsig = 1; 458 signals [signum - 1].gotsig = 1;
240 459
241 if (!gotsig) 460 if (!gotsig)
242 { 461 {
462 int old_errno = errno;
243 gotsig = 1; 463 gotsig = 1;
244 write (sigpipe [1], &gotsig, 1); 464 write (sigpipe [1], &signum, 1);
465 errno = old_errno;
245 } 466 }
246} 467}
247 468
248static void 469static void
249sigcb (struct ev_io *iow, int revents) 470sigcb (EV_P_ struct ev_io *iow, int revents)
250{ 471{
251 struct ev_signal *w; 472 struct ev_watcher_list *w;
252 int sig; 473 int signum;
253 474
475 read (sigpipe [0], &revents, 1);
254 gotsig = 0; 476 gotsig = 0;
255 read (sigpipe [0], &revents, 1);
256 477
257 for (sig = signalmax; sig--; ) 478 for (signum = signalmax; signum--; )
258 if (signals [sig].gotsig) 479 if (signals [signum].gotsig)
259 { 480 {
260 signals [sig].gotsig = 0; 481 signals [signum].gotsig = 0;
261 482
262 for (w = signals [sig].head; w; w = w->next) 483 for (w = signals [signum].head; w; w = w->next)
263 event ((W)w, EV_SIGNAL); 484 event (EV_A_ (W)w, EV_SIGNAL);
264 } 485 }
265} 486}
266 487
267static void 488static void
268siginit (void) 489siginit (EV_P)
269{ 490{
491#ifndef WIN32
270 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
271 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
272 494
273 /* rather than sort out wether we really need nb, set it */ 495 /* rather than sort out wether we really need nb, set it */
274 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
275 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
276 499
277 evio_set (&sigev, sigpipe [0], EV_READ); 500 ev_io_set (&sigev, sigpipe [0], EV_READ);
278 evio_start (&sigev); 501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
279} 503}
280 504
281/*****************************************************************************/ 505/*****************************************************************************/
282 506
283static struct ev_idle **idles; 507#ifndef WIN32
284static int idlemax, idlecnt;
285 508
286static struct ev_check **checks; 509static struct ev_child *childs [PID_HASHSIZE];
287static int checkmax, checkcnt; 510static struct ev_signal childev;
511
512#ifndef WCONTINUED
513# define WCONTINUED 0
514#endif
515
516static void
517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518{
519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents)
533{
534 int pid, status;
535
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 {
538 /* make sure we are called again until all childs have been reaped */
539 event (EV_A_ (W)sw, EV_SIGNAL);
540
541 child_reap (EV_A_ sw, pid, pid, status);
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
543 }
544}
545
546#endif
288 547
289/*****************************************************************************/ 548/*****************************************************************************/
290 549
550#if EV_USE_KQUEUE
551# include "ev_kqueue.c"
552#endif
291#if HAVE_EPOLL 553#if EV_USE_EPOLL
292# include "ev_epoll.c" 554# include "ev_epoll.c"
293#endif 555#endif
556#if EV_USE_POLL
557# include "ev_poll.c"
558#endif
294#if HAVE_SELECT 559#if EV_USE_SELECT
295# include "ev_select.c" 560# include "ev_select.c"
296#endif 561#endif
297 562
298int ev_init (int flags) 563int
564ev_version_major (void)
299{ 565{
566 return EV_VERSION_MAJOR;
567}
568
569int
570ev_version_minor (void)
571{
572 return EV_VERSION_MINOR;
573}
574
575/* return true if we are running with elevated privileges and should ignore env variables */
576static int
577enable_secure (void)
578{
579#ifdef WIN32
580 return 0;
581#else
582 return getuid () != geteuid ()
583 || getgid () != getegid ();
584#endif
585}
586
587int
588ev_method (EV_P)
589{
590 return method;
591}
592
593static void
594loop_init (EV_P_ int methods)
595{
596 if (!method)
597 {
300#if HAVE_MONOTONIC 598#if EV_USE_MONOTONIC
301 { 599 {
302 struct timespec ts; 600 struct timespec ts;
303 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 601 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
304 have_monotonic = 1; 602 have_monotonic = 1;
305 } 603 }
306#endif 604#endif
307 605
308 ev_now = ev_time (); 606 rt_now = ev_time ();
309 now = get_clock (); 607 mn_now = get_clock ();
310 diff = ev_now - now; 608 now_floor = mn_now;
609 rtmn_diff = rt_now - mn_now;
311 610
611 if (methods == EVMETHOD_AUTO)
612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
613 methods = atoi (getenv ("LIBEV_METHODS"));
614 else
615 methods = EVMETHOD_ANY;
616
617 method = 0;
618#if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620#endif
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
624#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626#endif
627#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
629#endif
630#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
632#endif
633 }
634}
635
636void
637loop_destroy (EV_P)
638{
639#if EV_USE_WIN32
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
641#endif
642#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif
645#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
647#endif
648#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
650#endif
651#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif
654
655 method = 0;
656 /*TODO*/
657}
658
659void
660loop_fork (EV_P)
661{
662 /*TODO*/
663#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif
666#if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668#endif
669}
670
671#if EV_MULTIPLICITY
672struct ev_loop *
673ev_loop_new (int methods)
674{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
676
677 loop_init (EV_A_ methods);
678
679 if (ev_method (EV_A))
680 return loop;
681
682 return 0;
683}
684
685void
686ev_loop_destroy (EV_P)
687{
688 loop_destroy (EV_A);
689 free (loop);
690}
691
692void
693ev_loop_fork (EV_P)
694{
695 loop_fork (EV_A);
696}
697
698#endif
699
700#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop *
705#else
706static int default_loop;
707
708int
709#endif
710ev_default_loop (int methods)
711{
712 if (sigpipe [0] == sigpipe [1])
312 if (pipe (sigpipe)) 713 if (pipe (sigpipe))
313 return 0; 714 return 0;
314 715
315 ev_method = EVMETHOD_NONE; 716 if (!default_loop)
316#if HAVE_EPOLL
317 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
318#endif
319#if HAVE_SELECT
320 if (ev_method == EVMETHOD_NONE) select_init (flags);
321#endif
322
323 if (ev_method)
324 { 717 {
718#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct;
720#else
721 default_loop = 1;
722#endif
723
724 loop_init (EV_A_ methods);
725
726 if (ev_method (EV_A))
727 {
325 evw_init (&sigev, sigcb); 728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
326 siginit (); 730 siginit (EV_A);
327 }
328 731
329 return ev_method; 732#ifndef WIN32
330} 733 ev_signal_init (&childev, childcb, SIGCHLD);
331 734 ev_set_priority (&childev, EV_MAXPRI);
332/*****************************************************************************/ 735 ev_signal_start (EV_A_ &childev);
333 736 ev_unref (EV_A); /* child watcher should not keep loop alive */
334void ev_prefork (void)
335{
336 /* nop */
337}
338
339void ev_postfork_parent (void)
340{
341 /* nop */
342}
343
344void ev_postfork_child (void)
345{
346#if HAVE_EPOLL
347 if (ev_method == EVMETHOD_EPOLL)
348 epoll_postfork_child ();
349#endif 737#endif
738 }
739 else
740 default_loop = 0;
741 }
350 742
743 return default_loop;
744}
745
746void
747ev_default_destroy (void)
748{
749#if EV_MULTIPLICITY
750 struct ev_loop *loop = default_loop;
751#endif
752
753 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev);
755
756 ev_ref (EV_A); /* signal watcher */
351 evio_stop (&sigev); 757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761
762 loop_destroy (EV_A);
763}
764
765void
766ev_default_fork (void)
767{
768#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop;
770#endif
771
772 loop_fork (EV_A);
773
774 ev_io_stop (EV_A_ &sigev);
352 close (sigpipe [0]); 775 close (sigpipe [0]);
353 close (sigpipe [1]); 776 close (sigpipe [1]);
354 pipe (sigpipe); 777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
355 siginit (); 780 siginit (EV_A);
356} 781}
357 782
358/*****************************************************************************/ 783/*****************************************************************************/
359 784
360static void 785static void
361fd_reify (void) 786call_pending (EV_P)
362{ 787{
363 int i; 788 int pri;
364 789
365 for (i = 0; i < fdchangecnt; ++i) 790 for (pri = NUMPRI; pri--; )
366 { 791 while (pendingcnt [pri])
367 int fd = fdchanges [i];
368 ANFD *anfd = anfds + fd;
369 struct ev_io *w;
370
371 int wev = 0;
372
373 for (w = anfd->head; w; w = w->next)
374 wev |= w->events;
375
376 if (anfd->wev != wev)
377 { 792 {
378 method_modify (fd, anfd->wev, wev); 793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
379 anfd->wev = wev;
380 }
381 }
382 794
383 fdchangecnt = 0;
384}
385
386static void
387call_pending ()
388{
389 int i;
390
391 for (i = 0; i < pendingcnt; ++i)
392 {
393 ANPENDING *p = pendings + i;
394
395 if (p->w) 795 if (p->w)
396 { 796 {
397 p->w->pending = 0; 797 p->w->pending = 0;
398 p->w->cb (p->w, p->events); 798
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
399 } 800 }
400 } 801 }
401
402 pendingcnt = 0;
403} 802}
404 803
405static void 804static void
406timers_reify () 805timers_reify (EV_P)
407{ 806{
408 while (timercnt && timers [0]->at <= now) 807 while (timercnt && ((WT)timers [0])->at <= mn_now)
409 { 808 {
410 struct ev_timer *w = timers [0]; 809 struct ev_timer *w = timers [0];
810
811 assert (("inactive timer on timer heap detected", ev_is_active (w)));
411 812
412 /* first reschedule or stop timer */ 813 /* first reschedule or stop timer */
413 if (w->repeat) 814 if (w->repeat)
414 { 815 {
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
415 w->at = now + w->repeat; 817 ((WT)w)->at = mn_now + w->repeat;
416 assert (("timer timeout in the past, negative repeat?", w->at > now));
417 downheap ((WT *)timers, timercnt, 0); 818 downheap ((WT *)timers, timercnt, 0);
418 } 819 }
419 else 820 else
420 evtimer_stop (w); /* nonrepeating: stop timer */ 821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
421 822
422 event ((W)w, EV_TIMEOUT); 823 event (EV_A_ (W)w, EV_TIMEOUT);
423 } 824 }
424} 825}
425 826
426static void 827static void
427periodics_reify () 828periodics_reify (EV_P)
428{ 829{
429 while (periodiccnt && periodics [0]->at <= ev_now) 830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
430 { 831 {
431 struct ev_periodic *w = periodics [0]; 832 struct ev_periodic *w = periodics [0];
833
834 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
432 835
433 /* first reschedule or stop timer */ 836 /* first reschedule or stop timer */
434 if (w->interval) 837 if (w->interval)
435 { 838 {
436 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
437 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
438 downheap ((WT *)periodics, periodiccnt, 0); 841 downheap ((WT *)periodics, periodiccnt, 0);
439 } 842 }
440 else 843 else
441 evperiodic_stop (w); /* nonrepeating: stop timer */ 844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
442 845
443 event ((W)w, EV_TIMEOUT); 846 event (EV_A_ (W)w, EV_PERIODIC);
444 } 847 }
445} 848}
446 849
447static void 850static void
448periodics_reschedule (ev_tstamp diff) 851periodics_reschedule (EV_P)
449{ 852{
450 int i; 853 int i;
451 854
452 /* adjust periodics after time jump */ 855 /* adjust periodics after time jump */
453 for (i = 0; i < periodiccnt; ++i) 856 for (i = 0; i < periodiccnt; ++i)
454 { 857 {
455 struct ev_periodic *w = periodics [i]; 858 struct ev_periodic *w = periodics [i];
456 859
457 if (w->interval) 860 if (w->interval)
458 { 861 {
459 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
460 863
461 if (fabs (diff) >= 1e-4) 864 if (fabs (diff) >= 1e-4)
462 { 865 {
463 evperiodic_stop (w); 866 ev_periodic_stop (EV_A_ w);
464 evperiodic_start (w); 867 ev_periodic_start (EV_A_ w);
465 868
466 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
467 } 870 }
468 } 871 }
469 } 872 }
470} 873}
471 874
875inline int
876time_update_monotonic (EV_P)
877{
878 mn_now = get_clock ();
879
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 {
882 rt_now = rtmn_diff + mn_now;
883 return 0;
884 }
885 else
886 {
887 now_floor = mn_now;
888 rt_now = ev_time ();
889 return 1;
890 }
891}
892
472static void 893static void
473time_update () 894time_update (EV_P)
474{ 895{
475 int i; 896 int i;
476 897
477 ev_now = ev_time (); 898#if EV_USE_MONOTONIC
478
479 if (have_monotonic) 899 if (expect_true (have_monotonic))
480 { 900 {
481 ev_tstamp odiff = diff; 901 if (time_update_monotonic (EV_A))
482
483 for (i = 4; --i; ) /* loop a few times, before making important decisions */
484 { 902 {
485 now = get_clock (); 903 ev_tstamp odiff = rtmn_diff;
904
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */
906 {
486 diff = ev_now - now; 907 rtmn_diff = rt_now - mn_now;
487 908
488 if (fabs (odiff - diff) < MIN_TIMEJUMP) 909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
489 return; /* all is well */ 910 return; /* all is well */
490 911
491 ev_now = ev_time (); 912 rt_now = ev_time ();
913 mn_now = get_clock ();
914 now_floor = mn_now;
915 }
916
917 periodics_reschedule (EV_A);
918 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
492 } 920 }
493
494 periodics_reschedule (diff - odiff);
495 /* no timer adjustment, as the monotonic clock doesn't jump */
496 } 921 }
497 else 922 else
923#endif
498 { 924 {
499 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 925 rt_now = ev_time ();
926
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
500 { 928 {
501 periodics_reschedule (ev_now - now); 929 periodics_reschedule (EV_A);
502 930
503 /* adjust timers. this is easy, as the offset is the same for all */ 931 /* adjust timers. this is easy, as the offset is the same for all */
504 for (i = 0; i < timercnt; ++i) 932 for (i = 0; i < timercnt; ++i)
505 timers [i]->at += diff; 933 ((WT)timers [i])->at += rt_now - mn_now;
506 } 934 }
507 935
508 now = ev_now; 936 mn_now = rt_now;
509 } 937 }
510} 938}
511 939
512int ev_loop_done; 940void
941ev_ref (EV_P)
942{
943 ++activecnt;
944}
513 945
946void
947ev_unref (EV_P)
948{
949 --activecnt;
950}
951
952static int loop_done;
953
954void
514void ev_loop (int flags) 955ev_loop (EV_P_ int flags)
515{ 956{
516 double block; 957 double block;
517 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
518
519 if (checkcnt)
520 {
521 queue_events ((W *)checks, checkcnt, EV_CHECK);
522 call_pending ();
523 }
524 959
525 do 960 do
526 { 961 {
962 /* queue check watchers (and execute them) */
963 if (expect_false (preparecnt))
964 {
965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
966 call_pending (EV_A);
967 }
968
527 /* update fd-related kernel structures */ 969 /* update fd-related kernel structures */
528 fd_reify (); 970 fd_reify (EV_A);
529 971
530 /* calculate blocking time */ 972 /* calculate blocking time */
531 973
532 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 974 /* we only need this for !monotonic clockor timers, but as we basically
975 always have timers, we just calculate it always */
976#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A);
979 else
980#endif
981 {
533 ev_now = ev_time (); 982 rt_now = ev_time ();
983 mn_now = rt_now;
984 }
534 985
535 if (flags & EVLOOP_NONBLOCK || idlecnt) 986 if (flags & EVLOOP_NONBLOCK || idlecnt)
536 block = 0.; 987 block = 0.;
537 else 988 else
538 { 989 {
539 block = MAX_BLOCKTIME; 990 block = MAX_BLOCKTIME;
540 991
541 if (timercnt) 992 if (timercnt)
542 { 993 {
543 ev_tstamp to = timers [0]->at - get_clock () + method_fudge; 994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
544 if (block > to) block = to; 995 if (block > to) block = to;
545 } 996 }
546 997
547 if (periodiccnt) 998 if (periodiccnt)
548 { 999 {
549 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
550 if (block > to) block = to; 1001 if (block > to) block = to;
551 } 1002 }
552 1003
553 if (block < 0.) block = 0.; 1004 if (block < 0.) block = 0.;
554 } 1005 }
555 1006
556 method_poll (block); 1007 method_poll (EV_A_ block);
557 1008
558 /* update ev_now, do magic */ 1009 /* update rt_now, do magic */
559 time_update (); 1010 time_update (EV_A);
560 1011
561 /* queue pending timers and reschedule them */ 1012 /* queue pending timers and reschedule them */
1013 timers_reify (EV_A); /* relative timers called last */
562 periodics_reify (); /* absolute timers first */ 1014 periodics_reify (EV_A); /* absolute timers called first */
563 timers_reify (); /* relative timers second */
564 1015
565 /* queue idle watchers unless io or timers are pending */ 1016 /* queue idle watchers unless io or timers are pending */
566 if (!pendingcnt) 1017 if (!pendingcnt)
567 queue_events ((W *)idles, idlecnt, EV_IDLE); 1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
568 1019
569 /* queue check and possibly idle watchers */ 1020 /* queue check watchers, to be executed first */
1021 if (checkcnt)
570 queue_events ((W *)checks, checkcnt, EV_CHECK); 1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
571 1023
572 call_pending (); 1024 call_pending (EV_A);
573 } 1025 }
574 while (!ev_loop_done); 1026 while (activecnt && !loop_done);
575 1027
576 if (ev_loop_done != 2) 1028 if (loop_done != 2)
577 ev_loop_done = 0; 1029 loop_done = 0;
1030}
1031
1032void
1033ev_unloop (EV_P_ int how)
1034{
1035 loop_done = how;
578} 1036}
579 1037
580/*****************************************************************************/ 1038/*****************************************************************************/
581 1039
582static void 1040inline void
583wlist_add (WL *head, WL elem) 1041wlist_add (WL *head, WL elem)
584{ 1042{
585 elem->next = *head; 1043 elem->next = *head;
586 *head = elem; 1044 *head = elem;
587} 1045}
588 1046
589static void 1047inline void
590wlist_del (WL *head, WL elem) 1048wlist_del (WL *head, WL elem)
591{ 1049{
592 while (*head) 1050 while (*head)
593 { 1051 {
594 if (*head == elem) 1052 if (*head == elem)
599 1057
600 head = &(*head)->next; 1058 head = &(*head)->next;
601 } 1059 }
602} 1060}
603 1061
604static void 1062inline void
1063ev_clear_pending (EV_P_ W w)
1064{
1065 if (w->pending)
1066 {
1067 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1068 w->pending = 0;
1069 }
1070}
1071
1072inline void
605ev_start (W w, int active) 1073ev_start (EV_P_ W w, int active)
606{ 1074{
607 w->pending = 0; 1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
608 w->active = active; 1078 w->active = active;
1079 ev_ref (EV_A);
609} 1080}
610 1081
611static void 1082inline void
612ev_stop (W w) 1083ev_stop (EV_P_ W w)
613{ 1084{
614 if (w->pending) 1085 ev_unref (EV_A);
615 pendings [w->pending - 1].w = 0;
616
617 w->active = 0; 1086 w->active = 0;
618} 1087}
619 1088
620/*****************************************************************************/ 1089/*****************************************************************************/
621 1090
622void 1091void
623evio_start (struct ev_io *w) 1092ev_io_start (EV_P_ struct ev_io *w)
624{ 1093{
1094 int fd = w->fd;
1095
625 if (ev_is_active (w)) 1096 if (ev_is_active (w))
626 return; 1097 return;
627 1098
628 int fd = w->fd; 1099 assert (("ev_io_start called with negative fd", fd >= 0));
629 1100
630 ev_start ((W)w, 1); 1101 ev_start (EV_A_ (W)w, 1);
631 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
632 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1103 wlist_add ((WL *)&anfds[fd].head, (WL)w);
633 1104
634 ++fdchangecnt; 1105 fd_change (EV_A_ fd);
635 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
636 fdchanges [fdchangecnt - 1] = fd;
637} 1106}
638 1107
639void 1108void
640evio_stop (struct ev_io *w) 1109ev_io_stop (EV_P_ struct ev_io *w)
641{ 1110{
1111 ev_clear_pending (EV_A_ (W)w);
642 if (!ev_is_active (w)) 1112 if (!ev_is_active (w))
643 return; 1113 return;
644 1114
645 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
646 ev_stop ((W)w); 1116 ev_stop (EV_A_ (W)w);
647 1117
648 ++fdchangecnt; 1118 fd_change (EV_A_ w->fd);
649 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
650 fdchanges [fdchangecnt - 1] = w->fd;
651} 1119}
652 1120
653
654void 1121void
655evtimer_start (struct ev_timer *w) 1122ev_timer_start (EV_P_ struct ev_timer *w)
656{ 1123{
657 if (ev_is_active (w)) 1124 if (ev_is_active (w))
658 return; 1125 return;
659 1126
660 w->at += now; 1127 ((WT)w)->at += mn_now;
661 1128
662 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
663 1130
664 ev_start ((W)w, ++timercnt); 1131 ev_start (EV_A_ (W)w, ++timercnt);
665 array_needsize (timers, timermax, timercnt, ); 1132 array_needsize (timers, timermax, timercnt, );
666 timers [timercnt - 1] = w; 1133 timers [timercnt - 1] = w;
667 upheap ((WT *)timers, timercnt - 1); 1134 upheap ((WT *)timers, timercnt - 1);
668}
669 1135
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137}
1138
670void 1139void
671evtimer_stop (struct ev_timer *w) 1140ev_timer_stop (EV_P_ struct ev_timer *w)
672{ 1141{
1142 ev_clear_pending (EV_A_ (W)w);
673 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
674 return; 1144 return;
675 1145
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1147
676 if (w->active < timercnt--) 1148 if (((W)w)->active < timercnt--)
677 { 1149 {
678 timers [w->active - 1] = timers [timercnt]; 1150 timers [((W)w)->active - 1] = timers [timercnt];
679 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
680 } 1152 }
681 1153
1154 ((WT)w)->at = w->repeat;
1155
682 ev_stop ((W)w); 1156 ev_stop (EV_A_ (W)w);
683} 1157}
684 1158
685void 1159void
686evperiodic_start (struct ev_periodic *w) 1160ev_timer_again (EV_P_ struct ev_timer *w)
687{ 1161{
688 if (ev_is_active (w)) 1162 if (ev_is_active (w))
689 return; 1163 {
1164 if (w->repeat)
1165 {
1166 ((WT)w)->at = mn_now + w->repeat;
1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1168 }
1169 else
1170 ev_timer_stop (EV_A_ w);
1171 }
1172 else if (w->repeat)
1173 ev_timer_start (EV_A_ w);
1174}
690 1175
691 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1176void
1177ev_periodic_start (EV_P_ struct ev_periodic *w)
1178{
1179 if (ev_is_active (w))
1180 return;
1181
1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
692 1183
693 /* this formula differs from the one in periodic_reify because we do not always round up */ 1184 /* this formula differs from the one in periodic_reify because we do not always round up */
694 if (w->interval) 1185 if (w->interval)
695 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
696 1187
697 ev_start ((W)w, ++periodiccnt); 1188 ev_start (EV_A_ (W)w, ++periodiccnt);
698 array_needsize (periodics, periodicmax, periodiccnt, ); 1189 array_needsize (periodics, periodicmax, periodiccnt, );
699 periodics [periodiccnt - 1] = w; 1190 periodics [periodiccnt - 1] = w;
700 upheap ((WT *)periodics, periodiccnt - 1); 1191 upheap ((WT *)periodics, periodiccnt - 1);
701}
702 1192
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194}
1195
703void 1196void
704evperiodic_stop (struct ev_periodic *w) 1197ev_periodic_stop (EV_P_ struct ev_periodic *w)
705{ 1198{
1199 ev_clear_pending (EV_A_ (W)w);
706 if (!ev_is_active (w)) 1200 if (!ev_is_active (w))
707 return; 1201 return;
708 1202
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1204
709 if (w->active < periodiccnt--) 1205 if (((W)w)->active < periodiccnt--)
710 { 1206 {
711 periodics [w->active - 1] = periodics [periodiccnt]; 1207 periodics [((W)w)->active - 1] = periodics [periodiccnt];
712 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
713 } 1209 }
714 1210
715 ev_stop ((W)w); 1211 ev_stop (EV_A_ (W)w);
716} 1212}
717 1213
718void 1214void
719evsignal_start (struct ev_signal *w) 1215ev_idle_start (EV_P_ struct ev_idle *w)
720{ 1216{
721 if (ev_is_active (w)) 1217 if (ev_is_active (w))
722 return; 1218 return;
723 1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w);
1234}
1235
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279
1280#ifndef SA_RESTART
1281# define SA_RESTART 0
1282#endif
1283
1284void
1285ev_signal_start (EV_P_ struct ev_signal *w)
1286{
1287#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1289#endif
1290 if (ev_is_active (w))
1291 return;
1292
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1294
724 ev_start ((W)w, 1); 1295 ev_start (EV_A_ (W)w, 1);
725 array_needsize (signals, signalmax, w->signum, signals_init); 1296 array_needsize (signals, signalmax, w->signum, signals_init);
726 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
727 1298
728 if (!w->next) 1299 if (!((WL)w)->next)
729 { 1300 {
730 struct sigaction sa; 1301 struct sigaction sa;
731 sa.sa_handler = sighandler; 1302 sa.sa_handler = sighandler;
732 sigfillset (&sa.sa_mask); 1303 sigfillset (&sa.sa_mask);
733 sa.sa_flags = 0; 1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
734 sigaction (w->signum, &sa, 0); 1305 sigaction (w->signum, &sa, 0);
735 } 1306 }
736} 1307}
737 1308
738void 1309void
739evsignal_stop (struct ev_signal *w) 1310ev_signal_stop (EV_P_ struct ev_signal *w)
740{ 1311{
1312 ev_clear_pending (EV_A_ (W)w);
741 if (!ev_is_active (w)) 1313 if (!ev_is_active (w))
742 return; 1314 return;
743 1315
744 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
745 ev_stop ((W)w); 1317 ev_stop (EV_A_ (W)w);
746 1318
747 if (!signals [w->signum - 1].head) 1319 if (!signals [w->signum - 1].head)
748 signal (w->signum, SIG_DFL); 1320 signal (w->signum, SIG_DFL);
749} 1321}
750 1322
751void evidle_start (struct ev_idle *w) 1323void
1324ev_child_start (EV_P_ struct ev_child *w)
752{ 1325{
1326#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop));
1328#endif
753 if (ev_is_active (w)) 1329 if (ev_is_active (w))
754 return; 1330 return;
755 1331
756 ev_start ((W)w, ++idlecnt); 1332 ev_start (EV_A_ (W)w, 1);
757 array_needsize (idles, idlemax, idlecnt, ); 1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
758 idles [idlecnt - 1] = w;
759} 1334}
760 1335
761void evidle_stop (struct ev_idle *w) 1336void
1337ev_child_stop (EV_P_ struct ev_child *w)
762{ 1338{
763 idles [w->active - 1] = idles [--idlecnt]; 1339 ev_clear_pending (EV_A_ (W)w);
764 ev_stop ((W)w);
765}
766
767void evcheck_start (struct ev_check *w)
768{
769 if (ev_is_active (w)) 1340 if (ev_is_active (w))
770 return; 1341 return;
771 1342
772 ev_start ((W)w, ++checkcnt); 1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
773 array_needsize (checks, checkmax, checkcnt, );
774 checks [checkcnt - 1] = w;
775}
776
777void evcheck_stop (struct ev_check *w)
778{
779 checks [w->active - 1] = checks [--checkcnt];
780 ev_stop ((W)w); 1344 ev_stop (EV_A_ (W)w);
781} 1345}
782 1346
783/*****************************************************************************/ 1347/*****************************************************************************/
784 1348
785#if 0 1349struct ev_once
786 1350{
787struct ev_io wio; 1351 struct ev_io io;
788
789static void
790sin_cb (struct ev_io *w, int revents)
791{
792 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
793}
794
795static void
796ocb (struct ev_timer *w, int revents)
797{
798 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
799 evtimer_stop (w);
800 evtimer_start (w);
801}
802
803static void
804scb (struct ev_signal *w, int revents)
805{
806 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
807 evio_stop (&wio);
808 evio_start (&wio);
809}
810
811static void
812gcb (struct ev_signal *w, int revents)
813{
814 fprintf (stderr, "generic %x\n", revents);
815
816}
817
818int main (void)
819{
820 ev_init (0);
821
822 evio_init (&wio, sin_cb, 0, EV_READ);
823 evio_start (&wio);
824
825 struct ev_timer t[10000];
826
827#if 0
828 int i;
829 for (i = 0; i < 10000; ++i)
830 {
831 struct ev_timer *w = t + i;
832 evw_init (w, ocb, i);
833 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
834 evtimer_start (w);
835 if (drand48 () < 0.5)
836 evtimer_stop (w);
837 }
838#endif
839
840 struct ev_timer t1; 1352 struct ev_timer to;
841 evtimer_init (&t1, ocb, 5, 10); 1353 void (*cb)(int revents, void *arg);
842 evtimer_start (&t1); 1354 void *arg;
1355};
843 1356
844 struct ev_signal sig; 1357static void
845 evsignal_init (&sig, scb, SIGQUIT); 1358once_cb (EV_P_ struct ev_once *once, int revents)
846 evsignal_start (&sig); 1359{
1360 void (*cb)(int revents, void *arg) = once->cb;
1361 void *arg = once->arg;
847 1362
848 struct ev_check cw; 1363 ev_io_stop (EV_A_ &once->io);
849 evcheck_init (&cw, gcb); 1364 ev_timer_stop (EV_A_ &once->to);
850 evcheck_start (&cw); 1365 free (once);
851 1366
852 struct ev_idle iw; 1367 cb (revents, arg);
853 evidle_init (&iw, gcb);
854 evidle_start (&iw);
855
856 ev_loop (0);
857
858 return 0;
859} 1368}
860 1369
861#endif 1370static void
1371once_cb_io (EV_P_ struct ev_io *w, int revents)
1372{
1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1374}
862 1375
1376static void
1377once_cb_to (EV_P_ struct ev_timer *w, int revents)
1378{
1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1380}
863 1381
1382void
1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1384{
1385 struct ev_once *once = malloc (sizeof (struct ev_once));
864 1386
1387 if (!once)
1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1389 else
1390 {
1391 once->cb = cb;
1392 once->arg = arg;
865 1393
1394 ev_watcher_init (&once->io, once_cb_io);
1395 if (fd >= 0)
1396 {
1397 ev_io_set (&once->io, fd, events);
1398 ev_io_start (EV_A_ &once->io);
1399 }
1400
1401 ev_watcher_init (&once->to, once_cb_to);
1402 if (timeout >= 0.)
1403 {
1404 ev_timer_set (&once->to, timeout, 0.);
1405 ev_timer_start (EV_A_ &once->to);
1406 }
1407 }
1408}
1409

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines